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Abstract  
The thesis consists of four articles and this summarizing part. All parts have 
focused on bringing some insights into how to design a didactical situation 
including dynamic software (GeoGebra) to support studentsÕ mathematical 
problem solving and creative reasoning as means for learning. The four 
included articles are: 

 
I.  Granberg, C., & Olsson, J. (2015). ICT-supported problem solving 

and collaborative creative reasoning: Exploring linear functions 
using dynamic mathematics software. The Journal of Mathematical 
Behavior, 37, 48-62.  

II.  Olsson, J. (2017). The Contribution of Reasoning to the Utilization of 
Feedback from Software When Solving Mathematical Problems. 
International Journal of Science and Mathematics Education, 1-21.  

III.  Olsson, J. Relations between task design and studentsÕ utilization of 
GeoGebra. Mathematical Thinking and Learning. (Under review)  

IV.  Olsson, J., & Granberg, C. Dynamic software, problem solving with 
or without guidelines, and learning outcome. Technology, 
Knowledge and Learning. (Under review)   

 
 
Background  A common way of teaching mathematics is to provide 
students with solution methods, for example strategies and algorithms that, 
if followed correctly, will solve specific tasks. However, questions have been 
raised whether these teaching methods will support students to develop 
general mathematical competencies, such as problem solving skills, ability to 
reason and acquire mathematical knowledge. To merely follow provided 
methods students might develop strategies of memorizing procedures usable 
to solve specific tasks rather than drawing general conclusions. If students 
instead of being provided with algorithms, are given the responsibility to 
construct solution methods, they may produce arguments for why the 
method will solve the task. There is research suggesting that if those 
arguments are based on mathematics they are more likely to develop 
problem solving and reasoning-skill, and learn the included mathematics 
better.  

In such didactic situations, where students construct soluti ons, it is 
important that students have instructions and tasks that frame the activity 
and clarify goals without revealing solution methods. Furthermore, the 
environment must be responsive. That is, students need to receive responses 
on their actions. If s tudents have an idea on how to solve (parts of) the given 
problem they need to test their method and receive feedback to verify or 
falsify ideas and/or hypotheses. Such activities could be supported by 
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dynamic software. Dynamic software such as GeoGebra provides features 
that support  students to quickly and easily create mathematical objects that 
GeoGebra will display as visual representations like algebraic expressions 
and corresponding graphs. These representations are dynamically linked, if 
anything is changed in one representation the other representations will be 
altered accordingly, circumstances that could be used to explore and 
investigate different aspects and relations of these objects. The first three 
studies included in the thesis investigate in what way GeoGebra supports 
creative reasoning and collaboration. These studies focus questions about 
how students apply feedback from GeoGebra to support their reasoning and 
how students utilize the potentials of GeoGebra to construct solutions during 
problem solving. The fourth study examine studentsÕ learning outcome from 
solving tasks by constructing their methods. 

 
Methods  A didactical situation was designed to engage students in problem 
solving and reasoning supported by GeoGebra. That is, the given problems 
were not accompanied with any guidelines how to solve the task and the 
students were supposed to construct their own methods supported by 
GeoGebra. The students were working in pairs and their activities and 
dialogues were recorded and used as data to analyse their engagement in 
reasoning and problem solving together with their use of GeoGebra. This 
design was used in all four studies. A second didactical situation, differing 
only with respect of providing students with guidelines how to solve the ta sk 
was designed. These didactical situations  were used to compare studentsÕ use 
of GeoGebra, their engagement in problem solving and reasoning (study III) 
and studentsÕ learning outcome (study IV) whether the students solved the 
task with or without guidel ines. In the fourth study a quantitative method 
was applied. The data from study IV consisted of studentsÕ results during 
training (whether they managed to solve the task or not), their results on the 
post-test, and their  grades. Statistical analysis where applied. 
 
Results  The results of the first three studies show qualitative aspects of 
students solving of task with assistance of GeoGebra. GeoGebra was shown 
to support collaboration, creative mathematical reasoning, and problem 
solving by providing students with a shared working space and feedback on 
their actions.  Students used GeoGebra to test their ideas by formulat ing and 
submitting  input according to their questions and hypotheses. GeoGebraÕ s 
output was then used as feedback to answer questions and verify/falsify 
hypotheses. These interactions with GeoGebra were used to move the 
constructing of solutions forward.  

However, the way students engage in problem solving and reasoning, and 
using GeoGebra to do so, is dependent on whether they were provided with 
guidelines or not. Study III and IV  showed that merely the students who 
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solved unguided tasks utilized the potential of GeoGebra to explore and 
investigate the given task. Furthermore, the unguided students engaged to a 
larger extent in problem solvi ng and creative reasoning and they expressed a 
greater understanding of their solutions . Finally study IV showed that the 
students who managed to solve the unguided task outperformed, on post-
test the students who successfully solved the guided task.   

 
Conclusions  The aim of this thesis was to bring some insights into how to 
design a didactical situation, including dynamic software (GeoGebra), to 
support students' mathematical problem solving and creative reasoning as 
means for learning. Taking the results of the four studies included in this 
thesis as a starting point, one conclusion is that a didactical design that 
engage students to construct solutions by creative reasoning supported by 
GeoGebra may enhance their learning of mathematics. Furthermore, the  
mere presence of GeoGebra will not ensure that students will utilize its 
potential for exploration and analysis of mathematical concepts and 
relations during problem solving.  The design of the given tasks will affect if 
this will happen or not. The instr uctions of the task should include clear 
goals and frames for the activity, but no guidelines for how to construct the 
solution. It was also found that when students reasoning included predictive 
argumentation for the outcomes of operations carried out by the software, 
they could better utiliz e the potential of GeoGebra than if they just, for 
example, submitted an algebraic representation of a linear function and then 
focused on interpreting the graphical output . 
 



vi 

Abbreviations  

AR Ð Algorithmic Reasoning 
CAS Ð Computer algebra system 
CMR Ð Creative Mathematical Reasoning 
DGS Ð Digital Geometry System 
ICT Ð Information and Communication Technology  
IR Ð Imitative Reasoning  
RQ Ð Research Question 
TDS Ð Theory of Didactical Situations  
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Enkel sammanfattning p Œ svenska 

Det švergripande syftet med avhandlingen har varit att nŒ insikter i hur man 
kan designa en didaktisk situation inklusive en dynamisk programvara 
(GeoGebra) fšr att stšdja elevernas lŠrande genom matematisk 
problemlšsning  och kreativt resonemang. En bŠrande idŽ har varit att elever 
som sjŠlva konstruerar lšsningsmetoder till problembaserade uppgifter lŠr 
sig matematik bŠttre Šn elever som fŒr en metod att fšlja. Resultaten visar 
att GeoGebra Šr ett stšd vid konstruerandet av lšsningsmetoder och att 
elever dŒ ocksŒ resonerar kreativt. Det vill sŠga, de skapar en fšr dem en ny 
resonemangssekvens som innehŒller en lšsningsmetod som stšds av 
argument fšrankrade i matematik. IdŽn med att elever pŒ egen hand 
konstruerar lšsningen pŒ uppgifter har Šven belysts genom att jŠmfšra med 
elever som lšser uppgifter dŠr de fŒr vŠgledning till lšsningsmetoden. 
Resultaten visar att elever som fŒr en lšsningsmetod inte resonerar kreativt, 
de utnyttjar inte GeoGebras potential att stšdja ett undersškande arbetssŠtt, 
och de lŠr sig mindre av den matematik som ingŒr i uppgifterna. 

Denna avhandling bestŒr av 4 artiklar och en kappa. De fyra artiklarna Šr: 
 

I.  Granberg, C., & Olsson, J. (2015). ICT-supported problem solving 
and collaborative creative reasoning: Exploring line ar functions 
using dynamic mathematics software. The Journal of Mathematical 
Behavior, 37, 48-62.  

II.  Olsson, J. (2017). The Contribution of Reasoning to the Utilization of 
Feedback from Software When Solving Mathematical Problems. 
International Journal of Science and Mathematics Education, 1-21.  

III.  Olsson, J. Relations between task design and studentsÕ utilization of 
GeoGebra. Mathematical Thinking and Learning. (Under review)  

IV.  Olsson, J., & Granberg, C. Dynamic software, problem solving with 
or without guidelin es, and learning outcome. Technology, 
Knowledge and Learning. (Under review)   
 

Artikel 2 och 3 Šr jag ensam fšrfattare till. Det innebŠr att jag designat 
studien, planerat och genomfšrt datainsamling, analyserat data och 
formulerat slutsatser, samt skrivit  texten och korresponderat med tidskrifter. 
Artikel 1 och 4 har jag skrivit i samarbete med Carina Granberg. Vi bedšmer 
att arbetet med artikel 1 fšrdelats lika. Allt skrivarbete har fortgŒtt genom 
Œtskilliga granskningar av varandras utkast och diskussioner om slutgiltiga 
formuleringar. I arbetet med artikel 4 har jag haft huvudansvaret fšr 
designen av studien och planering fšr datainsamlingen. Skrivarbetet har 
genomfšrts pŒ samma sŠtt som i arbetet med artikel 1. 
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1. Introduction  

This thesis considers the development of teaching approaches that include 
the use of GeoGebra (a dynamic software where students may create, 
investigate, and manipulate algebraic and graphic representations of 
functions)  to support studentsÕ problem solving to reasoning in order to 
enhance learning. The aim is to provide some insights on how to design a 
didactical situation that includes dynamic software (GeoGebra) to support 
studentsÕ mathematical problem solving and creative reasoning as means for 
learning.  The introduction begins with my background as a mathematics 
teacher and my interest in teaching approaches that include problem solving 
when students are constructing solution methods they do not know in 
advance. This interest included the way the development of informatio n and 
communication  technologies (ICT) in schools have coincided with my efforts 
to teach mathematics. This is followed by some implications from research 
related to the issues presented in my personal background. That is, research 
concerning teaching designs including problem solving followed by some 
suggestions of how dynamic software may support students during problem 
solving. The introduction concludes with a summary of the arguments for 
this thesis. 

1.1. Teaching experiences  leading to interest of stu dent 
active learning supported by dynamic software  
As a mathematics teacher for 20 years, I have met students from the age of 7 
to 19 years of age, and, for a time, I taught in teacher training programmes. 
Throughout these years I have come to believe that students who create their 
own methods for solving problems learn mathematics better than students 
who solve problems using solution methods that are provided.  

 I have also experienced a tension between peopleÕs perceptions of 
learning through constructin g solution methods and learning through 
following instructions including solution methods. This tension is between 
the belief that  creative activities are beneficial for learning and the 
assumption of students, parents, principals, and even me, that mathematics 
is best learned through teachersÕ instruction. These instructions include 
solution methods, which are memorized and reinforced by repetition. To 
challenge these perceptions meant that I as a teacher needed well-grounded 
arguments to convince students, parents, principles, and (not the least) 
myself that active design by students is better for teaching mathematics.  

Another recurrent question during my years of teaching was whether the 
use of technology was beneficial for learning mathematics. When I began 
teaching in 1992, the school had made its first major purchase of computers 
for teaching. Since then, several applications for teaching, learning and 
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practicing mathematics have been adopted. A recurrent pattern has been 
that in the beginning these applications were met with enthusiasm by 
students, parents, and (not the least) me. Then the enthusiasm faded as we 
discovered that the differences between using ICT and working in textbooks 
were not so different. An exception occurred when I challenged two students 
with a special interest in computers to create programmes with C++ (a 
programming language used by professional IT engineers) to solve the tasks 
in the textbook. These studentsÕ approach was different from that of their 
classmates. Instead of solving one task at a time, following instructions, and 
leaving them after checking if the answers were correct, they tried to 
understand the properties of and relations between similar tasks so as to be 
able to make the programmes as general as possible. However, like 
researchers such as Ferrara, Pratt, & Robutti . (2006), I found that 
programming was too narrow for a general approach to mathematical 
teaching. Only those who had a special interest in computers and 
programming engaged in learning programming wel l enough to learn 
mathematics. But I have continued to be interested the development of a 
teaching design that included a dynamic computer application that would 
support students to construct solution methods themselves.  

1.2. Is teaching about supporting students to solutions or to 
support students to create solutions  
The discussion on whether providing students with solution methods on how 
to solve tasks is beneficial for learning is present in research as well. 
Research shows that the most common teaching designs in classrooms 
involves students being given solution methods and examples that they can 
imitate when solving tasks on their own (Boesen, Lithner, &  Palm, 2010; 
Hiebert, 2003). Some research supports this teaching approach, arguing that 
solving tasks with minimal instructions sets high demands on working 
memory, which prevent allocating of long -term memory (Kirschner, Zweller, 
& Clark, 2006). According to Mayer (2004), not providing students with 
methods will furthermore prevent them from succeedin g in solving tasks, 
which may lead to less confidence and less learning. In their review, Lee and 
Andersson (2013) agree that there are benefits to providing students with 
detailed instructions: it is time efficient and reduces demands on studentsÕ 
working  memory.  

On the other hand, providing detailed instructions may lead to superficial 
rote learning and imitation of solution methods. Some research shows that 
learning by imitating and by following memorized procedures results in 
surface understanding and ineffective learning (Hiebert & Grouws, 2007). 
To learn mathematics, students need to struggle (in a positive sense with 
important mathematics). Brousseau (1997) suggests that to avoid guiding 
students to choose imitative strategies, teachers need to design didactic 
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situations in such a way that students engage in problem solving in which 
they are given the responsibility to construct (parts of) the solution method 
themselves. Studies have showed that students who engage in creative 
reasoning when they practice solving problems (i.e. constructing (for the 
student) new solution method) performed significantly better on post -tests 
than students who have followed memorized procedures (Jonsson, Norqvist, 
Liljekvist, Lithner 2014, Kapur & Bielaczyc, 2012).  

Giving the students the responsibility to construct their methods during 
problem solving is not the same as leaving them without support (Hmelo -
Silver, Duncan, & Chinn, 2007). However, the support needs to focus the 
problem-solving process rather than providing  methods. It could mean, for 
example, organizing small group work, presenting clear goals and frames for 
activities, and challenging students to justify solutions. Another way to 
support them is to allow them to use dynamic software, such as GeoGebra or 
Cabri geometric.  

1.3. Dynamic software supporting problem solving  
Problem solving is defined as solving a mathematical task where a 

solution method is not known in advance (Schoenfeld, 1985), and reasoning 
as Òthe line of thought adopted to produce assertions and reach conclusions 
in task solvingÓ (Lithner, 2008 p. 257). Furthermore, reasoning is 
characterized as imitative (as a strategy recalling memorized procedures or 
mimicking given procedures) or creative (constructing or reconstructing 
solution methods). 

Several studies have shown that dynamic software supports problem 
solving, reasoning, and the development of conceptual understanding 
(Jones, 2000; Joubert, 2013). During mathematical problem solving 
students often need explicit reference to concrete mathematical objects, such 
as visual representations like geometric figures, algebraic expressions, and 
graphs (Sedig & Sumner, 2006). Software like GeoGebra allows students to 
create mathematical objects, which can be displayed in two or more 
representations. The representations are furthermore dynamically linked, so 
if anything is altered, for example, in an algebraic representation, the 
graphical representation will adjust accordingly. Compared to using pen and 
paper, GeoGebra allows students, to construct supporting mathematical 
objects independently from direct instructions and to investigate properties 
and relations between different representations. In other words, during 
problem solving students may construct a method to solve the problem 
stepwise in interaction with software (Villarreal & Borba, 2010). However, it 
is not sufficient to solely introduce technology or software to promote 
learning (Mullins, Rummel, & Spada, 2011). It is likely safe to assume that 
there will be demands on the teaching design to engage students in using the 
potential of dynamic software to support reasoning and problem solving.  
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Research in mathematics education is largely consistent about the 
importance of increasing our knowledge about how to design teaching to 
support students in developing their understanding of mathematical 
concepts and relations and to enhance their ability to reason and their 
problem-solving skills. (Boaler, 1998; Hiebert, 2003). Given that providing 
students with dynamic software like GeoGebra seems likely to support them 
in mathematical problem solving,  we then need to understand how to design 
teaching situations including dynamic software, engaging students in 
problem solving . That brings us to the question of how can a didactic 
situation be designed in such a way that dynamic software, in this case 
GeoGebra, will support studentsÕ problem solving and reasoning to enhance 
learning.  

 

2. Aim and Research Question  

The overall aim of the thesis is to provide some insights on how to design a 
didactical sit uation that includes dynamic software (GeoGebra) to support 
studentsÕ mathematical problem solving and creative reasoning as means for 
learning. A further aim is to provide some insights into how to design a 
didactic situation using GeoGebra to enhance studentsÕ learning through 
creative reasoning. 

The overall aim has been concretized in four studies. Articles 1 and 2 
addressed different aspects of interactions with, and use of, GeoGebra. Both 
studies focused on features of GeoGebra that support students in engaging in 
problem solving and creative reasoning and on the way students use that 
support. The aims were: 

 
¥ Article 1 Ð to develop insights into how GeoGebra could be used as 

means of supporting collaboration and creative reasoning during a 
problem-solving process.  

¥ Article 2 Ð to investigate how studentsÕ reasoning contributes to 
their utilization of computer -generated feedback and how the 
utilization of feedback relates to success in solving mathematical 
tasks.  

 
Article 3 looked further into the questi on of how the use of GeoGebra is 

affected by task design. It looked at whether providing students with 
guidelines on how to solve a task will influence the way they use GeoGebra. 
Together the three articles constitute a basis of for understanding the way 
students use features of GeoGebra and different circumstances that affect the 
their use of GeoGebra. Finally, to investigate how task design, and if 
studentsÕ way of using the features of GeoGebra will affect their learning, 
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Article 4 looked at how task design and studentsÕ use of GeoGebra will affect 
students learning. The article reports from a study comparing the learning 
outcomes when students are solving the tasks used in article 3. The aims 
were:  

 
¥ Article 3 Ð to investigate studentsÕ use of GeoGebraÕs potential to 

support problem solving and reasoning related to two different 
designs of non-routine tasks where students are supposed to 
construct a mathematical rule with or without for the solution 
supporting instructions.  

¥ Article 4 Ð to investigate learning outcomes from solving the tasks 
used in article 3.  

 
To achieve the aim of this thesis the results of these fours studies will be 

discussed in chapter 7. The focus for the discussion will be the didactical 
situation that has been developed through the four studies and guided by the 
following questions:  

 
¥ (RQ1) In what way(s) could a didactical situation be designed to 

enhance problem solving and reasoning, assisted by GeoGebra? 
¥ (RQ2) In such a didactic situation, to what extent and in what ways 

do students reach the teaching goals (i.e. the teacherÕs goals for 
studentsÕ learning)? 

3. Background  

The background presents a basis for the main theme of this thesis, i.e. 
students who construct solutions supported by dynamic software learn 
mathematics. It consists of three parts. The first presents parts of 
BrousseauÕs (1997) Theory of Didactical Situations (TDS) that constitutes the 
point of departure of this thesis and the basis for the design of the didactical 
situations used throughout all four studies. Bro usseauÕs TDS will also 
underpin the discussion of studentsÕ task-solving activities in the didactic 
situation in chapter 7. The second part is a short presentation of earlier 
research concerning how didactical designs with and without guidelines for 
soluti on methods affect studentsÕ learning. A special focus is put on problem 
solving, on the support needed for students to solve mathematical problems, 
and on what characterizes problem solving. Therefore, parts of SchoenfeldÕs 
(1985) framework explaining what  constitutes problem -solving competence 
will be presented. That will underpin a discussion in chapter 7 on the results 
of the four studies. The third part reports from the literature on how 
dynamic software might support problem solving and reasoning when it is a 
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part of didactic situations. These findings are used to discuss studentsÕ 
utilization of GeoGebraÕs potential in chapter 7. 

3.1. Theory of didactic situations  
The TDS is a detailed and comprehensive theory that covers the background 
and implementat ion of teaching based on the idea that students learn 
through constructing solution s for  well-designed mathematical problems. In 
this thesis, only some aspects of TDS were used to design and discuss the 
didactical situation and to conceptualize computer -generated feedback. The 
aspects were the shortcomings of learning through memorizing algorithms, 
adidactic situations, the conceptualization of feedback, and the didactical 
contract.  

3.1.1. The shortcomings of teaching algorithms 
According to Brousseau (1997), a common approach to teaching or Òclassical 
teachingÓ is one in which the teacher explains theorems and properties of 
mathematical items and provides the students with procedures on how to 
solve specific tasks. Thereafter, the student is given several tasks to solve in 
order to practise applying the procedure or algorithm. If the student 
remembers the algorithm and knows how to apply it correctly, the 
procedures will provide the students with quick and correct solutions. The 
disadvantage of this approach is that students are released from the 
responsibility to construct solution methods and to create meaning of the 
included mathematical content. These circumstances might lead to surface 
understanding and poor memorizing.  

The tension between the signals from research finding that a focus on 
memorizing algorithms is not efficient and on the challenge of designing a 
more student active approach makes it important to explain the mechanisms 
and shortcomings of having students engage in imitative strategies. 

3.1.2. Devolution of a problem: preparing students to construct a 
solution in an adidactical situation 
While conventional teaching entails  teachers providing students with 
algorithms to use when solving tasks, Brousseau & Warfield (2014) 
advocating taking a reverse approach described as devolution of a problem. 
Here the teacher prepares a problem to which the students are not given or 
have not memorized a method for solving it. Instead, the students are given 
the responsibility to create (parts of) solution methods. During this part of 
the didactical situation, which is described as an adidactical situation, the 
teacher needs to refrain from interfering by instructing the students on how 
to solve the problem. Learning will take place when students create meaning 
of the mathematical objects in the problem.  
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In addition to providing the students with an appropriate problem, the 
teacher interaction will include the following: clarifying the frames for the 
learning activity (e.g. work in pairs, use software, amount of time) and the 
goals of the activity (e.g. formulate and prove a mathematical rule, find the 
ultimate strategy to win a game.). As soon as the students are prepared to 
work on their own, the teacher avoids interfering. Only when students fail to 
solve the problem does the teacher interact with them, but not by explaining 
how to solve the problem, but rather by adjusting the problem in such a way 
that the students can continue constructing the solution on their own. 
According to TDS, the only way for students to learn is to construct (parts of) 
the solution method on their own. If the teacher provides the solution, the 
students will start to imitate the procedures and have no need for creating 
meaning and learning is not likely to take place.  

The idea that learning takes place when students solve problem and by 
that construct meaning of mathematical object, has guided the design of the 
didactical situation and the tasks used in the articles included in this thesis. 
The aspects of devolution and an adidactical situation were particularly 
important for formulating instructions for the unguided tasks used in all four 
studies.  

3.1.3. Feedback as positive or negative  
Brousseau uses the term milieu to mean the teaching environment. The 
milieu may include texts,  collaborative partners, a game with an opponent, 
dynamic software, and so on. In an adidactical situation, the teacher trusts 
the milieu to give the students objective responses, point out errors, and 
reveal insufficient arguments. The teacher may well be a part of the milieu, 
giving those objective responses instead of providing solution methods. 
Feedback in an adidactical situation is the response students receive from 
acting on the milieu and must be interpreted by the students in based on the 
way it contributes (or not) to the solution (Brousseau, 1997). For example, a 
student has hypothesized that to construct two linear functions having 
perpendicular graphs, she needs to choose ÔoppositeÕ x-coefficients, like 2 
and -2. The student will construct the graphs of the functions y=2x-1 and y=-
2x-1 using, for example, a software like GeoGebra. The feedback provided by 
the milieu, the interface of GeoGebra, responds to the studentÕs action (the 
graphs drawn by the software will not be perpendicular). The result of the 
activity supports rejecting the studentÕs hypothesis. 

In all the tasks in this thesis, feedback from GeoGebra does not in itself 
indicate a correct answer, which means students must interpret the 
information.  
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3.1.4. The didactical contract and what guides the mathematical 
activity 
The way teaching mathematics is conducted is affected by perceptions and 
beliefs of the teacher, students, parents, school principals, policy makers, 
and so on. It is also a result of the long-term interaction between te achers 
and students in the classroom (Brousseau, 1997). Expressed in a simplified 
way, teaching mathematics is about a teacher arranging learning situations 
in which students participate and, if successful, learn the intended 
mathematical knowledge. BrousseauÕs didactical contract is focused on the 
way a teacher organizes a mathematical activity and students engage in it. 
The process of devolution is of particular interest; it is the process leading to 
the moment when students are supposed to continue on their own. If the 
student does not solve or avoids the task, the teacher is supposed to help. In 
such situations, the teacher and students have expectations of each other, of 
what each is responsible for. This is the didactic contract. In a teaching 
setting, where the teacher presents the mathematical contents and 
demonstrates how to solve associated tasks and the students practice on 
similar tasks, the teacher is supposed to clarify the solution method. In a 
problem-solving setting where the students are supposed to learn from 
constructing solutions, the teacherÐstudent interaction may instead be about 
how to help the student clarify the frames and the goal for the activity, 
encouraging students to find a way to solution on their own, and challenge 
the truth of solutions.  

In some literature, the notion of a didactical contract is used in a broader 
sense and includes rules for social interaction connected to mathematical 
activities (Wedege & Skott, 2006). This thesis focuses rather on the 
introduction of tasks  until students are to construct the solution on their 
own, and on the responsibilities of a teacher and students after that moment.  

The didactical contract both guides teaching and is a consequence of it. In 
most situations, the didactical contract is im plicit. It becomes visible when a 
partner breaks the contract. Examples of breaking the contract in teaching 
are: 
 

¥ Students not engaging in solving problems 
¥ A teacher not explaining how to solve a problem 
¥ A teacher not verifying answers 

 
In a teaching design where the teacher provides the students with solution 

methods, these situations may motivate improvement on the part of both 
partners. Students will try harder, the teacher will explain better, and the 
teacher will tell students whether they are right. These situations may be 
consequences of a change in teaching approach. If students are used to being 
told how to solve tasks, they will probably be uncertain if it is not clear from 
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instructions how to solve a task and they will fail. If they are used to a 
teacher providing solution methods, they may not accept encouragement to 
investigate and to explain why they failed. If they are used to being told 
whether their solutions are correct, they may find a call for justification 
frustrating. When the implicit contract is visible and possible to challenge, it 
is possible both to explain and develop the didactical contract (Warfield, 
2006). The notions of the didactical contract will be used to discuss the 
interacting between teachers and students in the didactical design. 

When students are to construct the solution on their own without teacher 
interference, they often find it necessary to create representations of 
mathematical objects (e.g. if a part of a solution is analysing pairs of 
numbers a function may be derived and presented as algebraic and graphic 
representations). Then the students must determine whether the results of 
the activities are appropriate for the solution. In such situations, the teaching 
environment, the milieu, must provide responses to actions for students to 
use as feedback (Brousseau, 1997). Furthermore, when students are solving 
tasks where they do not know a solution method in advance, they are 
problem solving. However, teaching based on problem solving is not un-
questioned. The next chapter presents research both advocating for 
problem-solving approaches and questioning the efficiency of such teaching.  

3.2. Distinguishing between teaching where students solve 
problems or follow instructions  
The rational for research in mathematics education is guided by goals and 
values from national policy (Hiebert, 1999). For the last 20 years, there has 
been a desire to have mathematical education produce skilled problem 
solvers. However, there is an on-going debate concerning how teaching 
should be designed to enhance development of problem-solving competence. 
A recurrent question is whether it is more beneficial for learning, to provide 
students with methods how to solve the tasks or to invite them to construct 
their own methods.  

3.2.1. Tasks accompanied with instructions of solution methods 
As mentioned, showing students how to solve a problem and having students 
use that information to solve similar problems is the most common teaching 
approach. (Hiebert & Grouws, 2007). Furthermore, even if tasks are 
intended to engage students in problem solving, they are often presented in a 
well-structured way that limits the challenge in constructing a solution 
method (Jonasen, 2000). These kinds of tasks often include information that 
the student can associate with a known procedure. Some research presents 
the benefits of this as a teaching approach Mayer (2004) claims that research 
through four decades has shown that guided methods of instruction are 
more effective for learning compared to learning through di scovery. 
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Blomhoej, (2016) claims that students are capable of working on their own 
and they will come to correct solution of tasks, and if they have forgotten or 
not understood the instructions, they can ask the teacher  

However, some researchers question the effectiveness of providing 
students with methods. As described, Brousseau (1997) argues that learning 
take place when students construct solution methods and by that must create 
meaning of mathematics.  

3.2.2. Tasks not accompanied with solution methods 
Research has shown even though students manage to solve specific tasks 
using provided methods, they will not engage in the deep learning that 
develop general skills and knowledge (Brousseau, 1997; Schoenfeld, 1992; 
Kapur, 2016; Lee & Anderson, 2013). 

Kapur and Bielaczyk (2012) suggest that tasks should be Òill-structuredÓ 
so students have to decide which information is useful and which is not. 
Furthermore, when they have identified useful information, students must 
use it to construct a solution. If the d ifficulty of the task is fair, the student 
will learn mathematics by engaging in productive struggle (Schoenfeld, 1985; 
Niss, 2007). In other words, if students do not know a solution method in 
advance it is reasonable that some ideas will lead to dead ends but, if 
evaluated, will guide them to the solution.  However, these kinds of problem-
based or inquiry-based approaches to mathematical teaching have been 
questioned. Kirschner, Sweller and Clark (2006) claim that inquiry -based 
approaches with minimal inst ructions are less likely to be effective. They 
built their arguments on their contention that problem -based learning 
makes heavy demands on working memory, which prevents the 
accumulation of knowledge in long-term memory (ibid.). On the other hand, 
some research claims there are ways to decrease the demands on working 
memory other than providing solution methods, for example, by clarifying 
goals and frames for problem-solving activities (Hmelo -Silver et al., 2007).  

3.2.3. Considerations of different task designs and learning 
When comparing learning from different approaches, it is important to 
consider how to describe learning and that learning through discovery, or 
problem/inquiry -based learning, can be implemented in different ways. To 
support students to learn from ill -structured tasks, the problem at hand 
cannot be too difficult or too easy to solve. The students, furthermore, need 
support to frame the activities and to clarify the learning goal. One 
consideration is whether the demands of working memory  associated with 
learning by exploring will prevent students from learning (Kirschner et al., 
2006). Hmelo -Silver et al. (2007) suggests that instead of providing solution 
methods, studentsÕ work can be scaffolded by posing questions that 
encourage them to explain and justify their path to solution and clarifying 
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the goals for activities. Another possibility for  reducing studentsÕ cognitive 
load when they are solving problems is to provide them with tools such as 
calculators and dynamic software. 

If we agree that signs of learning are more than producing answers to 
specific tasks, one must ask whether students learn in a more general sense 
when they manage to solve tasks using a provided or memorized solution 
method. Direct instructions that include solution  methods have been shown 
to engage students in rote learning, which led to superficial understanding 
and poor memorizing (Lee & Anderson, 2013). Learning strategies of 
memorizing whole procedures and the kind of tasks they may solve is what 
Lithner (2008) describes as algorithmic reasoning (AR). Solving a task that 
requires students to explore mathematical concepts, construct their own 
methods, and justify those methods using arguments based on mathematics 
is what Lithner (2008) describes as creative mathematical reasoning (CMR). 
In a study, Jonsson et al. (2014) let students practice on tasks with or 
without instructions on how to solve them. A week later on a post-test, the 
students who had practiced on tasks without instructions for how to solve 
them, outperformed those who had practised with instructions.  

This thesis uses SchoenfeldÕs definition of problem solving (see 1.3.) and 
the next section presents aspects of his (1985) framework for problem 
solving. 

3.2.4. Problem solving 
In this thesis, the inter ventions intended to engage students in problem 
solving constitute the basis for analysis. The idea is to encourage students to 
construct solution methods. The design of the didactical situation for the 
interventions takes into account that these students must engage in activities 
that go beyond implementation and calculation procedures. To succeed 
during problem solving, the student must be in possession of reasonable 
mathematical resources (e.g. knowledge of basic geometry facts for a task 
addressing geometry) in keeping with the difficulty of the task. They must 
also have the competencies and strategies to use these resources in a new 
situation. Students need the ability to implement strategies on unfamiliar 
tasks; they need to know how to use tools to control the proceeding and 
verify solutions. While working on the solution, they need to assess their 
progress and take decisions on how to proceed. This raises the question of 
how to engage students in developing and using such competencies.  

Schoenfeld (1985) proposed a framework including four categories of 
knowledge and behaviour necessary for characterization of problem-solving 
performance:  
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¥ Resources: Mathematical knowledge possessed by the individual, 
such as facts, algorithmic procedures, routine nonalgorithmic 
procedures, and so on. 

¥ Heuristics: Strategies for making progress on unfamiliar and 
nonstandard problems, such as drawing figures, exploiting related 
problems, reformulating problems, testing and verifications 
procedures, and so on. 

¥ Control: Gl obal decisions regarding the selections of resources and 
strategies, for example, planning, monitoring, and assessment, 
decision-making, and conscious metacognitive acts. 

¥ Belief systems: OneÕs mathematical worldview, the set of 
determinants of an individua lÕs behaviour, about self, about 
environment, about topic, about mathematics.  

 
Schoenfeld (1985) claimed, on the basis of empirical studies, that students 

usually have enough resources to solve problem but lack the other three 
components. When comparing skilled problem solvers and novices, 
Schoenfeld (1985) found that experts read the instructions for the task more 
thoroughly and planned for implementing strategies. Furthermore, skilled 
problem solvers took more conscious decisions while assessing and 
monit oring the way the strategies implemented lead to the solution. Novices 
made less effort in reading and planning and often worked too long with 
fruitless ideas. 

What often prevents students from engaging in problem-solving strategies 
is their belief of what  mathematics in school is like. Schoenfeld (1985, p. 44) 
suggests some typical studentsÕ beliefs and their consequences: The belief 
that ÒMathematics problem are always solved in less than 10 minutes, if they 
are solved at allÓ can lead to students giving up if they cannot solve a 
problem within 15 minutes. The belief that ÒOnly geniuses are capable of 
discovering or creating mathematicsÓ can lead to students not trying to solve 
a task if they cannot remember or are not provided with a corresponding 
solution method. The concept of beliefs has frequently been investigated and 
there is no consensus on definitions, on whether they are stable, or on 
consequences for mathematical teaching and learning (Tšrner, 2014; Skott, 
2014). An extended review of the research of beliefs is out of scope for this 
thesis. What is important to keep in mind is that the interventions  of all 
studies in this thesis are one-time-experiments and in such activities, the 
studentsÕ view of mathematics will not necessarily correspond to the 
intentions of the activities. That means that the instructions for the 
interventions are important. Schoenfeld (1985) proposed using the term 
ÒbeliefÓ in the broad sense of how oneÕs mathematical worldview shapes the 
way one does mathematics.  

What is often claimed is that instructing students about problem -solving 
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strategies is not an efficient way to develop their problem-solving skill 
(Schoenfeld, 1985; Brousseau, 1997). Instead, it is more efficient to have 
them solve problems that promote them to use and evaluate problem-solving 
strategies. That means a different teaching approach compared to what is 
common in schools.  

Teaching approaches in which students solve problems and construct 
solution method does not mean students have no guidance. Instead, the 
literature often indicates that teaching through problem solving must be 
carefully prepared and is more rather than less demanding for the teacher 
than instructive teaching (Brousseau, 1997; Hmelo-Silver et al., 2007). 
According to Brousseau (1997), the teacher must design a problem that is 
challenging but possible to solve using mathematical abilities and prepare 
the instructions in a way that students know the goal but not a solution 
method and are capable of working on it on their own. In such an adidactic 
situation, dynamic software may play an important part.  

3.3. Dynamic software in mathematics education  
ICT has been used for more than 30 years in mathematics education to 
support studentsÕ learning. The developments of applications such as drill-
practice software, Computer Algebra System (CAS), Dynamic Geometry 
Software (DGS), and so forth, have been comprehensive. In the last two 
decades dynamic educational software has been developed for both algebra 
and geometry. GeoGebra, one example, is dynamic in that sense that it 
allows the user to interact with the software. GeoGebra visualizes several 
representations of, for example, a linear function at the same time, and these 
representations may be dynamically adjusted. That is, the user may enter an 
algebraic formula into GeoGebra and GeoGebra will show the algebraic 
representation, the corresponding graph and, if the user wishes, a tabular 
representation (see fig. 1). Thereafter, the user may alter any of the 
representations and GeoGebra will adjust the other representations 
accordingly. So, GeoGebra will visualize the effects of any interaction, 
submission or adjustment performed by the user. In this thesis these actions 
will be regarded as GeoGebra-generated feedback on studentsÕ actions. 
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Figure 1  GeoGebra displaying different synchronous representations 
 

GeoGebra can be used both by teachers in instructing their students and 
by students in solving tasks. Research findings that students benefit from 
visualisations during demonstrations (Drijvers, Do orman, Boon, Reed & 
Gravemijer, 2010; Handal, 2003) may be one reason for teachers to use 
GeoGebra. Other research findings on studentsÕ use of dynamic software to 
explore, to solve problems, and to engage in reasoning (Heid & Edwards, 
2001; Hohenwarter & Jones, 2007; Kaput & Roschelle, 1999) suggest other 
reasons to use visualizations. Systematic use of digital technology in 
mathematics education may contribute to certain paths through problem 
solving, reasoning, and using feedback (Sacrist‡n et al., 2010). Brousseau 
(1997) claims that learning takes place when students are constructing 
solutions in a responsive milieu that provides feedback on their actions (see 
3.1.2.). During such activities, students are engaged in problem solving and 
reasoning. The features of dynamic software supporting studentsÕ 
engagement in problem solving and reasoning will be discussed in the next 
section, followed by a section considering the possibilities of including 
dynamic software in a didactical situation.  

3.3.1. Dynamic software as a mean to engage students in 
reasoning and problem solving  
To engage in problem solving and reasoning, students often need visualized 
mathematical representations as references, for example, geometric figures, 
graphs and algebraic expressions (Sedig & Sumner, 2006). Dynamic 
software, such as, Cabri, Geometric Sketchpad, and GeoGebra may be used 
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to construct, manipulate and explore representations of, for example, linear 
functions.  

Once an object is submitted into and displayed by GeoGebra it can be 
precisely adjusted in either the algebraic or the corresponding graphical 
representation of a linear function and will automatically be altered in the 
other (Preiner, 2008). So, in solving the problem at hand students can use 
GeoGebra to visualize their ideas and to obtain immediate feedback to 
confirm or falsify their assumptions. Furthermore, GeoGebra has tools like 
zoom in and out, construction protocols, angle measuring, hide and reveal 
representations that students may use to examine the visualized 
representations and to explore mathematical properties, processes, and 
relationships. Moreover, since GeoGebra takes care of time-consuming 
constructions of graphs, by using tools like gliders and drag-and-drop, 
students can easily construct numerical variations of a graphical 
representation that can be used to explore and generalize concepts (Arcavi & 
Hads 2000; Marrades & GutiŽrrez, 2000).  

Representations, like geometric figures or graphs, could also be 
constructed using pen and paper. However, the speed and accuracy with 
which dynamic software allows students to construct multiple 
representations, to explore the representations dynamically, and to receive 
immediate feedback on their actions is difficult to accomplish with pen and 
paper. Research has furthermore shown that the construction and 
exploration and the use of feedback is beneficial for students. For example, 
because GeoGebra takes care of time-consuming procedures the students 
can concentrate on other more cognitive aspects like problem solving and 
reasoning (Heid & Edwards, 2001).  

The way students use GeoGebra to explore various mathematical 
prosperities, processes, and relationships has been shown to support their 
problem solving (Berger, 2011) and their reasoning (Natsheh & Karsenty, 
2014). Moreover, the immediate feedback provided by GeoGebra in verifying 
or falsifying the studentsÕ ideas on how to solve a sub-task has been shown to 
make studentsÕ problem solving more efficient (Arcavi & Hadas, 2000; 
Marrades & GutiŽrrez, 2000). StudentsÕ reasoning is rarely associated with 
formal proof but to their way of convincing themselves and others that their 
idea of how to solve a problem is correct (Balacheff, 1988). GeoGebra has 
been shown to support this kind of informal reasoning through visualizi ng 
internal representations and helping students to overcome algebraic barriers 
(Bu & Scoen, 2011; HŠhkišniemi, 2013). Furthermore, when students plan 
for the next step in their problem -solving process and how to interact with 
GeoGebra, they need to engage in reasoning. To construct a mathematical 
object to submit to GeoGebra, students need to consider relations between 
and mathematical properties (Mariotti, 2000). This way of interacting with 
GeoGebra may encourage student to predict the outcome of a computer 
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activity. Research has shown that students engaging in predicative reasoning 
are more efficient in reasoning (Hollebrands, 2007).  

This potential of GeoGebra to support studentsÕ problem solving and 
reasoning could be used as arguments for including GeoGebra in a didactic 
design that expected students to take an explorative approach to solving 
tasks.  

3.3.2. GeoGebra as a central component of a didactic situation 
Students need to be given support and feedback when constructing their 
methods (Brousseau, 1997) and GeoGebra has been shown to provide 
support such that it might be included in a didactic situation.  

Interacting with dynamic software makes at least two requirements from 
the usersÕ view: to be able to design an action and to be able to interpret the 
feedback on that action (Sedig & Sumner, 2006). Designing an action may 
include the creation of an idea, a hypothesis about how to solve a sub-task, a 
corresponding action, an interaction with GeoGebra (submitting a formula, 
drag-.and-drop, measure an angle, etc.) needs to be planned and executed. 
After such action, feedback from GeoGebra will follow. This feedback needs 
to be interpreted in relation to the intention of the activity. As a result, the 
interactions with GeoGebra support an explorative approach to solving tasks 
and a task design that leaves students with the responsibility to construct the 
solution.  

3.3.3. The potential of dynamic software in summary 
In the contexts of the studies included in this thesis, GeoGebraÕs various 
features constitute its potential to support problem solving and reasoning. 
More specifically, this potential is defined as (also presented in article 3):  

 
¥ offering quick and exact dynamically linked transformation and 

display of representations of mathematical objects that could be 
utilized to explore relations between the representations, and 
 

¥ offering tools (e.g. to measure, read, organize, and step back and 
forth through a task -solving session) that could be utilized to 
investigate specific mathematical properties of the visualized 
representation 

 
Having to act on software and interpret the result of the action opens 
students to active teaching. Instead of having to imitate demonstrations from 
teachers and textbooks, students have a tool to approach the mathematics 
more exploratively through problem solving and reasoning. In this thesis 
GeoGebra is used as means to support problem solving and reasoning when 
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solving tasks where students are supposed to construct solution methods. 
This will be further discussed in chapter  7. 

3.4. Summary of background  
Some research has found that a teaching design that merely provides 
students with procedures to use when they are practicing on tasks engages 
students in rote learning and imitative strategies. These have been found to 
result  in and poor memorization and surface understanding. In studies 
comparing approaches when students construct their own solution with 
students who are provided with solution methods, it has been found that the 
former learn better.  

To engage students in learning through problem solving, they must be 
given tasks that promote them to construct solution methods. In situations 
where the problem-solving activities demand time -consuming mathematical 
procedures, explorations and analyses, dynamic educational software, such 
as GeoGebra, may support those activities and constructions without 
providing solution methods.  

This thesis presents four investigations concerning how GeoGebra 
supports problem solving, reasoning, and learning outcomes. The 
frameworks underpinnin g the design and analysis of the studies are 
presented next.   

 

4. Frameworks  

In addition to underpinning the discussion in chapter 7, the frameworks 
presented here will be used to justify the design of the interventions included 
in the thesis. 

The research questions in the four studies concerned reasoning, 
collaboration, computer -generated feedback, and problem solving. The 
studies were conducted in a project group investigating reasoning. StudentsÕ 
reasoning, as described by Lithner (2008), was the focus for all four studies. 
The tasks were designed to encourage reasoning. LithnerÕs (ibid) framework 
for imitative and creative reasoning is therefore presented in part 4.1. Part 
4.2, presents the theoretical support for collaborative work is to be used to 
discuss a didactical design that sought to encourage students to collaborate 
by working in pairs using one computer. Part 4.3 presents the theoretical 
support for conceptualizing the computer -generated feedback focused on in 
the studies. Finally, SchoenfeldÕs (1985) protocol analysis is presented in 4.4, 
which will support the part of the discussion in chapter 7 concerning 
studentsÕ engagement in problem-solving.  
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4.1. Imitative and creative reasoning  
The research for this thesis investigated studentsÕ interaction with dynamic 
software through the character of their reasoning. LithnerÕs framework of 
imitative and creative reasoning (2008) offers a basis for analysis with 
respect to the distinction between using available solution methods and 
constructing the solution. While the focus for analysis has been on solving 
tasks without guidelines for solution methods (studies I and II) and on 
comparing the solving of tasks with or without such guidelines (studies III 
and IV), it was found appropriate to investigate st udents reasoning based on 
whether it indicates the use of strategies that were built on applying 
remembered solution sequences or on creating new solution sequences. 
Applying remembered solution strategies is considered imitative reasoning 
while creating new solution strategies to be creative reasoning (Lithner, 
2008) These strategies are considered to emerge from fundamentally 
different thinking processes, which can be distinguished through analysis of 
visible traces forming a reasoning sequence (ibid). 

4.1.2. Mathematical thinking and reasoning sequences 
Thinking processes, which are not observable, create reasoning. When a 
student engages in a task and start solving it, aspects of their thinking 
processes may be interpretable through oral speech, gestures, written 
content, activities with calculators, computer activities, and so on. These 
visible parts will form a chronological path of the solution that starts with a 
task and ends in an answer. Lithner (2008) concretize the path through task 
solving as a reasoning sequence. Depending on the content, the reasoning 
sequence is usable for analysis of and characterizing reasoning as 
algorithmic or creative.  

4.1.3. Memorized and algorithmic reasoning 
Empirical studies (Lithner, 2000 & 2003) have identified two main types of 
imitative reasoning  (IR) : memorized reasoning and algorithmic reasoning 
(AR). Memorized reasoning means that a full answer is recalled, for example, 
a proof, a definition, or a property (How many dm 3 is a m3?). In the studies 
included in this  thesis, memorized reasoning is not common. On the other 
hand, AR can often be seen in mathematics education. An algorithm can be 
determined in advance, for example, the chain of executable instructions of 
the division algorithm. In a wider notion are all pre-specified procedural 
algorithms (e.g. every step to find the zeros of a quadratic function or 
calculation of percentage decrease or increase). The main point is that 
conceptual difficulties are taken care of by the algorithm and only the 
procedural parts are left to the user. Trying to remember an algorithm as a 
solution strategy is denoted as AR. AR fulfils the following conditions 
(Lithner, 2008, p. 262):  
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1. The strategy is to recall a solution algorithm. The predictive 

argumentation may be of different  kinds, but there is no need to 
create a new solution 

2. The remaining reasoning parts of the strategy implementation are 
trivial for the reasoner; only careless mistakes can prevent an 
answer from being reached 

 
Teaching that essentially consists of instructions providing students with 

memorable algorithms may guide them into solution strategies that build on 
AR. In mathematics education, this is often used to allow students to learn 
through memorizing and so students perform advanced mathematics 
without necessarily understanding the intrinsic mathematic ideas that are 
built into the algorithm. For example, it is quite reasonable to teach 7 -year 
old children how to differentiate simple polynomials, but it is not likely that 
they understand the mathematics behind the procedure 

4.1.4. Creative mathematical reasoning 
Instead of trying to recall a memorized procedural sequence that solves 
similar tasks, students may consider what is problematic with the task at 
hand and create a reasoning sequence to solve the task. If the solution 
method is new to solvers, they may need to convince themselves that the 
related actions are appropriate. The more anchored it is in mathematics, the 
more convincing is the argument. When a student reaches a solution, the 
student again needs to justify whether the solution is correct. For example, 
3/4 is larger than 10/15 because 3 covers more of 4 than 10 of 15. In this 
example, the argument is anchored in the properties of ratio, that is, in 
intrinsic properties that are necessary to address in order to explain which of 
the numbers is greatest. Considering just the surface properties, the size of 
the numbers, would not be enough and may, in this example, result in a 
wrong answer (both 10 and 15 are larger than 3 and 4). 

 A reasoning sequence denoted as CMR fulfils the following criteria 
(Lithner, 2008, p.266):  

 
1. Novelty. A new (to the reasoner) reasoning sequence is created, or a 

forgotten one is re-created 
2. Plausibility. There are arguments supporting the strategy choice 

and/or strategy impl ementation and justifying why the conclusions 
are true or plausible 

3. Mathematic foundation. The arguments are anchored in intrinsic 
mathematical properties of the components involved in the 
reasoning 
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CMR does not have to be challenging and the definition includes 
elementary reasoning. 

4.2. Reasoning and collaborating in pairs  
Collaborative work with dynamic software involving sharing one computer 
means that the collaborators must agree on what to enter into the software 
and how to interpret the outcome. The collaborative work can be described 
as a continued attempt to construct and maintain a shared conception of a 
problem (Roschelle & Teasly, 1995). That is most likely to happen when the 
students are engaged in problem solving. A routine problem or a task that 
includes instructions on how to solve it may turn the collaborative into co -
operation. That is, instead of sharing understanding, the co-corkers divide 
different parts of the task between themselves (ibid). For example, student 1 
dictates instructions of what to submit, and student 2 submits what is 
dictated into software; student 2 reports the outcome from computer and 
student 1 writes down the result.  

When collaborating during problem solving with support of dynamic 
software such as GeoGebra, the reasoning sequence consists of both 
studentÐstudent interaction and computer Ðstudent interaction (see fig. 2). 
Students contribute with their mathematical competencies and the software 
with support to construct mathematical objects. The student Ðstudent 
interaction can be considered as sequences starting with negotiating and 
agreeing on what to enter into the software. The submission initiates the 
interaction with software as the input is transformed into output, which is 
displayed on the computer screen as two or more representations of the 
input. The output affects the studentsÕ thinking, and through interaction, the 
students agree on how to interpret the outcome and share an understanding 
of it.  
 

 
Figure 2  The contribution to and of the reasoning sequence in collaboration  
 

As long as the students maintain a shared understanding of what should be 
submitted and how to interpret outcome, the collaboration continues.  
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4.3. Computer -generated feedback  
Feedback in this thesis is considered to be a result of studentsÕ planned 
computer activities and the way the result affects the subsequent task-
solving process. This view of feedback reflects BrousseauÕs (1997) suggestion 
that feedback is not necessarily information provided by one person to 
another. Feedback may be the result of students acting on the learning 
environment, resulting in changed conditions of the environment, which 
means the students have reason to change their learning behaviour. Using 
dynamic software as an important part of the learning environment has 
several benefits. The outcomes are always accurate and in line with the 
commands executed; it is delivered instantaneously; and it responds to 
studentsÕ actions without judgement (Sacrist‡n et al., 2010). The capability 
of digital media to invite stude nts to immediately test and reflect on existing 
knowledge, enhances exploration of ideas and promotes reasoning and 
learning (Chance, Garfield, & delMas, 2000; Sacristi‡n et al., 2010). Weir 
(1987) discusses the use of digital technology in educational situations as 
trying out something, watching for effects, and responding to feedback. 
Kieran and Drijvers (2006)  stress the tension awakening from differences in 
output (the feedback) and studentsÕ expectations as being most valuable for 
learning.  

One difference between computer-generated feedback and feedback 
delivered by a person is that in the latter case, the feedback is often explicitly 
formulated to help the student solve a specific task. Feedback from 
computers is, however, an automatically generated response to an action. In 
the case of dynamic software such as GeoGebra, the action is a more or less 
prepared input. That means the feedback must be interpreted with respect to 
the purpose of the input. Depending on what the purpose was, the feedback 
may be used for verification or for elaboration. In this thesis, these concepts 
are borrowed from Shute (2008) and modified into characterizing the use of 
computer-generated feedback. Using feedback to verify information, 
verificative use of feedback, determines success or failure in reaching the 
expected (sub-) goal. Using feedback to explain, extend pre-knowledge, or 
plan for how to proceed with the task solving, and so on is using the 
info rmation from GeoGebra elaborately. 

4.4. Protocol analysis of problem so lving  
Schoenfeld (1985) proposed a framework for macroscopic analysis of 
problem-solving protocols, focusing on decisions on the executive level. 
Decisions at the control level are those that affect allocation of problem-
solving resources. The method provides a way to identify important points of 
decisions during a problem-solving process and to examine the ways 
individualsÕ behaviour shape how the process evolves. Three types of 
decision points are described: when major shifts occur in the resource 
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allocation, when new information arises through problem -solving activities, 
and when difficulties indicate that something is wrong with the approach. 
Due to the protocol analysis, the conversations are partitioned into chunks of 
consistent behaviour called episodes. Episodes are periods in which students 
mainly are engaged in the same type of activity such as reading, analysis, 
exploring, planning, implementing, and verifying. Changing from one 
episode to another is considered a major shift in allocation and a possible 
decision point. The junctures between episodes are decisions points in which 
the students may significantly change the direction of the problem -solving 
activity. When new information or the possibilities of taking a different 
approach come to a problem solverÕs attention, the person has the 
opportunity to make decisions that shape the problem-solving process. New 
information may arise in the middle of an episode and may not, at least not 
immediately, be considered. The third possible decision point occurs when 
the process of problem solving has been accompanied by minor difficulties 
for some time, indicating that something is wrong with the approach.  

All episodes are labelled as reading, analysis, exploration, planning, 
implementation, and verifying. For each label and the transitions between 
episodes, the framework provides relevant questions. Some questions can be 
answered objectively (e.g. ÒAre the action driven by the goals of the 
problem?Ó). Others call for judgement of the problem-solving behaviour (e.g. 
ÒDoes the problem solver assess the current stage of her knowledge?Ó). Some 
ask about the reasonableness of certain behaviour (e.g. ÒIs it appropriate to 
do so?Ó). Parsing a protocol into episodes and providing answers to the 
associated questions results in a full characterization of a protocol. 
Schoenfeld (1985) admitted that some of these questions can only be 
answered subjectively, but said that such a systematic model would increase 
objectivity.  

To provide insights into the differences between expertsÕ and novicesÕ 
problem-solving processes, Schoenfeld (1985) analysed protocols of their 
mathematical task solving. The study showed that experts on the control 
level are more efficient in using what they know even if they do not have 
recent experiences of the mathematical content of the task. Compared to 
students considered novices, the experts more frequently assessed and 
monitored the current state of the solution and more frequently analysed 
and verified parts of the solution procedure. Schoenfeld (1985) noted that 
one type of expertise could be defined as knowing in advance what kind of 
information and procedures are needed to solve familiar tasks. Expertise on 
novel problem solving could be defined as skill in solving problems of an 
unfamiliar d omain by using general problem-solving techniques and 
strategies. Traditionally, the view had been that the reason that novices were 
less proficient problem solvers was that they lacked content knowledge. 
SchoenfeldÕs (1985) study, on the contrary, showed that students who had 
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recently studied the mathematical content of the problem were less 
successful than experts who had no recent experiences of the mathematical 
content but had better general problem-solving skills.  

4.5. Summary of the frameworks  
The framework of imitative and creative reasoning was used in studies IÐIII 
in the analysis of reasoning. It provided useful concepts for collecting data in 
a reasoning sequence and for categorizing reasoning as imitative or creative. 
The theories of collaborative work distinguish between students who 
distribute work between themselves or have shared understanding as a goal. 
Those theories are useful both in analysis of studentsÕ collaboration and in 
supporting the design of a didactic situations that include dyn amic software. 
Computer-generated feedback is about preparing an input to gain 
information that is useful to continue solving a task. Here BrousseauÕs notion 
of feedback as responses from the milieu (see 3.1.3.) has been extended with 
the concepts of feedback being for verification and elaboration. Together 
they provide a tool for analysis of studentsÕ use of feedback from dynamic 
software. The protocol analysis framework provides a tool to recognize 
important points during a problem -solving session. It is useful for 
structuring a path to a solution and identifying important decisions, which 
may affect how successful the student is in solving a task.  

Common to all these frameworks is their usefulness for organizing data 
collections and analysis of recorded data as transcripts. The methods used in 
the four studies are e presented in the next chapter. 

 

5. Methods  

To answer the research question an intervention where students actually 
solve problems with support of dynamic software was considered as 
appropriate . Therefore such a didactic situation was designed. This chapter 
will present the design propositions, the tasks, participants and procedure, 
followed by brief descriptions of data collection and methods of analysis.  

5.1. The design of the didactic situat ion  
Central for the didactical design in all four studies is BrousseauÕs (1997) idea 
of devolution, to give the students the responsibility to create (parts of) their 
solution methods. In keeping with didactical design, the students were not 
provided with  any method or guidelines on how to solve the tasks. However, 
to support them to construct their methods the students were introduced to 
GeoGebra. Study III aimed at comparing studentsÕ way of using GeoGebra 
and study IV, their learning outcome, depending on whether they were 
provided with guidelines. Therefore, in studies III and IV, the didactical 
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design involved only one group of students, the intervention group. The 
comparison group were given guidelines on how to solve the task. The other 
frameworks underpinning the didactical design used in the four studies will 
be elaborated in the following sections. 

 5.1.1. The design propositions 
The didactic situation was designed with the intention of having students 
engage in CMR in an adidactical situation (see 3.1.2.). It was built on three 
design propositions that are suggested to enhance learning: (1) giving the 
student responsibility to construct the solution method (Brousseau, 1997), 
(2) the mathematical activity in some way must be an intellectual challenge 
for the student (Schoenfeld, 1985), and (3) the task should be solved by 
students in collaboration with assistance of dynamic software (Roschelle & 
Teasly, 1995; Lou et al., 2001). In keeping with the adidactical nature of each 
study, the instructions fo r the intervention groups sought to clarify the goal, 
the frames (e.g. using software, work in pairs,), and the criteria for success. 
When students thought they had solved the task they were supposed to 
justify their solution.  

The unguided tasks (presented in 5.1.2.) in the studies for this thesis, 
which were not considered mathematically advanced for students in upper 
secondary school, were unlikely to be solved through recalling a procedure. 
Instead, they were considered to be possible to solve through constructing a 
solution method with the support of pre -knowledge. Therefore, the challenge 
for the students was to implement and verify a solution strategy.  

To support the students in constructing a solution, the environment, the 
milieu, in the words of Br ousseau (1997), consisted of pairwise work and the 
assistance of GeoGebra. Roschelle and Teasly (1995) claim that students 
working in collaboration and supported by dynamic software are capable of 
solving more explorative tasks than students working on their own and 
without the support of software. When constructing the solution, the 
students were supposed to engage in creating hypothesis and arguments to 
support these hypothesis, to test and evaluate the hypothesis, and finally to 
correct or construct a new hypothesis. Such tasks that are done with the 
support of dynamic software have been found suitable for collaboration in 
small groups (Roschelle & Teasly, 1995; Lou et al., 2001). Furthermore, Lou 
et al. (2001) found that small groups solving tasks aiming at conceptual 
understanding are likely to make use of computer-generated support. 
Therefore, the student pairs shared one computer.  

The design of the didactic situation was kept essentially the same through 
all four studies. In study I, it was noticed th at students often did not state 
their justification of correct solutions. Therefore, the instructions in studies 
II and III emphasized that aspect. In study IV the didactic situation was used 
as a practice session to prepare students for a post-test. Studies III and IV 
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compared studentsÕ performance in solving the task used in study II without 
guidelines for constructing the solution with students who solved a task with 
such guidelines.  

5.1.2. The tasks 
Three different tasks were used for interventions in the four studies. All the 
tasks used in the intervention groups were designed to give the students 
information about what they were expected to achieve Ð that is to say, the 
goal of the task. The task in study I asked the students to construct squares 
by submitting linear functions, y=mx+c into GeoGebra (see fig. 3). The task 
included mathematical content like the relations between m, the x -
coefficient, and the slope of the graph, the relation between c, the constant 
term, and the intersection at y-axis. The students were supposed to be in 
possess of, or able to reconstruct this kind of knowledge, but not know a rule 
for when two linear functions have corresponding perpendicular graphs.  
 

 
Figure 3  The unguided task used in study I 

 
 

 
Figure 4  The unguided task used in studies II, III, and IV  

 
What was perceived as a lack in the data from study I was that students did 
not spontaneously justify their solutions, particularly when they were 
successful. The image of two squares displayed by GeoGebra seemed to be 
enough for them for verification. This lack of explicit justifications made the 
analysis of verificative argumentation in reasoning more difficult. Therefore, 
as mentioned, the task was modified for study II. What had been the most 
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obvious difficulties i n study I, finding the relations of x -coefficients to result 
in perpendicular graphs, was the teaching goal. The learning target was to 
create a rule for when two linear functions have perpendicular 
corresponding graphs. In addition, the students were encouraged to explain 
why they thought they had a correct solution (see fig. 4). 
 

 
Figure 5 The guided task used in studies III and IV 

 
Study III aimed at comparing studentsÕ use of GeoGebra when they were 
solving tasks with or without guidelines. The unguide d task from study II 
was reused and a guided task, with the same learning target, was designed. 
The guided task was intended to be similar to tasks in Swedish textbooks 
that were to be solved with technological support. In general, these kinds of 
tasks include instructions or guidelines on how to implement a solution 
method. Therefore, the guided task included instructions on what linear 
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functions to submit and to retrieve the information necessary to construct 
the rule (see fig. 5). The new task, denoted as Òguided taskÓ, could be 
introduced to students under the same premise as the earlier task, now 
denoted as Òunguided taskÓ.  

Study IV aimed at comparing studentsÕ learning outcome depending on 
whether they managed to construct the rule by solving the guided or 
unguided task. The two tasks from study III were used for a practice session. 
One week after the practice the students performed a post-test individually. 
The post-test tasks were chosen from different upper secondary school 
mathematics textbooks and used the rule for when the graphs of two linear 
functions are perpendicular.  

5.1.3. Sample 
Different categories of students participated in the studies. The 
mathematical content of the tasks, linear functions, is briefly taught in year 9 
of the Swedish compulsory school and mainly in year 1 or 2 in the upper 
secondary school, depending on the programme. In studies I, II, and IV the 
students were enrolled at the upper secondary school. In study III the 
students were from year 7Ð9 at compulsory school (see fig. 6 for an 
overview). 

 
Study Informant

s 
Design Data School, year 

I  36  Qualitative  Recorded 
conversations 
and computer 
activity  

Upper secondary 
year 1 + 2 

II  16 Qualitative  Recorded 
conversations 
and computer 
activity  

Upper secondary 
year 1 

III  40 Qualitative  Recorded 
conversations 
and computer 
activity  

Compulsory year 
7Ð9 

IV  141 Quantitativ
e 

Recorded 
conversations 
and computer 
activity + post -
test 

Upper secondary 
year 1 

 
Figure 6  Overview of the four studies 
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5.1.4. Procedure 
In all the studies, th e students worked in pairs, sharing one computer. In 
studies IÐIII students solved the tasks in pairs in a room separate from the 
classroom. The task was presented in writing and the researcher showed the 
students how to use GeoGebra, how to submit algebraic formulas, how to 
alter any of the displayed representations, how to measure angles, and how 
to move back and forth through the activities being performed. Students 
were told that they could ask questions. If the questions concerned how to 
handle GeoGebra they were answered. If questions concerned how to solve 
the task, the researcher gave them a prepared answer such as, ÒWhat would 
you like to doÓ and ÒCan you explain what you have doneÓ. In studies I and II 
all the students solved the same task. In studies III and IV the students were 
divided into two groups, one solving the guided task and the other the 
unguided task. In studies II and III, when students considered they had 
reached a solution, they were asked to justify why they thought their solution 
was correct. In study IV there were two sessions. The first was like those in 
the previous studies, but this time the pairs worked in the classroom, the 
whole class at a time. For the post-test a week later, they worked individually 
on laptops online. The post-test was conducted in an ordinary classroom, 
one class at a time. To create comparable groups, the groups in study IV were 
matched according to their grades from year 9 in mathematics. 

5.2. Data collection  
In order investigate studentsÕ interactions with GeoGebra, one challenge was 
to assemble the observable data into meaningful sequences (Stahl, 2002). In 
studies IÐIII that meant putting together the studentsÕ conversations, 
computer activities, and gestures in a reasoning sequence (see, 4.1.2. and 
4.2.). 

The didactic situation promoted students to engage in conversation to 
agree on activities, such as submitting formulas or measuring angles using 
GeoGebra. To gather this kind of data, and the computer activities and 
conversations, screen-recording software, which included voice and video 
recording, was used.  

When the focus was on what was displayed on the screen, students often 
pointed at different objects. The conversation was mainly spoken but some 
complementing gestures were quite common.  

To capture studentsÕ gestures in studies I and III, notes were taken when 
the students pointed at the screen or used gestures. In study II the screen 
and voice recording were complemented with a webcam that captured 
gestures. But it was decided that this approach had not significantly 
improved the opportunities for analysis. Taking notes when gestures were 
used during the solution session worked equally well. Therefore, the webcam 
was excluded in study III.  
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In study IV, where the main focus was on the post-test and statistical 
analysis, the recordings from the practice were merely used to verify that 
students were not already familiar with the rule they were supposed to 
construct. In addition, the recordings were used to verify that the students 
solving the guided task did not abandon the guidelines and turn the guided 
task into an unguided one. 

The post-test in study IV was performed using a web-application, which 
automatically saved the answers in a database. In addition, it registered the 
time used to answer every answer. The time was registered so studentsÕ effort 
could be assessed. If a student spent a very short time on every answer in 
combination with providing wrong answers, that was considered as making 
no effort to solve the task.  

5.3. Methods of analysis  
The studentsÕ reasoning, which was an important part of the analysis, was 
categorized mainly on the same basis for studies IÐIII, using LithnerÕs 
(2008) framework. The studentsÕ dialogues, interactions with GeoGebra, and 
gestures in each phase were examined, and units of argumentation were 
identified. Reasoning was considered CMR if there were signs of creating 
(for the students) a new solution method (that could contain some elements 
of IR) and if their argumentation was anchored in intrinsic mathematical 
properties. The reasoning was categorized IR/AR if the (sub-) task solutions 
were based mainly on familiar facts and/or procedures.  

In study I, the framework of Roschelle and Teasly (1995) (see 4.2.) was 
used in the analysis of studentsÕ collaboration. In study II SchoenfeldÕs 
protocol analysis (see 4.4.) was used to structure the data and ShuteÕs 
concept of verificative and elaborative feedback (see 4.3.) was adapted to 
categorize studentsÕ use of computer-generated feedback. In study IV the 
data were analysed statistically to determine which the guided or unguided 
tasks promoted the most effective learning (see study IV for further details).  
  
6. Summary of the articles  

The results of the first two studies showed that GeoGebra has the potential to 
support problem solving and reasoning. The didactic situation and the tasks 
were designed to encourage CMR and the results indicated that engagement 
in CMR was necessary to solve the tasks. Study III showed that students who 
had solved the guided task used the potential of GeoGebra to a lesser extent 
than the other group? None of the first three studies investigated the 
learning outcome. It could be possible that the presence of GeoGebra still 
promoted good learning even though its potential is utilized less. Therefore 
study IV investigated the learning outcome of practicing on either the guided 
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or unguided tasks used in study III. Figure 7 provides an overview of the 
main points of the studies and in way in which each one contributed to the 
following study.  

 

 
Figu re 7 Overview of the main points of each study  

 

6.1. Article 1  
Article 1 reported from a study investigating the way in which GeoGebra 
might support studentsÕ reasoning and collaboration during problem solving. 
The research questions posed were: To what extent do students use 
GeoGebra to collaborate during problem solving? and What characteristics 
of GeoGebra might contribute to or obstruct their creative reasoning? A 
total of 36 students in pairs solved a task (see fig. 3) with the support of 
GeoGebra. The studentsÕ collaborative activities were analysed using 
Roschelle & TeasleyÕs (1995) concept, joint problem space. In addition, 
studentsÕ reasoning was examined by LithnerÕs (2008) framework of 
imitative and creative reasoning.  

The results showed that students used GeoGebra as a shared working 
space, an environment for collaboration. Their utterances and actions 
(pointing, sketching, submitting, etc.) were mainly situated within the 
environment of GeoGebra as displayed on the computer screen. The students 
collaborated by sharing their reasoning with one another using information 
from activities in GeoGebra as references.  

Furthermore, the study showed that GeoGebra supported studentsÕ 
creative reasoning by providing feedback. The task design invited students to 
create their own solution methods. By submitting algebraic expressions and 
studying the corresponding graph, the students could verify or falsify ideas 
of how to solve the task. That guided the students into testing mathematical 
ideas through hypothesis before submitting the expressions and in 
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discussions afterwards. Therefore, GeoGebraÕs feedback could be described 
as contributing to their creative reasoning, given that the students needed to 
interpret and evaluate the feedback from GeoGebra and, with that, present 
verificative arguments as to why their idea did or did not work. That is the 
students must interpret whether feedback from GeoGebra contributed to the 
solution.  

6.2 Article 2  
The study departed from the results concerning feedback from GeoGebra in 
article 1. The focus was on studentsÕ use of feedback from the software and in 
what ways different types of use related to success in problem solving. The 
research questions guiding the study were, How does students’ reasoning 
contribute to their use of the feedback GeoGebra generates? and How do 
students’ path of reasoning and utilization of feedback relate to their 
success in problem solving? In this study, 16 students, working in pairs, 
solved a task aimed at constructing a mathematical rule (see fig. 3). The use 
of feedback was analysed using ShuteÕs (2008) terms of verificative feedback 
and elaborative feedback (see 4.3.). Reasoning was analysed through 
LithnerÕs framework of imitative and creative reasoning (2008). The results 
showed that only students whose reasoning was characterized as creative 
used feedback elaborately, and reached a solution to the task. Furthermore, 
the results indicated that predictive argumentation was particularly 
significant for using feedback elaborately. 

The study suggests that GeoGebra has the potential to support problem 
solving and reasoning by exactly and quickly transforming and displaying 
representations of mathematical objects side by side and simultaneously. To 
use this potential efficiently, the students needed to create and support the 
solution method (i.e. prepare input resulting in supporting representations 
of mathematical objects and interpret them whether they contribute to the 
solution). Furthermore, students who prepared the input, for example, by 
posing hypotheses, predictions, and predictive argumentation used feedback 
from GeoGebra more extensively (including conclusions and verificative 
argumentation) compared to those who submitted functions more or less by 
chance and then tried to understand the output (the graph).  

6.3. Article 3  
Study I together with study II showed that GeoGebra has potential to 
support problem solving and reasoning. In these studies, the tasks were 
designed according to part of TDS (Brousseau, 1997) and no guidance was 
provid ed on how to solve the task. While it is reasonable to assume that the 
potential of GeoGebra is available regardless of task design, it was of interest 
to investigate whether guidance would influence studentsÕ use of GeoGebraÕs 
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potential. The aim for study  III was therefore to compare studentsÕ use of 
GeoGebraÕs potential when solving guided or unguided tasks.  

The research question for the study was, In what ways, if any, do 
students utilize the potential of dynamic software to support problem 
solving and reasoning differently when working with guided non-routine 
tasks compared to unguided non-routine tasks? To answer the question, the 
task from study II was designed as an unguided task and a guided task, 
having the same learning target. A total of 40 students worked in pairs 
supported by GeoGebra to solve either the guided or the unguided task. The 
analysis included investigation of the studentsÕ use of GeoGebraÕs potential, 
the studentsÕ engagement in algorithmic and creative reasoning (Lithner, 
2008), and  finally the quality of studentsÕ justifications (Balacheff, 1988). 
The results showed that students who solved the unguided task used the 
potential of GeoGebra to a greater extent than those who solved the guided 
task. Furthermore, students who solved the guided task mainly engaged in 
AR and justified their solution at a surface level (for example, saying that a 
solution method seems to work if the result is what expected) compared to 
students who solved the unguided task. The latter engaged in CMR and 
included properties of and relationships between representations of linear 
functions in their justifications. In the literature, the quality of justifications 
has been considered a measure of how well students understand the 
mathematics of tasks (Balacheff, 1988). In the discussion, one consideration 
was whether better quality justifications related to an extended use of 
GeoGebraÕs potential to support problem solving and reasoning, and if that, 
in turn, would affect the learning outcome.  

6.4. Article 4  
The result of study III was the point of departure for study IV. The aim of the 
study was to investigate differences in learning outcomes depending on 
whether students had managed to solve the guided or the unguided tasks. 
Two hypothesis were formulated: 
 
H1: Students practicing with the guided task will outperform the 

students practicing with the unguided task during practice 
(constructing the rule), and  

H2:  Students who successfully solved the unguided task will perform 
better during the post -test (using the rule) compared to those who 
successfully solved the guided task. 

 
The tasks from study III were used with no changes. A total of 141 students 
were divided into two groups matched according to their grades. One group 
practiced on the guided task and the other on the unguided task. A week 
later all the students performed a post-test, individually. The data were 
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statistically analysed. The results showed that students practicing on the 
guided task were more successful in constructing the rule than those who 
practiced on the unguided task. But one week later, on the post-test the 
students who had constructed the rule without guidelines during practice 
outperformed those who had constructed the rule with guidelines.  

In the discussion, a suggestion was made that students who are provided 
with instructions are more likely to succeed during practice. However, 
managing to solve the guided task is not a sign of learning in the same way as 
solving the unguided task. A minority of those who constructed the rule 
when solving the guided task remembered the rule one week later. On the 
contrary, most of those who successfully solved the unguided task 
remembered the rule a week later. Therefore, the challenge for teaching is to 
support students in solving an unguided task witho ut turning it into a guided 
task. 

6.5. Concluding remarks  
Even though the four articles have clear connections, they were all designed 
as independent reports from subprojects derived from the overall aim of the 
thesis. The connections between the articles are visible in that experiences 
from the previous studies were taken in consideration for the design of the 
studies. What was also of interest was whether the results of the studies done 
later might contribute to the results of the previous studies. In ch apter 7, the 
contributions from the studies to the design of the didactical situation will be 
discussed.  

 

7. Discussion  

The overall aim of the thesis is to provide some insights into how to design a 
didactical situation that includes dynamic software (Geo Gebra) to support 
studentsÕ mathematical problem solving and creative reasoning as a means 
for learning. To reach that goal, the four studies investigated how GeoGebra 
supports students reasoning and collaboration (study I), how students use 
GeoGebra to get feedback (study II), how students used the potential of 
GeoGebra, depending on whether they were solving guided or unguided 
tasks (study III), and finally, studentsÕ learning outcome depending on 
whether they were solving guided or unguided tasks (study IV). This chapter 
will discuss the ways in which the contributions from the four studies answer 
the research questions. The questions are: (RQ1) In what way(s) could a 
didactical situation be designed to enhance problem solving and reasoning, 
assisted by GeoGebra? and, (RQ2) In such a didactic situation, to what 
extent and in what ways do students reach the teaching goals (i.e. the 
teacher’s goals for students’ learning)?  



 

34 

7.1. The design of the didactical situation to engage students 
in reasoning and probl em solving and to enhance learning  
The didactical situation, which was designed for study I, was basically 
maintained through all the studies. The design propositions were (1) the 
students must construct the solution (Brousseau, 1997), (2) the task must in 
some way present a challenge for the students (Schoenfeld, 1985), and (3) 
the task may be solved in student collaboration and with the assistance of 
dynamic software (Roschelle & Teasly, 1995). In this discussion, the focus is 
on the unguided design used in all four studies. The structure of this chapter 
(fig. 8) follows the overall design for the research in this thesis.  

 

 
Figure 8  The structure of chapter 7 

7.1.1. What are the teaching goals for students’ learning in the 
didactic situation? 
 
The teaching goals for the didactical design were that students would 
develop problem-solving and reasoning competencies and build new 
mathematical knowledge. The latter is exemplified as learning the rule m1 x 
m2 = -1 and the studentsÕ ability to use the rule to solve problems. Problem-
solving competence is more than being able to apply a known procedure that 
solves a task. It is about being able to use individual mathematical 
knowledge, such as facts, routine algorithmic procedures, and non-routine 
algorithmic proc edures together with being able to choose and implement 
strategies to make progress in unfamiliar mathematical tasks. It is also 
important to have strategies to monitor and verify that the solution is 
moving forward (Schoenfeld, 1985). Furthermore, a goal for the didactic 
situation was that students would develop ability to do CMR (see 4.1.4.)  
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7.1.2. What activities should the students be involved in to reach 
the learning goals? 
To reach goals for the didactical design, the students needed to be engaged in 
activities like problem solving and reasoning. Problem solving is a means of 
learning mathematics, not an isolated part of mathematics education (NCTM 
standards, 2000). To do problem solving, students must frequently 
encounter situations where they need to formulate, grapple with, and solve 
problems, by constructing their own methods (Schoenfeld, 1985). Therefore, 
to reach the goal of developing studentsÕ problem-solving competence, 
students should be put in situations that engage them in solving tasks but do 
not include instructions on how to solve them. In other words, to develop 
problem-solving skills students need to actually solve problems. 
Correspondingly, to improve their ability to reason, students need to be 
engaged in reasoning. Since reasoning is an important part of problem 
solving, the students are likely to engage in reasoning when they are creating 
their methods.  
To create a method for solving a task, students must not only create 
hypotheses on how to solve it; they furthermore need to convince themselves 
that their hypotheses (solution methods) are moving the problem -solving 
process forward. During this process, the reasoning includes arguments to 
support the way that hypotheses for the new solution methods was 
generated, and the way that these hypotheses are to be verified or rejected. If 
these arguments are anchored in relevant mathematics (i.e. consider the 
relevant mathematical properties of the notions, objects, representations and 
relations in the task), they may create meaning for the student and this 
enhances learning. 

7.1.3. The components in the design of a didactic situation for 
students to engage in problem solving and CMR? 
When the students participate in the didactic situation, the instructions to 
the students will merely include frames and goals for the activity. 
Furthermore they will have support of the dynamic software (GeoGebra). 
The teacherÕs role is to, if necessary, support the students in how to use 
GeoGebra and encourage them to explain and justify solutions. It is also 
important that the students be given the responsibility to determine when a 
solution is reached. The studentsÕ activities must result in feedback from 
GeoGebra that they must assess as to whether it is useful. 

7.1.4. How to design a didactic situation for students to engage in 
problem solving and CMR? 
In the following, the first research question will be discussed using five 
claims based on the results of the four studies. The section concludes with 
some reflections concerning the difference between studentsÕ success in 
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solving the unguided task in studies I, II, and III as compared to the 
unguided task in study IV.  

7.1.4.1. Claims supporting design of the didactical situation 
Some of the results concerning students’ engagement in solving the guided 
and unguided task were expected and resonated with the intentions of the 
didactic situations. 

Claim: To make students engage in problem solving and CMR, the 
didactic situation should not provide students with a method to solve the 
given task. 

Support in results: The results of studies IÐIV show that all the students 
who solved the unguided task and managed to construct a solution engaged 
in problem solving and CMR. Furthermore, in studies III and IV, the results 
showed that students who solved the guided task following instructions that 
included a solution method were merely engaged in AR. 

Support in the literature: These results are not surprising (Schoenfeld, 
1985; Lithner, 2008). But they are still interesting because research often 
puts forward that features of dynamic software, like GeoGebra, enhance 
creativity and invite users to do problem solving and reasoning (e.g. 
Mariotti, 2000; Hohenwarter & Jones, 2007). The results of this thesis show 
that these claims are met if the task does not include solution methods. If the 
task included a solution method, students would not engage in problem 
solving and reasoning even though they used GeoGebra to solve the task. 
Thus, the design of tasks is still important.  
 
The mathematical content of tasks should be possible to visualize in the 
environment of GeoGebra 

 
Claim: When GeoGebra is introduced to support the students to engage in 

problem solving, it is important to design tasks to which students may 
benefit from GeoGebraÕs potential to visualize mathematical representations. 
For example, if the content of a task involves growth over time, it could be 
expressed as a graph in GeoGebra, and tools in GeoGebra may be used to 
examine it.  

Support in results: The results of study I show that students initiated their 
problem solving by planning their interactions with GeoGebra. In other 
words, before the students began to submit algebraic representations of 
linear functions, they discussed how they wanted the graphical 
representation to look. This can be interpreted as them translating the 
content of the task into the GeoGebra environment. In studies IÐIII the 
students were observed trying to predict how the graphical representation 
would look before submitting an algebraic expression of a linear function. In 
those predictions, they often searched for explanations by examining the 
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relationship between algebraic and graphical representation, the m-value 
affects slope, and the c-value significance for intersecting the y-axis.  

Support in the literature: According to Schoenfeld (1985), it is a 
shortcoming  of many inexperienced problem solvers that they do not take 
enough time to understand the goals and conditions of the task and they do 
not plan carefully enough. The above results show that GeoGebra is a 
support to thoroughly visualizin g concrete goals and facilitating the planning 
of the solution, which is part of problem -solving activities. One of the 
objections to problem-based teaching has been that students who are not 
instructed in how to solve task are not likely to succeed in solving them 
(Kirschner et al., 2006). On the other hand, being given a clear goal as to 
what to achieve might well guide students to implement successful strategies 
(Hmelo -Silver et al., 2007). The results of studies IÐIII support claim that 
students can implement successful strategies even though they must 
construct the solution methods. GeoGebra might contribute to that by 
providing an environment in which students may visualize mathematical 
content, and that the same environment includes tools to implement  the 
solution.  

 
To achieve a responsive milieu where students get instant feedback on their 
actions 

 
Claim: In order to include a feedback component in the didactic situation 

the task design should ÒinviteÓ students to use GeoGebra as a responsive part 
of the environment. The design of the task should guide into activities where 
students pose hypotheses, formulate input to GeoGebra as experiments to 
test their hypotheses, and use the output as feedback to verify or reject their 
hypotheses. This is important for CMR as a part of problem solving. For 
example, if the students are asked to formulate a rule, as in studies IIÐIV, 
there is a call to test for generality, which may mean students create 
experiments to verify or falsify suggestions of a rule.  

Support from results: Results from studies IÐIII showed that students 
used GeoGebra for exploration, verifying and falsifying their mathematical 
ideas, and solution methods. In study II it was observed that students who 
explicitly predicted the outcome from GeoGebra activities both elaborated on 
feedback, thereby extending their knowledge, and were more successful in 
solving the task compared to students who did not express predictions. 
Common to the results from all the studies was that planning of GeoGebra 
activities, including predictions of outcome and elaborating on feedback 
generated by software, seemed to be related to CMR. Furthermore, 
comparison with the alternative guided design shows that task design is 
important, while students solving the guided task d id not engage in 
investigating activities.  



 

38 

Support from the literature: In the literature, feedback from software is 
often described as immediate and closely connected to tasks (Arcavi & 
Hadas, 2000; Marrades & GutiŽrrez, 2000). That resonates well with t he 
results of the studies in this thesis in the sense that it seems that the students 
formulated specific inputs to GeoGebra aiming at generating information 
supporting the constructing of the solution. What also corresponded to 
earlier studies is that the solution was possible to construct stepwise in 
interaction with software, where the result of an activity generated 
information useful for creating the next supporting activity (Mariotti, 2000) , 
and students who predicted outcomes engaged in more efficient reasoning 
(Hollebrands, 2007). Brousseau suggests the environment, the milieu, will 
change because of studentsÕ activities. The change is possible to perceive as 
feedback. An example that could be observed in studies II and III occurred 
when the students had constructed two graphs that were not perpendicular. 
Then they changed the x-coefficient for one of the graphs to achieve 
perpendicularity, and finally they pressed the enter button and the graph 
changed accordingly. The adjusted graph constituted feedback on their 
actions and could be used to verify or falsify their idea of changing the x-
coefficient. Contributions from this thesis are concrete examples in which 
GeoGebra constitutes a central part of the milieu in offering feedback. That 
means that when students act on GeoGebra, the interface of GeoGebra will 
change according to the action, and students may use the change as 
feedback. What is important is that results from the studies have shown this 
is possible to do without knowing  solution methods  in  advance. 

 
The feature of GeoGebra that transforms a submitted representation of a 

mathematical object into one or more representations means GeoGebra’s 
constructing of these representations is not visible. That may be a reason 
for investigating relationships between different representations. This 
could be the case, for example, if knowledge of the relation between 
algebraic and linear representations is necessary to solve a task. 

  
Claim: In order to encourage students to examine relations between 

representations, the task should be designed so that students need this kind 
of information to solve the task.  

Support from results: In all four studies, students create graphical 
representations of linear functions through submitting algebraic expressions 
in GeoGebra. It was also clear that to succeed in constructing a solution, they 
had to use GeoGebra to investigate relations between algebraic and graphical 
representations of linear functions.  

In study II there was an example of students realizing it was not possible 
to create a perpendicular graph with a trial and error strategy. Instead they 
investigated the relationships between graphical and algebraic 
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representation. When they, through reasoning and concrete testing, 
understood the way the x-coefficient affects the graph they could move the 
solution forward. In other words, it is easy to submit an algebraic expression 
into GeoGebra and let GeoGebra take care of the transformation. But to 
create a graph by submitting the algebraic representation based on where 
you want it situated in the Cartesian plane, it is necessary to know the way in 
which the x-coefficient and constant term affect the graph. The results from 
studies IÐIV show that to solve the unguided tasks it was necessary to 
investigate the relation between algebraic and graphic representations of 
linear functions, while GeoGebraÕs construction of the graph was not visible. 

Support from the literature: Sedig & Sumner (2006) suggest interacting 
with dynamic software may be done by directly manipulating graphical 
representations and the algebraic representation constructed by software 
will change accordingly. Or, they suggest that it can be done through 
submitting the algebraic representation and letting the software transform 
the algebraic expression into a graph. Accordingly, in relation to the results 
of studies IÐIV, Sedig and Sumner claim that in the latter case, students 
must interpret why a graph appears in a certain position. In the former case, 
for example, if they use the drawing tools in GeoGebra studentsÕ motivation 
to investigate why a line appears where it does is not equally obvious.  

 
To encourage students to explain and justify the solution  
 
Claim: To bring students to successfully engage in problem solving and 

reasoning, the design should include appeal for them to explain and justify 
their solutions.  

Support from results: In study I, some students could not move the 
solution forward. The researcher had prepared interactions with questions 
like ÒTell what you have done?Ó and ÒWhat do you want to do?Ó That was in 
most cases sufficient for the students to resume engagement in CMR and 
problem solving. In study III, it was shown that students who solved the 
unguided task while constructing the solution continuously justified the 
solution on a pragmatic level, that is, they convinced themselves that the 
solution worked.  

Support from the literature: Posing questions to the students that ask 
them to explain and justify their ideas during the problem -solving process is 
described as one way of scaffolding students through their path to the 
solution (Hmelo -Silver et al. (2007). This kind of question may also help the 
students to clarify the goal of the task at hand. Justifying constructed 
solutions using arguments based on mathematics is furthermore described 
as central to engaging in CMR (Lithner, 2008). CMR is related to problem 
solving while problem solving is about constructing solutions to non -routine 
tasks and creating arguments to support the solution (Lithner, 2008). 
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Schoenfeld (1985) claims that students often have enough mathematical 
resources to solve non-routine tasks, but lack competencies in choosing and 
implementing solution strategies and to monitor and verify the solution is 
moving forward. That supports the importance of including inc entives for 
students to justify and explain solutions in the didactical design.  

7.1.4.2 Differences in success in solving unguided tasks 
This section discusses three possible causes for only a third of the students in 
study IV being successful in constructing a solution, when most of those in 
studies II and III were successful. The reasons could have been studentsÕ 
adaption to the conditions of the didactic situation, the availability of the 
researcher, and incitements to justify the solution, will be discu ssed. 

First, some differences between the studies may have affected the 
students. Those in studies IÐIII were working outside the classroom, one 
pair at the time and the researcher was close by. The students in study IV 
solved the tasks in the classroom with the whole class present. So, the fact 
that not more than one third of students managed to solve the task in study 
IV might partly be explained by the students in studies I ÐIII being observed 
by the researcher, were more likely to adapt to construct and justify the 
solution. Because it was obvious they were chosen to participate in an 
experiment, they were probably more motivated to understand what they 
were supposed to do.  

Second, because the researcher could readily monitor and support the 
students in studies IÐIII, it is reasonable to assume that these students were 
more motivated, more aware of the intentions of the task, and put in more 
effort compared to students in study IV.  

Third, in study II, the task at hand asked the students to justify and 
explain their solution method, and in study III the researcher asked these 
questions after the session. Hence, it is reasonable to assume that the 
students in studies IÐIII had more opportunities to explain and justify their 
ideas, an activity that is suggested to be beneficial to supporting studentsÕ 
problem solving (Hmelo -Silver et al. 2007). These circumstances could add 
to the understanding of why students in studies I ÐIII were more successful. 
Another possible explanation, which should be further investig ated, is that 
many students in study IV did not tell the researcher when they did not know 
how to move the solution forward and so did not receive support. 

Support from literature: All interventions associated with studies I ÐIV 
were one-time experiments. I t is reasonable to assume that the students 
were affected by their everyday experiences from mathematics teaching. 
Brousseau (1997) suggests that the way students engage in problem solving 
is an agreement based on a long-term teacherÐstudent interaction. I n 
BrousseauÕs vocabulary, a didactical contract is developed. The contract sets 
out each partyÕs expectations of each other during problem solving. The 
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contract becomes visible when students need help. One part of the didactical 
design developed in this thesis is that students cannot expect to be provided 
with solution methods. Instead, they are supposed to construct a solution 
method. Therefore, the expectations of students was that when they do not 
know how to move the solution forward they will explain t he way they are 
thinking, and the expectation of the teachers is that they will ask students to 
explain the way they are thinking. A suggestion from the results of studies IÐ
IV is that introducing the didactical design in whole class teaching should be 
done over time. If students are used to teaching in which they are provided 
with solution methods and given the answers, they may not immediately 
agree to engage in the didactical design. This may particularly be the case 
when they are supposed to construct the solution, determine when they have 
reached a solution, and to justify the solution.  

7.1.5. Achieving the teaching goals of the didactic situation to 
develop problem-solving and reasoning competencies and learn 
included mathematical knowledge 
The concept of learning is very complex, and researchers mostly look for 
signs that could be interpreted as traces of learning. In this thesis, studentsÕ 
justifications including their arguments based on mathematical relations and 
properties are supposed to indicate a better understanding is a sign of 
learning. The ability to use the mathematic content included in tasks in other 
contexts is also a sign of learning. Furthermore, there are examples from the 
interventions of situations that could be interpreted as exampl es of 
BrousseauÕs notion creating meaning of mathematics. Assessing the 
development of problem-solving and reasoning competence is even more 
complex. Schoenfeld (1985) claims that problem-solving competence is not 
possible to teach by instruction. Instead students need to solve non-routine 
tasks to acquire it. It is reasonable that it also applies to reasoning 
competence. That means that development of problem solving and reasoning 
competence should be assessed over time, which was not possible in the 
studies for this thesis.  

Acquire mathematical knowledge by engaging in activities like problem 
solving and reasoning  

Claim: Students who manage to construct a solution when solving an 
unguided task will learn the mathematical knowledge included better than 
students who construct the solution when solving the guided task. 

Support in results: Study III showed that all the students who managed to 
solve the unguided task engaged in problem solving and CMR. Students 
solving the guided task in study III, on the othe r hand, merely followed the 
instructions provided on how to solve the task. The same guided and 
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unguided tasks were used in study IV, and it is reasonable to assume that the 
studentsÕ way of engaging in problem solving and reasoning, depending on 
whether they solved the guided or unguided task, would correspond with 
study III. Furthermore, the results of study IV showed that students who 
managed to construct the rule when practicing on the unguided task, a week 
later, on the post-test significantly outperfo rmed those who managed to 
construct the rule while practicing on the guided task. The post-test 
consisted of tasks that were possible to solve using the mathematical 
knowledge included in both the guided and unguided tasks. Traces of 
learning better from s olving unguided tasks were observed in study III as 
well. Study III showed that students who successfully solved the unguided 
task developed their justifications for the solutions from the pragmatic (that 
the solution works) into the conceptual (truth is c laimed with support of 
properties of linear functions), and therefore understood their solution with 
respect to included mathematical knowledge better. So, the activities the 
didactical design strived for were implemented and these activities were 
shown to have enhanced studentsÕ learning outcome. 

Support in literature: Tasks with direct instructions including how to 
solve a task has been shown to lead to superficial understanding and poor 
memorization (Lee & Andersson, 2013). That resonates well with the results 
from study IV regarding students solving the guided task. An explanation for 
the better results in the post-test for students who managed to construct a 
solution when solving the unguided task may be found in BrousseauÕs (1997) 
somewhat vague claim that learning only takes place when students must 
create meaning of the included mathematics during construction of the 
solution. More concretely, making meaning of included mathematics may 
mean investigating the properties of and relations between representations 
of mathematical objects in order to use them in constructing the solution. 
That is also in line with the characteristics of CMR (Lithner, 2008).  

Develop problem-solving competence and reasoning ability by engaging 
in problem solving and reasoning 

Claim: Extended engagement in didactical situations similar to the ones 
used in this study is likely beneficial for the studentsÕ development of 
reasoning and problem-solving competencies. 

Support from results: To substantially develop problem-solving and 
reasoning competencies takes time, much longer than the few hours that 
students in the studies had. What can be said from the results of studies IÐIV 
is that the students who were working with the unguided task were actually 
engaged in both problem solving and reasoning. But to investigate whether 
the didactic situation contributed to development of competencies would 
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require several sessions in which students were working with tasks in the 
specified didactic situation.  

Support from literature: There is research supporting the idea that 
engagement in tasks including problem solving will develop general skills of 
problem solving and reasoning (Brousseau, 1997; Schoenfeld, 1992; Kapur, 
2016). It is also often claimed that instructions on how to solve non -rout ine 
tasks are not efficient for developing mathematical competencies 
(Schoenfeld, 1985; Brousseau, 1997; Lithner, 2008). Instead, tasks should 
involve engaging in constructing solution methods. The results of the studies 
in this thesis show that the didact ical situation engages students in problem 
solving and reasoning and therefore has potential to promote development 
of problem solving and reasoning competence.  
 

8 Concluding reflections  

The final chapter concerns the quality of the research in this thesis. The 
discussion is based on SchoenfeldÕs (2007) suggestions for criteria for 
evaluating the quality of research: trustworthiness Ð why should one believe 
what the author says; generality Ð what situations and contexts does the 
research really apply to; and importance Ð why should one care?  

8.1. Trustworthiness  
When combining the results from the four studies two main claims appear. 
The first (1) is that students who solved tasks without instructions on how to 
implement a solution method but with instruct ions that informed the goal 
and fames for the activity were capable, with the assistance of GeoGebra, of 
constructing and justifying a solution method. The second (2) is that 
students who managed to construct a solution method have been shown to 
understand the solution and to learn better compared to students who 
implemented a solution method included in task instructions. The warrants 
for (1) are: the sources are original data that were captured in a didactic 
situation where the tasks did not include solut ion methods and it was 
possible to ensure that the participating students did not know a solution 
method in advance. The supporting theories and methods for data collection 
and analysis are presented in each study and open to criticism. Concerning 
(2), studies III and IV included comparisons with students who solved tasks 
with instructions, including how to implement solution methods. For (1) and 
(2), both supporting and not supporting research references have been 
presented.  
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8.2. Generality  
The context for studies IÐIV was one-time experiments under specified 
conditions, which was not in line with the participating studentsÕ everyday 
mathematics lessons. The results from each one could not be claimed as 
generalizable. The studentsÕ backgrounds, habitude to problem solving, and 
use of technological tools, and so on, may have affected the results in 
different directions. In studies I ÐIII, the most obvious difference from the 
context of everyday mathematics lessons was that the tasks were solved in a 
room separate from the classroom, two students at a time. In study IV, the 
context was the whole class, but the design of task, the instructions, and 
GeoGebra were not part of their regular mathematics lessons. 

 At the same time, there were similarities to regular teaching. In Swedish 
schools, students often work in pairs, and solving problems with linear 
functions is a part of the curriculum. Even though the participating students 
were not skilled GeoGebra users, they are familiar with technological tools 
such as calculators and with different computer applications. The task 
format of the activity was also the most common in mathematical teaching. 
What was less common was that the students were supposed to determine 
for themselves when they had reached a solution. Usually the solution would 
be announced within the lesson, both for those who had reached the solution 
and for those who had not. 

The sample for the studies was broad. In total, 233 students participated. 
They ranged from 13Ð17 years old; 40 were from years 7Ð9 at compulsory 
school, which means they had not chosen their focus for their education. The 
students from upper secondary school were from three different 
programmes: science, technological, and social science. All those 
programmes are theoretical and the science and technological programmes 
have the most focus on mathematics. Whole classes were asked to 
participate. In cases where the whole class did not participate, students were 
chosen randomly. What is positive is that the sample is representative in that 
the students came from different parts of Sweden; there were schools located 
in major cities and in the countryside; and students had different social 
background. What is less positive for representativeness is that there was a 
bias toward students from the technological and science programmes. 

Even though the results from each study are not possible to generalize, 
there were observations of behaviours that recurred in every study. For 
example, students engaged in problem solving; to solve the unguided task 
engagement in CMR was necessary; successful students included predictions 
in their planning of GeoGebra activities; and those who predicted outcomes 
elaborated on the feedback from GeoGebra. What indicates generalizability 
is that these behaviours applied to all successful students regardless of age or 
schools. In studies IÐIII most students successfully solved the tasks and they 
took similar paths to reach the solutions, and in study III those who solved 
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the unguided task were found to have understood their solution well. This 
was not replicated in study IV, where two thirds of students who solved the 
unguided task failed and consequently scored low on the post-test. But on 
the other hand, the one third who managed to solve the unguided task 
outperf ormed the other group on the post-test.  

The overall result from this thesis is both revealing and leaves some 
questions. It is reasonable to assume that it is possible to leave students to 
construct a solution and that those who are successful seem to learn better 
compared to those who solved guided tasks that included instructions on 
how to construct the solution. What must be further investigated is how to 
support students, like those in study IV, who failed to construct a solution to 
the unguided task. What must also be further investigated is whether 
students who solve an unguided task like that in the experimental situation 
used in study IÐIII also achieve the mathematics teaching goals. 

8.3. Importance  
The studies investigated two areas of research that have been described as 
important: the need (1) to develop teaching approaches to enhance studentsÕ 
mathematics skills and competencies like problem solving and reasoning 
rather and (2) to develop teaching that takes advantage of the potential of 
software applications for mathematics education. This thesis contributes 
with concrete examples of how a didactic situation that includes dynamic 
software could be designed and the way that such a didactic situation 
promotes problem solving and reasoning and the learning of specific 
mathematical content.  
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Tackord  
NŠr allt fler deadlines Šr passerade bšrjar det bli lŠge att fundera pŒ hur det 
kunde bli sŒhŠr. Och sŒ hŠr var det: Efter nŠrmare 20 Œrs lŠrargŠrning 
cyklade jag en dag pŒ hšsten 2011 till jobbet dŠr undervisning , 
utvecklingssamtal, och arbetslagslagskonferens vŠntade. PŒ skolan dŠr jag 
jobbade fanns en dusch och vi var tre stycken som alltid fšrsškte komma 
fšrst eftersom duschrummet  saknade ventilation och den som kom sist av 
oss inte ens behšvde slŒ pŒ kranarna fšr att bli genomblšt , inklusive de 
klŠder som man av anstŠndighetsskŠl var tvungen att ta pŒ sig inne i 
duschrummet . Just dŠrfšr var jag denna hšstdag 2011 extra tidig och hann 
sŠtta mig vid datorn en stund innan skoldagen kickade igŒng pŒ allvar. PŒ en 
tidningssajt fanns en artikel om den statliga satsningen pŒ att forskarutbilda 
lŠrare vilket ledde till att jag googlade fram tre intressanta annonser och 
innan dagen var slut hade jag sškt alla tre. Fšre jul var det klart att jag skulle 
bšrja min  forskarutbildning  vid UmeŒ Universitet i januari 2012. I skenet av 
vad som hŠnt sedan dess sŒ var det om inte ett vŠl šverlagt beslut i alla fall 
ett bra beslut att en hšstdag 2011 cykla ivŠg tidigare Šn vanligt och trampa pŒ 
lite extra fšr att hinna fšre  mina kollegor till ett duschrum utan ventilation.  

VŠl i UmeŒ har det nog inte undgŒtt nŒgon hur fšrtrŠffligt jag trivts med 
livet pŒ NMD och UFM. Tack alla! Under Œren har doktorandkollegiet varit 
stort och omvŠxlande med de gemensamma nŠmnarna engagemang, 
intresse, och hjŠlpsamhet. Extra stor samhšrighet kŠnner jag till Lotta och 
Helena som bšrjade samtidigt som mig, Mathias som fšrutom en skŠrpt 
diskussionspartner kan utreda finesser och fšrdelar med gitarrer och 
tillhšrande utrustning, och Johan S som v arit en fantastisk inspirationskŠlla 
fšr slutfšrandet av kappan. En viktig del fšr avhandlingsarbetet har varit 
deltagandet i forskningsprojektet LICR. Vissa delar av avhandlingen skulle 
inte varit mšjlig a utan det engagerade expertstšd som stŒtt att finna inom 
gruppen. Ett  extra stort tack till Bert fšr generšs support vid arbetet med 4:e 
artikeln.  

De som har stšrst del i att jag lyckats ta mig hela vŠgen fram Šr mina 
handledare Carina och Johan. Jag tror bŒde ni och andra fšrstŒtt hur glad 
och nšjd jag Šr šver hur vŠl allting har fungerat. Professionaliteten och 
kunnigheten  hos er behšver nog inte utredas av mig eftersom den Šr allmŠnt 
kŠnd. Men jag vill ocksŒ framhŒlla hur trevligt vi har haft det genom Œren. 
Nog sŒ viktigt vid samarbete som strŠcker sig šver 5 Œr (och fšrhoppningsvis 
blir det fler framšver ! )           

Under doktorandtiden har jag inte bara varit vid UmeŒ universitet. Jag 
har Šven undervisat pŒ Hšgskolan Dalarna dŠr jag lŒtit mig bli smittad av 
mina kollegors arbetsglŠdje och upplevt stort stšd. Ni Šr alldeles fšr mŒnga 
fšr att rŠknas upp och eftersom ni Šr mina kollegor vill jag inte riskera att 
uppfattas som att jag rangordnar min uppskattning sŒ fŒr ni sjŠlva rŠkna in 
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er hŠr. Dock vill jag nŠmna tre namn som har haft betydelse fšr 
avhandlingsarbetet. Fšrst Eva lyckades fŒ mig att šverhuvudtaget tŠnka 
tanken att jag skulle kunna forskarutbilda mig, sedan Anna som genom att 
ligga steget fšr mig i doktorerandet varit en inspirationskŠlla och draghjŠlp, 
och till sist Jeff som varit ovŠrderli g i situationer nŠr mina  kunskaper i 
engelska inte rŠckt till .  

Redan frŒn bšrjan har min ambition varit att studierna i alla fall pŒ nŒgot 
vis skulle ha med vardaglig undervisning i matematik att gšra. DŒ har det 
varit angelŠget att ha kontakt med kunniga och engagerade lŠrare. 
OvŠrderliga kontakter nŠr det handlar om att švervŠga anvŠndbarheten av 
det jag undersškt har varit Fredrik och hans kollegor pŒ Lugnetskolan, 
Cecilia pŒ Carlsons skola, och Denice pŒ HolstagŒrdsskolan.  

Finansiering Šr en fšrutsŠttning fšr att kunna utbilda sig i fem Œr. Tack 
lŠrarhšgskolan i UmeŒ och Falu Kommun! Tack ocksŒ till forskarskolorna 
USE och DME som bŒda givit en solid teoretiskt grund och ett inspirerande 
nŠtverk av medstuderande. 

Som sig bšr kommer tackordet att landa i det som Šr mig allra nŠrmast. 
Doktorandtiden har inneburit stora fšrŠndringar fšr tillvaron bland alla 
familjemedlemmar. Jag har varit borta hemifrŒn ofta och ibland lŠnge och 
en kanske oproportionerligt stor del av de samtalsŠmnen jag tar upp har 
handlat om teorier kring matematiklŠrande. Att det fungerat tar jag som ett 
bevis pŒ att vŒr familj Šr tillŒtande och uppmuntrande och glŠds šver 
varandras framgŒngar. Om jag tar det frŒn bšrjan har jag en mamma som Šr 
ett fšredšme nŠr det handlar om instŠllning  till arbete. Arbete blir en glŠdje 
nŠr man tillŒter sig att gŒ in fšr det, under fšrutsŠttning att man emellanŒt 
tillŒter sig att ha distans till det. Mina och Lenas barn, Elina, Joel och hans 
Amanda, Emil och hans Sandra, och Evylinn Šr alla sjŠlvstŠndiga, 
ansvarstagande, och glada medmŠnniskor. Sigge 3 Œr kan gšra och sŠga vad 
han vill och just dŠrfšr vara en glŠdjespridare. Och sŒ Šr vi framme vid den 
som jag vill tacka mest, min livskamrat, stšttepelare, delare av med och 
motgŒngar, min Šlskade fru Lena.   
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