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Abstract

The Cauchy problem for the Helmholtz equation appears in various ap-
plications. The problem is severely ill-posed and regualrization is needed
to obtain accurate solutions. We start from a formulation of this problem
as an operator equation on the boundary of the domain and consider the
equation in (HI/Q)* spaces. By introducing an artificial boundary in the
interior of the domain we obtain an inner product for this Hilbert space
in terms of a quadratic form associated with the Helmholtz equation;
perturbed by an integral over the artificial boundary. The perturbation
guarantees positivity property of the quadratic form. This inner product
allows an efficient evaluation of the adjoint operator in terms of solution
of a well-posed boundary value problem for the Helmholtz equation with
transmission boundary conditions on the artificial boundary.

In an earlier paper we showed how to take advantage of this frame-
work to implement the conjugate gradient method for solving the Cauchy
problem. In this work we instead use the Conjugate gradient method for
minimizing a Tikhonov functional. The added penalty term regularize
the problem and gives us a regularization parameter that can be used
to easily control the stability of the numerical solution with respect to
measurement errors in the data. Numerical tests show that the proposed
algorithm works well.

Key words. Helmholtz equation; Cauchy problem; Adjoint Method;
Inverse problem; Ill-posed problem; Tikhonov Regularization

1 Introduction

The Helmholtz equation arises in a wide range of applications related to acoustic
and electromagnetic waves. Depending on the type of the boundary conditions,
it appears in inverse problems for the determination of acoustic cavities [5], the
detection of the source of acoustical noise [6, 7], the description of underwater
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Figure 1: Description of the domain considered in this paper with a boundary
I" divided into two parts I'g and I';. On the right, an interior boundary ~; has
been introduced.

waves [10], the determination of the radiation field surrounding a source of
radiation [24], and the localization of a tumor in a human body [26].

We consider the inverse problem of reconstructing the acoustic or electro-
magnetic field from inexact data given only on an open part of the boundary of
a given domain. The governing equation for such a problem is the Helmholtz
equation. In order to formulate the problem, we let 2 be a bounded domain in
R¢ with a Lipschitz boundary I' divided into two disjoint parts I’y and I'; such
that To N T'; is Lipschitz; see Figure 1.

The Cauchy data ¢ and ¢ are only known on I'g, possibly with a certain
noise level. We can thus formulate the problem as follows:

Au+ k?u =0 in €,
u=¢ on I, (1.1)
Ou=¢ on I,

where the wave number k£ is a positive real number, v is the outward unit nor-
mal of the boundary T", and 9, denotes the outward normal derivative. This
is the Cauchy problem for the Helmholtz equation and it is severely ill-posed
[9, 17, 20]. Hence, regularization is needed in order to solve the problem ac-
curately. Different regularization methods have been suggested by various au-
thors. We mention for instance the potential function method [27], the modified
Tikhonov regularization method [9, 23], the truncation method [22], the method
of approximate solutions [24], the wavelet moment method [1], the conjugate
gradient methods with the boundary element method [16, 18], and the alternat-
ing boundary element method [17].

By taking advantage of the linearity of the equation (1.1) we can, e.g., set
¢ = 0 and consider the following well-posed problem: Find u € H'(£) such
that

Au+Eu=0 in Q,
u=0 on T, (1.2)
du=mn on Iy,

where we have imposed Neumann conditions on I'y and zero Dirichlet conditions



on I'g. Using the above well-posed problem we define an operator
KT]: aUU|F0; (13)

and we have effectively reformulated the Cauchy problem (1.2) as a linear op-
erator equation K1 = (. The problem with such an approach is that the
formulation (1.2) can have non-zero solutions even for n = 0, or the solution in
the interior may have a large norm due to clustering of eigenvalues near k2.

The operator equation (1.3) can be considered in weighted L? spaces, see
[12], or using H 1/2 spaces. We consider the second option and the space for 7
is H'/2(I'1)*. Then the solution u belongs to H*(Q) and K7 lies in H'/2(Tg)*.
Despite the fact that both spaces are Hilbert it is problematic to find an ex-
pression for the adjoint K™ in terms suitable for applications. It is important
to find inner products for these spaces that allows the efficient evaluation of the
adjoint operator.

In the case k = 0, i.e. the Laplace equation, we can use an equivalent Hilbert
norm in H'/2(T;)*,

HnHHl/Q(Fl)* = (/Q |Vu|2d1'>1/27 (14)

where u is harmonic and v = 0 on 'y and v = 1 on I';. The adjoint operator,
with respect to the corresponding inner product, can be expressed through
the solution of a boundary value problem for the Laplace equation. For the
construction of the adjoint it is important to note that (1.4) is the bilinear form
corresponding to the differential operator in (1.2) for k=0.

If k#0 then the bilinear form corresponding to (1.2) may change sign. In
[3, 2] we have suggested to use instead,

/Q(|Vu|2 — K*u?)?dx + u/qus, (1.5)

~

where v is a surface in Q and p is a positive constant. If v and p are chosen so
that the form (1.5) is positive for u # 0 then the adjoint, with respect to the
corresponding inner product, could also be defined in terms of a boundary value
problem for the Helmholtz operator with suitable transmission conditions on ~.
The alternating iterative algorithm for the Cauchy problem for the Laplace
equation, suggested by the authors in [14, 13], consists of solving two related
Neumann-Dirichlet problems in sequence. The alternating algorithm can be
seen as solving the operator equation (1.3) by the Landweber method and the
two mixed Dirichlet-Neumann problems can be viewed as the application of
either the operator K or its adjoint K*. It has been shown in [3, Section 1.3]
that the alternating algorithm does not always converge for large wave numbers
k? in the Helmholtz equation. This is due to the fact that for large k2 a certain
quadratic form related to the Helmholtz equation fails to be positive definite.
In [3] we proposed a modification of the alternating algorithm, for the case
k # 0, by introducing an interior artificial boundary - and a positive parameter



. It was shown that by making an appropriate choice of v and using a large
enough number p we can guarantee positivity of the quadratic form (1.5). For
this case it was also shown that that the modified algorithm is convergent, but
the convergence was slow. However, since the quadratic form associated with the
problem is positive, we can introduce an inner product, as discussed above, that
gives us a natural framwork that can be used to implement more sophisticated
iterative methods. This was done in [2], where we showed that the conjugate
gradient method can used for solving the Cauchy problem efficiently. Since the
conjugate gradient iterations have a regularizing effect (see [8]) we could also
solve the problem with noisy data.

An important advantage of the proposed algorithms is that they can be
readily applied to more general problems. First we can treat more general
second order elliptic equations in divergence form with variable coefficients, i.e.

V- (A(x)Vu(z)) + k(x)u(z) =0, in Q,

and
U= fa v (A(SC)VU(SC)) = 1/}5 on FO;

where A is a bounded matrix-function with variable coefficients and k is a
bounded measurable function. Secondly, we can reconstruct elastic oscillations,
with a fixed frequency, in non-homogeneous and non-isotrophic media by bound-
ary measurements, i.e.

3

3]
Z a—aij(u) +p(x)k?u; =0, inQ, i=1,2,3,
7

j=1 "7

and
u=¢, v-o=W¥, only,

where o is the stress tensor,

3
1 Z ") Our,  Ouy

E,e=1

where Ai—“f and p are space dependent functions, and u = (u1,us,us) is the
displacement vector.

The paper is organized as follows: In Section 2 we introduce our modified
operator equation, inner products, and the adjoint operator. In Section 3 we
introduce the Tikhonov functional and explain how to implement the conjugate
gradient method for finding minimizing the functional. In Section 4 we present
a simple test problem and give the details of our finite difference discretization.
We also present numerical results that demonstrates that the algorithm works
well and accurate solutions can be found. Finally, in Section 5, we draw some
conclusions and give directions for future research regarding the method.



2 A Modified Operator Equation and Weak So-
lutions

In order to introduce a modified operator equation we first introduce an interior
boundary ~y as follows. Let w be an open subset of 2 with a Lipschitz boundary
~ such that its closure @ C 2. We denote the boundary dw by +; see Figure
1. For a function w, defined in €, we denote by [u] and [0, u] the jump of the
function u, and the jump of the normal derivative d,u across ~y, respectively.
The modified operator equation is introduced as follows. Pick a positive
number y and consider the following problem: Find u € H'(Q\v) such that

Au+k*u=0 in Q\y,

u=0 on Iy,

du=n on T, (2.6)
[Opu] + pu =& on 7,

[u] =0 on 7.

Using the above boundary value problem we define an operator N, analogous
to (1.3), by

N(n,§&) = duulr,, (2.7)
where u solves (2.6). Then the operator equation N(n,§) = ¢ will deliver the
solution to the problem (1.1), with ¢ = 0.

The bilinear form associated with the the Helmholtz equation, the interior
boundary, and the number p > 0, is

au(u,v) = /Q\ (Vu - Vo — k*uv) deru/uvdS, for u,v € H(Q). (2.8)
8! v

In our previous work [3] we demonstrated that it is always possible to chose 7
and p such that
ap(u,u) >0, foru=#0,uec HY(Q). (2.9)

This means that the bilinear form defines an inner product on H'(Q2). The
corresponding norm is defined by ||u||,, = a,(u,w)/?, for u € H'(Q).

Definition 2.1 Let n € HY?(I'1)*, and ¢ € H/?(y)*. A function u € H*(Q)
is a weak solution to problem (2.6) if it satisfies

a#(u,v):/F nvdS+/§vdS,
1 v

for every function v € H(Q) such that v =10 on To}.

To show that the solution of the operator equation N(n,£) = (, or more
precisely the corresponding solution u to the problem (2.6), also delivers the
solution to the problem (1.1), with ¢ = 0, and thus also the solution to the



original operator equation K7 = ( we do the following: Denote by u; the
solution of (2.6) and by us the solution of (1.1), with ¢ = 0. The function
w = u; — uo satisfies the homogeneous Cauchy problem for the Helmholtz
operator in 2\@ and hence w = 0 in Q\@. This implies that w =0 on v = Jw.
Since the quadratic form is positive on w this means that w = 0 in w.

2.1 Inner products and the adjoint

*

The bilinear form is used to define inner products on the spaces H/?(T'1)* x
H'Y2(y)* and H'/?(I'g)*. For simplicity we denote the space HY?(I'1)* x
H'2(3)* by (HV?)°

Definition 2.2 Let x1=(11,&1) and x2= (12, &2) be two functions in (H'/?)*.
The inner product between x1 and x2 i

(Xl,X2)(H1/2)* = ap(u1,uz),

where uy and uy satisfies the modified problem (2.6), with data (m1,&1) and
(n2,&2), respectively.

In order to define an inner product on the space H'/2(I'g)*, we first introduce
a second auxiliary problem: Find u € H'Q such that

Au+ k*u=0 in O\,
du=_ on I, (2.10)
u=0 on I'yU~.

Definition 2.3 Let ¢ and (s be two functions in H'/?(T'g)*. The inner product
between (1 and (3 is

(C17C2)H1/2(F0)* = ay(u1,uz),

where u1 and ug are solutions to (2.10), with data (1 and (o, respectively.

Finally the adjoint N* is defined by

N*( = (6VU|F17 ([61/”] + :uu)|’y) = (7776)) (2'11)

where u solves the problem (2.10) with d,u = ¢ on Ty.

3 Tikhonov Regularization
We recall that our goal is to solve the ill-posed operator equation
Nx=¢  x=®9). (3.12)

where N is defined by (2.7), and Nx can be evaluated by solving the well-posed
problem (2.6) with data x = (n,&). Note that, as explained previously, we have



a natural framwork with a scalar product that allows us to define an adjoint N*
that can be evaluated by solving the well-posed problem (2.6) with appropriate
data.

We propose to use Tikhonov regularization[21, 28], i.e. to find x € (H/?)*
that minimizes the Tikhonov functional:

In(x) = INx — CH?ql/z(rU)* + /\QHXH?Hl/z)*v (3.13)

where A > 0 is the regularization parameter. The Tikhonov functional rep-
resents a compromise between minimizing the residual |[Nx — (|| g1/2(p,)- and
enforcing stability, i.e., keeping the solution norm [|x||(g1/2. small.

In order to obtain high-quality solutions a good value for the regularization
parameter A is needed. If the noise level in the right-hand side is known then
the discrepancy principle by Morozov [8, 19] picks a value A such that the norm
of the residual is of the same magnitude as the noise. The discrepancy principle
is known to work well. In the case when it is difficult to accurately estimate
the magnitude of the noise, we can instead use the L-curve criterion, originally
introduced by Lawson and Hanson [15], see also [8, 11]. The L-curve is a plot
of the norm of the residual versus the norm of the solution, which can be seen
as a way of visualizing the trade-off between stability and keeping the residual
small, and often leads to good regularization parameters in practice.

The normal equations that correspond to the minimization problem (3.13)
are

N*Nx + A2y = N*C. (3.14)

For a given value of A, this represents a well-posed operator equation, where the
operator is self-adjoint and positive definite.

3.1 The conjugate gradient methods

The conjugate gradient method[25] (see also [8]) is the default choice when
dealing with self-adjoint and positive definite equations. In this section, we
describe the iterative procedure obtained when applying the conjugate gradient
method to the normal equations (3.14).

Initially pick a starting guess xo = (10,&) € (HY?)*, i.e. the normal
derivative d,u on I'y and the jump [0, u] + pu on the artificial inner boundary
~; see the problem (2.6). We also compute the initial residual by evaluating

do = N*(¢ — Nxo) — Axo, (3.15)

where ( is the known boundary data on I'g. Also set the initial search direction
po = dop. Note that here we need to solve the boundary value problem (2.6) once,
to evaluate Nxo, and the boundary value problem (2.10) twice, to evaluate N*(
and N*(Nxo).

Given Y, d;, and p;, the algorithm proceeds as follows: Evaluate

Cj = ij, (316)



by solving the boundary value problem (2.6). Compute the scalar
aj = ld; 12/ IG117 + A2 [lps11%), (3.17)
and update the approximate solution and the residual by
Xi+1 = Xj + a;ipj, and dj+1 = dj — Otj(N*Cj + )\ij), (318)

where N*(; is evaluated by solving the boundary value problem (2.6), with data
O,u = (j on I'g. Finally the new search direction is computed as

Bj = ||dj+1]?/ld;|I>, and pjy1 = dj + B;p;. (3.19)

In order to estimate the amount of work required for one iteration we note
that the first step is to evaluate ¢; = Np;. This means that we need to find
the solution u; of (2.6) with p; = (1;,¢;) as data. The norm is then evaluated
as ||p;||* = au(uj,uj). So by solving (2.6) once we obtain both ¢; and ||p;||*.
In order to update the residual d; we then need to evaluate N*(;, i.e. solve
(2.10), with data ¢;, to find the solution v;. Thus, we get both the norm
¢l = ap(vs,v;) and the function N*(; by solving one boundary value problem.

In our implementation, we solve two more boundary value problems to com-
pute ||p;|| and ||d;|| in each step of the algorithm. However, since the two
problems are linear and d; and p; are obtained by linear combinations of func-
tions, representing boundary data for (2.6) or (2.10) we could in principle obtain
the solutions directly by linear combination of previously stored solutions; and
thus two boundary value problems (one for N and one for N*) is the minimum
amount of work required to implement one conjugate gradient step.

4 Numerical Implementation and Tests

In order to conduct our tests we need to specify a geometry €2, select the interior
boundary ~y, and also implement a finite difference method for solving the two
well-posed problems that appear during the iterative process.

For our tests we chose a relatively simple geometry. Let L be a positive
number and consider,

Q=(0,1)x (0,L), with Tg=(0,1) x {0} and T;=(0,1) x {L}. (4.20)

The geometry and boundary conditions are illustrated in Figure 2. Note that
for our test geometry the two boundary parts I'g and I'; are disjoint. On the
sides of the domain we set zero Dirichlet conditions, i.e.,

u(z,y) =0 for (z,y) € {0} x(0,L)U {1} x(0, L). (4.21)

In addition we pick a rectangular interior domain w, with the same center of
gravity as € and side lengths L; and L,. The interior domain is also illustrated
in Figure 2. The specific choice for the interior boundary is dependent on the
first eigenvalue for the problem inside v and for the problem outside v are
approximately equal; see [3] for further discussion about good choices of ~.
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Figure 2: The domains and boudnary conditions for the numerical test problems.
We display the settings for evaluating the operators K (left), N (middle) and
N* (right).

4.1 Numerical discretization

In order to implement numerical approximations of the operators K, N, and
N*, we need to solve the mixed boundary value problems (1.2), (2.6), and (2.10)
respectively. In this section, we briefly give the details of our implementation
of the finite difference method for solving these boundary value problems.

In our code, we discretize the domain 2 by choosing an equidistant grid
{(xi,y;)} of size N x M. We use the same step size in the z- and y-directions
and thus M = LM, and the step size is h = N1,

Let w;; denote the discrete approximation to u(z;,y;). At interior grid
points the Helmholtz equation is approximated by

(4 = K*h®)uij — wim1,j — Ui1,j — Uij—1 — Uij41 = 0. (4.22)

At the boundaries corresponding to =0 and =1, the value of the function u
is zero and the corresponding variables u; ; are explicitly set to zero. However,
at the boundaries corresponding to y=0 and y= L, we get different equations
depending on the type of the boundary condition. Similarily Dirchlet conditions
on I'g, I'1, or v are dealt with by setting the corresponding variables u; ; to their
respective values. Neumann boundary conditions are discretized using one sided
second order accurate differences, i.e., at I'1, we obtain

(=3ui s +4uipr—1 —win—2)(2h) P =m;, i=0,...,N, (4.23)

and 7); is the prescribed Neumann data at y = L. Similar difference quotients
are used to approximate Neumann boundary conditions at y = 0 and also for
discretizing the jump [0, u] on the line segments making up the interior boudnary
5.

In our iterative solution method we need to repeatedly solve the well-posed
problems that correspond to the operators NV and N*. In both cases, the finite
difference method leeds to a linear system of equations Az = b, where A is a
large sparse M N by M N matrix, and b is a vector that contains the boundary
data values.

In our experiments, these linear systems are solved using the LU decompo-
sition of the sparse matrix A. Since the matrix A depends on the domain, the



wave number k2, the parameter p, and the types of boundary conditions used,
but not on the actual boundary data values, we can save the matrices A and
their sparse LU decomposition between iterations. This significantly improves
the computational speed.

The norms and the inner products introduced in Subsection 2.1 are also
computed numerically by evaluating the intergrals that make up the bilinear
form a,(u,v) (see (2.8)) on the grid using the trapezoidal rule. Note that the
bilinear form involves an integral over the domain Q\~y. The distinction between
Q and Q\7 is not important for the integration. However in the numerical
implementation one-sided differences needs to be used for computing gradients
near vy as the gradient may have a jump on ~.

4.2 Numerical Tests

In this section we present numerical experiments conducted with our algorithm
in order to verify its validity.

In order to obtain suitable test problems for our algorithm we select the
parameter L = 0.2, which determines the size of the domain 2. Further the
interior boundary +y is determined by the two parameters L1 =0.20 and Ly =0.04.
The size of the computational grid used for the finite difference approximation
is N =600 and M = 120. Since the regularization parameter is the value A
we want to solve the modified normal equations to good accuracy. In our tests
we stopped the CG iterations when the residual ||dy| was below the tolerance
107>, This choice means we solve the normal equations with sufficient accuracy
so that the main regularizing effect is due to the penalty term A2||x||? in the
Tikhonov functional.

In order to create the numerical test problems we do the following: First
select the function 7 and to be used as a boundary condition in (1.2), and also
a wave-number k2. Second we solve the problem to obtain the exaxt solution
u(z,y), and also compute the corresponding function ¢(z) = u,(x,0) to be used
as a right hand side for the operator equation K7 = (. The problem is solved
accurately enough so that with the data u,(z,0) = ¢ and the solution 1 can be
considered exact. In order to simulate measurement noise we added normally
distributed random noise to the data { giving the noisy data vector (,,.

The starting guess xo for the conjugate gradient iterations were created by
setting 19 = (m, and applying a simple smoothing filter. The initial data at the
interior boundary, i.e. &y, were obtained by solving the problem (1.2), using g
as data.

Example 4.1 The first test was conducted using k2 = 15.5, u = 2, and a func-
tion 7 that was created using cubic spline interpolation and a small number of
interpolation points. By solving the Helmholtz equation, i.e. the problem (1.2),
we construct an exact solution w; from which we extract the boundary data (.
Random noise with variance 1072 was used to get the simulated measurements
Cm- The exact solution u(z,y), the boundary values u,(x,1) =7, and also the

10
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Figure 3: The exact solution u(z,y) for Test 4.1 (left) and also the boundary
data uy(z,0) = ¢(z) (right,blue curve) and u,(z,1) = —n(x) (right,black dashed
curve).

simulated measurements (,,, are displayed in Figure 3. Note that the magnitude
of the noise is rather large.

In order to find a regularized solution we selected A = 4-1072 and solved the
normal equations using the conjugate gradient method to obtain the Tikhonov
solution (n*,&*). The results are displayed in Figure 4.

In order to illustrate the smoothing effects of the Tikhonov functional we
also compute the solution for A = 4 - 107!, The results are shown in Figure 5.

It is crucial to pick a good value for the regularization parameter. In Figure
6 we use the L-curve to find a good value for .

Example 4.2 In our second test we increase the wave number to k% = 25. We
also set ;1 = 5 in order to make the quadratic form a,, positive definite. In Figure
7 we display the results. The higher wave number does not generally make the
problem more ill-posed. The noise level for the test was again a variance of
102 for the random simulated measurement errors. By picking an appropriate
regularization parameter we manage to obtain a very good solution.

Example 4.3 In the third test we pick a simpler function 7n(x) to use at the
boundary y = L. With fewer complicated features to reconstruct we hope to
obtain a more accurate solution. For this test we also used k? = 25. We also
set 4 = 5. We also lowered the variance of the random noise to 5 - 1073,

In Figure 8 we display the results. With the simpler function 7 and the
slightly lower noise level we manage to find a very good solution.

5 Concluding Remarks

It was proved in [3] that the alternating algorithm suggested by V.A. Kozlov
and V.G. Maz’ya in [14] does not converge for large values of the wave number

11



Solutions nand 7"
Residual norm [|d |

Solution norm [|( 7
Residual norm || ¢ -N(7,.& Il

1 20 5 B > 7 o s 10 15 20 25 0 35 )
Iteration Number: k Iteration Number: k

Figure 4: We display the Tikhonov solution n*, for k% = 15.5, u = 2, and
A =4-1072 (top left, blue curve). The Exact solution 7 (black, dashed) is also
displayed. In addition we show the residual norm ||dx| during the iterations
(top,right). The stopping criteria is reached after k = 37 iterations. We also
show the solution norm ||(nk, &) || (lower,left) and the residual ||(n — N (0, &k )|l
(lower,right) during the iterations.

Solutions 7 and 7"

Residual norm ||d k||

3 4 5 3 7
X Iteration Number: k

Figure 5: We display the Tikhonov solution %, for A = 4 - 1071, (left, blue
curve). The Exact solution 7 (black, dashed) is also displayed. For this case too
much regularization is used the solution 7* is too smooth. In addition we show
the residual norm ||dg| during the iterations (right). The stopping criteria is
reached after k = 9 iterations.
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Residual norm || ¢, -N( &Il

10°
Solution norm | 7.l x

Figure 6: The L-curve (left) is a plot of residual norm ||¢,,, — N (0, &})]|| versus
the solution norm ||(n*, )| for a range of values A. The corner of the curve is
obtained for A = 2-1072 which represents a good compromise between accuracy
and stability. The solution corresponding to A = 2-10~2 is also displayed (right).
For this case k = 20 iterations were used to calculate the solution.

n

(x,L)=-

(x,0)= ¢and u K

y
Solutions 17 and :/'\

Boundary data u

Figure 7: We display the noisy boundary data (,(z) (left,blue curve) and
uy(x,1) = —n(z) (left,black dashed curve) for Test 4.2. We also show the
Tikhonov solution 7*, for k2 = 25, 4 = 5, and A = 1- 1072 (left, blue curve).
The Exact solution n (black, dashed) is also displayed. For this case k = 35
iterations were used to solve the normal equations.
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Boundary datau | (x.0)= Cand u (xL)=- 1

Figure 8: We display the noisy boundary data (. (z) (left,blue curve) and
uy(x,1) = —n(z) (left,black dashed curve) for Test 4.3. We also show the
Tikhonov solution n*, for k2 = 25, 4 = 5, and A = 1- 1072 (left, blue curve).
The Exact solution 7 (black, dashed) is also displayed. For this case k = 17
iterations were used to solve the normal equations.

k? in the Helmholtz equation. Instead we suggested a modification that includes
an artificial interior boundary to restore convergence of the alternating iterative
algorithm.

In [2] we noted that, if the modified alternating algorithm produces a con-
vergent sequence, the bilinear form associated with the Helmholtz equation, the
interior boundary v and the parameter p is coercive. This means that we can
introduce a scalar product natural to the problem. We showed that we could
rewrite the Cauchy problem as an operator equation and using the scalar prod-
uct provided by the bilinear form we were able to derive an expression for the
adjoint of the operator. As a result we demonstrated that the convergence of the
method could be accelerated using conjugate gradient method for the normal
equations.

The conjugate gradient iteration has regularizing properties but the algo-
rithm turned out to be rather sensitive with respect to the number of iterations
used; which acts as the regularization parameter. In this paper we proposed to
use the conjugate gradient method for, instead, solving the normal equations
that correspond to the minimization of the Tikhonov functional. This means
we introduce a regularization parameter A\ that can easily be changed to suit a
specific problem. Our experiments demonstrate that the method works rather
well and we obtain good solutions in a relatively low number of iterations. We
also demonstrate that the L-curve technique can provide good regularization
parameters when used together with our algorithm.

This paper represents an initial study and several aspects can be improved
upon. Firstly the numerical tests are performed only with a simple geometry. In
principle the method could deal with more complicated domains and equations.
This is something we intend to explore in the future. Also, there are different
approaches to restoring positive definiteness of the quadratic form. In [4] we
proposed replacing Neumann conditions on I'g and I'y by Robin conditions.

14



This has the advantage that the function values on the interior boundary will
not appear in the Tikhonov penalty term; which might lead to more accurate
solutions on the part of I'y that is “hidden” by ~. This is also something we
intend to investigate in the future.
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