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�Friction had been a topic of technological attention long before the dawn of science,

yet underlying mechanism is not entirely understood till today.�

To my beloved wife, Sania Athar.





Abstract

High cycle fatigue failure of turbine and compressor blades due to resonance in the

operating frequency range is one of the main problems in the design of gas turbine en-

gines. To suppress excessive vibrations in the blades and prevent high cycle fatigue, dry

friction dampers are used by the engine manufacturers. However, due to the nonlinear

nature of friction contact, analysis of such systems becomes complicated.

This work focuses on the efficient modelling of friction contact and adaptive control

of friction damping in bladed disks. To efficiently simulate the friction contact prob-

lem, a 3D time-discrete contact model is reformulated and an analytical expression

for the Jacobian matrix is derived in parallel to the contact forces. The analytical ex-

pression drastically reduces the computation time of the Jacobian matrix with respect

to the classical finite difference method, with many points at the contact interface.

Therefore, it also significantly reduces the overall computation time for the solution of

the equations of motion, since the formulation of the Jacobian matrix is the most time

consuming step in solving the large set of nonlinear algebraic equations when a finite

difference approach is employed. The developed numerical solver is successfully ap-

plied on bladed disks with shroud contact and the advantage of full-3D contact model

compared to a quasi-3D contact model having uncoupled tangential motion is presen-

ted. Furthermore, presence of higher harmonics in the nonlinear contact forces is ana-

lyzed and their effect on the excitation of the different harmonic indices (nodal diamet-

ers) of the bladed disk are systematically presented. The developed numerical solver

is also applied on bladed disks with strip damper and multiple friction contacts. The

equations of motion are formulated in the frequency domain using the multiharmonic

balance method to accurately capture the nonlinear contact forces and displacements.

Moreover, the equations of motion of the full bladed disk model are reduced to a single

sector model by exploiting the concept of the cyclic symmetry boundary condition for

a periodic structure.

The main parameters that influence the effectiveness of friction damping in bladed

disks are engine excitation order, interface parameters (normal and tangential con-

tact stiffness and friction coefficient), relative motion at the friction interface and the

normal contact load at the interface. Due to variation in the interface parameter values

during operation and also these parameters are often hard to predict at the design level,

the obtained friction damping in practice may differ significantly from the optimum

value. Therefore, to control the normal load adaptively that will lead to an optimum

damping in the system despite these variations, use of magnetostrictive actuator is

proposed in this work. The magnetostrictive material that develops an internal strain

under the influence of an external magnetic field is used to increase and decrease the

v



normal contact load at the friction interface. A linearized model of the magnetostrict-

ive actuator is employed to characterize the magneto-elastic behavior of the actuator.

A nonlinear static contact analysis of the bladed disk and the underplatform damper

reveals that a change of normal load more than 700N can be achieved using a reason-

able size of the actuator. This will give a very good control on friction damping once

applied in practice.

Keywords: High cycle fatigue, Friction contact, Jacobian matrix, Shroud contact, Strip

damper, Multiharmonic balance method, Contact stiffness, Cyclic symmetry, Nodal

diameter, Magnetostrictive actuator, Magnetic field.
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Sammanfattning

Högcykelutmattning av turbin- och kompressorblad på grund av resonanser i det op-

erativa frekvensområdet är ett av de största problemen i utformningen av gasturbin-

motorer. För att dämpa överdrivna vibrationer i bladen och förhindra högcykelut-

mattning används torrfriktionsdämpare av många tillverkare. Men på grund av den

icke-linjära naturen hos friktionskontakten blir analyser av sådana system komplicer-

ade.

Detta arbete fokuserar på effektiv modellering av friktionskontakt och adaptiv styrn-

ing av friktionsdämpning i turbinblad. För att effektivt simulera friktionskontakten

omformuleras en tidsdiskret 3D kontaktmodell med en analytiskt härledd utryck för

Jacobimatrisen parallellt med kontaktkrafterna. Det analytiska uttrycket reducerar dras-

tiskt beräkningstiden för Jacobimatrisen med avseende på klassisk finita-differensmet-

oden, med många punkter vid kontaktgränssnittet. Därför minskar den totala beräknin-

gstiden för lösningen av rörelseekvationerna eftersom formuleringen av Jacobimat-

risen är det mest tidskrävande steget för att lösa den stora uppsättningen av icke-

linjära algebraiska ekvationer när en finita-differensmetod används. Den utvecklade

numeriska lösaren tillämpas framgångsrikt på turbinblad med shroud kontakt och för-

delarna med en 3D-fullkontaktmodell i jämförelse med en 3D-kvasikontaktmodell med

icke-kopplad tangentiell rörelse presenteras. Vidare analyseras förekomsten av har-

moniska övertoner i kontaktkrafterna och dess påverkan på olika harmoniska index

(nodala diametrar) på turbinbladen presenteras systematiskt. Den utvecklade numer-

iska lösaren tillämpas även på turbinblad med dämpband och multipla friktionskon-

takter. Rörelseekvationerna formuleras i frekvensdomänen med hjälp av en multi-

harmonisk balansmetod för att exakt fånga de olinjära kontaktkrafterna och förskjut-

ningarna. Dessutom är rörelseekvationerna av hela turbinbladsmodellen reducerade

till en enda sektormodell genom att utnyttja konceptet med den cykliska symmetrin

samt randvillkoren för en periodisk struktur.

De viktigaste parametrarna som påverkar effektiviteten av friktionsdämpningen i

turbinblad är motorexcitationsordningen, gränssnittsparametrar (normal- och tangen-

tiellkontaktstyvhet och friktionskoefficient), relativ rörelse mellan friktionsgränssnit-

ten och normal-kontaktlasten i gränssnittet. På grund av varierande gränssnittspara-

metervärden under drift (vilka är svåra att prediktera i konstruktionsstadiet) kan den

erhållna friktionsdämpningen i praktiken skilja sig signifikant från ett optimalt värde.

För att adaptivt styra normallasten som leder till optimal dämpning av systemet, trots

variationer, föreslås användning av magnetoresistiva aktuatorer. Magnetoresistiva ma-

terial som utvecklar en intern spänning under påverkan av ett magnetfält används för

att minska eller öka normalkontaktlasten i friktionsgränssnittet. En linjär modell av en
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magnetostriktivt aktuator används för att karakterisera det magneto-elastiska beteen-

det på aktuatorn. Icke-linjär kontaktanalys av turbinblad och underplattform däm-

paren avslöjar att en förändring av normalbelastningen mer än 700N kan uppnås med

användning av en rimlig storlek på aktuatorn. Detta kommer att ge en mycket god

kontroll på friktionsdämpning då den tillämpas i praktiken.

Nyckelord: högcykelutmattning, friktionskontakt, jacobimatris, shroud-kontakt, dämp-

band, multiharmonisk balansmetod, kontaktstyvhet, cyklisk symmetri, nodala diametrar,

magnetostriktiva aktuatorer, magnetfält.
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Part I

OVERVIEW





1 Introduction

In this chapter, a short introduction of friction damping and the aim of the research are

presented. The main contributions and organization of the thesis are outlined as well.

1.1 Background

Increasing demands for low cost and efficient turbomachinery require minimization

of the vibrations and stresses on the turbine blades to avoid failure of its components.

Failure of turbomachinery components is very costly and may lead to substantial dam-

age, injury and even death. Due to the high modal density of realistic turbine bladed

disks and a broad frequency content of the aerodynamic excitation forces, complete

prevention of the occurrence of resonance is practically infeasible. Therefore, damp-

ing of these resonances is very important. Since turbine blades do not benefit signific-

antly from material hysteresis and aerodynamic damping; dry friction dampers, that

are easy to manufacture, install, and can withstand high temperatures, are extensively

used by the gas turbine engine developers to suppress excessive vibration amplitudes.

Friction forces at preloaded contact interfaces dissipate vibrational energy and there-

fore, provide damping to the structure. Friction damping in turbomachinery is most

commonly achieved by shroud coupling, underplatform dampers and root joints (Fig.

1.1).

Friction damping devices in turbomachinery applications are the subject of many

research activities in past decades and numerous computational methods and exper-

imental investigation are found in the literature. Research in the field can be broadly

classified based on the following aspects:

• Modelling of structure (lumped parameter, analytical and finite element model)

• Modelling of contact interface and contact laws (macroslip vs microslip)
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CHAPTER 1. INTRODUCTION

• Contact kinematics and computation of contact forces (time-continuous vs time-

discrete)

• Solution methods

Figure 1.1: Friction damping locations.

Lumped parameter models describe the structure as a collection of rigid bodies con-

nected by springs and dampers, disregarding the local elasticity of the structure. Some

examples of these and equivalent models can be found in Refs. [1–4]. Analytical mod-

els take into account the local elasticity of the structure. Simple structures like beams

and plates are accurately represented by analytical models, however they can not de-

scribe complex structures such as turbine blades. This representation is used by few

researchers in the field [5, 6]. A better alternative is finite element models (FEM) that

accurately represent the dynamics of complex structures [7–10]. This is essential for

turbomachinery blades since they exhibit three-dimensional profile optimized for de-

sired aerodynamic efficiency. However, the solution of nonlinear equations of motion

(EQM) with a large number of degree of freedoms (DOFs) in the FEM model, is com-

putationally expensive. To circumvent this problem several solution methods, such

as modal superposition method [6], receptance based method [11–13] and structural

modification techniques [14, 15] are developed. In addition, component mode syn-

thesis (CMS) methods, which allow for the reduction of the original problem by several

order of magnitude and are still accurate enough for the purpose of nonlinear dynamic

analysis are also popular among the researchers; some example with friction contact

problems are found in Refs. [8, 16–18]. These methods reduce the computation time

while keeping the accuracy of the FEM model. Therefore, FEM representation is used

in this thesis to accurately model the dynamics of the turbine bladed disk and the fric-

tion contact.

Another aspect that affects the prediction of the nonlinear forced response of the

4



1.1. BACKGROUND

system is the modelling of the contact interface that describes the essential interaction

between the elastic bodies. These interactions can be geometrically divided in the nor-

mal and the tangential directions. A unilateral contact law is often considered in the

normal direction and frictional law for the tangential contact, see Fig. 1.2. The most

commonly used contact laws in the field of modelling of bladed disks are rigid and

linear-elastic laws [19]. These contact laws clearly distinguish between stick and slip

tangential motion and referred to as macroslip model. The elastic form of macroslip

contact law is first introduced by Griffin [20] in this field and used by many research-

ers [7, 10, 21, 22]. The rigid form of macroslip contact law is described in Ref. [23] and

also popular in the field [24–26]. Choice of the contact law depends on the solution

method adopted in solving the equations of motion. Macroslip representation per-

forms well in the small and moderate normal load cases, when gross-slip occurs at

the friction interface. As oppose to macroslip model, microslip contact law does not

distinguish between stick and slip tangential motion. Microslip is particularly import-

ant when normal contact load is high between the contacting bodies. The microslip

model can be realized by macroslip contact law (elastic or rigid) using appropriate

discretization of the contact interface or by using appropriate hysteresis law, such as

Dahl [27], Iwan [28], LuGre and Valanis model [29]. In the field of friction damping of

turbine bladed disks, microslip friction model with constant normal load is first stud-

ied by Menq et al. [30,31] where the damper is modelled as an elastic beam with a shear

layer and later by Csaba [4], where the shear layer is removed for simplicity. Microslip

models for the complex contact kinematics, such as 1D and 2D tangential motion with

variable normal load are developed by Cigeroglu [6, 32]. However, since the optimum

friction damping is obtained in the gross-slip region [33, 34], macroslip models, due

their mathematical simplicity, are widely used in the modelling of friction contacts,

and therefore its elastic form is used in this thesis. Moreover, microslip effect is incor-

porated implicitly by discretizing the contact interface.

To compute the nonlinear contact forces, a mathematical description of the contact

motion is required that is known as contact kinematics. Several contact models are

developed in the literature [7, 21, 22, 35–37] for the simple contact kinematics (1D tan-

gential motion and constant normal load) and complex contact kinematics (2D tan-

gential motion and variable normal load). Computational methods of the nonlinear

contact forces can be broadly classified as time-continuous (event-driven) and time-

discrete scheme. In the time-continuous scheme, state (stick, slip and separation)

transition times are resolved directly and an analytical expression is obtained between

two states and this lead to a fast and accurate computation of the contact forces for the

simple contact kinematics. However, often the state transition times are the roots of

transcendental equations, that requires a numerical solution procedure [19] and this
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CHAPTER 1. INTRODUCTION

makes time-continuous scheme comparatively expensive if numerous events occur

per vibration period such as for a 3D contact kinematics. Furthermore, Gibbs phe-

nomenon leads to artificial oscillations near discontinuities such as contact state trans-

itions and gives rise to the number of events, those are not physical. This makes time-

continuous scheme less attractive in the context of the frequency domain solution ap-

proach, where the contact forces are approximated as a truncated Fourier series, even

though a time-continuous scheme gives an accurate description of the contact forces if

transition times are resolved correctly. On the other hand, time-discrete scheme eval-

uates the nonlinear forces at discrete time steps and converts it into the frequency do-

main using fast Fourier transformation (FFT) and thus nonlinearity is easily handled

by piecewise evaluation. This offers a greater flexibility in terms of the calculation of

contact forces and its harmonics and different forms of contact laws can be easily in-

tegrated in this scheme. Moreover, an analytical expression is formulated in this thesis

to compute the Jacobian matrix for full-3D friction contact model that efficiently eval-

uates the Jacobian matrix while computing the friction contact forces. This formula-

tion reduces the computation time significantly and therefore time-discrete scheme is

used here. Accuracy of the time-discrete scheme is limited by the number of points

chosen in FFT scheme; however, the approach is more flexible compared to the time-

continuous scheme, see PAPER-A.

Rigid

Linear-elastic

Kn

1 Nonlinear-elastic

Normal
disp

Contact separation

Normal load

(a) (b)

Tangential
disp

Friction force

Kt

1

MicroslipElastic-
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Rigid-
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ic

k/
m

ic
ro
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Figure 1.2: (a) Unilateral contact laws in the normal direction and (b) frictional contact laws in the

tangential direction for 1D−harmonic displacement and constant normal load.

Finally, the frequency domain EQM results into a large set of nonlinear algebraic

equations which need to be solved iteratively. This is a computationally expensive

process if all the DOFs are kept inside the iteration loop. Therefore, several solution

methods such as the structural modification technique, modal superposition method

and receptance based approach are developed to circumvent the problem. Structural

modification techniques are applied for the nonlinear analysis of bladed disk systems
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1.2. THE COMP PROJECT

in Refs. [14] and [15], where the nonlinear dynamic stiffness matrix is obtained by

structural modification technique. This method is useful for few contact node prob-

lems and for simple contact kinematics, however it often fails to converge for complex

contact kinematics where turning point bifurcations are observed, and therefore sel-

dom applied for the analysis of complex structures. The modal superposition method

developed in Ref. [6], reduces the number of DOFs to the number of mode shapes used

in the formulation. This method is useful for multiple contact node problems such as

for a mistuned assembly since the method is independent of the number of contact

nodes. A disadvantage of this formulation is that the EQM is solved for the vector of

modal harmonic coefficients, whereas, for the calculation of nonlinear contact forces

the harmonic coefficients of the displacement vector are required. Therefore, at each

iteration step, modal harmonic coefficients are converted into the displacement har-

monics, which is a cost intensive process for few contact nodes. Unlike the modal su-

perposition method, the receptance based method reduces the EQM to the nonlinear

DOFs by using the dynamic compliance matrix (FRF) [11] and only keeps displacement

harmonics of the contact DOFs inside the iteration loop and thus reduces the compu-

tational time significantly compare to all DOFs. Many variants for the computation

FRF matrix such as CMS methods [8, 16–18] and high-accurate FRF method [38] are

also well developed in the literature. These methods facilitate in accurate prediction

of the FRF matrix by reducing the size of the problem and using few dynamic modes,

respectively. Furthermore, accurate prediction of FRF is necessary to capture the local

elasticity of the contact nodes at the interface. Therefore, receptance based method

is preferred for macroslip modelling with few contact nodes and used by several re-

searchers [12, 13, 39–41] as well as in this thesis.

1.2 The COMP project

The work presented in this thesis is performed within the COMP project, which is part

of the TurboPower initiative [42]. The project is executed in close cooperation between

Swedish gas turbine industry and several departments at KTH. The overall goal in the

COMP is to develop and validate a computational tool to perform high cycle fatigue

(HCF) predictions for components subjected to aero-dynamically induced vibrations.

Important factors to be considered are the prediction accuracy and the computational

speed.

The COMP project is divided into four work packages (WPs): WP1 Component mode

synthesis (CMS) techniques, WP2 Aero-forcing and aero-damping, WP3 Structural damp-

ing and WP4 Material fatigue. The present work is performed within WP3 Structural

damping.
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CHAPTER 1. INTRODUCTION

Figure 1.3: COMP project outline.

1.3 Objectives

The overall objective of this doctoral thesis is to develop a numerical simulation tool

for parametric studies of friction damping on real turbine blades at the industrial level.

The main contributions of the thesis can be summarized as follow

• The role of cyclic symmetry in reducing the number of DOFs in the linear and

nonlinear analysis is studied and the cyclic symmetry boundary condition is im-

plemented in the numerical simulation tool.

• A detail review of the friction contact models available in the literature is done

and a full-3D time-discrete friction contact model is reformulated. Moreover, a

method to compute the Jacobian matrix while computing the friction forces is

derived and implemented in the simulation tool.

• While solving the nonlinear algebraic EQM, a method to control the step-length

around the turning point bifurcation and on the steep branch of the curve is

proposed to minimize the convergence problems.

8



1.4. ORGANIZATION OF THESIS

• The developed numerical simulation tool is applied on a test case turbine blade

and a real industrial bladed disk. Different types of friction contacts such as

shroud contact, strip damper and multiple friction contacts are analyzed using

the developed tool and obtained results are discussed.

• Finally, a proposal is made and a numerical investigation is performed to control

the normal contact load at the friction interface of a bladed disk using magneto-

strictive actuator.

The developed tool will be an integral part of the AROMA software, that is under devel-

opment in the COMP project.

1.4 Organization of thesis

This thesis is organized as follows: Chapter 2 presents the concept of a cyclic structure

and the role of cyclic symmetry properties in reducing the number of DOFs in the dy-

namic analysis. Chapter 3 discusses contact models available in the literature. Chapter

4 discusses the solution methods of the nonlinear algebraic equation and Chapter 5

presents an introduction of the magnetostrictive material Terfenol-D and its potential

application in the field of friction damping of bladed disks. In Chapter 6 results for the

test case blade and the real bladed disk are presented, in Chapter 7 the main conclu-

sions and recommendations are given and finally, in Chapter 8 the appended papers

are summarized.

9
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2Cyclic Structures

The structure of the mass and stiffness matrices for a cyclic structure are described

in this chapter. The EQM of a full bladed disk is formulated in the time domain and

subsequently reduced to a single sector by using the concept of the cyclic symmetry.

Furthermore, the time domain displacements and forces are approximated as a Four-

ier series with multiple harmonics to convert the EQM in a set of nonlinear algebraic

equations for cost effective iterative solution. This is known as multiharmonic balance

method. The concept of travelling wave excitations and engine order excitations is also

introduced.

2.1 Cyclic symmetric structures

Tuned bladed disks are cyclic symmetric structures. The mass and the stiffness matrices

of cyclic structures have special characteristics that can be used to reduce the full

bladed disk model to a single sector model. Therefore, the numerical effort in comput-

ing the system properties such as eigenvalues (natural frequencies) and eigenvectors

(mode shapes) can be significantly reduced. Moreover, nonlinear contact forces on a

single sector that depend on two adjacent sectors can also be computed using a single

sector model (Fig. 1, PAPER-A).

M =



M0 M1 0 . . . 0 MT
1

MT
1 M0 M1 0 . . . 0

0 MT
1 M0 M1 0 . . .

...
. . .

. . .
. . .

. . .
...

0 . . . 0 MT
1 M0 M1

M1 0 . . . 0 MT
1 M0


. (2.1)

Describing the mechanical properties in a cyclic coordinate system, the structure of

the mass and the stiffness matrices of a tuned bladed disk displays a so-called block-

11



CHAPTER 2. CYCLIC STRUCTURES

circulant form, for instance, shown in Eq. (2.1), for the mass matrix. The block-circulant

mass and stiffness matrices are real and symmetric matrices of size [nbnd × nbnd],

where nb is the number of identical blades in the bladed disk and nd is the number

of degree of freedoms in a single sector. The symmetric submatrices M0 and M1 are of

size [nd ×nd]. The submatrix M0 represents the interaction between the nd degree of

freedoms in each sector and the submatrix M1 describes the interaction between the

degree of freedoms belonging to neighboring sectors of the cyclic symmetric structure.

2.2 Travelling wave excitation

Rotating bladed disks are excited by aerodynamic and other forces that travel relatively

to the bladed disk due to the rotation of the bladed disk at a constant speed while

preserving their spatial distribution [9]. In cylindrical coordinates fixed to the rotor,

r , z, and ϕ, these forces can be expressed in the form: fext(r, z,ϕ±Ωt ), where the “-”

sign corresponds to forward travelling wave and the “+” sign corresponds to backward

travelling wave. The angular velocity of the bladed disk is Ω. All forces of this type

satisfy the following relationship:

(k)fs,ext(t ) = (1)fs,ext(t − (k −1)∆t ), (2.2)

where s stands for a single sector, t is the natural time and k = 1,2, . . . ,nb. The time shift

between two consecutive blades is ∆t = T /nb, where T is the period of one rotation.

For most turbomachinery applications, the excitation field exhibits a spatial period-

icity, m, also referred to as “engine order”. Therefore, the time invariant excitation field

in cylindrical coordinates fixed to the ground can be described by an infinite Fourier

series

(k)fs,ext(t ) = Re

{ ∞∑
n=0

(1) f̂s,ne−inm(k−1)φ
}

, (2.3)

to find the excitation force on sector k, where (1) f̂s,n is the nth Fourier coefficient of the

excitation force on the first sector. The inter blade phase angle (IBPA), φ = 2π/nb is

related to the time shift as ∆t =φ/Ω and the temporal periodicity is n. Transformation

of the excitation forces into the cyclic rotating frame of reference fixed to the rotor

results in

(k)fs,ext(t ) = Re

{ ∞∑
n=0

(1) f̂s,neinm(Ωt−(k−1)φ)
}

. (2.4)

Using Eq. (2.4), the excitation for the kth sector is derived from the excitation of the 1st

sector. The excitation between two sectors only differs by the phase angle mφwhich is

12



2.3. THE NONLINEAR EQUATIONS OF MOTION

directly associated with the nodal diameter (ND) of the bladed disk, therefore it is also

referred to as nodal excitation [9].

According to the nodal diameter map, known as ZZENF diagram [43], a nodal excit-

ation can only excite the mode shape corresponding to a particular ND of the bladed

disk, which depends both on the temporal periodicity n and the spatial periodicity

m of the excitation. For example, an excitation with harmonic index h = h(m,n) =
mod(m×n,nb) can only excite the hth ND of the bladed disk in the backward travel-

ling mode if h ≤ nb/2 and in the forward travelling mode of (nb −h)th ND if h > nb/2,

where nb is an even number and mod is remainder operator. A detail explanation of

the excited nodal diameter as a function of temporal harmonic n and the spatial har-

monic m is found in Refs. [8, 39]. This leads to a reduction in the number of NDs and

consequently, in the set of eigenvectors required to solve the equations of motion in

the frequency domain.

2.3 The nonlinear equations of motion

2.3.1 Equations of motion of the full bladed disk

The EQM of a full bladed disk composed of nb identical sectors with nonlinear contact

at the shroud interface, is formulated in a cyclic frame of reference fixed to the bladed

disk rotor as follows,

Mq̈(t )+Cq̇(t )+Kq(t ) = fext(t )− fnl(qnl(t ), q̇nl(t ), t ), (2.5)

where M,K and C are the conventional mass, stiffness and viscous damping matrices

of the full bladed disk and q(t ) represents the cyclic displacement vector. The vector

fext(t ) is the traveling wave excitation and fnl(qnl(t ), q̇nl(t ), t ) represents the nonlinear

contact force vector caused by friction and the relative displacement of the contact

interface nodes. The displacements of the contact interface nodes are referred to as

nonlinear displacements in this thesis and denoted as qnl(t ). The length of the dis-

placement vector q(t ) is (nbnd ×1) and assembled as,

q(t ) = [(1)qT
s (t ), . . . , (k)qT

s (t ), . . . , (nd)qT
s (t )], (2.6)

where (k)qs(t ) represents the displacement vector of the kth sector with k = 1,2, . . . ,nb

and is of the size (nd×1). The structure of the nonlinear displacement vector qnl(t ), the

excitation force fext(t ) and the nonlinear interaction force fnl(qnl(t ), q̇nl(t ), t ) is similar

to the structure of the displacement vector in Eq. (2.6), only the size of the nonlinear

displacement vector qnl(t ) is (nbnnl ×1), where nnl is the number of nonlinear DOFs.

13
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2.3.2 Equations of motion reduced to a single sector

Because of the travelling wave type excitation and the cyclic symmetry properties of

bladed disk [8, 9], a relationship between the displacement vector of distinct sectors is

defined similar to the relationship defined in Eq. (2.2) and reads

(k)qs(t ) = (1)qs(t − (k −1)∆t ). (2.7)

This is the fundamental relationship of the cyclic symmetric modelling, which allows

for evaluation of the displacement vector for all sectors (k)qs(t ) where k = 2,3, . . . ,nb,

using the first sector (1)qs(t ) by applying a simple time shift shown in Eq. (2.7) [44].

To compute the nonlinear contact force (k)fs,nl(qnl(t )) using a single sector, it is writ-

ten as,

(k)fs,nl(qnl(t )) = (k)fs,nll(qnl(t ))+ (k)fs,nlr(qnl(t )), (2.8)

where (k)fs,nll(qnl(t )) and (k)fs,nlr(qnl(t )) are the nonlinear contact force at the left and

right interface of the kth sector, respectively. Time derivative of the nonlinear displace-

ment is omitted in the above equation for brevity and in the following. The nonlinear

contact force at the left and right interface are expressed as,

(k)fs,nll(
(k−1)qnl(t ), (k)qnl(t )) = (k)fs,nll(

(k)qnl(t +∆t ), (k)qnl(t )) (2.9)

and

(k)fs,nlr((k)qnl(t ), (k+1)qnl(t )) = (k)fs,nlr((k)qnl(t ), (k)qnl(t −∆t )), (2.10)

where cyclic symmetry property is used to relate the nonlinear DOFs at the (k − 1)th

and (k +1)th sectors to the nonlinear DOFs of the (k)th sector. Furthermore, following

Newton’s third law, the following relationship exists at the right interface of the (k)th

and the left interface of the (k +1)th sector (Fig. 1, PAPER-A),

(k)fs,nlr((k)qnl(t ), (k+1)qnl(t ), t ) =−(k+1)fs,nll(
(k)qnl(t ), (k+1)qnl(t ), t ). (2.11)

Moreover, using the cyclic symmetry properties the following expression is obtained,

(k+1)fs,nll(
(k)qnl(t ), (k+1)qnl(t ), t ) = (k)fs,nll(

(k−1)qnl(t ), (k)qnl(t ), t −∆t ), (2.12)

and therefore using Eqs. (2.11)–(2.12), the following relationship between the right and

left interface contact forces is derived,

(k)fs,nlr((k)qnl(t ), (k+1)qnl(t ), t ) =−(k)fs,nll(
(k−1)qnl(t ), (k)qnl(t ), t −∆t ). (2.13)

Using the above equations, the nonlinear contact forces are computed using a single

sector. Moreover, the nonlinear contact force at the right interface is derived from the
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2.3. THE NONLINEAR EQUATIONS OF MOTION

nonlinear contact force at the left interface and vice-versa. This reduces the compu-

tation time during the iterative solution of the EQM. Note that the above relationships

are valid in the cyclic frame of reference.

Inserting the displacement vector (Eq. (2.6)) and the nonlinear contact force (Eq.

(2.10)) into Eq. (2.5), and using the block-circulant form of the mass, stiffness and

damping matrices results in

M0
(1)q̈s(tk )+M1

(1)q̈s(tk −∆t )+MT
1

(1)q̈s(tk +∆t )+C0
(1)q̇s(tk )+

C1
(1)q̇s(tk −∆t )+CT

1
(1)q̇s(tk +∆t )+K0

(1)qs(tk )+K1
(1)qs(tk −∆t )+

KT
1

(1)qs(tk +∆t )+ (k)fs,nlr((k)qnl(tk ), (k)qnl(tk −∆t ))+
(k)fs,nll(

(k)qnl(tk +∆t ), (k)qnl(tk )) = (1)fs,ext(tk ),

(2.14)

for the (k)th sector, k = 1,2, · · · ,nb, with tk = t − (k −1)∆t . Note that the EQM of the

(k)th sector in Eq. (2.14) only depend on the displacements of the first sector. There-

fore, it is sufficient to consider the EQM of the first sector to evaluate the displacements

of the full bladed disk for a tuned system [9, 44].

The EQM in Eq. (2.14) is a nonlinear delay differential equation. To solve Eq. (2.14),

different approaches are used in the literature. The time domain simulation and the

frequency domain simulation by using harmonic balance method (HBM) and multi-

harmonic balance method (MHBM) are the most commonly used approach.

In the time domain approach, the nonlinear EQM are integrated numerically [4, 15,

21, 45] using a numerical integration technique, such as the finite difference method

and the well known Runge–Kutta method. Time domain integration methods are easy

to implement. However, steady state solutions are obtained through transient solu-

tions and the nonlinear forces are evaluated at each time step that increases the com-

putational time considerably. Due to the long computation times, time domain integ-

ration methods are rarely used for practical problems with many DOFs. However, time

domain solutions are valuable in comparing the accuracy of other numerical methods.

In some cases, to decrease the time spent in transient solutions steady state solution

estimates, which are obtained by other solution methods, are used as initial condi-

tions [4]. In general, to avoid the tedious and cost-intensive numerical integration of

the EQM, the frequency domain method known as harmonic balance method (HBM)

and describing function method [46] is extensively used in the forced response calcu-

lation of frictionally damped structure. In the HBM method, the displacement vec-

tor and nonlinear contact forces are approximated by a Fourier series truncated after

the first harmonic. Approximating the nonlinear forces by the Fourier series, the non-

linear delay differential EQM (Eq. (2.14)) are converted to a set of nonlinear algeb-

raic equations, which are then solved for the unknown harmonics. The HBM repres-

entation of the nonlinear forces has been used by many researchers [4, 12, 21, 36, 45];

15
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however, a multiharmonic representation (MHBM) is preferred in recent publications

[8–10, 16, 47] to capture the complex stick-slip motion of the damper more accurately.

The MHBM increases the computation time by the number of harmonics used in the

computation, therefore a trade-off is required between the number of harmonics used,

computation time and computational accuracy. The MHBM representation is used

in this thesis, and the formulation of the EQM in the frequency domain by using the

Fourier–Galerkin’s projection [48] is presented below.

2.3.3 Steady state solution by the multiharmonic balance method

To compute the periodic steady state response using the Fourier–Galerkin’s method,

the displacement vector (1)qs(t ) of the first sector is approximated as a finite Fourier

series truncated after nh harmonics

(1)qs(t ) = Re

{ nh∑
n=0

(1)q̂s,neinmΩt
}

, (2.15)

where (1)q̂s,n is the nth temporal harmonic coefficient of the displacement vector of

length equal to the number of DOFs (nd) in a single sector. Similar to (1)qs(t ), time

shifted displacement vectors (1)qs(t±∆t ) are truncated as,

(1)qs(t +∆t ) = Re

{ nh∑
n=0

(1)q̂s,neinmΩ(t+∆t )
}
= Re

{ nh∑
n=0

(1)q̂s,neinmφeinmΩt
}

(2.16)

and

(1)qs(t −∆t ) = Re

{ nh∑
n=0

(1)q̂s,neinmΩ(t−∆t )
}
= Re

{ nh∑
n=0

(1)q̂s,ne−inmφeinmΩt
}

. (2.17)

Furthermore, the nonlinear contact forces (Eq. (2.8)) truncated after nh harmonics

read as

(1)fs,nl(qnl(t ), t ) = Re

{ nh∑
n=0

(1) f̂nl,neinmΩt
}

. (2.18)

Substituting Eqs. (2.15)–(2.18) and their derivatives into Eq. (2.14) and applying Galer-

kin’s method results in a system of equations in the following form:

D̂(m,n,Ω)q̂s,h + f̂nl,h(q̂nl,h ,m,n,Ω)− f̂s,h ≈ 0. (2.19)

From now on the left superscript (1) is omitted for brevity. Here, vector q̂s,h consists of

the harmonics of all the DOFs (nd) and q̂nl,h contains the harmonics of the nonlinear

DOFs (nnl) of a single sector. Since each DOF is described by (nh +1) harmonics, q̂s,h
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and q̂nl,h have length of nd(nh +1) and nnl(nh +1), respectively, and are assembled as

q̂s,h =


q̂s,0

q̂s,1
...

q̂s,nh

 and q̂nl,h =


q̂nl,0

q̂nl,1
...

q̂nl,nh

 . (2.20)

Similarly, external excitation forces and the nonlinear contact forces are assembled as

f̂s,h =


f̂s,0

f̂s,1
...

f̂s,nh

 and f̂nl,h =


f̂nl,0

f̂nl,1
...

f̂nl,nh

 . (2.21)

The dynamic stiffness matrix D̂ is a block-diagonal matrix and reads as

D̂ = blkdiag(D̂0,φm ,D̂1,φm · · ·D̂nh,φm ), (2.22)

where each submatrix takes the form

D̂n = K̂n,φm − (nmΩ)2M̂n,φm + inmΩĈn,φm , (2.23)

for n = 0,1, . . . ,nh, φm = mφ and blkdiag represents the block diagonal operator. The

mass, damping and stiffness matrices in D̂n are complex Hermitian matrices and re-

lated to block-circulant matrices as

M̂n,δm = M0 +e−inφm M1 +einφm MT
1 ,

K̂n,δm = K0 +e−inφm K1 +einφm KT
1

and

Ĉn,δm = C0 +e−inφm C1 +einφm CT
1 .

(2.24)

These matrices are complex Hermitian and known as the structural matrices for the

cyclic symmetric sector model. The matrices depend on both the temporal period-

icity n and spatial periodicity m, and therefore each harmonic index h = h(m,n) =
mod(mn,nb) has a different set of eigenvalues and eigenvectors, that should be con-

sidered while solving the EQM in the frequency domain. However, only a few harmonic

indices are excited by the engine orders and nonlinear forces. This limits the number

of sets of eigenvalues and eigenvectors required for the analysis. Furthermore, eigen-

vectors of a complex Hermitian matrix are complex and represented by rotating mode

shapes instead of the standing waves. In this case, all eigenvectors are complex except

for h = 0 and h = nb/2. A further detail on this can be found in Refs. [39, 44].
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Note that the submatrices M0,K0 and M1,K1 are part of each sector, therefore theses

matrices can be obtained using a single sector instead of using a full sector model by

applying the complex cyclic constraints at the cyclic boundaries [9, 44].

Furthermore, the EQM in the frequency for a strip damper and multiple friction con-

tacts are derived in PAPER-B and PAPER-C, respectively.

2.4 Conclusion

In this chapter, it is shown that by using cyclic symmetry properties, the nonlinear

EQM of the full bladed disk with friction contact can be reduced to a single sector,

which leads to a dramatic reduction in the number DOFs required in the EQM.
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In this chapter, contact models developed in the literature are discussed. Time-discrete

scheme that computes the nonlinear contact forces at discrete time steps as function

of the relative displacement of the contact interface, contact interface parameters and

normal load is introduced. Some simulation results for 1D and 2D tangential motion

with constant and variable normal loads are presented and discussed. The effect of

constant and variable contact stiffnesses are also analyzed. Finally, estimation meth-

ods of the contact stiffness values are discussed.

3.1 Background review

Friction damping in mechanical systems is obtained by the relative motion between

vibrating bodies that induces stick-slip motion and therefore dissipates vibratory en-

ergy. The description of the relative motion between two surfaces in contact is known

as contact kinematics, plays a key role in computing the contact forces and therefore in

the resulted friction damping. Over the years, in the literature, several contact models

have been developed. The main four contact models available are:

• 1D tangential relative displacement and constant normal load [20],

• 1D tangential relative displacement and variable normal load [7, 22],

• 2D tangential relative displacement and constant normal load [36, 49],

• 2D tangential displacement and variable normal load [45, 50].

The elastic form of macroslip contact model with 1D tangential motion and constant

normal load is developed by Griffin [20] and further applied in Refs. [3, 51, 52] and oth-

ers. This model is quite adequate for simple contact motion. However, as the con-

tact kinematics become more complicated; for example, 2D elliptical relative motion
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and motion with significant variation of the normal relative displacement, this contact

model is not sophisticated enough to describe the contact motion. An illustration of

the friction loop (hysteresis loop) for different contact kinematics is shown in Fig. 3.1,

where Kt and Kn are the tangential and normal contact stiffness, respectively, and N0 is

the static component of the normal load. The friction coefficient isµ and XA,YA and ZA

are the displacements in the tangential plane and in the normal direction, respectively.

The phase difference between the displacements is φ and θ = mΩt . The figure reveals

that a change in the contact motion and the variation in the total normal load has a

significant effect on the friction loop and hence on the amount of dissipated energy

per oscillation. Therefore, an accurate, mathematically tractable and yet fast enough

contact model is required to simulate complex structures like bladed disks.

Figure 3.1: Input parameters for the friction loops are Kt = Kn = 1N/m, N0 = 0.8N, µ= 0.4,

XA = 0.5sin(θ+φ)m,YA = sin(θ)m, ZA = 0.8sin(θ+φ)m, φ=π/2, relative displacements and

the friction forces are in meter and Newton, respectively.

Menq et al. [21] successfully develop an elastic macroslip contact model for 1D tan-

gential motion with inphase variable load and later propose an approximate method to

capture the 2D planar motion with constant normal load [53] using time-continuous

approach. These models are fast and accurate but do not consider the general variation

of normal load and full-3D contact kinematics. A more comprehensive friction con-

tact model that considers normal load variation is developed by Yang et al. [22, 45, 49].

Petrov and Ewins [7] also formulate a time-continuous quasi-3D (two tangential dir-

ections are treated as uncoupled with variable normal load) friction contact elements
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in the frequency domain with an analytical expression of the tangent stiffness mat-

rix. Although evaluation of the contact forces using time-continuous scheme leads to

accurate results, a change in the contact model requires a new evaluation of the con-

tact forces and its harmonics, which limits the flexibility of the contact model [39].

Moreover, 3D time-continuous contact models are rarely used in industrial applica-

tions due to the large computational costs [54].

Alternate to the time-continuous method, the time-discrete approach has been used

by many researchers in computing the nonlinear contact forces [8,10,37,50]. In this ap-

proach, harmonics of the relative displacement (initial guess), recall MHBM chapter 2,

are first converted to the time domain displacement at the sought frequency. Then the

nonlinear contact forces are directly computed in the time domain that allows captur-

ing complex nonlinearities exhibited by the friction forces and the normal load. Fur-

thermore, different types of contact models including microslip model and measured

hysteresis loop can be easily implemented in this scheme while keeping the computa-

tional advantage of the frequency domain modeling. Finally, these time domain non-

linear contact forces are transformed back to the frequency domain by means of the

FFT algorithm for the computation of the final relative displacement by solving the

nonlinear algebraic equations. This hybrid frequency-time domain approach is pro-

posed by Cameron and Griffin [55] and known as alternate frequency time domain

method (AFT), see Fig. 5 PAPER-A.

To compute the nonlinear friction forces in the time domain, Sanliturk [36] devel-

ops a time-discrete contact model for 2D tangential motion with constant normal load,

as an extension of Menq et al. [53]. The algorithm is not only restricted to the Cou-

lomb friction law. It can compute the friction forces based on theoretical models and

on measured friction loop. The algorithm constitutes a basis for the further develop-

ment of 3D time-discrete friction contact models as presented by Shi yajie and Gu et

al. [37, 40, 50]. In PAPER-A of this thesis, a full-3D time-discrete friction contact model

is reformulated and moreover an analytical expression for the Jacobian matrix is de-

rived. It reduces the computation time significantly in the Newton–Raphson method

that is used to solve the nonlinear algebraic EQM. Details of the contact model can be

found in PAPER-A.

3.2 Simulation results

To demonstrate the flexibility of the time-discrete contact model, few examples are

presented below. A linear-elastic contact law is used in the normal direction and elastic

Coulomb law is employed in the tangential plane. The static component of the normal

load is N0 and the variable component of the normal is defined as KnZA. The obtained
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friction loops for multiharmonic input displacements, considering constant and vari-

able contact stiffnesses are drawn in Figs. 3.2 and 3.3, respectively, for the case of 1D

tangential motion and variable normal load.

Figure 3.2: Friction loop for 1D tangential motion and variable normal load with con-

stant contact stiffness values. Input parameters are Kt = Kn = 1N/m, N0 = 0.6N, µ= 0.4,

YA = sin(θ)+0.5sin(2θ)+0.3sin(3θ)m, ZA = 0.8sin(θ+φ)+0.2sin(3(θ+φ))m, φ=π/2, relative

displacements and the friction forces are in meter and Newton, respectively.

The input tangential and normal displacements are shown in the top-left of the fig-

ures. In Fig. 3.2, the input motions include the first three harmonics, whereas, in the

resulting friction force, six harmonics have significant contributions. This is due to the

associated nonlinearity with complex stick-slip tangential motion and elastic normal

contact law, which advocates considering the higher harmonics in the formulation of

the EQM, even for input displacements are mono-harmonic. Furthermore, the fric-

tion loop is more complicated for the case of variable contact stiffnesses, see Fig. 3.3.

Variable contact stiffness is required in the case of non-planar contact interfaces (e.g.

contact interface of a sphere and a cylinder with a planar surface), according to the

Hertz contact theory [56] and Mindlin’s theory [57]. Variation of the contact stiffness

values in the field of friction damping is verified in Refs. [58–61]. Note that these fric-

tion loops are drawn using a 3D time-discrete friction contact model by substituting

XA = 0 and changing the input parameters in the time domain accordingly.
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Figure 3.3: Friction loop for 1D tangential motion and variable normal load with variable con-

tact stiffness values. Input parameters are Kt =
√

ZAN/m, Kn = √
3ZA/2N/m, N0 = 0N, µ= 0.4,

YA = sin(θ)+0.4sin(3θ)m, ZA = 0.8+0.6sin(θ+φ)+0.4sin(2θ+φ)m, φ=π/2, relative displace-

ments and the friction forces are in meter and Newton, respectively.

A similar analysis is performed for 2D tangential motion with variable normal load.

In Fig. 3.4, the obtained friction loop for the constant contact stiffness and multihar-

monic input displacement is drawn. Here again, six harmonics are found in the non-

linear contact force, whereas the displacement contains only three harmonics. Note

that in the case of 2D planar motion, negative and positive slip boundary of the 1D

tangential motion is replaced by “slip loop”. The slip loop is the limiting friction force

curve for 2D planar motion that is used to identify the state (stick, slip or separation) of

the friction contact as shown in the figure (bottom-left). The friction loop for the vari-

able contact stiffnesses is plotted in Fig. 3.5. A variable contact stiffness changes the

shape of the fiction loop and the slip loop significantly, however both the friction loops

are complex in nature and author believes that a time-continuous approach will con-

sume a larger computation time in resolving the state transition times in these cases

compared to the time-discrete approach applied here. Therefore, the time-discrete

method should be preferred in the case of complex contact kinematics.
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Figure 3.4: Friction loop for 2D tangential motion and variable normal load with con-

stant contact stiffness values. Input parameters are Kt = Kn = 1N/m, N0 = 0.5N,µ= 0.4,

XA = sin(θ)+0.5sin(2θ)+0.4sin(3θ)m, YA = 0.6cos(θ)m, ZA = 0.6sin(θ+φ)m,φ=π/4, relative

displacements and the friction forces are in meter and Newton, respectively.

Finally, to analyze the difference between constant and variable contact stiffness, a

comparison curve is drawn for the same input motions (Fig. 3.6). Input parameters

are:

XA = sin(θ)+0.5sin(2θ)+0.4sin(3θ)m,

YA = 0.6cos(θ)m,

ZA = 0.4+0.6sin(θ+φ)m,φ=π/4,

(3.1)

and the contact stiffnesses are,

Kt =
[

1 0

0 1

]
p

ZAN/m, if ZA≥0

0N/m, otherwise
(3.2)

and

Kn =


p
3ZA
2 N/m, if ZA≥0

0N/m, otherwise.
(3.3)
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Figure 3.5: Friction loop for 1D tangential motion and variable normal load with variable con-

tact stiffness values. Input parameters are Kt =
√

ZAN/m,Kn =√
3ZA/2N/m, N0 = 0.5N,µ= 0.4,

XA = sin(θ)+0.5sin(2θ)+0.4sin(3θ)m, YA = 0.6cos(θ)m, ZA = 0.4+0.6sin(θ+φ)m,φ=π/4, rel-

ative displacements and the friction forces are in meter and Newton, respectively.

Mean stiffness values of the variable contact stiffness are used as constant stiffness.

A significant difference is observed in both the curves, with the loop area for the vari-

able contact stiffness is approximately 1.5 times of the constant contact stiffness case.

Furthermore, the friction loop with variable contact stiffness passes through (0,0), this

means separation occurs during a periodic cycle, whereas no separation is observed in

the constant stiffness loop. These differences can have a profound effect on the forced

response of the bladed disk.

3.3 Conclusion

Friction loops are drawn for single and multiharmonic input motions. Higher harmon-

ics of the contact forces are observed even for a single harmonic input displacement,

which shows that the multiharmonic formulation of the EQM is needed for nonlinear

friction contact analysis. Friction loops are also drawn for constant and variable con-

tact stiffnesses and a significant difference in the loop area is observed. This shows that

interface parameters (Kt and Kn) can have a profound effect on the forced response of
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the bladed disk. Finally, the estimation methods of the contact stiffness values are out-

lined.
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Figure 3.6: Comparison of constant and variable contact stiffness friction loop.
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4Solution of Nonlinear

Algebraic Equations

In chapter 2, the EQM of a tuned bladed disk is reduced to a single sector by using

the concept of cyclic symmetry. However, for a complex structure, a single sector still

consists of thousand DOFs that is impossible to handle in an iterative solution. There-

fore, in this chapter, the nonlinear EQM is further reduced to the contact DOFs only by

using the receptance based approach. Furthermore, complex contact kinematics (tan-

gential motion with variable normal loads) are prone to separation at low normal loads

and in the case of an initial gap between the contact interfaces, what leads to turning

point bifurcation in the nonlinear forced response curve. Solution methods for these

cases are discussed here since the standard Newton–Raphson method fails at the turn-

ing points. Moreover, a method to control the step length during the iterative solution

is also proposed.

4.1 Receptance based method

Finite element models are often used in the forced response analysis of complex struc-

tures with many DOFs. Due to the friction contact, this results in large systems of non-

linear equations which need to be solved iteratively. This is a computationally expens-

ive and also an inefficient process if all the DOFs are kept inside the iteration loop.

Menq and Griffin [11] develop a nonlinear forced response analysis method for the

steady state response of frictionally damped structures using finite element models. In

this method, DOFs are divided into linear and nonlinear DOFs (DOFs correspond to

the nonlinear contact interface), and nonlinear equations are reduced to the number

of nonlinear DOFs in the system, which is often a fraction of the total number of DOFs.

This method is also known as receptance based method and used by several research-

ers [12,13,39–41] and in this thesis. Applying the receptance based approach, the EQM
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in Eq. (2.19) can be rewritten as:[
q̂lin,h

q̂nl,h

]
=

[
R̂lin,lin(m,n,Ω) R̂lin,nl(m,n,Ω)

R̂nl,lin(m,n,Ω) R̂nl,nl(m,n,Ω)

]{[
f̂lin,s

f̂nl,s

]
−

[
0

f̂nl,h(q̂nl,h ,m,n,Ω)

]}
, (4.1)

leading to

q̂nl,h − q̂nl,h0 + R̂nl,nl(m,n,Ω)f̂nl,h(q̂nl,h ,m,n,Ω) = 0, (4.2)

where q̂nl,h0 = R̂nl,lin(m,n,Ω)f̂lin,s + R̂nl,nl(m,n,Ω)f̂nl,s represents the linear response of

the nonlinear DOFs in the absence of the friction contact. The matrix R̂nl,nl(m,n,Ω) is

known as the dynamic compliance matrix (FRF matrix), which is the inverse of the dy-

namic stiffness matrix D̂nl,nl, that is a part of the full dynamic stiffness matrix D̂(m,n,Ω),

see Eq. (2.19). Once the steady state response of the nonlinear DOFs are computed, the

steady response of linear DOFs are obtained as

q̂lin,h = q̂lin,h0 − R̂lin,nl(m,n,Ω)f̂nl,h(q̂nl,h ,m,n,Ω), (4.3)

where q̂lin,h0 is the response of the linear DOFs in the absence of the friction contact.

Often, the Newton–Raphson method is applied to solve the reduced Eq. (4.2). An

iterative step for Eq. (4.2) is expressed as

q̂(p+1)
nl,h = q̂(p)

nl,h −
∂e(q̂(p)

nl,h)

∂q̂(p)
nl,h


−1

e(q̂(p)
nl,h), (4.4)

where q̂(p)
nl,h and e(q̂(p)

nl,h) are the nonlinear displacement vector and the residual vector

at the pth iteration step, respectively. The residual vector and the Jacobian matrix at

the pth step is defined as,

e(q̂(p)
nl,h) = q̂(p)

nl,h − q̂nl,h0 + R̂nl,nl(m,n,Ω)f̂
(p)
nl,h(q(p)

nl,h ,m,n,Ω) and

J(p) =
∂e(q̂(p)

nl,h)

∂q̂(p)
nl,h

 .
(4.5)

The nonlinear algebraic Eq. (4.2) often reveals turning point bifurcations [62] caused

by the variation of normal load, especially in the case of the gap nonlinearities. In such

cases, the standard Newton iteration step defined in Eq. (4.4) fails to converge around

the turning point, where the Jacobian matrix is close to singular. To circumvent this

drawback, a predictor-corrector continuation method is applied and therefore the sys-

tem of equations is augmented with an additional constraint equation. There are many

possibilities for the additional constraint equations; two of them are summarized be-

low:
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4.2. PREDICTOR STEP

(a) A solution is sought on a hyperplane (linear constraint) orthogonal to the tangent

vector at the previous converged point, see Fig. 4.1. Therefore, the system of equations

for the computation of the response curve reads as,

e(q,ω) = 0,

vT
q(q−q(1)

i+1)+ vω(ω−ω(1)
i+1) = 0.

(4.6)

This is known as Keller’s method [63]. Here, v =
{

vT
q, vω

}T
is the tangent vector and(

q(1)
i+1,ω(1)

i+1

)
is the initial guess computed at predictor step, see Sec. 4.2. Note that

ω= nΩ is a variable in the continuation method, since the solution is searched along a

hyperplane, not at the fixed frequency step.

(b ) A solution is sought along the spherical constraint and therefore, the system of

equations reads as,

e(q,ω) = 0,∥∥∆q,∆ω
∥∥=∆s.

(4.7)

This is known as Crisfield’s method [64]. Here, ∆q = (q(1)
i+1 −qi ),∆ω = (ω(1)

i+1 −ωi ) and

(qi ,ωi ) is the converged solution at the i th solution step. ‖.‖ represents the l2 norm

and ∆s is step–length, the radius of the spherical constraint. Due to the presence of

quadratic constraint equation in the Crisfield’s method, solving Eq. (4.7) is rather cum-

bersome; therefore Keller’s method is applied in this thesis.

A predictor-corrector continuation method generally consists of the following steps

that will be discussed below:

• Predictor step,

• Corrector step,

• Step length control.

4.2 Predictor step

The first solution point in the continuation method is obtained using the standard

Newton–Raphson method, where the first converged solution (q1,ω1) is obtained from

the initial guess of the linear solution. However, the initial guess
(
q(1)

i+1,ω(1)
i+1

)
at the

(i + 1)th, i = 1,2,3, ... solution step is sought along the tangent vector at the previous

converged solution
(
qi ,ωi

)
, known as predictor step, see Fig. 4.1. Once the tangent
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vector vi at the i th converged solution is known, by applying a forward Euler scheme,

the initial guess for the (i +1)th solution step is evaluated as,[
q(1)

i+1

ω(1)
i+1

]
=

[
qi

ωi

]
+∆si

vi

‖vi‖
. (4.8)

Figure 4.1: Turning point bifurcation [Paper-A].

Let A =
[

e,q e,ω

]
, where e,q = J =

{
∂e(q,ω)
∂q

}
and e,ω =

{
∂e(q,ω)
∂ω

}
. The tangent vector

at the first converged solution
(
q1,ω1

)
is obtained by the QR decomposition of AT and

represented by the last column of the matrix Q [65]. Further, it is normalized such that

‖v1‖ = 1. The tangent vector at the first converged solution is also obtained as,

vω,1 =±1/‖1,w‖, vq,1 =−vω,1w, (4.9)

where w = {
e,q

(−1)×e,ω
}(

q1,ω1
). Note that the Eq. (4.9) has two possible solutions for

vω,1: vω,1 > 0 should be used for the upward sweeping and, vω,1 < 0 for downward

sweeping. Subsequently, direction vectors are obtained by solving,[
Ai

vT
i−1

][
vi

]
=

[
0

1

]
. (4.10)

The equation vT
i−1vi = 1, is used to preserve the direction of the tangent vector. The

tangent vector is also obtained by normalizing,

vi =

[
qi

ωi

]
−

[
qi−1

ωi−1

]
∆si−1

. (4.11)
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4.3 Corrector step

Generally, we will get a nonzero residue after the predictor step (unless the problem

is linear), i.e. e(q(1)
i+1,ω(1)

i+1) 6= 0. To return to the equilibrium path, an iterative scheme

is required starting from this point. Therefore, the purpose of the correction step is

to iteratively obtain a better approximation of the next point until some predefined

tolerances are met. Pseudo–arclength continuation is used here, in which the Newton

iteration step is applied on the extended system of equations, Eq. (4.6). Therefore, the

next approximation is obtained as,[
q(p+1)

i+1

ω
(p+1)
i+1

]
=

[
q(p)

i+1

ω
(p)
i+1

]
−

[
Ai

vT
i

]−1[
e(q(p)

i+1,ω(p)
i+1)

0

]
. (4.12)

Note that the Jacobian matrix of the pseudo–arclength continuation, Eq. (4.12) is non–

singular at the turning point. This corrector step is repeated until convergence is ob-

tained or the predefined maximum iteration step is reached.

4.4 Step length control

Step–length control is an important part of a continuation method. If the step–length

is too small, then a lot of unnecessary work is done. If it is too large, then the cor-

rector algorithm may converge to a point on a different branch or not converge at all,

see Fig. 4.2(b). Therefore, a good estimate of step–length and adaptation method is

required in order to optimize the computation time while tracing the response curve

accurately. There are many ways to introduce the step–length adaption. These are

mainly based on the performance of the Newton iterations. For example, a simple

scheme may be that we increase the step–length whenever few Newton iterations were

needed to compute the last point, and conversely, we decrease the step–length when

the previous point needed many Newton iterations. Therefore at each step, the value

of the step–length is adapted according to,

∆si =∆s(i−1)

√√√√ N∗
iter

N i
iter

, (4.13)

where N i
iter is the number of iterations required for convergence at i th solution step

and N∗
iter is the user chosen threshold number of iterations. The N∗

iter indirectly con-

trols the actual step–length used in computations. Usually, this value is set to three

or four iterations per step to trace the nonlinear dynamic path. Few more control

strategies can be found in [62]. However, all these methods are based either on the
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number of iterations and on the tolerance value at each iteration step. It does not take

particular care of the turning point and therefore, the iteration steps often fail to con-

verge due to the large step–length or converge to a different branch, see Fig. 4.2(b).

Figure 4.2: Effect of fine control of step–length on the response curve.

In this thesis, in addition to the above adaptation, a method is proposed that facilit-

ates a fine control of the step–length around the turning point based on the direction

vector, vω. It should be noted that sign of vω changes around the turning point from

positive to negative and vice versa, therefore as the continuation algorithm encounters

vω,(i−1) ∗ vω,(i ) < 0, it moves back the solution by two or three step and recalculate the

solution with a step–length of 1/10th of the currently in used. The effect of the new

strategy to control the step–length around the turning point can be seen in Fig. 4.2(a).

Moreover, an additional control strategy for the steep branch of the curve has also been

implemented in the code, that is determined by the norm of vq and formulated as,

∥∥vq,i
∥∥>α∥∥vq,i−1

∥∥, (4.14)

whereα has a constant value ranging 20−40. If the above criteria are satisfied then the

maximum step–length is restricted for those solution points. This helps in controlling

the convergence failure around the resonance and the steep portion of the curve.

Implementing the above control strategy, a smaller step–length size is used around

the turning point and on the steep branch of the curve to avoid convergence failure

and branch switching, while on the other portion of the curve large step–length is em-

ployed. Therefore, it optimizes the computation time while tracing the accurate dy-

namic behavior.
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4.5 Conclusion

The EQM of a single sector is reduced to the nonlinear DOFs using the receptance

based method and the solution methods (continuation methods) for nonlinear algeb-

raic equations with turning point bifurcation are discussed. A method is proposed to

control the step–length at the turning points and on the steep branch of the curve,

which play an important role in the convergence of continuation methods.
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5Magnetostrictive

Materials

Historical overview and physics of magnetostrictive materials are presented in this

chapter. The most famous commercially available magnetostrictive alloy, Terfenol-D

is introduced and its applications are discussed. A novel application of Terfenol-D in

controlling the normal load at the friction interface of the bladed disks is proposed in

this thesis.

5.1 Historical overview

Magnetostriction can be described as the deformation of a magnetic material caused

by a change in its magnetization [66]. The change in magnetization results from mag-

netic moment rotations, which can be brought about by the application of magnetic

fields, heat, or stresses. It is related to various other physical effects [67]. The mag-

netostriction is a reversible material property and therefore magnetostrictive material

returns to its original shape in absence of a magnetic field. Discovery of the magneto-

striction goes back to 1842 when Joule observed a slight change in the dimension of an

iron rod under an applied magnetic field [68]. He notices a strain (∆L/L) of 0.7×10−6

and assumed the process to be volume conserving. This discovery is known as “Joule

magnetostriction” and developed strain is referred to as magnetostrain (λ), see Fig.

2(a) PAPER-D. There are two types of magnetostriction exist in the magnetic materi-

als, called positive and negative. Joule actually observed the negative magnetostriction

and with time materials with the positive magnetostriction is discovered. Furthermore,

the magnetostriction is in fact not volume conservative as presented in Refs. [69, 70],

however the volume change is negligible under normal operation conditions compare

to the “Joule magnetostriction”. The inverse of the magnetostriction effect was first

discovered in the 1860’s by Villari [71], where applied stress induces a change in mag-

netization. In other words, the magnetostriction converts magnetic energy to mech-
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anical energy and used in actuation application, while Villari effect does the opposite

and provides a mechanism for sensing application. Other derived effects of the mag-

netostriction are “Wiedmann effect” and “Matteuci effect”, see Ref. [72].

All magnetic materials exhibit magnetostriction to some degree; however the giant

magnetostriction (magnetostrain > 1 × 10−3) occurs in a small number of materials

containing rare earth metals and thus they can be used for practical applications. The

most common and commercially available giant magnetostrictive material (GMM) is

Terfenol-D, which has a magnetostrain capacity up to 2 × 10−3. These large strains

are a direct consequence of a strong magneto-elastic coupling or magnetoelasticity of

GMM. Another manifestation of strong magneto-elastic coupling is a large ∆E effect,

a change in elastic modulus accompanying a change in magnetization [73]. The ∆E

effect is very small in nickel (∆E = 0.06), while it is quite large in Terfenol-D (∆E ≈ 5).

The ∆E effect of Terfenol-D can be advantageously employed in tunable vibration ab-

sorbers and broadband sonar systems [74]. Due to the change of the elastic modulus,

there is a change in the velocity of sound inside the magnetostrictive materials and this

can be observed. Other details of Terfenol-D are discussed below.

5.2 Giant magnetostrictive material Terfenol-D

Terfenol-D (Tb0.3Dy0.7Fe1.95) is an alloy of terbium, iron and dysprosium with high

magnetostriction capacity and high Curie temperature (380◦C). Terfenol-D has high

force capabilities and high strain at off-resonant frequencies and it can operate in the

relatively hot environment above room temperature. These properties make it suit-

able for many commercial applications such as sound and vibration sources, vibration

control, sonar systems, underwater information exchange, micromotional control and

magnetostrictive motors and many more applications are developing.

As magnetic field passes through Terfenol-D, small magnetic domains rotate and

re-orient themselves and that cause the strain in the material, see Fig. 5.1. A stronger

magnetic field leads to stronger and more definite re-orientation and finally, leads to

the saturation point as seen in Fig. 5.2. The curves in Fig. 5.2 reveal that the negat-

ive magnetic field produces the same elongation as the positive magnetic field and the

shape of the λ− H (magnetostrain vs magnetic field) curve resembles a butterfly and

therefore it is referred to as butterfly curve. Note that theλ−H curve is highly nonlinear

in nature, however a linear relationship exists between the strain and the magnetic field

before the saturation region and devices are often designed to operate in this region,

see Section 3 PAPER-D for the linear modelling used in this thesis. Actuators using

Terfenol-D rod is often designed such that the initial point lies at the beginning of the

linear region of the butterfly curve. This requires a magnetic bias (Hb) and prestress in
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the system. The magnetic bias is obtained using the permanent magnets or using a DC

current in the solenoid, see Fig. 2 PAPER-D. The prestress is employed to enhance the

performance of the actuator since a higher magnetostrain can be obtained with the

same strength of the magnetic field if Terfenol-D is under prestress, see Fig. 5.2 and

often generated using a spring. Moreover, Terfenol-D element has a very high yield

strength in compression compare to the tension, see Table 5.1 and as a consequence,

Terfenol-D actuators are operated almost exclusively under a compressive load. Fur-

thermore, the relative permeability of Terfenol-D is higher than of free space and quite

low compared to a ferromagnetic material such as soft iron (µr = 60,000) and there-

fore a small hysteresis exist in the λ−H curve, see Fig. 5.1, however hysteresis effect is

neglected in this study.

(a) H = 0 (b) H

(c) H (d) H

Figure 5.1: Schematic of rotation of magnetic domain with application of magnetic field.

Figure 5.2: Variation in the butterfly curve with preload conditions (6.9MPa and 0MPa) [75].
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Nominal material properties of Terfenol-D are summarized in Table 5.1. These val-

ues can only be used for rough comparisons since the properties are variable in each

application. Furthermore, the manufacturing process also has a great influence on the

exact value of these properties [76]. Also level of the prestress and the magnetic bias

can have a substantial influence on these properties. Therefore, average values of these

quantities are used in PAPER-D.

Table 5.1: Material properties of Terfenol-D [76]

Terfenol-D property Value range Comments

Nominal composition Tbx Dy1−x Fey 0.27 < x < 0.3&1.9 < y < 2

Density 9250kg/m3 Depends on the manufacturing

Compressive strength 305–800MPa Preferred in applications

Tensile strength 28–40MPa Mostly avoided in applications

Elastic modulus 10–75GPa At constant H

Sound speed 1640–1940m/s Due to ∆E effect

Curie temperature 380◦C Maximum operating temperature

Relative permeability (µσ/µ0) 9.0–12.0 Permeability at constant stress

Saturation magnetization at 1.0 Tesla Preferred distance to saturation

Magnetostrain 1000–2000ppm Parts per million

5.3 Adaptive control of normal load

A novel application of the magnetostrictive actuator is proposed in PAPER-D, where the

Joule magnetostriction [77] is employed to increase the normal contact load between

the underplatform damper (UPD) and the blade platform of the bladed disk. This is

achieved by constraining the actuator between the walls of UPD, see Fig. 6 PAPER-D.

Three mounting designs (d sg 1 to 3) and two boundary conditions between the UPD

walls and the actuator output ends are proposed. In the first boundary condition

(BC1), there is a frictional contact and in the second boundary condition (BC2), the

UPD walls and the actuator ends are bonded. In other words, in the first case, the re-

lative motion between actuator ends and UPD walls is allowed and therefore the nor-

mal contact load between the blade platform and the UPD has a contribution from

the centrifugal load; whereas in the second case, the UPD is fixed with actuator and

therefore the normal contact load between the blade platform and the UPD is only

controlled by the actuator force. As the current flows inside the actuator, it expands in

the longitudinal direction. However, due to the presence of UPD wall the end displace-

ment is converted into the normal contact load. A static nonlinear contact analysis is
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performed to compute the change in the normal load due to different mounting con-

figurations and boundary conditions.

The output force(Fm) and the normal contact load(N0) on the blade platform as a

function of input current for different mounting designs are depicted in Figs. 5.3a and

5.3b for BC1 and BC2, respectively. A detail computational procedure is presented in

PAPER-D. The computed results reveal that a change in normal load as high as 750N

can be obtained by properly designing the actuator mounting. It means that change

in the normal load can be from 0 to 750N by varying the input current from 0 to 3A in

the actuator circuit and thus an optimum damping in the system can be achieved by

proper tuning of the normal contact load. Furthermore, interface contact parameters

such as contact stiffnesses, friction coefficient and contact conditions vary a lot dur-

ing vibration and therefore optimization of an UPD in the design stage is a demanding

task. Alternatively, an optimum damping in the system can be achieved in many cases

by changing the normal load even though the interface parameters vary during vibra-

tion and with time.
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Figure 5.3: Variation in the normal load(N0) and the output force(Fm) with input current(I ) at µ = 0.3: (a)

for BC1 and (b) for BC2. N ref
01 represents the normal load at the blade platform due to the Fc only and N

d sg 1
01

represents the normal load due to the Fc and d sg 1 for BC1. Similarly, N
d sg 1
02 represents the normal load due

to the d sg 1 for BC2 and other notations are interpreted in the same way.

5.4 Conclusion

Physics of the magnetostrictive materials is briefly discussed in this chapter. A novel

application of the magnetostrictive material Terfenol-D, in controlling the normal con-

tact load at the friction interface of the bladed disks is presented.
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6Results

In this chapter, the time-discrete contact model developed in PAPER-A is applied at the

shroud contact, for the nonlinear forced response analysis of a test case bladed disk

(Fig. 6.1) and a real bladed disk (Fig. 6.9), by means of the Alternate Frequency Time

(AFT) domain method. The contact models selected for these studies have 1D and

2D tangential motion with variable normal load that exhibits turning point bifurcation

and induces higher harmonics of the contact forces. The forced response with single

harmonic and multiharmonic approximations are presented and compared. Some

parametric studies with the variation of normal loads, excitation forces and friction

coefficients are also presented in this chapter. The damping potential of strip dampers

and multiple friction contacts on a real bladed disk is analyzed and results are presen-

ted in PAPER-B and PAPER-C, respectively.

6.1 Test case blade

The test case blade is a simplified bladed disk model consisting of eight sectors, as

shown in Fig. 6.1. Blades are coupled by an extended shroud and each sector is discret-

ized into 498 elements with midside nodes using commercial FEM software ANSYS®;

the sector comprises 4488 DOFs and 50 mode shapes are kept in the FRF computa-

tion, for the receptance based approach in the nonlinear analysis. The nodal diameter

map for the bladed disk is shown in Fig. 6.3, in which natural frequencies of most of

the mode families (MFs) lie on a horizontal line that indicates blade dominated modes

of the bladed disk. A single MF is a group of mode shapes corresponding to the dif-

ferent NDs for the same blade mode since the natural frequencies and mode shapes

depend on the ND as explained in chapter 2. The mode shapes of the 1st MF, which

corresponds to the first flap (1F) mode of the blade is depicted in Fig. 6.2. The ND = 0

displays inphase motion for all the blades, while ND = 4 exhibits out of phase motion

for consecutive blades. For ND = 1 and ND = 2 zero displacement nodal lines are vis-
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ible in the figure. Moreover, it should be noted that disk displacement is same for all

the NDs, mean disk motion is uncoupled with blade motion and known as blade dom-

inated modes. Furthermore, ND = 0 and ND = 4 are stationary mode shapes, while

ND = 1,2 and 3 are rotating mode shapes.

The coefficient of friction of the contact interface is µ= 0.5, tangential and normal

contact stiffnesses are Kt = 2× 105N/m and Kn = 105N/m, respectively. The number

of discrete points in the FFT computation is 256. In the calculations performed, the

steady state amplitude at the response node is computed as max(
√

x(t )2 + y(t )2 + z(t )2)

over one period, where x(t ), y(t ) and z(t ) are the time domain displacements of the re-

sponse node in the global coordinate system at the sought frequency. The response of

the bladed disk is obtained for the 1D and 2D tangential motion with variable normal

load in case study-1 and 2, respectively.

Figure 6.1: Finite element model of the test case blade

Figure 6.2: Mode shapes of the 1st mode family (1F mode) for different nodal diameters
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6.1.1 Case study-1

In this case study, a point excitation f̂x = f̂y = f̂z = 2N with the spatial periodicity of

m = 3, which corresponds to engine order (EO)3, is applied at the excitation node of

the blade. The static component of the normal load (N0) is kept constant at 5N and the

contact model with the 1D tangential motion and variable normal load is considered in

the response computation. The response around the MF1 (1F) mode is analyzed. The

excited nodal diameters due to the point excitation and higher harmonics of contact

forces are listed in Table. 6.1. Furthermore, excitation temporal harmonics corres-

ponding to the rotational speed of 2800rpm and m = 3 is depicted in Fig. 6.3.

Table 6.1: Example for the relation between the number of the temporal harmonics n, spatial

harmonics m, the harmonic index h and the nodal diameter ND. (−) and (+) represent the

backward and forward travelling wave, respectively.

Engine order = m = 3, Number of blades = nb = 8

Temporal harmonic(n) Harmonic index =
H = mod(m ∗n,nb)

Nodal diameter (ND)

1 3 3(−)

2 6 2(+)

3 1 1(−)

4 4 4

5 7 1(+)

6 2 2(−)

7 5 3(+)

8 0 0

9 3 3(−)

...
...

...

The response curve obtained with 1,3,5 and 10 harmonics in the EQM are plotted

in the Fig. 6.4. A reduction of 1/2.75 times in the peak amplitude is achieved at this

load, however this is not the optimum damping in the system, more reduction in the

amplitude is obtained at other normal loads. As the number of harmonics in the EQM

increases, some additional peaks appear in the low frequency region that corresponds

to blade torsion, MF2 (1T) of the bladed disk and it is excited by the second and third

harmonics of the contact forces. The higher harmonics of the contact forces are gen-

erated due to the stick-slip motion.
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Figure 6.3: Nodal diameter map (ZZENF diagram) of the test case blade with 8 mode families.

The blue dashed line with numbers (temporal harmonic (n)) indicates the engine excitation fre-

quencies for the rotation speed of 2800rpm and m = 3.
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Figure 6.4: Response amplitude of the test case blade at N0 = 5N and f = 2N with varying nh.
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However, the peak amplitude at the shifted resonance of the 1F mode (128.7Hz)

remains unchanged as the number of harmonics increases. This is also observed in

the amplitudes of the harmonic component of the displacement in Fig. 6.5, which are

dominated by the first harmonic around the 1F mode.
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Figure 6.5: Harmonics of the forced response curve of the test case blade at N0 = 5N and f = 2N.

In Fig. 6.6, the friction force and its harmonic components are plotted for 90.5Hz

and 128.7Hz. It should be noted that the higher harmonics (2nd and 3rd) of the non-

linear tangential force at 128.7Hz have comparable amplitude to the first harmonic,

eventhough it has no influence on the response amplitude. This is because, there is

no resonance frequency close to 2,3...7th temporal harmonics of the contact forces

around 128.7Hz (2800rpm, m = 3) , see nodal diameter map Fig. 6.3. On other hand, a

small magnitude of the second harmonic of the contact force at 90.5Hz has a signific-

ant influence on the vibration amplitude due to the presence of 1T resonance mode at

181Hz. Furthermore, the peak magnitude of the contact force at 128.7Hz is 11N, while

the static component of the friction force is 2N (µN0) that reveals a huge contribution

of the variable component of the normal load. Therefore, in such cases keeping the

normal load constant will result in an inaccurate prediction.
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Figure 6.6: Friction forces and their harmonic components.

6.1.2 Case study-2

The excitation force amplitude considered for the second case study is the same as

the first, however EO1 is investigated instead of EO3. The full-3D contact model with

variable normal load is applied and the response around the first torsion MF2 (1T) is

analyzed in this case. The static component of the normal load (N0) is varied from an

initial gap of 1mm to 200N load, to study the behavior of the response curve and to find

the optimum normal load for the maximum damping in the system. Five harmonics

are retained in the EQM to predict the accurate response of the structure as observed

in the previous case. The normal contact stiffness is the same as in the first case and
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the tangential contact stiffness reads as,

Kt =
[

Kt 0

0 Kt

]
. (6.1)
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Figure 6.7: The forced response curve obtained around MF2 (1T mode) at f = 2N with varying

gap and normal load.

The obtained response curve is depicted in Fig. 6.7. A noticeable variation of the

resonance frequency and damping effect is clearly visible. The initial gap in the shroud

leads to the turning point bifurcation and it gives a stiffening effect to the structure.

The gaps also provide a damping effect to the structure, but it may damage the shroud

contact and hence the turbine blade due to impact in each periodic cycle. Further-

more, as the normal load increases peak amplitude drops to a minimum level that

is the required value of normal load to achieve the optimum damping in the system,

which is around 25N in this case. At this load, motion of the damper is in the slip-

ping state at most of the time in a periodic cycle. A further increase in the normal load

brings the system in stick-slip phase that provides more stiffening effect to the system

than damping.
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The slip and friction loop at 173.5Hz for a 0.2mm gap (turning point) case is presen-

ted in Fig. 6.8. It clearly reveals that the predominant direction of motion lies along

the x−axis and the amplitude of the tangential force in the y−direction is almost 10

times lower than in the x−direction. Therefore, the motion along the y−axis contrib-

utes little to the damping of the system. In these cases, 2D uncoupled friction contact

model with variable normal load also lead to an accurate response prediction. A case

study with 2D coupled and uncoupled friction contact model is presented in PAPER-A.

Furthermore, the tangential force is zero in more than half of the period cycle that is

the most likely case around the turning point due to the separation of contact. There-

fore, it also generates higher harmonics of the tangential contact forces, as shown in

Fig. 6.8. However, these higher harmonics do not effect the nonlinear response curve

due to the same as reason explained before.
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Figure 6.8: Friction force and its harmonics at 173.5Hz and 0.2mm gap.
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6.2 Real bladed disk

One of the low-pressure turbine (LPT) rotor blades that is under investigation inside

the COMP project is shown in Fig. 6.9. The rotor blades were designed and manufac-

tured during the FUTURE project (Flutter-free turbomachinery blades, 2009−2012) led

by KTH energy technology department and the LPT rotor blade is located at Centro de

Tecnologìas Aeronàuticas (CTA) facility. Flutter tests and measurements with interlock

shroud were performed during the FUTURE project.

One of the aims inside the COMP project is to compare the measurement results

with the new developed simulation tool. Therefore, some preliminary simulation res-

ults on the CTA rotor blades are presented below.

Figure 6.9: Low pressure turbine (LPT) rotor blades at Centro de Tecnologìas Aeronàuticas and its

FEM model.

The CTA rotor turbine consists of 146 blades and the blades are coupled through

an interlock shroud, see Fig. 6.9. Due to the limited capacity of MATLAB®, the blade is

coarsely meshed with 32490 DOF. For the generation of the FRF matrix, the first 50 nat-

ural frequencies and mass-normalized mode shapes are determined for the required

NDs. The nodal diameter map for the first eight mode families of the bladed disk is

shown in Fig. 6.10. Unlike the test case blade, natural frequencies of the MFs corres-

pond to the low NDs lie on the curves, that represent the disk dominated modes of
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the CTA blades; while natural frequencies correspond to the high NDs are on the hori-

zontal line that indicate the blade dominated mode shapes. In other words, blade/disk

motion is coupled for low NDs and uncoupled for the high NDs. Modal damping due

to material energy dissipation is assumed to be 0.001. The number of discrete points

in the FFT computation is 256.
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Figure 6.10: Nodal diameter map of the CTA blades.

6.2.1 Case study-3

The CTA blade is excited on the blade tip with a point force ( f̂x = f̂y = f̂z = 1N) of EO10

and the response is computed on the shroud tip. The shroud contact interface is shown

in Fig. 6.9 and five node-to-node contacts are utilized for the evaluation of the contact

forces.The full-3D contact model with variable normal load is applied and the response

around the first MF is analyzed here. The aim of the case study is to demonstrate the

capability of the developed simulation tool in describing the complex friction contact

on a real bladed disk and compute the nonlinear response curve with multiple contact

nodes at the friction interface. The normal contact stiffness is Kn = 1×106N/m and the
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tangential contact stiffness reads as,

Kt =
[

2×106 0

0 2×106

]
N/m. (6.2)

Results of the forced response calculation, obtained for three load cases (0.05mm gap,

5N and 10N load) with varying number of the temporal harmonics (1,2,5 and 10) is

presented in Fig. 6.11. A slight change in resonance frequency is observed for all loads

and a significant damping effect is found even in the case of a gap. The behavior of

the response curve is similar to the test case blade, with a decrease of the response

amplitude as the normal load increases. Results for the different number of harmonics

in the EQM are shown in the figure. Practically identical response curves are obtained

with 5 and 10 harmonics in the EQM. Therefore, we can conclude that the response

converges for 5 harmonics in this case. However, single harmonic balance is assumed

in the next computations.
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Figure 6.11: The forced response curve for the CTA blade at varying gap, normal load and number

of harmonics.

In Fig. 6.12, the frequency response function (FRF) with varying excitation level is

plotted. The damping effect for the all the excitation levels is evident from the curve. At
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small excitation level, the shroud is in the sticking state and due the high contact stiff-

ness assumed in the simulation, a large shift in the resonance frequency is observed.

As the excitation level increases, more slipping takes place in the contact and hence

resonance frequency moves close to the free standing natural frequency of the shroud.

At f = 0.3N, maximum damping is achieved in this case, however net damping in the

system is a function of the ratio µN0/ f , while Kn and Kt are kept constant.
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Figure 6.12: The nonlinear frequency response function of the CTA blade obtained at varying ex-

citation amplitude (µ= 0.4 and N0 = 5N).

Forced response level calculated for the nominal excitation level ( f = 1N), but with

different values of friction coefficient are shown in Fig. 6.13. The response curve beha-

vior resembles a single degree of freedom system with varying viscous damping level. A

little change in the resonance frequency is observed at this normal load and excitation

level. However, the effect on the amplitude is significant.
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Figure 6.13: Influence of friction coefficient variations on the nonlinear forced response of the

CTA blade computed at f = 1N and N0 = 5N.

6.3 Conclusion

The dependency of the resonance frequencies and resonance amplitudes on the nor-

mal loads, excitation forces and the contact interface parameters (Kn,Kt and µ) are

presented in this chapter. The results obtained illustrate the complicated features ex-

hibited by the friction contact on the forced response of the bladed disk. The nonlinear

nature of the friction contact generates higher harmonics of the friction force that re-

quires multiharmonic formulation of the EQM. An increase in the number of harmon-

ics also increases the size of the EQM and therefore increase the computation time. A

comparative study reveals that 5 harmonics are enough in the above examples to cap-

ture the response accurately with negligible error. However, the number of harmonics

required depends on the dynamics of structure, excitation forces and on the contact

model. First few simulations can be used to decide upon the number of harmonics

required for the accurate prediction, before running the parametric studies.

The obtained results reveal that despite the strong nonlinearities exhibited by the
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friction contact, see Fig. 6.6 and 6.8, the developed numerical simulation tool (WP3)

is capable of solving the nonlinear system of equations over a wide frequency range

without being hindered by convergence problems. Therefore the developed tool seems

to be effective for the study of dynamic systems featuring complex nonlinear contact

forces. Furthermore, comparative analysis of the test case and the real bladed disks

also reveals that as the number of DOFs increases in the analysis, computation time

becomes larger, therefore reduce order modelling (WP1) must be integrated with WP3

to perform the parametric studies on industrial bladed disks. Finally, for a given struc-

ture, the net damping in the system is a function of µN0/ f , therefore in order to obtain

the maximum damping response curve should be minimized with respect to µN0/ f .

54



7
Conclusions and

Recommendations for

Future Work

7.1 Concluding remarks

Accurate modelling of friction contact and solution of the resulting nonlinear algebraic

equations in a reasonable time are of vital importance for the industrial application of

the numerical simulation tool developed to study friction damping of bladed disks.

A simple 1D contact model yields fast results, but it is not accurate enough to cap-

ture the full-3D motion of the contact interface and hence it underestimates or over-

estimates the amount of friction damping. Furthermore, friction damping depends

on many parameters such as rotational speed, engine excitation order, normal contact

load, contact stiffness and friction coefficient values etc. Moreover, contact stiffness

values are the function of the normal contact load, contact area, contact geometry, etc.

and varies significantly during operation. In conclusion, it is very hard to estimate and

control the contact interface parameters and therefore accurate prediction of the non-

linear forced response curve is not an easy task. This thesis attempts to answer few of

these challenges and the main output and conclusions of this thesis work are:

⇒ A 3D time-discrete contact model is reformulated and an analytical expression to

compute its Jacobian matrix is derived in this work. The Jacobian matrix is calculated

in parallel with the computation of the nonlinear contact force in the AFT framework

leading to a more efficient approach than to the classical finite difference approach.

The contact model and the dynamics of bladed disks are encrypted in MATLAB® and a

simulation tool to study the friction damping on bladed disks is developed during the

project. The tool has a capability to simulate shroud contact, underplatform damper

and multiple friction contacts as well.
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⇒ The numerical studies performed using the developed tool reveal that despite the

strong nonlinearities exhibited by the friction contact, the tool is capable of solving the

nonlinear system of equations over a wide frequency range without being hindered

by convergence problems. Therefore the developed tool seems to be effective for the

study of dynamic systems featuring complex nonlinear contact forces.

⇒A comparison between quasi-3D and full-3D contact model reveals that the quasi-3D

contact model leads to an over and underestimation of friction damping in the general

case and a full-3D friction contact model is essential to accurately predict the nonlin-

ear forced response of a bladed disk.

⇒ A numerical investigation of the strip dampers indicates that a significant amount

of damping in the system can be achieved with a very thin strip (Thickness = 0.5mm

and mass = 2gram) due to the high normal load induced by the centrifugal forces. Fur-

thermore, the strip damper is more efficient for low nodal diameters, where blade-disk

motion is strongly coupled.

⇒ Numerical investigation of multiple friction contacts reveals that friction damping

obtained using multiple contact interfaces is additive in nature and harvest the benefit

of all the contact interfaces. By using multiple friction contact interfaces several nodal

diameters and modal families can be damped simultaneously in a wider range of en-

gine excitation amplitude, this is in contrast to the case with a single friction interface.

⇒ The nonlinear nature of the friction force leads to higher harmonics of the contact

force, that require a multiharmonic formulation of the EQM. However, an increase in

the number of harmonics also increases the size of the EQM and therefore the com-

putation time. A comparative study in chapter 6 and PAPER-A, reveals that 5 harmon-

ics are enough to capture the response accurately with negligible error. However, the

number of harmonics required depends on the dynamics of structure, excitation and

on the contact model. First few simulations can be used to decide upon the number of

harmonics required for an acceptable accurate solution, before running the paramet-

ric studies.

⇒ Finally, a novel application of the giant magnetostrictive material in adaptive control

of the normal contact load at the friction interface of a bladed disk is proposed. The

numerical investigation reveals that the change in the normal load as high as 750N can

be obtained by properly designing the actuator mounting. It means that change in the
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normal load can be from 0 to 750N by varying the input current from 0 to 3A in the ac-

tuator circuit and thus an optimum damping in the system can be achieved by proper

tuning of the normal contact load.

7.2 Recommendations for future work

The computation of FRF matrix at each iteration step also consumes a substantial

amount of time with many contact nodes. A reduction method with high-accuracy

FRF developed in Ref. [38] is integrated with the developed simulation tool to reduce

this time. However, a further decrease in the computation time can be achieved by

employing the component mode synthesis techniques (WP1) in the formulation of the

EQM, especially for the nonlinear analysis of a mistuned system. Therefore, it is highly

recommended to integrate WP1 with WP3 to enhance the computational potential of

the developed tool.

The simulated nonlinear forced response curve are the function of contact inter-

face parameters, mainly the contact stiffness and the friction coefficient (Kn,Kt and µ).

These parameters are material dependent and vary substantially with the variation of

normal contact load, contact geometry, contact area, temperature, etc. Furthermore,

the contact area can significantly change due to vibrations of the blades. Therefore,

these parameters are required to be understood in the better way particularly for a flat-

on-flat contact in order to use the developed tool with confidence. Furthermore, the

validation of the developed simulation tool is also required. For example, two blades

model with strip damper can be considered to validate the result of PAPER-B and in

parallel, the influence of the strip thickness and the contact area on the interface para-

meters can be investigated. A comparative study of the wedge dampers and the strip

dampers can also be performed on the same test bench. The centrifugal load is often

higher than the required value due to the high rotational speed of the bladed disk and

it can be reduced by some factors if strip damper can be used instead of the widely

used rigid wedge dampers.

Finally, the innovative solution proposed in PAPER-D should be validated experi-

mentally and its practical application possibilities should be explored.
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Papers

PAPER-A: An analytical calculation of the Jacobian matrix for 3D friction contact

model applied to turbine blade shroud contact

In PAPER-A, an analytical expression is formulated to compute the Jacobian matrix

for 3D friction contact modelling that efficiently evaluates the matrix while computing

the friction contact forces in the time domain. The analytical expression drastically

reduces the computation time of the Jacobian matrix with respect to the classical fi-

nite difference method. Alternate frequency time domain method is used to switch

between the frequency domain equations of motion and the computation of the non-

linear force in the time domain at discrete time steps. The method allows capturing

complex nonlinearities exhibited by the friction forces and the normal forces while

keeping the computational advantage of frequency domain modelling.

The developed expression is successfully used for the calculation of the friction damp-

ing on a bladed disk with shroud contact and a comparison between quasi-3D and

full-3D contact model is presented. The numerical investigations show that the quasi-3D

and full-3D friction contact models result in similar results if tangential motion in the

shroud contact plane occurs mainly along one axis, whereas if the tangential motion is

either 2D or 1D but not dominated along one axis in the chosen shroud local coordin-

ate system, then the quasi-3D formulation leads to an over and underestimation of

friction damping. Since the motion kinematics in the shroud contact plane is seldom

known in advance, therefore the full-3D friction contact model is essential to accur-

ately predict the nonlinear forced response of a real bladed disk.

Furthermore, the computation time of the analytical Jacobian is compared with the

finite difference method. The comparison shows that the computational time with

a single contact node is equal for both methods; however, as the number of contact

nodes increases a substantial amount of time saving (70% with 5 contact nodes) is
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achieved by using the analytical method. Therefore, it can be argued that the proposed

method is more beneficial for the case of mistuned assemblies and for the simulation

of microslip behavior using multiple contact nodes at the interface. In addition, it is

also noticed that the quasi-3D formulation requires 40% less time compared to the

full-3D formulation, therefore the quasi-3D formulation should be used where applic-

able.

PAPER-B: Investigation of damping potential of strip damper on a real turbine blade

PAPER-B investigates the damping potential of a strip damper on a real bladed disk.

A finite element model of the strip dampers that allows for an accurate description of

their dynamic properties is included in the steady-state forced response analysis of the

bladed disk. The strip damper is modelled with (a) free-free and (b) elastic boundary

conditions and their influences on the nonlinear forced response curve are analyzed.

Practically no difference due to a change in the boundary condition of the strip is

observed on the blade response curves, and therefore it is suggested that both bound-

ary conditions can be employed in the nonlinear analysis of bladed disks with strip

dampers. Furthermore, the effect of the strip thickness and the mass are also investig-

ated. The computed results reveal that a significant amount of damping in the system

can be achieved with a very thin strip (Thickness = 0.5mm and mass = 2gram) due to

the high normal load induced by the centrifugal forces. Furthermore, the effect of the

strip damper on different nodal diameters of modal family 2 is analyzed. The obtained

results reveal that the strip is more efficient for low nodal diameters, where blade-disk

motion is strongly coupled, however a moderated amplitude reduction (50%) is ob-

served for high nodal diameters as well.

PAPER-C: Numerical analysis of multiple friction contacts in bladed disks

In PAPER-C, the effect of multiple friction contact interfaces (shroud contact + strip

damper) on the nonlinear forced response of a realistic bladed disk is investigated and

results are compared with the single friction contact interface (shroud contact or strip

damper). The obtained results reveal that friction damping obtained using multiple

contact interfaces is additive in nature and harvest the benefit of all the contact inter-

faces. By using multiple friction contact interfaces several nodal diameters and modal

families can be damped simultaneously in a wider range of engine excitation amp-

litude, this is in contrast to the case with a single friction interface. Therefore, multiple

friction contact interfaces are a potentially effective solution if several critical reson-

ances are present in the operating frequency range, which is often the case for a real
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bladed disk. Furthermore, a highly accurate definition of the FRF matrix is employed in

the analysis that is capable of representing the accurate dynamics of the structure with

few dynamic modes by capturing the static residual stiffness separately. This reduces

the computation time substantially while the dynamics of the structure are represen-

ted accurately especially the local elasticity of the friction interface that is essential to

compute the nonlinear contact forces. Furthermore, a combination of highly accurate-

FRF matrix and an analytical calculation of the Jacobian matrix (PAPER-A) simulate the

multiple friction contacts of a complex bladed disk in a reasonable time and therefore

the method is potentially applicable in the design phase at the industrial level as well.

PAPER-D: Adaptive control of normal load at the friction interface of bladed disks

using giant magnetostrictive material

In PAPER-D, a novel application of magnetostrictive actuators in underplatform dampers

of bladed disks is proposed for adaptive control of the normal load at the friction inter-

face in order to achieve the desired friction damping in the structure. Friction damping

in a bladed disk depends on many parameters such as rotational speed, engine excit-

ation order, nodal diameter, contact stiffness, friction coefficient and normal contact

load. However, all these parameters have a fixed value at an operating point. On the

other hand, the ability to vary some of these parameters such as the normal contact

load is desirable in order to obtain an optimum damping in the bladed disk at different

operating conditions. This is achieved by constraining the output rod of the actuator

between the walls of the underplatform damper.

The computed results reveal that a change in normal load as high as 750N can be

obtained by properly designing the actuator mounting. It means that change in the

normal load can be from 0 to 750N by varying the input current from 0 to 3A in the

actuator circuit and thus an optimum damping in the system can be achieved des-

pite a variation in the contact interface parameters during vibration. Moreover, two

boundary conditions (BC1 and BC2) between the actuator ends and the UPD walls are

proposed, where the BC1 is potentially applicable where a high normal load is required

to achieve the optimum damping in the system and the BC2 is recommended for a low

normal load case. Furthermore, it is demonstrated that the friction coefficient has a

significant influence on the normal contact load and thus on the nonlinear vibration

prediction of the bladed disk with friction contact. Finally, it is possible to damp several

resonances at different operating conditions by altering the normal load at the friction

interface.
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