
Linköpings universitet
SE–581 83 Linköping

+46 13 28 10 00 , www.liu.se

Linköping University | Department of Computer science
Master thesis, 30 ECTS | Computer Science and Engineering

2016 | LIU-IDA/LITH-EX-A--16/028--SE

Design and implementation of
a collaborative secure storage
solution

Fredrik Kangas
Sebastian Wihlborg

Supervisor : Ulf Kargén
Examiner : Nahid Shahmehri

External supervisor : Fredrik Sjöstedt

http://www.liu.se

Upphovsrätt

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under 25 år
från publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår.
Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka
kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för
undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta
tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För
att garantera äktheten, säkerheten och tillgängligheten finns lösningar av teknisk och admin-
istrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i
den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt
samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sam-
manhang som är kränkande för upphovsmannenslitterära eller konstnärliga anseende eller
egenart. För ytterligare information om Linköping University Electronic Press se förlagets
hemsida http://www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet – or its possible replacement
– for a period of 25 years starting from the date of publication barring exceptional circum-
stances. The online availability of the document implies permanent permission for anyone to
read, to download, or to print out single copies for his/hers own use and to use it unchanged
for non-commercial research and educational purpose. Subsequent transfers of copyright
cannot revoke this permission. All other uses of the document are conditional upon the con-
sent of the copyright owner. The publisher has taken technical and administrative measures
to assure authenticity, security and accessibility. According to intellectual property law the
author has the right to be mentioned when his/her work is accessed as described above and
to be protected against infringement. For additional information about the Linköping Uni-
versity Electronic Press and its procedures for publication and for assurance of document
integrity, please refer to its www home page: http://www.ep.liu.se/.

c© Fredrik Kangas & Sebastian Wihlborg

http://www.ep.liu.se/
http://www.ep.liu.se/

Abstract

In the modern enterprises it is common that support and maintenance of IT environ-
ments are outsourced to third parties. In this setting, unencrypted confidential data may
pose a problem since administrators maintaining the outsourced system can access confi-
dential information if stored unencrypted. This thesis work, performed at ELITS, presents
a solution to this problem; a design of a collaborative storage system where all files at rest
(i.e. stored on disk) and in transit remain encrypted is proposed.

The design uses a hybrid encryption scheme to protect the encryption keys used. The
keys can safely be stored in a centralized database as well as sent to the clients without
risk of unauthorized parties gaining access to the stored data. The design was also imple-
mented as a proof of concept in order to establish that it was possible to realize.

Keywords: Hybrid encryption system, Secure storage, Collaborative encrypted storage

Acknowledgments

We would like to thank our supervisors, Ulf Kargén at LiU and Fredrik Sjöstedt at ELITS, for
all the support, excellent feedback and rewarding discussions. We would also like to thank
our examiner, Professor Nahid Shahmehri, for giving us the opportunity to conduct this the-
sis. Finally we would like to thank Youtube user Knifoo and Bob Ross for the enlightening
background noise of the 10 hour edition of Happy Little Clouds.

iv

Contents

Abstract iii

Acknowledgments iv

Contents v

List of Figures vii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 1
1.3 ELITS . 2
1.4 Aim . 2
1.5 Method . 2
1.6 Delimitations . 4

2 Theory 5
2.1 Attacks . 5
2.2 Encryption . 6
2.3 Hash functions . 13
2.4 Key Management . 14
2.5 Secure Communication (SSL/TSL) . 15
2.6 Object Storage . 15

3 Requirements analysis 16
3.1 Functional requirements . 16
3.2 Non-functional requirements . 18

4 Design 19
4.1 Introduction . 19
4.2 Definitions . 19
4.3 System overview . 20
4.4 System Architecture . 21
4.5 Database Structure . 23
4.6 System Flows . 25
4.7 Discussion . 33

5 Threats and mitigations 36
5.1 Introduction . 36
5.2 Process . 36
5.3 Threats . 36
5.4 Design mitigations . 37
5.5 System security analysis . 38

v

5.6 Summary . 40

6 Implementation 41
6.1 Introduction . 41
6.2 Delimitations . 41
6.3 Motivations . 41
6.4 VeraCrypt . 42
6.5 Software components . 42
6.6 Testing . 43
6.7 Discussion . 43

7 Conclusion 45
7.1 Literature study . 45
7.2 Design and implementation . 45
7.3 Conclusion . 46
7.4 Future work . 47

Bibliography 48

List of Figures

1.1 Method phases . 3

2.1 Eavesdropping attack . 6
2.2 Man in the middle attack. 6
2.3 Symmetric Encryption . 7
2.4 Block diagram of AES . 8
2.5 Asymmetric encryption . 9
2.6 Optimal asymmetric encryption padding diagram 11

4.1 Architecture of the system. 21
4.2 EER diagram for the database in the system. 23
4.3 System flow for registering an account. 26
4.4 System flow for activating an account. 26
4.5 System flow for authentication. 27
4.6 System flow for creating a room. 28
4.7 System flow for inviting a user to a room. 29
4.8 System flow for downloading a file. 30
4.9 System flow for writing a file to a room. 31
4.10 System flow requesting a room key change. 32
4.11 System flow for replication complete. 32
4.12 System flow for verifying that a user belongs to a room. 33

5.1 Attack tree for unauthorized file access. 39

6.1 Data stream used for uploading a file in the developed system. 44

vii

1 Introduction

1.1 Motivation

Many computer systems and applications use large amounts of data, either user provided
data or static content in the system. These systems require that the data can be saved and
later accessed when needed. This is usually handled by a database or in larger applications, a
distributed database consisting of several interconnected databases. It is not unusual that the
data is stored unencrypted within the database and that the server encrypts the data before it
is being transmitted to the clients. By doing so, the data is only protected against attacks that
intercept the connection between the client and server with the intention to steal sensitive
data.

Most companies view their data as assets and it is something they want well protected.
Thefts of confidential data is something that costs companies a large amount of money yearly
[19]. Keeping the data unencrypted in the database opens up for a range of different secu-
rity breaches that might lead to confidential company data being stolen. If a malicious user
gets access to the system it would be no problem to read the data stored in the company’s
databases if it is stored unencrypted. This could happen mainly in two ways. The first is a so
called inside attack where an employee of the company, such as an system administrator, uses
its access to the system to do harm. These kind of attacks are one of the hardest to mitigate
and answer to 40% of the attacks performed against companies [9]. The second scenario is
attacks from outside the company. An attacker then uses some security flaw in order to gain
access to the targeted company’s systems and its database.

It is common that companies outsource the hosting and maintenance of their IT environ-
ments. In these situations, it is common that the company responsible for the environment
has full access to the system, including any information and files stored within. Consider-
ing that most companies view their data as assets, this can be an unwanted drawback of
outsourcing. Keeping data unencrypted in a database is therefore a serious security problem.

1.2 Problem statement

Storing confidential data unencrypted can pose a problem. The stored unencrypted data can
be accessed by the administrators managing the system or attackers bypassing the system’s
security. This can greatly compromises the confidentiality of the stored data. The following

1

1.3. ELITS

questions will be addressed in order to propose a solution to the problem:

Question 1. How can a system for file storage be designed to achieve full encryption from storage to
client?

The main assignment of this thesis is to propose and design a solution for secure file
storage in a distributed system. The purpose of the system is to keep files encrypted at
all times except at the client which will perform the actual encryption and decryption.

Question 2. How can such a system be designed to securely manage cryptographic keys?

In order for the system to work in a collaborative fashion, keys have to be shared between
multiple parties. In order to enforce security the keys have to be managed in a secure
fashion.

Question 3. How can such a system be designed to prevent administrators from accessing confiden-
tial information?

Administrators maintaining the database and the file storage should not be able to
gain access to confidential information. Even if an administrator has full access to the
database, it should not be possible to modify the data and thereby gain access to confi-
dential information.

1.3 ELITS

This thesis will be performed at ELITS, which is an IT company with a focus on management
of IT environments [4]. ELITS operates in three main areas: managed services, consulting ser-
vices and IT services. This thesis will be performed within the third area, IT services, where
ELITS provide IT solutions for companies with focus on availability and security. One of the
IT solutions that ELITS provide is a storage solution where ELITS manages the data storage
of companies’ businesses. This thesis will aim to expand ELITS current storage solution to
offer a secure storage module.

1.4 Aim

The main purpose of this thesis is to create a theoretical foundation for secure file storage
in a distributed system. A system design of such a system will also be proposed. The sys-
tem design aims to enable the system to keep all data encrypted within the server and its
database and let the clients handle the encryption and decryption of data. The system design
will be implemented as a proof of concept with limited functionality in order to validate the
proposed system design.

1.5 Method

This thesis work consists of four parts: a literature study, requirement analysis, a combined
design and threat mitigation phase and finally an implementation phase. The system design
phase was carried out as an iterative process. This can be seen in figure 1.1

The first part, the literature study, will be used to gain knowledge primarily about encryp-
tion and key generation. This includes different types of encryption, different algorithms to
perform encryption, as well as key generation and strengthening. Encryption will be a central
part of the system and will be prioritised in the literature study. In order to take advantage
of the encryption algorithms proper keys have to be used, which is why key generation and
strengthening will have to be researched. The literature study will also contain topics related
to secure network traffic, file storage and existing file encryption software. Publications in

2

1.5. Method

the field of computer science as well as Internet resources will be used to gather information
about theses topics.

Then we will proceed to the next part, which is the requirement analysis. During this
part of the thesis work we will specify and analyse the requirements of the system. The
requirements will be derived by analysing the main features of the system in cooperation
with our supervisor at ELITS. The requirements will then be analysed to break them down in
order to find out what they entail for the design and implementation of the system.

During the system design phase, the architecture of the system will be proposed. This
phase will be an iterative process. The architecture shows how all the parts of the system
will be related and structured. During this phase the database used by the system will also
be modeled. An Enhanced Entity Relationship Diagram, EER diagram, will be used in order to
model the relations between entities of the system. Since one of the system’s main functions
is to store files, a model for the file storage will also be proposed in the design phase. This
includes how files are referenced in the database as well as how they will be physically stored.
Also, the communication flow of the system’s main features will be described in the proposed
design. The flows will show the data sent between the different parts of the system, as well
as what is stored in the database, in order for the system to carry out a certain task. Along
with the system design a threat analysis will be done. For each iteration of the system design
phase the design will change according to the findings from the treat analysis. The iterations
will stop once no more realistic threats are identified. At this stage an attack tree [21] will be
created in order to analyse the overall security of the proposed system. The iterative process
described above has been inspired the by the essence of many agile software development
methodologies such as SCRUM [31] and OpenUP [16]. What all agile software methodologies
have in common is the goal of iterating and reworking a solution until it is finished, rather
than developing the solution in a linear fashion [17]. The flexibility of the agile methodologies
is what inspired the iterative process presented above.

The final phase of the thesis is an implementation phase. During this phase a proof of
concept of the system will be developed in the Go programing language. The product of this
phase will serve to validate that the correct system was designed.

Figure 1.1: Method phases

3

1.6. Delimitations

1.6 Delimitations

The clients in the system will at some point keep the user’s encryption key in the memory. We
will not go into details on how to protect against potential extraction of keys kept in memory.
It is assumed that the memory used by the client is protected by the environment that runs
the client. Furthermore, attacks that rely on extraction of keys will not be considered.

The system flows that will be presented as part of the design chapter will only be con-
cerned with the basic functionality of the system. The flows described will have certain secu-
rity aspects to consider, which is why they will be presented in detail. Not all functionality
have similar security aspects and will therefore not be presented in this way.

The platform for the proof of concept clients will be OS X which is the platform provided
by ELITS. Other parts of the system has no such limitations. The proof of concept will only
contain basic functionality based on the requirements specified by ELITS. To handle the local
encryption of downloaded files, VeraCrypt [29] will be used as a part of the client. In addition,
the proof of concept will not be a distributed system.

4

2 Theory

The following sections will give the needed background knowledge and the relevant concepts
in order to fully grasp the thesis work. For the following sections the book Cryptography and
network security: principles and practices [25] has been used as a reference in addition to the
ones provided.

2.1 Attacks

In information security an attack is an attempt to violate confidentiality, integrity or availabil-
ity of data. This can be accomplished by stealing or destroying data as well as denying access
to the service which provides the data. The following sections will explain a few attacks, all
of which are relevant to this thesis.

Reverse engineering

Reverse engineering is the act of extracting knowledge or design information from software.
Based on this information the software could be reproduced as is or with alterations to the
original software. While reverse engineering could be used with good intentions, for instance
to reproduce legacy software without documentation, it can also be used with malicious in-
tent. Applications which use cryptographic keys to encrypt or decrypt sensitive data could
be subject for reverse engineering attacks. By reverse engineering the software an attacker
could get hold of these keys and use them to decrypt sensitive data from a local repository
for instance. Another scenario where a reverser engineering attack could be used maliciously
is to extract information about certain algorithms such as encryption and key generation al-
gorithms. Knowledge about the algorithms used will enable an attacker to replicate the soft-
ware, but with intentional flaws that compromise the security of the software.

Eavesdropping

To get hold of secret information, eavesdropping can be used. An eavesdropping attack is
when an unauthorized party secretly picks up information shared between two parties, with-
out their consent. In the scenario depicted in figure 2.1, the attacker can listen to the commu-
nication without the sender and the recipient knowing. Eavesdropping can be carried out in

5

2.2. Encryption

many different ways. The most basic way is secretly listening in on a conversation between
two persons, but it can also be done in more advanced ways. This involves, tapping in on
a phone line to listen to people’s calls or secretly listen to traffic on a computer network.
The act of eavesdropping is completely passive and the eavesdropper just listen to the com-
munication, not altering or manipulating the information. To protect against eavesdropping,
encryption can be used. By encrypting the information sent over the channel, only authorized
parties can read it. This makes the information far less useful for a potential eavesdropper.

Figure 2.1: Eavesdropping attack

Man in the Middle

Man in the middle, MITM, is an attack that is widely known in communication security. In
a MITM attack, the attacker intercepts the communication between two parties without their
knowledge. This might seem like the same as an eavesdropping attack, but in a MITM the
attacker have full control over the data sent between the two parties. The attack can be seen
as an active eavesdropping attack. A MITM attack can be used in different ways. It can
be used to eavesdrop by passing on the information unchanged. There is also a possibility
for the attacker to alter the information passing through. In the scenario in figure 2.2, the
sender and the recipient think they are communicating with each other. In fact, they are
both communicating with the attacker, who is impersonating the sender or the recipient. By
tricking the users to think the attacker is a trusted party, the attacker can ask for secrets that
should only be revealed to trusted parties. The secrets revealed might be a password or an
encryption key. To protect against MITM attacks, it is of importance that the sender and
the recipient can verify the identity of the other party. This can be done by using digital
signatures with protocols such as SSL/TLS.

Figure 2.2: Man in the middle attack.

2.2 Encryption

Encryption is the process of protecting data from being read by unauthorized users. This
is mainly done by mathematically altering data so that only authorized users can access it.

6

2.2. Encryption

The unencrypted data, usually know as plaintext, is transformed by an encryption algorithm.
Transformed data is often called ciphertext and needs to be decrypted before it can be ac-
cessed. The encryption algorithm uses an specific encryption key to encrypt the data and only
an authorized user with the correct decryption key can access the data. There are two main
types of encryption, symmetric and asymmetric encryption.

Symmetric encryption

Symmetric encryption is a type of encryption where the same cryptographic key is used for
both encryption and decryption. The authorized parties agree on a symmetric key which is
usually generated by a so called pseudo-random key generator. The selected key then needs to
be kept secret in order for the encryption to remain secure. The parties can now securely
exchange information. The sender encrypts its messages with the shared key and receiving
parties decrypt the message with their key. The main drawback of this type of encryption
is that all parties need to have access to the key, which requires some kind of key exchange.
This can e.g. be handled by sending the symmetric key over a secure communication channel,
typically achieved by asymmetric encryption. However, the performance of encryption and
decryption with symmetric encryption is much better than that of asymmetric encryption
and symmetric encryption is therefore widely used.

There are two categories of symmetric encryption algorithms, block ciphers and stream
ciphers. In block ciphers a predefined number of bits, a block, are passed to the algorithm and
encrypted at the same time. Block ciphers is widely used in algorithms used for encrypting
large data files. They often operate in a number of rounds, where the block is transformed
by simple permutations and substitutions. In stream ciphers on the other hand, each bit is
passed to the algorithm and encrypted individually. Stream ciphers is often used in scenarios
where the amount of data to be encrypted is unknown, like a wireless network or a phone
call. Stream ciphers use a random bit stream as the encryption key. Each bit of the plain text
is encrypted, typically by XOR:ing, with the corresponding bit of the encryption key stream.
The key stream used in a stream cipher needs to be fully random and is only to be used once.

Figure 2.3: Symmetric Encryption

Advanced Encryption Standard

In the late 90s there was a need to replace the current encryption standard at the time, Data
Encryption Standard. This was done by publicly holding a competition to find a new encryp-
tion algorithm that was more efficient and secure than the current standard. The winning
algorithm was Rijndael, a symmetric block cipher. The new standard was called Advanced

7

2.2. Encryption

Encryption Standard, AES, and was the first openly published encryption algorithm to be
approved by National Security Agency of the United States in 2002.

AES uses a block size of 128 bits and is able to use an encryption key length of either 128,
192 or 256 bits [26]. The algorithm operates on a block by running a series of operations on it.
For how many rounds the series of operations is performed is determined by the key length.
For keys of 128 bits, 10 rounds is used, and keys of lengths of 192 and 256 bits uses 12 and 14
rounds, respectively.

When a block is encrypted with AES-128, the encryption key is used to generate 10 unique
round keys that will be used in each round. The block is then organized as 4x4 matrix, where
each position contain 1 byte of the block. The matrix is then transformed by having each byte
XOR:ed with the first round key. In each round the matrix is then transformed by substitution
and permutation of the bytes. The first step of a round is substitution for each of the bytes
according to a substitution table. The rows of the matrix are shifted cyclically to the left in
the next step. The first row is not shifted at all, while the other rows are shifted 1,2 and 3
bytes respectively. After the rows of the matrix have been shifted, the columns are mixed.
These two steps provides diffusion in the cipher. This means that changing one byte in the
input causes several bytes of the output to change. Diffusion causes potential patterns to
scramble and greatly increases the amount of data needed to break the cipher by analysis. In
the last step of a round the matrix is XOR:ed with the round key for the next round. These
four operations are then repeated for the remaining number of rounds.

Figure 2.4: Block diagram of AES

AES is widely used because of its performance and security. Since the operations per-
formed in the rounds are simple and can be done in parallel by hardware, manufacturers of
processors have included hardware acceleration for AES in their processors. This means that
the processors is shipped with instructions to perform encryption with AES, which greatly
increase the speed of the encryption and decryption.

Other algorithms

There exists other symmetric block cipher algorithms. The most common is the other finalists
from the public competition, Serpent and Twofish [14]. For the implementation of this system
AES will be used since it is the current standard. Therefore, the other common symmetric
block cipher algorithms will only be mentioned briefly.

Serpent uses the same block size and key length as Rijndael, but uses 32 rounds [10]. The
algorithm uses permutations and substitutions and is designed for all operations to run in

8

2.2. Encryption

parallel. By using 32 rounds, it actually provides a higher security margin than Rijndael, but
Rijndael is faster and easier to implement. This was the main reasons which made Rijndael
the new standard algorithm.

Twofish also uses the same block size and key length as Rijndael and uses 16 rounds [22].
Twofish is based on a Fiestel network, which is a structure that transforms any function into a
permutation. The function in the Fiestel network is often called the F function. The F function
is a key-dependent mapping of an input into an output, which is always non-linear. Twofish
was slightly slower than Rijndael when implemented on most platforms and was not selected
as the new standard.

Asymmetric encryption

Asymmetric encryption is a type of encryption where key pairs are used instead of a single
key. The keys in the key value pair consist of a public key and a private key. The public key
is used for encryption while the private key is used for decryption. One central aspect of
asymmetric encryption is that data encrypted with the public key cannot be decrypted using
that same key, only the private key can be used for this purpose.

Asymmetric encryption is based upon mathematical problems for which there exists no
current efficient solutions, for instance integer factorization, discrete logarithms and elliptic
curves. These problems are easy to use in order to generate key pairs while it is difficult, close
to impossible, to calculate the private key from the public key. Therefore you can safely keep
the public key published without compromising security. However the private key still has to
be kept secure.

Figure 2.5: Asymmetric encryption

RSA

RSA is an asymmetric encryption algorithm first presented in 1977 by Rivest, Shamir and
Adleman [20]. The security in RSA relies on the difficulty of factoring the product of two large
prime numbers. Plain RSA is not semantically secure. This means that it is possible for an
attacker to separate two encryptions form each other if the attacker knows the corresponding
plaintext. In order to make RSA semantically secure a padding scheme needs to be added.
This will be further explained in it’s own section.

A RSA cryptosystem consists of three steps, key generation, encryption and decryption. If
Bob wants to receive messages encrypted with RSA he will generate the keys in the following
way.

9

2.2. Encryption

1. Bob selects two different prime numbers p and q.

2. Bob will compute n = pq which will used as the modulus for the keys.

3. Bob calculates the value of Euler’s totient function for n: φ(n) = φ(p)φ(q) = (p´ 1)(q´
1) = n´ (p + q´ 1). This is a private value.

4. Bob chooses a integer e which fulfills 1 ă e ă φ(n) as well as gcd(e, φ(n)) = 1.

5. Bob then calculates d so that de = 1 mod φ(n)

The public key is then the values [n, e] while the private key is the values [n, d]. However the
values p, q and φ(n) also needs to be kept secret since they can be used to calculate d. If Alice
wants to send an encrypted message to Bob she will do the following:

1. Alice obtains Bobs public key consisting of [n, e].

2. Alice generates the ciphertext c by calculating c = memod n where m is the message.

3. Alice sends c to Bob.

When Bob wants to decrypt the ciphertext c sent by Alice he will use his private key [n, d].

1. Bob calculates cd = (me)d = m mod n.

2. Bob can read the plaintext message m.

The procedure described above is plain RSA. As mentioned earlier plain RSA is not se-
mantically secure and a padding scheme needs to be added to achieve semantically security.
The padding scheme would be applied to the message before encrypting and after decryp-
tion.

Optimal asymmetric encryption padding A padding scheme is commonly used to expand
plaintext to a specified length. This is the case for symmetric encryption algorithms which
require plaintext to be a multiple of the block size. However, in asymmetric encryption al-
gorithms the purpose is different. The padding scheme used with asymmetric encryption
algorithms aims to add structured, randomized padding to the message before encryption.
This means that a message, once padded, will encrypt to one of a large number of different ci-
phertexts. This entails that attackers can’t distinguish between encryptions even if they have
knowledge about the corresponding plaintexts.

Optimal asymmetric encryption padding (OAEP) is a padding scheme that is commonly used
together with RSA [5]. OAEP can also be used to build an all-or-nothing transform which
means that you need to have the entire message in order to reverse the padding. When used
together with RSA, OAEP consists of a number of components:

• The RSA modulus n.

• Two integers k0 and k1.

• The plaintext message m consisting of n´ k0 ´ k1 bits.

• Two cryptographic hash functions G and H.

The procedure to encode a message m is as follows.

1. Pad m with k1 zeroes to create m0..0.

2. Generate random k0 bits string r.

3. Apply G to r to generate a n´ k0 bits string.

10

2.2. Encryption

Figure 2.6: Optimal asymmetric encryption padding diagram

4. Calculate X = m0..0‘ G(r).

5. Apply H to X to generate a k0 bits string.

6. Calculate Y = r‘ H(X)

7. The encoded message now consists of [X, Y].

To decode the encoded message, [X, Y] together with H and G is used as follows:

1. Calculate r = Y‘ H(X).

2. Calculate m0..0 = X‘ G(r).

The decoded message will still contain the zeroes added in step one of the encoding process
and will have to be removed before using the message.

If OAEP used together with RSA is commonly refereed to as RSA-OAEP. This variation of
RSA is semantically secure as opposed to plain RSA.

ElGamal

ElGamal encryption is an asymmetric key encryption algorithm, based on the older Diffie-
Hellman key exchange, first described by Taher Elgamal in 1985. The security in ElGamal is
based upon the difficulty of solving certain problems involving discrete logarithms [3].

ElGamal encryption is composed of three components: the key generator, the encryption
algorithm and the decryption algorithm. If Bob is the one who wants to be able to receive
encrypted messages he will generate the key pair in the following way:

1. Bob selects a large prime p.

2. Bob selects a primitive root α mod p

3. Bob calculates β = αx mod p where x is a random integer.

The public key is the values [p, α, β] while x is the private key. If Alice wants to send an
encryption message to Bob the following procedure will be used:

1. Alice acquires Bobs public key consisting of [p, α, β].

2. Alice converts the message m into an integer representation M.

3. Alice generates a random integer k.

4. Alice then generates a = αk mod p and b = βk M mod p.

5. Alice then sends Bob the ciphertext containing [a, b].

11

2.2. Encryption

The different components of the ciphertext have different purposes. a is used to transmit
Alice’s secret k and b is used to transmit the actual message m. Furthermore k is supposed
to be used only once and not be the same in succeeding encryptions. This essentially means
that the cipher text will not be the same for consecutive encryptions of the same plaintext.

When Bob wants to decrypt the message from Alice he will be using his secret x and the
ciphertext [a, b]. In order to decrypt the message:

1. Bob will calculate M = b
ax mod p = ([b mod p][a´1 mod p]x) mod p

2. Bob will then transform the integer M into the correct encoding of the original message
m.

The encoding of m needs to be known on beforehand in order to transform the integer repre-
sentation M. The transformation step can however be omitted if the message that is supposed
to be encrypted already is an integer.

Furthermore the ElGamal encryption is considered to be semantically secure [23]. This
means it is secure against a passive eavesdropping adversary. The fact that it is semantically
secure makes it infeasible to derive meaningful information about the plaintext of a message
from the ciphertext and the public encryption key.

Elliptic curve cryptography

An elliptic curve is the graph of the equation y2 = x3 + bx + c where a and b are real numbers
[27]. In cryptographic uses, elliptic curves modulo a prime, are most suitable. This is due to
the fact that those curves have a finite set of points. Elliptic curves are useful in cryptographic
applications because it is possible to add any two points on the curve to produce a third point
on the curve. This property is used to apply elliptic curves to existing cryptosystems. In
general one of two procedures is used to do this:

1. Change modular multiplication to addition of points on an elliptic curve.

2. Change modular exponentiation to multiply a point on an elliptic curve by an integer.

The second procedure is only a special case of the first. Exponentiation is equal to multiplying
a number by itself multiple times while multiplying a point by an integer is to add the point
to itself multiple times.

Elliptic curve versions exist for multiple cryptosystems (ECC), for example elliptic curve
ElGamal. For Bob to create an asymmetric key pair he will need an elliptic curve E which
needs to be know by all parties in the system. He then chooses a point α on E and a secret
integer a and computes β = aα = α + α + .. + α. The public key consists of [α, β] and the
private key is a. For Alice to send a message she will express her message as a point M on E.
She chooses a random integer k and computes y1 = kα and y2 = M + kβ and sends the pair
[y1, y2] to Bob. Bob decrypts by calculating M = y2 ´ ay1.

Generation of elliptic curves is time consuming since it requires the computation of all
points on a curve. Therefore there exists a number of standard curves that can be used.
The use of standard curves does not influence the security of elliptic curve cryptography.
The security of ECC relies on the fact that performing point multiplication is possible while
it is infeasible to calculate the multiplicand from the original and product points. This is
unaffected by knowing the elliptic curve used.

Digital Signature

A digital signature is a scheme for proving authenticity of a digital message or file. A digital
signature allows a recipient of a message to validate that the message originated from the
sender while also validating the message integrity.

12

2.3. Hash functions

Most asymmetric encryption schemes can be used to create digital signatures by using
public and private keys. In order to create a digital signature, the signer will encrypt the
message with his private key which results in the digital signature. To validate the digi-
tal signature, the verifier needs to have the digital signature, the plaintext message and the
signer’s public key. The verifier will decrypt the digital signature and verify that the decryp-
tion and plaintext coincide, in which case the validation was successful. The digital signature
is therefore tied to both the signer and the message. This entails that the digital signature can
not be copied and used together with another message by an impostor.

Hybrid cryptography

Symmetric and asymmetric encryption algorithms have different advantages and disadvan-
tages. Symmetric algorithms are in general significantly faster than asymmetric algorithms,
however they require all parties to share a key that needs to be kept secret. Asymmetric al-
gorithms on the other hand, allow a public key which can be safely distributed at the cost
of performance [12]. A hybrid cryptosystem uses the advantages of each type of encryption
and reduces the impact of the disadvantages. The most common approach to hybrid cryp-
tosystem is to first generate a symmetric key that will be used to encrypt a message with a
symmetric encryption algorithm. The secret key is then encrypted with an asymmetric en-
cryption algorithm and the public key of the recipient. Both the encrypted secret key and the
encrypted message is then sent to the recipient [8]. For example, to send a message to Bob
using such a system Alice does the following:

1. Alice obtains Bobs public key.

2. Alice generates a new symmetric key.

3. Alice encrypts the message using the symmetric key.

4. Alice encrypts the symmetric key with Bob’s public key.

5. Alice sends both encryptions to Bob.

To decrypt the ciphertext Bob does the following:

1. Bob uses his private key to decrypt the symmetric key.

2. Bob uses the symmetric key to decrypt the actual message.

Since the message can potentially be large, the more efficient symmetric encryption algo-
rithm is used to perform the bulk of the work in encrypting and decrypting the message. The
inefficient asymmetric encryption algorithm is only used to distribute the secret key used for
the symmetric encryption. Hence the hybrid cryptosystem uses the two types to the best of
their advantages.

2.3 Hash functions

A hash function is a function that can be used to transform data of arbitrary size into data
of a fixed size. The value returned from a hash function is usually referred to as a hash.
Cryptographic hash functions can be defined by three resistance properties the hash functions
need to comply with.

• Pre-image resistance: It should be hard to find a message that results in a given hash.

• Second pre-image resistance: Given one message, it should be hard to find another differ-
ent message that result in the same hash.

• Collision resistance: It should be hard to find two different messages that results in the
same hash.

13

2.4. Key Management

To describe the resistance properties the term hard is used. Hard, in this context, means that
it is almost certainly impossible for an adversary to circumvent the resistance properties for
as long as the security of the system is deemed important.

It is common to also provide a salt to the data when using a hash function. A salt is random
data that is appended to the original data before applying the hash function. The salt makes
it harder for an attacker to use pre-computed tables for e.g. various possible passwords and
their hashes, since the attacker also have to take the salt into account. It also prevents equal
data to have equal hashes since the added salt will make the data different before applying
the hash function.

2.4 Key Management

Key management is the management of keys used in cryptographic applications. The concept
of key management includes how to generate, exchange and store keys securely. Good key
management is an important part of the security in a cryptographic application. This is due
to keys being used to enforce security throughout the cryptographic application, hence they
need to be managed properly.

Key generation using /dev/random

For key generation, a random number generator (RNG) is commonly used. It can be either a
computational or physical device with the sole purpose of generating sequences of numbers
without any pattern, i.e. random numbers. /dev/random and /dev/urandom are two files in
Unix based operating systems which serves as an interface to the kernel’s RNG [18]. The
RNG collects environmental noise from device drivers as well as other sources and stores
it in an entropy pool. The RNG also keeps track of how many bits of noise there is in the
entropy pool. From the entropy pool the random numbers are then created when requested.

The difference between /dev/random and /dev/urandom is that the previous is a blocking
RNG. That means that when the entropy pool is empty, reads from /dev/random will block
until more environmental noise has been collected. /dev/urandom on the other hand will not
block if the entropy pool is empty. Instead it will use a pseudorandom number generator (PRNG)
to create the requested bytes. This entails that /dev/random should be suitable for most appli-
cations that requires high quality randomness, such as key generation [7]. Since /dev/urandom
uses a PRNG if the entropy pool is empty the values returned will not have as high quality
randomness. The reduced quality of randomness given by /dev/urandom could potentially be
vulnerable to cryptographic attacks on the algorithms used by the PRNG. /dev/random will
return at most 512 bytes while /dev/urandom will return at most 32 MB.

Despite the drawback, /dev/urandom is preferred when accessing the entropy pool. This is
due to the fact that /dev/random blocks which can cause a program to be blocked for a long
time while new entropy is collected. /dev/random is only recommended for keys which need
a long life time, such as keys for SSL. More about SSL in section 2.5. However OpenSSL uses
/dev/urandom as default [15].

Key derivation function

A key derivation function (KDF) is used to derive secret keys from a secret value, such as a
password. KDF can be used to transform passwords into keys of suitable length. This is
called stretching.

One KDF is PBKDF2 which stands for password-based key derivation function 2 [28]. It
applies a hash function to the input together with a salt and repeats this process multiple
times in order to produce the derived key. This key can then be used as an encryption key or
other cryptographic applications.

14

2.5. Secure Communication (SSL/TSL)

2.5 Secure Communication (SSL/TSL)

Secure Socket Layer / Transport Layer Security (SSL/TLS) are cryptographic protocols de-
signed to provide a security on top of a reliable transport layer [2]. The transport layer is
usually the Transmission Control Protocol (TCP) which provides reliable, ordered and error-
checked delivery of data streams. Therefore, SSL/TLS is only concerned with privacy and
data integrity between two communicating parties. SSL/TLS uses symmetric and asymmet-
ric encryption as well as certificate authorities (CA) to provide this security.

During the initial setup of a SSL/TLS session the client and server negotiates which ver-
sion of SSL/TLS, cipher suite and algorithms to use during the session. Next, the server
sends a certificate to the client. This certificate has been signed by a CA and is used by the
client to verify the identity of the server. After the client verifies the certificate, the client and
server have to agree on a cryptographic key. This key is for the symmetric encryption used
to encrypt the data transmitted. The client generates nonce, a random number, which will be
used to generate the key for the symmetric encryption. The client encrypts the nonce with
the server’s public key, which is part of the certificate. The client sends the encrypted nonce
to the server which can decrypt it. Now both the client and the server have the nonce and
can generate the cryptographic key for the symmetric encryption. This key is then used for
the lifetime of the session.

2.6 Object Storage

Object storage is an alternative storage architecture to file and block storage. In a file storage,
files are structured in a file system. The files are kept in a folder hierarchy and metadata
is stored in the file system. Block storage on the other hand, divides files into blocks and
these blocks can be stored individually. When a file is requested, the individually blocks are
located by their address and combined to assemble the file again. The block addresses are
kept within the block storage system and is the only metadata stored about the files.

In an object storage, an object is defined as a file together with all related metadata [13].
Unlike files in a file system, objects are kept in a flat structure called the storage pool. Objects
can only be kept in the storage pool and an object cannot contain another object. Both files
in a file system and objects in an object storage have metadata associated with the data they
contain. Object storages, however, does not have a limit on the amount of metadata that
can be associated with the data. The developer can freely store metadata they need for their
application. When an object is created it is assigned a unique identifier, usually generated by
the content of the object. To retrieve an object, the only information needed is the identifier.
This allows a server or end-user to retrieve an object without knowing the physical location
of the data, unlike a file system where a path is needed.

The fact that the object storage keeps all files in the storage pool allows for great scalabil-
ity. The storage pool eliminates the overhead of keeping track of large amounts of directory
metadata which is a typical bottle neck in file systems. The flat structure of the object stor-
age allow continued horizontal scalability, practically without a limit on data quantity. This
is accomplished by simply adding new servers to the object storage rather than improving
existing hardware.

15

3 Requirements analysis

In this section all the requirements for the system in this thesis will be listed and described.
The list of requirements was acquired by discussions and meetings with our supervisor at
ELITS. The requirements will be divided into functional and non-functional requirements.
The functional requirements describe the behavior of the system while the non-functional
requirements are concerned with attributes such as security and scalability.

3.1 Functional requirements

Requirement 1: All encryption and decryption shall be performed at the clients.

A central aspect of the system is that all files in the storage shall be en-
crypted. This entails that all data going in to the system will be encrypted
at the client before being sent to the storage. In the same fashion, data
retrieved from the storage will be transmitted encrypted and will be de-
crypted by the client. That means that no encryption and decryption of data
will be, and shall not be, performed at any other part of the system than the
clients.

Requirement 2: The user shall be able to use the system collaboratively.

The files stored within the system shall be accessible by a group of users. A
user shall be able to create rooms where encrypted files can be stored. Only
users authorized shall be able to see and access the files in the room. The
owner of the room shall be able to invite other users to access the room. The
system shall also be able to handle if a owner requests to remove a room or
remove a user’s access to the room. The server needs to keep track of which
encrypted files are accessible by which users.

Requirement 3: A version control system for files shall be present.

Since the system shall allow collaboration of files it is necessary to pro-
vide version control of the files. In cases where multiple users modifies the
same file it shall be possible for the system to detect conflicts. For instance,

16

3.1. Functional requirements

a conflict could be detected if two users modifies the same area of a file.
When a conflict is detected the system shall try to solve the conflict by itself
or alert the last user who made modifications to the file. That user will
then have to solve the conflict manually. Furthermore it shall be possible to
see the alteration history of the files and if desirable rollback to a previous
version of the file.

Requirement 4: Files that have been received by the client shall be stored encrypted at the client.

The data requested by the client will be received encrypted and will be
decrypted by the client. The client shall not store the data in plaintext but
will encrypt the data with its own local encryption. The reason is that the
data shall be protected at the client as well as in the storage. The benefits of
using a local encryption for this purpose is that no encryption key used for
the files in the storage will have to be kept at the client. Furthermore, this
allows a user to keep working while not connected to the system and still
keeping the data protected.

Requirement 5: The system shall be able to run in two different modes.

When the system is setup, the user shall be able to choose which of the
following modes for the system:

Mode 1: Private Mode
When the system is set to run as private mode all the files en-
crypted can only be accessed by authorized users. If a user does
not want to share the encrypted information there is no way to ac-
cess it. There is no way of accessing a user’s files without having
the encryption key. This means that there is no recovery from lost
keys.

Mode 2: Enterprise Mode
This mode is, as the name implies, mainly for use in enterprises.
A system in this mode always adds access for a chosen user to
files created and encrypted with the system. This means that e.g.
an enterprise that uses the system always have access to all the
information. This prevents from scenarios where data is locked
down because of lost passwords, black mailing etc.

Requirement 6: It shall be possible to change the encryption keys used in the system.

The system shall be able to change the encryption keys used for already
encrypted information. There shall be a way to force a change of the cryp-
tographic keys. This can be used if the users feels that the security of a key
have been compromised. This feature could also be used to change the keys
continuously as a precaution for compromised key security.

Requirement 7: To gain access to the system, a secure registration process shall be performed.

Before a user gains access to the system, there shall be a registration process.
An access administrator of the system shall register an account for the user,
which have to activate the account. During the activating process it shall be
possible to verify that the user activating the account is in fact the user who
requested the account from the access administrator.

17

3.2. Non-functional requirements

Requirement 8: The system shall be able to handle different user privilege levels.

The system shall include three different privilege levels: owner, write
and read. These privilege levels shall not be determined by a simple en-
try in the database, for example an integer representing the level, as that
would makes it possible for a system administrator to manually change the
privilege level of a user. Instead the system shall be designed in a way that
makes it infeasible to manually change the privilege level of a user.

• Owner: Shall be able to perform all actions available in the room.

• Write: Shall be able to read and modify existing files as well as upload-
ing new files.

• Read: Shall only be able to read files.

Furthermore the system shall be designed to include the possibility to add
new privilege levels.

3.2 Non-functional requirements

Requirement 1: No encryption keys shall be stored on the clients.

Since the clients alone handle the encryption and decryption, they will
also handle the encryption keys. It is of importance that these keys are not
stored directly on the clients, e.g. in a file or hard coded in the clients. By
using this approach the security of the encryption may be compromised.
If the keys are stored directly on the clients, there is a possibility that an
attacker will be able to get hold of them. This can be avoided by generating
the encryption key just before usage and keeping the encryption keys in
memory no longer than needed. After the key is used, the memory should
be correctly emptied before deallocated.

Requirement 2: System administrators shall not be able to get access to the data if not explicitly
allowed to.

The system shall be designed in a way that makes it infeasible for the
administrators of the system to get access to any of the stored data. By
having access to the database, there shall be no way to inject data or change
records to give unauthorized users the ability to access stored data. Only an
authorized user of the right privilege level shall be able to give another user
access to its data.

Requirement 3: The system shall be possible to run as a distributed system.

The system shall be able to deploy as a distributed system. The system
shall be able to handle a large amount of requests together with large files.
A solution to that problem is to have the storage solution in a distributed
system together with a load balance server. Therefore the system shall be
designed in such a way that it is possible to do so.

18

4 Design

4.1 Introduction

In the following chapter, the proposed design will be presented. The requirements from
chapter 3 are used as the foundation for the design overview, which presents the general
functionality of the system. Furthermore a system architecture will be described, presenting
the individual component of the system. Following the system architecture, the database
structure will be presented where individual tables are explained. In order to get a better
understanding of how the system operates, essential system flows will be explained in de-
tail. The system flows will show data transactions in the system as well as communication
between the components. The chapter will end with a discussion of the proposed design.

The design took shape over a total of four iterations. The changes ranged in size from al-
ternating information flow to completely redesign modules of the system. When performing
the iterations a proposed design was analyzed and threats identified, more about this process
in chapter 5. Mitigations to the identified threats were then proposed and adapted to the
design, ending the iteration. This process resulted in the design that will be presented in this
chapter.

4.2 Definitions

This section contains definitions of terms that will be used throughout the design chapter and
subsequent chapters.

• Room: A room can be considered a group of users. A room will have encrypted files
associated with it, which members of the room can access.

• Room key: The room key is the cryptographic key used to encrypt and decrypt all the
files in a room. In the figures the room key will be denoted by symR.

• Local key: The local key is the cryptographic key used to encrypt and decrypt the files
stored locally when downloaded by the client. In the figures the local key will be de-
noted by symL.

• User’s asymmetric key pair: The user’s asymmetric key pair is generated from the user’s
password. The public and private parts of the asymmetric key pair will be called the

19

4.3. System overview

user’s public key and the user’s private key respectively. In the figures they will be denoted
by asympub and asympriv.

• Multiple asymmetric key pairs: In some contexts there will be multiple asymmetric key
pairs mentioned. To keep them apart, they will be referred to in a similar fashion to the
user’s asymmetric key pairs, e.g. x’s public key where x is another participant. In the
figures they will be denoted by asympub_x and asympriv_x.

• Encrypted room key: An encrypted room key is a room key that has been encrypted with
a public key. These will be denoted by asympub(symR) in the figures.

• Local encryption module: A module that handles the encryption and decryption of the
local files when downloaded by the client. It will also mount the files as a file system
that can be displayed and interacted with by the client. The module can e.g. be a third
party software or developed to fit the user’s needs.

4.3 System overview

Based on the functional requirements from chapter 3, a system that operates in the following
way has been designed.

A new account is registered in the system by an access administrator. An activation code
for the account is sent by SMS to the user. The new user can activate the account in the
system by using the received activation code. To interact with the system, the user will use
a client. When a user is logged in at a client, all the available rooms for that user will be
shown. Each user in the system can be a member of several rooms. The user can navigate
through the rooms to see all the files contained in the room. The user can then choose to
either download files from a room or upload files. In order for a user to use a file, it has
to be downloaded and encrypted locally on the client. Furthermore the system contains a
version control mechanism. When a user uploads a modified file, the server will check when
the file was initially downloaded to the client as well as when the last modification of the file
occurred in the object storage. If a modification has been made to the file in the object storage
while the client used it locally, a conflict will be reported. The file in the object storage will
then be sent to the client which has to resolve the conflict before initiating a new upload.

The client communicates with the server of the system. It is important for the server to
verify that a user requesting an action, is in fact the user and not an attacker impersonating
the user. Therefore, the user needs to be authenticated by the server before an action can be
carried out in the system.

When a new room is created the user who created it will be the owner of the room. It is
only the owner who can invite other users to the room for collaboration. When a new user is
invited to the room, the owner will choose the privilege level of the user. Invited users will
get access to the files in the room and can download them for local use, depending on the
privilege level the user may also write files to the room. It is also possible to remove a user
from a room. When a user is removed from a room, the files contained in the room can not be
accessed by the user. The user removed might have files locally that was downloaded from
the room before. If so, the server will request that the client removes the data when the client
connects. An owner of a room can of course also delete the room itself. When the room is
deleted all the files associated with the room will be removed from the storage.

If a room encryption key were to be considered comprised it is important that the room
key can be changed. In order to change the room key all files associated with the room will
be replicated and encrypted with a new room key. When the replication is complete the old
room will be removed. When a user belonging to the old room requests an arbitrary operation
concerning the old room, the server will send a request to the client to verify itself. When this
process is complete the server will continue with the original request.

20

4.4. System Architecture

System Modes

The secure file storage system shall be possible to operate in two different modes, private and
enterprise. Which mode to use will be determined at the initial configuration of the system.
Enterprise mode is a compromise between availability and confidentially while private mode
has confidentially as highest priority. It is up to the end-user and to decide which mode they
believe is most suitable for their operations.

In enterprise mode there will be a keywarden. This is a special user, with maximum priv-
ileges, that will automatically be added to the room when it is created and which cannot be
removed. The purpose of the keywarden is to avoid potential data loss if a room where to be
rendered inaccessible. An inaccessible room could be the result of a room owner leaving the
company or a malicious employee removing all other users from the room. In that case no ad-
ditional users can be added to the room and no data can be accessed. However, in enterprise
mode the keywarden can prevent a room from being inaccessible. The keywarden can simply
assign a new owner. In private mode, however, there will be no such recovery mechanism. If
a room is somehow rendered inaccessible there will be no way to make it accessible.

4.4 System Architecture

The system consists of five different parts: the clients, the server, a database, a replication
server and an object storage. An overview of the system and how the parts communicate can
be seen in figure 4.1. Each part will be described in more detail in the following sections.

Figure 4.1: Architecture of the system.

Client

The clients are responsible for generating the user’s keys as well as encrypting and decrypting
the downloaded data. The client will use a local encryption key to encrypt and decrypt the
local data. It will also use an asymmetric key pair to encrypt and decrypt the room keys. It is
important that each user that uses the client have a unique set of these keys. The user’s keys
also need to be the same each time they log in to the system. Therefore, the clients generate the
needed keys based on the user’s password and username. The client is also responsible for
generating the room encryption key when a new room is created. This is done by randomly
generating a room key to be used. Before it is sent to the server, it is encrypted with the
creator’s public key.

21

4.4. System Architecture

The clients use a local encryption module to make sure that the data downloaded from the
system stays encrypted. When a file is downloaded from the system, the client will decrypt
it using the room key of the room containing the file. The file will then be encrypted by the
local encryption module using the user’s local encryption key. The files can then be mounted
as a file system and displayed within the client. When the user wants to upload the file to the
system, the client encrypts the file with the room key and sends it to the server.

Server

The server communicates with the clients and is the communication hub in the system. It
handles all the requests and makes sure that users requesting an action have the right priv-
ilege to perform it. The server also authenticates the users to make sure they are not being
impersonated. In this process the server is responsible for generating random tokens that
will be used to verify a user. When data is needed to perform a request, the server queries
the database for the needed information. When parts of the system needs to store data in the
database, they go through the server, which in turn writes it in the database. If a user wants
to download a file, the server will download it from the object storage and serve it to the user.

Database

The database contains all the data and relations between the data that is required by the
system. All the details of users and rooms will be stored in the database. The database will
also keep track of which files are contained in each room as well as which users have access
to the rooms. The database only communicates with the server and all the queries and writes
are requested by the server. The structure of the database will be described in detail in section
4.5.

Replication Server

To change the room key used to encrypt the data within a room, all the data need to be
decrypted and encrypted with the new room key. This is handled by the replication server
(RS). The RS will generate a new random room key and replicate all the data in the room.
While the key change is in process the users can only read the files. This allows the users
to continue using the files encrypted with the old room key until the replication is complete.
After the replication is complete the RS will verify and invite users that were in the old room
for a set period of time. If the users have not requested anything from the room during this
time period, they have to be reinvited to the room by the owner. In the case where multiple
key changes have been requested in a short time period there will be several active instances
of the replication server. The server will use the oldest, still active, instance to validate that the
user was a member in the room before the key changes happened. The server will continue
validating until the user has the latest room key. How the verification and invite process of
the old users is preformed is described in chapter 4.6.

Object Storage

All the files uploaded to the system will be stored in the object storage. All the metadata
associated with a file will also be stored in the object storage. The object storage will assign
each of the uploaded files a unique hash that will be used as an id for the file. The hash will
be created from the content of the file and its metadata. The id will then be passed to the
server, which will store it in the database. When a user requests a file, the client will send the
unique id for the file to the server. The id will be passed to the object storage, which will find
and return the correct file. The file will then be returned to the user by the server.

22

4.5. Database Structure

4.5 Database Structure

The database is a central part in the system. It contains all necessary information for the
system to operate. An enhanced entity relationship (EER) diagram for the database can be found
in figure 4.2. The id attribute present in all tables is the primary key, a unique identifier for
each entry in the table. The other attributes in each table will be explained in the following
subsections.

Figure 4.2: EER diagram for the database in the system.

Active and pending user table

The two user tables will contain information about each user. The tables will store username,
phone number, email address and the name of the user.

The active user table keeps information about all the active users in the system. It has four
additional attributes: checksum, timestamp, token and public key attribute. A checksum is
a small sized data value which is used to verify data integrity. The checksum attribute will
store a checksum of all the privileges the user currently have in all the rooms. The purpose
of this checksum is to offer detection if privilege levels where to be changed manually in the
database, this will be further explained in chapter 5. The token and timestamp are attributes
used for authentication of the user. The token stores a randomly generated value and the
timestamp the time of generation. How they are used is described in chapter 4.6. The final
attribute, the public key, is the user’s public key and is used when inviting a user to a room,
for instance.

The pending user table keeps information about users who have still not activated their
accounts. The pending user table has three additional attributes: hash, salt, and a timestamp.
The hash attribute stores a hash generated by applying a hash function to a random value
and a salt. The salt is stored in the salt attribute and the timestamp represents when the hash
was generated. These attributes are used when a user wants to activate the account. How
these attributes are used is further explained in section 4.6.

23

4.5. Database Structure

Room table

In the room table, general room information will be stored. The attributes include name,
description and replication. The attributes name and description will be stored encrypted
with the room key. This prevents system administrators to derive what the room might be
used for from the name and description. It is still possible to see which users that are members
in a room. The replication attribute is a flag that is set when the room is being replicated. If the
flag is set, only read operations will be allowed until the room has been completely replicated.
The purpose of the flag is to prevent data loss when a file has already been replicated, but
someone makes modifications to the original file.

Access table

The access table keeps information about which users that are members in a room and what
privilege level the different members have. The access table contains two foreign keys, user
and room. A foreign key is an attribute that references a row in another table, in this case
the user table and the room table. The encrypted room key attribute will contain the user
specific encrypted room key, created by encrypting the room key with the user’s public key.
This encrypted room key is used when a user wants to perform actions on a file in the room.
The privilege attribute represents the privilege level. The checksum is used to validate that
the privilege attribute has not been changed manually, e.g. by a system administrator. The
checksum is generated by applying a hash function on the user’s privilege level, the user’s
public key and the room id. The final attribute is the key changed attribute. This is an addi-
tional flag attribute that is used to inform the server that the room key has been changed, and
that the user has to verify that he has the old room key. How this flag is used is described in
section 4.6.

File table

In the file table, all files uploaded to the object storage will have an entry. The file table has
five different attributes: name, path, timestamp and hash. The name and path attributes con-
tain the name and the virtual path of the file when mounted by the local encryption module.
These two attributes will be encrypted using the room key. This prevents system administra-
tors from gaining information about data kept within the system. The timestamp attribute
represents the time of the last modification of the file. This attribute is used when a user
wants to upload a modified file to ensure that the user has the latest version. If not the user
has to merge the modified file with the one in the object storage before uploading. The final
attribute, the hash, contains the unique identifier for the file in the object storage. This hash
is used to fetch and upload files to the object storage.

Replication server table

The replication server table keeps track of all active RS instances. The table have two foreign
keys, to a user issuing the request to use the RS and to the room to be replicated. Furthermore
it has a public key, a salt, a new encrypted room key and a encrypted room key attribute. The
public key attribute contains the RS’s public key used for this replication. The other two
attributes contain the old and new room key respectively encrypted using the RS’s public
key. The salt attribute is used when generating the RS’s asymmetric key pair for the RS
instance. The keys and the salt stored have an active role in the replication process and is
further explained in section 4.6.

24

4.6. System Flows

Replicated files table

The replicated files table is used to keep track of the files that have been replicated by a RS.
It has two foreign keys. One to the replication server table for the RS responsible for the
replicated file and one to the file that has been replicated. It only have one attribute, new file
id, which is the new file id given to the replicated file.

4.6 System Flows

In this section the flows corresponding to the basic functions of the system will be described.
The system flows describes what happens in the system when a specific action is carried out.
For each system flow, the parts of the system involved in the action is shown. The flows also
describe how the individual parts of the system handle the requests of a specific action.

25

4.6. System Flows

Register and Activate an Account

The process of creating a new account in the system is divided into two step: registering the
account and activating the account.

Figure 4.3: System flow for registering an account.

A new account is registered in the system by an access administrator. In this part of the
process a username and a phone number for the new user is given to the administrator. These
are then sent to the server. The server generates a random activation code and runs it through
a hash function. The activation code is sent by SMS to the phone number provided and the
hash of the activation code is stored in the database. The registration part of the process is
now complete. This part of the flow can be seen in figure 4.3.

Figure 4.4: System flow for activating an account.

26

4.6. System Flows

The new user can now activate the account in the system by using the received activation
code. The user enters the activation code in the client, which passes it to the server. The server
will then get the user’s hashed activation code from the pending user table in the database.
To verify that the user has provided the correct activation code, the provided code is hashed
and compared with the stored hash. If the user did provide the correct activation code, the
user can proceed to set a password for the account. The user will also provide details for the
account, such as name and address. When the password is entered the client will generate
the user’s private and public key. The public key is sent to the server along with the entered
account details. Finally the server saves the public key and account details in the database.
The activation part of the process is now complete and the new account is ready to be used.
This part of the flow can be seen in figure 4.4.

Authentication

Figure 4.5: System flow for authentication.

The server authenticates the user by a simple challenge-response before an action is per-
formed. First the server generates a random token and saves it in the database. The token is
marked with a timestamp and is valid for a specified amount of time. This means that the
server only needs to generate a new token if the previous token is out dated.

27

4.6. System Flows

The server sends the token to the client, which create a digital signature from the token.
The signature is sent to the server, which retrieves the user’s token and the user’s public key
from the database. The user’s public key is used to verify that the signature is in fact made by
the requesting user and that it is made from the correct token. If the server can successfully
verify the signature, the authentication is complete and the action can be carried out. The
flow can be seen in figure 4.5.

In the following flows the authentication process will not be shown. It is assumed that the
authentication process have been done before the start of the flows and that it was successful.

Create Room

Figure 4.6: System flow for creating a room.

When a user creates a room, the client starts off by generating the needed encryption keys.
The user’s key pair is generated as well as a random room key. When the keys are generated,
the room key is encrypted with the user’s public key. Details about the room such as a name
and a description is also provided by the user. The user’s encrypted room key and the details
about the room is then sent to the server. The server sends a request to the database to create a
new record in the room table containing the details associated with the new room. The server
also updates the access table and stores the encrypted room key together with the privilege
level of the user. If the system is setup to run in Enterprise Mode, the client also encrypts the
room key with the keywarden’s public key. The access table is then updated to also give the
keywarden access to the room. When a new room is created, the user who created it will get
owner privilege of the room. A response containing either "success" or an error message is
then returned to the client. The flow can be seen in figure 4.6.

Invite a User to a Room

The owner invites a user to the room by the user’s username. The username together with
the id of the room, will then be sent to the server. The server will then verify that the user
that requested the invite can in fact invite users to the room by checking the privilege level. If
the user is an owner, the invited users public key and the owners encrypted room key will be
sent back to the client. If the user does not have the required privilege level an error message
will be returned to the client.

28

4.6. System Flows

Figure 4.7: System flow for inviting a user to a room.

When the client receives the keys, the encrypted room key is decrypted using the owner’s
private key. The room key is then encrypted with the invited user’s public key. After the
room key is encrypted it is sent to the server together with the selected privilege for the
invited user. The server saves the encrypted room key associated with the invited user with
the privilege level in the access table in the database. The flow can be seen in figure 4.7.

29

4.6. System Flows

Download File

Figure 4.8: System flow for downloading a file.

When a client needs to download a file it will send a request for available rooms to the
server. The server creates a list of rooms and encrypted room keys from the database using
the user id corresponding to the issuer of the request. The list is then sent to the client. The
client will use the user’s private key to decrypt the room keys contained in the list in order
to decrypt the room information. When the user selects a file for download the client will
send a request to the server containing the corresponding file id. The server uses the file id
to retrieve the encrypted file from the object storage and forwards it to the client. The client
uses the room key to decrypt the file. The local encryption module then proceeds to encrypt
the file with the local encryption key and mount it in the file system. The flow can be seen in
figure 4.8.

Write File

When a user wants to upload a modified file to the object storage the client will first send
a request to the server containing the room id. The server will verify that the user have the
privilege to do so by checking the access table. If the privilege allows the user to write files,
the server will retrieve the user’s encrypted room key using the user id and the room id. The
encrypted room key is then sent to the client. The client will retrieve the file to be uploaded
from the local encryption module and decrypt the room key using the user’s private key.
The file is then encrypted using the room key. The encrypted file and the file id is sent to
the server, which forwards them to the object storage. The object storage will replace the file
corresponding to the file id and responds to the server reporting the success of the upload,
which the server forwards to the client. The flow can be seen in figure 4.9.

When a new file is uploaded the procedure is similar. However, the file id is omitted when
sending the encrypted file to the server. This tells the server it is new file. The server will send

30

4.6. System Flows

Figure 4.9: System flow for writing a file to a room.

the encrypted file to the object storage which will assign it a file id. The file id is returned to
the server which adds a file entry in the database.

Change Encryption Key of Room

The process of changing the room key is divided into three parts: replication, removal and
invitations.

The replication part of the process begins at the client. The issuer starts by generating
a salt and a seed that will be used by the replication server. The seed is generated using a
hash function by applying it to the password of the issuer and the salt. A room key change
request is then sent to the server together with the seed, salt and room id for the room in
question. The server verifies that the user is authorized to request the room key change. If
so, the server adds the salt and room id to the replication server table in the database. The
server proceeds to forward the room key change to the replication server, providing seed and
room id. The replication server then generates an asymmetric key pair that will be unique for
this replication. The RS responds to the servers request with the newly generated public key.
The server adds the RS’s public key to the replication server table in the database and sends a
response to the client informing it that the RS is ready. The client invites the replication server
to the room to be replicated using the public key belonging to the RS. The process of inviting
the replication server is the same as inviting a user to a room described earlier. After the
invitation is complete the client requests the server to start the replication. When the server
receives the request it will send a request for a new room key to the RS. The RS generates a
new room key that will be used for the replication and encrypts it using it’s public key. The
RS proceeds to send the encrypted room key to the server. The server adds the encrypted
room key to the replication server table and sets the replication flag in the room table. The
replication flag makes the files in the room read only while the server is replicating. The
server then tells the RS to start the replication. The RS responds to the server telling it that
it will begin the replication of the room. During this process an identical room will be built,
the only difference is the room key. The server forwards the response to the client, ending the
first part of the replication. The flow can be seen in figure 4.10

31

4.6. System Flows

Figure 4.10: System flow requesting a room key change.

Figure 4.11: System flow for replication complete.

32

4.7. Discussion

When the replication is complete the next step of the process begins, the removal step.
The RS sends a message to the server telling it that the replication is completed. The server
will mark all users in the access table belonging to the room with a verification flag. This flag
will be used in the invitation part of the process. The server also removes the replication flag
in the room table, removing the read only limitation. The server sends a response to the RS
telling it the flagging is complete. The RS will then replace the file ids belonging to the old
room with the replicated files’ ids. The flow can be seen in figure 4.11. Note that the user’s
encrypted room keys are untouched during this step.

Figure 4.12: System flow for verifying that a user belongs to a room.

When a user belonging to the old room requests an arbitrary operation concerning the
old room the last step will be preformed. Instead of executing the requested operation the
server will send a request to verify the old room key to the client. Along with this request
the server sends the RS’s public key and the user’s encrypted room key, which is now the
old room key. The client decrypts the old room key using the user’s private key. The client
proceeds to encrypt the old room key with the RS’s public key and sends it to the server. The
server forwards the message together with the users public key to the RS. The RS verifies the
old room key sent by the client using its old room key. If the old room keys match the RS will
encrypt the new room key using the users public key and send it to the server. The server
will update the users encrypted room key in the access table with the new encrypted room
key. The flow can be seen in figure 4.12.

4.7 Discussion

Design Decisions

In the following subsections the major decisions made during the iterative design process
will be presented.

33

4.7. Discussion

Object storage

The initial storage solution in the system was a conventional file storage. However, as the
design took shape limitations and problems with a file storage was unveiled. Since the system
shall be able to store large quantities of files, the file and folder hierarchy in the file storage
needs to be maintained in order to prevent broken file paths etc. In a system where this
hierarchy could get complex with the creation of rooms and folders in the rooms this was
something we wanted to avoid. The object storage solved this problem by allowing files to
be stored in a flat structure which eliminates the maintenance of a hierarchy. Instead the files
where accessed by an id assigned to the file so no broken paths are possible. Furthermore the
object storage allows for easier replication since that is a feature built in to the object storage
unlike a file system where this process also has to be created.

Replication server

In the first revisions of the design the replication was performed by a client on request by
an owner. This approach had a few drawbacks that we were not satisfied with. First of all
it could potentially use a lot of the resources on the workstation where the client is running.
Since a workstation usually have limited resources, this result in a poor user experience. An
even greater problem is that the user must be online through the entire process. Since a room
could contain files with a combined greater size than that available on the client, the client
may not be able to keep the replicated room locally. Instead it would have to replicate a file
and send it to the storage before starting with the next file. With the replication server we
opted to use these problems were eliminated. Furthermore this also made the process seem-
ingly transparent to the user since the replication is performed in the background without
it affecting the user or clients. However, the use of a replication server required additional
flows to be created in order to share room keys and avoid storing the new key unencrypted.
We deemed that the extra complexity brought on by the replication server outweighs the poor
user experience that would be caused by a client doing the replication

Digital signatures

For the authentication process we decided on using digital signatures instead of a classic
user name and password solution. One of the reasons for choosing this approach was that
we did not need to store any passwords in the database. Instead we could generate a key
pair used for the digital signatures to be used during a session. The public key could be
stored in the database for the duration of the session without the security of the system being
compromised. Even though it is not trivial to crack hashed password stored in a database,
this design mitigates those threats.

Hybrid encryption

When we started out designing the system, we had to decide on a way to handle the encryp-
tion of data. During the first iterations of the design we used purely symmetric encryption
and a key exchange between the client and the server was needed. Using this approach be-
came a problem when users needed be invited to a room since both of the users had to be
online in order for the key exchange to happen without any keys being stored in the server.
For the next iterations we changed the design to use a hybrid encryption scheme in order the
server to store the keys encrypted with a users public key.

Related Work

There exists several other systems for secure storage. SpiderOak have designed a system
which offers high security and that handles all the encryption on the clients [24]. The design

34

4.7. Discussion

of the system offered by SpiderOak is similar to the design of the system proposed in this
thesis. It is also based on a hybrid encryption system and stores the user’s encrypted encryp-
tion key on the server. As in the proposed design, the user’s password is used to generate the
keys needed to decrypt the keys received from the server. Up until recently, there was also
a system called Wuala that offered an encrypted storage [11]. When they started out, a peer
to peer approach was used to store the encrypted files. A centralized server was also used to
store the user’s encrypted keys and the meta data for the files in the system. The design was
later changed to a more strict client-server approach. Both SpiderOak and Wuala influenced
our design in different ways. The client-server architecture was chosen due to SpiderOaks
architecture and Wualas transition to a similar architecture. The peer to peer approach was
discarded since it would require peers to constantly be online to be able to access data. Spi-
derOaks hybrid encryption system inspired us to design a similar system which also used
hybrid encryption since it enabled us to fulfill many of our requirements. Although the sys-
tem is influenced by SpiderOak, and to a lesser extent Wuala, the application of the hybrid
encryption system is by our design.

Conclusion

The designed system resembles a hybrid system described in section 2.2. The room key,
which is used for symmetric encryption, is stored encrypted with an asymmetric encryption
scheme, where the key used is a user’s public key. This approach has two main advantages in
this system. Firstly, it protects the stored room keys in the database, since they are encrypted.
Secondly, it makes collaboration in the system simple. The room keys in the database are
already protected and can safely be sent to the client. The public key of a user is also safe to
store and send since it only can be used for encryption or verification of digital signatures.
Therefore it is simple and safe to send an encrypted room key to a client together with a
public key of a user to invite them to a room.

Regarding the functional requirements of the system, they are all possible in the proposed
system design as can be seen in the system flows. The matter of fulfilling these requirements
is therefore a question of implementations. This is also the case for non-functional require-
ment 1: No encryption keys shall be stored on the clients. Non-functional requirement 3: The
system shall be possible to run as a distributed system. is not part of the design. This requirement
can be fulfilled by introducing multiple servers, databases and object storages and using a
load balancing server to route the traffic. Also database and object storage replication has to
be introduced to keep the system consistent.

For the design to remain secure it is assumed that the registration and handling of the
keywarden account is done correctly. It is up to the adaptors of the system to create secure
policies for these tasks. The keywarden’s credentials needs to be kept secure to avoid manual
modifications. However, this aspect is outside the scope of the design and is a question of
how this particular entry is managed. Whether it is stored in a protected directory, on a
dedicated key server or in a hardware security module attached to the server is a question for
the adaptors. Potential security risks could be registration of a fake account, impersonating
someone. If a owner is tricked to invite a fake account to the room, the confidentiality of the
room’s content is compromised.

35

5 Threats and mitigations

5.1 Introduction

The following chapter will describe the observed threats and how the design mitigates these
threats. The process that have been used to analyse the threats will be presented to get an
understanding of how the threat analysis was conducted. The chapter will also present a
system-wide analysis of the requirements concerning security and whether the design fulfill
these. Finally, the chapter will contain a discussion about the threats and their mitigations.

5.2 Process

The process of threat identification and mitigation was preformed during the design phase
of the thesis. The design phase was an iterative process were multiple drafts were produced.
The changes made to the design was mainly caused by unveiled threats, and mitigations to
these. When a threat was identified, the risk was analysed by an informal discussion. During
these discussions, the probabilities and the affects of the threats was assessed. In cases where
the risk of a threat was deemed unacceptable, the threat were mitigated which resulted in a
new design. In some cases, where the risk was deemed acceptable, detection of these threats
were incorporated into the design. The proposed design is the result of this iterative process
including the threat analysis and mitigations.

5.3 Threats

The following subsections describes the threats and potential consequence that have been
taken into consideration when designing the system.

Database manipulation

One of the requirements of the system is that it shall not be possible to modify the database
to give an unauthorized user access to data. If an administrator or outside attacker can give
access to files just by modifying the database, the impact would be huge. The privacy of the
users and the confidentiality of the files stored within a room would be greatly compromised.

36

5.4. Design mitigations

File leakage

Files that leak from the system can cause significant damage to an organization, especially
if the files are confidential. Files can leak in numerous ways. The storage media can be
stolen, i.e. physical theft. An administrator managing the storage can access the files and
distribute them, e.g publish them on the Internet. In more extreme cases, an outsider can
abuse a security flaw to gain access to the files and then distribute the files. Regardless of the
cause to the file leak, this is a threat which can have a high risk.

Cryptographic key leakage

The whole system revolves around the use of cryptographic keys. The foundation of the
security in the system relies on the keys being kept secret. If a cryptographic key used for
file encryption where to be leaked the security of the file can be compromised, given that an
attacker has access to the encrypted files. Furthermore, a user’s asymmetric key pair could
be leaked. If such a key pair where to leak, an attacker could act as an impostor of the user,
abusing his account in the system. These keys could potentially be stolen from a database
where the keys are kept or be extracted and leaked from the memory of a client.

Eavesdropping and MITM

Information that is transmitted between the client and the server may be listened to or altered.
If communication is successfully eavesdropped, the attacker can steal files, encryption keys
or tokens that are being transmitted. The keys and tokens that can be gathered from these
attacks can be used to either decrypt information or authenticate as another user.

Gather sensitive information from the database

Data stored in the database can be of sensitive nature on its own. In addition, data stored
can be used to draw conclusions about user patterns. For instance information about what
a particular room contains, e.g. room name, room description or file names, in combination
with members of the room can be used to gain information about what the room is used for.
This information can be used to blackmail a user to give up information or to select a target
room for an potential attack.

5.4 Design mitigations

In this section mitigations to the threats presented above will described.

Hybrid encryption

In order for the system to allow collaboration, encryption keys used on the files have to be
shared among the users. This means that the keys have to be stored so the server can serve the
keys to the requesting users. To avoid keys leaking from the database a hybrid encryption
scheme was adopted. In this scheme the file encryption keys are encrypted with a user’s
public key. This entails that the keys can safely be stored in a database since only a user with
the corresponding private key can decrypt the file encryption key. The hybrid encryption
scheme also protects against eavesdropping and man in the middle attacks. Since the file
encryption key will be sent encrypted to the user, and eavesdropper or man in the middle
will not be able to get hold of the file encryption key. As long as the user’s private key is kept
secure, the keys stored in the database and sent to the client cannot be used by an attacker.

37

5.5. System security analysis

Encryption

To keep a user’s information in the system private symmetric encryption is used. All the files
is encrypted at the client and stored encrypted in the object storage. This means that the only
ones who can decrypt and read the file are users who have the room key. Since the room key
is encrypted, the only way to get access to it is to be invited into the room. Storing encrypted
files also mitigates the threat that an attacker eavesdrop during transmission and reads the
data, since the files are transmitted encrypted.

Encryption is also used to mitigate that sensitive information is gathered from the
database. Information regarding file names, room names and descriptions have been en-
crypted so that only authorized users can read it. This means that even if an administrator
have full access to the database it is not possible to draw conclusions regarding the content
of a room based on the information in the database.

SSL/TLS

To protect the system from man in the middle attacks during activation code transmissions,
authentication token transmissions or other request and response data, SSL/TLS will be used.
As described in section 2.5 SSL/TLS uses asymmetric encryption and a certificate authority
to distribute the public key. SSL/TLS effectively prevents a man in the middle attack since
the attacker needs to have a valid certificate or the client will not accept to use the SSL/TLS
connection. This means that tokens and activation codes can be sent safely to the server from
the client without worrying about eavesdroppers or men in the middle.

Checksum verification

Some information regarding a user is not encrypted in order for the server to easily handle re-
quests. An example of this is the user’s privilege level in a room. There is a possibility that the
privilege is modified in the database. Therefore, a checksum is used to verify that it has not
been tempered with. The use of a checksum can detect database manipulation by malicious
administrators or outside attackers. This checksum can of course be recalculated, eliminating
the detection. However, there is not much gain in this attack since the user already have to
be a member of the room. The privileges can only be elevated and such an attack can not be
used to gain access to files the user would not already have access to. Therefore, the proposed
design only offers a way to detect the manipulation so it can be restored.

5.5 System security analysis

The most important security aspect of the system is that no unauthorized user shall be able
to gain access to confidential information. To evaluate if this aspect is fulfilled, an attack tree
analysis was conducted. An attack tree represent attacks against the system in a tree structure.
The goal of the attack is the root node and actions to achieving the goal is represented in the
child nodes. Each node is marked with either a P or an I, representing possible or impossible
respectively, depending on the deemed possibility of the action. The evaluation of the nodes
begins in the leaf nodes and traverses upwards through the tree. If a child node is deemed
possible the parent node is also deemed possible. Nodes connected with a & node means
that the child nodes both need to be deemed possible to make the parent node possible. The
resulting attack tree for this system is presented in figure 5.1.

The attack tree shows that unauthorized file access can be achieved by only one action.
If an authorized user decides to spread the files or being forced to give access to the files,
unauthorized users can gain access to the data. This is not something the design can protect
against and it is somewhat out of the scope of the system.

38

5.5. System security analysis

Figure 5.1: Attack tree for unauthorized file access.

The rest of the top level actions are deemed impossible to use in order to gain unautho-
rized access to a file. Since the whole design is based on that the user’s password is kept
secret and that it can not be derived from the system, the possibility to get hold of a user’s
credentials have been discarded. It is in theory still possible, but it comes down to how the
users handle their credentials and the environment containing the client. An attack can for
example plant malware, such as a key logger, on a user’s computer to get the user’s creden-
tials. This is however not a flaw in the design of the proposed system. To protect against these
kinds of attacks a suitable policy regarding the usage of the environment is needed. This is
however outside the scope for the thesis.

Two of the actions are two part actions, where both parts need to be possible in order for
the action to be successful. These actions are based on first gaining access to a encrypted
file and then gain access to the key it is encrypted with. In both cases the attack tree shows
that the encrypted file may be acquired but it is impossible to find the key to decrypt the file.
The reason that it is impossible is because the keys are derived from the user’s credentials,
which where assumed impossible to get. There is no problem that the encrypted file can
be acquired since it is encrypted. If modern encryption algorithms is used it is infeasible to
extract the plaintext. It is also deemed impossible to extract the encryption keys from the
memory of the machine running the client. This can be prevented by implementing the client
so that the encryption key is generated when needed and then the memory used for the key is
overwritten. By doing so, the key will only be in memory for a short period of time, making
it far less likely to be extracted.

39

5.6. Summary

Furthermore, manipulating the database in order to get access to files is assumed im-
possible. The encryption keys for the files is stored in the database encrypted with a user’s
asymmetric key. This makes the action impossible since the attacker needs to first be able to
decrypt the encryption key, which will be infeasible if a modern encryption algorithm has
been used. The only way to gain access to a file is by being invited by a user who can decrypt
the used encryption key.

5.6 Summary

From the threat analysis preformed during this thesis, the security of the system is deemed
good. The proposed design mitigates the threats that have been identified and the attack tree
reveled no design related weaknesses. There is still ways to get access to confidential files
from an authorized user, either by blackmail or if the user decides to go malicious. However,
this is beyond the scope of this thesis and will not be addressed. Furthermore, the design
fulfills the requirement that no system administrator shall be able to access confidential in-
formation. The requirement stating that no encryption keys shall be stored on the clients has
also been achieved. There is no need to store a key on the client in the proposed design, which
makes it harder to extract keys from the memory. By using reverse engineering it can be pos-
sible to get knowledge of the key generation process. However, it is impossible to generate
the used encryption keys with this knowledge since the attacker also needs to have the users
credentials to generate the keys. As previously mentioned, user credentials are assumed to
be kept secret. Although the threats identified have been mitigated, it is possible that other
threats exist which can affect the security of the system. As of writing however, the system is
deemed secure.

40

6 Implementation

6.1 Introduction

In the following chapter the implementation phase of the thesis will be described. This in-
cludes the development of the different software components, delimitations of the implemen-
tation phase, testing of the developed system and a discussion about the implementation.

6.2 Delimitations

Due to the limited time frame available for an implementation during the thesis, only a proof
of concept (PoC) has been developed. This means that certain aspects of the design has in-
tentionally been left out. The main focus has been on providing core functionality such as
encryption and collaboration on files.

The replication server (RS) which shall be used to change the room key has been left out.
The reason being it will operate independently of the core system and is a large component
to implement. Therefore it was discarded and additional time was put into the development
of the core functions. The same reasoning has been applied to the distributed system require-
ment. The overhead of setting up and develop replication features for a distributed system
was simply to large to manage in the limited time available. Communication using TLS/SSL
was also discarded due to the need of third parties and the configuration time it would re-
quire. Additionally, recovery mechanisms and error handling had low priority throughout
the development to allow focus to lie on the feasibility to implement the design.

6.3 Motivations

During the implementation, certain decisions had to be made regarding what encryption al-
gorithms to use throughout the system. The following subsections will explain our reasoning
behind the choices of AES and RSA.

AES

When deciding on which algorithm to use in the developed system, two main aspects were
considered. The first being the security of the encryption and the second being the efficiency

41

6.4. VeraCrypt

and performance of the algorithm. With these two aspects in mind, AES was chosen as the
symmetric encryption of the developed system. Since AES is named the current standard of
symmetric encryption by National Institute of Standards and Technology (NIST) [26], the en-
cryption algorithm is widely used and considered secure. The algorithm is also implemented
in modern processors, which greatly increases the performance of the algorithm.

RSA

RSA was chosen as the asymmetric encryption algorithm for the system because of three
reason. The first being that NIST recommends the usage of RSA, together with Digital Sig-
nature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA), for digital
signatures [6]. Since the asymmetric encryption algorithm used in the system will be used
for both digital signatures and encryption, the other two alternatives were discarded. The
choice therefore came down to RSA or ElGamal, which both have the possibility of creating
digital signatures and to be used for encryption. When conducting the literature study it was
concluded that RSA had seen a wider usage than ElGamal [1]. Due to this, RSA has been a
target for analysis to a much larger extent than ElGamal. This increases the probability that a
weakness will be found and mitigated, which can increase the lifetime of RSA.

6.4 VeraCrypt

In this thesis VeraCrypt was used as a local encryption module. VeraCrypt is an open source
software for disk encryption [30]. VeraCrypt is used for creating and maintaining encrypted
disk volumes. It supports encryption with three different algorithms: AES, Serpent and
Twofish. The user can also choose to use a combination of the three in various ways. For
generating the encryption key, a selection of hash functions is supported as a step of creating
random data. VeraCrypt also have support for hardware accelerated AES encryption. Ver-
aCrypt will automatically use hardware acceleration if it the processor used supports it. This
will increase the encryption and decryption speed of AES by up to eight times compared to
when preformed by a pure software implementation. This means that the speed of AES is
significantly faster than the other available encryption algorithms.

By using VeraCrypt the user can create a so called encrypted container. This is basically
an encrypted file that can be copied, moved or deleted just like a regular file. When the
container is created, the user has to choose which of the available encryption algorithms
that will be used for the encryption of the container. The user also has to choose a hash
function that will be used in the process of generating the encryption key. Next the user
have to provide a password for the container, as well as some random mouse movements.
The password, mouse movements and the hash function will be used in order to generate
an encryption key for the container. VeraCrypt can now be used to mount the encrypted
container as a disk volume. When mounted, the encrypted container can be used as any disk
volume; files can be added, copied and opened. The mounted container will always remain
encrypted. VeraCrypt handles this by on-the-fly encryption and decryption. If the user access
an encrypted file in the volume, VeraCrypt will automatically decrypt and place it in memory.
The application used to open the file can then access the unencrypted data in the memory.
In the same way, VeraCrypt will automatically encrypt a file that is moved to a mounted,
encrypted disk volume.

6.5 Software components

The client was written in the Go programming language as a command line interface. A sim-
ple GUI was also developed using JavaScript that communicated with the command line in-
terface. To perform encryption and decryption, the libraries for AES and RSA built in within

42

6.6. Testing

the Go core was used. For encrypting the downloaded files locally, Veracrypt was used.
Like the client, the server was written in the Go programming language. The server was di-
vided into three different modules; a communication module that receives the messages and
spawns a new process for each request, a database handler module and a module for han-
dling the connections to the object storage. The developed client and server communicates
by JSON-formatted messages over a TCP connection. PostgreSQL was used as the database
in the system developed during the implementation phase.

6.6 Testing

Tests where performed in two ways, continuously during the development and a larger stress
test towards the end. The tests preformed during the development was performed locally
when new functionality had been added using two different techniques depending on their
suitability. Unit tests was used for independent modules such a the encryption module and
the object storage module. Functionality that preformed operations throughout the system
was tested using exploratory testing, for instance after adding functionality to upload files
to the object storage. These tests was performed and decided upon by the developer imple-
menting the functionality. Due to the lack of recovery mechanisms and error handling these
tests was preferred since the developer had insight about limitations of the implementation.

The stress tests performed targeted the server, database and object storage to ensure that
the developed system could handle larger loads than individual users. These tests was per-
formed on a deployed server and database as well as a live object storage with a dedicated
server creating multiple threads running the client software. Three different kinds of stress
tests where performed:

1. Upload 500 100kB files simultaneously.

2. Upload 500 1GB files simultaneously.

3. Preform 1000 simultaneous write request to the database.

6.7 Discussion

The purpose of the PoC was to verify if the proposed design could be realized in an imple-
mentation and what problem areas that might exist.

The main problem that needed to be solved during the development was how large data
files could be encrypted/decrypted and how a checksum of the encrypted files could be cal-
culated at the client. Large files could not be read into memory and encrypted as a big chunk.
This was solved by creating a data stream of the local file, as can be seen in figure 6.1. Be-
fore sending the stream over the TCP connection, it streamed through the encryption module
which used AES in stream mode to encrypt the data of the stream. The data stream was then
forked, one stream was used to calculate the checksum of the encrypted file while the other
was sent to the server. When the server received the stream, it forwarded the stream to a
temporary container in the object storage. When the file was uploaded, the server received
a checksum of the file from the object storage. The server compares the checksum from the
client with the one from the object storage. If they are equal, the file is moved to a permanent
container in the object storage. When downloading a file in the system, the same solution is
used but in the opposite direction.

Aside from the encryption problem for large files, no problems regarding the implemen-
tation of the design was unveiled. All other functionality that was implemented in the PoC
were possible to implement as described by the design. However, as mentioned in section
6.2 not all parts of the design were implemented. From the implementation performed how-
ever, it was concluded that the parts omitted won’t pose a problem. Despite the operation

43

6.7. Discussion

Figure 6.1: Data stream used for uploading a file in the developed system.

and initiation of the RS being one of the most complex flows in the design, many of the fea-
tures required have been implemented in other parts of the system, which indicates that they
will be possible to realize. The transition to TLS/SSL from the usage of plain TCP will not
affect the design, the only aspect affected is the communication between the server and the
client. This change will only increase the security of the system. Finally transitioning from
a client-server system to a distributed system is deemed possible with the proposed design,
assuming the distributed system is implemented properly. The flows described in chapter 4
can still be used without modification in a distributed system. This is due to the fact that a
distributed system is transparent to the client, i.e. the client is only aware of the server it is
communicating with.

44

7 Conclusion

In this chapter the results will be summarized and the conclusions presented.

7.1 Literature study

In order to design the desired system, a literature study was performed. The areas studied
was mainly associated with cryptography but also available storage solutions. Common at-
tacks were studied to get an idea about potential pitfalls that had to be mitigated in the design.
Encryption types and algorithms were researched to find suitable alternatives for the system.
The goal with this part of the study was to find algorithms to encrypt as well as sign data. In
addition, cryptographic hash functions was researched due to their role in RSA-OAEP. Due to
the system’s need to generate and store cryptographic keys, different management strategies
was analysed. This resulted in research about the random number generator /dev/random and
key derivation functions to generate cryptographic keys from passwords. TLS/SSL was stud-
ied in order to provide secure communication in the system. The final area of the literature
study was concerned with storage solutions, but mainly on object storage solutions.

Apart from the literature study, similar solutions available where analysed to get an idea
of how the system could be designed. Among these solutions were SpiderOak, Wuala and
VeraCrypt, the last of which was used in the proof of concept as a local storage module. Both
SpiderOak and Wuala gave inspiration to do research about hybrid encryption which was
later used in the design.

7.2 Design and implementation

Before starting to design the system, the requirements of the system was analyzed. The anal-
ysis of the requirements helps to fully understand how the system shall operate and what
functionality should be available within the system. This is of course of importance for de-
signing the system in a good way. A design was then proposed with the requirements in
mind. In the early proposed designs there was some minor flaws that did not reflect the
requirements of the system and the design was reworked. During this iterative process, se-
curity risks with the proposed designs was discussed and analysed. After the analysis of the
proposed system was completed the implementation phase began.

45

7.3. Conclusion

In the implementation phase the proposed design was implemented. This was done in
order to see if there would be any problems to realize the design. The implementation inten-
tionally left out parts of the functionality that was deemed too much work for the given time
frame. During the implementation, there were no problems to implement the majority of the
designed system. The main problem was encrypting and sending large data files since they
required a data stream to not consume all the memory of the client.

7.3 Conclusion

When designing a collaborative storage that only stores encrypted files the main focus lies
in handling the keys used for the encryption in a secure way. The keys must be stored in
a database within the system in a secure fashion while still being available to the clients.
It is of importance that the keys can not be extracted from the database by administrators
maintaining the system. If the keys used for encryption can be obtained, the confidentiality
of the files are greatly compromised. In order for the system to be useful in the described
scenario, it requires the above criteria to be fulfilled.

To summarize the findings of this thesis, the research questions in section 1.2 will be used.
In order to answer the main assignment of the thesis, the two sub assignments will first be
addressed.

2. How can such a system be designed to securely manage cryptographic keys?

3. How can such a system be designed to prevent administrators from accessing confidential infor-
mation?

Both of these questions is solved in the proposed design by hybrid encryption. The room
key, which is used for symmetric encryption, is stored encrypted with an asymmetric encryp-
tion scheme, where the key used is a user’s public key. This solves the issue of managing the
cryptographic keys. It protects the stored room keys in the database since they are encrypted.
It also makes collaboration in the system simple, encrypted room keys can safely be sent to
a client together with the needed public key to give a user access to a room. The hybrid
encryption approach also prevents administrators from accessing confidential information.
Even though they have access to the storage where the encrypted files are stored, they have
no possibility to decrypt them since the the room keys are encrypted. Furthermore, it is
not possible for the administrators to manipulate the database to gain access to these keys,
thereby decrypting the stored files. The additional encryption of fields in the database pre-
vents the administrators from deriving information about files and rooms stored within the
system.

The previous questions were answered in order to address the main assignment of the
thesis:

How can a system for file storage be designed to achieve full encryption from storage to client?

To answer this question we refer back to chapter 4. The proposed design uses a hybrid
encryption scheme, which solved the sub assignments. In the design, the files at rest are
encrypted and are also sent to the clients encrypted. In order to decrypt the file the encrypted
room keys are retrieved from the database. When a file enters the system, the client once
again retrieves the encrypted room key from the database and uses the room key to encrypt
the file. This file is then sent to the server and stored in the object storage. Therefore, the
proposed design is an answer the the main assignment of this thesis.

46

7.4. Future work

7.4 Future work

This thesis only described the usage of TLS/SSL, a replication server and the possibility of
running the solution as a distributed system. Therefore, the first step to future work would
be to make the transition to TLS/SSL, a distributed system as well as to implement the repli-
cation server in order to verify this thesis’ claims of their feasibility. Additionally, the man-
agement of the keywarden has been deemed out of scope for this thesis. In future work this
aspect should be considered since the security of the system is reliant on this special user
if it is run in enterprise mode. Mainly methods to store the keywardens credentials will have
to be researched since they need to be accessible by the system but protected from manual
modifications. Finally, adopters of the system should consider implementing their own AES
and RSA algorithms and local encryption module. The reason being that maintenance of
these components is made easier than with a third party provider. However, these modules
will require extensive testing to verify their functionality and security to not compromise the
system. If a third party where to be used, the adaptors would have to do research on the
reliability of the third party.

47

Bibliography

[1] Krithika K Annapoorna Shetty Shravya Shetty K. A Review on Asymmetric Cryptography
– RSA and ElGamal Algorithm.

[2] Tim Dierks. “The transport layer security (TLS) protocol version 1.2”. In: (2008).

[3] Taher ElGamal. “A public key cryptosystem and a signature scheme based on discrete
logarithms”. In: Advances in cryptology. Springer. 1984, pp. 10–18.

[4] ELITS. 2016. URL: https://elits.com/what-we-offer/ (visited on 02/15/2016).

[5] Eiichiro Fujisaki et al. “RSA-OAEP is secure under the RSA assumption”. In: Journal of
Cryptology 17.2 (2004), pp. 81–104.

[6] P Gallagher and C Kerry. Fips pub 186-4: Digital signature standard, dss (2013).

[7] Rosario Gennaro. “Randomness in cryptography”. In: IEEE security & privacy 2 (2006),
pp. 64–67.

[8] Ravindra Kumar Gupta and Parvinder Singh. “A new way to design and implemen-
tation of hybrid crypto system for security of the information in public network”. In:
International Journal of Emerging Technology and Advanced Engineering 3.8 (2013), pp. 108–
115.

[9] Hakan Hacigümüş, Bala Iyer, and Sharad Mehrotra. “Data and Applications Security
XVII: Status and Prospects”. In: ed. by Sabrina Capitani di Vimercati, Indrakshi Ray,
and Indrajit Ray. Boston, MA: Springer US, 2004. Chap. Ensuring the Integrity of En-
crypted Databases in the Database-as-a-Service Model, pp. 61–74. ISBN: 978-1-4020-
8070-8. DOI: 10.1007/1-4020-8070-0_5. URL: http://dx.doi.org/10.
1007/1-4020-8070-0_5.

[10] Ross Anderson1 Eli Biham2 Lars Knudsen. “Serpent: A Proposal for the Advanced
Encryption Standard”. In: First Advanced Encryption Standard (AES) Conference, Ventura,
CA. 1998.

[11] T. Mager, E. Biersack, and P. Michiardi. “A measurement study of the Wuala on-line
storage service”. In: Peer-to-Peer Computing (P2P), 2012 IEEE 12th International Confer-
ence on. 2012, pp. 237–248. DOI: 10.1109/P2P.2012.6335804.

[12] Teddy Mantoro and Andri Zakariya. “Securing e-mail communication using hybrid
cryptosystem on android-based mobile devices”. In: TELKOMNIKA (Telecommunication
Computing Electronics and Control) 10.4 (2012), pp. 807–814.

48

https://elits.com/what-we-offer/
https://doi.org/10.1007/1-4020-8070-0_5
http://dx.doi.org/10.1007/1-4020-8070-0_5
http://dx.doi.org/10.1007/1-4020-8070-0_5
https://doi.org/10.1109/P2P.2012.6335804

Bibliography

[13] Mike Mesnier, Gregory R Ganger, and Erik Riedel. “Object-based storage”. In: Commu-
nications Magazine, IEEE 41.8 (2003), pp. 84–90.

[14] James Nechvatal et al. Report on the development of the Advanced Encryption Standard
(AES). Tech. rep. DTIC Document, 2000.

[15] OpenSSL Frequently Asked Questions. 2016. URL: https://www.openssl.org/docs/
faq.html (visited on 03/11/2016).

[16] OpenUP. 2016. URL: http://epf.eclipse.org/wikis/openup/ (visited on
09/27/2016).

[17] Shari Lawrence Pfleeger. Software Engineering: Theory and Practice. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 1998. ISBN: 0-13-624842-X.

[18] random(4) - Linux man page. 2016. URL: http://linux.die.net/man/4/random
(visited on 03/11/2016).

[19] Robert Richardson. “2010/2011 CSI Computer Crime and Security Survey”. In: CSI
Computer Crime and Security Survey (2011).

[20] Ronald L Rivest, Adi Shamir, and Len Adleman. “A method for obtaining digital sig-
natures and public-key cryptosystems”. In: Communications of the ACM 21.2 (1978),
pp. 120–126.

[21] Bruce Schneier. “Attack trees”. In: Dr. Dobb’s journal 24.12 (1999), pp. 21–29.

[22] Bruce Schneier et al. The Twofish Encryption Algorithm: A 128-bit Block Cipher. New York,
NY, USA: John Wiley & Sons, Inc., 1999. ISBN: 0-471-35381-7.

[23] Claus Peter Schnorr and Markus Jakobsson. “Security of signed ElGamal encryption”.
In: Advances in Cryptology—ASIACRYPT 2000. Springer, 2000, pp. 73–89.

[24] SpiderOak. SpiderOak Official Website. 2016. URL: https://spideroak.com/ (visited
on 04/08/2016).

[25] William Stallings. Cryptography and network security: principles and practices. Pearson Ed-
ucation India, 2006.

[26] NIST-FIPS Standard. “Announcing the advanced encryption standard (AES)”. In: Fed-
eral Information Processing Standards Publication 197 (2001), pp. 1–51.

[27] Wade Trappe et al. “Introduction to cryptography with coding theory”. In: The Mathe-
matical Intelligencer 29.3 (2007), pp. 66–69.

[28] Meltem Sönmez Turan et al. “Recommendation for password-based key derivation”.
In: NIST special publication 800 (2010), p. 132.

[29] Veracrypt. 2016. URL: https : / / veracrypt . codeplex . com/ (visited on
03/08/2016).

[30] Veracrypt Documentation. 2016. URL: https : / / veracrypt . codeplex . com /
documentation (visited on 03/08/2016).

[31] What is Scrum? An Agile Framework for Completing Complex Projects - Scrum Alliance.

49

https://www.openssl.org/docs/faq.html
https://www.openssl.org/docs/faq.html
http://epf.eclipse.org/wikis/openup/
http://linux.die.net/man/4/random
https://spideroak.com/
https://veracrypt.codeplex.com/
https://veracrypt.codeplex.com/documentation
https://veracrypt.codeplex.com/documentation

	Abstract
	Acknowledgments
	Contents
	List of Figures
	Introduction
	Motivation
	Problem statement
	ELITS
	Aim
	Method
	Delimitations

	Theory
	Attacks
	Encryption
	Hash functions
	Key Management
	Secure Communication (SSL/TSL)
	Object Storage

	Requirements analysis
	Functional requirements
	Non-functional requirements

	Design
	Introduction
	Definitions
	System overview
	System Architecture
	Database Structure
	System Flows
	Discussion

	Threats and mitigations
	Introduction
	Process
	Threats
	Design mitigations
	System security analysis
	Summary

	Implementation
	Introduction
	Delimitations
	Motivations
	VeraCrypt
	Software components
	Testing
	Discussion

	Conclusion
	Literature study
	Design and implementation
	Conclusion
	Future work

	Bibliography

