
Dynamics of Human Leukocyte Antigen-D Related expression in 
bacteremic sepsis  



 To my father 
 

      
 



Örebro Studies in Medicine 161 
  

 
 

 
 
 

SARA CAJANDER  
 
 

Dynamics of Human Leukocyte Antigen-D Related 
expression in bacteremic sepsis 

      



 
 

© Sara Cajander, 2017 

Title: Dynamics of Human Leukocyte Antigen-D Related expression in 
bacteremic sepsis 

Publisher: Örebro University 2017 
www.oru.se/publikationer-avhandlingar 

 

Print: Örebro University, Repro 04/2017 

ISSN 1652-4063 
ISBN 978-91-7529-191-8 



Abstract 

Sara Cajander (2017): Dynamics of Human Leukocyte Antigen-D Related 
expression in bacteremic sepsis. Örebro Studies in Medical Science 161. 

Monocytic human leukocyte antigen-D related (mHLA-DR) expression 
determined by flow cytometry has been suggested as a biomarker of sepsis-
induced immunosuppression. 

In order to facilitate use of HLA-DR in clinical practice, a quantitative 
real-time PCR technique measuring HLA-DR at the transcription level was 
developed and evalutated. Levels of HLA-DR mRNA correlated to mHLA-
DR expression and were robustly measured, with high reproducibility, dur-
ing the course of infection. Dynamics of mHLA-DR expression was studied 
during the first weeks of bloodstream infection (BSI) and was found to be 
dependent on the bacterial etiology of BSI. Moreover, mHLA-DR was 
shown to be inversely related to markers of inflammation. In patients with 
unfavourable outcome, sustained high C-reactive protein level and high 
neutrophil count were demonstrated along with low mHLA-DR expression 
and low lymphocyte count. This supports the theory of sustained inflam-
mation in sepsis-induced immunosuppression. The association between 
mHLA-DR and bacterial etiology may be linked to the clinical trajectory 
via differences in ability to cause intractable infection. Staphylococcus au-
reus was the dominating etiology among cases with unfavourable outcome. 
With focus on patients with S. aureus BSI, those with complicated S. aureus 
BSI were found to have lower HLA-DR mRNA expression during the first 
week than those with uncomplicated S. aureus BSI. If these results can 
be confirmed in a larger cohort, HLA-DR measurement could possibly be-
come an additional tool for early identification of patients who require fur-
ther investigation to clear infectious foci and achieve source control. 

In conclusion, PCR-based measurement of HLA-DR is a promising 
method for measurements of the immune state in BSI, but needs further 
evaluation in the intensive care unit setting to define the predictive and prog-
nostic value for deleterious immunosuppression. The etiology of infection 
should be taken into consideration in future studies of translational immu-
nology in sepsis. 

Keywords: monocyte HLA-DR, sepsis, immunosuppression, bloodstream 
infection, HLA-DRA, CIITA, qRT-PCR 
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SIRS Systemic inflammatory response syndrome 
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SOFA Sequential organ failure assessment score 
BSI Bloodstream infection
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PD-1 Programmed cell death-1 
PD-1L Programmed cell death-1 ligand 
MDSC Myeloid derived suppressor cell 
GM-CSF  Granulocyte macrophage-colony stimulating factor  
G-CSF Granulocyte-colony stimulating factor 
PICS Persistent inflammation-immunosuppression and catabo-
lism syndrome
CIITA Class II trans-activator 
CRP C-reactive protein
qRT-PCR Quantitative real-time polymerase chain reaction 
ROC Receiver operating characteristic curve 
AUC Area under the curve 
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INTRODUCTION 

Sepsis incidence and mortality 
 
Sepsis is a life-threatening illness caused by a dysregulated host response to 
infection, affecting millions of people around the world [1]. It accounts for 
approximately 15-20% of all deaths in the developing world [2] and epi-
demiological data have shown a worrying trend of increasing incidence 
[3]. The true incidence of sepsis is, however, difficult to determine because 
there is wide variance, between data sets, in the diagnosis definition, and 
also in the methodology used for data extraction [3, 4]. During 2004-
2009, the annual incidence of sepsis in the United States varied from 300 
to 1031 per 100 000 persons, when using different definitions of sepsis in 
data extracted from one national data set. Regardless of the definition 
used, there was a similar time trend showing an annual increase of 13% 
[3]. 

 Hospital mortality from sepsis ranges from 10% to 50% depending on 
the degree of severity [1, 5]. In septic shock, the case-fatality may be above 
50%, but this is influenced by many factors [6-8]. The strongest predictor 
of death is the cumulative burden of organ dysfunction [6, 9, 10]. Age, co-
morbidity, sex, pathogen virulence, site of infection, time to antibiotic 
treatment [11, 12] and expertise of the treating center are also important 
for outcome [6, 13, 14]. Interestingly, there has been a declining trend in 
reported 28-day mortality rates from sepsis in high-income countries, 
without development of new sepsis-specific treatments [2, 15]. This could 
be due to successful treatment bundles including evidence-based recom-
mendations for the initial management of supportive care [16-18] together 
with early administration of antibiotics [11, 12] and awareness of the 
disease [19]. On the other hand, several reports have shown a high burden 
of disease among survivors of sepsis and a high late mortality rate [20-23]. 
Recent studies have reported 2 and 3 year mortality rates of 45% and 
71% respectively [24, 25]. As shown in Figure 1, advanced age and high 
comorbidity burden contribute to the high incidence of long-term deaths 
[26]. However, one in five who survive sepsis has a late death not ex-
plained by the health status before sepsis [27]. A recent study found that 
early deaths were mainly attributable to intractable multi-organ failure 
related to the primary infection or mesenteric ischemia, whereas late 
deaths were often were related to nosocomial infections [28]. Similarly, 
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Zhao et al. demonstrated that the risk of late death for septic shock pa-
tients who contracted secondary infections was 5.8 times higher than for 
patients who remained free of secondary infection [21]. Moreover, in an 
observational ICU study including over 1000 critically ill patients it was 
shown that late onset of shock or recurring shock had a significantly high-
er mortality compared to early onset of shock [5]. Long lasting defects in 
cellular and immune homeostasis after sepsis rendering the host vulnerable 
to secondary infections, have been identified as possible contributing fac-
tors to negative outcome and late mortality in sepsis [13, 20, 21, 23]. 

 

Figure 1. Modified from Delano and Ward, “Sepsis-induced immune dysfunction: 
can immune therapies reduce mortality?” Journal of Clinical Investigation, 2016 
[23]. Two early peaks in mortality exist, albeit of low magnitude. A third upswing 
occurs approximately 60–90 days after sepsis and continues to soar as time pro-
gresses. This delay in sepsis mortality is thought to be the consequence of the more 
sophisticated intensive care unit (ICU) care that keeps elderly and comorbidly 
challenged patients alive longer despite ongoing immune, physiological, and bio-
chemical aberrations. 

. 
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Sepsis history and pathophysiology  
 
The understanding of sepsis pathogenesis is in constant progress. Histori-
cally, there have been different prevailing theories through the ages. The 
word “sepsis”, was first encountered in Homer’s “Iliad,” where it was 
used as a derivative of the Greek word sepo [σηπω], which means “I 
rot”[29]. This word reflects the early understandings of sepsis, describing 
it as a process by which flesh rots, wounds fester, and similarly, swamps 
generate foul air [30]. The poisonous, foul air was thought to explain the 
endemic spread of diseases. This theory was later rejected by acceptance of 
the germ theory in the 19th century as Robert Koch and Louis Pasteur 
provided convincing evidence of microorganisms as causal factors for 
infectious diseases. In terms of this theory, sepsis was described as “blood 
poisoning,” and a bacterial invasion into the bloodstream was thought to 
be the disease causative mechanism [30]. However, after the discovery of 
antimicrobial therapy, this theory of sepsis pathogenesis was proven to be 
insufficient because many patients who were treated with antibiotics and 
cleared the bacteremia still died from sepsis. It became clear that host re-
sponses in bacterial infection could be harmful to the host and therefore 
had a significant role in the pathogenesis [31]. In the 1980s, cytokines 
where discovered and identified as important mediators of a collateral 
endogenous tissue damage. Massive release of cytokines during sepsis, 
often referred to as a “cytokine storm,” causing an overwhelming systemic 
inflammation with activation of complement and coagulation pathways, 
was thought to be the main cause of multi-organ failure and negative out-
come in sepsis. Convincing animal experiments, such as the investigations 
by Tracey et al. using injections of tumor necrosis factor (TNF) [32] and 
TNF inhibitors [33], demonstrated a causal relation between pro-
inflammatory cytokines and lethal sepsis. As a consequence, the first in-
ternationally recommended definitions for the sepsis diagnosis were based 
on a theory of systemic inflammatory response [34]. 

On the other hand, sepsis trials aiming to block different pathways that 
are associated with exaggerated inflammation have had repeated failures 
[35-39]. To date, over 30 interventional sepsis trials have demonstrated 
disappointing results [40, 41]. In addition, the only specific treatment 
(activated protein C) for sepsis was withdrawn from the market after fail-
ure to prove efficacy in a multicenter, post-marketing study [42]. This 
said, the former pathophysiology of sepsis based on excessive inflamma-
tion has been questioned and a need for a paradigmatic shift has been 
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proposed. In support of this, anti-inflammatory (immunosuppressive) 
responses with overexpression of interleukin (IL)-10 and signs of immuno-
suppression have been associated with a negative outcome in sepsis [43]. It 
has become evident that both pro- and anti-inflammatory responses are 
shown to be simultaneous events during sepsis [13]. Some researchers 
propose that the dominating inflammatory profile might be differently 
expressed in subpopulations of sepsis [41]. During septic shock for in-
stance, it is still believed that the unbalanced response in terms of an over-
shooting pro-inflammatory reaction mediates the circulatory impairments, 
leading to unfavorable outcome, as described previously. Moreover, alter-
ations in cellular metabolism and neuroendocrine signaling are found to 
be relevant for the development of organ failure and immunosuppression 
[44]. Importantly, no clear culprit mechanism has been found to explain 
the pathophysiology in all septic patients. Rather, sepsis pathophysiology 
is believed to be heterogeneous, with variation in the degree of impaired 
mechanisms [1]. Patients who are unable to recover from sepsis are 
thought to have homeostatic imbalance in the systems regulating these 
important mechanisms [1]. 
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Sepsis definitions 

Sepsis-1 
The first operationalized consensus definition of sepsis was based on the 
theory of systemic inflammatory response syndrome (SIRS), as shown in 
Table 1. After a conference in 1991 this definition became internationally 
accepted. Sepsis was defined as a systemic inflammatory response to infec-
tion with increasing degrees of severity identified as severe sepsis and sep-
tic shock [34]. According to this definition, microbiological confirmation 
is not required, but infection should at least be suspected. This original 
definition is now referred to as “Sepsis-1”. 

  
Table 1. Criteria for the systemic inflammatory response syndrome (SIRS), sepsis, 
severe sepsis, and septic shock, according to the 1991 American College of Chest 
Physicians (ACCP)/Society of Critical Care Medicine (SCCM) Consensus Conference. 
TERM CRITERIA 
SIRS Two out of the following four criteria: 

Temperature >38 °C or <36 °C 
Heart rate >90/min 
Hyperventilation evidenced by respiratory 
rate >20/min or arterial CO2 lower than 
32 mmHg 
White blood cell count >12 cells/L or 
lower than 4 cells/L 

Sepsis SIRS criteria with presumed or proven 
infection 

Severe sepsis Sepsis with organ dysfunction 
Septic shock Sepsis with hypotension despite ade-

quate fluid resuscitation 

Sepsis-2  
The definition of sepsis was reevaluated in 2001 [45] without major 
changes to the Sepsis-1 definition except the suggested clinical signs and 
laboratory tests indicative of organ dysfunction and impaired tissue perfu-
sion and the addition of general and inflammatory parameters, as shown 
in Table 2. 
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Table 2. Criteria for sepsis, based on the 2001 Society of Critical Care Medicine 
(SCCM)/American College of Chest Physicians (ACCP)/American Thoracic Society 
(ATS)/European Society of Intensive Care Medicine (ESCIM)/Surgical Infection Society 
(SIS) Consensus Conference. 
PARAMETERS CLINICAL SIGNS AND LABORATORY 

TESTS 
General parameters Fever, hypothermia, tachycardia, tachyp-

nea, altered mental status, arterial hypo-
tension, decreased urine output, signifi-
cant peripheral edema, or positive fluid 
balance 

Inflammatory parameters Leukocytosis, leukopenia, hyperglycemia, 
increased C-reactive protein, procalciton-
in, or creatinine, coagulation abnormali-
ties, increased cardiac output, reduced 
mixed venous oxygen saturation 

Hemodynamic parameters Hypotension, elevated mixed venous 
oxygen saturation, elevated cardiac index 

Organ dysfunction parameters Arterial hypoxemia, acute oliguria, in-
crease in creatinine level, elevated inter-
national normalized ratio or activated 
partial thromboplastin time, ileus, 
thrombocytopenia, hyperbilirubinemia 

Tissue perfusion parameters Hyperlactatemia, decreased capillary 
refill, or mottling 

Sepsis-3 
The Sepsis-1 and 2 definitions were found to be fairly unspecific. Signs of 
systemic inflammation were often present in other severe illnesses, such as 
burns, pancreatitis and trauma, that could be falsely diagnosed as sepsis 
[46]. Moreover, in 2014 Kaukonen et al. presented that the SIRS criteria 
excludes one in eight patients with severe infections treated in the ICU 
[15]. 

Misclassification of the level of severity, based on the Sepsis-2 definition 
was also found to be a problem leading to miscoding of the diagnosis and 
biased reported mortality [47]. Whittaker et al. found substantial underre-
porting of severe sepsis, leading to falsely high mortality data in patients 
with sepsis [48]. In 2016, new consensus criteria for sepsis (Sepsis-3) were 
established based on advances in sepsis research and a new understanding 
of the pathophysiology involved. Sepsis is today defined as a “dysregulat-
ed host response to infection, leading to life-threatening organ dysfunc-
tion”. In order to limit the diagnosis to patients with life-threatening dis-
ease, definitions were selected to define patients with hospital mortality of 
at least 10%[1]. Large databases were used to find suitable cutoff levels in 
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scoring systems for organ dysfunction.  According to the Sepsis-3 defini-
tion, sepsis is therefore defined as an increase in the Sequential (sepsis-
related) organ failure assessment score (SOFA), of ≥2 from baseline (Table 
3). Patients with profound circulatory, cellular, and metabolic abnormali-
ties are defined as having septic shock. This subset of patients is clinically 
identified based on requirement of vasoactive treatment to maintain mean 
arterial pressure ≥65 mmHg, and with lactate levels >2 mmol/L. In com-
parison to previous definitions, markers indicating inflammation, such as 
leukocyte count alterations or temperature, were removed. Also, the term 
“severe sepsis” was removed. The definition of septic shock was modified 
to only include patients treated with vasopressors. Collectively, patients 
diagnosed with sepsis according to this definition should be more severely 
ill in comparison to patients diagnosed with sepsis according to the previ-
ous definitions. As with previous definitions, infection should be suspected 
when diagnosing sepsis, but microbiological confirmation of the pathogen 
responsible for the infection is not required. 

 
Table 3. Sequential (sepsis-related) organ failure assessment score, adapted from 
Singer et.al [1]. 
Organ system SOFA 

Score 
    

0 1 2 3 4 
Respiration: 
PaO2/FIO2, 
kPA 

≥53.3 <53.3 <40 <26.7 with res-
piratory support 

<13.3 with 
respiratory sup-
port 

Coagulation: 
thrombocytes 
x103 

≥150 <150 <100 <50 <20 

Liver: 
bilirubin, 
μmol/L 

<20 20-32 33-101 102-204 204 

Cardiovascular: 
mean arterial 
pressure, mm 
Hg 

≥70 <70 Dobu-
tamine 
(any 
dose) or 
<5 

Epinephrine ≤0.1 
or norepinephrine 
≤0.1 or  
Dopamine 5.1-15 

Epinephrine 
≤0.1 or norepi-
nephrine ≤0.1 
or  
Dopamine >15 

Central nerv-
ous system: 
Glasgow coma 
scale 

15 13-14 10-12 6-9 <6 

Renal: 
Creatinine  

<110 110-
170 

171-
299 

300-440 >440 

Catecholamine doses are given as μg/kg/min for at least 1 hour 
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Etiology and site of infection 
 
The type of pathogen and site of infection are important determinants of 
sepsis related outcome [6, 14]. However, bacterial etiology is not always 
documented in patients with sepsis. Based on a prospective study from 
1995, the frequency of blood culture positive sepsis varied with the disease 
severity, and was 17%, 25% and 69% respectively for sepsis, severe sep-
sis, and septic shock [49]. 

Contemporary data have also demonstrated that presence of bactere-
mia, independent of infectious site, is associated with high mortality 
(34%) in patients with severe sepsis [6]. In a meta-analysis of 510 pub-
lished sepsis studies, Acinetobacter and Candida species were associated 
with the highest mortality rate [14]. Respiratory tract infections are the 
most prevalent site of infection [50] and are often associated with the 
highest mortality in sepsis [14, 51]. Among Gram-positive pulmonary 
infections Staphylococcus aureus etiology demonstrated higher mortality 
than Streptococcus pneumoniae etiology. In patients with severe sepsis, 
endocarditis is often associated with a high mortality despite its low preva-
lence. By contrast, genitourinary infections are associated with low at-
tributable mortality despite their high frequency as a primary infection in 
sepsis [6, 14].  

The reported mortality differences related to pathogen and source of in-
fection in sepsis are also related to the clinical situation in which they oc-
cur. For instance, Candida and Acinetobacter species often occur as sec-
ondary infections, which are associated with worse outcomes than prima-
ry infections [52].  

Considering the etiology and site-related differences in sepsis outcome, 
it is noteworthy that immunology studies in sepsis rarely account for 
these.  In a recent meta-analysis of 57 immunology studies in intensive 
care medicine, only one specified the infection site and/or a specific patho-
gen [53]. 
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Bloodstream infection  
 
Blood culture-positive infections are today often referred to as bacteremic 
infections or bloodstream infections (BSIs). Bloodstream infections are 
found to be a major healthcare problem associated with burden of illness 
comparable to major trauma, acute stroke, and myocardial infarction [54-
56]. Population based epidemiological studies have demonstrated that the 
most prevalent pathogens of community-onset BSI are: i) Escherichia coli 
ii) S. aureus; and iii) S. pnemoniae [57]. Contemporary data of the BSI 
incidence in Europe have demonstrated an increasing trend [58, 59], 
which might be related to changes in longevity with higher grade of 
comorbidities in the population. In Sweden, both incidence and mortality 
rates of BSI have demonstrated a gradual increase over time (2000-2013) 
[60].  

Bloodstream infections caused by S. aureus etiology (S. aureus bactere-
mia, (SAB)) are associated with a particularly high mortality, estimated at 
20–30% [55, 61]. However, the prognosis of SAB differs according to 
disease manifestation. It is therefore suggested to categorize SAB as either 
“complicated” or “uncomplicated” [62, 63]. Complicated SAB is often 
defined as a site of infection remote from the primary focus, caused by 
hematogenous seeding (e.g., endocarditis or osteomyelitis), or extension of 
infection beyond the primary focus (e.g., septic thrombophlebitis, abscess), 
or recurring infection [64].  
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Key immune responses in bacterial infection 
 
Early immune responses to invasive pathogens include initiation of an 
inflammatory response in order to eliminate the pathogens and repair 
damaged tissue. Identification, capture, degradation, and presentation of 
microbial antigens are important key innate immunological processes in 
an efficient host response. 

Identification of microbes and tissue damage 
One of the key processes during the early response to bacterial invasion is 
identification of microbes. Pathogens express several evolutionarily con-
served signature molecules known as “pathogen-associated molecular 
patterns (PAMPs)” [65]. Peptidoglycan and lipoteichoic acid are examples 
of common PAMPs found in the bacterial cell walls of Gram-positive bac-
teria. Lipopolysaccharide (LPS) is a well-studied PAMP found in the cell 
wall of Gram-negative bacteria [66]. When PAMPs are sensed by patho-
gen recognition receptors (PRRs) such as Toll like receptors (TLRs), C-
type lectin receptors or Nod-like receptors, they induce an intracellular 
signaling cascade resulting in an array of anti-microbial immune responses 
[67].  Induction of gene transcription will generate secretion of various 
inflammatory cytokines, chemokines and type I interferons [68].  

Additionally, endogenous molecules such as human deoxyribonucleic 
acid (DNA), adenosine triphosphate (ATP), heat shock proteins (HSPs) 
and high mobility group box (HMGB)-1, that are released following cell 
stress or cell damage, may also activate PRRs and the intracellular path-
ways leading to cytokine secretion [69]. These molecules are often referred 
to as “damage-associated molecular patterns (DAMPs) [67, 69]. Endoge-
nous cellular damage, with release of DAMPS may be directly induced by 
toxic substances from activated immune cells or by bacterial toxins. For 
example, invasive S. pneumoniae produce the potent pore-forming cyto-
toxin pneumolysin and copious amounts of hydrogen peroxide, both of 
which kill host cells [70]. Intracellular activation of protein complexes 
called inflammasomes will further amplify the inflammatory response by 
inducing secretion of the very potent cytokines IL-1β and IL-18, leading to 
recruitment of more leukocytes to the site of infection [71]. Activated in-
flammasomes will also induce inflammatory cell death (pyroptosis) with 
further release of DAMPs, such as HMGB-1 [19, 72].  

In brief, PAMPs and DAMPs that are sensed by PRRs and inflam-
masomes will activate intracellular signaling pathways leading to secretion 
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of cytokines and activation of immune cells [73]. During this acute phase 
response, pro-inflammatory cytokines will affect multiple cells in different 
organs, leading to the typical signs of infection, such as fever and malaise, 
and to production of acute phase proteins by the liver [71]. C-reactive 
protein (CRP), a commonly used marker of infection is an example of an 
acute phase protein induced by the pro-inflammatory cytokine IL-6.  

Capture and killing 
Another important step in the early response to microbes involves their 
capture and ingestion. To enable ingestion of bacteria, the first step in-
volves binding to PRRs [66]. The cytoplasm of the immune cell then sur-
rounds the pathogen and engulfs it within membrane-bound vesicle 
(phagosome) in the cytoplasm. This process is called “phagocytosis” [74]. 
The phagosome then fuses with a lysosome containing proteolytic en-
zymes. This leads to intracellular destruction of the microbe. Neutrophils 
and monocytes are important phagocytes circulating in the blood. Den-
dritic cells and macrophages are important tissue-residing phagocytosing 
cells [66].  

Macrophages with phagocytosed microbes secrete IL-12, which in turn 
activates natural killer (NK) cells to kill host cells infected by intracellular 
pathogens. 

In order to eliminate extracellular microbes, neutrophils, NK cells and 
cytotoxic T cells may release cytotoxic substances. Moreover, neutrophil 
cells may also inhibit bacterial proliferation by extruding their DNA with 
formation of so-called “neutrophil extracellular traps (NETs)” that trap 
bacteria and activate local coagulation mechanisms [75]. The release of 
toxic enzymes in neutrophils is strongly triggered by activated complement 
C5a, which is highly abundant in sepsis. 

Antigen presentation by human leukocyte antigen class II 
In a process called “antigen presentation,” antigen peptides from phagocy-
tosed pathogens are presented to CD4 Th cells by the human leucocyte 
antigen (HLA) class II molecule [76]. The HLA system is synonymous 
with the major histocompatibility complex (MHC) system [74]. The HLA 
class II molecules are present in monocytes, macrophages, dendritic cells 
and B-cells.  
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Antigen-dependent T cell activation requires three signals. Signal 1 is 
the antigen presented by a HLA class II molecule. Signal 2 is a co-
stimulatory signal with interaction between (CD80/86) on the antigen-
presenting cell (APC) and CD28 on the T cell (Figure 2). The third re-
quired signal is cytokine stimulation of the T cells [66]. Patients with the 
rare primary immunodeficiency disease “Bare lymphocyte syndrome” lack 
expression of HLA-class II [77]. These patients suffer from severe suscep-
tibility to bacterial and viral infections [78].  

 

Figure 2. The major histocompatibility complex (MHC) class II heterodimer is a 
glycosylated cell-surface transmembrane protein expressed on antigen-presenting 
cells (APCs). A three-signal mechanism is required for CD4 T cell activation. An 
APC takes up a protein antigen and processes it into peptide fragments that are 
presented by class II MHC molecules. The first signal required for CD4 T cell 
activation is recognition by the T cell antigen receptor (TCR) of the class II MHC–
peptide complex. The second, costimulatory signal is an interaction between CD28 
on the T cell and CD80 or CD86 on the APC. These signals stimulate cytokine 
production and induce CD4 T cell proliferation. 
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Lymphocyte activation and differentiation 
The activation of adaptive immunity is important for development of spe-
cific immune responses by inducing antigenic memory and amplifying the 
effect of innate immune cells [66]. In the host response to microorganisms, 
CD4 T helper (Th) cells are activated by MHC class II restricted antigen 
presentation and CD8 cytotoxic cells are activated by MHC class I re-
stricted antigen presentation. The fate of naïve Th cell differentiation de-
pends on the type of cytokine secreted by the infected immune cell, previ-
ously described as signal 3. Different pathogen types elicit different cyto-
kine profiles. This leads to development of effector cells with distinct func-
tions in response to certain types of pathogens [66, 79]. Some might re-
cruit more neutrophils to the site of infection (e.g., Th17 cells stimulated 
by IL-17 and IL-22) or activate macrophages to kill ingested microbes 
(e.g., Th1 cells stimulated by IL-12 and interferon γ (IFN-γ), whereas oth-
ers (e.g., Th2 cells stimulated by IL-4) promote mast cell and eosinophil 
activation. T helper-1 cells typically develop in response to pathogens 
activating NK cells and dendritic cells, such as intracellular bacteria, while 
Th2 cells typically develop in response to parasitic activation of mast cells 
and eosinophil activation. T helper-17 cells typically develop in response 
to extracellular pathogens [66]. 

The Th2 cytokine signaling (IL-4, IL-13) may further skew the differen-
tiation of macrophages from classical “microbicidal” M1 macrophages 
into “tissue repair” M2 macrophages [80].   

Accordingly, the typical Th1, Th2, or Th17 cytokine responses may be 
indicative of the type of infection, but many of these pathogen-related 
cytokine responses may also be overlapping [81].  The magnitude of the 
cytokine response is also related to the degree of endogenous tissue dam-
age, or to the immune evasion strategies of the pathogen [67]. Further-
more, host factors such as genetic variations may also influence the nature 
of host responses [82].  
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Sepsis-induced immunosuppression 
 

A suppressed immune response during the course of sepsis is today recog-
nized as an important pathogenic mechanism contributing to the high late 
death rate and burden of this disease [21]. During the past 2 decades, sev-
eral observational studies have found the paradoxical evidence of immu-
nosuppression in sepsis patients who had previously been believed to suc-
cumb due to an overactive pro-inflammatory immune response [13, 83-
86]. 

Evidence for immunosuppression in sepsis  
Important observations that underlie this theory of acquired immunosup-
pression are based on the occurrence of deleterious secondary infections in 
previously immunocompetent patients treated for sepsis [41, 52, 87-89]. 
Also, the pathogen types responsible for secondary infections are indica-
tive of a defective immune system. As an example, reactivation of latent 
viruses such as cytomegalovirus (CMV) [90, 91] and infections caused by 
bacteria common among immunocompromised individuals, such as Steno-
trophomonas species or Burkholderia cepacia [21], are found to occur as 
secondary infections in sepsis [88]. Illustratively, over 40% of septic pa-
tients were shown to have reactivation of latent herpes viruses in a recent 
study [91]. Moreover, secondary infections are associated with unfavora-
ble outcome [21].  

There are three well-performed autopsy studies supporting the theory of 
sepsis-induced immunosuppression [83, 92, 93]. One of these [93] demon-
strated a high proportion of unresolved infectious foci in patients who had 
died following sepsis. Remarkably, more than 80% of the deceased pa-
tients had signs of continuous infections even after being adequately treat-
ed for 7 days in the ICU. Another study showed extensive tissue lympho-
cyte apoptosis in critically ill patients who died from septic causes [92]. 
The last example is a well-sited study by Boomer and colleagues that 
demonstrated signs of profound immunosuppression in immune effector 
cells and tissue biopsies from multiple organs in patients who died follow-
ing sepsis [83]. Importantly, a control group of patients who died of non-
septic causes did not express signs of immunosuppression. In that study, 
sepsis patients also had functional signs of immunosuppression, demon-
strated by significant reduction of cytokine secretion in response to LPS 
stimulation. Moreover, their HLA-D-related (HLA-DR) expression was 
diminished and lymphocytes were depleted from spleen tissue [83]. The 
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inability to mount efficient host responses upon secondary stimuli, such as 
LPS stimulation of monocytes, is called endotoxin tolerance and is de-
scribed as a hallmark of severe immunosuppression or immunoparalysis 
[94]. Several studies have demonstrated an association between immuno-
paralysis and detrimental sepsis outcome [95-97].  

Cells affected during sepsis-induced immunosuppression 
An array of different alterations of the immune system has been identified 
during sepsis-induced immunosuppression. The hallmarks of immunosup-
pression following sepsis are: (i) endotoxin tolerance; (ii) reduction in 
antigen presentation and lymphocyte activation; and (iii) apoptosis of 
immune effector cells with a remaining Th2 dominance [13, 80, 98].  In 
this section, alterations in some of the important cells during immunosup-
pression will be described. Figure 3 summarizes the effects on innate and 
adaptive immune cells during sepsis-induced immunosupression. 

 

Figure 3. Alterations of innate immune cells (dendritic cells, macrophages, natural 
killer (NK) cells, neutrophils, myeloid-derived supressor cells (MDSCs)) and 
adaptive immune cells ( CD4-T cells, CD8-T cells, T-regulatory cells (T-regs), B-
cells) during sepsis-induced immunosuppression. Modified and adapted from 
Hotchkiss et al. [99] 
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Monocytes and macrophages 
Monocytes have a crucial role in the immune response during sepsis, even 
if they only contribute to a maximum of 10 % of all blood leukocytes. 
Similar to neutrophils, they are important cells to combat invading patho-
gens by phagocytosis [66]. However, in contrast to neutrophils they circu-
late in the blood for several days before they pass into tissues and mature 
into macrophages or dendritic cells [80]. Additionally, monocytes also 
have a prolonged survival during sepsis [100]. Macrophages comprise 
subpopulations of cells (M1 and M2) that promote either pro- or anti-
inflammatory activity [101, 102]. In sepsis-induced immunosuppression, 
macrophages are skewed towards a dominating M2 phenotype. 

The direct antimicrobial killing capacity by monocytes does not seem to 
be altered during sepsis. More importantly, they possess a key regulating 
function by the ability to orchestrate both innate and adaptive immunity 
to be less effective in response to secondary stimuli [80, 103]. This regula-
tory function is mediated by reduced antigen-presenting capacity and al-
tered cytokine signaling [86]. Monocytes have demonstrated a reduced 
capacity to secrete the pro-inflammatory cytokines TNF, IL-1, IL-6, and 
IL-12 after challenge by TLR2 or TLR4 agonists in septic patients [104]. 
The mechanisms behind monocyte tolerance are not fully understood, but 
analysis of monocyte mRNA-patterns suggests that epigenetic program-
ming seem to play a pivotal role for the development of this anergy [105]. 
Many investigators agree that down regulation of HLA-DR on monocytes 
acts as a surrogate marker of this anergy [106-108].  

Dendritic cells 
Dendritic cells (DCs) are important as APCs. They also act as key regula-
tors of the immune system by ability to orchestrate the immune response 
to be either stimulatory or inhibitory [79]. In response to pro-
inflammatory signals they secrete stimulatory cytokines (IL-12, IFN-γ, 
TNF-α, IFN- α and IL-6) to optimize bacterial clearance. They are also 
important in viral infections trough activation of cytotoxic T cells and NK 
cells [66].  In a situation of anti-inflammatory signals (TGF-β, IL-10) in 
the surroundings of DCs, they act regulatory and will produce more sig-
nals to induce immune cell anergy. This also inhibits proliferation of con-
ventional T cells. Instead generation of T-regulatory cells (T-regs) will take 
place [99]. Similar to monocytes, DCs also down regulate HLA-DR during 
sepsis-induced immunosuppression [109].  
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T cells 
Lymphocytes are important cells in the adaptive immunity. In sepsis, the T 
cell population is shown to be deeply altered [110-113]. Several studies in 
septic patients have showed an association between the intensity and dura-
tion of lymphocyte alterations and risk of death or secondary infections in 
sepsis [113, 114]. 

Different alterations of the T cell population have been linked to sepsis-
induced immunosuppression. First, they have been shown to be numerical-
ly reduced due to massive apoptosis (programmed cell death) [83, 111, 
113]. Second, the remaining T cells are found to be exhausted upon sec-
ondary stimulation by LPS or recall antigens such as tetanus toxins [85]. 
Third, the T cell diversity is skewed towards a Th2 response [115] with 
increased proportion of regulatory T cells [103], which have been shown 
to suppress other effector T cell subsets [109]. 

A recent experimental study demonstrated that direct in-vitro LPS stim-
ulation of isolated T cells did not induce T cell exhaustion. Instead, T cell 
exhaustion was shown to be dependent on the presence of monocyte cells 
with reduced HLA-DR expression [116]. This monocyte-dependent nega-
tive regulation of lymphocytes could be restored by stimulation with IFN-γ 
[116]. T cell exhaustion has also been described to be induced by stimula-
tion with the typical Gram-positive TLR ligand peptidoglycan [117].  

Exhausted T cells in sepsis may express a phenotype characterized by 
lower levels of CD3+ cells and co-stimulatory molecules, together with up-
regulation of co-inhibitory molecules, such as programmed cell death re-
ceptor-1 (PD-1) [110, 118], or cytotoxic T lymphocyte associated protein 
4 (CTLA-4) [119-121]. These characteristics have similarities with the 
alterations described in chronic viral infections and cancer [122]. Specific 
therapies targeting these alterations has been successful in cancer patients 
and are therefore suggested as promising treatments of immunosuppres-
sion in sepsis [13]. 

Neutrophils 
Neutrophils are the most prevalent cell type of the innate immunity [66]. 
They are rapidly released into the circulation in response to cytokine sig-
naling in the acute phase reaction following pathogen invasion. Once re-
leased into the circulation they normally undergo apoptosis within hours 
[123]. However, during sepsis the normal function leading to apoptosis in 
neutrophils has been shown to be inhibited and apoptosis delayed [124], 
leading to ongoing neutrophil dysfunction [125]. Up-regulation of pro-
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grammed death ligand (PD-L) on septic neutrophils will instead induce 
apoptosis of other important immune cells, such as CD4 T cells [126]. 

Neutrophil dysfunction in sepsis may involve decreased recruitment to 
sites of infection (chemotaxis) and defects in oxidative burst [80, 127]. 
This is further compounded by release of immature neutrophils, with re-
duced ability to activate the complement-system. Decreased neutrophil 
functions in sepsis have been associated with an increased risk of noso-
comial infections [128, 129] and death [84, 127].  

Myeloid derived suppressor cells 
Myeloid derived suppressor cells (MDSC) are also identified as important 
players during sepsis-induced immunosuppression. The cells are normally 
not present in peripheral blood from healthy patients but are shown to be 
present during cancer and in sepsis. Recent studies have demonstrated that 
these cells are functionally immunosuppressive and therefore suggested as 
possible inducers of sustained immunosuppression [130, 131]. A sustained 
high proportion of these cells during the course of sepsis are also associat-
ed with the prolonged stay in the ICUs and prevalence of nosocomial in-
fections [130]. Of note, MDSCs in sepsis patients have demonstrated sup-
pressed HLA-DR expression at the gene level, shown by diminished HLA-
DRA messenger ribonucleic acid (mRNA) [130].  

B cells 
Reduced B cell counts in humans correlate with the incidence of nosocom-
ial infections, but data regarding sepsis-induced alterations are conflicting 
[80]. Some researches argue that they are not generally reduced, while 
others have found significant reductions in absolute numbers during septic 
shock [132]. However, a recent study demonstrated that patients with 
sepsis had dysfunctional B cells in terms of impaired IgM production upon 
CpG (TLR9 ligand) stimulation [133]. Additionally, animal data suggest 
that B-cells have functions in sepsis, beyond antibody production. In par-
ticular, B-cells were shown to improve cytokine production and contribute 
to reduction in bacterial load (198).   

Natural killer cells 
NK cells are important for the clearance of infection. First, they inhibit 
bacterial growth by their direct capacity to kill infected cells [109, 134]. 
Second, they are a major endogenous source of the immunostimulatory 
cytokines IFN-γ, and granulocyte-macrophage colony stimulating factor 
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(GM-CSF) [135]. Similar to monocytes, they may also develop endotoxin 
tolerance with reduced IFN-γ production during sepsis [109]. In critically 
ill patients, NK cell exhaustion is shown to precede reactivation of CMV 
infections [136].  
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Mechanisms underlying immunosuppression in sepsis  

Figure 4. Schematic presentation of balanced and unbalanced host responses in 
sepsis.  

Overshooting pro-inflammatory reaction following the initial steps of 
pathogen recognition leads to collateral host damage and organ dysfunc-
tion. Patients with balanced responses have simultaneous pro- and anti-
inflammation with effective elimination of pathogens, and tissue repair. 
During sepsis-induced immunosuppression, immune cells have sustained 
anti-inflammatory responses with downregulated antigen presentation 
(reduced human leukocyte antigen-D related (HLA-DR)), and reduced 
cytokine production upon secondary Toll-like receptor (TLR) stimulation 
(endotoxin tolerance). Several important immune cells undergo changes 
with upregulation of negative co-stimulatory molecules such as PD-1, 
CTLA-4, B and T lymphocyte attenuator (BTLA) and also undergo apop-
tosis with a remaining Th2 regulatory T cell phenotype. These alterations 
leave the host vulnerable to secondary infection. Possible mechanisms 
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leading to unbalanced response include impaired neuroendocrine feedback 
regulation of immune cells, continuous DAMP and PAMP exposure, epi-
genetic regulation, and metabolic and autophagy disturbance. 

In this section, some of the possible mechanisms leading to unbalanced 
immunosuppressed response, will be described.  

Compensatory anti-inflammatory response syndrome 
The mechanisms leading to harmful immunosuppression during sepsis are 
not fully understood although several studies have identified important 
regulatory cells and cytokines [41]. A syndrome called “compensatory 
inflammatory response syndrome (CARS),” which involves high levels of 
anti-inflammatory cytokine secretion (IL-10, TGF-β), was thought to fol-
low the initial SIRS phase, as an important mechanism to shut off the 
exaggerated pro-inflammation [86, 137, 138]. However, this SIRS-CARS 
theory as a biphasic event has been questioned after it was found that pro- 
and antiinflammatory responses can occur simultaneously during trauma 
and sepsis [139-141]. 

Neurological and immunological feedback systems  
Even if the compensatory immune response is not biphasic, the regulatory 
mechanisms identified in this context have been proposed to be relevant 
for development of immunosuppression [142]. In particular, neurological 
and immunological feedback systems have been identified as possible regu-
lators in the progression to immunosuppression [67]. The regulatory links 
between these systems comprise two components: an afferent (sensory) 
and an efferent (regulatory) arm. It has been demonstrated in several stud-
ies that this system can modulate the magnitude of TNF-response to LPS, 
which is one of the hallmarks of sepsis-induced immunosuppression [44]. 
Experimental studies have shown that activation of the efferent vagus 
nerve can induce a switch from pro-inflammatory to an anti-inflammatory 
immune response, which is mediated by immune effector cells in the spleen 
[44]. The vagus nerve activation operates via cholinergic anti-
inflammatory signaling by acetylcholine receptors (7nAChR) expressed on 
non-neuronal cytokine-producing cells. According to this inflammatory 
reflex mechanism, the presence of PAMPs and DAMPs also seems to play 
an important role, because they act as triggers of the afferent arm in the 
feedback loop [44].  

The adrenergic system has been shown to be another modulator of the 
immune system. It is suggested to modulate cell death, mitochondrial func-
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tion and inflammatory signaling. Both hematopoietic and lymphopoietic 
tissues are innervated by sympathetic neurons. The majority of lymphoid 
cells also express beta-adrenergic receptors on their cell surface [109]. In 
patients with trauma or heart failure, beta blockers are shown to modulate 
immune responses, but this has not yet been demonstrated in sepsis pa-
tients [109]. However, use of esmolol, a short-acting beta blocker, has 
been associated with a better outcome in septic shock [143]. 

Sustained PAMP and DAMP exposure  
Prolonged sepsis trajectories are shown to be associated with risk of sep-
sis-induced immunosuppression. Recently, the term “persistent inflamma-
tion-immunosuppression catabolism syndrome (PICS)” was coined to 
identify patients at risk of contracting sepsis-induced immunosuppression 
[144, 145]. According to the PICS theory, prolonged inflammation, possi-
bly induced by DAMPs and PAMPs from continuous infectious foci, pre-
cedes immunosuppression. Persistent inflammation-immunosuppression 
catabolism syndrome is suggested to be identified by measurement of sus-
tained CRP elevation and neutrophils, along with lymphocytopenia and 
low albumin levels.  

It has been shown that the dose of added PAMPs in in vitro experi-
ments corresponds to the level of HLA-DR downregulation [146, 147]. 
Moreover, major surgery with higher levels of DAMPs generates more 
pronounced HLA-DR downregulation compared to less advanced surgery 
[148]. Interestingly, continuous exposure to live bacteria has shown re-
markably different host responses compared to sustained exposure to 
killed bacterial components [70, 147], suggesting that pathogen-related 
factors of live bacteria may actively influence repression of host response 
pathways. Accordingly, pathogen-related factors may be important in this 
context. Bacterial pathogens express widely different virulence factors and 
may therefore give rise to different clinical trajectories. For example, some 
pathogens, such as invasive S. pneumoniae [70] and Neisseria meningiti-
dis, are known to induce a high bacterial load but are fairly easy to eradi-
cate with antibiotic treatment. On the other hand, other pathogens, such 
as S. aureus [149], Mycobacterium tuberculosis, or Burkholderia pseudo-
mallei [150], are known to cause chronic and recurrent infections. Inter-
estingly, S. aureus, a common pathogen of BSIs, is known to be difficult to 
eradicate even when bacterial strains are susceptible to standard antibiotic 
therapy [149]. This said, pathogens with propensity to cause chronic infec-
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tions could impact on the risk for progression into immunosuppression, 
but this has not been well studied. 

The secondary infection itself might additionally contribute to sustained 
immunosuppression. This could be mediated either by additional PAMP 
and DAMP presence or by specific mechanisms attributable to the patho-
gen. For instance, CMV and Epstein-Barr virus (EBV) infections, which 
have been shown to reactivate in ICU-treated patients, are known to 
downregulate HLA-DR specifically via production of viral IL-10 [151, 
152]. The presence of common entry routes for infection, such as intrave-
nous catheters and mechanical ventilation, is another additional risk factor 
for second hits and, consequently, also development of immunosuppres-
sion.  

Epigenetic regulation 
Another explanatory theory of immunosuppression in sepsis includes epi-
genetic regulation of genes encoding pro and anti-inflammatory factors 
[105]. Epigenetics is a general term involving mechanisms that control 
gene expression patterns without modifying the underlying DNA sequence 
of an organism [105]. This results in changed accessibility of the DNA to 
transcription factors. Additionally, post-transcriptional regulation of 
mRNA can be achieved by complementary gene interference driven by 
micro-RNAs (miRNAs), resulting in the downregulation of protein ex-
pression through targeted degradation of specific mRNAs. Upregulation 
and downregulation of specific miRNAs have been demonstrated in both 
the early and the late phases of sepsis [153]. They play a central role in 
sepsis induced immunosuppression [101, 154]. For example, they can 
disrupt the synthesis of pro-inflammatory cytokines in innate immunotol-
erance [155-157]. Specifically, microRNA-146a has been shown to play a 
key role in endotoxin tolerance by downregulating IL-1 receptor-
associated kinase 1. When specific miRNAs have been blocked, they 
showed decreased production of suppressive myeloid cells and increased 
bacterial clearance [158]. Epigenetic regulation has also been identified as 
a key mechanism in suppression of adaptive immunity by promoting Th2 
skewing [153]. Moreover, epigenetic regulation by chromatin modifica-
tions has been proposed as a mechanism explaining downregulation of 
class II transactivator (CIITA), the master regulator of HLA-DR gene ex-
pression, in monocytes of septic patients [159]. 

Davenport et al. investigated the genomic landscape of the individual 
host response during sepsis and found two distinct transcriptional signa-
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tures early during sepsis [160]. The response signature with features of 
immunosuppression (down-regulation of genes involved in HLA-DR ex-
pression, T-cell activation and endotoxin tolerance) were associated with 
higher mortality.   

Autophagy 
The discovery of autophagy was rewarded with the Nobel Prize in Physi-
ology or Medicine in 2016. Autophagy provides a way to eliminate 
DAMPs and PAMPs in vesicles targeted for lysosomal degradation [161] 
and reduced inflammasome activation. It is therefore an important mech-
anism for the resolution of infection. Disturbances in T-cell autophagy 
have been suggested as a possible mechanism of sepsis induced immuno-
suppression [162, 163].  

Alterations in immune cell metabolism  
The diverse and integral functions of the immune system require precise 
control of cellular, metabolic and bioenergetics pathways. During sepsis-
induced immunosuppression, metabolic pathways are altered with conse-
quences of a failure to increase aerobic glycolysis [164]. It has been sug-
gested that the failure to increase glycolysis impacts immune cell pheno-
type and function. Gene expression analysis in patients admitted to inten-
sive care demonstrated reduced expression of genes involved in gluconeo-
genesis and glycolysis at onset of immunosuppression and secondary infec-
tion [165]. Interestingly, immunostimulation by interferon-γ could restore 
both cytokine production and the ability to induce glycolytic responses 
[164].  

Regulation of human leukocyte antigen-D related expression  
Based on genetic mutations found in MHC-class II deficiency disease, 
CIITA has been reported to be an important protein for the transcriptional 
regulation of MHC class II genes [78, 166]. 

During sepsis, the regulation of HLA-DR expression has been shown to 
be predominantly under transcriptional control [167]. Surface mHLA-DR 
expression in sepsis appears to correlate with mRNA levels of several CII-
TA-controlled HLA-DR gene transcripts including HLA-DR alpha chain 
(HLA-DRA) and CD74 [167, 168]. Transcription of CIITA furthermore 
appears to be inhibited by several factors, such as anti-inflammatory cyto-
kines (transforming growth factor beta (TGF-ß) and IL-10) and nitric 
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oxide [169]. Additionally, CMV and EBV infections have been reported to 
inhibit CIITA [170].  

Interestingly, IFN-γ is shown to be a potent inducer of CIITA mRNA 
and HLA-DRA mRNA [171, 172] with ability to restore downregulated 
HLA-DR in blood from septic patients [168]. In addition to the CIITA-
dependent regulation of HLA-DR, there might also be parallel mecha-
nisms contributing to the loss of surface HLA-DR in bacterial infections. 
Perry et al. demonstrated that the mechanisms of HLA-DR regulation 
involves gene transcription, impaired posttranslational processing, and 
shedding from cell surface [173]. Interestingly, GM-CSF stimulation re-
stored HLA-DR expression at all levels [173]. Additionally, in vitro stud-
ies have reported intracellular sequestration of mHLA-DR in response to 
stimulation with S. aureus bacteria [146] and to IL-10 [174].  

Each HLA-DR molecule consists of two transmembrane chains, alpha 
and beta, as shown in Figure 5. The alpha-chain, encoded by HLA-DRA, 
is essentially invariant, while the beta-chain carries the extreme polymor-
phism characteristic of these antigens. The alpha-1 and beta-1 domains 
together form a peptide-binding cleft presenting the antigen peptide to 
CD4 T cells. The alpha-2 domain is an important binding site for the CD4 
T cell Co-receptor [169].  
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Figure 5. The human leukocyte antigen (HLA) complex, and structure of the HLA 
dimer. The location of genes in the HLA complex is shown. The class II region 
contains the genes encoding the HLA class II molecules (HLA-DP, HLA-DQ and 
HLA-DR). Also shown is the crystal structure of a class II molecule. (Crystal 
structure, courtesy of Dr. P. Bjorkman, California Institute of Technology, Pasa-
dena, CA, USA.) Image modified from Kumar, Vinay “Diseases of the Immune 
System,” Robbins Basic Pathology, Chapter 4, 99-159.e1 



SARA CAJANDER Dynamics of HLA-DR in bacteremic sepsis 39

Human leukocyte antigen-D related expression in immunosup-
pression 

The HLA-DR heterodimer acts as an important immunological synapse in 
the antigen dependent lymphocyte activation and its loss of expression on 
monocytes (mHLA-DR) has been associated with decreased responsiveness 
to LPS exposure in vitro [176]. Several investigators have found that loss 
of HLA-DR expression is predictive of adverse outcome in terms of mor-
tality [177, 178] and secondary infections [179, 180]. Downregulation of 
HLA-DR is also demonstrated to be predictive of negative outcome and 
secondary infections in different clinical situations of severe illness, such as 
trauma [108, 181, 182], major surgery [183] [184], burns [185], pancrea-
titis [186] and brain lesions [187].  

In healthy volunteers, mHLA-DR expression has shown high reproduc-
ibility between individuals, independent of age, sex, or diurnal variations 
[188].  

Accordingly, mHLA-DR has been suggested as a suitable marker for 
immunoparalysis and to guide initiation of immunostimulating therapy 
[144]. However, there are some conflicting data regarding the predictive 
value of HLA-DR for unfavorable outcome. These discrepancies may be 
influenced by different analytical procedures when analyzing mHLA-DR 
values. In particular, differences in pre-analytical handling can widely 
influence results [189].  Due to this discrepancy, Docke et al. have devel-
oped recommendations for standardized measurements of mHLA-DR by 
flow cytometry (FCM) [189]. Although standardization has improved the 
reproducibility and enabled interlaboratory comparisons of results [190], 
these recommendations still have several drawbacks, limiting their clinical 
use. This in turn hampers possibilities to perform large scale studies. In 
particular, immediate handling with transport on ice and antibody stain-
ing within 4 hours is required, according to Docke et al. This limits study 
inclusion outside of laboratory opening hours and inclusion of patients 
from hospitals without flow cytometers. In polymerase chain reaction 
(PCR)-based measurements of HLA-DR, samples may be collected at any 
time point and kept frozen until later analysis. 

There is still no consensus on cutoff levels to indicate clinically relevant 
immunosuppression. Some investigators have suggested that mHLA-DR 
levels between 5000 and 15 000 antibodies per cell (AB/c) [189] indicate 
immunosuppression, while others report cutoff values <2000 AB/c [106]. 
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In a retrospective study including 413 critically ill patients in whom 
mHLA-DR was measured using the standardized FCM protocol every 
third day during their ICU stay, no clear cutoff values could discriminate 
non-survivors from survivors, due to overlapping values [191]. The lowest 
mean mHLA-DR value was 14 611 AB/c among non-survivors and 19 611 
AB/c in survivors.  The authors speculated that the etiology of the illness 
could have influenced the results since a significant association was found 
for the different diagnoses within the groups of survivors and non-
survivors. However, this could not be further addressed due to limitations 
in patient numbers. It is noteworthy that no studies evaluating the prog-
nostic value of mHLA-DR in sepsis have addressed the question whether 
bacterial etiology impacts the results. Considering the differences in viru-
lence and variations in host immune responses attributable to different 
pathogens, this should be relevant.  

Levels of mHLA-DR are variable during the course of infection, which 
further complicates general recommendations for interventions based on a 
single value. Several reports indicate that a negative slope or failure to 
restore mHLA-DR over time would be more predictive of negative out-
come, compared to a single value [97, 108, 192, 193]. 
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Immunotherapy 
 
Interventions aiming to restore homeostasis in sepsis by boosting a sup-
pressed immune response have received considerable attention in recent 
years. Promising preclinical data has been generated on therapeutic block-
ers of lymphocyte apoptosis and restoration of lymphocyte function [194-
196]. Monoclonal antibodies targeting the co-inhibitory molecules PD-1, 
PD-1L and CTLA-4 on T cells have shown promising results in animal 
models of primary and secondary fungal sepsis [197]. Interestingly, PD-1 
blockade also restores MHC-class II expression [197]. Stimulation with 
the pleiotropic cytokine IL-7 is suggested as a promising future im-
munostimulation therapy due to its potential to induce T cell survival and 
proliferation and its ability to help exhausted cells to recover [13]. Moreo-
ver, IFN-γ and GM-CSF have been described as potent inducers of HLA-
DR with ability to restore immune responsiveness in endotoxin-tolerant 
cells [115, 144, 198]. Granulocyte macrophage colony-stimulating factor 
is one of the best studied immunostimulant in humans, but has not yet 
been proven in large scale studies [104, 198-201]. One sepsis randomized 
controlled trial (RCT) used mHLA-DR as a biomarker to initiate im-
munostimulation [104]. In that study, mHLA-DR <8000 AB/c was used 
on two occasions for detecting immunosuppression. The results demon-
strated efficacy in terms of shorter hospital stay and also shorter duration 
of mechanical ventilation. Furthermore, mHLA-DR as well as monocyte 
tolerance was significantly restored in the GM-CSF treated patients in 
comparison to controls [104]. In another RCT, mHLA-DR <10 000AB/C 
was used to initiate GM-CSF treatment on the first day after surgery 
[202]. In that study, GM-CSF-treated patients had a shorter duration of 
infection compared to controls and the therapy was well tolerated.  

Interferon-γ therapy has also been shown to be beneficial as adjunctive 
immunotherapy in patients with persistent S. aureus sepsis or invasive 
fungal infection [172, 203]. According to a published case series in leuke-
mia patients, combined therapy with IFN-γ and G-CSF resulted in clinical 
response and was well tolerated when given as adjuvant therapy for 
months in patients with refractory invasive fungal infections [204]. Table 
4 summarizes selected potential immunomodulating agents for treatment 
of sepsis.  

 
 
 



42  SARA CAJANDER Dynamics of HLA-DR in bacteremic sepsis 
 

Table 4. Potential immunomodulating agents in sepsis.  
Agent Function Proven effects 
GM-CSF • Increases myelopoesis. 

• Activates monocytic or macrophage popula-
tion to produce cytokines. 

• Increases HLA-DR on antigen-presenting 
cells. 

• Increases neutrophil phagocytosis and killing 
in combination with IFN-γ. 

• Reversed immunoparaly-
sis [104, 198]. 

• Decreased rate of infec-
tious complications 
[199, 201] 

• Decreased mechanical 
ventilation time [104]. 

• Decreased the number 
of patient ICU days 
[104]. 

• Decreased the APACHE 
II score [104]. 

IFN-γ • Increases monocyte expression of inflamma-
tory cytokines. 

• Increases HLA-DR expression and antigen 
presentation. 

• Increases macrophage and neutrophil bacte-
ricidal activity. 

• Reversed immunoparaly-
sis [205]. 

• Trend towards improved 
survival [206]. 

IL-7 • Induces T cell survival and proliferation 
• Protects from apoptosis. 
• Rejuvenates T cell exhaustion. 
• Increases T cell activation and adhesion 

molecule expression. 
• Increases IL-17 dependent neutrophil re-

cruitment. 

• Reversed key immuno-
logical defects in animal 
models of sepsis [207] 
[208]. 

 

IL-15 • Improves the development, function and 
homeostasis of memory CD 8 T cells, NK 
cells, and intestinal epithelial cells. 

• Induces proliferation of memory and naïve CD 
8 T cells and CD4 T cells. 

• Increases the production of pro-inflammatory 
cytokines when combined with IL-12. 

• Increases DC activation. 

• Improved survival in 
animal models of sepsis 
[209]. 

 

PD-L1- 
antibody 

• Releases checkpoint inhibition. 
• Prevents T cell exhaustion or T cells anergy. 
• Reduces T cell apoptosis. 
• Modulates myeloid cell interactions with the 

endothelium. 

• Improved survival in 
animal models of sepsis 
[210]. 

CTLA4- 
antibody 

• Suppresses T reg cell suppression. 
• Reduces T cell apoptosis. 
• Releases checkpoint inhibition. 
• Prevents T cell exhaustion or T cell anergy. 

• CTLA-4 specific anti-
bodies improved out-
come to sepsis in rodent 
models [211]. 

Thymosin-
α 

• Increases CD 4 T cell and NK cell numbers. 
• Increases HLA-DR expression on APCs. 
• Enhances antiviral activity. 

• Possible trend towards 
better survival [212]. 

Table modified from Hotchkiss et al.[13]  
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AIMS 
The aims of this thesis were,  
 

• To assess if the expression of HLA-DRA and CIITA mRNA, meas-
ured by qRT-PCR, is downregulated in patients with sepsis and to 
evaluate how HLA-DRA correlates with monocyte surface expres-
sion of HLA-DR (Paper I). 
  

• To evaluate if the dynamic expression of HLA-DR in sepsis could 
be robustly measured by qRT- PCR as an alternative approach to 
flow cytometry based measurement (Paper II). 
 

• To study how etiology of bloodstream infection and sepsis influ-
ences expression levels of mHLA-DR during the course of infection 
(Paper III).  
 

• To describe the expression of mHLA-DR in relation to CRP and 
white blood cell counts in patients with and without development 
of secondary bloodstream infection or death 3-60 days post-
admission (Paper III). 
 

• To evaluate if  the HLA-DRA and CD74 mRNA expression is dif-
ferently expressed in patients with complicated and uncomplicated 
S. aureus bacteremia (SAB) (Paper IV).  
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MATERIALS AND METHODS 

Patients and sepsis definitions 
The study entitled “Dynamics of sepsis” was a prospective study of pa-
tients hospitalized due to bloodstream infection during February 2011 and 
June 2014, at Örebro University Hospital, Sweden. This study had several 
aims including evaluation of techniques for bacterial detection and as-
sessment of immunologic host responses during the course of bacteremic 
sepsis.  

Flow chart of patients in the “Dynamics of sepsis” study and selection to study I, 
II and III. 

 



SARA CAJANDER Dynamics of HLA-DR in bacteremic sepsis  45
  

Paper I.  
The study population in paper I consisted of patients enrolled during the 
first 19 months of the “Dynamics of sepsis” (DOS) study. At the time 
when PCR-measurements where first evaluated, the DOS-study was ongo-
ing. Consequently, we chose to include all samplings available from day 1-
2 at that time (n=62). Patients without growth of pathogenic bacteria 
(n=2) were excluded and additionally one patient was removed due to 
wrong coding of the initial sampling time-point. All patients had sepsis 
according to Sepsis-2 definitions based on SIRS criteria. Severe sepsis was 
defined by evidence of hypoperfusion, organfailure or acute hypotension 
(systolic pressure ≤90 mmHg). We used the Swedish recommendations of 
clinical signs and laboratory tests with suggested cutoff levels indicating 
organ dysfunction and decreased tissue perfusion [213]. Septic shock was 
defined as persisting hypotension despite adequate fluid resuscitation in 
patients with severe sepsis. 

Healthy blood donors > 40 years of age (n=30) were used as controls. 

Paper II.  
This study population was selected from all patients included in the “Dy-
namics of sepsis” study. Inclusion criteria were met if patients with blood-
stream infection caused by pathogenic bacteria participated in samplings 
on all the following days; Day1-2, day 7±1 and day 14±2. All patients had 
sepsis according to Sepsis-2 definition. Severity was additionally assessed 
by acute change in SOFA score on admission in patients defined to have 
severe sepsis or septic shock (n=20) [214].  

Blood donors from study 1 were used as controls for PCR-based meas-
urements. Blood donors recruited for the “Dynamics of sepsis” study 
(n=31) and mHLA-DR values in controls from study I (n=30) were used as 
a control group (n=61) for mHLA-DR in non-septic patients.  

Thirty-five sepsis patients who were included in study I were also in-
cluded in study II.  mHLA-DR results from day 1-2 in these patients were 
also used in this study cohort. Separate qRT-PCR measurements of these 
patients were performed in paper II. 

Paper III.  
Ninety-one patients were selected from the “Dynamics of sepsis study”. 
Inclusion criteria were patients with pathogenic bacteremia and mHLA-
DR values sampled on day 1-2.  Sepsis was defined by the Sepsis-3 defini-
tions.  
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Paper IV.   
Twenty patients were included in a separate study aiming to assess dynam-
ic changes of immune responses in S. aureus bacteremia. Patients were 
prospectively included from July 2012 to June 2014 at Örebro University 
Hospital, Sweden. Sampling was performed on five occasions during the 
course of bacteremia (day 1, day 2, day 3, day 5 and day 7). Patients with 
symptoms and signs of acute infection were enrolled on the day of blood 
culture positivity for S. aureus in ≥1 blood culture bottle (day 1). Sepsis 
was defined by the Sepsis-3 definitions. Since this study was performed in 
an overlapping time-period as the “Dynamics of sepsis” study, eleven pa-
tients were included in both studies. However, completely separated sam-
ple collections and blood analyses were performed in these studies. 

Blood cultures 
Venous blood, 15–20 ml, was collected in two sets of blood culture bot-
tles, two aerobic and two anaerobic, from each patient in different blood 
draws and incubated using the BACTEC (Becton Dickinson, Franklin 
Lakes, NJ, USA) system. The bacteria were identified to the species level 
by routine diagnostic laboratory procedures. Identification of bacteria was 
confirmed by matrix-assisted laser desorption ionization-time of flight 
(MALDI-TOF) mass spectrometry (MicroflexLT, Biotyper 3.1; Bruker 
Daltonics, Bremen, Germany). 

Flow cytometry 
Blood was sampled in ethylenediaminetetraacetic acid (EDTA) anticoagu-
lant tubes that were immediately placed on ice and transported to the 
laboratory for flow cytometry analysis of HLA–DR expression on mono-
cytes (CD14+ cells), according to the protocol of Docke et al.[189]. The 
samples were prepared within 4 hours of collection. Antibody staining was 
performed using QuantiBRITETM Anti-HLA–DR PE*/Anti-Monocyte 
PerCP-Cy5.5 (BD Biosciences, San Jose, CA, USA) and QuantiBRITETM 
PE* (BD Biosciences), in accordance with the instructions of the manufac-
turer. An FC500 flow cytometer (Beckman Coulter, Fullerton, CA, USA) 
equipped with an argon laser (488 nm) and HeNe laser (633 nm) and 
EXPO 32 software was used for flow cytometry analysis. Kaluza v. 1.2 
software (Beckman Coulter) was used for data analysis, and results are 
expressed as number of antibodies bound per cell (AB/c). 



SARA CAJANDER Dynamics of HLA-DR in bacteremic sepsis  47
  

RNA extraction, reverse transcription, and quantitative PCR 
The blood cell mRNA expressions of HLA-DRA, CIITA (paper I and II) 
and CD74 (paper IV) were studied by using quantitative real-time PCR. 

 The amount of each target gene mRNA was calculated in relation to 
the mRNA expression of a reference gene.  Peptidylpropylisomerase B 
(PPIB) was chosen as a reference gene based on previously reported stabil-
ity in inflammatory conditions (132), and due to similar efficiency in 
qPCR amplification as the targeted genes (HLA-DRA, CIITA and CD 
74). 

Whole blood samples were drawn, preserved in PAXgene tubes and 
stored frozen until analysis. The methods of isolation of total RNA, com-
plementary DNA (cDNA) preparation from RNA and quantitative PCR 
(qPCR) have been described in Paper II and I. The basic steps of qRT-PCR 
can be described as below. 

A specific amount of purified RNA is transcribed into cDNA. A defined 
small amount of this cDNA is thereafter examined by qPCR using gene 
specific primer-probe master mixes. These primers will ensure amplifica-
tion of the sequences and the probes will specifically identify, as well as 
signal, the production of copies of target mRNA during the PCR-analysis. 
The amount of target cDNA and thus mRNA is inversely proportional to 
the time the qPCR takes to reach an exponential amplification of mRNA 
i.e. the cycle threshold (Ct) value. This is visualized by the increase in fluo-
rescence intensity. The amount of target mRNA is therefore referred to as 
a time in the qPCR, and measured by numbers of cycles required to reach 
the Ct. The assays were run in triplicate reactions, on a qPCR-reaction 
plate, to get a controlled measurement that makes it easier to control for 
errors in the qPCR-process. In case of high variation in triplicates, the 
sample (Paper1) or the whole series of dynamic samples for a patient (Pa-
per 2) were re-run on a new qPCR-reaction plate. Re-runs were made with 
stored cDNA if possible or new cDNA-preparation, so the samples to be 
compared had been treated equally prior to qPCR. A number of correctly 
analyzed samples were in that way run twice or more, and were used in 
calculating inter-assay variations for a sample. An average Ct-value for the 
triplicate samples was used in the calculations. A negative control (NegC) 
consisted of triplicate samples for the respective gene target-reaction with-
out any cDNA. 

The mRNA levels of HLA-DRA, CIITA and CD74 were calculated as 
ratios in relation to PPIB by the ΔΔCt-method (2-((CtTarget-CtNegC)-(CtPPIB-CtNegC))).  
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Statistics 
Descriptive statistics were presented as medians with interquartile ranges 
(IQRs; 25th, 50th, and 75th percentiles). Normality was assessed with the 
Shapiro-Wilk test. For comparison between groups, an unpaired t-test or 
Mann-Whitney U test was used, depending on data distribution. Lognor-
mal data were log transformed prior to statistic calculations. The Chi-2 
test or Fisher’s exact test was used for comparison of proportions. The 
non-parametric Spearman’s rho test was used to assess correlations be-
tween two variables. A p-value of <0.05 was considered significant. All 
statistical analyses were performed with version 22 of the SPSS software 
package (IBM Corp., Armonk; NY, USA). 

Linear mixed models for repeated measurements were used to evaluate 
the dynamic variation in HLA–DR at different time points. A heterogene-
ous, first-order autoregressive correlation structure was chosen due to best 
model fit, evaluated using Akaike information criteria (AIC). Time was 
modeled on a continuous scale to evaluate whether the slope of the geo-
metric mean of mHLA–DR over time showed significant interaction with 
bacterial etiology, indicating different dynamics. The slopes of the mean 
mHLA–DR changes over time were estimated for different severity of 
sepsis (Paper II) and etiologies (Paper III) stratified for presence/absence of 
sepsis and preexisting immunosuppression (Paper III). With pairwise after 
tests, the geometric mean differences in mHLA–DR between subpopula-
tions of different factors were assessed at each time point.  

Ethics 
The studies were conducted in accordance with the Declaration of Helsin-
ki, and were approved by the Regional Ethical Review Board in Uppsala, 
Sweden (ref: 2012/018 and 2009/024 respectively). A written informed 
consent was obtained in all cases.  
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RESULTS AND DISCUSSION 

mRNA expression of HLA-DRA and CIITA in sepsis (I, II)  
Monitoring of mHLA-DR by flow cytometry (FCM) has been suggested to 
identify patients with sepsis-induced immunosuppression. However, this 
approach has disadvantages due to specific laboratory requirements. Mes-
senger RNA-based HLA-DR monitoring by quantitative real-time PCR 
(qRT-PCR) technique would improve the clinical use and facilitate con-
duction of large multicenter studies. In Papers I and II, an mRNA-based 
HLA-DR monitoring method based on qRT-PCR was evaluated as an 
alternative method to traditional FCM. 

In Paper I, HLA-DR expression, measured by qRT-PCR and FCM on 
days 1-2 after admission, was significantly lower in the total number of 
septic patients compared to controls. The mHLA-DR expression was 
found to correlate with the mRNA levels of HLA-DR, demonstrating the 
highest correlation to HLA-DRA (r=0.84, p<0.001), as shown in Figure 6.  

Figure 6. Correlation between human leukocyte antigen D-related (HLA-DR) 
alpha chain (HLA-DRA) messenger ribonucleic acid (mRNA), measured by quan-
titative real-time polymerase chain reaction (qRT-PCR), and monocyte surface 
HLA-DR, measured by flow cytometry (FCM), in 59 sepsis patients on days 1–2 
post-admission (r=0.84, p<0.001).  
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A low expression level of mRNA encoding CIITA, the major transacti-
vator of HLA-DR gene expression, supported previous findings of a tran-
scriptional downregulation of HLA-DR genes in patients with sepsis 
[167]. Additionally, patients with severe sepsis or septic shock (n=11) 
expressed lower levels of both mHLA-DR and HLA-DRA mRNA com-
pared to patients with non-severe sepsis (p<0.05), suggesting a possible 
association with severity.   

Moreover, patients with non-severe sepsis caused by Gram-positive bac-
teria (n=21) had lower expression of HLA-DR expression compared to 
patients with Gram-negative bacteria (n=24). 

 Dynamics of HLA-DRA and CIITA in relation to mHLA-DR (II)  
There are sparse data regarding the dynamic expression of HLA-DRA and 
CIITA mRNA in sepsis. One previous study in burn patients studied the 
dynamic expressions of these markers in a very limited set of patients 
(n=9). The authors concluded that these markers had similar expression 
over time as mHLA-DR [185].  

In Paper II, HLA-DR was assessed dynamically during the course of 
non-severe and severe sepsis to evaluate if the recovery pattern over time 
was similarly expressed in the different markers (mHLA-DR, HLA-DRA 
mRNA, and CIITA mRNA). In patients with severe sepsis, all markers 
were initially depressed and recovered gradually over time in a similar 
pattern, as shown for mHLA-DR and HLA-DRA in Figure 7 (1A-1B). 
However, an important difference was observed between the monocyte 
surface expression and mRNA level expression of HLA-DR. The mean 
difference in HLA-DR expression between non-severe and severe sepsis 
was found to be greater when measuring the HLA-DRA mRNA and CII-
TA mRNA, than when measuring mHLA-DR, as shown in Table 5. 
Moreover, HLA-DRA, but not mHLA-DR, was significantly lower on 
days 1-2 in patients with higher severity according to the SOFA score in-
crease on admission, as shown in Figure 7. The reason for these differ-
ences could be related to the fact that mRNA transcripts were measured in 
whole blood and not only on monocytes. As previously described, HLA-
DR variations are known to be present in many important blood immune 
cells, including dendritic cells and myeloid-derived suppressor cells [130].  
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Figure 7. (1A) Monocyte human leukocyte antigen D-related (mHLA-DR), and 
(1C) HLA-DR alpha chain (HLA-DRA) messenger ribonucleic acid (mRNA) ex-
pression in the whole sepsis cohort (n=60), categorized by sepsis severity according 
to Sepsis-2 definitions. (1B) mHLA-DR, and (1D) HLA-DRA mRNA expression 
in patients with severe sepsis or septic shock (n=20), categorized by Sequential 
Organ Failure Assessment (SOFA) score on admission. In (1B), significant differ-
ences between SOFA score groups were shown on day 3 (p=0.024). In (1D), signif-
icant differences between SOFA score groups were demonstrated on days 1–2 
(p=0.009) and day 3 (p=0.014).   
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Table 5. The mean difference in monocytic human leukocyte antigen D-related 
(mHLA-DR), HLA-DR alpha chain (HLA-DRA), and Class II transactivator (CIITA) ex-
pression between severity groups (severe sepsis and septic shock versus non-severe 
sepsis), calculated on a logarithmic scale, expressed as ratios, and presented at each 
time point. 

Days Mean difference 
(95% CI) 

P-value
unadjusted 

P-value
adjusted

mHLA-DR 1-2
3 
7 

14 
28 

0.63 (0.45-1.00) 
0.58 (0.42-0.81) 
0.81 (0.66-1.00) 
0.84 (0.68-1.04) 

  0.52 (0.73-1.21) 

0.008 
0.002 
0.06 
0.11 
0.62 

0.04 
0.01 
0.28 
0.57 

1 

HLA-DRA 1-2
3 
7 

14 
28 

0.40 (0.28-0.59) 
0.44 (0.30-0.64) 
0.59 (0.46-0.77) 
0.79 (0.64-0.97) 

  1.00 (0.78-1.29) 

<0.001 
<0.001 
<0.001 
0.026 
0.988 

<0.001 
<0.001 
<0.001 

0.13 
1 

CIITA 1-2
3 
7 

14 
28 

0.48 (0.32-0.72) 
0.41 (0.27-0.62) 
0.56 (0.41-0.76) 
0.64 (0.51-0.81) 

  0.74 (0.52-1.03) 

0.001 
<0.001 
<0.001 
<0.001 
0.069 

0.005 
<0.001 
<0.001 
<0.001 

0.35
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In Paper II, PCR method validation was performed by repeated meas-
urements. We demonstrated a robust method with high reproducibility. 
There were low threshold variations of the qRT–PCR system, low intraas-
say variations of Ct values within triplicates, and low interassay variations 
of the calculated target gene ratios. We were able to show that the refer-
ence gene PPIB, during the course of bacteremic sepsis, was as stable as in 
the blood donor controls without sepsis. This supports previous data 
demonstrating stability of PPIB in inflammatory conditions [215]. Ac-
cordingly, dynamic variations in HLA–DRA and CIITA gene expression 
were shown to be reliably detected during the course of sepsis. The coeffi-
cient of variation of the HLA-DRA ratio between different samples ana-
lyzed twice was found to be 12% (n=38) in this cohort. When summariz-
ing all samples from Papers I, II, and IV that were analyzed twice (n=72), 
the coefficient of variation of the HLA-DRA ratio was found to be similar, 
14%. Nevertheless, this means that changes in expression should be great-
er than this when interpreting significant individual differences over time. 

The results of Papers I and II confirmed results presented by another re-
search group who demonstrated a strong correlation between HLA-DR 
mRNA expression and mHLA-DR levels in patients with sepsis and an 
association between the extent of downregulation and the clinical course 
[167]. However, follow-up studies performed in the ICU setting will be 
required to validate the diagnostic and predictive value of mRNA-based 
HLA-DR assessment in sepsis-induced immunosuppression.  

We suggest that our described method for detection of HLA-DRA 
mRNA in whole blood could be used to identify patients with increased 
risk of secondary infection following trauma, as described in a study by 
Timmermans et al. [182]. In that study, a negative slope of HLA-DRA 
between admission and day 3 was predictive of development of secondary 
infections, independent of age and severity. Furthermore, in the study by 
Timmermans et al. it was shown that ex vivo production of TNF-α and 
IL-6 upon secondary stimulation with LPS correlated to the HLA-DRA 
expression. The authors suggested that the release of the DAMP HSP-70 
and free nuclear DNA following trauma was involved in the mechanism of 
HLA-DRA downregulation (153).  
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Monocyte HLA-DR and bacterial etiology (III) 
Monocyte HLA-DR expression has been suggested as a useful diagnostic 
biomarker to identify sepsis-induced immunosuppression. However, the 
levels and dynamics of mHLA-DR are poorly studied in relation to the 
pathogen responsible for the infection and to common markers of inflam-
mation. In this work, mHLA was measured during the course of infection 
in patients with BSIs caused by different bacterial pathogens. The three 
most prevalent pathogens were S. pneumoniae (n=27), S. aureus (n=22), 
and E. coli/K. pneumoniae (n=23) /other etiologies (n=19).  

Escherichia coli/K. pneumoniae etiologies had high levels of mHLA-DR 
throughout the course of infection, in contrast to S. aureus and S. pneu-
moniae etiologies where levels were initially decreased and became gradu-
ally elevated over time, as shown in Figure 8. Interestingly, there were 
differences in recovery slopes within the group of Gram-positive infec-
tions, i.e., S. pneumoniae was associated with quick recovery after day 3, 
whereas S. aureus demonstrated a sustained low mHLA-DR level during 
the study period.  
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Figure 8 a–d. Dynamic variation of (a) C-reactive protein (CRP); (b) neutrophil 
count; (c) monocyte human leukocyte antigen-D-related (mHLA–DR); and (d) 
lymphocyte count, presented in groups defined by bacterial etiology of blood-
stream infection. The x-axis presents sampling time points, in days after hospital 
admission. 

Forty-seven of the 91 BSI patients had sepsis, according to the updated 
Sepsis-3 criteria. These patients had significantly lower mHLA-DR values 
on days 1–2 and 3. Considering the results presented in Papers I and II, it 
was expected to find lower mHLA-DR levels in patients with higher de-
gree of organ failure. However, the suggested SOFA score cutoff level of 
≥2 (Sepsis-3) had not been evaluated previously. With this established, it 
was also important to consider whether the etiology-related differences 
remained after adjustments for presence or absence of sepsis. Hence, unad-
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justed and adjusted multivariate analysis of potential confounders was 
performed. Results showed that severity (SOFA score), bacterial etiology, 
and preexisting immunosuppression were all important for the expression 
levels. In the mixed model analysis of dynamic expression, etiology-related 
differences demonstrated significantly different slopes over time, inde-
pendent of Sepsis-3 or preexisting immunosuppression.  

This suggests that the mHLA-DR expression in sepsis depends on the 
bacterial etiology, sepsis severity, and time point for sampling in sepsis. 
Where immunostimulation therapy is guided by mHLA-DR levels it is 
therefore important to consider whether the decrease in mHLA-DR is 
transient or will continue.  

The highest levels of mHLA-DR were demonstrated in patients with E-
coli/ K. pneumoniae etiologies. This supports similar results presented by 
Janols et al., demonstrating that mHLA-DR was higher in sepsis caused by 
Gram negative etiology than Gram positive etiology [216] . HLA-DR was 
also shown to be up-regulated in gram negative infections in a study of 
patients with infective enterocolitis caused by Salmonella, Campylobacter 
and Shigella [217]. In that study, mHLA-DR was higher in infected pa-
tients than in healthy controls.  

However, there are some conflicting data regarding HLA-DR expres-
sion in Gram-negative infections. In a study by Gogos et al., the lowest 
mHLA-DR levels were found in sepsis caused by K. pneumoniae and Aci-
netobacter baumanii [218]. These between-study discrepancies may be 
related to different study settings. The study by Gogos et al. included pa-
tients with nosocomial infections who were admitted to ICUs in Greece. 
Since Greece is one of the countries in Europe with the highest incidence 
of drug-resistant, Gram-negative bacteria [219, 220], it might be suspected 
that ineffective antimicrobial treatment could have influenced the possibil-
ity to resolve infection in these cases. Moreover, they had a low rate of 
microbiologically documented infections and assessed mHLA-DR only at 
one time point in the early phase of infection [218].  

In our study population, the majority of patients with E. coli/K. pneu-
monia BSI had urinary tract infections, which is reported as the most 
common cause of E-coli BSI but is an uncommon cause of sepsis in pa-
tients who develop protracted trajectories and secondary infections. It is 
therefore possible that community onset BSI with this etiology and site of 
infection are less likely to cause down regulated mHLA-DR levels and 
subsequent immunosuppression.  
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Staphylococcus aureus etiology was associated with longer duration of 
depressed mHLA-DR compared to other etiologies in this cohort. This is 
an interesting finding, as S. aureus is also associated with a high mortality 
from community-onset BSI [55, 61]. Possibly, this mortality difference 
could be related to development of immunosuppression, resulting in re-
duced bacterial clearance and chronic infection. Further studies are war-
ranted to address this relationship.  

Streptococcus pneumoniae is the most common cause of community-
acquired pneumonia. Our data suggest that this etiology of BSI often in-
duces low initial mHLA-DR levels that are quickly restored. This may be 
related to activation of NK cells, which are known to expand and become 
active during S. pneumoniae infections [218]. As described previously, 
activated NK cells are an important source of both IFN-γ and GM-CSF 
production [135]. Possibly, this etiology is associated with a lower risk for 
immunosuppression in sepsis. In support of this theory, patients with 
pneumococcal meningitis [221] and community-acquired pneumonia 
[222] have been shown to benefit from immunosuppressive cortisone ther-
apy, which is inefficient in sepsis patients in general [38, 223].  

Monocyte HLA-DR in patients with negative outcome (III) 
Altogether eleven of the 91 patients who were eligible for dynamic evalua-
tion had a negative outcome, either secondary BSI or death 3–60 days 
from admission. Patients with negative outcome had more severe sepsis, 
were older, and were hospitalized for longer than patients without nega-
tive outcome. Median mHLA-DR levels were lower in patients with nega-
tive outcome, but there were overlapping values in early measurements on 
days 1–2 and 3. Consequently, in this setting, HLA-DR could not discern 
a negative outcome by a single measurement before day 3. Regarding later 
time points, patient numbers were too small to perform statistical tests on 
predictive values adjusted for confounders. Besides, measurements per-
formed later than day 7 would not be as useful for predicting the events. 
However, when studying the expression levels over time, patients with a 
negative outcome did not express a significant recovery during the course 
of infection in contrast to patients without a negative outcome. This sup-
ports results from previous studies, demonstrating that a lack of recovery 
is associated to a negative outcome [97, 193].  

The mHLA-DR levels were not deeply depressed in all patients with 
negative outcome at the early time points of infection. It should be noted 
that two patients who were identified as having negative outcome and 
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who died at a later time point (days 58 and 60), never experienced sec-
ondary infection. These patients expressed high HLA-DR levels on days 1–
2 (33 000 and 35 100 AB/C, respectively). Among the patients who devel-
oped secondary infections, median mHLA-DR was 8600 AB/C (range 
7800–24 600 AB/C) on days 1–2. Patients without secondary infection 
had higher levels, expressing a median mHLA-DR value of 18 200 AB/C 

On days 1–2, we had the highest numbers of sampled patients (n=91) 
and therefore performed receiver operating characteristic (ROC) testing to 
compare the discriminatory value of mHLA-DR and HLA-DRA for pre-
diction of secondary infection. We found that unadjusted area under the 
curve (AUC) of mHLA-DR for prediction of secondary infection was 0.78, 
p=0.035 (95%CI 0.58–0.98). Interestingly, the results for HLA-DRA were 
very similar, with an AUC of 0.78, p=0.035 (95%CI 0.65–0.91) (un-
published data). Although firm conclusions could not be drawn regarding 
the predictive value in this limited cohort, it was relevant to perform ROC 
analysis to compare the performance of these different methods.  

HLA-DR in relation to markers of inflammation (III)  
Development of sepsis-induced immunosuppression is possibly linked to 
prolonged inflammation by sustained elevation of CRP, increased neutro-
phil counts, and lymphocytopenia [224]. As previously described, these 
parameters are included in the suggested diagnostics of PICS. However, no 
previous study has described the dynamic expression of these markers in 
relation to mHLA-DR. In Paper III, by assessing the expression of com-
monly used inflammatory markers in relation to mHLA-DR we found an 
association between sustained inflammation and immunosuppression. The 
correlation between mHLA-DR and the investigated markers at each time 
point varied from weak to moderate, as demonstrated in Figure 9, but 
showed a clear association in dynamic expression, as seen in Figure 10. In 
patients with negative outcome, CRP and neutrophil counts were continu-
ously elevated after day 7. In contrast to this result, both lymphocyte 
counts and HLA-DR expression were found to be low from day 7 in pa-
tients with negative outcome. This finding supports the PICS theory of 
persisting inflammation and immunosuppression in patients with negative 
outcome. However, the PICS theory has important drawbacks due to its 
focus on late stages in sepsis (after 7–14 days). In particular, it is possible 
that the sustained CRP or neutrophil elevation that is seen during pro-
tracted clinical trajectories may actually reflect an already ongoing second 
hit. It would therefore be more useful to assess the predictive value of 



SARA CAJANDER Dynamics of HLA-DR in bacteremic sepsis  59
  

early dynamics before day 7 or, alternatively, to assess the predictive value 
of a set of different early markers of immunosuppression. It has been 
shown that expression of mHLA-DR, regulatory T cells (T regs), and a 
marker of neutrophil deactivation combine additively to stratify risk of 
nosocomial infection in critically ill patients [225]. 
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 Figure 9. Monocyte human leukocyte antigen D-related (mHLA-DR) expression 
on post-admission days 7 (a, d, and g), 14 (b, e, and h), and 28 (c, f, and i), in 
relation to C-reactive protein (CRP) (a–c), neutrophil counts (d–f), and lymphocyte 
counts (g–i), in bloodstream infection (BSI) with and without negative outcome. 
Filled circles represent patients with negative outcome. Open circles represent 
patients without negative outcome.  
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Figure 10. Dynamic variation in (a) C-reactive protein (CRP) levels; (b) neutrophil 
counts; (c) monocyte human leukocyte antigen D-related (mHLA-DR) expression; 
and (d) lymphocyte counts, in patients with negative outcome (i.e., secondary 
bloodstream infection (BSI) or death 3–60 days post-admission) and without nega-
tive outcome. 

 

 

 

 



62 SARA CAJANDER Dynamics of HLA-DR in bacteremic sepsis 

HLA-DR expression in complicated and uncomplicated Staphylococcus 
aureus bacteremia (IV) 
Considering the high mortality from SAB and the importance of identify-
ing patients with complicated infections, we aimed to assess whether 
HLA-DR expression could be discriminatory in this context.  

In Paper IV, we therefore studied whether levels of HLA-DR were lower 
in complicated compared to uncomplicated SAB. “Complicated SAB” was 
defined as the presence of an episode with hematogenous seeding (e.g., 
infective endocarditis or osteoarticular infection), extension of infection 
beyond the primary focus (e.g., deep-seated abscesses), embolic stroke, or 
attributable mortality, according to the definition by Fowler et al. [62]. All 
other cases were defined as “uncomplicated SAB.” 

We found significant differences between these groups already in the 
early phase of SAB. Both HLA-DRA and CD74 were lower in patients 
with complicated SAB. Expression of HLA-DRA showed the greatest, and 
significant, differences between groups during the whole study period (7 
days), as shown in Figure 11. These differences were not explained by the 
presence or absence of sepsis. Moreover, HLA-DRA on day 7 was lower 
in patients who died within 60 days. These results illustrate that patients 
without complicated SAB are able to upregulate HLA-DR transcription at 
the gene level. Since persisting bacteremia is a hallmark of complicated 
SAB, it is possible that sustained PAMP and DAMP exposure is associated 
with these differences in HLA-DR expression. However, due to limited 
patient numbers and novel findings in this context, these results will need 
additional confirmation in larger patient cohorts. In future studies measur-
ing the temporal changes in HLA-DR during SAB, it would also be rele-
vant to study the association to bacterial load and duration of bacteremia.  
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Figure 11. Expression of (a) human leukocyte antigen D-related alpha chain 
(HLA-DRA) messenger ribonucleic acid (mRNA) and (b) CD74 mRNA ratios in 
20 patients with Staphylococcus aureus bacteremia (SAB), divided into complicat-
ed (n=14) and uncomplicated (n=6) SAB. Circles (○) represent outliers more than 
1.5 box lengths from the edge of the box; single asterisks (*) represent outliers 
more than three box lengths from the edge of the box; and double asterisks (**) 
indicate significance (p<0.05). 
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Conclusions of the thesis 

• HLA-DRA and CIITA mRNA measured by qRT-PCR were down-
regulated in sepsis and HLA-DRA correlated well to HLA-DR sur-
face expression on monocytes (mHLA-DR) in the early phase of
sepsis.

• The dynamic expression of HLA-DRA mRNA in sepsis demon-
strated initially low levels that gradually recovered over time, simi-
lar to mHLA-DR. HLA-DR markers measured by qRT-PCR
demonstrated greater differences between non-severe and severe
sepsis compared to mHLA-DR.

• Quantitative RT-PCR measurement of HLA-DRA was found to be
robust during the course of sepsis and appears to be a promising
method for monitoring the immune state in sepsis.

• The dynamic mHLA-DR expression varied according to the bacte-
rial etiology of BSI independent of presence or absence of sepsis
(Sepsis-3) or preexisting immunosuppression.

• The dynamics of mHLA-DR was inversely related to CRP and neu-
trophil count. In patients with unfavorable outcome, sustained
CRP and neutrophil elevation was demonstrated along with low
mHLA-DR and lymphocyte count. This indicates persisting in-
flammation in development of acquired immunosuppression in sep-
sis.

• Patients with complicated SAB had significantly lower HLA-DRA
and lower CD74 than patients with uncomplicated S. aureus bacte-
remia (SAB). This demonstrates inhibited HLA-DR gene transcrip-
tion in patients with complicated SAB.
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General discussion and future perspectives 
In the new understanding of sepsis pathophysiology, both overactive and 
suppressed immune responses are suggested to be important mediators of 
negative outcome. Poorly defined patients, especially regarding their im-
mune status, may therefore in part explain why many sepsis trials target-
ing immune responses have failed. Some therapies could in fact have been 
efficient in certain subpopulations. For example, it has retrospectively 
been shown that patients expressing a specific cytokine signature respond-
ed better to adjuvant cortisone therapy [226]. Moreover, cortisone therapy 
has been shown to be beneficial when guided by CRP levels in sepsis pa-
tients with pneumonia [222]. In order to develop future therapies and thus 
reduce the deleterious effects of sepsis it is therefore mandatory to control 
for the substantial heterogeneity within the disease. Biomarkers character-
izing the immune state are suggested to individualize treatments [227]. In 
this thesis we demonstrated substantial variations over time in suggested 
biomarkers of immune status.   

Most importantly, we found differences related to the etiology of infec-
tion, a factor that is surprisingly rarely considered in immunology studies 
of sepsis [53].   

Patients with S. pneumoniae infections demonstrated low initial mHLA-
DR expression, with a fast recovery after day 3. By contrast, S. aureus 
patients had a delayed mHLA-DR recovery. Theoretically, these pathogens 
may elicit somewhat different cytokine responses, but this should not ex-
plain the continuous differences up to 28 days after admission. It is more 
likely that etiology-related differences in mHLA-DR expression are related 
to the clinical trajectory via differences in ability to cause continuous in-
fection. This assumption is based on the following findings: (i) Respiratory 
infections were the major cause of pneumococcal infection, which are 
known to be easily treated by a short course of antibiotics. By contrast, S. 
aureus patients had a high percentage of osteoarthritis, stent graft infec-
tions, and endocarditis, which are known to be difficult to eradicate even 
with long-term antibiotic treatment; (ii) mHLA-DR dynamics were in-
versely related to CRP and neutrophil counts during the course of infec-
tion, with the slowest decline in S. aureus infections; and (iii) the results of 
the study reported in Paper IV showed that patients with complicated SAB 
had lower HLA-DR expression compared to patients with uncomplicated 
SAB. Moreover, unpublished data from an ongoing study (Ziegler et al. 
ECCMID 2017) evaluating quantitative measurements of bacterial DNA 
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by 16S PCR in the same patient cohort have demonstrated longer duration 
of DNA positivity in patients with S. aureus etiology. These findings sup-
port the theory of sustained PAMP and DAMP exposure in patients who 
develop immunosuppression. In future research it will be interesting to 
study the association between common DAMPs, such as HSP70 and 
HMGB-1, and development of sepsis-induced immunosuppression.  

It is still not clear whether factors related to the different pathogens 
manipulate the host response differently, or whether differences are related 
to the unspecific burden of sustained DAMP and PAMP exposure that is 
associated to the typical type of infections they cause. As an example of 
this complexity, S. aureus bacteria may be equipped with virulence factors 
that impair the functions of important pathways of the immune response, 
such as HLA-DR expression [146] and factors leading to higher host tissue 
adhesion [228]. These factors together lead to disease progression and 
development of deep-seated foci, which in turn will harbor continuous 
bacterial exposure.  

The mechanisms leading to HLA-DR down regulation in situations of 
high PAMP and DAMP exposure may involve different pathways. For 
example, disturbances in metabolism or mechanisms of cell autophagy 
also leave the host less effective in PAMP and DAMP removal, but has not 
studied in this thesis. This needs to be evaluated in sepsis studies address-
ing the causes of immunosuppression. Indeed, some of the proposed 
mechanisms for immunosuppression may also be consequences of physio-
logical changes in immune function during the course of infection. How-
ever, independent of the mechanism leading to persistent inflammation 
with sustained DAMP and PAMP exposure it seems logical to be aggres-
sive in the surgical removal of deep-seated foci to help reduce the bacterial 
burden. Achieving source control in the management of sepsis has been 
shown to be an important factor for better outcome [229] and should 
therefore be a routine procedure in the daily assessment of septic patients. 
Of interest, efforts to reach source control have been emphasized in the 
recently updated “Surviving Sepsis Campaign” guidelines [230].  

Even if blood culture positivity in sepsis is related to severity of the dis-
ease [49], confirmation of the bacterial etiology in septic shock is associat-
ed with better prognosis. In a study by Daviaud et al. [28], undefined eti-
ology of septic shock was an independent risk factor for both early and 
late deaths. Consequently, knowing the specific etiology is important, 
probably because of increased possibilities to tailor pathogen-specific 
treatment. In this context, antimicrobial susceptibility testing is pivotal for 
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correct antimicrobial coverage. Moreover, knowledge about disease mani-
festations for different pathogens can lead to faster achievement of source 
control. In fact, the risk of causing complicated infections varies between 
different pathogens. Physicians treating severe infections do not always 
account for this. For example, it has been shown that patients with SAB 
have a better prognosis if physicians specialized in infectious diseases are 
consulted [64, 231, 232]. In Paper IV, we demonstrated significant differ-
ences in the early HLA-DR expression for patients with complicated com-
pared to uncomplicated SAB. If these results can be confirmed in a larger 
cohort, HLA-DR measurement could possibly become an additional tool 
for early identification of patients who will require further investigation to 
clear infectious foci and achieve source control.  

In our study, patients who developed severe secondary infections had 
higher mHLA-DR levels than the cutoff levels previously used for initia-
tion of immunostimulation (8000 AB/c). Consequently, this cut-off level 
probably has a low sensitivity for immunosuppression in this cohort. 
However, higher cut-off levels would probably generate lower specificity 
with risk for initiation of unnecessary treatments. Given the high degree of 
heterogeneous host responses in patients with sepsis, as shown in this the-
sis, it is more suitable to monitor immune responses by repeated meas-
urements. In Paper III, mHLA-DR and common markers of inflammation 
were normalized earlier in patients without negative outcome. This is in 
line with results from other researchers [233]. However, we were also able 
to demonstrate how the temporal changes in mHLA-DR were related to 
commonly used laboratory tests, such as CRP, neutrophil, and lymphocyte 
counts. Interestingly, these markers have been suggested to be associated 
with immunosuppression by researchers supporting the PICS-theory, but 
they have not previously been evaluated in relation to mHLA-DR.  

A question to be raised is whether mHLA-DR monitoring alone is op-
timal for identifying immunosuppression. In view of the increased 
knowledge in this field, a set of different markers reflecting the immuno-
logical alterations should reasonably be more precise. In a future perspec-
tive, it would be even better if a distinct disease-related pathological mark-
er were identified to avoid misinterpretations related to physiological re-
sponses. In order to identify disease specific markers, we need more ICU 
studies using high-throughput transcription profiling techniques address-
ing novel gene expressions or mRNA patters during immunosuppression 
[234].  
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Considering promising preclinical data on immunostimulatory cyto-
kines, such as IL-7 or IL-15, and immune checkpoint inhibitors such as 
PD-1- and PD-1L-inhibitor, to rejuvenate T cell exhaustion, it would be 
desirable to evaluate such treatments in sepsis. However, reliable predic-
tive biomarkers have not yet been identified that define who will benefit 
from this method of treatment, and there is only a partial understanding 
of the mechanisms of sensitivity or resistance to this type of immunother-
apy. Nonetheless, two recent reports surprisingly found that rescue of 
exhausted CD 8 T cells were dependent on expression of the costimulatory 
T cell receptor CD 28, and suggested that its expression may predict 
treatment responses to PD-1 blockade, when it is used in the cancer field 
[235, 236]. In a future perspective it would be desirable to identify the 
immune phenotypes that would benefit from immunostimulating treat-
ments in sepsis, with high precision. This approach of so-called “precision 
medicine” [227] is successfully used in some types of cancer where treat-
ments may be tailored according to the typical cell pathology [122, 237]. 
However, true precision medicine, which also refers to characterization 
and treatment based on individual genetics, may be difficult to implement 
in sepsis due to requirement of complicated diagnostics in a dynamic dis-
ease, not to mention the high costs of investigations and novel treatments. 
Nevertheless, a case report has shown that immunostimulation with PD-1 
blockers in combination with IFN-γ has been used as a successful life-
saving treatment in intractable fungal infection [238]. Possibly, it is strate-
gic to evaluate such therapies in certain etiologies known to be difficult to 
eradicate and to be associated with high mortality. As mentioned previ-
ously, fungal infections and pathogens associated with decreased anitibi-
otic susceptibility, such as A. baumanii, are shown to be independently 
associated with high mortality in sepsis [14]. 

Endotoxin tests demonstrating LPS responsiveness have historically of-
ten been considered as reliable test for immunoparalysis, but they have 
recently been shown to require standardization of the measurement tech-
nique in order to be useful [94]. As an alternative, mHLA-DR measured 
by FCM is considered as the method of choice because of fewer laboratory 
requirements and a standardized technique [107]. Today, mHLA-DR is 
still not implemented as a routine test even though suggested to be a relia-
ble marker of immunosuppression. In a future perspective, it is more likely 
that immunosuppression will be identified by parameters that are easy to 
monitor and accessible to all clinicians. This could either be achieved by 
easily accessible diagnostic biomarkers with a short turnaround time for 
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the clinician or by a combination of parameters including different risk 
factors. A comprehensive study that characterizes patients who develop 
protracted infections and secondary infections based on easily accessible 
laboratory tests and clinical identifiers, as suggested in the PICS-definition 
[224] is therefore warranted. In contrast to previous studies, patients with 
pre-existing immunosuppression should be included. And again, measur-
ing the immune status at the gene level is another option that would facili-
tate conduction of clinical studies.  

In this thesis, we have shown that HLA-DRA measured by qRT-PCR 
correlated to mHLA-DR expression, which supports previous findings by 
Pachot [167], and Le Tulzo et al. [168]. Additionally, we found that HLA-
DRA appeared to have a slightly higher discrimination for severe sepsis. 
According to our results and the results from the study by Timmermans et 
al. [182], HLA-DRA seems to be a promising marker for predicting im-
munosuppression in sepsis. In Paper IV, we also studied the immune 
marker CD74, which was lower in complicated SAB but was not signifi-
cantly different from uncomplicated SAB, in this limited cohort. Consider-
ing the promising results of CD74 as a prognostic marker in septic shock 
patients demonstrated by Cazalis et al. [106], however, CD74 may still 
have merit as a biomarker of sepsis-induced immunosuppression.  

In future research, it will be relevant to evaluate the usefulness of both 
CD74 and HLA-DRA in an ICU setting where patients have a higher risk 
of developing acquired immunosuppression. In an ongoing study including 
approximately 300 patients at the ICU of Karolinska University Hospital 
in Huddinge, Sweden, we aim to evaluate the predictive value of these 
markers in the context of secondary infection. If HLA-DRA or CD74 can 
be used to predict secondary infection in the ICU it will be relevant to 
design immunostimulation trials guided by HLA-DR mRNA markers. 
Previous studies have demonstrated that immunostimulation can restore 
downregulated mRNA levels as well as surface expression of HLA-DR. 
These findings, in combination with the results from Paper II, support the 
possibility to monitor the effect of immunostimulation by dynamic as-
sessment of HLA-DR mRNA expression. 

In future care of sepsis patients admitted to the ICU, I would like to see 
evidence-based guidelines for the management of patients beyond the early 
stages. The new challenge is how to manage the marathon and not the 
sprint. Ideally, future guidelines will include several treatment options and 
recommended investigations tailored to the clinical situation and the indi-
vidual immune status. In order to reach this goal, it is important for both 
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translational and clinical researchers to consider dynamic and etiology-
related differences when evaluating immune responses in septic patients. In 
the context of increasing sepsis incidence and emergence of resistant path-
ogens, we need to look back into the past to be able to move forward and 
development new interventions. Let us be inspired by the pioneers of suc-
cessful treatment concepts in sepsis, such as the Surviving Sepsis Cam-
paign, and let us continue to focus on immunology. This time, however, 
we need to get the timing right and pay more attention to the germs - 
again. 
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Svensk sammanfattning 
Sepsis är ett allvarligt tillstånd som kan uppstå när kroppen reagerar kraft-
fullt på en bakteriell infektion. Under de senaste åren har kunskapen inom 
sepsisområdet ökat och det har visats att en stor andel av de sepsispatien-
ter som idag överlever den akuta fasen i början av sjukdomsförloppet 
senare riskerar att utveckla ett försvagat immunsvar med förekomst av 
sekundära infektioner eller svårigheter att läka ut den primära infektionen. 
Detta definieras som sepsisinducerad immunsuppression. Ett sänkt uttryck 
av HLA-DR på monocyter (mHLA-DR) har föreslagits som markör för att 
identifiera patienter med sepsis-inducerad immunsuppression men även för 
att styra insättning av immunstimulerande behandling. Det saknas idag 
kunskap om uttrycket av mHLA-DR skiljer sig beroende på vilken sorts 
bakterie som ligger bakom infektionen. 

Metoden som föreslås för mätning av HLA-DR idag sker via flödescy-
tometri (FCM), som har vissa begränsningar i användbarhet. För att gene-
rera tillförlitliga resultat finns krav på omhändertagande av blodprov 
inom 4 timmar, vilket innebär att mHLA-DR inte kan analyseras under 
kvällstid eller helg.  

Syftet med detta avhandlingsarbete var att öka kunskapen om immun-
markören HLA-DR hos patienter med blododlingspositiva infektioner och 
sepsis samt att studera om den kan mätas med en alternativ PCR-baserad 
metod. 

I avhandlingsarbetet visas att uttrycket av HLA-DRA mRNA, mätt med 
så kallad PCR-teknik, samvarierar med uttrycket av mHLA-DR mätt med 
FCM. Detta stöder observationer från andra forskargrupper som har stu-
derat en liknande metod. En konsekvens av detta är att vår beskrivna me-
tod har använts i uppföljande studier där immunsvaret studerats över tid. 
En holländsk grupp har till exempel visat att återhämtningen av HLA-
DRA mRNA nivåer efter trauma uttrycktes annorlunda för de som ådrog 
sig sekundära infektioner, jämfört med de som inte fick infektioner. 

I avhandlingsarbetet studerades även hur mHLA-DR uttrycktes under 
det kliniska förloppet av blododlingspositiv infektion och sepsis. Det fanns 
stora skillnader i uttrycket av mHLA-DR över tid i de tre vanligaste bakte-
riegrupperna (Staphylococcus aureus, Streptococcus pneumoniae och 
Escherichia coli/Klebsiella pneumoniae). Patienter med infektioner orsa-
kade av S. aureus och S. pneumoniae etiologi hade de lägsta initiala nivå-
erna.  Patienter med S. pneumoniae infektioner hade däremot snabbt nor-
maliserade nivåer efter dag 3, medan mHLA-DR nivåerna var kvarstående 
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låga under hela studieperioden hos patienter med S. aureus infektioner. E. 
coli och K. pneumoniae infektioner var förenade med de högsta nivåerna 
av mHLA-DR.  

Vidare visas att patienter med blododlingspositiv infektion orsakad av 
S. aureus, uttrycker lägre nivåer HLA-DRA mRNA och CD74 mRNA vid
komplicerade jämfört med okomplicerade infektioner. Detta är hypotes-
genererande för framtida större studier med syfte att studera prediktiva
värdet av HLA-DRA mRNA som diagnostisk biomarkör för komplicerad
S. aureus infektion.

Sammanfattningsvis har resultaten från avhandlingsarbetet ökat kun-
skapen om hur HLA-DR uttrycks vid blododlingspositiva infektioner av 
varierande svårighetsgrad och bakteriell etiologi. Mätning av HLA-DRA 
på mRNA nivå har visat sig vara en lovande markör för att mäta immun-
svaret över tid men behöver upprepas i studier utförda på intensivvårdade 
patienter för att kunna avgöra dess värde för identifiering av allvarlig sep-
sis-inducerad immunsuppression. 
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