
Finite element methods for
surface problems

Doctoral Thesis

Mirza Cenanovic

Jönköping University
School of Engineering
Dissertation Series No. 022 • 2017

Doctoral Thesis in Machine Design

Finite element methods for surface problems
Dissertation Series No. 022

© 2017, Mirza Cenanovic

Prepared with LYX and LATEX

Published by
Department of Product Development
School of Engineering, Jönköping University
P.O. Box 1026
SE-551 11 Jönköping, Sweden
Tel.: +46 36 10 10 00
www.ju.se

Printed by Ineko AB, year 2017

ISBN 978-91-87289-23-1

ii

What I cannot create, I do not understand

- Richard Feynman

iii

Abstract

The purpose of this thesis is to further develop numerical methods for solving surface problems by
utilizing tangential calculus and the trace finite element method. Direct computation on the surface
is possible by the use of tangential calculus, in contrast to the classical approach of mapping 2D
parametric surfaces to 3D surfaces by means of differential geometry operators. Using tangential
calculus, the problem formulation is only dependent on the position and normal vectors of the
3D surface. Tangential calculus thus enables a clean, simple and inexpensive formulation and
implementation of finite element methods for surface problems. Meshing techniques are greatly
simplified from the end-user perspective by utilizing an unfitted finite element method called the
Trace Finite Element Method, in which the basic idea is to embed the surface in a higher dimensional
mesh and use the shape functions of this background mesh for the discretization of the partial
differential equation. This method makes it possible to model surfaces implicitly and solve surface
problems without the need for expensive meshing/re-meshing techniques especially for moving
surfaces or surfaces embedded in 3D solids, so called embedded interface problems. Using these two
approaches, numerical methods for solving three surface problems are proposed: 1) minimal surface
problems, in which the form that minimizes the mean curvature was computed by iterative update of
a level-set function discretized using TraceFEM and driven by advection, for which the velocity field
was given by the mean curvature flow, 2) elastic membrane problems discretized using linear and
higher order TraceFEM, which makes it straightforward to embed complex geometries of membrane
models into an elastic bulk for reinforcement and 3) stabilized, accurate vertex normal and mean
curvature estimation with local refinement on triangulated surfaces. In this thesis the basics of the
two main approaches are presented, some aspects such as stabilization and surface reconstruction
are further developed, evaluated and numerically analyzed, details on implementations are provided
and the current state of work is presented.

Keywords: trace finite element method, membrane, mean curvature, level-set method

v

Papers

The following papers constitute the basis of this thesis.

Paper I Mirza Cenanovic, Peter Hansbo, Mats G. Larson
Minimal surface computation using finite element method on an embedded
surface

Paper II Mirza Cenanovic, Peter Hansbo, Mats G. Larson
Cut finite element modeling of linear membranes

Paper III Mirza Cenanovic, Peter Hansbo, Mats G. Larson
Finite element procedures for computing normals and mean curvature on
triangulated surfaces and their use for mesh refinement

Paper IV Mirza Cenanovic
Numerical error estimation for a TraceFEM membrane and distance func-
tion on P1 and P2 tetrahedra

vii

Contribution to co-authored papers

All but one paper are co-authored with Hansbo and Larson, who are responsible for the theoretical
framework.
The contribution by the author of this thesis is listed below.

Paper I Took part in planning the paper.
Made the numerical implementations.
Carried out the numerical simulations.
Took part in writing the paper.

Paper II Took part in planning the paper.
Made the numerical implementations.
Carried out the numerical simulations.
Took part in writing the paper.

Paper III Took equal part in planning the paper.
Made the numerical implementations.
Carried out the numerical simulations.
Wrote major parts of the paper.

ix

Acknowledgements

The work presented in this thesis was carried out during the years 2012-2017 as part of a research
project at the department of Product development at School of Engineering, Jönköping University.
The work is funded by the Swedish Research Council (Grant No. 2011-4992).

First I would like to thank my supervisor Professor Peter Hansbo for all the support, discussions
and patience. I also want to thank my co-supervisor Associate Professor Kent Salomonsson for his
support, discussions and guidance. The expert knowledge from each of their fields and pedagogical
skills provided a superb and relaxed learning environment for which I am deeply grateful for. I
would like to thank all my colleagues at the department for the easygoing atmosphere and fruitful
discussions during coffee breaks. Lastly, I would like to thank my family for all the support,
especially during the months of the final stages of completing this thesis.

Mirza Cenanovic
March 2017

xi

Contents

Abstract v

Papers vii

Acknowledgements xi

Introduction 1

1 Tangential Calculus 5
1.1 The tangential operator . 5

1.1.1 The discrete tangential projection . 10
1.2 Surface representation . 10

1.2.1 Implicit surfaces . 11
1.3 Parametric mapping . 12

2 Trace Finite Element Method 17
2.1 Domain . 18
2.2 Discretization . 18
2.3 Dirichlet conditions . 20
2.4 Finite element space . 20
2.5 Stabilization . 23
2.6 Zero-level set reconstruction . 26

2.6.1 Valid topology . 27
2.6.2 Linear interpolant . 28
2.6.3 Higher order interpolant . 31

3 Implementation Details 35
3.1 Choice of software . 35
3.2 Stabilization . 35
3.3 Curvature flow . 36

xiii

3.4 Level set advection . 38
3.5 The L2-projection . 39
3.6 Linear elastic membrane model . 40
3.7 Interpolating solution field to surface . 43
3.8 Evaluation of basis functions in physical coordinates 43

4 Future Work 45

Bibliography 47

Appended Papers 51

Paper I 53

Paper II 67

Paper III 83

Paper IV 117

xiv

Introduction

Introduction and motivation

Surface problems are found in many places, such as manufacturing industry, architecture and com-
puter graphics. Problem areas include, for instance, sheet metal forming which can be modeled
using shell theory, membranes such as sails and thin structures, see e.g., [23], heat transfer across
a curved geometry, computing the distance between two points on a curved surface (also called
geodesic distance field, see, e.g., [14]). Other problem areas include curvature driven problems and
composite materials where thin layers add stiffness to the bulk (sandwich constructions in airplane
industry and glue laminated timber).

Surface problems. Traditionally, three dimensional surface problems were modeled in a two
dimensional parameter space and mapped to the real surface in three dimensions [13, 12], also known
as the parameterization of a surface or parametric approach to surface problems. This requires the
use of an exact surface representation and additional differential operators that are defined on a
curved space using base vectors and Christoffel symbols. This might be computationally tedious,
cumbersome to implement and expensive to compute. Besides, an exact surface representation is
not always available; a CAD surface is typically defined by a set of parameterized surface patches
that are not necessary continuous across the interfaces between the two surfaces. Another classic
engineering approach is to model the surface as a set of flat triangles and rotate each into three
dimensional space [50]; these formulations are however expressed in a discrete setting as matrix
operations.
An approach to modeling surface partial differential equations (PDEs) without the use of para-

metric mapping was introduced for surface stresses by Gurtin and Murdoch [27]. This so called
tangential approach (also known as tangential differential calculus) was first used in finite element
methods by Dziuk [21] for the discretization of the Laplace-Beltrami operator on a meshed surface,
where (using a signed distance function) a tangential gradient was introduced and the resulting

1

numerical scheme was rather clean and simple. The same geometric differential calculus is used by
Delfour and Zolésio in [16, 17, 19], where, again, a signed distance function is used to represent the
surface and from which the tangential differential operator is derived and used to create a linear
shell model without parametric mapping. This approach was followed by Hansbo and Larson in
[29], where a FEM was created for a general curved linear membrane model, and by Hansbo, Larson
and Larsson in [28] for large deformations theory. A recent overview of FEM for surface PDEs is
given by Dziuk and Elliot in [22], where the tangential approach is applied on a large set of surface
PDEs and discussed in the paper and references therein.
There are a couple of fundamental properties of surfaces that are extremely important in com-

puter graphics and computer vision: surface normals and surface curvature. With the increase
in computing power we see an increase in need for accurate approximations of these fundamental
surface properties. Areas such as the gaming industry, film industry and medical image scanning
such as CT, MR, 3D ultrasound, all require accurate approximations of surface normals and surface
curvature. In case of accurate surface interpolation using methods involving the surface normals,
the accuracy of the surface interpolation depends on the accuracy of the surface normal. Tradition-
ally, these have been approximated locally for fast execution times with little regard for accuracy,
see e.g., [1, 3, 40, 20, 49, 39, 38, 37, 34, 26].

Unfitted methods. In order to shorten development cycles in industry the CAD, CAE, and
structural optimization are required to seamlessly fit together and ultimately iterate with as little
human intervention as possible. Thus, to move towards this ultimate goal of automation, we need
to have sufficiently accurate and performance efficient tools for representing implicit geometries
and employ them in FE methods. Recently, focus has increased on the development of methods
which do not require conforming meshes and are defined by the fact that the domain, on which a
PDE is to be solved, is completely embedded in a fictitious domain (background mesh) and thus go
under the umbrella term fictitious domain methods (see e.g., [22, 43] and the references therein).
For evolving surface problems a novel FEM was proposed by Olshanskii, Reusken and Grande [44]
for elliptic PDEs, where the surface was embedded into a higher dimensional mesh (also called
background mesh) and allowed to arbitrarily cut through the mesh. The PDE was then discretized
using the shape functions of the background mesh but integrated over the approximated surface.
That triggered an avalanche of studies following this new approach and the reader is referred to [43]
and Chapter 2 of this thesis for a detailed overview of some recent work on surface and fictitious
domain problems, called the Trace Finite Element Method (TraceFEM). This approach provides
robust and general methods for dealing with a surface geometry that does not necessary respect the
background mesh (the surface is allowed to cut through the background mesh), see e.g. [9, 30, 5, 43].
A lot of current work is being put into numerical integration of implicitly defined domains, see e.g.,
[43, 45, 42, 35, 24, 25]. Since the introduction of unfitted finite element methods a lot of work
has been done to improve the numerical stability and conditioning of the linear system, see e.g.,

2

[4, 7, 8, 9, 6], in particular see the recent overview by Olshanskii and Reusken on alternative meth-
ods in [43].

The work done in this thesis further develops methods for solving surface PDEs using the tangential
calculus approach within the TraceFEM framework, see Papers 1, 2 and 4. In Paper 3 we use the
recently developed stabilization method on triangular meshes.

Aim and limitations

The aim of this work is to apply the tangential calculus in combination with TraceFEM to a
set of surface problems in order to improve the computer aided engineering modeling of surface
problems and in particular moving surfaces and embedded surfaces. The goal of this project is
to increase the knowledge within the field of surface PDEs using the tangential approach as well
as TraceFEM with regards to computational techniques. This is achieved by further developing
aspects of the TraceFEM in the context of the previously mentioned surface problems, providing
numerical results and analysis of the underlying computational methods with some comparisons to
previously proposed methods. The purpose of this thesis is to give a brief overview of the ideas of
the various approaches used in the papers and to show the details of the implementations. Since the
implementations are done in 3D, the implementations and their details are limited to small proof of
concept scripts which are implemented in the high level language MATLAB1 and need rework (with
respect to performance) for production use. The algorithms provided in the Papers are kept general
and without extensive implementation details. With this in mind no complexity analysis was done
since the aim was convergence analysis, readability, share-ability and short implementation times.
It is the hope of the author that this thesis will be useful to anyone who wants to implement the
ideas of the approaches discussed within this thesis. Some routines used in this thesis have been
made available on bit-bucket2, albeit with little documentation.

1http://mathworks.com/products/matlab/
2https://bitbucket.org/jthsimopt/

3

https://bitbucket.org/jthsimopt/

1 Tangential Calculus

CHAPTER INTRODUCTION

This chapter introduces the concept of tangential calculus which is used for the modeling of surface
problems directly in Cartesian coordinates. An overview of this approach is given. The two main
surface representations are introduced.

1.1 The tangential operator

This section gives an overview of what is here called the tangential approach to surface problem
modeling, which was introduced in computational practice by Dziuk in [21] and analyzed for shells
by Delfour and Zolésio in [16, 17, 19] and adapted by Hansbo and Larson in [29] for a general
curved membrane model. Traditionally, surface problems were modeled in a parametric setting
and mapped to Cartesian three dimensional space using various differential operators, see [13, 12].
The tangential approach makes it possible to work in Cartesian space directly by use of the signed
distance function of an implicit surface. This is due to the property that the tangential derivative
of a function, at the surface, is the tangential projection of its three dimensional Cartesian gradient
[17].

5

1 Tangential Calculus

y

x

z

n

vΓ

v
Γ

(a) 2D surface in 3D

y

x

t

Γ

Ω

n

b<0

b>0

(b) Surface manifold

Γ
t/2

nΓ

xΓ

x

∇b (x)

t/2

(c) Tubular neighborhood Ωt

Figure 1.1: Surface Manifold

Consider a smooth d-dimensional surface Γ, see Figure 1.1, embedded in Rd+1, where d is typically
1 or 2, and contained by Ω which is a subset of Rd+1. The shortest distance from a point x ∈ Ω to
Γ is given by a signed distance function b : Rd+1 → R which is defined by,

b(x) < 0 in Ω−,

b(x) = 0 on Γ,

b(x) > 0 in Ω+,

and Ω+ ∈ Ω is the manifold “outside” of Ω, i.e., in the direction of the normal to Γ, Ω− ∈ Ω is
the manifold “inside” of Γ and Ω = Ω− ∪ Ω+ ∪ Γ. Note that b is not necessarily differentiable
everywhere in Ω, and for some points x ∈ Ω there might exist more than one surface point xΓ that
has the same distance to x.

Remark 1. Take the torus as an example, see Figure 1.2. The distance function for the torus is
given by

btorus(x, y, z) =
(
R−

√
x2 + y2

)2
+ z2 − r2 (1.1)

On the center line of the tube the gradient of the distance is a zero vector since there exist an

6

1.1 The tangential operator

infinite amount of closest points to the surface. This can be shown by computing

∇btorus(x, y, z) =
[

−
2x
(
R−

√
x2 + y2

)

√
x2 + y2 , −

2y
(
R−

√
x2 + y2

)

√
x2 + y2 , 2z

]
(1.2)

and evaluating at, e.g., ∇btorus(1, 0, 0) = [0, 0, 0], similarly for, e.g., ∇btorus(0, 0, 0) we can see that
the gradient is not defined since we get division by zero. �

R-r

r
xc

n

Figure 1.2: Cross section view of a torus with tube radius r and major radius R. The gradient
of a distance function for this torus is not defined in the tube center. The tubular
neighborhood is bounded by the dotted circle, i.e., outside of this area ∇b(x) is not
guaranteed to be unique and may be undefined.

It is thus important, for a small t > 0 around Γ, to define a neighborhood Ωt (defined as the
space between the dotted lines in Figure 1.1c) such that b(x) is differentiable everywhere in Ωt.
Choose t small enough such that every point x ∈ Ωt is intersected by one unique surface normal
and such that no surface normals are allowed to intersect each other inside of Ωt, see Figure 1.1c.
The neighborhood around Γ can be defined as

Ωt = {x ∈ Rd+1 : |b(x)| ≤ t}, (1.3)

and with |∇b| = 1 we have
∇b(xΓ) = n(xΓ). (1.4)

7

1 Tangential Calculus

Inside Ωt the normal vector to Γ coincides with ∇b(x) and thus the nearest point projection map
p : Ωt → Γ is given by

p(x) = x− b(x)∇b(x) (1.5)

The Jacobian matrix is given by differentiating p(x), the first component yields

∂

∂x1
p1 = 1− ∂

∂x1

(
b(x)∂b(x)

∂x1

)
= 1− ∂b(x)

∂x1

∂b(x)
∂x1

− b(x)∂
2b(x)
∂x2

1
, (1.6)

or

I −∇b(x)⊗∇b(x)− b(x)D2b(x) (1.7)

where b(x) = 0 for x ∈ Γ so b(x)D2b(x) = 0 on the surface. Thus for x ∈ Γ, the linear projector
onto the tangent plane at p(x) is given by

Dp(x) = I −∇b(x)⊗∇b(x) =: PΓ(x), (1.8)

where ⊗ denotes the tensor product ((a⊗ b)ij = aibj).
For a given function u : Γ→ R we can assume that there exists an extension ue of u in Ωt such

that ue = u ◦ p, where the symbol ◦ denotes the function composition (a ◦ b)(x) = a(b(x)). The
tangential gradient of u on Γ is thus defined by

∇Γu := ∇ue|Γ −∇ue · ∇b ∇b = (PΓ∇ue)|Γ on Γ, (1.9)

and

n · ∇Γu = ∇b · ∇Γu = 0 (1.10)

where the subscript Γ of ∇Γ implies that the partial derivative components are with respect to the
surface points, xΓ. The tangential (or surface) gradient in (1.9) is defined using the full Cartesian
gradient and removing the “out of plane” contribution. It can be shown that the gradient of the
extension of u coincides with the tangential gradient of u on Γ

∇(u ◦ p) = (I − bD2b)∇Γu ◦ p and ∇(u ◦ p)|Γ = ∇Γu, (1.11)

see [18, Chapter 9, Section 5] for details and proofs. Thus the resulting tangential gradient is
independent of the choice of the extension ue and in what follows no distinction is made between
u and its extension ue.
The tangential operator PΓ is the main differential geometric tool used in the tangential approach

and is used extensively in this thesis on all surface problems. For the convenience of notation, the
subscript of PΓ will frequently be omitted. Note that the operator is natural in tensor analysis, see

8

1.1 The tangential operator

e.g. [32], where it is defined as the projection of a vector valued function v onto the plane defined
by the normal n see Figure 1.3.

n

v

t

vt

Γ

(a) 2D case

n

v

t
v
t

n(n.v)

(b) Defining vn = n(n · v)

y

x

z

v

n
tangent plane

vt

Γ

(c) 3D case

Figure 1.3: Projection of v onto the surface Γ

Using the definition in Figure 1.3b, we have

vt = v − vn = v − n(n · v). (1.12)

Recalling the tensor product ((a⊗ b)ij = aibj), we can use the tensor product rule

(a⊗ b)c = a(b · c), (1.13)

(which is what Dziuk used in [21]) and get

vt = v − (n⊗ n)v, (1.14)

where v is linearly transformed along the direction n by the second order tensor (n ⊗ n) =: P||.
This can be further rewritten into

vt = (I − n⊗ n)v = Pv, (1.15)

where P is a second order projection tensor that maps onto the tangent plane of Γ and P|| maps
onto the direction of n.

Remark 2. A detailed look at the tangential part of a vector v at a point on a surface where n=
(1,0,0). Let v = (vx, vy, vz) then,

vt = Pv =




0 0 0
0 1 0
0 0 1







vx

vy

vz


 =




0
vy

vz


 . (1.16)

9

1 Tangential Calculus

The x component of v has been eliminated by the projection operator and thus the other compo-
nents are all in-plane, i.e. n · vt = 0 holds.

Another detailed look at the tangential part of a tensor V at a point on a surface where n =
(0, 1, 0). Let

V =




Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz


 , P =




1 0 0
0 0 0
0 0 1


 , (1.17)

then

Vt =




1 0 0
0 0 0
0 0 1







Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz


 =




Vxx Vxy Vxz

0 0 0
Vzx Vzy Vzz


 . (1.18)

Note that the row corresponding to the normal direction is eliminated. In some cases it is
required that both the rows and columns are eliminated so that no components of the tensor are
out of plane. This can be accomplished by applying the operator to both sides of the tensor, i.e.

V P
t = PV P =




Vxx Vxy Vxz

0 0 0
Vzx Vzy Vzz







1 0 0
0 0 0
0 0 1


 =




Vxx 0 Vxz

0 0 0
Vzx 0 Vzz


 , (1.19)

where the superscript P denotes that the operator is applied on both sides. Note that no compo-
nents exist in V P

t that correspond to the normal direction. �

1.1.1 The discrete tangential projection

In the discrete setting where the surface is discretized by a piecewise polynomial function, the
projection operator will depend on the discretization such that P−Ph 6= 0, where P = I−n⊗n and
Ph = I −nh⊗nh, see Figure 1.4. This means that we have have introduced another discretization
error through the projection operator. For an in depth discussion on this error see [9].

1.2 Surface representation

Surfaces can be represented in various ways; in the setting of solving partial differential equations
on surfaces using the finite element method we have two types of surfaces to consider, explicit- and
implicit surfaces. The former is a surface discretized using polygons in 3D or line segments in 2D,
usually from a parametric (CAD) representation, see Figure 1.5. If the explicit representation is of
good quality, i.e., if the elements have a good aspect ratio and are oriented in the same direction,
then the mesh can be used in the FEM simulation. In many problems re-meshing is needed as
the surface undergoes large deformation such that the mesh quality suffers. Re-meshing techniques

10

1.2 Surface representation

Γ

Γh

n

nh

x

p(x)
h

Figure 1.4: Discrete normal nh compared to exact surface normal n

Figure 1.5: Explicit surface example, a triangulated surface of a torus.

are quite expensive and add complexity. Another drawback of computational methods requiring
explicit surfaces is the computational cost of preprocessing of raw data, usually point cloud data.

1.2.1 Implicit surfaces

Implicit surfaces can be used to represent complex evolving surfaces without the need for classical
re-meshing techniques. The implicit surface is defined by a level-set function φ and the surface Γ
is represented by the zero level-set of φ, i.e., by solving φ(x) = 0. The surface is evolved through a
domain by advection of φ (using the material derivative). There are a number of ways to generate
an implicit surface for analysis. An implicit surface can be approximated from a CAD surface or
from point cloud data using surface reconstruction techniques, see, e.g., [2, 11]. Another way is to
use analytical implicit surfaces descriptions, see e.g., [9] for an overview. Complex geometries can
be created from simple geometries using analytical functions for simple geometries together with
Boolean operations, so called constructive solid geometry (CSG) [33], where several simple level-set

11

1 Tangential Calculus

functions are combined into one. Using classical CSG, however, the surface is defined by only one
level-set function and thus the consequent surface representation will not be able to represent sharp
edges and/or corners. This problem can be overcome by not combining the level sets into one, but
use them separately to cut the background domain, see e.g., [41].
Simple boundaries can be created by embedding the surfaces into the domains such that the

boundaries are defined by the borders of the domain. For a more general handling of boundary
conditions we could use Nitsche’s method, see e.g., [10, 9, 36].
An implicit surface Γ is visualized using the discrete faces that are generated by evaluating the

level set function φ in the nodes of a mesh and finding the root along the faces of each background
element, see Figure 1.6, where the level-set function for the cylinder is given by

φ(x, y, z) =
√

(x− xc)2 + (y − yc)2 − r (1.20)

where [xc, yc] is the center of the cylinder and for the level-set function for the oblate spheroid is
given by

φ(x, y, z) = x2 + y2 + (2z)2 − 1, (1.21)

and the level-set function for the torus in given by (1.1).

1.3 Parametric mapping

In order to compute surface derivatives on a triangulated surface, i.e., a surface consisting of a set
of polygons, we need to define a map. Let Th := {Tm} define a set of shape regular, conforming
polygons of polynomial order m defining the discrete surface Γh. In order to define a map M :
(ξ, η)→ (x, y, z) from a reference polygon in the local coordinate system (ξ, η) to Tm in the physical
coordinate system (x, y, z) we define the surface point xΓ = xΓ(ξ, η). For a solid object of thickness
t represented by the surface, a point inside the object but outside of the surface can then be defined
by extending the surface point along the normal

x(ξ, η, ζ) = xΓ(ξ, η) + ζn(ξ, η), (1.22)

where ζ is chosen such that −t/2 ≤ ζ ≤ t/2. Next the geometrical finite element parameterization
of the surface is given by

xΓ,h(ξ, η) =
n∑

i

xiψi(ξ, η), (1.23)

where xi is one of n nodal points of the polygon Tm of the surface and ψi(ξ, η) are the finite element
shape functions of order m on the reference element. Using this parameterization a point outside
of the surface is then approximated by

12

1.3 Parametric mapping

(a) Embedded Torus

(b) Cylinder (c) Oblate spheroid

Figure 1.6: Implicit surfaces. The surface Γ is represented by the set of linear triangles Γh which
is computed by linearly interpolating the nodal valued level-set function φh along the
faces of the background mesh.

13

1 Tangential Calculus

x(ξ, η, ζ) ≈ xh(ξ, η, ζ) = xΓ,h(ξ, η) + ζnh(ξ, η), (1.24)

where

nh =
∂xΓ,h

∂ξ ×
∂xΓ,h

∂η∣∣∣∂xΓ,h

∂ξ ×
∂xΓ,h

∂η

∣∣∣
. (1.25)

For a discussion on the importance of using the discrete normal in a computational context see
[29].
The solution field is approximated by

u ≈ uh =
n∑

i

uiϕi(ξ, η), (1.26)

where ϕi are the shape functions of order q and ui are the nodal solution values. Note that the
shape functions ϕi and ψi need not be of the same order, if q < m we have a super-parametric
mapping, where the solution field is of order q but the normal field and thus P is of order m,
yielding a better approximation. This approach was used in e.g., [29] in order to get a stable
solution of the membrane problem.

In order to compute the gradient of the shape function ∇ϕ =
[
∂ϕi
∂x ,

∂ϕi
∂y ,

∂ϕi
∂z

]ᵀ
we start by defining

the Jacobian as

J(ξ, η, ζ) =




∂xh
∂ξ

∂yh
∂ξ

∂zh
∂ξ

∂xh
∂η

∂yh
∂η

∂zh
∂η

∂xh
∂ζ

∂yh
∂ζ

∂zh
∂ζ




, (1.27)

using (1.24) we note that
∂xh
∂ζ

= nh, (1.28)

and we have ∂ϕi
∂ζ = 0 and thus




∂ϕi
∂x
∂ϕi
∂y
∂ϕi
∂z




:= J−1




∂ϕi
∂ξ
∂ϕi
∂η

0



, (1.29)

14

1.3 Parametric mapping

where the Jacobian on Γ becomes

J(ξ, η, 0) :=




∂xh
∂ξ

∂yh
∂ξ

∂zh
∂ξ

∂xh
∂η

∂yh
∂η

∂zh
∂η

nh,x nh,y nh,z



, (1.30)

with

∂xh
∂ξ

=
∑

i

∂ψi(ξ, η)
∂ξ

xh,i, (1.31)

etc., and the normal is given by (1.25).
Using this methodology in combination with the tangential operator we have a way of computing

the surface gradient of a function u

∇Γu :=
(
∂ux
∂xΓ

,
∂uy
∂yΓ

,
∂uz
∂zΓ

)
=: P∇u, (1.32)

with the approximation
∇Γu ≈

∑

i

∇ΓϕiUi, (1.33)

where Ui denotes the function value in node i of a mesh and

∇Γϕi = P

(
∂ϕi
∂x

,
∂ϕi
∂y

,
∂ϕi
∂z

)
. (1.34)

This approach has been used in Paper 3.

15

2 Trace Finite Element Method

CHAPTER INTRODUCTION

The trace finite element method (TraceFEM) makes it possible to discretize a surface independently
of its description, effectively removing the need for fitting a mesh to the surface. Instead the surface
is embedded into a fixed background mesh and allowed to arbitrarily intersect it. In this chapter
an overview of the method is given. The original approach was suggested by Olshanskii et. al. in
[44] where a new technique was introduced for hyper-surfaces.

A method closely related to TraceFEM is the Cut Finite Element Method (CutFEM) which
incorporates ideas from the TraceFEM but is developed for solving cases involving interface prob-
lems with bulk interaction, see Burman et al. [6] for a review of CutFEM. In contrast to CutFEM,
TraceFEM only deals with the integration over the interface domain, whereas CutFEM is also used
to “cut” the finite element functions of the bulk domain at the interface and integrate over the
resulting sub-domains on each side of the interface.
The basic idea of the TraceFEM/CutFEM is to let the surface Γ be embedded in a higher di-

mensional background mesh which is independent of the surface and is allowed to be intersected
arbitrarily by Γ. The surface partial differential equation is then discretized by a set of background
elements that are intersected by Γ and integrated over the approximation of the surface, i.e., using
the traces of functions from the bulk finite element space on the approximation of the surface as
described by Olshanskii and Reusken in [44], hence the term TraceFEM. This method is inter-
esting as it avoids the explicit triangulation of the surface and is especially suitable for evolving
surface problems such as the one in Paper 1, but it also allows for embedding arbitrarily shaped
reinforcements to an elastic domain as in Paper 2.

Since the interface is intersecting the background mesh arbitrarily, some background elements
might have very small cuts such that the element integrals will yield very small contributions
to the resulting stiffness and mass matrices resulting in an ill-conditioned linear system. The
TraceFEM/CutFEM approach thus needs stabilization, see Section 2.5 for details.
In order to find the locations of intersection between Γ and the background mesh, robust methods

need to be established for 2D and 3D and for arbitrary polynomial order of a background element.

17

2 Trace Finite Element Method

2.1 Domain

Let Γ denote a smooth d-dimensional interface contained by a higher dimensional domain Ω, which
is a bounded sub-domain of Rd+1. Furthermore, let Γ divide Ω into sub-domains such that Ω =
Ω1 ∪ Ω2 ∪ Γ. The interface can represent a surface in 3D or a curve in 2D, see Figure 2.1.

Ω

Ω1

Γ

2

(a)

Γ

h

~K

(b)

Γ

hK

(c)

Figure 2.1: 2D representation of the problem domain

2.2 Discretization

The discretization is done by letting K̃h denote the set of polyhedrons (3D) or polygons (2D) that
tessellate the domain Ω completely with an element size parameter 0 < h < h0, this is known as
the background or bulk mesh. The part of the background mesh used for the discretization of the
problem is a subset of the whole mesh. We denote this as the active background mesh Kh ⊆ K̃h
such that

Kh = {K ∈ K̃h : K ∩ Γ 6= ∅}, (2.1)

see Figure 2.1.
Let φ : Rd → R denote a continuous signed scalar level-set function such that,

φ(x) < 0 in Ω1,

φ(x) = 0 on Γ,

φ(x) > 0 in Ω2,

φ is often chosen as the closest signed distance function to Γ but this is not a necessary property
in general.
In practice φ might not be given as a continuous function of x, for instance a level-set function

18

2.2 Discretization

can be approximated from a CAD surface by computing e.g., the closest distance to the CAD
surface in each background mesh node, yielding an approximation of a level-set function Φ which
is given at the nodes of the background mesh, see Figure 2.2.

(a) (b)

(c) (d)

Figure 2.2: Difference between a continuous level-set function φ (a) and discrete Φ (b)-(d). In (b)-
(d) the level-set function is given at the nodes of the background mesh and the shown
iso-contours are found by (in this case) linear interpolation. The level-set function is
defined by φ =

√
x2 + y2 − 0.5 + 0.1 sin(8 atan(y/x)).

The (continuous) surface is given by the zero-level of the function φ

19

2 Trace Finite Element Method

Γ = {x ∈ Ω : φ(x) = 0}. (2.2)

We can interpolate Φ by use of the basis functions of the bulk element K:

φh(x) =
∑

i∈NK

ϕmB
i (x)Φi, (2.3)

where NK is the set of nodes in K, Φi are the known nodal values of the signed distance function
and ϕmB

i (x) is the basis function of polynomial order mB = {1, 2} acting on element K. The
discrete zero-level set is then given by

Γh = {x ∈ Ω : ΠmΓ
h φh(x) = 0}, (2.4)

where the interpolant ΠmΓ
h of polynomial order mΓ depends on the bulk element type. Note that φh

in (2.4) can be replaced with a continuous level-set function φ(x) to improve accuracy, see Section
2.6 for details. Examples of the resulting set of discrete zero-level sets is shown in Figure 2.3.

2.3 Dirichlet conditions

A simple way of dealing with Dirichlet boundary conditions in this setting is to directly prescribe
the degrees of freedom on the boundary of the background mesh. Let ∂Kh,D denote the boundary
of Kh that is intersected by the discrete surface boundary denoted as ∂Γh,D, see Figure 2.4. This
straightforward approach was used in Paper 1 and 4. If however ∂Γh,D is not intersecting ∂Kh,D
then the background mesh must be carefully constructed to facilitate proper Dirichlet conditions,
see Figure 2.4b. This was the situation in Paper 2 in the case of the oblate spheroid where the
mesh needed modification since it was unstructured. For a more general handling of boundary
conditions we could use Nitsche’s method, as in [10, 9, 36]

2.4 Finite element space

In the setting of the TraceFEM the finite element space is defined on the background mesh, and
in particular when it is applied to surface problems, the finite element space is only defined on the
active background mesh.

The finite element space is defined by

Vh =
{
v ∈ Ṽ mB

h |Kh
: v = 0 on ∂Kh,D

}
(2.5)

where Ṽ mB
h is a space of continuous piecewise polynomials of ordermB = {1, 2} (subscriptB denotes

the bulk) defined on Kh and d denotes the dimension of the bulk element, typically d = {2, 3}.
Consider for example diffusion on a surface

20

2.4 Finite element space

h,iΓ Γ
h,iΓ Γ h,iΓ

KΓ,iKΓ,i KΓ,i

(a) 3D

Γ

h,iΓ
h,iΓ

Γ

(b) 2D

Figure 2.3: Discrete surface element types. (a) left: Φ is linearly interpolated (mΓ = 1) to yield a
flat triangle element. (a) middle: quadratic interpolation (mΓ = 2) yielding a second
order triangle. (a) right: quadratic interpolation yielding a second order quadrilateral.
(b) left: linear interpolation yielding a line element. (b) right: quadratic interpolation
yielding a quadratic curve element.

21

2 Trace Finite Element Method

Γ

h,DK∂ ∂Γh,D

(a)

Γ

h,DK∂

h,DK∂

1

2

hK

∂Γh,D

(b)

Figure 2.4: (a) Simple way of handling ∂Γh,D . (b) ∂Kh,D = ∂K1
h,D ∪ ∂K2

h,D must be constructed
carefully in case of an unstructured mesh in order to facilitate center lines, as shown in
the figure, to ensure equilibrium in e.g., membrane problems with internal pressure.

−∇Γ · ∇Γu = f on Γ, (2.6)

where ∇Γu is defined by 1.32
and

∇Γ · v = tr(∇Γ ⊗ v) (2.7)

The finite element method on Γh is then given by: find the solution field uh ∈ Vh such that

ah(uh, v)Γh
= lh(v)Γh

∀v ∈ Vh, (2.8)

where

ah(uh, v)Γh
=
∫

Γh

∇Γh
u · ∇Γh

vdΓh (2.9)

and

lh(v)Γh
=
∫

Γh

fvdΓh (2.10)

The solution uh to (2.8) exists on the background mesh and in order to visualize the solution on
Γh we need to interpolate the solution using shape functions of the background mesh

uΓh,j =
∑

ϕi(xΓ)uh,i (2.11)

22

2.5 Stabilization

(a) (b)

Figure 2.5: Discrete gradient field ∇φh The blue line represents the linearly interpolated zero-level
set Γh. (a) The red arrows represent the discrete gradient field ∇φh projected on the
“narrow band” Kh. (b) The blue arrows represent the interpolated gradient field to the
zero-level set.

see Figure 2.5.

2.5 Stabilization

Since (2.8) is integrated over the discrete interface Γh and because of the arbitrary cuts by the
interface through the background mesh, there might be a large variation in the area of the resulting
surface elements, see Figure 2.6. This can lead to a severely ill-conditioned stiffness and mass matrix
since the condition number may become very large for certain cut cases. This is numerically
shown in [9] where the condition number is plotted against some displacement of Γ, see Figure 2.7.
Furthermore a finite element method of surface problems using higher dimensional shape functions
can be unstable (see, e.g., [30], Papers 1, 2 and 4). Some finite element methods on surfaces can be
unstable regardless whether TraceFEM or a standard triangulation of the surface is used, see e.g.,
Paper 3 and [30]. Recently, several stabilization methods for unfitted methods have been proposed
in literature. These stabilization methods add terms to the stiffness or mass matrix in order to
stabilize the method and/or to improve the conditioning. The method that is used in this thesis is
the so called ghost penalty method originally proposed in [9]. Other methods exists, see, e.g., [43]
for a recent overview. In this section we shall give a brief introduction to the method.
Note that for any element K ∈ Kh there exist at least one neighbor KN ∈ Kh such that K and

23

2 Trace Finite Element Method

Γ

{K}
ill

Figure 2.6: Elements {K}ill that cause ill-conditioning of the linear system.

Figure 2.7: Condition number as a function of displacement δ of the interface Γ for the stabilized
and unstabilized methods. (Adopted from [9] with the approval from the author)

24

2.5 Stabilization

F

Fn
KN

K

(a) 2D case, where F is actually a set of
edges.

K

KN

Fn

F

(b) 3D case

Figure 2.8: Interior faces of the active elements, Kh.

KN share a face, see Figure 2.8. Define a set of interior faces of Kh by

Fh = {F = K ∩KN : K,KN ∈ Kh}. (2.12)

Each internal face defines a unit normal vector nF that is perpendicular to the face and oriented
exterior to K , see Figure 2.8. The stabilization is constructed such that the jump of the gradient
in the direction nF across two background elements is penalized. The jump of the gradient of v
across the face F of elements K and KN is defined on each side of F as

[nF · ∇v] = nF · ∇v|K⋂F − nF · ∇v|KN

⋂
F , (2.13)

where nF · ∇v|K⋂F denotes the normal derivative evaluated at the face F of element K. The
stabilized form of (2.8) becomes

ah(v, w)Γh
+ γjh(v, w) = lh(v)Γh

∀v, w ∈ Vh. (2.14)

The stabilizing term jh(·, ·) is then given as the sum of all gradient jumps as

jh(v,w) =
∑

F∈Fh

∫

F
[nF · ∇v] · [nF · ∇w]ds, (2.15)

where γ is a positive scalar stabilization parameters that is user defined.
The stabilization term controls potential fluctuations of the solution field of the membrane prob-

lem in Paper 2 and 4 and can be seen as additional stiffness that constrains these fluctuations, see
Figure 2.9 for a 2D example. If γ is chosen large enough the displacements will tend towards zero.
Thus, there exists an optimal value of γ; for a discussion on the effect and choice of γ see Paper 3

25

2 Trace Finite Element Method

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Undeformed membrane

Deformed membrane
=0.001

(a)
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Undeformed membrane

Deformed membrane

=0.01

(b)
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Undeformed membrane

Deformed membrane

=0.1

(c)

Figure 2.9: Effects of the stabilization parameter γ on a 2D membrane solution.

and 4 where it is shown that there exist a quite wide range near the optimal γ where the solution is
stable. It can be concluded that the solution is fairly insensitive to the choice of γ. Implementation
details can be found in Section 3.2.

2.6 Zero-level set reconstruction

In this section we describe the approach for extracting the discrete zero-level set Γh from a signed
distance function φ(x). Recall that the zero level set is defined by

Γ = {x ∈ Ω : φ(x) = 0}. (2.16)

The basic idea is to determine the zero-level set for each element K by some form of root finding.
The discrete zero-level set is given by using an interpolant that depends on the background mesh

Γh = {x ∈ Ω : ΠmΓ
h φh(x) = 0}, (2.17)

which means that the roots to φh(x) = 0 are restricted to the faces of element K and that the
number of surface points (roots) depend on the order mΓ of the surface element, e.g., a P1 tetra-
hedron could yield a P1 triangle (3 points) or a P1 quadrilateral (4 points). See Figure 2.10, 2.11
and 2.12 for various cut cases.

26

2.6 Zero-level set reconstruction

(a) Triangular (b) Quadrilateral

Figure 2.10: Linear tetrahedral cut cases.

(a) Triangular (b) Quadrilateral (c) Pentagon (d) Hexagon

Figure 2.11: Linear hexahedral cut cases.

(a) Triangular (b) Quadrilateral

Figure 2.12: Quadratic tetrahedral cut cases.

2.6.1 Valid topology

In order to create a robust method for the extraction of the zero-level set, we need to determine if
the level set function is sufficiently resolved by the background mesh, which means that each cut
element must yield a valid topology; see Figure 2.13 for examples of bad topology that can’t be
allowed. In case of a bad topology the corresponding background element is locally refined until
the surface cut yields a valid topology, see, e.g, [25]. By valid topology we mean that the arbitrary

27

2 Trace Finite Element Method

intersection of a zero-level set with the background element results in a number of surface points
that can be mapped to surface polygons. To determine if an element K ∈ Kh is cut we follow the
approach proposed by Fries et al. [25] and compute

min
i∈Ngrid

(
Φgrid
i

)
· max
i∈Ngrid

(
Φgrid
i

)
< 0, (2.18)

where
Φgrid
j =

∑

i=1
ϕmB
i

(
rgrid
j

)
· Φi ∀j ∈ Ngrid, (2.19)

rgrid
j denotes a number of uniformly spaced sample points in the parametric space (r, s, t). Note

that ϕmB
i

(
rgrid
j

)
can be computed in a pre-processing step, and re-used for every background

element. In order to avoid numerical issues we make sure that no Φi is exactly zero by perturbing
by some small number away from zero. To be certain that the surface topology is valid we check
the following conditions on each face of the tetrahedral:

• Each edge of the face may only be cut once.

• The number of cuts per face must be two.

• If no face is cut, then all nodes of the tetrahedron must have the same sign and thus the
whole tetrahedron is uncut.

In the case described in Figure 2.13d we identify high curvature by

∇Φ̄grid · ∇Φgrid
j < tol, (2.20)

where ∇Φ̄grid denotes the average of all ∇Φgrid
j for all j ∈ Ngrid and tol is a user defined number

chosen such that large differences in the angle between ∇Φ̄grid and ∇Φgrid
j define high curvature,

here ∇Φgrid
j is given by

∇Φgrid
j =

∑

i=1
∇ϕmB

i

(
rgrid
j

)
· Φi. (2.21)

2.6.2 Linear interpolant

For every face F of every element K ∈ Kh two cut points are determined along two edges by linear
interpolation using the level-set function values and coordinates at the corners of F , see Figure
2.14. The following steps are used:

1. For every parent element Ki ∈ Kh loop over all edges ei.

a) For every edge ei check the sign of the two discrete function values Φ|ei to determine if
the edge is cut.

28

2.6 Zero-level set reconstruction

(a) (b)

(c) (d)

Figure 2.13: Examples of bad topologies visualized on side-views of a 3D parametric second order
tetrahedral element with uniformly distributed sample points. The red curves repre-
sent a surface. a) One edge cut more than once. b) A small interface is completely
enclosed by an element. c) More than two edges are cut. d) The curvature of the cut
is too high.

29

2 Trace Finite Element Method

b) Linearly interpolate the cut point xΓ,i along the edge ei using the two vertex coordi-
nates xkei

and xlei
, at nodes k and l (endpoints of ei) and the function values Φ|ei =

{φ(xkei
), φ(xlei

)}.

c) Let xei,1 = xei |φ|ei>0 (the coordinate corresponding to the highest value of φ) and
xei,0 = xei |φ|ei<0 and compute the vector ni = xei,1 − xei,0. See figure 2.14b.

2. In order to determine the orientation of the face normals, compute the element vector nφ =
∑ni which is pointing in the general direction of ∇φ.

3. Depending on the number of nodes in element KΓ
i and the orientation of the cut, several

cut cases must be considered, see Figure 2.10 for tetrahedral element and figure 2.11 for
hexahedra.

4. The resulting polygon is tessellated into triangles by rotating the arbitrary polygon from R3

into R2 and applying a convex hull algorithm, see Figure 2.15.

5. The complete tessellation of all triangles on Γh is then processed by a triangulation algorithm
to create a compact topology list which is used for the linear interpolation of the solution
on Kh to Γh (see Section 3.7 for a discussion on the topology) and for visualization (easier
handling and interpolated surface shading).

v1

3
 v

2
 v

v

v

Γh,i={v
Γ,1 , v }

K
Γ

Γ,1

Γ,i

Γ,2

Γ,2

e1

e3

e2

 ϕ
1<0

ϕ
2>0

ϕ
3>0

(a) 2D case

v1

3
 v

2
 v

v

Γ

Γ,2
 ϕ
1<0

ϕ
2>0

ϕ
3>0

Γh,i

nϕ=|n1+ |n2

n1

n2

nh,Γ

(b) Surface element normal

KΓ,i

h,iΓ Γ

e1
e2

e3

e5

e4

e6

ϕ
1<0

ϕ
2<0

ϕ
3<0

ϕ
4>0

v1

v2

v3

v4

(c) 3D case

Figure 2.14: Surface element Γih and parent element Ki
Γ in 2D and 3D.

30

2.6 Zero-level set reconstruction

1

2

3

4

6 5

y

x

z

(a) Wrong numbering

1

3

2

6

5

4

y

x

z

(b) Proper numbering
order

Figure 2.15: Numbering order for arbitrary polygon in R3. The order before renumbering is shown
in (a). In (b) the polygon is rotated into R2 and using an convex hull algorithm the
proper numbering order can be established for any convex polygon.

2.6.3 Higher order interpolant

In the case of linear interpolation it was sufficient to find the roots along the edges of an element
using a direct linear interpolation method. If the background elements are of a higher order
mB > 1 we need to find additional roots along the faces as well as edges and the problem becomes
less trivial. In order to create a robust method we need to utilize iterative root-finding algorithms
such as Newton’s method. Using an iterative method means that we need access to φ(x), but in
general, a continuous φ(x) might not be known, instead we may only have access to a discrete
signed distance function Φ defined in the nodes of K. In this case we can create an approximation
of φusing of the basis functions of the bulk element K:

φh(x) =
∑

i∈NK

ϕmB
i (x)φh,i, (2.22)

where NK is the set of nodes in K, Φi are the known nodal values of the signed distance function
and ϕmB

i (x) is the basis function of polynomial order mB > 1 acting on element K. Note that the
basis functions can alternatively be mapped or defined in the physical coordinate system since the
bulk element is assumed affine.
In order to find the roots for φh(x) = 0, when φh(x) is interpolated using an interpolant Πm

h of
order m > 1, we follow the work done in [25, 24] using the following steps:

1. For each element check if the topology is valid by following the steps in the previous Section
2.6.1.

2. For each face F of tetrahedral element K in Kh|m the nodal values of φh|F are mapped to
a parametric triangle T r|m, see Figure 2.16. If element K has a valid topology it’s faces
must have either two or zero cut edges, additionally at least three faces must be cut. We
determine if the face is cut and which edges are cut by following a procedure analogues to
(2.18). Additionally we renumber the nodes of the faces such that they are unique, i.e., the
normal of each face FKi∩Kj , no matter which tetrahedral element they belong to, points in

31

2 Trace Finite Element Method

r

s

Γ

Figure 2.16: Isocontours of the distance function φ on a mapped face of a tetrahedral element.

the same direction, n|FKi∩Kj
= n|FKj ∩Ki

. This ensures that the gradients computed with the
isoparametric map on the face elements are the same for both elements Ki and Kj , otherwise
the edge-points of the reconstructed surface elements might not coincide, see Figure 2.18.
The resulting surface is thus guarantied to be C0 continuous.

3. On each cut edge on the parametric face T rm we employ a Newton-Raphson iterative search
scheme:

ri+1 = ri −
φh(ri)

∇φh(ri) · s
s, (2.23)

where r = [r, s] is the local coordinate of the parametric triangle, ∇φh(ri) is evaluated by
interpolation using the basis functions and s is the search direction. To find the root along
the edges, s is simply the directional vector along the edge.

4. Once the two edge points are found the inner node needs to be determined by the same
root finding scheme. It turns out that the search direction is critical for the convergence of
the Newton search as well as the geometrical convergence as shown in [25, 24], where the
authors propose 5 different variations of the search directions and 2 ways of starting position
of the search. Choosing a linearly interpolated starting position (straight line between the
edge roots) and set the search direction to be the normal to the line or s = ∇φh(r0) yields
satisfying results with respect to accuracy and performance, see [24]. In some rare cases
when the Newton search fails if gets stuck in a false root lying outside of the triangle, in this
case we employ bisection in order to get back inside the triangle where the Newton search is
continued until convergence. This approach yields a robust method in all cases but increases
the number of iterations slightly for these rare cases.

5. In order to orient the surface, the resulting surface points need to be numbered such that

32

2.6 Zero-level set reconstruction

their normal is oriented in the same general direction as ∇Φ̄grid.

6. The resulting surface elements from a tetrahedral element are either triangular or quadrilateral
and in the later case can be split into triangular elements, albeit with additional root finding
for the mid-node. It is possible to use other types of surface elements such as the serendipity
element, see Paper 4. We denote the resulting surface topology set by T .

7. If the resulting discrete surface needs to be used for smooth surface shading, then an additional
step is needed to create a connectivity from the list of unconnected surface elements. In order
to accomplish this efficiently the background mesh information for each surface patch is used
to uniquely number the nodes and create the connectivity list. Note that this step is not
necessary for integration.

If we have access to the exact function φ, the procedure above is still valid, with the difference that
we need to map ri to x before evaluating φ(x(ri)) and ∇φ(x(ri)).

In case the background elements are affine, it is possible to create the above scheme in physical
coordinates by evaluating the basis functions in physical coordinates, ϕ(x), see Section 3.8. The
search for roots on edges in this case is the same as above, the search on faces however is “free”
since s = ∇φ(x0). In this case we restrict s to the (planar) face of the tetrahedron by tangential
projection:

sF := PF∇φ(x0), (2.24)

where PF = I − nF ⊗ nF , I is the identity matrix and nF ⊗ nF the outer product of the face
normal to the tetrahedron face, see Figure 2.17. Note that the construction of ϕ(x) is done to
avoid the mapping of r to x in each step of the root finding algorithm.

33

2 Trace Finite Element Method

nFx0
∇ϕ()x0

∇ϕPF ()x0

Figure 2.17: Side view of a tetrahedral element. The search direction ∇φ is projected onto the
tetrahedral face F (shown here as a line) resulting in a modified Newton method with
the search direction PF∇φ.

i

k

j

l

m

n

Ki Kj

nj
ni

F
(a)

i

k

j

l

m

n

Ki Kj

ni=nj

F
(b)

Figure 2.18: Face numbering. (a) FKi = {i, j, k, l,m, n}, FKj = {i, k, j, n,m, l}. (b) FKi = FKj =
{i, j, k, l,m, n}.

34

3 Implementation Details

3.1 Choice of software

Prototypes of the algorithms throughout this thesis have been implemented in MATLAB which
allows for vectorization of the code in order to improve performance. Note that the main focus
was generating scripts to test a concept and therefore little time was spent on the performance
analysis and optimization of the implementation. There is thus much room for optimizing the
performance of the algorithms and implementations. The main reason for the lack of performance
optimization and complexity analysis is that the code was written to be as readable as possible in
order to minimize implementation error. We have to create working code before we can focus on
optimizing it for performance. High level languages offer faster implementation times with a trade-
off in performance. Furthermore, MATLAB, while getting increasingly better at its JIT compiler1

is still an interpreted language with its primary use in generating prototypes for testing and creating
proofs of concept. Performance can however be improved through some extra effort, especially in
the assembly process, where an indexed approach [15] is utilized which is particularly interesting as
it allows for parallelization of the assembly process to considerably improve performance in, e.g.,
iterative algorithms.

3.2 Stabilization

For vector valued unknowns u we have u ≈ Φu, where u denotes nodal values and

Φ :=




ϕ1 0 0 ϕ2 0 0 · · ·
0 ϕ1 0 0 ϕ2 0 · · ·
0 0 ϕ1 0 0 ϕ2 · · ·


 , (3.1)

and with nh denoting the discrete face normal of a given face, we define

1http://mathworks.com/products/matlab/matlab-execution-engine/

35

3 Implementation Details

BF := [(nh · ∇)Φ,−(nh · ∇)Φ] =




(∑
i nh,xi

∂

∂xi

)
ϕ1 · · ·

... . . .


 , (3.2)

and thus the discrete stabilization matrix is given by

J =
∑

F∈F

∫

F
BᵀFBFdF. (3.3)

In the scalar case of (2.14), we instead use Φs := [ϕ1, ϕ1, · · ·] and BF,s := [(nh · ∇)Φs,−(nh · ∇)Φs]
such that the stabilized linear system of (2.14) takes the form

(S + γJ) u = f . (3.4)

3.3 Curvature flow

The minimal surface problem is a classical example of a certain type of partial differential equations
on surfaces called form finding. This section gives an overview of the approach taken in Paper 1 to
compute the curvature of a surface and iteratively find the design that minimizes it.
We let Γ(t) denote a time dependent surface and consider the minimal surface problem: Given

a final time T , find xΓ : Γ(t)→ R3 such that

ẋΓ = ∆ΓxΓ = −2Hn in Γ(t), t ∈ (0, T) (3.5)

Here,

ẋΓ := ∂xΓ
∂t

, (3.6)

∆Γ denotes the Laplace-Beltrami operator defined by

∆Γ = ∇Γ · ∇Γ, (3.7)

where ∇Γ is the surface gradient given by (1.32). H is the mean curvature of Γ(t)

H = κ1 + κ2
2 , (3.8)

where κ1and κ2 are the principal curvatures see e.g. [3].
If we let a zero level to a level set function φ coincide with xΓ, we can utilize the material

derivative of φ

Dφ

Dt
= ∂φ

∂t
+ ẋΓ · ∇φ = 0 (3.9)

36

3.3 Curvature flow

The surface is deformed by letting the level set be evolved by advection, see e.g., [47, 46] for more
information on the level set method. If |∇φ| = 1 then ∇φ|Γ = n and we have

∂φ

∂t
= −uΓ · n, (3.10)

where uΓ = ẋΓ. In order to find xΓ for some time t we first compute uΓ = ∆ΓxΓ and then update
φ by (3.10). This process is iterated until the final time T is reached, which happens when the
curvature of Γ is below some threshold. The advantage of this method is that the surface is treated
as an implicit surface and is not bound by the computational requirements of an explicit surface.
The surface is instead free to evolve through a domain and can naturally be split and merged
without complicated meshing techniques.

For the normal curvature flow from (3.5) the bilinear form is given by the problem: Given Γnh
and the corresponding coordinate function xnΓ,h at a time step n, find unΓ,h ∈ [Vh]3 such that

(
unΓ,h,v

)
Γn

h

+ j(unΓ,h,v) = −a
(
xnΓ,h,v

)
Γn

h

∀v ∈ [Vh]3, (3.11)

where

Vh = {v ∈ piecewise linear polynomial defined on the background mesh , v = 0 on ∂Γ}, (3.12)

j(unΓ,h,v) is a stabilization term as described in Section (3.2), a
(
xnΓ,h,v

)
Γn

h

=
∫

Γn
h
∇xΓ · ∇vdΓnh

and (u,v)Γ =
∫

Γ u · vdΓ is the L2 inner product on Γ. We thus have

∫

Γ
unΓ,h · vdΓ + γJ = −

∫

Γn
h

∇xnΓ,h · ∇vdΓnh (3.13)

which leads to the discrete system

(M + γJ) un = −Sxn, (3.14)

where M is the mass matrix,

M =
∫

Γ
ΦᵀΦdΓ, (3.15)

and Φ is given by (3.1) with ϕ denoting the basis functions of Vh and S is the stiffness matrix given
on Voigt form by

S =
∫

Γ
BᵀΓBΓdΓ, (3.16)

where

37

3 Implementation Details

BΓ =




ϕ1
Γ,x 0 0 ϕ2

Γ,x 0 0 0 . . .

ϕ1
Γ,y 0 0 ϕ2

Γ,y 0 0 0 . . .

ϕ1
Γ,z 0 0 ϕ2

Γ,z 0 0 0 . . .

0 ϕ1
Γ,x 0 0 ϕ2

Γ,x 0 0 . . .

0 ϕ1
Γ,y 0 0 ϕ2

Γ,y 0 0 . . .
...

...
...

...
...

...
... . . .




, (3.17)

and
ϕ1

Γ,x = ∂ϕ1
∂xΓ

, (3.18)

etc. since we have
∇Γϕ = PΓ∇ϕ, (3.19)

with

∇ϕ =




ϕ1
x ϕ2

x . . .

ϕ1
y ϕ2

y . . .

ϕ1
z ϕ2

z . . .


 , (3.20)

and ϕ1
x = ∂ϕ1

∂x
, etc.

3.4 Level set advection

Using un from (3.14) we choose a time step kn and propagate φnh to φn+1
h on the narrow band of

background elements Kh,N (see Figure (3.1)) around Γ using (3.10)

φn+1
h = φn+1

h − knun · nnh, (3.21)

where nnh is the L2(Γn)-projection of the discontinuous normal vector obtained from the discrete
level set function

ndisc = ∇φnh
|∇φnh|

. (3.22)

The normal nnh ∈ V n
h is then computed from

(nnh,v)Γn
h

= (ndisc,v)Γn
h
∀v ∈ V n

h . (3.23)

38

3.5 The L2-projection

hK

Γh

Figure 3.1: Discontinuous gradient field on Kh

It is assumed that ∇φ = n at φ = 0, so it must hold that |∇φ| = 1 i.e. φ must be a signed
distance function for all virtual time steps n. After computing φn+1 using (3.10) the property
|∇φ| = 1 gets degraded and the distance function needs to be reinitialized. This can be done in
various ways e.g. [48, 47] the naive approach is to compute the closest distance from each node on
the narrow band of the mesh to the discrete interface.

3.5 The L2-projection

Given some function u ∈ [L2(Ω)]3 the L2-projection uh ∈ [Vh]3 of u is defined by

∫

Ω
(u− uh)vdΩ = 0, ∀v ∈ [Vh]3, (3.24)

i.e., the L2-projection takes an arbitrary function u into the finite element space Vh by minimizing
the L2 norm of (u− uh) such that

(u,v)Ω = (uh,v)Ω . (3.25)

See Figure (3.2). Or equivalently

MuN = f , (3.26)

where

f =
∫

Ω
ΦᵀUdΩ, (3.27)

with U denoting the element value for u and where Φ is given by (3.1) and

M =
∫

Ω
ΦᵀΦdΩ. (3.28)

39

3 Implementation Details

Figure 3.2: L2-projection for averaging the element values onto the nodal values.

3.6 Linear elastic membrane model

In order to describe the implementation of the linear elastic membrane model, we recapitulate the
equations from Paper 2.
The surface strain tensor is defined by

ε(u) := 1
2 (∇Γ ⊗ u+ (∇Γ ⊗ u)ᵀ) (3.29)

and the in-plane strain tensor is given by:

εΓ(u) := ε(u)− ((ε(u) · n)⊗ n+ n⊗ (ε(u))) (3.30)

The model problem is then to find u : Γ→ R3 and σΓ : Γ→ R3 such that

−∇Γ · σΓ = f on Γ (3.31)

σΓ = 2µεΓ + λ0tr(εΓ)PΓ on Γ (3.32)

u = 0 on ∂ΓD (3.33)

where ∂ΓD are Dirichlet conditions and f : Γ→ R3 is a load per unit area. The Lamé coefficients
are given by

λ0 := 2λµ
λ+ 2µ = Eν

1− ν2 , λ = Eν

(1 + ν)(1− 2ν) , µ = E

2(1 + ν) (3.34)

where E is the Young’s modulus and ν is the Poisson’s ratio. λ0 is used in the plane stress case
when small thickness is assumed.
The bilinear form of 3.31 is

40

3.6 Linear elastic membrane model

aΓ(u,v) = lΓ(v) ∀v ∈ Vh, (3.35)

where

aΓ(u,v) = (2µε(u), ε(v))Γ − (4µε(u) · n, ε(v) · n)Γ + (λ0∇Γ · u,∇Γ · v)Γ , (3.36)

and

lΓ(v) = (f ,v)Γ. (3.37)

Which is equivalent to

∫

Γ
2µε(u) : ε(v)dΓ−

∫

Γ
4µ(ε(u) · n) · (ε(v) · n)dΓ

+
∫

Γ
λ0(∇Γ · u) · (∇Γ · v)dΓ =

∫

Γ
fvdΓ (3.38)

Using Mandel notation [31] we have the strain tensor

εMΓ :=




ε11

ε22

ε33√
2ε12√
2ε13√
2ε23




=




∂
∂xΓ

0 0
0 ∂

∂yΓ
0

0 0 ∂
∂zΓ

1√
2

∂
∂xΓ

1√
2

∂
∂yΓ

0
1√
2

∂
∂xΓ

0 1√
2

∂
∂zΓ

0 1√
2

∂
∂yΓ

1√
2

∂
∂zΓ







ux

uy

uz


 , (3.39)

and using

Φ :=




ϕ1 0 0 ϕ2 0 0 · · ·
0 ϕ1 0 0 ϕ2 0 · · ·
0 0 ϕ2 0 0 ϕ2 · · ·


 , (3.40)

we get

Bε :=




∂
∂xΓ

0 0
0 ∂

∂yΓ
0

0 0 ∂
∂zΓ

1√
2

∂
∂xΓ

1√
2

∂
∂yΓ

0
1√
2

∂
∂xΓ

0 1√
2

∂
∂zΓ

0 1√
2

∂
∂yΓ

1√
2

∂
∂zΓ




Φ (3.41)

such that the Galerkin approximation of εΓ(u) : εΓ(v) yields BᵀεBεU and for the first term of

41

3 Implementation Details

(3.38)

∫

Γ
2µεΓ(u) : εΓ(v)dΓ ≈

(∫

Γ
2µBᵀεBεdΓ

)
U. (3.42)

For the second term of (3.38) we have that

εΓ(u) · n =




n1
∂ux
∂xΓ

+ n2
1
2

(
∂uy

∂xΓ
+ ∂ux

∂yΓ

)
+ n3

1
2

(
∂uz
∂xΓ

+ ∂ux
∂zΓ

)

n1
1
2

(
∂uy

∂xΓ
+ ∂ux

∂yΓ

)
+ n2

∂uy

∂yΓ
+ n3

1
2

(
∂uy

∂zΓ
+ ∂uz

∂yΓ

)

n1
1
2

(
∂uz
∂xΓ

+ ∂ux
∂zΓ

)
+ n2

1
2

(
∂uy

∂zΓ
+ ∂uz

∂yΓ

)
+ n3

∂uz
∂zΓ


 , (3.43)

introducing the notation system

ϕ1
xΓ :=

(
∂ϕ1
∂xΓ

0 0 ∂ϕ2
∂xΓ

0 0 · · ·
)
, (3.44)

ϕ2
xΓ :=

(
0 ∂ϕ1

∂xΓ
0 0 ∂ϕ2

∂xΓ
0 · · ·

)
, (3.45)

ϕ3
xΓ :=

(
0 0 ∂ϕ1

∂xΓ
0 0 ∂ϕ2

∂xΓ
· · ·
)
, (3.46)

ϕ1
yΓ :=

(
∂ϕ1
∂yΓ

0 0 ∂ϕ2
∂yΓ

0 0 · · ·
)
, (3.47)

etc., we have

Bn =




n1ϕ1
xΓ + n2

1
2

(
ϕ1
yΓ +ϕ2

xΓ

)
+ n3

1
2

(
ϕ1
zΓ +ϕ3

xΓ

)

n1
1
2

(
ϕ1
yΓ +ϕ2

xΓ

)
+ n2ϕ2

y + n3
1
2

(
ϕ2
zΓ +ϕ3

yΓ

)

n1
1
2

(
ϕ1
zΓ +ϕ3

xΓ

)
+ n2

1
2

(
ϕ2
zΓ +ϕ3

yΓ

)
+ n3ϕ3

zΓ


 (3.48)

and the second term approximation becomes

∫

Γ
4µ(εΓ(u) · n) · (εΓ(v) · n)dΓ ≈

(∫

Γ
4µBᵀnBndΓ

)
U. (3.49)

For the third term we use the notation

Bdiv :=
(
∂ϕ1
∂xΓ

∂ϕ1
∂yΓ

∂ϕ1
∂zΓ

∂ϕ2
∂xΓ

∂ϕ2
∂yΓ

∂ϕ2
∂zΓ

· · ·
)
, (3.50)

and get

∫

Γ
λ0(∇Γ · u) · (∇Γ · v)dΓ ≈

(∫

Γ
λ0BᵀdivBdivdΓ

)
U. (3.51)

Finally we have the linear system

(∫

Γ
2µBᵀεBεdΓ−

∫

Γ
4µBᵀnBndΓ +

∫

Γ
λ0BᵀdivBdivdΓ

)
U =

∫

Γ
fΦdΓ (3.52)

or

42

3.7 Interpolating solution field to surface

SU = F (3.53)

3.7 Interpolating solution field to surface

Because small deformations are assumed the solution field of uh|Kh
can be interpolated to the

surface uh|Γh
by

uΓ,K = ϕK · uK , (3.54)

for each element K, where uΓ,K denotes the solution field on Γh, uK denotes the solution field of
the background element and ϕK is the basis function of element K.

3.8 Evaluation of basis functions in physical coordinates

In order to construct ϕ(x) on an affine second order tetrahedron we define the geometric interpo-
lation using the sub-parametric mapping

x =
4∑

i=1
ϕ̃ixi (3.55)

where ϕ̃i are the linear basis function on the corner nodes of a 10-noded tetrahedral element, with
numbering according to Figure 3.3, and xi are the corresponding coordinates. We expand 3.55 and
get

(1− r − s− t)x1 + rx2 + sx3 + tx4 = x (3.56)

which on matrix form is

Ar + x1 = x (3.57)

where

A =
[
x2 − x1 x3 − x1 x4 − x1

]
(3.58)

with xi = [xi, yi, zi]
ᵀ . We solve for r and get

r(x) = A−1(x− x1). (3.59)

Using the full basis function for the 10-noded tetrahedron ϕ evaluated at r(x) we can write

ϕ(x) = ϕ(r(x)) (3.60)

43

3 Implementation Details

1

2

3

4

8

9

10

7

5 6

r

s

t

Figure 3.3: Tetrahedral node numbering.

and analogously

∇ϕ(x) = ∇ϕ(r(x)). (3.61)

Note that for every background element K, A−1 needs only be computed once, which improves
the performence of the root finding method.

44

4 Future Work

During this work, several possibilities for future studies have been identified.
Mechanics
Current 3D structural optimization challenges include the need for manual post-processing of a

solution, which might be mitigated by employing a level set based CutFEM scheme. This would
mean that the boundary of a topology is represented as a surface that is moved by the advection
of the level-set. In each time step of the optimization, CutFEM is used to compute side conditions
such as, e.g., stresses. The optimized topology is then no longer a jagged object that needs manual
work to be used in subsequent analysis, but a triangulation that can (with some smoothing) be
utilized directly.
Another idea is to create anisotropic material models by embedding thin one dimensional fibers

into a three dimensional bulk to add stiffness. This is interesting for injection molding applications
where current FE software can simulate an object that is injection molded and output a config-
uration of discrete 1D fibers. This output could be used as input data to create computational
anisotropic material models using an approach similar to the one in Paper 2.
Sandwich constructions is another topic that can be explored. Glued laminated timber for

instance can be modeled as elastic bulk material with embedded surfaces of different material. The
coupling between the elements can be modeled with discontinuous Galerkin methods which makes
it possible to introduce weakening and crack propagation in the models.
Computer graphics
The Gaussian curvature problem on flat triangles might be tackled by using an accurate mesh

refinement technique in order to interpolate a flat triangle into 4 which can be mapped onto a P2
element such that the Weingarten map can be approximated accurately from which the Gaussian
(and principle) curvatures are computed accurately.
TraceFEM technology
In order to create robust computational methods in both TraceFEM and CutFEM that can be

used on practical problems we need to address some areas of the TraceFEM.
Adaptivity could be used to resolve the underlying mesh where the curvature of a surface is high.

45

4 Future Work

The challenge is to develop a local refinement technique for the background mesh and to interpolate
the discrete level-set function on the new grid-points accurately. Here, the approach by Fries et al.
[24] to interpolate the level-set function on new grid points could be used.
Sharp features is another area which needs attention if we want to do any practical modeling

with TraceFEM/ CutFEM. Using several level sets it is possible to create implicit surfaces with
sharp features and in combination with Nitsche’s method a FEM could be constructed.
Since the tri-linear hexahedral TraceFEM generated good results and a smooth solution in Paper

2, a higher order hexahedral element approach might be worth further investigation. The challenges
include dealing with a large set of cut cases and the consequent numbering of the resulting curved
and possible concave polygon.

46

Bibliography

[1] J. A. Bærentzen, J. Gravesen, F. Anton, and H. Aanæs. Guide to computational geometry
processing: foundations, algorithms, and methods. Springer Science & Business Media, 2012.

[2] T. Belytschko, C. Parimi, N. Moës, N. Sukumar, and S. Usui. Structured extended finite
element methods for solids defined by implicit surfaces. International journal for numerical
methods in engineering, 56(4):609–635, 2003.

[3] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Lévy. Polygon mesh processing. CRC press,
2010.

[4] E. Burman. Ghost penalty. C. R. Math. Acad. Sci. Paris, 348(21-22):1217–1220, 2010.

[5] E. Burman, S. Claus, P. Hansbo, M. G. Larson, and A. Massing. Cutfem: Discretizing ge-
ometry and partial differential equations. International Journal for Numerical Methods in
Engineering, 104(7):472–501, 2015.

[6] E. Burman, S. Claus, P. Hansbo, M. G. Larson, and A. Massing. Cutfem: Discretizing ge-
ometry and partial differential equations. International Journal for Numerical Methods in
Engineering, 104(7):472–501, 2015.

[7] E. Burman and P. Hansbo. Fictitious domain finite element methods using cut elements:
I. A stabilized Lagrange multiplier method. Computer Methods in Applied Mechanics and
Engineering, 199(41-44):2680–2686, 2010.

[8] E. Burman and P. Hansbo. Fictitious domain finite element methods using cut elements: II.
A stabilized Nitsche method. Applied Numerical Mathematics, 62(4):328–341, 2012.

[9] E. Burman, P. Hansbo, and M. G. Larson. A stabilized cut finite element method for par-
tial differential equations on surfaces: The laplace–beltrami operator. Computer Methods in
Applied Mechanics and Engineering, 285:188–207, 2015.

[10] E. Burman, P. Hansbo, M. G. Larson, K. Larsson, and A. Massing. Finite element ap-
proximation of the laplace-beltrami operator on a surface with boundary. arXiv preprint
arXiv:1509.08597, 2015.

47

Bibliography

[11] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and
T. R. Evans. Reconstruction and representation of 3d objects with radial basis functions. In
Proceedings of the 28th annual conference on Computer graphics and interactive techniques,
pages 67–76. ACM, 2001.

[12] D. Chapelle and K.-J. Bathe. The finite element analysis of shells-Fundamentals. Springer
Science & Business Media, 2010.

[13] P. G. Ciarlet. Mathematical modelling of linearly elastic shells. Acta Numerica 2001, 10:103–
214, 2001.

[14] K. Crane, C. Weischedel, and M. Wardetzky. Geodesics in heat: A new approach to computing
distance based on heat flow. ACM Transactions on Graphics (TOG), 32(5):152, 2013.

[15] F. Cuvelier, C. Japhet, and G. Scarella. An efficient way to perform the assembly of finite
element matrices in matlab and octave. arXiv preprint arXiv:1305.3122, 2013.

[16] M. Delfour and J. Zolésio. A boundary differential equation for thin shells. Journal of differ-
ential equations, 119(2):426–449, 1995.

[17] M. Delfour and J. Zolésio. Tangential differential equations for dynamical thin/shallow shells.
Journal of differential equations, 128(1):125–167, 1996.

[18] M. Delfour and J. Zolésio. Shapes and geometries: Metrics. Analysis, Differential Calculus,
and Optimization, SIAM, Philadelphia, 2011.

[19] M. C. Delfour and J.-P. Zolésio. Differential equations for linear shells: comparison between
intrinsic and classical models. Advances in mathematical sciences: CRMs, 25:41–124, 1997.

[20] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Implicit fairing of irregular meshes using
diffusion and curvature flow. In Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’99, pages 317–324, New York, NY, USA,
1999. ACM Press/Addison-Wesley Publishing Co.

[21] G. Dziuk. Finite elements for the beltrami operator on arbitrary surfaces. In Partial differential
equations and calculus of variations, pages 142–155. Springer, 1988.

[22] G. Dziuk and C. M. Elliott. Finite element methods for surface pdes. Acta Numerica, 22:289–
396, 2013.

[23] O. Frei and B. Rasch. Finding form: towards an architecture of the minimal. Axel Menges,
Stuttgard, 1995.

[24] T. Fries, S. Omerović, D. Schöllhammer, and J. Steidl. Higher-order meshing of implicit
geometries - part: I integration and interpolation in cut elements. Computer Methods in
Applied Mechanics and Engineering, 313:759–784, 2017.

48

Bibliography

[25] T.-P. Fries and S. Omerović. Higher-order accurate integration of implicit geometries. Inter-
national Journal for Numerical Methods in Engineering, 2015.

[26] H. Gouraud. Continuous shading of curved surfaces. IEEE transactions on computers,
100(6):623–629, 1971.

[27] M. E. Gurtin and A. Ian Murdoch. A continuum theory of elastic material surfaces. Archive
for Rational Mechanics and Analysis, 57(4):291–323, 1975.

[28] P. Hansbo, M. Larson, and F. Larsson. Tangential differential calculus and the finite element
modeling of a large deformation elastic membrane problem. Computational Mechanics, 56:87–
95, 2015.

[29] P. Hansbo and M. G. Larson. Finite element modeling of a linear membrane shell problem using
tangential differential calculus. Computer Methods in Applied Mechanics and Engineering,
270:1–14, 2014.

[30] P. Hansbo, M. G. Larson, and S. Zahedi. Stabilized finite element approximation of the mean
curvature vector on closed surfaces. SIAM Journal on Numerical Analysis, 53(4):1806–1832,
2015.

[31] P. Helnwein. Some remarks on the compressed matrix representation of symmetric second-
order and fourth-order tensors. Computer methods in applied mechanics and engineering,
190(22):2753–2770, 2001.

[32] G. A. Holzapfel. Nonlinear solid mechanics, volume 24. Wiley Chichester, 2000.

[33] J. F. Hughes, A. Van Dam, J. D. Foley, and S. K. Feiner. Computer graphics: principles and
practice. Pearson Education, 2014.

[34] S. Jin, R. R. Lewis, and D. West. A comparison of algorithms for vertex normal computation.
The Visual Computer, 21(1-2):71–82, 2005.

[35] M. Joulaian, S. Hubrich, and A. Düster. Numerical integration of discontinuities on arbitrary
domains based on moment fitting. Computational Mechanics, 57(6):979–999, 2016.

[36] C. Lehrenfeld. A higher order isoparametric fictitious domain method for level set domains.
arXiv preprint arXiv:1612.02561, 2016.

[37] E. Magid, O. Soldea, and E. Rivlin. A comparison of gaussian and mean curvature estimation
methods on triangular meshes of range image data. Computer Vision and Image Understand-
ing, 107(3):139–159, 2007.

[38] N. Max. Weights for computing vertex normals from facet normals. Journal of Graphics Tools,
4(2):1–6, 1999.

49

Bibliography

[39] D. S. Meek and D. J. Walton. On surface normal and gaussian curvature approximations given
data sampled from a smooth surface. Computer Aided Geometric Design, 17(6):521–543, 2000.

[40] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. Discrete differential-geometry operators
for triangulated 2-manifolds. In Visualization and mathematics III, Math. Vis., pages 35–57.
Springer, Berlin, 2003.

[41] M. Moumnassi, S. Belouettar, É. Béchet, S. P. Bordas, D. Quoirin, and M. Potier-Ferry. Finite
element analysis on implicitly defined domains: An accurate representation based on arbitrary
parametric surfaces. Computer Methods in Applied Mechanics and Engineering, 200(5):774–
796, 2011.

[42] B. Müller, F. Kummer, and M. Oberlack. Highly accurate surface and volume integration on
implicit domains by means of moment-fitting. International Journal for Numerical Methods
in Engineering, 96(8):512–528, 2013.

[43] M. A. Olshanskii and A. Reusken. Trace finite element methods for pdes on surfaces. arXiv
preprint arXiv:1612.00054, 2016.

[44] M. A. Olshanskii, A. Reusken, and J. Grande. A finite element method for elliptic equations
on surfaces. SIAM journal on numerical analysis, 47(5):3339–3358, 2009.

[45] M. A. Olshanskii and D. Safin. Numerical integration over implicitly defined domains for higher
order unfitted finite element methods. Lobachevskii Journal of Mathematics, 37(5):582–596,
2016.

[46] S. Osher and R. Fedkiw. Level set methods and dynamic implicit surfaces, volume 153. Springer
Science & Business Media, 2006.

[47] J. A. Sethian. Level set methods and fast marching methods: evolving interfaces in computa-
tional geometry, fluid mechanics, computer vision, and materials science, volume 3. Cambridge
university press, 1999.

[48] M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solutions to
incompressible two-phase flow. Journal of Computational physics, 114(1):146–159, 1994.

[49] G. Thürrner and C. A. Wüthrich. Computing vertex normals from polygonal facets. Journal
of Graphics Tools, 3(1):43–46, 1998.

[50] O. C. Zienkiewicz. The finite element method in engineering science. McGraw-Hill London,
second edition, 1971.

50

	Abstract
	Papers
	Acknowledgements
	Introduction
	Tangential Calculus
	The tangential operator
	The discrete tangential projection

	Surface representation
	Implicit surfaces

	Parametric mapping

	Trace Finite Element Method
	Domain
	Discretization
	Dirichlet conditions
	Finite element space
	Stabilization
	Zero-level set reconstruction
	Valid topology
	Linear interpolant
	Higher order interpolant

	Implementation Details
	Choice of software
	Stabilization
	Curvature flow
	Level set advection
	The L2-projection
	Linear elastic membrane model
	Interpolating solution field to surface
	Evaluation of basis functions in physical coordinates

	Future Work
	Bibliography
	Appended Papers
	Paper I
	Paper II
	Paper III
	Paper IV

