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Abstract—This paper considers the jointly optimal pilot and ~systems. Due to the interference from other users the power
data power allocation in single-cell uplink massive multige-input-  control is usually hard to solve optimally, in particular NP
multiple-output (MIMO) systems. Using the spectral efficiecy p5rdness was proven in [17] for the objective of maximizing

(SE) as performance metric and setting a total energy budget L :
per coherence interval, the power control is formulated as the sum performance in single-antenna wireless netwovks, e

optimization problems for two different objective functions: the With single-carrier transmission. For practical use asaable
weighted minimum SE among the users and the weighted sum SE. approach is to develop suboptimal algorithms with affotdab

A closed form solution for the optimal length of the pilot seqience  complexity while achieving an acceptable performance, as
is derived. The optimal power control policy for the former done for example in [18].

problem is found by solving a simple equation with a single c d lin sinale- ¢ i
variable. Utilizing the special structure arising from imperfect ompared to power control in single-antenna systems, pow
channel estimation, a convex reformulation is found to sole the ~€r control in massive MIMO networks is a relatively new tapic
latter problem to global optimality in polynomial time. The gain  Accurate channel estimates are needed at the BS for carry-
of the optimal joint power control is theoretically justified, and ing out coherent linear processing, e.g. uplink detectiod a

is proved to be large in the low SNR regime. Simulation result downlink precoding. Due to the large number of antennas in

also show the advantage of optimizing the power control over . . .
both pilot and data power, as compared to the cases of using M@ssive MIMO the instantaneous channel knowledge, which

full power and of only optimizing the data powers as done in IS commonly assumed to be known perfectly in the power

previous work. control literature, is hard to obtain perfectly. The liten@ on
Index Terms—massive MIMO, power control, power alloca- PoOwer control for multi-user MIMO, and even jointly with
tion, convex optimization optimal beamformer design, see for example [19], [20] and

the references therein, did not consider the channel esima
l. INTRODUCTION error explicitly a.nd the design criterion was basec! on SE.
L We want to provide power control schemes that optimize the

A. Background and Motivation ergodic SE based on only the large-scale fading to simplify

Massive MIMO communication systems have recently agystem design, and take into account the channel estimation
tracted a lot of attention [1]-[3]. The idea of massive MIMGCerrors. Therefore in this work we develop a new framework for
is to use a large amount of antennas at the base stafimwer control that matches practical systems (i.e., emySéi
(BS) to serve multiple users in the same time and frequengid imperfect CSI), as the methods developed in the litezatu
resource block. The ability to increase both SE and energinnot be applied directly for massive MIMO systems.
efficiency makes it one of the key technologies for the 5G
cellular networks. The performance analysis of massive MIM o
is of vast importance and has been done in [4], [5] fd?- Related Work and Our Contributions
single-cell systems and in [6], [7] for multi-cell systems. Uplink pilots are used to estimate the uplink channels. One
However the analysis has been done with the assumptionnefeds to take into account both the pilot power and payload
equal or arbitrary fixed power allocation among the usensower, and hence optimal power control becomes even harder
Several previous papers [8]-[16] have dealt with powerm@dnt in massive MIMO compared to optimizing data power only in
and provided initial results. (For relation to our work, sethe single-antenna systems. Several work has tried toeackl
below.) In order to harvest all the benefits brought by théis challenging problem. In [8] the authors optimize théada
massive antenna arrays and guarantee certain uplink sysggswer for providing uniform service in multi-cell massive
performance, power control among the users is necessasy. TMIMO systems. In [10] and [16] the authors optimize the
can be done by varying the power of different users to inereasitio between pilot and data power to maximize the sum
the sum SE, provide services with certain fairness, or lgalarSE, however each user is assumed to use the same ratio.
between these goals. In [11] the sum data power is minimized subject to target

Power control in wireless networks has been an importagignal to interference plus noise ratio (SINR) constrafots
problem for decades, dating back to single-antenna waelgaulti-cell massive MIMO systems. In [9] power control is

This work was supported by ELLIIT, the Linkoping UnivessiCenter for done to minimize the uplink power Con_su_mptlon u.nder target
Industrial Information Technology (CENIIT), and the EU FRassive MIMO SINR constraints where the authors optimize the pilot arte da
for Efficient Transmission (MAMMOET) project. power iteratively to achieve local optima. In [13] data powe



control is done to maximize various objectives in multitcework.

massive MIMO systems with an iterative approach which only The rest of the paper is organized as follows. Section Il
achieve local optimal solutions. In [14] joint pilot and dat presents the system model and all the necessary notations.
power control is done to maximize the energy efficiency. THeower bounds on the uplink capacity are presented which
optimization is done with an approximation of the interfesze are used to define the problem formulations for optimal
term which therefore does not give the optimal solution. Ipower control. In Section Il we obtain the optimal pilot
the conference version of this work [12] we provided a GRngth for both problem formulations. Section IV derives th
formulation for joint pilot and data power control in singlesolution approaches for solving the power control problems
cell massive MIMO systems with MRC. Then it was rewith weighted max-min SE. In Section V the weighted sum SE
derived in [15] to minimize the total power consumption vehil formulation is studied. Section VI discusses the extensibn
meeting target uplink and downlink SINR for the users. Wehe methodology developed in this paper to correlated adlann
are not aware of any work except [12] and [15] that find thiading models. In Section VII simulation results and disios
jointly global optimal pilot and payload data power for mass of the results are presented. Finally in Section VIII we draw
MIMO. The previous work either focus on power minimizatiorsome conclusions.

with SINR constraints or only achieve local optima. The ptes

target SINR constraints are hard to obtain in practice ard th Il. SYSTEM MODEL

local optima does not provide the complete information @bou
how much can we gain by power control. In this work w .
address this by providing glrznbally optimal joint power fo antennas at the BS anlil single-antenna users. The

various objectives, and the questions we want to answer afsers are assigneflt orthogona! pilot sequences of length
7, for K < 7, < T, whereT is the number of symbols

1) Is power control on the pilots needed for massive MIMG, the coherence interval in which the channels are assumed
systems? If the answer is yes, how much can we gg{fi pe constant. The channels are modeled to be independent
from jointly optimizing the pilot power and data POWETrRayleigh fading as this matches the non-line-of-sight imass
as compared to always using equal power allocation RfiMo channel measurement results reported in [21]. The flat
just power control over the data power? __fading channel matrix between the BS and the users is denoted

2) In which scenarios can we gain the most from J0INdy e CM*K | where thekt™ column represents the channel

optimization? , _ response to user and has the distribution
3) What intuition can be obtained from the optimal power

control? This includes the pilot length, and how the pilot gr ~CN(0,8:)), k=1,2,..., K, Q)

and payload power depend on the estimation quality and . , . : . .
signal to noise ratio (SNR). W(?uch is a circularly symmetric complex Gaussian random

) ) ) _vector. The variancg, > 0 represents the large-scale fading
In this paper we provide answers to these questions in g ding path loss and shadowing, and is normalized by the
single-cell uplink scenario with linear operation incladi ngise variance at the BS to simplify the notation. The large-
maximum ratio combining (MRC) and zero-forcing (ZF)gcale fading coefficients are assumed to be known at the BS as
The single-cell scenario is considered here to gain SOMRy are varying slowly (in the scale of thousands of cohezen
initial in_sights_ to the problem and the challenging extensi intervals) and can be easily estimated. The power control
to multi-cell is left for future work. Note that there areyqnosed in this work only depends on the large-scale fading
important scenarios when single-cell massive MIMO systemigich makes it feasible to optimize the power control online
can be deployed, e.g. stadiums and rural wireless broadbang, cach coherence interval, usertransmits its orthogonal
access. We formulate and solve the optimization problerﬁﬁot sequence with powep’ to enable channel estimation
and compare the results with simple heuristic power contrgy e BS. We assume tﬁ)at minimum mean-squared error
policies. Two commonly used performance objectives, ngmel1\SE) channel estimation is carried out at the BS to obtain
weighted max-min SE and weighted sum SE optimization, afigs small-scale coefficients. This gives an MMSE estimate of

Consider an uplink single-cell massive MIMO systems with

investigated. Our contributions are the following: the channel vector from uséras
1) For the weighted max-min SE formulation, a semi- -
closed form solution is obtained by solving a simple . ToPp Ok ( - k) @
equation with a single variable. 9k = T 75 " TpPp9k T Mp

2) For the weighted sum SE formulation, which was . - ) _
proved to be NP-hard in general wireless networks, Yéheren;, ~ C'N(0,I) accounts for the additive noise during
transformed into a convex form in the massive Mimdhe training interval. During the payload data transmissio

setup where efficient polynomial time algorithms can bi@terval, the BS receive the signal

applied to find the global optimum. K

3) Both theoretical and numerical results are presented to y = 2 gi\/Pksk + 3)
show the gains of the new framework for joint pilot and k=1
data power control. where s, is the zero mean and unit variance Gaussian in-

The existing literature on power control is summarized iformation symbol from usek and n ~ CN(0,I) repre-
Table |, the ones marked with are the contributions in this sents the noise during the data transmission. The channel



TABLE |
EXISTING METHODS FORPOWER CONTROL PROBLEM

Problems Massive MIMO (data) Massive MIMO (data+pilot) Multiuser MIMO (perfect CSI)
Max-min (MRC) | closed form [8 *semi-closed form (Theorem 2) convex [20]

Max-min (ZF) closed form [8 *semi-closed form (Theorem 2) full power

Sum (MRC) *virtual water-filling (Algorithm 1) | *convex (Theorem 6) NP-hard [17]

Sum (ZF) *virtual water-filling (Algorithm 1) | *convex (Corollary 1) full power

estimates are used for MRC or ZF detection of the payloadhere pilot and payload powers are arbitrary,
which corresponds to multiplying the received siggalvith &

G" = [g1,...,gx]" or (G G)~1G¥ to detect the symbols SINR;, — %
s1,...,sk. The power control methodologies derived in this L+ 300, Bipy
paper can be applied jointly to each subcarrier in an orthabo
frequency division multiplexing (OFDM) systems. With theandy;, =
channel hardening effect offered by massive MIMO, channel
variations in different subcarriers can be neglected amd {]
SE in every subcarrier will mainly depend on the large-sca
fading. Therefore the whole spectrum can be allocated temma 2. The capacity of usek with ZF detection is lower
every user and the same power control can be applied deunded by the achievable ergodic SE

all subcarriers. To make a fair comparison with the scheme -

with equal power allocation in which each user gives the same Ry = (1 - ?p) logy (1 + SINRy,) (7)
power to pilot and data, as done in [4] and most other previous ) )

work, we impose the following constraint on the total traitsmWhere pilot and payload powers are arbitrary,

(6)

k
TpPyp ﬁg
1+7—pl)g Bk "

For ZF, an achievable ergodic SE of ugeis given by the
gllowing lemma.

energy over a coherence interval: M — K)pky,
Tpper(Tpr)pd <Fg, k=1,....K (4) 1+Zj=1pd(ﬁj—7j)
where Ej, is the total energy budget for usérwithin one 4 ;= P33 M > K needs to be satisfied for ZF
G o=

1+7,p3 85

coherence interval. In previous work® and p* have been
P K, Pd detector to work.

optimized separately or often not optimized at all in whielse
the massive MIMO ability to provide high SE for each user The proofs of Lemmas 1 and 2 can be obtained by adding
cannot be fully harvested. Therefore we consider the sienagorresponding indices for different users’ pilot power et
where each user can choose freely how to allocate its enepygofs of [6]. Note that these achievable rates are valicfyr
budget on the pilots and payload. In [7], [J@ andp’ are set number of antennas at the BS. However, they are only close
equal for every user. The work [8], [11], [13] optimized tha&o the capacity when there is substantial channel hardening
payload power to maximize the minimum throughput, whictvhich is the case whei/ is large, i.e. in the massive MIMO
corresponds to fixingfﬁ for every user and optimizing only regime.
overpk. The work [22] adopted inverse power control for the These achievable SEs are the performance metric commonly
pilot power, which corresponds to settim@ = C/f, with a used in the massive MIMO literature. Therefore it is used
normalization constant’ and the data power’; are set to be throughout the paper, whers, p’; and p% are the variables
equal for all users. These previous work can all be includeal be optimized (fork = 1,..., K). The optimization can be
in our framework by setting different variables to be consta done at the BS, which can then inform the users about the
Therefore our framework of power control is the most generpilot length, the amount of power to be spent on pilots, and
so far. the amount of power to be spent on payload data. The aim
is to maximize a given utility functio® (R, ..., Rx) where
A. Achievable SE With Linear Detection U(-) can be any functio_n that is .monotonically increasing in
) . ) ) ~every argument. The utility function characterizes thefquer

Since the exact ergodic capacity of the uplink multiusghance and fairness that we provide to the users. Examples
channels W_lth channel uncertainty is unknown, lower boungg commonly used utility functions are the max-min fairness
on the achievable SE are often adopted as the performaggg, performance, and proportional fairness [20]. The gener

metric in the massive MIMO literature. Here we preserﬁromem we address for both MRC and ZF is:
lower bounds on the capacity for arbitrary power controle Th

achievable SE for usér using MRC is given by the following maximize U (R, ..., Rk)
lemma. mo,{pE}{pk}

subject to  ,pk + (T — 7,)ph < B, Vk, )
py = 0,p5 =0, Vk,
K<7m,<T.

Lemma 1. The capacity of uset with MRC detection is lower
bounded by the achievable ergodic SE

T,
Ry, = (1 - %) log,(1 + SINRy,) (5)



IIl. OPTIMAL PILOT LENGTH A. Max-Min for MRC

In this section we derive the optimal length of the pilot With MRC, the power control problem becomes

sequences in (9) in closed form. First we provide the foliayvi
lemma: maximize min — ——“——
pph 0§}k 14350, Bipy

subject to 7,pk + (T — 7,)pl < B, Vk

wp Mphe
Lemma 3. For any monotonically increasing utility function (11)
with MRC or ZF detection, the energy constra} is satisfied . .
with equality for every user at the optimal solution, i.e., pp = 0,pq = 0,Vk.

1) Geometric Program FormulationUsing the epigraph
form of (11) we have the following equivalent problem for-

at the optimal point of(9). mulation:

Tpp];"‘(T_Tp)pS:Ek, k=1,....K (10)

Proof. We prove this by contradiction. The SINRs in (6) and {2;?7)&?}'72? A

(8) for MRC and ZF are monotonically increasingyjf) for

H k k Q2 >
every usetk, and independent of the other users’ pilot powers. subject to wy, Mpgmppy i =

Suppose some users do not use the full energy budget in the A1 K j &
optimal power allocation, they can each increase theirt pilo (1+ 2 Bipg + TpPyBr
power to improve their own SINR without lowering any other =1 (12)

user’'s SINR. Therefore we create a solution which is better
than or equal to the optimal one, which is a contradiction to
our assumption. Therefore the energy constraint is satisfie
with equality. O

K
+ Tppﬁﬂk 2 Biph), Yk
j=1
TppI; + (T — 7,)p% < By, Vk
py = 0,pf = 0,Vk.
Then we state the following theorem which gives the

optimal length of training interval in closed form. This problem is non-convex as it is formulated here, how-

ever we recognize it as a geometric program (GP). The GP
Theorem 1. For any monotonically increasing utility functionformulation has been considered in the conference version

U(Ri,...,Rk), the problem(9) has7, = K at the optimal of this paper [12]. Since we next present a new semi-closed
solution. form solution with much lower complexity, the GP details are
Proof. The proof can be found in Appendix A. O omitted here and we refer the interested readers to [12].

2) Explicit Solution: Next we develop a semi-closed form

Using Theorem 1, we can reduce the number of variablg@lution to the max-min fairness problem. Before we present
involved in (9) and this enables us to find the optimal sohsio "€ solution, we need the following lemma:
for certain Utlllty functions in the f0||0Wing sections. ¢d Lemma 4. At the Opt|ma| point, a”wkpgfyk are equaL i_e_,
from Theorem 1 we know that the optimal training perigd ,
is equal to the number of users being served, and is the same WPk = wip, Y i k=1,... K. (13)
for every user. Therefore there is no need for assigning pi

sequences of different lengths to different users, Il9roof. First we need the key observation that at the optimal

solution, all weighted SINRare equal. We prove this by con-

tradiction. Assume that at the optimal solution, there ieast

IV. JOINT POWER CONTROL OFPILOTS AND PAYLOAD TO  one userk that has a higher weighted SINR than the others.
MAXIMIZE WEIGHTED MINIMUM SE Denote the minimum weighted SINR at the optimal solution

In this section we solve the power control problem (9) fof?s SINR:. We can then construct a new solution by decreasing
P P k by 6 > 1 while maintaining thatv; SINR;, > SINR*. Since

the class of max-min fairness problem. The max-min fairnes$ . . . ; L
. : . . W, SINR;, is a continuous increasing function j§, we can
problem is selected to provide the same quality-of-sertace : . , .
always find sucld > 1. Keeping the other users’ powers fixed,

all users in the cell. The two cases with MRC and ZF will beve have increased all other users’ weighted SINRs. Then we

di;cussed s_epar_ately since_the SINR_ expressions are_eu'llerh vew;SINR; > SINR*, Vj, hence we constructed a solution
W't.h max-min falrnes_s we am _at SErving every user W't.h equﬁ‘?at is jbetterjthan the o;JtimaI solution, which is a conttdn
weighted SE according to their priorities and make this Gahfo the initial assumption. Therefore at the optimal sohutid

as large as possible. We chod$éR;, ..., Rx) = min Ry weighted SINR are equal, and we have

with Ry = (1 — 22)logy(1 + wy,SINR;) wherew;, > 0 are
weighting factors to prioritize different users and enalseto
achieve any point on the Pareto boundary of the achievabl@xSINRk = 1+35 B =SINRVE=1,.... K, (14)
rate region(Ry, ..., Rx) by varying the weights [23]. It is g=1737d

trivial to extend Theorem 1 to this case and prove that tlehere SINR is the common weighted SINR for every user.
optimal length of training equal t&. Since(1—Z2)log,(1+ We observe that the denominator is the same for everyiser
wiSINRy) is monotonically increasing inv;SINRy, it is Therefore the numerator of (14) is the same forkalwhich
equivalent to choose objective asing wy SINR. leads to (13). O

wi Mpky, —



We callwypkvy, the weighted receive signal powei(SP,). Proof. First we make the change of variabje= 1/ in (18),
Then we want to find th@§ that satisfies Lemma 3 for anythen we have the following problem:
given value ofr = wypk~x, which is provided in the following o no
proposition: minimize y + AT—K) Zk: Br—

Proposition 1. For any given value of the weighted 202 2 — o EENTERY
SP, wipky, = =z, the optimalp® is given in (15) on top 2k \/E’fﬂky 2T = K) (BB +2)50 + (T = KP(50)

of next page. Whe(il5) is not real-valued, then such $is 2(T - K)
not attainable by any feasible power allocation.

(20)
The first term is linear, thus the objective is convex if thet la
Proof. Making use of Lemma 3 and Theorem 1, we have titerm, which has the fornf(y) = 1/ay? + by + ¢ is concave.

following equation: This is verified by taking the second derivative fify) which
gives ,
k k\ 22 1 dac—b
pa(Ex — (T — K)pg) B, T " . (21)
== 16 2 3/2
L+ (B, — (T - K)pj)Bx  wi (16) 4 (ax? + bx + ¢)
The second derivative is non-positive wheéh— 4ac > 0, in
This is equivalent to the quadratic equation such casef(y) is concave. . o
The k*" square root term in (20) satisfié$ — 4ac > 0 as
T—K)x 1 2 1 2
(T — K)Bi(p)* — Br <Ekﬂk + u> Pl 2T — K)(EpfBy +2)— | —4EIBHT —K)? | —
W (17) Wk Wk
+ w - 0 2 1 2
o : =4(T — K) (w—k> (BB, +4) > 0,
(22)

If the equation has real-valued roots, we observe that sumasfd hence it is strictly concave. The overall function issthu
roots and products of roots are positive, therefore botksrob strictly convex. Hence the optimal can be found by setting
the equation are positive. Inspecting (6) we see that smajle the first derivative of the objective to zero and the unique
gives a higher SINRwhenpk+; is fixed. Therefore we arrive solution is found. O

at the result. Moreover when the quadratic equation does no
have real-valued roots, then,p%v, < = for all feasiblep’;
and therefore such $Hs not attainable.

%ince we know that (20) is a strictly convex functiongn
hence there will be only one optimal solution and it can be
found by line search, such as using bisection method, which
makes it easy to implement.

To summarize, we provided a semi-closed form solution to
e max-min SE problem with the following procedure:

1) Find the optimal common weighted SP by solving (19)
Proposition 2. Problem(11) is reduced to the optimization given in Theorem 2, using e.g. bisection.

problem (18) with one variable (given on top of next page), 2) For this SP find all the optimal® using Proposition 1.
where the optimization is done in the domain where the3) Find the optimap using Lemma 3.

objective function is real, i.es is constrained to be achievable Finding the optimal power control parameters is reduced
for every userk. Finding the optimalz in (18) gives the to solving an equation with a single variable (or a single-
optimal common SP for every user. By using Proposition\iriable convex problem). Therefore the complexity is dine
we can find the optimai}; andp” for every userk to achieve in the number of users being served and independent of the
this optimal common SP. number of antennas, which can be implemented in real-time

. . . at the BS.
Proof. We first definex = wkp’;fyk and substitute the results

from Proposition 1 into the expression of SINRThen the }

objective function is obtained by changing the maximizatioB- Max-Min for ZF

of SINR to minimization of 1/SINR and simplifying the Similar to the case of the MRC detector, we can write the
expression. O problem as max-min weighted SINR as follows:

L. . wy (M — K)p*
maximize min K ( JPa vk

Finally we present the solution to Problem (18): pph w8y R 1430 pa(B5 =)
subject to 7,pk + (T — 7,)pk < B,k

We now reformulate Problem (11) in terms of SP ag,
presented in the following proposition:

(23)
Theorem 2. The common SP that maximizes the minimum X .
weighted SINR is given by wherey is the unique optimal pp = 0,pg = 0,Vk.

solution to an strictly convex optimization problem, an@ th The only difference from (11) is the expressions of the
unique real-valued solution can be found by solving thgINRs, which is now taken from (8) by inserting = K.
equation(19) on top of next page. Due to the negative terms appearing in the denominator of the



Epf+ (T — K) & — \/E,fﬁ,% —2(T — K)(Epfi +2) & + (T — K)2(£)?

k
- 15
Pa 2(T . K)Bk ( )
E2B2—2(T—K)(ERBr+2) 2 +(T—K)2(2)2
.. 1 Ek‘ Zk\/ k ol k k
minimize - 4+ ——~ . — z _ (18)
e Tt 2(T—K)w;ﬁk 2(T — K) ’

ERBYy — (T — K)(EpBr + 2)5-

1 Ej,
' =1 .
S T e Ry s R R 1D 1)

SINR expressions, this problem cannot be directly tramséat V. JOINT PILOT AND DATA POWER CONTROL FOR

to a GP problem. Fortunately we observe that the denomimator WEIGHTED SuM SE

of the SINRs are the same for all users, therefore we can statg, this section we solve the power control problem (9)

a similar result as Lemma 4. for the weighted sum SE for MRC and ZF detector. This

Lemma 5. For the ZF detector, at the optimal point, allProblem is selected to maximize the total system throughput

wipky, are equal, ie., and weights are included to provide some faimess between
L i . different users. We define the weighted sum SE by choosing

WrPg Ve = WiPgY5, V]ak:]-a"'vK' (24) U(Rl,...,RK)ZZlekak.

The proof is similar to that of Lemma 4 and is omitted. ~ POwer cqntrol that maximizes sum SE When_ interference
By using Lemma 5 we obtain the following important resultS Present is known to be aNP-hard problem in general
under perfect channel knowledge [17]. In this part we preaen
Theorem 3. Problem(23) can be reformulated as polynomial-time solution to one special case when all sesirc
o . wp(M — K)P§7k transmit to the same receiver. When channel estimatiomserro
fﬁ)%’fnﬁ)lsz min m are present, with the bounding techniques we used for the
P j=1PaP (25) achievable SE we discover a specific structure that lead to a
subject to  ply + (T — 7)plj < Ex, Vk convex reformulation after a series of transformationscéi
p’; > 0,pk >0, Vk. optimizing the data power is considered to be a hard problem
itself, in the following we first present the case when one
only optimizes the data power, then the solution approach is
extended to the case of joint optimization of pilot and data
power.

This implies that solving probleif25) gives the same optimal
pl,pk as solving problem(23), but the objective value is
different.

Proof. Using Lemma 5 we havev,pliy, = w;ply; at the
optimal point. Moreover the denominator can be written 8§ \neighted Sum SE for MRC

K Jn. K g ;
1 +§j=1€(d631 Xj-1 Pq; Where t_he last te.rm 's equal to By using Theorem 1, (9) now becomes the following
WkPgTk 2ij—1 57+ Then we can rewrite the weighted SINR aptimization problem:

M- K k
= . M
wiSINRy B (26) maximize wg logy | 1+ _ PPaTk
Ly, ey L : K 5
wi Pk, J wepkvi J w; {pp}, {pa} k I+ Zj:l Bipg (27)

Since Y, L is a constant and the same for every user, the Subject to o0y + (T — 7p)pl < Ex, Vk,
set of parameters that maximizes SINRIso maximizes the py = 0,pl > 0,Vk.
SINR if the term}, - is removed. Therefore both problem

are equivalent in the sense that they have the same optima}) Optimizing Data Powern the case qf optimizing data
solutions. power only, the energy budget constraint reduced to the

peak power constraint on the data power givenfs =
From Theorem 3 we see that only the constaitis (Ej —7,pk)/(T"—7,) for userk wherep! is now a constant.
replaced withM — K, therefore the power allocation thatTherefore we have the following optimization problem:

solves the weighted max-min SE for the MRC also solves k

the weighted max-min SE for the ZF. The same methods maximize Z“’k log, (1 i %ﬂk )

and analytical solutions apply. Therefore we don't need to {rl} P 1 +Zj:16jpﬂi (28)
do a separate optimization for ZF in this case. This implies subject to plccl < Py, Vk,

that the users do not need to know what kind of detector is &

used at the BS. While the BS can switch between different Pa = 0,k

detectors according to the data traffic requirements or powa this casey; are fixed constants and the optimization vari-
consumption restrictions. ables are the data powgf with individual power constraints.



The formulation in (28) is hon-convex. However, we use the With Theorem 5 we develop an efficient algorithm to obtain
observation that the denominator of the SINR expressiontiee optimal power allocation. For fixedthe optimalz;, can be

the same for every user, to obtain a convex reformulation aktained via modified water-filling. Next we apply bisection
described in the following theorem: on s to find the optimals such that condition (3) in Theorem

5 is satisfied. The use of bisection needs to be justified and
is also provided in the appendix. We only need to search for
S€ [m, 1] since this is an implicit constraint from the

Theorem 4. Problem (28) can be reformulated into the
following convex form:

maximize Z“’k log, (1 + arzy) definition. Thes that solves the problem is such théts) =
s, {zx} % K L +

subject to 25 < By Pps. Yk, Zj=1 B; P; gm —w | .— v = 0. As a by-product we also
> 0.k (29) get the condition when it is optimal to for everyone to usé ful
;/ B power. The procedure of finding the optimal power control
2 1 parameters are described in Algorithm 1.

7] — 9

=1 Algorithm 1 Virtual Water-Filling Algorithm for (29)

whereay, = M~/Bk. The two formulations are equivalent in 1: Initialize s; = W and s, = 1. Check if (30)
the sense that they have the same optimal objective valde, an s satisfied, if yes then terminate and outpljt = P,
the solution to(28) can be obtained from solution (@9) via Otherwise compute = (s; + s.,)/2.

p’; = ;CTIZ 2: repeat

Proof. First we observe that the denominator of the SINR3 _ Solve forz;, andv satisfying conditions (1) and (2) in
expression in the objective function of (28) is the same for 'heorem 5

every user. It is possible for us to apply the following vatlea 4 if f(s) >0 )
substitutions: 5 Sy = 8, §; remains unchanged
1) xp = Bph - 6: s «— (Su +51)/2
14+, Biry 7 else
2) 5= m or equivalently,s = 1 —3; ;. 8 s =s, s, remains unchanged
1 o: s — (84 +81)/2

The individual power constraints are changed proportignal ] .
10: until convergence withs,, — s;| < €

11: return all ph = ££ vk

~ PBis
Since problem (29) is convex and Slater’s condition isS
always satisfied, standard convex solvers can handle thi®) Joint Pilot and Data Power OptimizationNext we
problem. Moreover we observe that Theorem 4 transforms tegtend the method to the case of joint power control over
problem into a power allocation of virtual parallel charmelpilot and data power. The problem can be written as follows:

with individual and sum power constraints. This problem has .
a water-filling structure when is fixed. Therefore we inves- maximize Zwk log, [ 1+ Mpgr 4
tigate the Karush-Kuhn-Tucker (KKT) conditions and obtain k), vh}  Z 1+ Z;il B;p? (31)

the .following sollution structure which enaple us to develpp subject to Tppk + (T - Tp)pﬁ < By, Vk,
dedicated algorithms that are more efficient than applying P
standard interior point methods. The results are sumnthrize
in the following theorem: Sincey;, depends op® which is also an optimization variable,

| the problem is non-convex. However we find out that the tools
we developed for the max-min problem help us here as well.
More specifically, we make use of Proposition 1 with =

Py =0, py = 0,Vk.

Theorem 5. The optimal power allocation to the virtua
parallel channel(29) satisfies the following equations:

+
1) xj = min <BkPk5,maX (“’—; - ﬁ) ) , Vk, 1 Vk. Definex), = pky, as the SP of usek, then we use
K Proposition 1 to make a change of variables in (31) and use
2) Zj=1 zj=1-s, N the same techniques as in the case of optimizing data power
3) v= Zfﬂ B;P; ( 1w+jz _ V) ’ only. We obtain the following theorem:
aj J

. Theorem 6. Problem (31) can be reformulated into the
+
where (z)* = max(z,0) for any real numberz. Whens is following form:

fixed, the first two conditions are sufficient. Moreover, when
maximize Zwk logy (1 + Muyy,)
k

K s, {yr}

w; (L4255 B Py)wy
D8P |- T g <min—55————, s (32)
j=1 aj T 14X By Py 143, 8P 1 ak subject to Z Biq(y;,s) <1—s,

(30) o

where ¢(y;, s) is defined in(33) on top of next page. The
Proof. The proof can be found in Appendix B. O two formulations are equivalent in the sense that they have

then it is optimal to let every user use full power.



the same optimal objective values, and the solutior{3b) 1) Optimizing Data Power:In the ZF case, we have the
can be obtained from solution #82) via p% = q(yx,s)/s. following the following problem:
Moreover problem(32) is jointly convex ins and y.

Proof. First we introduce a dummy variableand rewrite (31) ma{xikmize Z wy, logy (1 + -
as Pa k

- Mpk .
maximize " wy log, (1 n M) subject to p
toh) 5 4 t )

subject to Tpp’; + (T — 7,)pk < By, Vk,

(M — K)phy )
P, Vk

<
=0, VEk.

k
d
k
d

(34) We observe that this problem has exactly the same structure

pi =0, p]; >0 vk as (29) in the MRC case where only the constanthanges

K ) to 5; —~;. Therefore same analysis and algorithm applies here
1+ 2 Bipy < t. where we substitute alp; with 8; — ;.

g=1 2) Joint Pilot and Data Power OptimizationNext we

The last constraint is relaxed from equality to inequalitgxtend this result to the case of joint power control oveotpil
without changing the solutions to the problem. This is beeauand data power. The problem is as follows:
the objective function is monotonically decreasing,ithus at .
. . . . . . . . M _ K
the optimal point the last inequality will always be actiiext maximize Ewk log, (1 " ( )Pk )
1+
g (39)

we apply Proposition 1 withv, = 1 Vk. Definexy, = pky {pk}, {pk} Zil(ﬁj — %)pﬁz
as the SP of usek to obtain the following problem : & & !
subject to 7,p, + (T'— 7,)py < E, Yk

M
o i =0, pk >0,V

maximize wg lo (1 +
t, {zk} ; 82

(35) The transformation we did in the MRC case can be applied

K
subject to 1+ 2 Br(x;) <t here as well as proved by the following corollary:
=t Corollary 1. Problem (39) can be reformulated into the
wherer(z;) is defined in (36) on top of next page. following form:
Finally we apply the variable substitution. = /¢t and
s = 1/t to obtain (32). maximize > wilogy (1+ (M — K)yj)
From the proof of Theorem 2 we can deduce that;) is o k
a convex function inz;. Next we observe thai(y;,s) is a _ K K (40)
perspective transformation ofz;) and therefore preserve the subject to 2 Bia(y;, s) — 2 y; <1-—s,
convexity [24]. Hence we conclude that (32) is jointly coxve =1 =1
in y;s ands. U whereq(y;, s) is given in(33) which is the same as in the MRC

Since we have the convex reformulation (32) we can uS&Se: The two formulations are equivalent in the sense tiegt t

standard convex solvers to find the optimal solutions efiteie "2ve the same optimal objective values, 2nd the solution to
ly, and the optimal power control parameters can be recavef&®) can be obtained from solution {d0)via p;; = q(ys, 5)/s-
easily. Here we use the MOSEK solver [25] with CVX [26] Moreover problem(40) is jointly convex ins and yj.

Proof. The only difference compared with the case of MRC
B. Sum SE for ZF is that8; changes tg3; —v; in all expressions. The proof is
In the case of perfect CSI, maximizing sum SE for ZF igimilar to the case of MRC, and is omitted here for brevity]
straightforward. This is because the ZF detector completel
removes all the interference_ from other users and crefites  \/| EXTENSION TO CORRELATED FADING CHANNELS
parallel channels. However in the case of imperfect CSlI, the
interference is reduced but still remains, which makes time s In this section, we extend our results to case of correlated
SE problem at least as difficult as with MRC. Fortunately, th@ding channels. We only consider weighted max-min fagnes
techniques we developed for solving the MRC case can i MRC here, to exemplify how our techniques in the previous
applied here to solve the problem to global optimal. Sirhjlar Sections apply to other channel models. The other cases are
we will first describe the case of optimizing data power onligft for future work.
and then extended to joint pilot and data power optimization For the correlated fading channels, we modgl ~
By using Theorem 1, (9) now becomes the following'N (0, Ry) where the covariance matri®, characterizes the
optimization problem: spatial correlation. The large-scale fading is the sameafior
antennas so all diagonal entries are equabtoThe MMSE
(M — K_)PSW channel estimation requires the storage of the entire xatri
+ Zﬁlpﬁi(ﬂj — ) Ry, for every user, and the estimation requires the inversion
B7) of large matrices — which has a high associated complexity.
X k To avoid this complexity, we adopt the element-wise MMSE
Py = 0,pg = 0,Vk. estimator proposed in [27]. During the training phase, ti%e B

maximize wy logy | 1+
(v}, {ph) zk: 2( 1

subject to 7,pk + (T — 7,)p} < Ex, Vk



E;Bis+ (T — K)y; — \/EJQBJQSQ —2(T— K)(E;Bj +2)y;s + (T — K)?y?

J

(33)

2(T — K)p;

Ej/))j + (T— K)CCJ — \/EJQ/DJJQ — 2(T — K)(EJBJ + 2)£CJ + (T — K)QZC?

(36)

2T — K)p;

receives the pilot signals, correlates them with pilot seme
of userk and obtains

Yk = A/TpPrgr +np, k=1,... K. (41)
The estimate is then
\/Tppzﬁk
gk k=1,...,K. (42)

=T ra Yk
1+ 7ppk B
This estimategy, is for linear detection of data from usér

VII. SIMULATION RESULTS ANDDISCUSSION

In this section we present simulation results to demorestrat
the benefits of our algorithms and compare the performance
with the case of no power control (i.e., full equal power) as
well as the case of power control on the payload power only
(and full power pilots). We consider a scenario with= 100
antennas, Ky = 10 users, and the length of the coherence
interval is T = 200 (which for example corresponds to a
coherence bandwidth df00 kHz and a coherence time of

With this channel model and estimation method, we obtain thems). The users are assumed to be uniformly and randomly

following achievable SE:

Lemma 6. The capacity of uset with MRC detection under
correlated fading and element-wise MMSE estimation is tow

bounded by the achievable ergodic SE
corr __ _ @ corr
Reorr = (1 T) logy (1 + SINRS™) (43)

where pilot and payload powers are arbitrary,

orr Mp*
SINR;,™" = K jpcvi: % i B
U 2050 (B Ri)pa g + 25m1 Patom, o,
(44)
andyy = P
Tk = 1+Tpp25k: '
Proof. The proof is given in Appendix C. O

distributed in a cell with radiu? = 1000 m and no user

is closer to the BS than00 m. The path-loss model is
hosen as3, = z/r3"® wherery, is the distance of usek
rom the BS wherez;, represents the independent shadowing
effect. Shadowing is chosen to be log-normal distributetth wi
a standard deviation o dB. Due to the long tail behavior
of the log-normal distribution there could be some users wit
very small 5;, therefore in each snapshot the user with the
smallestsy, is dropped from service. Therefore the algorithm
is run for K = Ko — 1 = 9 users.

The energy budget&, = 107%° x R>*7 x T and E}, =
10°5 x R376 x T give a median SNR of-5 dB and5 dB at the
cell edge when using equal power allocation. The weights
are set to be equal in all the simulations. The algorithms are
run for 1000 Monte-Carlo simulations where in each snapshot

We observe that Theorem 1 for the optimal training lengfe ysers are dropped randomly in the cell so that the large-
can be easily extended to cover this case, and therefore §8ge fading3, changes.

optimization problem we are interested to solve is:

maximize min w, SINRZ""™"
{oph {pi} K

subject to 7,p + (T — 7,)py; < Ey, Vk
py = 0,p = 0,Vk.
The epigraph form of (45) is

(45)

maximize X
{pk}.{p%}, A

subject to w Mplip BiT, =
K

)\(1 + Tpﬁkp]; + Z ﬁjpgﬁ-
j=1

(46)
K 1
by ) tr(R; Ry )77 ), Yk
j=1
Tpp’; + (T — Tp)pfl < By, Vk
ph=0,p5 > 0,Vk.

A. Max-Min SE Results

We compare 4 schemes: 1) the solution to problem (12)
(marked as ‘Max-min’ in the figures); 2) equal power allo-
cationp}; = p} = Ej/T (marked as ‘Equal Power’ in the
figures); 3) optimizing only payload power for problem (12)
by fixing p’; = Ey/T (marked as ‘Max-min (data)’ in the
figures); 4) the scheme that maximizes the sum SE is presented
as well for reference (marked as ‘sum’ in the figures). The
same schemes are tested for both MRC and ZF, and low and
high SNR scenarios.

In Figure 1 (a) and (b) we plot the cumulative distribution
function (CDF) of the minimum SE over different snapshots
of user locations for MRC at low and high SNR respectively.
We observe that without any power control in almost all of
the cases the user with the lowest SNR will get less than
0.5 bit/s/Hz in both low and high SNR scenarios. This is not
acceptable if we want to provide decent quality of service to

We recognize (46) as a GP and therefore it can be solvedery user being served. With max-min power control for both

efficiently, using general purpose solvers.

pilot and data we resolve this problem by guaranteeing the
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Fig. 1. CDF of the minimum SE witl\/ = 100, Ko = 10, T' = 200, R = 1000 m for MRC. Subplots (a) and (b) correspond to low SNR5(dB) and
high SNR 6 dB) at the cell edge, respectively.
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Fig. 2. CDF of the minimum SE wit/ = 100, K¢ = 10, T = 200, R = 1000 m for ZF. Subplots (a) and (b) correspond to low SNR5(dB) and high
SNR (5 dB) at the cell edge, respectively.

users an SE of more thanbit/s/Hz with 0.95 probability and In Figure 2 (a) and (b) we plot the CDF of the minimum SE
2.75 bit/s/Hz with 0.5 probability. In low SNR scenarios theover different snapshots of user locations for ZF at low and
joint optimization doubles th8.95 likely point, from0.5to 1  high SNR respectively. We observe that all schemes perform
bit/s/Hz, which proves the need of joint pilot and data powesimilarly and the gains from joint power control with resptc
optimization at low SNR. In this case with data power contralinly power control over data are not as large as in the case of
the user with the worst channel would have poor channmdRC. This is because with ZF most interference is removed by
estimates that limits the SE, while with joint power controthe detector, however in low SNR scenarios joint power adntr
they borrow power from the data part to enhance chanrnslstill necessary as it increases thé5s likely point from 0.5
estimation and thereby increase the SE. However in the highl bit/s/Hz compared to power control over data only. The
SNR scenarios the gain is marginal by the joint optimizagtioperformance of the sum SE formulation is surprisingly good
power control over data is enough. This is because the chanateboth low and high SNR and is even better than the max-min
estimates are already good enough for linear detection. Tdéeheme with only data power control. This suggests that with
performance of the sum SE formulation is not surprising as4F detector we can go for the sum SE formulation and push
is not designed for improving the minimum SE. It boosts thap the total system throughput without sacrificing much ef th
SE of the users with better channels to increase the sum 8brse users’ performance.

which in turn scarifies the users with worse channels.
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Fig. 3. CDF of the sum SE witlh/ = 100, K¢ = 10, T' = 200, R = 1000 m for MRC. Subplots (a) and (b) correspond to low SNR5(dB) and high
SNR (6 dB) at the cell edge, respectively.

B. Sum SE Results always be a gap between the two schemes, this is because

even when the SNR tends to infinity we can use always save
We comparet schemes: 1) the scheme that maximizes thgywer on the pilot and use it for data which increases the SE.

sum SE (marked as ‘Sum’ in the figures); 2) equal pow§the max-min scheme performs poorly in both scenarios, this

allocationp}; = py = Ej/T (marked as ‘Equal Power’ in the confirms our suggestion that with ZF we should use the sum
figures); 3) optimizing the data power only for sum SE bgE formulation.

fixing pﬁ = E}/T (marked as ‘Sum (data)’ in the figures); 4)
the max-min scheme is also presented for reference (marked
as ‘max-min’ in the figures). The same schemes are tested f6r
both MRC and ZF. In this subsection, we present simulation results for the

In Figure 3 (a) and (b) we plot the CDF of the sum SE2S€ when the Iarge scale fading parameters are not known
for the scenario we described above for MRC at low and hidigrfectly, but obtained through estimation. We assume that
SNR respectively. We observe the optimized power contﬂ% BS collectsV processed pilots from each user to perform
increases the sum SE significantly. The whole CDF is shiftdaiS estimation. Specifically, denoting each channel ze&bn
to the right by almostl5 bit/s/Hz in the low SNR scenario PY 9k the processed pilot signals received by the BS for each
with the proposed power control as compared to equal povHier can be written as
allocation. At low SNR the joint power control offers about i i i
10% increase over the case with only data power control. At _ Yi = VToPrGl ¥ Wit = 1o N, 47
high SNR the gain is marginal as the SEs of the users ha¥gerey is the processed received signgl,is the length of
saturated so we are in theg part of the SE already. The max-the pilot, ;. is the signal power aneb;, is additive noise with
min scheme performs well at high SNR due to the saturatig@riancel. Then we estimatg;, as follows:
of SE, but worse at low SNR. This is because enforcing max- N il2

A Zz:l”yk” — MN

Robustness

min fairness lead to large sacrifices in sum SE at low SNR. Br = VN (48)
The reason is that with high probability there will be some PPk
very disadvantaged user, and everyone else has to cut béblks estimate is justified by the fact that
significantly to avoid causing near-far interference. P2 P2 2
. lyrll” ~ moprllgll” + ||wy]]
In Figure 4 (a) and (b) we plot the CDF of the sum SE (49)

for ZF at low and high SNR respectively. We observe that ~ TPk + M.

with ZF when we optimize only the data power the optimal Figure 5 shows the minimum SE achieved by our max-min
scheme is always using full power. The reason for this is the¢theme with the proposed estimator of the large-scale dadin
in single cell systems ZF removes most of the interfereree, tparameters. The number of observationsVis= 10 and the
near-far effects are almost removed by the ZF detector thuedian SNR at the cell edge ranges frert0 dB to 10 dB; all
creating almost parallel channels. Therefore the schertte wather simulation parameters are the same as in the previous
equal power allocation is the same as optimizing data powarbsection. The estimategs are treated as the trygs in

only. The joint power control offers aboti0% improvements the optimization (marked as 'Estimated’). The performance
over the case with only data power control at low SNR arid compared with the case when tRe are known perfectly

the gain diminish as the SNR increases. However there witharked as 'Genie Aided’). We observe that with the simple,
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Fig. 4. CDF of the sum SE witd/ = 100, Ko = 10, T' = 200, R = 1000 m for ZF. Subplots (a) and (b) correspond to low SNR5(dB) and high SNR
(5 dB) at the cell edge, respectively.
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Fig. 5. Average minimum SE with/ = 100, Ko = 10, T' = 200, N = 10,
R = 1000 m for estimated large scale fading parameters.

Fig. 6. CDF of the minimum SE with\/ = 100, Ko = 10, T" = 200,
R = 1000 m for MRC in correlated fading. The median SNR-is.0 dB at
the cell edge.

above suboptimal estimator and the small number of training
symbols, the performance degradation is almost negligitiéee (marked as ‘Max-min’); 2) equal power allocatip = p* =
conclude that our scheme shows significant robustnesssﬁga@k/T (marked as ‘Equal Power’); 3) optimization of onfy pay-
estimation errors in the large-scale fading parameters. load power for problem (46), by fixing’; — E,,/T (marked

as ‘Max-min (data)’); 4) the solution to problem (12) but kwit
D. Correlated Fading application of the power control parameters obtained under

In this subsection we look at the performance of joint pildhe i.i.d. assumption (marked as ‘Max-min i.i.d.). Froneth
and data power control in correlated fading channels. We udét we see similar behaviors as in the i.i.d. channels, iat
the one-ring model [28] to model the correlations. An angul#int pilot and data power control improves the minimum SE
spread of10 degrees is chosen, and the angles of arrivaHbstantially. Directly applying the power control paraens
of different users are independent and uniformly disteout obtained under the i.i.d. assumption, neglecting the tatos,
betweerD and180 degrees. The median cell edge SNR-is) Yields surprisingly good performance.
dB and all other parameters are the same as in the above. Taken together, joint pilot and data power control is highly

Figure 6 shows the CDF of the minimum SE achieved hyseful in the low SNR regime also for correlated fading
our scheme with element-wise MMSE channel estimation astlannels. We expect this conclusion to hold also for other
MRC. We compard schemes: 1) the solution to problem (46¢hannel models, which have to be left for future work.



13

E. Dependence on SNR, K and T precision, andn is the number of constraints in the problem.

In this subsection we study the dependence of the gain Ji€ exact number ofV;, is hard to determine, however in
joint pilot and data power control on the SNR, number of usep§actice,Ni IS typically in the order of tens [24, C_hapter 11].
and length of coherence interval. Therefore100 should be a good enough bound; in any case,

First we investigate the performance of MRC. At low SNRIN€ algorithm may be terminated aft&i0 iterations. In each
the noise dominates over interference and we can approaimdfWion iteration we are solving a linear system of equations

(6) as Since we hav@K +1 con;traints and_( + 1.variables, the
SINRy, ~ Mplivy, ~ MKPﬁPZB@ (50) pumber of operatlons.requwed for solving this Newton_ sm;te
is about9K?3, assuming the use of Cholesky factorization.
for 7, = K. Under the power constraint In the channel estimation phase the number of operations is

approximately2M K2, and for MRC detection the number
of operations is approximate®yM K per data symbol [29].
it is straightforward to show that Therefore the total amount of computations in one coherence
B B interval is approximatelg M K2 +2M K (T — K) = 2M KT.
p’; = ﬁ andp’ = ﬁ (52) The measurements reported in [30] show that the large-scale
(T - K) fading parameters are constant over a duration that is on the
maximize the approximate SINR. Sin@é>» K, this means order of 100 times the channel coherence time. Moreover,
that the user allocates substantially more power to piludsit for the sake of argument, we assume that there are 100 sub-
to data at low SNR. Compared to the case of data powerriers in the system. These assumptions result in avelati

Kpy + (T — K)pjj < Ex, (51)

control only, wherq;’; = pk = E}/T, we have computatiognal overhead of the proposed sum SE algorithm as
e ST v We see that even withV;, = 100 (likely
SINR{?" ~ mSINRﬁ“t“, (53) an overestimate) this overhead is on the orded.02%.

We conclude that while the complexity calculation given

where SINR(?" represents the SINR obtained by optimizindere represents a first-order estimate only, the extratsffor
the pilot and data power ar§INR{** represents the SINR for solving the joint optimization problem is negligible in

obtained by only optimizing the data power. representative cases.
To conclude, the gain of joint pilot and data power control
can be substantial at low SNR, and wh&nis small relative VIIl. CONCLUSION

the interference can be neglected. Therefore our scheme may T : )
be particularly useful for wireless broadband access with sCaton problems in single cell uplink massive MIMO systems
tionary terminals, as in that application the coherencerirt with MRC or ZF d_e.tectl_on. It was first proved that the optimal
is usually very long. Ien_gth of the training interval eqL!aIs the nl_meer of users.
At high SNR, when interference dominates over noiséj,s'”g the SE as performance metric and setting ato_tal_ energy
v« ~ Br. Then the impact of the pilot power is negligiblebUdget' the power.control was .formulat.ed as optlm.lzauon
for MRC. However for ZF, the interference is cancelled odfroblems for two different objective functions: the weiggit
completely, thus creating parallel channels. More powdr wMinimum SE and the weighted sum SE. The optimal power
be spent on data to boost the SE. However the gain will nggntrol policy was found for the case of maximizing the
be substantial as the spectral efficiency only grows logaritVéighted minimum SE by a semi-closed form solution to a
mically with SINR in this regime. Therefore optimizing theSingle variable equation with unique solution. The optimal
data power is most important. power control par_ame_ters were shown to be the same for MRC
and ZF. For maximizing the sum SE a convex reformulation
) was found and efficient solution algorithms were developed.
F. Complexity The methods have also been extended to handle the case of
In this subsection, we characterize the computational cogrrelated fading, although a complete treatment of aléetsp
plexity of our schemes, and compare it to that of the othef that case is left for future work.
digital signal processing that is carried out in massive MM  Simulation results demonstrated the advantage of joint op-
systems (in particular, channel estimation and lineardiiete timization over both pilot and data power, and how the two
of the data). We perform the comparison for MRC, as ZBbjectives behave at low and high cell-edge SNRs. With MRC
would consume more computational resources. we have a clear choice to make between max-min and sum
Since our power control parameters are computed basedSi which is dependent on the system requirements. With ZF
the large scale fading, we only have to recompute them at thve can maximize sum SE without sacrificing much in min SE.
pace that the large-scale fading changes. The complexityTdfe need of joint pilot and data power control is particylarl
our algorithm for the max-min problem is of ordér(K). importantatlow SNR, while at high SNR optimizing only data
The sum SE problem is transformed to a convex problepower seems to be good enough. Since multi-cell systems are
that can be solved by a general interior point method. listerference-limited, we predict that we will get resulitsigar
complexity is N;;O((m + K)3), where N;; is the number to the low SNR results, particularly if a large pilot reusetéa
of Newton iterations required to achieve a predeterminéslused to get single-cell-like estimation quality. The rauital

to T. For ZF, similar results are obtained at low SNR, where ) ) .
?\/e considered the optimal joint pilot and data power allo-
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results were also justified by a theoretical analysis in tve | Next we apply Lemma 8 witly = 7" — 7, we can know that

and high SNR regime. This analysis showed that the galfR, is a strictly monotonic increasing function ifi — 7,,.

is more substantial when the number of uséks, is small ThereforeRk(K,p’;',p’j) > Rk(fg‘,p’;*,pfj*) and the maxi-

compared to the length of the coherence inter¥al, mum is achieved at, = K due to the constraint, > K.
Future work includes extension of the methodologies this is a contradiction to the assumption thgt > K,

multi-cell systems and more sophisticated system models. hence 7, = K. Since this holds for every;, we have

proved the theorem for any monotonic increasing function
APPENDIX U(Ry,...,Rg).
A. Proof of Theorem 1

Before proving Theorem 1 we state and prove two lemmas, Proof of Theorem 5

Lemma 7. For anyz > 0, we haven(z) > £ with equality =~ We first state the Lagrangian function of problem (29):

if and only ifx = 1.

o Lis.{on, Ok Lk v) = 3w logy(1 + agan)
Proof. Write f(z) = In(z) — =21, then we havef’(z) %
1

z % Obser\/ing thatf/($) < 0, Vr -E (07 1] and f/(x) 2 — Z)\k(xk — ﬁkpks) + Zukmk — V(Z T+ S — 1).

0,Vz > 1, we can conclude that = 1 is the minimum point P P %

of f(x) at which f(z) = 0. Thus we havef(z) = 0,Vx > 0, (58)
which proves the lemma. 0 Then we can write the KKT conditions [24] for problem (29):
Lemma 8. For any positive constants, b and ¢, g(z) = T Wk Ak + pg — v =0,VYEk,

xlog, (1 + bx‘ic) is a strictly monotonic increasing function rra

in z for all 2 > 0. A =0, 2p < BrPrs, Me(xr — BePrs) = 0,VE,

Proof. Taking the first derivative we have pe = 0, 2 20, g = 0,0k, (5

1 a Z rp=1—s5,
g (z) = In <1 + ) k
In(2 bx + ¢
;/ ) X . Zk:)\kﬁkPk—u=0.
Jr . .
In(2) 1+a/(bx+ br +¢)?-b
n(l ) o/ (b ac) (b +¢) aba We construct a set of solution to the above KKT conditions
= In(1 — as follows:
In(2) (n( +bx+c> (b:c+c)(bx+c+a)> .
. w 1
> 1 h’l 1 + a — a 2 0 T = min kaksa <_k - _> aVka (60)
In(2) br + ¢ br+c+a v.oooag
(54) +
The first in_equality comes from the fact t_Hat/(bx_Jr c) <1 A= (= Wk, ik, 61)
for any strictly positiveb and c¢. The last inequality follows ar T Tk
from putting1 + a/(bz + ¢) in Lemma 7. O e = (v — ag)*, Vk. (62)

Next, we prove Theorem 1 by contradiction. Assume th

T > K, pk* andpk* is the optimal solution to problem (9).

From Lemma 3 we know that

e\tle can easily verify this set of solutions together with
condition (59) and (59) satisfies the overall KKT conditions
When s is considered to be a constant, the last condition
TEPE* (T — 7¥)ph* = By, k=1,...,K.  (55) of (59) is not necessary as it correspondsio = 0. This

We will now construct a new feasible point that gives a high(—:slret of solutions is a function af and we are looking fov

objective function. Choose; _ K, p,;/ _ T;p’;*/K, PS/ _~ Such that (59) is satisfied. I_:or a glvgnfmdmg the optimal
— 7#pk*) /(T — K) for every userk, then "% as xS andv can be d_one_usmg aIgo_nthms in [3_1] and [32].
(B = 750" )/ y ’ e = Tk Then we perform bisection os to find the optimals that

ko k k .k = . . . .
TPy = T,p,". We compare the value ok (7, p,, 1) for  satisfies (59). Using bisection we are looking for the zero
these two sets of parameters. The achievable SE for isefqssing point of a univariate function, and this requites t

with our new construction is function to have different signs on each end of the inteffall.

"o K a justify that we can use bisection, we need to check the sign
Ri(K,py ,pg) = <1?) log, (1+ﬁ) (56) | fy + g
k of f(s) = 31 B;P; <ﬁf —v) —v on the boundaries,
aj Lj

i i 1
which corresponds to checking= [ES ands = 1.

Whens = W then to satisfy (59);, = 8, Pss, and
thus A, = 0, Vk énduk = 0, Vk. This is equivalent to

7"l< ag
atrg ot o) = (1= 2 Yo, (14— ). bWy 3

! (57) a TSP

p
for the MRC, anday = (M — K)y,(Ex — 7pE*), cx =
Z;il(ﬁj —7;)(Ej —r;‘pg')*) for the ZF. Then we observe that

’ K .
whereay, = M, (Ex — T*pﬁ*), cr = Zj=1 Bi(E; — 1yp)*)



On the other hand from the last condition of (59) we have [9]

wj

Zﬁu R

B.
Ik Z B a; 1+2Z, BLP]

Therefore for both (63) and (64) to hold the condition is

(64)

[10]

[11]
w; . wg
Z BiP; B Smn3———. 9]
b Z bil | ut 3, 6, Py a T Tk
(65)

In such case we can always find thehat satisfies the KKT
conditions, which means that it is optimal to let every usér
use full power. On the other hand if (65) does not hold, there
is no v that can satisfy all conditions simultaneously, and Wﬁ4]
can easily check that(s) > 0.

Whens = 1, A\; = 0, Yk and thereforef(s) = —v < 0.
Hence we have verified thaf(s) have different signs on
the boundaries. Moreover (29) is a convex problem algdr’]
Slater’'s condition is satisfied. Therefore the KKT condiso
are sufficient and necessary for optimality, there will be en
such thatf(s) = 0 within the boundaries. The optimalcan
therefore be found via bisection.

[16]

C. Proof of Lemma 6

We apply the bounding techniques used in [33] to devel&)7
an achievable SE as

T o (18]
(1 - T) log, (1 + SINRS™) , (66)
where (19]
E ~H 2.k
SINRZOT’F _ | [gk gk]| Pq [20]

>,

The results follow from calculating the terms in the abovigll
expressions, using standard results.

[195 95 1*1ps — |EL94 911 1°pg + E[II%(I(I;])
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