
Towards Architecture-wide Analysis, Verification, and

Validation for Total System Stability During

Goal-Seeking Space Robotics Operations

Catharine L. R. McGhan∗ and Yuh-Shyang Wang† and Richard M. Murray‡

California Institute of Technology, Pasadena, CA, 91125, USA.

Tiago Vaquero§ and Brian C. Williams¶

Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Michele Colledanchise‖ and Petter Ögren∗∗

KTH - Royal Institute of Technology, Stockholm, Sweden.

In this paper we discuss the beginnings of an attempt to define and analyze the sta-
bility of an entire modular robotic system architecture – one which includes a three-tier
(3T) layer breakdown of capabilities, with symbolic, deterministic planning at the highest
level. We approach the problem from the standpoint of a control theory outlook, and try
to formalize the issues that result from trying to quantitatively characterize the overall
performance of a well-defined system without a need for exhaustive testing. We start by
discussing the concept of bounded-input bounded-output stability, giving examples where
the technique might not be sufficient to guarantee what we term “total system stability”
due to complications associated with the levels of abstraction between the modules and
components that are being chained together in the architecture. We then go on to discuss
necessary conditions that may fall out of this naturally as a result. We further try to
better-define the input and output constraints needed to guarantee total system stability,
using an assumption-guarantee-like contractual framework that sits alongside the architec-
ture; the requirements then may have influence across multiple modules, in order to keep
consistency. We also discuss how the structure of the architectural modules may help or
hinder the process of capability characterization and performance analysis of each module
and a given architecture configuration as a whole. We then discuss two overlapping meth-
ods that, combined, should allow us to analyze the effectiveness of the architecture, and
help towards verification and validation of both the components and the system as a whole.
Demonstrative examples are given using a specific architectural implementation called the
Resilient Spacecraft Executive. In future work, we hope to define both necessary and suf-
ficient conditions for total system stability across such a system architecture for robotics
use.

I. Introduction

In the next decade, space exploration missions are being sent to destinations that are more remote and
hazardous to answer more sophisticated science questions; as a result, in order to advance the knowledge
frontier, the less-accessible targets need to be visited in more difficult, harsh, and inaccessible environments.

∗Postdoctoral scholar, Department of Control and Dynamical Systems, 1200 E. California Blvd., Mail Code 305-16, Member.
†Graduate student, Department of Control and Dynamical Systems, 1200 E. California Blvd., Mail Code 305-16.
‡Professor, Department of Control and Dynamical Systems, 1200 E. California Blvd., Mail Code 107-81.
§Postdoctoral scholar, Department of Aeronautics and Astronautics, 32 Vassar Street, 32-224, Member. Joint appointment

with Caltech.
¶Professor, Department of Aeronautics and Astronautics, 77 Massachusetts Avenue, 33-330, 32-227, Member.
‖Graduate student, Centre for Autonomous Systems, Teknikringen 14, Zip code 114 28, Room 615.
∗∗Associate Professor, Centre for Autonomous Systems, Teknikringen 14, Zip code 114 28, Room 708.

1 of 25

American Institute of Aeronautics and Astronautics

This leads to many new challenges that will require a greater capability for onboard reasoning. We will need to
be able to revise science objectives ‘on the fly’ as circumstances quickly evolve in these uncertain environments
under short timescales; we will need those systems to be resilient to failure and able to gracefully degrade
under harsh, long-term conditions. The Resilient Spacecraft Executive (RSE) design (shown in Figure 1)
is an example of the sort of architecture that will enable these capabilities; it is meant to autonomously
run onboard the spacecraft, making decisions in real-time when remote missions are being conducted that
cannot include ground control in the loop from Earth, due to the timescales and delay involved.1

Figure 1: Resilient Spacecraft Executive Architecture.

And, while we wish to implement such a framework without unduly increasing system complexity, the
complexity of these systems will necessarily increase to afford these new capabilities. As a result, we need to
find new and better methods of guaranteeing that an acceptable baseline of mission performance is achieved
with these new systems. Also, while environmental uncertainty may be a key limiting factor that requires
us to extend our algorithms to handle such sources and circumstances that provoke it, it is also a problem
when it comes to verification and validation of these new algorithms and systems. Preferably, we would wish
to find ways to do so without exhaustive testing of the system, which simply cannot be done in all ways and
combinations for all possible internal reconfigurations and all scenarios that might be encountered over the
mission lifetime.

One way we intend to avoid an unnecessary increase in complexity is via the use of verifiable auto-coding
software and correct-by-construction techniques that can synthesize policies and controllers according to the
specifications given. However, these systems must be designed ‘to-spec’ in the first place. Some constraints
and system requirements are imposed on the architectural modules and their relationship to each other due
to the mission goals and the assumptions made about the operating environment. Others necessarily will
need to be imposed due to the choice of algorithms and models used as part of the system architecture
onboard the vehicle (e.g., to achieve certain goals within an allowable risk level, replanning in real-time may
not be a feasible solution, but contingency planning might). Hard, physical constraints on performance also
come from the robotic system itself, due to limits on power and computing resources, and the capabilities of
the hardware components (e.g., maximum torque able to be applied via actuator, maximum allowable force
that the vehicle structure can withstand). There are also constraints that can come from a mix of these, such

2 of 25

American Institute of Aeronautics and Astronautics

as a “reaction time” constraint, as the total time delay from sensor input to actuator output must be less
than a given amount for system stability to even be possible – this would be dependent upon a given robotic
system. An example of some robot-specific dependencies would be: the location of sensors and actuators, the
sensor accuracy, level of uncertainty and sensor noise, the bounds on actuator performance, and the control
algorithms used (e.g., PID versus PD versus MPC versus other methods). All of these various constraints
and bounds on performance must be taken into account, in order to create consistent requirements for each
architecture module, so that we can effectively analyze system performance and use formal methods to verify
whether the operation of a specific architecture implementation will or won’t achieve the operator-supplied
mission goals.

In this paper, we describe what it means to have a ‘stable architecture’, which we term as having ‘total
system stability’ (TSS), and give examples to show the complexity of the validation problem, in the context
of the RSE architecture for a rover scenario example. We discuss how methods such as assumption-guarantee
contracts may help us define and map overarching constraints from a qualitative representation to a more
useful and directly implementable quantitative one. We also detail an example internal structure for such
architectural modules, and why we believe that using this structure should help the analysis and verification
and validation (V&V) process, both in terms of capability characterization and performance analysis of each
module and for a given architecture configuration as a whole. We then go into detail on two overlapping
methods that should help in our goal of analysis and V&V of the architecture, towards increasing confidence
in these more complex systems. We show demonstrative examples of applying these methods to our test
RSE implementation, and discuss directions of future work, towards defining sufficient conditions for total
system stability, as well as methods for automatic verification of each module, such as the autocoding of the
components from the specifications.

II. RSE Architecture

To ground our discussion, ‘total system stability’ will be discussed in the context of the RSE architecture,
which was created for resilient risk-aware goal-achievement (and risk-bounded planning and execution) in
the presence of both environmental uncertainty, and sensor and actuator degradation and failures.

We have discussed in prior work1 some examples of (limited) resilient behavior on spacecraft, such as
the Remote Agent Experiment flown on Deep Space One,2,3 the autonomous navigation capability on Deep
Impact,4,5 and the Cassini spacecraft’s onboard orbit insertion calculations.6 We have also discussed layered
autonomy architectures, like Remote Agent, CLARAty7,8 and the Autonomous Sciencecraft capability on
Earth Observing One.9 To restate, the key distinctions and innovations in the RSE framework (shown in
Figure 1) include, as originally given in:1

(i) The development and use of formal architectural analysis to perform tradeoffs and inform the ap-
propriate allocation of capabilities to the deliberative, habitual and reflexive layers. This will result
in systems with flexibility to adapt to their uncertain environments and potential mission changes.
This is in contrast to the informal allocation of capabilities to layers in current architectures, which
results in brittle architectures with properties that are inappropriately tuned to the mission context
(e.g., favoring responsiveness over flexibility, even for mission scenarios without strict time-criticality
requirements).

(ii) The architecture’s leveraging of sequencing and control policies that are “correct by construction” in
both the deliberative and habitual layers. The use of model-based policy synthesis will address the
current challenge of assuring correctness of the system behavior in the face of growing complexity.

(iii) The use of onboard deliberative reasoning, which will enable the system to manage a space of possible
executions that is far too large to be completely covered by design-time control policies, and light-
time delays that preclude effective ground-based deliberation and planning for many future mission
scenarios.

(iv) The architecture’s emphasis on risk-awareness, which is critical to managing the unprecedented amount
of uncertainty in the environments to be explored in future missions. Such uncertainty introduces
significant risk and precludes any guarantees of correct behavior, even though we are employing formally
correct-by-construction policies. Endowing our architecture with the ability to explicitly assess risk
and make decisions based on risk fills this resilience gap.

3 of 25

American Institute of Aeronautics and Astronautics

These innovative features makes it possible for our RSE architecture to allow autonomous operation that
is resilient enough to support space exploration in uncertain and high-risk environments, and overall more
ambitious science collection capabilities. However, this requires a modular architecture with a breakdown of
capabilities over levels of decomposition.

A. Algorithms

The deliberative layer performs risk-aware plan execution. A risk-aware plan executive takes as an input a
set of high-level goals (i.e., a plan), makes risk-aware decisions, and outputs subgoals that are executed by
the habitual layer. Risk-aware plan execution is distinct from conventional planning in two ways:

1. A risk-aware plan executive adapts its decisions to the acceptable level of risk specified by users.

2. A risk-aware plan executive performs risk allocation among the subgoals it generates.10

The first essentially addresses the trade-off between risk and utility, and the second scales the first capability
when there is more than one subgoal. Note that one can think of a robot as having a limited amount of risk
(resource) that it can use to achieve a goal, like fuel or energy; allocating risk optimally across the subgoals
then maximizes overall utility.10

Various algorithms and plan executives have been developed by MIT’s Model-based Embedded and
Robotic Systems (MERS) Group, which has been a pioneer in risk-aware plan execution. The iterative risk
allocation (IRA) algorithm10 provides the optimal risk allocation capability for a wide range of problems,
and was the basis for p-Sulu.11 The algorithm is built upon chance-constrained model predictive control
(CCMPC) methods12–14 and works on a continuous state space; two of its current applications are vehicle
path planning10,15,16 and building control.17 More specifically, p-Sulu takes as input a plan representation
called chance-constrained qualitative state plan (CCQSP)18 and outputs an optimal sequence of actions as
a schedule. These algorithms are part of what the MERS Group calls their Enterprise system.

Other Enterprise system components include probabilistic risk-aware activity planners and schedulers,
such as continuous-p-Sulu, ptBurton, and pKirk. These planners can deal with temporal uncertainty, uncer-
tainty in action-completion, and uncertainty in action-outcome.

TuLiP is an implementation of one of a set of new approaches that has been created within the last
decade for the specification, design, and verification of embedded control systems (see19 for an overview and
additional references). These approaches make use of models of the dynamics of the system, descriptions
of the external environment, and formal specifications to either verify that a given design satisfies the
specification, or synthesize a behavioral policy or controller that satisfies the specification, as summarized in
Figure 2.

Figure 2: Verification and synthesis framework.

More specifically, TuLiP is a correct-by-construction synthesizers for the creation of behavioral policies
and controllers; it makes use of a dynamic model of the system, descriptions of the external environment, and
formal specifications to either verify that a given design satisfies the specification or synthesize a controller
that satisfies the specification, as summarized in Figure 3. TuLiP can be used for symbolic activity planning

4 of 25

American Institute of Aeronautics and Astronautics

to find a satisficing (not optimal) plan,20 and also in conjunction with the Enterprise system components
as a plan verification tool for the creation and evaluation of contingency plans at planning time. TuLiP can
also be used to create hybrid control policies at the lower layers.21

Figure 3: TuLiP software code structure flowchart. Blue boxes are TuLiP capabilities (functions) and
blue circles are data representations, while red circles are inputs (left) and outputs (right). Note that the
system model could be input as LTL specifications or as a finite transition system; system and environment
specifications are linear temporal logic formulas.

The habitual layer utilizes risk-bounded hybrid control techniques to perform ‘rote’ behaviors that will
achieve the deliberative layer goals, while also satisfying the safety and/or performance constraints specified
by the deliberative layer. In the rover scenario case, one of the common behaviors performed at this level is
trajectory planning. The reflexive layer uses existing low-level control techniques, such as PID control.

For more information on the RSE architecture implementation, including algorithms that have been
integrated and made available in the codeset, see.22

B. RSE Architecture Module Structure

Before we can discuss the structure of each component module in RSE, we need to discuss the outcomes we
are trying to achieve here, and the capabilities we are trying to support with RSE (e.g., the analysis and
verification of the entire architecture, graceful degradation and resilient operations).

In the big picture, what we are trying to do is to create an architecture that allows for the following:23

1. Resilience Quantified in Measurable Terms

– Project cost, Mission risk, Quality(/opportunity) of science return

2. Resilient Architecture Tradeoffs

– Passive vs. active resilience, Reflexive vs. deliberative, Resilience/robustness vs. efficiency/cost
effectiveness, Complexity vs. verifiability, Hierarchical vs. flat architecture

3. Resilient Architecture Principles

– Options (diversity or redundancy of), Modularity and interfaces (constraints that de-constrain),
Ability to choose (between options), Characterization of uncertainties (‘Resilient to what?’)

To support these resilience needs, we must attempt to create an implementation that easily allows for:

(1) analysis and V&V of both the components and the architecture as a whole

(2) multiple types of configurations, differing levels of abstraction

Note that item (1) points towards the need for an architectural analysis framework that can be used to
evaluate an RSE architecture specification and the system-level design as a whole. This idea of across-
architecture analysis leads to the idea of total system stability (discussed in section III), and a need for
theory to describe and analyze such layered abstractions (discussed in section IV). Items (1) and (2) both

5 of 25

American Institute of Aeronautics and Astronautics

imply a need for common interfaces and ‘plug-n-play’-type algorithms or modules, for interchangeability and
apples-to-apples comparisons.

Also note that the structure of the architectural modules may help or hinder the process of capability
characterization and performance analysis of each module and a given architecture configuration as a whole.
Thus, in order to better support both of the above functionalities, for a fair assessment and comparison
between one RSE architectural implementation and another, we need (1) our implementation to be modular,
and (2) to be able to formally specify every aspect of the systems, techniques, and methods that we wish
to use, as well as their interconnections and the robot procedures being used. In this effort, we have chosen
to use the Canonical Software Architecture (CSA) format,24,25 in order to support the decision/control
layer decomposition at the levels of abstraction we choose, the separation of responsibility for degradations
and failures, and the segregation of functionality, while still maintaining the necessary communication and
contingency management between components in the architecture. CSA also supports our need to explicitly
and formally specify the robot procedures and interconnections (rather than implicitly encode them into the
architectural structure). Figure 4a shows an example CSA module.

(a) Original CSA module.24,25 (b) ‘Version 2’ with activity manager.

Figure 4: Canonical Software Architecture generic control modules, comparison between versions.

Note that CSA builds off of the state analysis framework developed at JPL,26–29 and that another reason
we use CSA is because allowing only one source of state knowledge to each module prevents the modules
from getting out of sync and helps to disallow inconsistency in state knowledge.

Each generic CSA module can be broken down into an Arbitration, Control, and Tactics component:24,25

• Arbitration manages the overall behavior of the module by issuing a merged directive computed from
all the received directives to Control, and reports goal status back to the issuing module.

• Control computes the output directives to other module(s) based on Arbitration’s merged directive,
responses received from other modules, and state information received; it also reports failure and
completeness of a merged directive to Arbitration.

• Tactics generates a control tactic or a contiguous series of control tactics for Control to use.

In the RSE implementation, each of these module components follows an explicitly-defined policy that
chooses the component’s internal action (algorithms) and can change the module’s or the component’s
internal status, based upon the content of the various inputs to the component and its current internal state.
For instance, the Arbitration component can include a state machine that determines whether a goal and
constraints are accepted or rejected, and handles status messages and requests between the modules; if a
goal and constraints are accepted it passes the information along to the Control component to be processed
further.

In order to better support architectural analysis and multiple types of configurations, we extend the
original CSA module specification to include an activity manager (see Figure 4b). The extended CSA
‘version 2’ specification still includes (a) message bundling and constraints on acceptable I/O interface, (b)
explicit segregation of arbitration, control, tactics inner modules, (c) similar internal variable passing as

6 of 25

American Institute of Aeronautics and Astronautics

defined by CSA, and (d) the ability to start/stop/reset each module externally during runtime. The new
‘activity manager’ component below ‘control’ is similar to the ‘arbitration’ component above, but more of an
algorithm registry. Enacting this promotes ease of communication with separate algorithm modules and lower
levels, by finishing what the ‘arbitration’ component started, separating (all) the external communication
procedures (e.g., “state machine”(s)) from the ‘control’ component.

This separation of the activity manager and control aspects allows us to (similarly) separate and mod-
ularize the response of the algorithms from the more-complex layer response. Instead of having to include
multiple algorithms inside a single deliberative layer module, multiple different algorithms can then ‘register’
with the activity manager. One reason we may want to have separate algorithm modules able to be called
would be to allow for parallel computation (possibly even across different CPU cores), for consensus or first-
viable-response responses. With several algorithm modules ‘registered’ to a single layer, each algorithm can
be called upon (through the activity manager) by the control component as-needed, for short- or long-term
calculations, in sequence or in parallel. Figure 5 shows an example of a more complex ‘stacking’ of CSA
modules and capabilities.

Figure 5: An example of within-layer stacking of CSA modules.

Another reason we might wish to separate the activity manager comms and policy functionality from the
control component is to allow for ease of use of the RSE architecture for single-domain experts. Someone who
is an expert at a particular algorithm (its strengths and weaknesses and capabilities, who knows whether
it can complete in hard real-time and whether it can give guarantees of correctness and/or completeness
in certain domains) should not have to understand state machines and the RSE layer policies to try and
offer up their algorithm for use, or to test their algorithm within a pre-existing architecture implementation.
Sharing the API at the arbitration component for their new algorithm module should be enough to register
that algorithm for use, if it uses a common specification; the control component of a layer module can
then send computation requirements (problem formulation, constraints, etc.) to the layer’s activity manager
component, and that activity manager could select or ping each registered algorithm module to determine
what capability set (and associated algorithm) would best solve the given problem. If a solution cannot be
found within the constraints given (as reported by the algorithm module), then the activity manager can
report this back to the control component, and the control component’s policy can handle the ‘no solution
found’ case as we would expect it to (either internally, or failing up through the arbitration component).
Thus, more complex reactions and policy responses can be encoded for each layer, largely independent of
the main control component policy and the specific algorithms chosen – rather, policy responses can be
determined according to algorithm class, control mode, or tactic, instead.

Note that this decomposition and modularity also makes both general testing/debugging and V&V far

7 of 25

American Institute of Aeronautics and Astronautics

easier. By having explicit state machines(/policies) for the internal layer operations, we make both single-
module V&V easier (we know how to analyze a policy), and multi-module V&V possible (interactions
between state machines, environment). It also becomes possible to use correct-by-construction techniques
to synthesize these policies (e.g., we can lay out formal requirements that each algorithm must satisfy).

In the next section, we discuss a specific type of architectural analysis that is a first-step towards being
able to make formal guarantees about goal-completion in the presence of uncertainty. While the ability to
perform V&V across an architecture implementation is important, it does not necessarily guarantee that the
goals given to that architecture will be able to be completed. Being able to determine whether an architecture
performs according to a set of specifications as-given, or whether its policies are consistent, is different than
determining what specifications are necessary (and/or sufficient) for resilient operations to occur in a given
scenario, under a particular set of assumptions.

III. Total System Stability

In this section, we discuss what it means to have a ‘stable architecture’, and how to guarantee that
an architecture is “stable”. We approach this problem from the standpoint of a control theory outlook,
and below we try to formalize the issues that result from trying to quantitatively characterize the overall
performance of a well-defined system without a need for exhaustive testing.

For this purpose, we define the term “total system stability” (TSS) as ‘goal-tracking’ behavior from the
highest level of abstraction (dealing with mission goals and constraints) through the lowest level of controller
output. In other words, as controller stability is defined by whether a given controller is able to converge
to a reference trajectory input, total system stability is defined by whether the entire architecture is able
to ‘converge’ to a set of given goals – to complete those goals. Thus, “total system stability” can also be
described as stability of the entire architecture. As an example, for a controller, we ask the question: can we
track / converge upon the reference trajectory? For an architecture, we would ask the question: can we track
/ converge upon the system/mission goals? “Converging on the goals” can be thought of as accomplishing
the set of goals as-given. Thus, if a subset of the goals is not accomplished, then we are not tracking well,
and if none of the goals are accomplished, we have diverged (not convergence).

A. Reasoning

With a multi-layer architecture, replanning and failing-up from lower levels to higher levels is fine as long as
the goals are (eventually) accomplished within the constraints given (e.g., time, fuel use, risk level), assuming
goal completion is possible under the goals and constraints given. (The architecture should only fail-up if it
must.) This can impose further constraints on the system that are derived from the robots physical model
(e.g., sensor and actuator specs) and the environment (e.g., uncertainty in sensing, type of obstacle and
classification of risk); some of these constraints include the amount of acceptable end-to-end time delay
in the system (e.g., absolute time from sensor reading to higher-level computation to control output), the
allowable max/min speed for the robot (e.g, to avoid catastrophic damage from impact with unavoidable
obstacles or obstacles that are sensed too late), and so forth.

From a control theory standpoint, one might naively assume that total system stability could be obtained
by applying the idea of bounded-input bounded-output (BIBO) stability to the system. Being able to prove
BIBO stability for each CSA module could then guarantee suboptimal but acceptable performance for the
overall system. However, there are several problems with this (not the least of which is: where do the input
and output constraints come from, and what should they be?).

First, in order to have this work, the output from each module must lie within the input bounds for the
module it is giving its output to. If the constraints do not match for BIBO stability, there will be issues. The
problem here is matching up those constraints, primarily because of the differences in levels of abstraction
between the modules. It is very hard (and possibly overconstraining) to make sure that each module has
full coverage of the information from its input source, because each higher-level module is operating at that
higher level of abstraction for a reason – namely, to reduce the size of the state space to make the problem
size tractable. Modules operating at a lower level of abstraction may not be able to handle the explosion of
the state space that might result.

The second problem with the idea of BIBO stability in this instance is that determining what the bounds
(i.e., input constraints) need to be for any given module, in order to prove BIBO stability for that module,

8 of 25

American Institute of Aeronautics and Astronautics

is highly nontrivial for a resilient architecture. For example, proving that a trajectory planning module can
always find a path (when one exists) that will get a rover from a specific location A to a specific location
B within a polygon-area of a given map, in less than a given time T, might be possible for a deterministic
environment. However, when there is a probability that a ‘pop-up obstacle’ might be sensed during traversal
that must be avoided, one which was not on the original map, the input bounds – the assumptions made –
have been violated. Thus, that proven trajectory, with guarantee of arrival within time T, no longer applies.
(In other words: when there is uncertainty in the environment, this further complicates matters.) Similar
issues result when a fault or degradation occurs (in either the sensors or actuators).

However, we don’t want this to be a show-stopper. If there is only a 5% chance of that rover encountering
and sensing an obstacle of radius R that was not on our original map, we would want some guarantee still
that we could still accomplish at least the majority of our high-level goals, even if we might have to punt
on the current traversal task and not visit location B until later (...or not at all, in order to still complete
as many goals as possible). This becomes even more interesting when our high-level goals are more fluid
things, like “obtain at least X pieces of such-as-such type of data”, or “collect Y reward level of science
data, weighted by priority and amount and usefulness”, or “do not exceed K amount of overall risk during
rover operations”. Recomputing the schedule of tasks for the day to still meet these demands might still be
feasible (as opposed to a set of tasks sent down by mission control that must be completed for a ‘success’ful
outcome over that planned time period).

This gets back to the reason why we have multiple layers and multiple levels of abstraction in the first
place: no single module or layer should be responsible for everything. We want to allow for the replanning
and rescheduling of tasks when problems arise. Again, replanning and failing-up from lower levels to higher
levels is fine as long as the goals are (eventually) accomplished within the constraints given.

However, allowing this results in further complexity and additional issues. If the levels of abstraction
between layers aren’t chosen well for a particular pairing of problem instantiation (e.g., rover scenario) and
architecture implementation, problems can develop. For instance, when the constraints sent down between
layers are too tight, thrashing between the two layers can occur (unnecessary, internal delay); alternately,
when those bounds are too loose, there may be times when fail-up needs to occur but doesnt happen – when
higher-level replanning was required, but didn’t happen, or didn’t happen in time.

B. Examples of Constraint Mismatch

Because of the need to make some sort of guarantee on performance (probabilistic or absolute) even in the
face of uncertainty, BIBO stability for each module/component may not be enough to ensure total system
stability without consistency across the entire architecture. As discussed in later sections of this paper, we do
have some methods of ensuring consistency and/or goal convergence between the habitual and reflexive layers,
and between the deliberative and habitual layers. And, the performance bounds (restrictions, constraints,
and/or requirements) given between each decision/control layer, along with the transformed more-concrete
behaviors for goal completion, may seem reasonable as defined between each set of layers. However, while
it is essential to have consistency between each pair of layers, the layer-pairs of these constraints may not
guarantee overall stability of the system on their own. This is due to complications associated with the levels
of abstraction between the modules and components that are being chained together in the architecture.
Ensuring consistency across all three layers is another matter entirely! The complexity of the validation
problem cannot be easily circumscribed in a multi-layer (¿2 layers) system, simply by sticking to BIBO
stability, as shown below in the context of a Mars rover scenario. For instance, when a simple ‘fail-up when
a constraint bound is violated’ policy is used for each layer, there are circumstances where the constraints
chosen may seem reasonable at first, but are too ‘loose’ or too ‘tight’ to prompt a ‘fail-up’ to occur at the
appropriate time. And, as said before, when the constraints do not match, total system stability cannot
necessarily be ensured.

In this first example, shown in Figures 6a and 6b, setting bounds that are too tight can cause an inability
for the system to track its goals. For instance, if the deliberative layer has a heuristic of the lower level(s),
the deliberative layer sends the habitual layer a bound on time of completion, and the habitual layer sends
the reflexive layer a tight bound on the trajectory envelope (for obstacle avoidance), a case of unexpected
slippage can cause internal thrashing between the habitual and reflexive layers. The reflexive layer would try
to track the trajectory, run outside the bounds of the trajectory envelope due to the high rate of slippage,
and have to fail up to the habitual layer. The habitual layer would spend time replanning, compute a
slightly-different trajectory with bounds that are just as tight (the constraints on safe obstacle avoidance

9 of 25

American Institute of Aeronautics and Astronautics

(a) First location (A) cannot be reached within given
time bound T, due to too-tight combination of high
slippage rate, trajectory bound, and non-zero dura-
tion computational thrashing between the layers.

(b) Locations B and C can also be chosen that cannot
be reached within the time bound T, for a given slip-
page rate, trajectory bound, and non-zero trajectory
computation time.

Figure 6: Rover example: bounds too tight. Grey blobs are obstacles, blue circles with letter designations
are goal locations. Red ‘X’s show locations that were not able to be reached within the given time bound.

not having changed in the meantime), and send down the new trajectory. The reflexive layer would only be
able to follow the new trajectory for a short distance... and the whole process repeats until the time bound
on arriving at its destination (A) is about to be violated. The habitual layer would fail up at this point,
the deliberative layer would have to cross that first destination point (A) off the goal list as unable to be
completed, and would move on to trying to reach the next destination point (B).

The real issue here is that the habitual layer was given too much responsibility on the correction of
slippage but not enough leeway on time. In this case, the deliberative layer slippage model doesnt match
the trajectory bound (being sent to the reflexive layer from the habitual layer) or the time of completion
(being sent to the habitual layer). A pathological case (set of destination points) can be chosen for a given
scenario (level of slippage and trajectory bound, versus time of completion computed from deliberative layer
heuristics) that would always have the destination point not being reached and having to be stricken off the
goal list, for every destination point on the list.

In the second example, shown in Figure 7a, setting bounds that are too loose can also lead to an inability
for the system to track its goals. For instance, if the deliberative layer has a heuristic of the lower level(s),
the deliberative layer sends a large bound on the time of completion, and the habitual layer sees part of
an unexpected obstacle that was not on the original map that the deliberative layer used for calculation,
there can be problems if the habitual layer computes that it can get around the obstacle with (what would
otherwise be thought to be) an acceptable level of probability of successful arrival within the time bounds.
As shown in Figure 7a, if the rover moves around the obstacle counter-clockwise, and (eventually) can’t get
to location A in time (because the obstacle is too large/long to traverse around even within the given very
loose time bound), it will fail up to the deliberative layer, which will cross that destination point (A) off
the goal list as unable to be completed, and would move on to trying to reach the next destination point
(B). However, by this point, the rover would be much farther away from destination (B) than before, and (a
pathologically-chosen destination point B can always be chosen for any given time horizon that it) can no
longer be reached!

The real issue here is that the habitual level was given too much responsibility on pop-up obstacle
avoidance, with no sense of the next goal (reaching the destination point). Unfortunately, this cannot simply
be solved by giving the habitual layer the next goal, or the next, or the next – one can always pick a longer
horizon than the current timeline that will force this pathological behavior to happen. Simply having the
habitual layer fail-up every time that an unexpected obstacle is encountered is also no solution – this can
lead to similar thrashing as discussed above in the habitual-reflexive layer example of too-tight bounds. The
bigger issue here is the division of responsibility between the layers. The deliberative layer’s responsibility is

10 of 25

American Institute of Aeronautics and Astronautics

(a) First location (A) cannot be reached within given
time bound T1. Due to rover’s uninformed choice
to traverse counter-clockwise around the obstacle in
trying to reach location (A), the rover has ended up
far enough away from the second location (B) that it
can no longer reach it within the original time bound
T2.

(b) First location (A) cannot be reached within given
time bound T1. Here, with an informed choice by
the rover to traverse clockwise around the obstacle,
the rover has not ended up farther away from loca-
tion (B) than it would have been had it successfully
reached location (A), and can still reach the second
location (B) within the original time bound T2.

Figure 7: Rover example: bounds too loose. Grey blobs are obstacles, blue circles with letter designations
are goal locations. Red ‘X’s show locations that were not able to be reached within the given time bound.

(a) First location (A) cannot be reached within given
time bound T1. Here, the rover having moved around
the obstacle in a counter-clockwise manner is all
right, because even though the obstacle was not ac-
counted for in the higher-level plan, in this case mov-
ing towards the first location (A) was also moving the
rover closer to the second location (B).

(b) First location (A) is expected to be reached
within given time bound T1, as computed upon first
sensing of the obstacle. The habitual layer does not
know the priorities of reaching the locations (A, B,
C, D) relative to each other. The best handling of
this case might be to fail-up and request replanning
occur, given this new information.

Figure 8: Rover example: bounds too loose. Grey blobs are obstacles, blue circles with letter designations
are goal locations. Red ‘X’s show locations that were not able to be reached within the given time bound.

11 of 25

American Institute of Aeronautics and Astronautics

the discrete goal timeline and goal tradeoffs/priorities. The habitual layer should only have to think about
the limited timeline that it is given; the constraints that are given to the layer should allow it to fail-up as
and when it is necessary for the deliberative layer to replan for circumstances that must (and do) affect the
global timeline (in most cases adversely).

Thus, the focus shifts to determining what constraints – what metrics – must be defined that can be
used to guarantee that a layer will always fail up when it needs to, in time for the higher-level layer to
replan and handle the circumstances accordingly. Figure 7b showcases one possible ‘constraint’ that could
be used for this purpose (a necessary, though likely not sufficient condition, for guaranteeing fail-up at the
appropriate time and thus total system stability). When the rover first senses the unexpected obstacle, it
had an unremarked-upon choice of which direction to attempt to traverse around the obstacle: clockwise, or
counter-clockwise. If the habitual layer only has knowledge of destination A for whatever reason, it would
need to fail-up to the deliberative layer. Alternately, if the next destination point (B) had been passed down
to the habitual layer, then the rover could have computed that it would be ‘safer’ to move clockwise around
the obstacle, so that in the event that the rover did not reach destination (A) in time, it would at least not
be farther away from destination point (B) than it was at the start of its traversal. (Note, however, that this
is dependent upon the location of the next destination point. Figure 8a shows an example where moving
counter-clockwise around the obstacle would get the rover closer to the next destination point (B).) This
‘simple fix’ is not, however, without its pitfalls. Allowing the habitual layer to make these decisions on its own
– whether to fail up or not – discounts the strengths of the deliberative layer. Figure 8b shows an example
of a larger plan with additional destinations to be reached, where the rover can exact different scientific
measurements. When the priority of reaching those destinations comes into play, it quickly becomes clear
that the decision of the rover’s direction of movement (or a reassignment of goals) is actually something that
should by right be handled by the deliberative layer. For instance, if reaching destination (B) is essential,
and reaching destination (A) was merely added to the plan due to the rover’s perceived proximity on the
way to destination (B) (without having had knowledge of the blocking obstacle), and destinations (D) and
(C) added to the end in case a nominal traversal occurred and the destinations were able to be reached
afterwards, the deliberative layer might choose to reassign the rover to reaching destination (B) immediately
upon sensing the obstacle, and drop destination (A) from the list entirely because of this. However, if all
four destinations had equal value in their science return, then dropping destination (B) from the goal list
and continuing to traverse around the obstacle to destinations (C) and (D) would be more efficient, instead.

C. Recommendations

There are no simple solutions, here. However, we do have some recommendations on necessary (not sufficient)
conditions to help mitigate the issues shown in these two examples, without unnecessarily trying to muddy
the distinction between the types of computation that could or should be done between the layers (or the
assignment of responsibilities for unexpected events and/or hardware functionality degradations between
them). (One is parallel computation, where the higher levels sense and replan without requiring a fail-up,
and can send ‘repaired’ plan information down to lower levels as necessary. However, the same metrics to
sense these cases to determine whether intervention is in order are what would also be used as the constraints
to determine an explicit fail-up from a lower layer itself.) Our first recommendation is that each constraint
sent down is calculated according to the cost associated with changing the plan (to help prevent thrashing
between the layers). Our second recommendation is to look for possible reevaluation points or circumstances
(like the new obstacle sensed that was not on the map used by the deliberative layer in developing the
original higher-level plan). The evaluation done at the lower level (e.g., habitual layer) should not just be a
simple ‘accept’/‘reject’ of whether it is expected to be able to be accomplished or not; instead, this should
be an evolving real-time status and prediction of outcome. The lower (habitual) level should continually
check to see if it has violated or will violate ‘the assumption that the layer can (still) complete the current
goal’. (The closest formal example to this is a contract guarantee, an assumption that the module will do
what it said it was going to do, what it thinks it can do.) Our third recommendation is that, along with
the second recommendation, ‘point(s) of no return’ should be identified – points in the timeline when the
action must be completely committed to. An example metric for this is for the percentage of completion to
be known to be above “b” by time “tx”, and the likelihood of completion to also be above a threshold “c2”;
if this constraint was not met, then one would move to a contingency plan (precomputed by a higher, e.g.
deliberative, layer) or fail-up. This metric can also be used as a more general constraint to determine when
to send updates to the higher level layer(s), or when to prompt a replan – for instance, if the likelihood of

12 of 25

American Institute of Aeronautics and Astronautics

completion drops below “c2” at any point, or if the likelihood of completion drops more than a “range c3”
between a set number of timesteps/sensor readings “nx”.

Overall, we are trying to make sure that unexpected events fail-up properly (e.g., only when they need
to in order to have the highest rate of goal achievement possible), and this is a question of bounds and what
our constraints sent down to the lower layers needs to be. Also, if enough fail-ups occur in a short period
of time, we may expect to start to see thrashing between the layers. So to avoid this, we might also want
to use the frequency of fail-up occurence as a measure of when we might need to recalculate our models
(e.g., model fitness), and/or update the parameters used for the computation of the confidence of completion
within bounds (e.g., the progress along a path coupled with the predicted future progress).

D. Ongoing Work

This is only the start of attempting to deal with this problem. Future work on this will involve continuing
to determine necessary and sufficient conditions for consistency (including V&V on the internals of each
CSA module). As briefly touched upon above, identifying reevaluation (or decision) points is one thing that
needs to be done. However, this does not negate the need for the constraints being used to be consistent
across all levels of abstraction, all modules and layers. (In other words, all the “BIBO” constraints across
all components must match!)

We also need to formally describe what assumptions are being made, and the guarantees that are needed,
which in turn drive the constraints that must be defined. Thus, a cataloging of assumptions (and physical
constraints) needs to be made at every level of the architecture (and likely for each use case, though the
methods for performing this determination should remain somewhat the same). This will likely impact the
types of layer/module constraints, and the actual quantitative numbers that are calculated. This catalog
will live in a “parallel plane” alongside the architecture that keeps track of the global (and module-specific)
assumptions being made, since it will necessarily have a multi-module, multiple-layer impact (not just one
above-below), and the requirements that are defined by this should be traceable to each constraint that is
defined by this process. Having a separate, explicit catalog of these will allow us to (1) better track whether
anything that is correct-by-construction will fail (as incomplete models with incorrect assumptions lead to
a case of garbage in, garbage out), and (2) determine when our models no longer hold and when learning is
needed. (Note that in graceful degradation and failure cases, we will expect to see changes to the assumptions;
thus, we will want to use fault trees, or a similar method, to enumerate the causes and consequences of
failures, and this will determine the modes of operation needed for the system implementation.) We plan
to use assumption-guarantee contracts to help us define and map these overarching constraints from the
more qualitative representation in the catalog to a more useful and directly implementable quantitative
one. Assumptions should lead to guarantees and constraints on the system. Guarantees should be clear
(accept/reject, status) and violation (or prediction of a violation with high probability) should immediately
prompt a fail-up.

At a meta-level, it should be noted that as part and parcel of determining these “BIBO” constraints,
we are effectively determining the functional requirements for each module / layer in the architecture. This
can help define which algorithms are useful; it can help inform what set (or sets) of algorithms should be
picked by an operator for a successful (stable) architecture implementation, for a given robot and problem
scenario. (Note that this should fall out naturally from the abstraction breakdown; the robot capabilities;
and the mission(/scenario), including such details as the level of uncertainty in the occurrence of certain
events and the acceptable risk bound, which further define the overall assumptions and constraints necessary.)
From this, we would then want to create a database of algorithm capabilities, characteristics, and evaluation
metrics, in order to better match what properties and performance are needed by a module in the architecture
implementation with a particular algorithm or set of algorithms. Some things that we believe it would be
helpful to characterize would be: the general set of functional capabilities that describe it (e.g., the sort of
API information given to the activity manager); the performance & accuracy of the algorithm as impacted by
the calculation-time/CPU-cycles allotted to it and the size of the problem space; and common “hooks” that
can be exploited for higher efficiency runs (e.g., restrictions on the breadth and depth of search, calculation
time, and/or iterations performed).

Finally, it should be noted that the formal determination and mapping of constraint-dependencies is not
always straightforward. For instance, to have a resilient architecture, some of the metrics we look at are:

1. “Project cost” (such as money, human time, and resources)

13 of 25

American Institute of Aeronautics and Astronautics

2. “Mission risk” (the ability to perform all mission goals)

3. “Quality(/opportunity) of science return” (some preferred tradeoff of “a lot of data” versus the “use-
fulness of that data”)

From this we can derive additional requirements for resilient operations, e.g.:

• the sensors and actuators necessary to complete an action must be functional during these times
(functional components)

• the graceful degradation of components and/or intelligent acquisition and relay of data (/ intelligent
planning of sensor and actuator use, including the transmission windows)

These then lead to further requirements:

• to limit / avoid the possibility of breakage when possible (e.g., obstacle avoidance, smart on/off of
components)

• the allocation of satellite time, relay, CPU time/compression, data rates, data bus, memory storage
for storing and relaying data

Note that, for a rover scenario, we as humans might think of obstacle avoidance as one of the first problems
to occur to us. However, obstacle avoidance is really only a consequence of the need to avoid damage to the
rover. And, when a rover mission is at the end of its lifecycle, if the rover is sat down in a very interesting
location, where it is taking all the final science data that is needed to complete its mission, the ability to
traverse is no longer of overriding importance. Similarly, if a rover can only take X number of samples using
a manipulator arm, and has done so, then a failure of one of the joints of the arm that would not allow it
to pull itself into a stowed position might not be considered more than a minor inconvenience. If the arm
has a science instrument on the outstretched end effector and can still take other measurements, the event
of that actuator joint dying would no longer be considered the stop-stopping critical and crippling failure
event that it would have been if it had happened much earlier in the mission, when there were still sample
slots to be filled. The severity of a degradation or failure is dependent on not just the event, but also when
it occurs in the mission timeline and what goal-dependencies still must be met.

IV. Methods for Architecture Analysis

In this section we discuss two overlapping methods that should help in our goal of analysis and V&V of
the architecture, towards increasing confidence in these more complex systems.

The first method uses behavior trees and encompasses the deliberative layer and the habitual layer,
trying to map the physical space into (possibly overlapping) zones of discrete states, and try to identify
which zones need to be explored for total system stability.30 The second method uses robust control theory
and encompasses the habitual and reflexive layers, trying to quantify the effects of bounded uncertainty on
total system stability.

A. Method 1: Behavior Trees, DL-HL

Behavior Trees (BTs) are a graphical mathematical model for reactive fault tolerant execution of tasks.
They were first introduced in the computer gaming industry31,32 to describe the task execution of non-
player-characters, meeting design requirement as modularity, flexibility and reusability.

Their popularity lies in their particular structure and execution; in particular, they have been shown
to generalize both AND-OR-trees,33 the Subsumption architecture, the Sequential composition,34 Decision
Trees and Teleo-reactive Paradigm35 creating a growing attention in academia.36–43

1. Background

Here, we give a brief overview of BTs, and refer to36 for a more detailed description.
A BT is defined as a directed tree where nodes are grouped into root; control flow nodes; and execution

nodes, using the usual definition of parent and child for each connected nodes. The root node has no parents
and only one child, a control flow node has one parent and at least one child, and a execution node has

14 of 25

American Institute of Aeronautics and Astronautics

no children and one parent (i.e. it is a leaves node of the tree). Graphically, the children of a control flow
node are ordered from its bottom left to its bottom right, as in Figures 10a-10b. A BT starts its execution
from its root node, which sends ticks to its child. (A tick is a signal that enables the execution of a child.)
When a node in a BT receives a tick, its execution starts and it returns to its parent a status running if its
execution has not finished yet, success if its execution is accomplished, or failure otherwise.

We now describe the execution of the the nodes aforementioned using the functional model proposed
in.38

2. The Functional Model of BTs

Definition 1 (Behavior Tree (BT)38). A BT is a three-tuple

Ti = {fi, ri,∆t}, (1)

where i ∈ N is the index of the tree, fi : Rn → Rn is the right hand side of an ordinary difference equation,
∆t is a time step and ri : Rn → {R,S,F} is the return status, that can be equal to either Running (R),
Success (S), or Failure (F).

The return status ri will be used when recursively combining BTs, as explained below.

Definition 2 (Execution model of a BT38). The execution of a BT Ti is a standard ordinary difference
equation

xk+t(tk+1) = fi(xk(tk)), (2)

tk+1 = tk + ∆t. (3)

Definition 3 (BT regions38). The three regions Ri, Si, Fi ⊂ Rn of a BT Ti are defined as follows

Ri = {x : ri(x) = R} (4)

Si = {x : ri(x) = S} (5)

Fi = {x : ri(x) = F} (6)

and denoted Running region (Ri), Success region (Si) and Failure region (Fi).

Action

1

(a) Graphical representation of an
action node.

Condition

1

(b) Graphical representation of a
condition node.

Figure 9: Graphical representation of the execution nodes.

Definition 4 (Condition). A Condition is a BT Ti with Ri = ∅.

The condition node checks if a condition is satisfied or not. The return status is success or failure
accordingly and it is never running. The condition node is represented in Fig. 9b.

BTs that satisfy Definition 1 directly, without calling other subtrees, see below, is called Actions.

Definition 5 (Action). An Action is a BT Ti that has no subtrees.

When an action node starts its execution, then it returns success if the action is completed and failure if
the action cannot be completed. Otherwise it returns running. The action node is represented in Fig. 9a

Definition 6 (Sequence compositions of BTs38). Two or more BTs can be composed into a more complex
BT using a Sequence operator,

T0 = Sequence(T1, T2).

15 of 25

American Institute of Aeronautics and Astronautics

?

Child 1 Child 2 · · · Child N

1

(a) Graphical representation of a fallback node with
N children.

→

Child 1 Child 2 · · · Child N

1

(b) Graphical representation of a sequence node with
N children.

Figure 10: Graphical representation of the control flow nodes.

Then r0, f0 are defined as follows

If xk ∈ S1 (7)

r0(xk) = r2(xk) (8)

f0(xk) = f2(xk) (9)

else

r0(xk) = r1(xk) (10)

f0(xk) = f1(xk). (11)

T1 and T2 are called children of T0. Note that when executing T0 it keeps executing its first child T1
as long as it returns Running or Failure. The second child is executed only when the first returns Success,
and T0 returns Success only when all children have succeeded, hence the name Sequence. For notational
convenience, we write

Sequence(T1,Sequence(T2, T3)) = Sequence(T1, T2, T3), (12)

and similarly for arbitrarily long compositions.
When the execution of a fallback node starts (i.e. the node receives a tick from its parent), then the

node’s children are executed in succession from left to right, until a child returning success or running is
found. Then, this message is returned to the parent of the fallback. It returns failure only when all the
children return a status failure. The purpose of the fallback node is to robustly carry out a task that can
be performed using several different approaches (e.g. a motion tracking task can be made using either a 3D
camera or a 2D camera) by trying each of them in succession until one succeeds. The graphical representa-
tion of a fallback node is a box with a “?”, as in Fig. 10a.
A finite number of BTs T1, T2, . . . , TN can be composed into a more complex BT using the fallback compo-
sition: T0 = Fallback(T1, T2, . . . , TN).

Definition 7 (Fallback compositions of BTs38). Two or more BTs can be composed into a more complex
BT using a Fallback operator,

T0 = Fallback(T1, T2).

Then r0, f0 are defined as follows

If xk ∈ F1 (13)

r0(xk) = r2(xk) (14)

f0(xk) = f2(xk) (15)

else

r0(xk) = r1(xk) (16)

f0(xk) = f1(xk). (17)

T1 and T2 are called children of T0. Note that when executing T0 it keeps executing its first child T1 as
long as it returns Running or Success. The second child is executed only when the first returns Failure, and

16 of 25

American Institute of Aeronautics and Astronautics

T0 returns Success when one children has succeeded, hence the name Fallback. For notational convenience,
we write

Fallback(T1,Fallback(T2, T3)) = Fallback(T1, T2, T3), (18)

and similarly for arbitrarily long compositions.
When the execution of a sequence node starts, then the node’s children are executed in succession from

left to right, returning to its parent a status failure (running) as soon as the a child that returns failure
(running) is found. It returns success only when all the children return success. The purpose of the sequence
node is to carry out the tasks that are defined by a strict sequence of sub-tasks, in which all have to succeed
(e.g. a mobile robot that has to move to a region “A” and then to a region “B”). The graphical representa-
tion of a sequence node is a box with a “→”, as in Fig. 10b.
A finite number of BTs T1, T2, . . . , TN can be composed into a more complex BT using the sequence compo-
sition: T0 = Sequence(T1, T2, . . . , TN).

Definition 8 (Root). The root node is the node that generates ticks. It is graphically represented by a box
labeled with “∅”.

3. Proposed Approach – Constraint passing DL-HL

To guarantee the goal tracking behavior from HL to DL we need to guarantee that the execution of one task
does not impede the execution of another task. In a BT framework this is easily described by having the
success region of a tree representing a task being inside the running region of the tree representing the next
task. The running region of a task τi is defined as the points in the state space from which the system can
reach the goal satisfying the given constraint. The success region of a task τi is defined as the points in the
state space in which the goal is considered reached.

As stressed earlier, we account for fault at any time. Whenever a fault occurs, the Success and Running
regions are updated according to the new constraints. The Running and Success regions for each task are
computed at the HL level (only the HL algorithms know the possible points in the state space), whereas the
order of these tasks are computed at the DL level. To guarantee the goal tracking behavior from HL to DL,
the DL needs to constrain the success region of a task in order to ensure that after a task has succeeded, the
next task is able to succeed from that point. Moreover, whenever a success region of a task is not inside the
running region of the next task, the task is aborted.

(a) Regions for GOTO A. (b) Regions for GOTO B.

Figure 11: Running regions (solid orange) and success regions (dashed green) of the subtrees GOTO A and
GOTO B.

Example 1. Imagine the system has to reach two waypoints A and then B as depicted in Fig. 11. Consider
a waypoint that can nominally be reached if the system in within 1m from it. Each waypoint must be reached
with some given time constraint. The constraint is translated into a set of points from which the system can
reach the waypoint in time. As it can be seen in Figure 11 if the HL decides to compute a path that ends
at the bottom part of Waypoint A, then from there the system will not be able to reach the waypoint B in

17 of 25

American Institute of Aeronautics and Astronautics

Algorithm 1: main loop

1 init← True
2 for i ∈ [1,m] do
3 send constraints to HL(τi)

4 do
5 if check faults from HL() or init then
6 init← False
7 for i ∈ [1,m] do
8 Ri ← get running region of(τi)
9 Si ← get success region of(τi)

10 for i ∈ [1,m] do
11 Si ← Si ∩Ri+1

12 set success region of(τi,Si)

13 if not (get is task τi aborted()) and
14 not (get is task τi aborted()) and Si 6⊂ Ri+1 then
15 set is task τi aborted(TRUE)

16 r ←tick(T)
17 while r = running

time. Hence the success region of GOTO A needs to be restricted to be inside the running region of GOTO
B. When computing the path to Waypoint A, the HL does not know that after reaching waypoint A it will be
requested to compute a path to waypoint B, hence the restriction of the success region must be done on the
DL level and sent down to HL.

?

is task τi
completed

is task τi
aborted

perform
task τi

Figure 12: Proposed tree.

Algorithm 1 implements the procedure, which is formally described below:

Definition 9. Ti is the tree representing a task τi in form of Fig. 12. Where: the condition node is τi
completed returns success if the task is completed; the condition node is τi completed returns success if the
task is aborted from the DL; and perform τi executes the task (sends the task to be performed down to HL);

Definition 10. P = {0, 1} × {0, 1} × Rn is the state space in which Ti evolves. Where n is the cardinality
of the state space.

Definition 11. xk = [xc, xa, x] ∈ P is the state of Ti (see Eq. (2)). Where xci = 1 if and only if τi is
completed; xai = 1 if and only if τi is aborted; and x is the state variable of the system.

Lemma 1. Let m ∈ N be the number of tasks, n the cardinality of the state space, and Ti be a BT in form of
Fig. 12, the tree T = sequence(T1, T2, · · · , Tm) can track a goal only if (necessary, not sufficient) each action
perform task τi is stable and either one of the following holds: xci = 1; xai = 1 or x ∈ Ri =⇒ x ∈ Si−1
where Si−1 is the success region of Ti−1 and Ri is the running region of Ti. By definition S0 = Rn.

Proof. For each task τi one of three states can occur: τi is completed, τi is aborted or the system is
performing τi. If τi was either completed or aborted one of the following holds: xci = 1 or xai = 1. If

18 of 25

American Institute of Aeronautics and Astronautics

the system is performing τi, the system state variable is in Ri it will be able to reach the goal only from
Si−1 hence x ∈ Ri =⇒ x ∈ Si−1. If i = 1 holds (i.e. the system is performing the first task), then
x ∈ R1 =⇒ x ∈ S0 = Rn holds by definition.

Algorithm 1 implements the aforementioned approach.

B. Method 2: Layering Architectural Analysis Framework, HL-RL

As stated above, this method uses robust control theory and encompasses the habitual and reflexive layers,
trying to quantify the effects of bounded uncertainty on total system stability.

Layered control architectures have emerged in diverse application fields, including autonomous system,
Internet,44 process control,45 smart grid,46 biological systems,47 and large-scale distributed systems.48 Tra-
ditionally, these layered architectures are designed based on extensive experience and testing. This approach
no longer holds for future engineering systems due to the rapidly increasing complexity of these systems. The
layering as optimization decomposition framework proposed in44 has proven to be a powerful mathematical
theory in the design and analysis of network architectures. The basic idea is to formulate the system design
problem as an optimization problem, and use a distributed algorithm to decompose the global optimization
problem into simpler optimization subproblems in layers. Each subproblem corresponds to a functional
module in the layered architecture, and the interfaces among layers are treated as variables to coordinate
the subproblems. The theory has recently been extended to incorporate system dynamics and transient
behavior.48

In this paper, we apply the layering as optimization decomposition framework to the design of a layered
architecture in a robotics application. Different from the previous works,44,48 which primarily focus on
the efficiency and optimality of the architecture, we emphasize the analysis of the resilience of the layered
architecture for RSE. Specifically, the layering as optimization decomposition framework focuses on a top-
down optimization decomposition technique for functionality allocation, followed by proofs of optimality and
convergence. We additionally incorporate uncertainty into the layered architecture, and propose a bottom-
up approach to translate the bounds on the uncertainty set from lower level to higher level to ensure total
system stability.

1. Analysis

We begin with the analysis of a two-layer hierarchical control architecture shown in Figure 13. The higher
level controller is responsible for more sophisticated tasks (e.g., planning and scheduling), while the lower
level controller is responsible for simpler tasks (e.g., tracking and regulation) but in a faster timescale. The
aim of this is to analyze the total system stability of a hierarchical control architecture, and offer some
guidelines for the design of a resilient layered architecture.

Control Action

Bounded Disturbance

Tracking

Plant

Planning

Reference Trajectory

Figure 13: A Two-Layer Open Loop Hierarchical Control Architecture

19 of 25

American Institute of Aeronautics and Astronautics

Specializing our discussion to the rover traversal problem, the planning layer corresponds to the habitual
layer in the RSE architecture, while the tracking layer corresponds to the reflexive layer. The overall goal
is to find an obstacle-free path from source to destination, subject to the dynamics of the rover, hardware
constraints, environmental uncertainty, and time constraints. This problem is highly complicated and cannot
be solved at once. A tractable solution is to decompose the problem into two simpler parts: a planning
problem, and a tracking problem. For the planning problem, we find an obstacle-free path while ignoring
the detailed dynamics of the system. The reference path is then sent to the tracking layer in the lower
level, where we design the control action to track the reference trajectory. This design methodology uses a
top-down approach to decompose the task into multiple layers, as shown in Figure 13.

The layered control architecture in Figure 13 does not necessary guarantee total system stability because
the controllers at different layers are designed based on models with different levels of abstraction. Specif-
ically, we design the path planner to generate an obstacle-free path for the tracker, in the hope that the
tracker can follow the reference trajectory nearly perfectly without hitting any obstacle. In practice, due to
environmental uncertainty and the physical constraints of the rover, there are always some tracking errors
that make the actual path deviate from the reference trajectory. If the trajectory deviation is large, the rover
may hit an obstacle during its traversal. A common way to avoid this problem is to impose safety margins at
the planning stage, which allows certain amount of trajectory deviation during actual implementation. Our
goal is to propose a quantitative way to specify the safety margin at each layer to guarantee total system
stability.

Sensor
Measurement

Control
Action

Bounded Disturbance

Tracking

Plant

Planning

Reference
Trajectory

Deviation
Bounds

Closed Loop
System

Figure 14: A Two-Layer Closed Loop Hierarchical Control Architecture

Consider the layering architecture shown in Figure 14. Here we provide a feedback signal between layers
during both the synthesis and the implementation stage. Assume that the rover is subject to some bounded
external disturbance. The role of the tracking layer is to use the sensor measurement to adjust fast timescale
feedback control action to mitigate the effect of external disturbance on rover traversal. This part of the
architecture can be designed using conventional feedback controller synthesis. The innovative part is that we
further translate the bounds on the external disturbance to the bounds on trajectory deviation, and report
the bounds to the planning layer in the design stage. The planning layer then checks whether the trajectory
deviation is within its safety margin. If the maximum trajectory deviation for the given bounded disturbance
is smaller than the safety margin, then we have a guarantee that the rover will not hit an obstacle during its
actual traversal as long as the actual external disturbance is bounded in a pre-specified set. This provides an
assumption-guarantee-like framework for verification and validation of total system stability. From Figure
14, we can also consider the tracking layer as an abstraction, or a virtualization of the rover dynamics and
the hardware constraints to the planning layer. Specifically, the tracking layer translates the bounds on the
external disturbance to the bounds on trajectory deviation. In this way, the planning layer does not need to
consider the detailed dynamics of the system, which make the planning task simpler and faster.

The two-layer architectural framework in Figure 14 can be extended to multi-layer control architectures
as well. For a multi-layer control problems, we first perform a top-down decomposition to allocate the
functionalities into different modules in different layers. Then, we perform a bottom-up analysis to translate
the lower level uncertainty set to a more abstract, higher level uncertainty set to ensure the total system
stability of the layered architecture.

20 of 25

American Institute of Aeronautics and Astronautics

2. Design

In the previous subsection, we discuss the analysis of total system stability for a given controller. Here, we
discuss the design of the controller in the layered architecture.

In Figure 14, we note that the combination of the tracking layer and the plant forms a closed loop feedback
system. This closed loop system takes the reference trajectory and the external disturbance as inputs, and
generates the deviation bounds as output to the planning layer. Suppose that the external disturbance has
bounded magnitude (bounded `∞ norm), and we want to bound the magnitude of the trajectory deviation
(bounded `∞ norm). The `∞− `∞ induced norm is known as the L1 norm49 of the system. Therefore, if we
want to minimize the magnitude of trajectory deviation for a given bounded external disturbance, then we
solve an L1 optimal control problem to design the controller for the tracking layer. More generally, the work
in50 proposed a controller design framework that can incorporate constraints imposed on the closed loop
system. The idea is to first design the desired closed loop behavior of the feedback system, then reconstruct
the controller in the feedback loop. Therefore, the planner can first specify the constraints and objectives
imposed on the closed loop system shown in Figure 14. We can then apply the method in50 to synthesize the
optimal controller for the tracking layer that satisfies the design specification given by the planning layer.

V. Preliminary Results of Applying Analysis Techniques

For the RSE architecture implementation, we adopted the Robot Operating System (ROS) messag-
ing system (and ROSbridge) as the backbone for internal communications between components.51,52 The
publisher-subscriber model is fairly robust, and there exist a wide range of robots and simulated robots
that have pre-existing interfaces to the software package, which will allow us to easily test our architecture
across a wide range of use cases. Messaging support has been tested between the RSE and two simulation
environments: a mid-fidelity rover simulation using the OSRF-developed gazebo software and a low-fidelity
simulation using the Pioneer 3-DX rover.53 The gazebo software allows for a wide range of robots to be
tested using the main RSE software backbone.

Figure 15: Testbed used.

A. Simulation Result, Method 1

The tesbed was constructed using the Gazebo software which was running in the Robot Operating System
(ROS); the example used was a rover scenario, much like those given in.22 Figure 15 shows a screenshot of the
testbed used. The tasks chosen are GOTO Waypoint ω1, GOTO Waypoint ω2, and GOTO Waypoint ω3.

21 of 25

American Institute of Aeronautics and Astronautics

The BT executed is depicted in Fig. 16, where ω1, ω2, ω3 are three waypoints in the state space as shown in
Fig. 17a. Note that more general tasks can be chosen; we chose navigation tasks for convenience.

→

?

is waypoint
ω1 reached

is waypoint
ω1 aborted

GOTO
Waypoint ω1

?

is waypoint
ω2 reached

is waypoint
ω2 aborted

GOTO
Waypoint ω2

?

is waypoint
ω3 reached

is waypoint
ω3 aborted

GOTO
Waypoint ω3

Figure 16: Proposed tree.

We ran Algorithm 1, setting some power constraints for each waypoint (Line 3). These constraints are
translated into running regions, as depicted in Fig. 17a. Note that the success region of GOTO Waypoint ω1

is not entirely inside the running region of GOTO Waypoint ω2 (i.e., x ∈ Ri =⇒ x ∈ Si−1 in Lemma 1
does not hold). Algorithm 1 sends the new success region down to the HL (Line 12), then Algorithm 1 runs
the BT as long as there is a task to execute (Line 16). While the system is reaching the waypoint ω2, we
manually inject a fault into the system, then Algorithm 1 recomputes the running and success region of each
subtree (the regions are smaller due to the fault, e.g. to move the system consumes more power) and sends
them to the HL (Line 12). The new regions are depicted in Fig. 18a. After a few seconds we apply a second
fault. Algorithm 1 recomputes the regions (Fig. 18b). Now the success region of GOTO Waypoint ω2 is
outside the running region of GOTO Waypoint ω3 (i.e., S2 ∩R3 = ∅), hence the task GOTO Waypoint ω2

is aborted (Line 15) and the system starts the execution of GOTO Waypoint ω3.

B. Interim Results, Method 2

We have begun initial testing of the optimization-based layering architectural analysis framework using a
Dubins car model for a rover driving on a surface with high slippage / bad traction. (The original method
that was tested used model predictive control (MPC) and PID control to encompass what we call the habitual
and reflexive layers,48 but preliminary testing showed that the MPC-PID tradeoff did not work well for our
purposes. Thus, we moved on to using robust control theory for this approach, adding an additional feedback
signal from the tracking layer to the planning layer.) Initial results for the method as described in section
IV.B look promising, and will be discussed in a future paper, along with a longer discussion on the top-down
functionality allocation that was done.

VI. Conclusion and Future Work

In this paper, we have given a description of total system stability, and techniques towards proving such,
that we believe will help with the analysis and V&V of system architectures for robotics in the future,
towards better enabling the adoption of risk-aware autonomy on future spacecraft. We have described two
methods that are necessary (though not sufficient) towards giving guarantees of total system stability for a
particular implementation of an RSE architecture using CSA-type modules. In future work, we will attempt
to define sufficient (not just necessary) conditions for total system stability.

In future work, we also plan to further develop a third method of analysis that involves policy-checking,
first for single-modules (all components inside a CSA module), and then for multiple modules (across multiple
layers). To do this, we plan to use TuLiP, finite state machines, and LTL logic specifications to detail how
to handle the problem of architecture-wide analysis at a high level, formally checking for issues like deadlock
and whether timing constraints can be met for a given implementation. (We have already started this
process, having hand-coded the policies for several CSA modules for an existing RSE implementation; these
policies can easily be converted over for testing.) Once we have formal specifications for such problems in
TuLiP, we can then ‘reverse’ the problem and expand upon existing methods for automatic verification of
each module, to allow for the autocoding of the policies for the CSA components from these total system
stability specifications.

22 of 25

American Institute of Aeronautics and Astronautics

(a) Original Success and Running regions. (b) Constrained Success and Running regions.

Figure 17: Constraint passing from DL to HL. The success region for waypoint ω1 is restricted to preserve
TSS.

(a) Updated Success and Running re-
gions after the first fault.

(b) Updated Success and Running regions after
the second fault.

Figure 18: Updated regions during the execution. The success region for waypoint ω2 is restricted to preserve
TSS. The success region of GOTO Waypoint ω2 is outside the running region of GOTO Waypoint ω3.

23 of 25

American Institute of Aeronautics and Astronautics

Acknowledgments

The authors would like to thank the Model-based Embedded Robotic Systems Group at MIT for their
input and feedback throughout the development process, especially Erez Karpas and Pedro Santana for all
their help in answering our questions on the Enterprise system. The authors would also like to thank the
Keck Institute of Space Studies for its initial study and final report on Engineering Resilient Space Systems,
from which this effort had originated.

The research described in this paper was carried out at the Jet Propulsion Laboratory under a contract
with the National Aeronautics and Space Administration, and at the California Institute of Technology
under a grant from the Keck Institute for Space Studies.

References

1McGhan, C., Murray, R., Serra, R., Ingham, M., Ono, M., Estlin, T., and Williams, B., “A risk-aware architecture for
resilient spacecraft operations,” Aerospace Conference, 2015 IEEE , March 2015, pp. 1–15.

2Nayak, P. P., Bernard, D. E., Dorais, G., Kanefsky, E. B. G. J. B., Gamble, E. B., Kanefsky, B., Kurien, J., Millar, W.,
Muscettola, N., Rajan, K., Rouquette, N., wen Tung, Y., Smith, B. D., and Taylor, W., “Validating The DS1 Remote Agent
Experiment,” 1999.

3Muscettola, N., Nayak, P. P., Pell, B., and Williams, B. C., “Remote Agent: To Boldly Go Where No AI System Has
Gone Before,” 1998.

4Brown, D., “NASA’s Deep Impact Produced Deep Results,” URL: http://www.nasa.gov/mission_pages/deepimpact/
media/deepimpact20130920f.html, 2013.

5NASA Jet Propulsion Laboratory, “JPL — Missions — Deep Impact – EPOXI,” URL: http://www.jpl.nasa.gov/

missions/deep-impact-epoxi, 2014.
6Gray, D. L. and Brown, G. M., “Fault-Tolerant Guidance Algorithms for Cassini’s Saturn Orbit Insertion Burn,” Pro-

ceedings of the American Control Conference (ACC 905), June 1998.
7Nesnas, I., Wright, A., Bajracharya, M., Simmons, R., Estlin, T., and Kim, W. S., “CLARAty: An architecture for

reusable robotic software,” SPIE Aerosense Conference, 2003.
8Nesnas, I. A., “CLARAty: A collaborative software for advancing robotic technologies,” Proceedings of NASA Science

and Technology Conference, Vol. 2, 2007.
9Chien, S., Sherwood, R., Tran, D., Cichy, B., Rabideau, G., Castano, R., Davis, A., Mandl, D., Trout, B., Shulman, S.,

and Boyer, D., “Using Autonomy Flight Software to Improve Science Return on Earth Observing One,” Journal of Aerospace
Computing, Information, and Communication, Vol. 2, No. 4, 2005, pp. 196–216.

10Ono, M. and Williams, B. C., “An Efficient Motion Planning Algorithm for Stochastic Dynamic Systems with Constraints
on Probability of Failure,” Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI-08), 2008.

11Ono, M., Robust, Goal-directed Plan Execution with Bounded Risk , Ph.D. thesis, Massachusetts Institute of Technology,
2012.

12Blackmore, L., Li, H., and Williams, B., “A probabilistic approach to optimal robust path planning with obstacles,”
American Control Conference, 2006 , IEEE, 2006, pp. 7–pp.

13Ono, M. and Williams, B. C., “Iterative Risk Allocation: A New Approach to Robust Model Predictive Control with a
Joint Chance Constraint,” Proceedings of 47th IEEE Conference on Decision and Control , 2008.

14Ono, M., “Joint Chance-Constrained Model Predictive Control with Probabilistic Resolvability,” Proceedings of American
Control Conference, 2012.

15Ono, M., Williams, B., and Blackmore, L., “Probabilistic Planning for Continuous Dynamic Systems,” Journal of Arti-
ficial Intelligence Research, Vol. 46, 2013, pp. 449–515.

16Jewison, C., BcCarthy, B., Sternberg, D., Fang, C., and Strawser, D., “Resource Aggregated Reconfigurable Control
and Risk-Allocative Path Planning for On-orbit Assembly and Servicing of Satellites,” Proceedings of the AIAA Guidance,
Navigation, and Control Conference, AAAI, 2014.

17Ono, M., Graybill, W., and Williams, B. C., “Risk-sensitive Plan Execution for Connected Sustainable Home,” Proceedings
of the 4th ACM Workshop On Embedded Systems (BuildSys), 2012.

18Blackmore, L., Robust Execution for Stochastic Hybrid Systems, Ph.D. thesis, Massachusetts Institute of Technology,
2007.

19Wongpiromsarn, T., Topcu, U., and Murray, R. M., “Synthesis of Control Protocols for Autonomous Systems,” Vol. 1,
2013, pp. 21–39.

20McGhan, C. L. and Murray, R., “Application of Correct-by-Construction Principles for a Resilient Risk-Aware Architec-
ture,” AIAA SPACE 2015 Conference and Exposition, 2015.

21Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., and Murray, R. M., “TuLiP: A Software Toolbox for Receding Horizon
Temporal Logic Planning,” Proceedings of the 14th International Conference on Hybrid Systems: Computation and Control ,
HSCC ’11, ACM, New York, NY, USA, 2011, pp. 313–314.

22McGhan, C. L. R., Vaquero, T., Subrahmanya, A. R. K. L., Arslan, O., Murray, R., Ingham, M. D., Ono, M., Estlin, T.,
Williams, B., and Elaasar, M., “The Resilient Spacecraft Executive: An Architecture
for Risk-Aware Operations in Uncertain Environments,” AIAA SPACE 2016 Conference and Exposition, 2016. (Accepted).

23Murray, R. M., Day, J. C., Ingham, M. D., Reder, L. J., and Williams, B. C., “Engineering Resilient Space Systems:
Final Report,” Keck Institute of Space Studies, Final Report , , No. September, 2013, pp. 84.

24 of 25

American Institute of Aeronautics and Astronautics

24Burdick, J. W., du Toit, N., Howard, A., Looman, C., Ma, J., Murray, R. M., and Wongpiromsarn, T., “Sensing,
Navigation and Reasoning Technologies for the DARPA Urban Challenge,” Technical report, DARPA Urban Challenge Final
Report , 2007.

25Wongpiromsarn, T. and Murray, R. M., “Distributed mission and contingency management for the DARPA Urban
Challenge,” International Workshop on Intelligent Vehicle Control Systems, 2008 , IEEE, 2008, p. Submitted.

26Dvorak, D., Rasmussen, R. D., Reeves, G., and Sacks, A., “Software architecture themes in JPL’s mission data system,”
Proceedings of 2000 IEEE Aerospace Conference, 2000.

27Rasmussen, R. D., “Goal based fault tolerance for space systems using the mission data system,” Proceedings of 2001
IEEE Aerospace Conference, 2001.

28Barrett, A., Knight, R., Morris, R., and Rasmussen, R., “Mission planning and execution within the mission data system,”
Proceedings of the International Workshop on Planning and Scheduling for Space, 2004.

29Ingham, M., Rasmussen, R., Bennett, M., and Moncada, A., “Engineering complex embedded systems with state analysis
and the mission data system,” Journal of Aerospace Computing, Information and Communication, 2005.

30Colledanchise, M. and Ögren, P., “How Behavior Trees Modularize Hybrid Control Systems and Generalize Sequential
Behavior Compositions, the Subsumption Architecture and Decision Trees,” IEEE Transactions on Robotics, (Submitted).

31Millington, I. and Funge, J., Artificial intelligence for games, CRC Press, 2009.
32Rabin, S., Game AI Pro, chap. 6. The Behavior Tree Starter Kit, CRC Press, 2014.
33Florez-Puga, G., Gomez-Martin, M. A., Gomez-Martin, P. P., Diaz-Agudo, B., and Gonzalez-Calero, P. A., “Query-

Enabled Behavior Trees,” IEEE Transactions on Computational Intelligence and AI in Games, Vol. 1, No. 4, pp. 298–308.
34Colledanchise, M., Marzinotto, A., and Ögren, P., “Performance Analysis of Stochastic Behavior Trees,” Robotics and

Automation (ICRA), 2014 IEEE International Conference on, June 2014.
35Colledanchise, M. and Ögren, P., “How Behavior Trees Generalize the Teleo-Reactive Paradigm and And-Or-Trees,”

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2016.
36Ögren, P., “Increasing Modularity of UAV Control Systems using Computer Game Behavior Trees,” AIAA Guidance,

Navigation and Control Conference, Minneapolis, MN , 2012.
37Klökner, A., “Interfacing Behavior Trees with the World Using Description Logic,” AIAA conference on Guidance,

Navigation and Control, Boston, 2013.
38Colledanchise, M. and Ögren, P., “How Behavior Trees Modularize Robustness and Safety in Hybrid Systems,” IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), June 2014.
39Nicolau, M., Perez-Liebana, D., O’Neill, M., and Brabazon, A., “Evolutionary Behavior Tree Approaches for Navigating

Platform Games,” IEEE Transactions on Computational Intelligence and AI in Games, Vol. PP, No. 99, 2016, pp. 1–1.
40Hu, D., Gong, Y., Hannaford, B., and Seibel, E. J., “Semi-autonomous Simulated Brain Tumor Ablation with Raven II

Surgical Robot using Behavior Tree,” IEEE International Conference on Robotics and Automation (ICRA), 2015.
41Guerin, K. R., Lea, C., Paxton, C., and Hager, G. D., “A Framework for End-User Instruction of a Robot Assistant for

Manufacturing,” IEEE International Conference on Robotics and Automation (ICRA), 2015.
42Bagnell, J. A. D., Cavalcanti, F., Cui, L., Galluzzo, T., Hebert, M., Kazemi, M., Klingensmith, M., Libby, J., Liu,

T. Y., Pollard, N., Pivtoraiko, M., Valois, J.-S., and Zhu, R., “An Integrated System for Autonomous Robotics Manipulation,”
IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2012, pp. 2955–2962.

43Klöckner, A., “Behavior Trees with Stateful Tasks,” Advances in Aerospace Guidance, Navigation and Control , Springer,
2015, pp. 509–519.

44Chiang, M., Low, S. H., Calderbank, A. R., and Doyle, J. C., “Layering as optimization decomposition: A mathematical
theory of network architectures,” Proceedings of the IEEE , Vol. 95, No. 1, 2007, pp. 255–312.

45Seborg, D. E., Mellichamp, D. A., Edgar, T. F., and Doyle III, F. J., Process dynamics and control , John Wiley & Sons,
2010.

46Cai, D., Mallada, E., and Wierman, A., “Distributed optimization decomposition for joint economic dispatch and fre-
quency regulation,” 2015 54th IEEE Conference on Decision and Control (CDC), IEEE, 2015, pp. 15–22.

47El-Samad, H., Kurata, H., Doyle, J., Gross, C., and Khammash, M., “Surviving heat shock: control strategies for
robustness and performance,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 102,
No. 8, 2005, pp. 2736–2741.

48Matni, N. and Doyle, J. C., “A Theory of Dynamics, Control and Optimization in Layered Architectures,” 2016 IEEE
American Control Conference (ACC), 2016.

49Dahleh, M. and Pearson, J. B., “L1-optimal feedback controllers for MIMO discrete-time systems,” IEEE Transactions
on Automatic Control , Vol. 32, No. 4, 1987, pp. 314–322.

50Wang, Y.-S., Matni, N., and Doyle, J. C., “Localized Optimal Control Framework – Part I: Localizability Theory,”
submitted to IEEE Transactions on Automatic Control , 2016.

51Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., and Ng, A. Y., “ROS: an open-source
Robot Operating System,” ICRA Workshop on Open Source Software, 2009.

52Crick, C., Jay, G., Osentoski, S., and Jenkins, O. C., “ROS and ROSbridge: Roboticists out of the Loop,” Proceedings of
the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction, HRI ’12, ACM, Boston, Massachusetts,
USA, 2012, pp. 493–494, ISBN: 978-1-4503-1063-5.

53Adept MobileRobots, “MobileSim - MobileRobots Research and Academic Customer Support (release 0.7.3),” URL:
http://robots.mobilerobots.com/wiki/MobileSim, 2014.

25 of 25

American Institute of Aeronautics and Astronautics

