
Implementing a web-based booking system

using Go

Phi-Long Vu

Computer Game Programming, bachelors level

2016

Luleå University of Technology

Department of Computer Science, Electrical and Space Engineering

Implementing a web-based booking
system using Go

Author:
Phi-Long Vu

Supervisor:
Mikael Viklund

Examiner:
Patrik Holmlund

2016

Luleå University of Technology
Department of Computer Science, Electrical and Space

Engineering

Abbreviations and Terms

• SSE - Server-Sent Events.

• IDE - Integrated Development Environment.

• REST - Representational State Transfer.

• JSON - JavaScript Object Notation.

• BSON - Binary JavaScript Object Notation.

• API - Application Programming Interface.

• CRUD - Create, Read, Update, Delete.

• XSS - Cross Site Scripting.

• XSRF - Cross Site Request Forgery.

• Route - A function on the server that is assigned to an URL and HTTP
method. A client request made with the URL and assigned HTTP method
will be served by the function.

Abstract

The project investigated the advantages and disadvantages of Go while a
booking system for Tieto was developed. The frameworks and APIs Angu-
larJS, REST, JSON and mongoDB were used during the development of the
booking system. The result was a fully working stand-alone booking system
with a login functionality. The back-end server was written in Go while the
front-end client was written in JavaScript using AngularJS.

Sammanfattning

Projektet undersökte fördelarna och nackdelar med Go medan ett boknings-
system för Tieto utvecklades. Under utvecklingen av bokningssystemet så
användes ramverken och APIerna AngularJS, REST, JSON och mongoDB.
Resultatet blev ett fullt fungerande fristående bokningssystem med support
för inloggning. Back-end servern var skriven i Go medan front-end klienten
var skriven i JavaScript med AngularJS.

Acknowledgements

I want to thank Tieto that allowed me to work on the project and everyone who
showed interest in the project. Special thanks to my supervisor Mikael Viklund
that listened to my worries about the project and progress reports.

Contents

1 Introduction 1

1.1 Goal and Purpose . 1

1.2 Social, Ethical, and Enviromental Considerations 1

2 Background 2

2.1 The Go Language . 3

2.1.1 Basic Syntax, Functions & Methods 3

2.1.2 Inheritance . 4

2.1.3 Concurrency . 5

2.1.4 Generic Types . 6

2.1.5 Garbage Collection . 6

2.2 HTTP . 6

2.3 REST API . 6

3 Method 8

3.1 Design & Implementation . 8

3.1.1 Simple Web Server . 9

3.1.2 Client-Server Interaction . 9

3.1.3 Support for REST . 10

3.1.4 Database Support . 11

3.1.5 Login System . 12

3.1.6 Booking System . 15

4 Results 19

4.1 Login System . 20

4.2 Booking System . 22

5 Discussion 25

5.1 The Bad and Good Parts of Go . 25

5.2 Limitations . 27

5.3 Conclusion . 28

References 29

1 Introduction

Go is a relatively new programming language[1] that was created in 2007 by the
Google employees Robert Griesemer, Rob Pike and Ken Thompson. The language
went open source in November 10, 2009[2] and has an active community that
contributes to the project with ideas and code. Go was created as a response
to issues Google developers had when they used the languages C++, Java and
Python. They felt that there was always a trade off to use any of the languages.
Go was designed[3] to take the good parts of other languages while also make
the language modern by adding support for concurrency. Go was designed to
have an advantage in terms of compilation speed, efficiency and ease of use. The
compilation time for Google’s projects were long but compilation time might not
matter for the average project.

1.1 Goal and Purpose

• What advantages and disadvantages does Go have compared to C/Java ?

• Is Go easy to use and easy to understand?

• Proof of Concept: Develop a booking system software in Go.

The goal was to investigate the advantages and disadvantages of Go, if it’s easy
to read and understand the code and if it takes minimal effort for a programmer
to switch to Go from another language. A booking system was created for Tieto
where the code was written in Go.

1.2 Social, Ethical, and Enviromental Considerations

The project used manufactured data during the development stage. A connection
with HTTPS was used between the client and server so that the data communi-
cation was secure. Passwords were stored hashed with a random salt instead of
saving them as plain text. They were only used during the login and registration
phase to be exchanged for tokens. These tokens were used by the client to identify
itself in future requests. One token was stored in a httpOnly and secure cookie
while the other in an ordinary cookie. This combination prevented JavaScript
injection attacks and execution of server requests from another web site.

1

2 Background

Tieto is a Finish/Swedish IT-service provider with more than 13.000 employees in
approximately 20 countries. Their headquarter is located in Helsinki, Finland[4].

The booking system is a tool for Tieto’s employees where they can access it by
logging into a website. It allows employees to schedule multiple computer re-
sources(see fig 1) using a graphical calendar. The intent is to schedule the resources
by communicating with Tieto’s existing REST[5] API.

(a) Login page

(b) After a user logs in

Figure 1: Mockup of the booking system

2

2.1 The Go Language

Go is a statically typed language like C++, which means that the compiler checks
the variables’ type at compile time. However, C++ allows to implicitly type-cast
certain types which allows the programmer to mix types such as integers and
floats during operations. Go on the other hand forces an explicit type-cast to
ensure type-safety and will generate an error during compilation if two types are
different. Go is designed to keep down the syntax clutter and complexity[6] by
reducing the code a programmer has to write. An example is the declaration and
implementation of a function is located in one file unlike C/C++.

2.1.1 Basic Syntax, Functions & Methods

Go is an object-oriented language but doesn’t have classes and therefore no class
scopes. The private and public scope work on a package level instead, where a
package is basically a namespace for the code. The variables and functions that
are private can’t be accessed outside the package.

• Everything that should be public must start with a capital letter in the name
or lower case for private.

• An executable Go program must contain a package named main with the
main entry function implemented.

• Variables can be declared with a type, but it’s also possible to let the assigned
value decide the type.

• A function call can return multiple values.

• Most functions that have error handling can return an object as the second
return value.

• Methods can belong to any types and not only structs. A method can only be
implemented for types in the same package. This is to prevent a programmer
to change the behavior of another package[7].

• Functions are considered as types and can be used as arguments in function
calls.

3

2.1.2 Inheritance

Struct embedding[8] in Go is basically object composition and achieves the same
effects as inheritance functionality that exist in Java and C++[9]. Object com-
position is when an object contains an instance of another object to tell that the
first object is composed by the other object. A Go struct will be able to ’inherit’
the methods and fields of the struct it contains when struct embedding is used(see
code 1).

type Animal s t r u c t {
legCount i n t

}

// method f o r Animal
func (animal Animal) getLegCount () i n t {

re turn animal . legCount
}

type Dog s t r u c t {
Animal //anonymous f i e l d − s t r u c t embedding

}

Code 1: Animal is embedded in Dog

Polymorphism[10] is when a single function call works differently depending on the
type of the object calling the function. Such functionality can be achieved in Go
by using interfaces[11], which have similarities to Java’s interface or C++ abstract
base class. The difference is that a Go struct implicitly implements an interface if
it satisfies it. A Go struct satisfies an interface if it implements all of the interface’s
methods. Go’s interface is also a type and can be used as a function’s parameter
and any object that satisfy the inferface can be used as the argument(see code 2).

type Animal i n t e r f a c e {
Speak () s t r i n g

}

type Dog s t r u c t {
}

// implement method to s a t i s f y Animal i n t e r f a c e
func (d Dog) Speak () s t r i n g {

return "woof ! "
}

4

// take s an i n t e r f a c e as argument
func consumeInter face (animal Animal){

fmt . Pr in t ln (animal . Speak ())
}

Code 2: Dog satisfies the interface Animal, and can be used in the function con-
sumeInterface

A struct that wants to implement an interface but doesn’t need all of the methods
can utilize struct embedding. Struct embedding an interface will expose the inter-
face’s methods to the struct, which means that the struct will satisfy the interface.
However, using those functions without implementing them will fail because the
fields are nil as value[12].

2.1.3 Concurrency

Rob Pike gave a talk[13] on concurrency and stressed that concurrency is not
the same as parallelism. It’s possible to achieve better performance by using
concurrency and parallelism together. A concurrent program works on multiple
tasks at overlapping time, but the tasks aren’t executed at the exact same time[14].
Only one active task is executed at a time and it will be switched to another task
to achieve concurrency. Parallelism on the other hand executes two tasks at the
exact same time, and requires hardware with multiple processors[15].

A concurrent example in real life would be if you walk to work and arrive at an
intersection with red traffic lights. You switch the task while waiting by checking
your email and switch back to the original task when the traffic lights turn green.
Adding parallelism to the example would be if you had someone to check your
emails for you. Maybe an assistant? The assistant could check your emails at the
exact same time you walk to work.

Concurrent programming is done in the form of threads and Go has the function-
ality natively in the standard library along with network capabilities. The thread
equivalent in Go is called goroutine and the ’go’ keyword is used before the func-
tion call to run it concurrently. Go has a feature called ’channel’ that can be used
to pass data between goroutines. Parallelism exists in Go but the program can
be slower if it spends more time communicating between goroutines rather than
doing any computations[16].

5

2.1.4 Generic Types

Generic types, also known as templates in C++[17] don’t exist in Go because it
would add complexity to the language. The Go dev team hasn’t found a good
design solution for this but is aware that it’s something programmers want. The
same functionality can however be achieved by using an empty interface as param-
eter. Every type implement at least zero methods and therefore satisfy an empty
interface.

2.1.5 Garbage Collection

Go uses garbage collection for memory management. Programmers don’t have
to worry if the variables are being allocated on the stack or the heap and don’t
have to deal with deallocation. An escape analysis[19] decides where the variables
should be allocated by checking if a variable will live outside the current scope.

2.2 HTTP

HTTP is an application layer[20] protocol and is stateless which means that no
client state is saved on the server. It operates with a request/response model[21],
where requests are made using HTTPmethods such as GET and POST. A response
with a new web page will be returned if the server successfully handled a request.

2.3 REST API

REST stands for Representational State Transfer and is a way to design web
applications[22] to decouple the client and server. It’s a resource based design
which means a common interface is used to handle the methods. These methods
act on resources that are stored on the server[22]. The benefits of REST are that
no state data for the client is saved on the server, server responses can be cached
by the client and the client and server are decoupled by using a common interface.
The interface is usually HTTP but is not a must.

There are six constraints to follow for a program to be considered RESTful.

• Uniform Interface:

6

A common interface used by the server and client, typically HTTP. CRUD(Create,
Read, Update and Delete)[23] operations are mapped to corresponding HTTP
methods. These methods act on the resources that are identified by an URL.

The representational part of REST means that a resource on the server
doesn’t necessarily mean the same on the client. When the client requests a
resource, it will receive the information as a representation in the format it
can parse, typically JSON or XML. The information received as a represen-
tation depends on the data the client supplies with the request. A request
must be self-descriptive, which means that there must be enough information
supplied with the request so that the server could handle it independently.
The response to the client delivers the state representation followed with a
HTTP status code. A response can also contain hyperlinks to other resources
that have a connection to the current resource.

• Stateless:
A RESTful web application must be stateless[22], which means that client
state data shouldn’t be saved on the server. It’s okay for resources on the
server to have a state but they must be valid for any client and not specifically
for one client. A client must therefore supply its state data in every request
so that the server could parse it for the purpose of modifying a resource’s
global state. A representation of the modified resource will be sent back to
the client after a request.

• Cachable:
A client should be able to cache responses to potentially reduce interactions
with the server’s database[5].

• Client-Server:
The server and client are decoupled and communicate with each other by
using a common interface. The server doesn’t need to care about the client’s
user interface and the client doesn’t need to care about the data that is
stored on the server[22].

• Layered System:
A client can’t tell if it’s connected to an end server or an intermediary
server[22].

• Code on Demand(optional):
The server can add functionality to the client by responding with code to
execute[22], which can be done in the form of JavaScript code. This is the
only optional constraint.

7

3 Method

The booking system’s back-end server was written in Go for the purpose of inves-
tigating the language’s advantages and disadvantages. HTML[24] files functioned
as the front-end and were served to connecting clients. AngularJS, a JavaScript
framework[25] was used in the HTML files to handle the logic of the client and al-
lowed it to interact with the server. REST support was added so that the booking
system could connect with any REST services in the future.

3.1 Design & Implementation

A study phase of Go’s code syntax was conducted by going through their tour[26]
on the official website. A more in depth documentation[27] was looked at after-
wards to learn the new functionality(see section 2.1) of the language that could be
different from the mainstream languages like C++, Java and Python.

An Integrated Development Environment(IDE) was desired to eliminate the need
to execute commands to compile and run a Go program. Go doesn’t officially
have any supported IDE so a third party IDE called LiteIDE[28] was used during
the development of the booking system. The advantages to use an IDE were
simply that it was faster to write code with syntax highlighting and code auto
completion. The Go documentation was also easy to access within the IDE by
marking the function with the mouse pointer and press a key combination. The
IDE supported debugging with breakpoints but it wasn’t reliable[29] so outputting
values to the standard output with Go’s print statement was used instead.

A general research was done to learn the different frameworks that were used and if
there were better alternatives. The booking system was broken down into multiple
subtasks, which are listed below and were completed in that specific order.

• Create a simple web server using Go.

• Interaction between client and server.

• Add support for REST.

• Database support.

• A login system.

8

• Third party calendar integration.

• Calendar client interaction with server.

3.1.1 Simple Web Server

A HTTP server was created using the package net/http in Go’s standard library. It
was simple to work with because the socket handling was abstracted, and functions
to handle the HTTP application layer already existed in the package. The net/http
package allowed the program to associate URLs of the client’s requests to different
function calls(routes). Different HTML files were rendered on the server and served
to the client depending on the requested route.

The implementation to handle incoming connections never used goroutines explic-
itly. Which was strange because some sort of concurrency must be done to serve
multiple client connections. It turned out that the blocking function call ’Lis-
tenAndServe’ from the standard library created a goroutine internally for every
connection request that was made.

3.1.2 Client-Server Interaction

The HTTP server was expanded to have logic when something interactive hap-
pened such as when a button was pressed. AngularJS was used because it had
support to work with REST which was something that needed to be added to the
booking system. Bootstrap[30] which is a front-end framework to create prettier
graphics than what is available by using standard HTML. The framework was used
for the client to create buttons.

An issue occurred when the HTML files were rendered on the Go web server while
using AngularJS for the client. Both Go and AngularJS used the same syntax to
do something called dynamic templating. Dynamic template functionality replaces
HTML variables that reside inside {{}} brackets. Run-time errors were generated
because both Go and AngularJS used the exact same brackets for dynamic tem-
plating. Two solutions were found to this, where one was to write code to tell Go
to use a different syntax. The second solution was however chosen where all the
HTML files and static resources were served to the client when it connected to
the server. The change made it so the client code could handle the rendering of
HTML files instead of the server.

9

A secondary benefit achieved by using AngularJS was the little effort needed to
create a Single-Page application(SPA). A Single-Page application updates parts
of the website instead of changing to a new web page or completely reload the
existing one[31]. An index.html with no actual content was used as the main page
for the client. The index.html file included all the JavaScripts that was needed for
the booking system. The graphical content was added by including another HTML
file’s content into the index.html when a new URL was requested. This was done by
using AngularJS’s directive, which is a built in feature used to connect AngularJS
code to HTML variables. The index.html used a directive that was called ng-view
which allowed the requested HTML to be rendered inside the index.html where
ng-view was located.

3.1.3 Support for REST

The client and server interaction was initially very basic and only happened when
the server served HTML files. The interaction was expanded by adding REST
support to the project.

The client logic to communicate with the server was implemented in AngularJS
controllers. Only one controller could be active and was changed depending on
which HTML was currently rendered. Each controller stored its own REST re-
source URLs which it could act upon by using HTTP methods.

The functions in the controllers were bound to variables in the HTML files by
using AngularJS directives. The directives were bound to HTML UI components
and could execute their bound function upon interaction. The functions that were
implemented were able to send requests to the server using HTTP methods along
with an included URL route. The URL route and HTTP method decided what
function on the server would be executed. A successfully handled request by the
server, responds with data along with a HTTP status code. The HTTP code
200(OK) was used for successful requests while the code 409(Conflict) was used
for failures.

The net/package was used in the early version of the server to handle routes but
was changed to a third party package called gorilla/mux. This package added
convenient functions to separate not only the URLs to resources but also request
methods such as GET and POST[32]. Gorilla/mux also had functionality to in-
teract with REST services[32] as a client, which will be useful when the booking
system adds support for Tieto’s REST api.

10

The client-server interaction only worked from client to server and not the other
way around. Which was okay if the booking system functioned as a request/re-
sponse model, which it did. But a notification from the server to update connected
clients was needed for the calendar part of the booking system.

Three solutions were found and are listed below.

• Clients’ poll the server for updates:
It wasn’t desired because it would put a lot of load on the server and wouldn’t
be scalable.

• Use websockets instead of the built in HTTP functionality:
It seemed okay but would be a lot unnecessary work. It would mean writing
a custom HTTP protocol to handle the HTTP methods.

• Use Server-Sent Events also known as EventSource[33]:
It works similar to websockets but is a one way communication from the
server to clients. Server-Sent Events uses HTTP which means that the server
could be extended with this functionality without the need of websockets.

Server-Sent Events was chosen as the solution because it could be used with the
existing implementation of the server without the need of a custom HTTP protocol.
Julienschmidt’s SSE package[34] was used to handle Server-Sent Events on the Go
server. An EventSource object[35] was created in the server’s code and also in
the client’s code. An EventSource object works like a socket and was used to
set up a communication between the server and connected clients. The server’s
EventSource object took an URL where it would output the messages, while the
client’s EventSource object took the same URL to listen for incoming messages.
The client implemented a message listener function where the arrived messages
were handled.

The server’s EventSource object is used anytime a message needs to be dispatched
to the connected clients. A goroutine on the server was added for test purposes.
The goroutine sent a test message with a two second interval and the client out-
putted the received message in the standard output console.

3.1.4 Database Support

The server needed a database to save the resources for users and schedules. Mon-
goDB[36] was used because Go had strong support to work with JSON and BSON(Binary

11

JSON)[37]. MongoDB is a NoSQL database which is an alternative to relation-
based databases such as mySQL. NoSQL databases store the data differently and
mongoDB stored it as document-based. In a document-based database the data
will be encapsulated and encoded in a standard format such as JSON or in mon-
goDB’s case as BSON. A collection in mongoDB is a container of database entries
and one was created to hold user accounts and another to hold the schedules.

The mgo driver package[38] was used by the Go server to interact with the database.
A session known as the global session was created with the IP and port of the run-
ning database server.

RoboMongo[39] is a graphical admin tool to connect to a database and view its
entries. The tool was useful to check if the values added to the database were
desired.

Settings for not only the server but also the database were hard-coded, which
wasn’t very portable. The third party package go-ini[40] was used which added
functionality to parse INI files that contained the server settings. The values were
used to set up the server during startup.

3.1.5 Login System

A login system was needed to handle user accounts for the booking system. A
good solution for a login system was researched because storing the passwords in
plain text weren’t ideal. Three ways to create a login system were found.

• Basic Authentication:
The client supplies its user credentials for every request made[41]. This was
good in the sense that it doesn’t break the REST constraint statelessness.
But supplying the user credentials in every request can’t be secure and could
be retrieved if a Man in the Middle attack happened. A Man in the Middle
attack means that the attacker would be between the server and client and
listens on the communication[42].

• OAuth:
OAuth is a token based approach where the server sends the client to a
third party service provider such as Google, Facebook or Twitter to handle
the authentication phase. A token is returned to the client and used in
future requests if the authentication was successful. The advantage is that no

12

passwords need to be saved or handled by the server because authentication
is handled by a third party[43].

• JWT token based authentication[44]:
A JWT token approach is a combination of using user credentials and tokens.
The user credentials are stored in the database which is unclear if it breaks
the REST constraint statelessness. The constraint can however be considered
fulfilled if user credentials are viewed as a resource and tokens as the client
state. An advantage is that there will be less interaction with the database
because tokens are stored in the client.

The JWT token approach was used for a more secure solution than Basic Authen-
tication. Also for the purpose of letting the booking system handle authentication
by itself. User credentials were only used during the login or registration phase and
would be exchanged for tokens. The web server’s connection was also changed at
this stage to HTTPS from HTTP to support encrypted communication[45]. This
was to prevent Man in the Middle attacks whenever user credentials were sent to
the server during login and registration.

A JWT token has three parts, the header, payload and signature. The header
will most importantly have a field with the hashing algorithm that was used to
sign the token. The payload is the content of the token which could be anything.
But for the booking system, it will only contain the username of the client. The
header and payload are used with the hashing algorithm specified in the header
along with a secret key to generate the signature. The signature is used to verify
that the token hasn’t been modified[44].

A registration page was added to the booking system so that new user accounts
could be created. A client that wants to register will send a POST request with user
credentials to the resource URL for user accounts. A successfully created account
would be stored in the mongoDB collection meant for users, with the password
salted and hashed. The server handles requests by extracting the information from
the POST request and checks in the database for an existing user. The HTTP
status code[46] 409(Conflict) will be returned to the client if a user already exists
with the same name. The client will handle the code 409(Conflict) by graphically
notifying the user that the username already exists. A successful request generates
two authentication tokens that are passed to the client in cookies along with the
HTTP code 201(Created). The code is handled in the client by redirecting the
website to the calendar URL.

A login page was added for clients that already have accounts. A request made

13

by a client that wants to login will be sent as a GET request along with the user
credentials. The user credentials are encoded by using Base64 and stored in the
custom HTTP header named ’Authentication’. Base64 encoding formats the data
into a form that could be sent without risking the data getting corrupted[47]. The
server will extract the user credentials from a received request and decode it to
check with the database to find an existing user. 409(Conflict) will be returned if
no user was found or if the password didn’t match. The client will handle the code
by graphically display a notification. If a user was found, the password sent by the
user will be compared with the hashed password stored in the database. A status
code OK(200) will be returned along with two generated tokens if the password
comparison matched and the client will be redirected to the calendar URL.

Salted and hashed passwords were used for security. If the database somehow
got compromised, the passwords would all be hashed with a random salt using
the algorithm bcrypt[48]. Go’s bcrypt package was used to generate the salted
hash and is also able to compare a plain text string with a hashed password. The
package is not included in the standard library but is a package found on the
official website[49].

If the database got compromised, the attacker must be able to decrypt the hashed
passwords if they are going to be of any use. Hashing is a one way algorithm unlike
encryption and can’t be reversed into plain text[50], unless the password is guessed.
Hashing alone is not good enough because different attack methods exist which
are fast enough to decrypt the hashed passwords. Lookup tables and rainbow
tables are two types of attacks where hashes are precomputed and associated with
the plain text counterpart. These are stored and automatically compared to a
compromised database to find a match[51]. These attacks only work because same
hashes are generated from the same input. Adding a random salt before hashing
creates a different hash even with the same input and makes it harder for such
attacks to work. A salt is just a random string and doesn’t need to be a secret and
can be stored in the database[52]. It’s purpose is to prevent automated attacks
such as look up tables and rainbow tables[51].

The purpose of the authentication tokens were to prevent repeated use of the user
credentials. A JWT token will be created and signed by the server’s private key
when a client is authenticated. The JWT token is stored in a httpOnly and secure
cookie. Client JavaScript code won’t be able to access the cookie and the cookie
will also only be sent on a secure connection like HTTPS[53].

Another method of storing the token is to store it in the HTML5 localStorage.
But this isn’t as secure as a httpOnly and secure cookie because it’s vulnerable

14

to XSS(Cross-Site Scripting) attacks. Which means that malicious JavaScript
code injected into the website could access the localStorage of a client and fetch
the token[53]. Tokens stored in httpOnly and secure cookies are immune to this
because those are only accessible by the server[53].

The cookie solution is however vulnerable to XSRF(Cross-Site Request Forgery).
Which means that an attacker could make a client send requests to the server
without the user being aware of it. An example is where the attacker tricks a user
to visit his malicious web site with an image tag that automatically sends a request
to the server. The cookies that are associated with the server would automatically
be included with that request[54].

A second cookie was introduced into the login structure[55] to prevent XSRF. It
contains a random generated value for the login session. The new cookie doesn’t
have the httpOnly and secure flags toggled on, which is intended for the purpose
of allowing the client to read the value and write it to the request header. The
server will know if a request was from the server’s website by comparing the value
in the cookie and the value in the header[54]. Why does this work? The solution
follows restrictions that browsers follow called the Same-Origin Policy[56]. One
useful restriction is that JavaScript code that runs on another website cannot read
the cookies that belong to the server’s website and will not be able to set the right
value in the header[54].

AngularJS has built in functionality to handle a token for XSRF. It looks for
a cookie named XSRF-TOKEN and echos the value to the header X-XSRF-
TOKEN[57].

The database handling was updated to support multiple client connections because
other clients would have to wait if a client’s interaction with the database was slow.
Copies of the global session for the database were added to each route function.
A copied session has the same session settings of the global session but uses a new
socket connection. This allowed multiple clients to access the database without
blocking each other[58].

3.1.6 Booking System

The booking system needed an interactive calendar where the users could create
schedules. An attempt to create the calendar from scratch wasn’t considered. That
would take too much time and wouldn’t be as feature-rich and good looking as
an already existing solution. An AngularJS implementation of the Arshaw Full-

15

Calendar[59] called ui-calendar[60] was used. The first objective was to integrate
the ui-calendar in the client and customize it so that it worked with the booking
system. The second objective was to get the ui-calendar to work with the REST
api and extend the REST functionality on the server with additional routes to
resources.

The ui-calendar was integrated into the AngularJS client code effortless because
it worked similar to a package. The complicated code was encapsulated and ab-
stracted. The ui-calendar had configuration functions to set up how the calendar
would look like and also took a list of JavaScript objects to render events. The
calendar didn’t come with functionality to add or remove events. But had callback
functions that could be re-implemented to customize the logic when something in-
teractive happens. The client code already had support for REST when the login
system was implemented and was extended further to support the calendar.

The callback functions to add, modify or remove an event were re-implemented.
Each callback was implemented to send a REST request to the server before being
allowed to do anything. A server response comes with data along with a HTTP
status code so that the client would know that a request was a success or failure.
The booking system already had support to handle HTTP status codes but was
extended to follow a common style for REST api[61].

• 200(OK) was used when a request was successful. The status code was
used by GET(retrieves a resource), PATCH(updates an existing resource) or
DELETE(deletes a resource).

• 201(Created) was used by a POST(create a new resource) request when the
operation was successful.

• 409(Conflict) was used when an operation couldn’t be completed because
there was a conflicting issue. Such as the resource couldn’t be found in the
database or the user was not allowed to do the operation.

• 404(Not Found) was used exclusively by the authentication check. The code
409(Conflict) was used in place of 404(Not Found) in parts of the request
where 404(Not Found) was supposed to be used. This was different from the
recommended way but was used to separate the authentication error code
from the others. The 404(Not Found) status code is handled by the client
by changing the web page to the login page.

• 400(Bad Request) was used in all of the requests when something went wrong
in the code. It could be that the data supplied by the client couldn’t be

16

parsed.

Server-Sent events that were implemented in the login system as a proof of concept
were used to notify clients when a calendar event was added, modified or removed.
It allowed clients to dynamically update their calendar whenever another user
interacted with it.

Three kind of resources existed for a client to select and schedule. The resources
were created on the client side with manufactured data and stored in lists. The
idea was to fetch these resources from Tieto’s REST api but was left as a future
task. The calendar’s implementation was done so that events could be filtered by
the current selected resources. A request to the server was made whenever the
client selected a new resource it wanted to schedule. The server would fetch events
from the database that contained any of the selected resources and send all of
them as a response. Modifying a visible event’s time or date could collide with
events that appeared invisible if the calendar was filtered with currently selected
resources. An invisible event has a resource that a visible event has but is invisible
because it doesn’t have resources from the currently selected ones. Filtering the
calendar with the resources of an existing event was added to handle the issue.

A collision test was always done when an event was added or modified. The server
fetched all events that had any of the three resources of the event requested to be
added/modified. The start and end date of the requested event was tested against
the fetched events start and end dates(see fig 2).

Figure 2: Two different overlap scenarios

17

A list of operations that a client can do is shown below.

• Add:
The client sends a POST request to the server with three resources along
with its username. The username is fetched by a GET request when the
calendar web page was loaded. A collision test will be done against other
events that have one of the resources from the request. The event will be
saved in the database with a unique ID generated by the server if there are
no collisions. The client is allowed to render the event if the request was
successful, and the server will notify all other clients by sending the message
’addEvent’ using Server-Sent Event.

• Modify:
The client sends a PATCH request to the server with data of an existing event
along with updated time/date fields. The server will check if the user of the
event stored in the database matches the user of the request. A collision test
with the updated time/date is done against other events that contain any
of the resources the event to be modified has. The event will be updated
in the database if there are no collisions. The client will render the event
with updated data if the request was successful, and the server will notify all
other clients by sending the message ’modifyEvent’ using Server-Sent Event.

• Remove:
The client sends a DELETE request to the server with data of an existing
event it wants to delete. The server fetches the event with the same ID
from the database and checks if the username of the event is the same as
the client’s. If the delete operation was successful a notification will be sent
to all other clients by sending the message ’deleteEvent’ using Server-Sent
Event.

18

4 Results

The result is a working stand alone booking system with REST support. Most
REST services use HTTP as the interface which makes it easy for the booking
system to connect with any REST services. The booking system has two parts,
the login system and the booking system itself. Both systems save data to the
mongoDB database(see fig 3) which is run parallel to the Go back-end server.

(a) User accounts entries where passwords are hashed with a random salt

(b) Schedule entries

Figure 3: Entries stored in the database

19

4.1 Login System

(a) Login page

(b) Register page

Figure 4: Result of the login system

A login page will be shown when a client connects to the booking system(see fig
4a). There are two choices that can be made at the login page. The client can
either press the ’Register’ button to navigate to the register page(see fig 4b) or
stay at the login page. The register page can be used if the client doesn’t have a

20

user account and the login page can be used if the client already has an account.

Login and registration work very similar. Authentication tokens will be generated
and set to cookies in both cases if the request was successful. The difference is
in the database interaction. A registration request will fail if an existing account
already exists in the database. A popup on the client will be displayed to notify
that the username was taken. A login request will fail if there are no accounts in
the database that match the username supplied in the request or if the password
doesn’t match. The client will display a popup to notify that the username/pass-
word was wrong. The web page will however be updated to the calendar page if
the request was successful. The calendar page has a ’Log Out’ button which the
user can use to forcibly clear the authentication cookies. The cookies also have an
expiration date to remove themselves. A redirected to the login page will occur if
the client tries to do a request when the cookies have been removed. The client
will however be redirected to the calendar page the next time it tries to access the
booking system if it was closed without the cookies being cleared.

21

4.2 Booking System

Figure 5: The booking system with filtered events

22

Figure 6: The dialog when selecting an existing event

A calendar will be shown(see fig 5) when the client is logged in. The calendar
will be empty at first until the user selects three resources from the drop down
lists. The calendar will automatically display events that contain any of the three
selected resources. The red events are owned by the client and can be deleted
or modified. There are visual displays on right side of the calendar to show the
username of the client and the currently selected resources. Beneath those is an
empty display that will show resources of an event that the user has selected to
filter the calendar with. The event dialog can be accessed by clicking any event
and will display information of the event along with a number of buttons(see fig
6). The buttons shown depends on if the selected event was red or green. A green
event is owned by someone else and won’t show the delete button. Pressing the

23

button ’Select To Filter Calendar’ will filter the calendar with the resources of
the event. There’s a dedicated button ’Unselect Filter’ to reset the filter back to
filtering with the resources from the drop down list. It’s also possible to override
the filter by selecting a new resource from the drop down list.

The user can create a new event by pressing an empty space of the calendar and
drag the mouse pointer to adjust how long the event will last for. The dialog
will be displayed when releasing the mouse button and will show a save button.
Creating a new event is only allowed when three resources are selected. An event’s
date or time can be modified by dragging it with the mouse to another day or
resize it.

24

5 Discussion

The goal was not only to develop the booking system for Tieto but also to investi-
gate the programming language Go. The research of Go couldn’t be too technical
because it would take too much time to learn how compilers work. And compare
the acquired knowledge with Go’s compiler code. A research of the features of Go
that was considered new was done instead and an opinion was formed during the
development of the booking system.

Adapting to Go took minimal effort with a programming background in C++
and experience with some Java and Python. A lot of time was however spent on
researching what was new with the language just to find the technical facts about
Go before developing the booking system.

Designing the booking system to follow REST and developing the front-end using
AngularJS took the most effort.

REST was straight forward until the login system was implemented. User cre-
dentials were saved in the database so that each user could be identified. This
could be seen as breaking the REST constraint statelessness even if authentication
tokens were used. Because the user credentials could be seen as a client’s state.
The benefits of statelessness were however achieved thanks to the tokens because
future requests didn’t interact with the database for authentication. Statelessness
makes it so that the server doesn’t need to maintain or update a client’s state.
Each request is self-contained, which means that all the state info needed to pro-
cess the request is contained in the request. REST is not something that must be
followed exactly and should be viewed as guidelines how to develop a web service.

AngularJS’s code syntax and structure were completely different from the main-
stream programming languages such as C++, Java and Python. Documentation
existed but was poor because the explanations were very cryptic which made it
hard to understand.

5.1 The Bad and Good Parts of Go

The list was created from the experience acquired with Go during the development
of the booking system.

Disadvantages:

25

• Go doesn’t officially support debuggers. Some debugging functions can work,
such as breakpoints but the Go dev team doesn’t guarantee that it will work
with new releases of Go. They currently do not think that a debugger is a
necessity. Their reason is that Go is a concurrent language and debugging
such a program with a debugger is difficult. Outputting data is the only
option to debug[29].

• Go’s functionality such as the shortcut to declare variable types and mul-
tiple return values were more of a convenience than advantages. Multiple
return values weren’t used much, other than for error handling. Go doesn’t
force error handling like Java’s exceptions but the code gets cluttered with
if statements when error handling is used.

Another annoyance was that the compiler generated errors when variables
and imported packages weren’t in use. Code had to be commented out during
testing because it was still needed but wasn’t at the stage where it was used.
It kept the code clean by forcing the programmer to remove unused code but
was annoying during the development process.

• Private and public scope in Go aren’t on the class level as there are no classes.
They work on a package level which at first felt useless. It’s however not much
different from classes because a package should only have one purpose and
that’s the reason why most third party packages aren’t frameworks.

The booking system was contained within its own package and the main
package where the main entry lies was very small, which is similar to other
languages main entries. The booking system could be split into more pack-
ages, for example the login system could have been its own package. Having
the code in a package adds modularity where the package can be switched
out for a different one or it could be used in another program. The only
thing of annoyance was that to define something private or public the name
of the variable or function must start in lower or uppercase. Every function
call would need to be edited if the programmer decided to change the scope
of the said function.

Advantages:

• It’s possible in Go to break the dependency of two packages that depend
on each other. Interfaces can be used as parameter type for functions that
depend on another package’s objects. Any object can be used as the argu-
ment as long as it satisfies the interface. Go’s interfaces can also be used to

26

simulate the behavior of generic types by using an empty interface as param-
eter. This allows any object as the argument because they will all satisfy an
empty interface.

• Go comes with a variety of tools that makes it easier for programmers to
be productive. The third party IDE LiteIDE, included the Go tools in the
environment. Two of them were useful during the development of the booking
system. Gofmt formats the code to a syntax defined by the Go dev team,
whitespaces will be consistent and comments will be evenly spaced. It also
sorts the imported packages and separates the standard packages from third
party ones. The other useful tool downloads imported packages from online
repositories like Github. A disadvantage is that it’s not possible to choose a
version from the repository, unless a third party website[62] is used.

• Most of the functionality of the booking system were implemented using
the standard library. The back-end server which is a HTTP server used an
already existing solution in the standard library to work with HTTP servers.
It abstracted socket handling and client-connection handling by internally
setting up connections and goroutines. Goroutines were easy to work with
from the experience acquired by programming test programs before working
with the booking system. Creating a goroutine is very simple compared to
Java or C where you must create a lot of code to get a thread running.

The JSON package in the standard library was used to decode JSON data
into Go structs, which worked perfectly with mongoDB because the data was
saved as JSON-type.

Implementing REST in Go was simple due to the fact that Go had built
in functionality to route URLs to different function calls. The third party
package gorilla/mux was however used instead which added additional func-
tionality that was needed. Gorilla/mux was able to separate not only URLs
but also request type such as GET or POST.

5.2 Limitations

Core features of the booking system were prioritized because the time available
wasn’t enough to complete the whole project. The booking system was never able
to be connected with Tieto’s REST api. This feature was decided early on to be
a task done in the future and wasn’t looked at other than the documentation.
For the purpose of what to expect from the REST api. The booking system was
however developed so that it was readily able to communicate with REST services.

27

The booking system wasn’t tested extensively for bugs and issues such as server
error handling. The features were considered done when they worked on the com-
puter that was used during the development. Features that had low priority are
listed below.

• Option for a user to change/recover password.

• Add an expiration field to the JWT token so that the server could check if
the token has expired.

• Edit the time of existing events in the calendar by typing the new time
instead of dragging the events visually.

• A way to edit the resources of an existing event in the calendar.

5.3 Conclusion

The project used many different frameworks and APIs. Both AngularJS and Go
have strong support to develop REST applications and they worked well with
each other. Complete and professional programs can be developed using only Go’s
feature-rich standard library. Go’s advantages can be utilized if the program is
concurrent and even better if it’s a web server due to the strong support for HTTP
server functionality and REST.

28

References

[1] Go at Google: Language Design in the Service of Software Engineering. [Ac-
cessed: 2016-04-03]. url: https://talks.golang.org/2012/splash.
article.

[2] The Go Programming Language - What is the history of the project? [Ac-
cessed: 2016-05-10]. url: https://golang.org/doc/faq#history.

[3] The Go Programming Language - Why are you creating a new language?
[Accessed: 2016-05-10]. url: https://golang.org/doc/faq#creating_a_
new_language.

[4] This is Tieto. [Accessed: 2016-04-03]. url: http://www.tieto.com/about-
us.

[5] Representational State Transfer (REST). [Accessed: 2016-05-10]. url: http:
//www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.
htm.

[6] The Go Programming Language - What are the guiding principles in the
design? [Accessed: 2016-05-10]. url: https : / / golang . org / doc / faq #
principles.

[7] Francesc Campoy Flores - Go For C++ Devs. [Accessed: 2016-05-12]. url:
https://youtu.be/y2bLGIw4o7k?t=793.

[8] Effective Go - Embedding. [Accessed: 2016-05-11]. url: https://golang.
org/doc/effective_go.html#embedding.

[9] Inheritance In C++ Vs Java. [Accessed: 2016-05-16]. url: http://www.
go4expert.com/articles/inheritance-cpp-vs-java-t22245/.

[10] Bjarne Stroustrup’s C++ Glossary. [Accessed: 2016-05-11]. url: http://
www.stroustrup.com/glossary.html#Gpolymorphism.

[11] Effective Go - Interfaces. [Accessed: 2016-05-11]. url: https://golang.
org/doc/effective_go.html#interfaces.

[12] Struct embedding of interfaces. [Accessed: 2016-05-11]. url: http://talks.
godoc.org/github.com/campoy/ObjectOrientedAndConcurrent/talk.
slide#39.

[13] Rob Pike - ’Concurrency Is Not Parallelism’. [Accessed: 2016-05-12]. url:
https://www.youtube.com/watch?v=cN_DpYBzKso.

[14] Concurrency vs. Parallelism. [Accessed: 2016-05-12]. url: http://tutorials.
jenkov.com/java-concurrency/concurrency-vs-parallelism.html.

29

https://talks.golang.org/2012/splash.article
https://talks.golang.org/2012/splash.article
https://golang.org/doc/faq#history
https://golang.org/doc/faq#creating_a_new_language
https://golang.org/doc/faq#creating_a_new_language
http://www.tieto.com/about-us
http://www.tieto.com/about-us
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://golang.org/doc/faq#principles
https://golang.org/doc/faq#principles
https://youtu.be/y2bLGIw4o7k?t=793
https://golang.org/doc/effective_go.html#embedding
https://golang.org/doc/effective_go.html#embedding
http://www.go4expert.com/articles/inheritance-cpp-vs-java-t22245/
http://www.go4expert.com/articles/inheritance-cpp-vs-java-t22245/
http://www.stroustrup.com/glossary.html#Gpolymorphism
http://www.stroustrup.com/glossary.html#Gpolymorphism
https://golang.org/doc/effective_go.html#interfaces
https://golang.org/doc/effective_go.html#interfaces
http://talks.godoc.org/github.com/campoy/ObjectOrientedAndConcurrent/talk.slide#39
http://talks.godoc.org/github.com/campoy/ObjectOrientedAndConcurrent/talk.slide#39
http://talks.godoc.org/github.com/campoy/ObjectOrientedAndConcurrent/talk.slide#39
https://www.youtube.com/watch?v=cN_DpYBzKso
http://tutorials.jenkov.com/java-concurrency/concurrency-vs-parallelism.html
http://tutorials.jenkov.com/java-concurrency/concurrency-vs-parallelism.html

[15] Parallelism vs. Concurrency. [Accessed: 2016-05-12]. url: https://wiki.
haskell.org/Parallelism_vs._Concurrency.

[16] Why does using GOMAXPROCS > 1 sometimes make my program slower?
[Accessed: 2016-05-12]. url: https://golang.org/doc/faq#Why_GOMAXPROCS.

[17] C++ Templates. [Accessed: 2016-05-16]. url: http://www.tutorialspoint.
com/cplusplus/cpp_templates.htm.

[18] The Go Programming Language - Generic Types. [Accessed: 2016-05-12].
url: https://golang.org/doc/faq#generics.

[19] The Go Programming Language - How do I know whether a variable is al-
located on the heap or the stack? [Accessed: 2016-05-12]. url: https://
golang.org/doc/faq#stack_or_heap.

[20] Four Layers of TCP/IP model, Comparison and Difference between TCP/IP
and OSI models. [Accessed: 2016-05-12]. url: http://www.omnisecu.com/
tcpip/tcpip-model.php.

[21] The stateless state. [Accessed: 2016-05-12]. url: http://www.ibm.com/
developerworks/library/wa-state/.

[22] What Is REST? [Accessed: 2016-05-12]. url: http://www.restapitutorial.
com/lessons/whatisrest.html#.

[23] Create, Retrieve, Update and Delete (CRUD). [Accessed: 2016-05-15]. url:
https://www.techopedia.com/definition/25949/create-retrieve-
update-and-delete-crud.

[24] What is HTML? [Accessed: 2016-05-10]. url: http://www.w3schools.
com/html/html_intro.asp.

[25] AngularJS by Google. [Accessed: 2016-05-16]. url: https://angularjs.
org/.

[26] A Tour of Go. [Accessed: 2016-05-16]. url: https://tour.golang.org.

[27] The Go Programming Language - Effective Go. [Accessed: 2016-05-16]. url:
https://golang.org/doc/effective_go.html.

[28] LiteIDE is a simple, open source, cross-platform Go IDE. [Accessed: 2016-
05-16]. url: https://github.com/visualfc/liteide.

[29] The Go Programming Language - Debugging Go Code with GDB. [Accessed:
2016-05-16]. url: https://golang.org/doc/gdb.

[30] Bootstrap is the most popular HTML, CSS, and JS framework for developing
responsive, mobile first projects on the web. [Accessed: 2016-05-16]. url:
http://getbootstrap.com/.

30

https://wiki.haskell.org/Parallelism_vs._Concurrency
https://wiki.haskell.org/Parallelism_vs._Concurrency
https://golang.org/doc/faq#Why_GOMAXPROCS
http://www.tutorialspoint.com/cplusplus/cpp_templates.htm
http://www.tutorialspoint.com/cplusplus/cpp_templates.htm
https://golang.org/doc/faq#generics
https://golang.org/doc/faq#stack_or_heap
https://golang.org/doc/faq#stack_or_heap
http://www.omnisecu.com/tcpip/tcpip-model.php
http://www.omnisecu.com/tcpip/tcpip-model.php
http://www.ibm.com/developerworks/library/wa-state/
http://www.ibm.com/developerworks/library/wa-state/
http://www.restapitutorial.com/lessons/whatisrest.html#
http://www.restapitutorial.com/lessons/whatisrest.html#
https://www.techopedia.com/definition/25949/create-retrieve-update-and-delete-crud
https://www.techopedia.com/definition/25949/create-retrieve-update-and-delete-crud
http://www.w3schools.com/html/html_intro.asp
http://www.w3schools.com/html/html_intro.asp
https://angularjs.org/
https://angularjs.org/
https://tour.golang.org
https://golang.org/doc/effective_go.html
https://github.com/visualfc/liteide
https://golang.org/doc/gdb
http://getbootstrap.com/

[31] ASP.NET - Single-Page Applications: Build Modern, Responsive Web Apps
with ASP.NET. [Accessed: 2016-05-16]. url: https://msdn.microsoft.
com/en-us/magazine/dn463786.aspx.

[32] package mux. [Accessed: 2016-05-16]. url: http://www.gorillatoolkit.
org/pkg/mux.

[33] Server-Sent Events. [Accessed: 2016-05-16]. url: http://html5doctor.
com/server-sent-events/.

[34] HTML5 Server-Sent-Events for Go. [Accessed: 2016-05-16]. url: https:
//github.com/julienschmidt/sse.

[35] Using server-sent events. [Accessed: 2016-05-16]. url: https://developer.
mozilla . org / en - US / docs / Web / API / Server - sent _ events / Using _
server-sent_events.

[36] Introduction to MongoDB. [Accessed: 2016-05-16]. url: https://docs.
mongodb.com/getting-started/shell/introduction/.

[37] BSON. [Accessed: 2016-05-16]. url: http://bsonspec.org/.

[38] Package mgo offers a rich MongoDB driver for Go. [Accessed: 2016-05-16].
url: http://gopkg.in/mgo.v2.

[39] Native and cross-platform MongoDB manager. [Accessed: 2016-05-16]. url:
https://robomongo.org/.

[40] Package ini provides INI file read and write functionality in Go. [Accessed:
2016-05-16]. url: https://github.com/go-ini/ini.

[41] Basic access authentication. [Accessed: 2016-05-16]. url: https://developer.
mozilla.org/en-US/docs/Web/HTTP/Basic_access_authentication.

[42] Man-in-the-middle attack. [Accessed: 2016-05-16]. url: http://www.computerhope.
com/jargon/m/mitma.htm.

[43] Introduction to OAuth. [Accessed: 2016-05-16]. url: http://www.forumsys.
com / en / api - cloud - solutions / api - identity - management / oauth /
?gclid=Cj0KEQjw3-W5BRCymr_7r7SFt8cBEiQAsLtM8iNH470RyouKKguJZpm0tx-
oIebAtC9yaZozbzQpOJQaAuYc8P8HAQ.

[44] Stateless Authentication with JSON Web Tokens. [Accessed: 2016-05-16].
url: http://yosriady.com/2016/01/07/stateless-authentication-
with-json-web-tokens/.

[45] How does HTTPS actually work? [Accessed: 2016-05-16]. url: http : / /
robertheaton.com/2014/03/27/how-does-https-actually-work/.

[46] Status Code Definitions. [Accessed: 2016-05-16]. url: https://www.w3.
org/Protocols/rfc2616/rfc2616-sec10.html.

31

https://msdn.microsoft.com/en-us/magazine/dn463786.aspx
https://msdn.microsoft.com/en-us/magazine/dn463786.aspx
http://www.gorillatoolkit.org/pkg/mux
http://www.gorillatoolkit.org/pkg/mux
http://html5doctor.com/server-sent-events/
http://html5doctor.com/server-sent-events/
https://github.com/julienschmidt/sse
https://github.com/julienschmidt/sse
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events
https://docs.mongodb.com/getting-started/shell/introduction/
https://docs.mongodb.com/getting-started/shell/introduction/
http://bsonspec.org/
http://gopkg.in/mgo.v2
https://robomongo.org/
https://github.com/go-ini/ini
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basic_access_authentication
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basic_access_authentication
http://www.computerhope.com/jargon/m/mitma.htm
http://www.computerhope.com/jargon/m/mitma.htm
http://www.forumsys.com/en/api-cloud-solutions/api-identity-management/oauth/?gclid=Cj0KEQjw3-W5BRCymr_7r7SFt8cBEiQAsLtM8iNH470RyouKKguJZpm0tx-oIebAtC9yaZozbzQpOJQaAuYc8P8HAQ
http://www.forumsys.com/en/api-cloud-solutions/api-identity-management/oauth/?gclid=Cj0KEQjw3-W5BRCymr_7r7SFt8cBEiQAsLtM8iNH470RyouKKguJZpm0tx-oIebAtC9yaZozbzQpOJQaAuYc8P8HAQ
http://www.forumsys.com/en/api-cloud-solutions/api-identity-management/oauth/?gclid=Cj0KEQjw3-W5BRCymr_7r7SFt8cBEiQAsLtM8iNH470RyouKKguJZpm0tx-oIebAtC9yaZozbzQpOJQaAuYc8P8HAQ
http://www.forumsys.com/en/api-cloud-solutions/api-identity-management/oauth/?gclid=Cj0KEQjw3-W5BRCymr_7r7SFt8cBEiQAsLtM8iNH470RyouKKguJZpm0tx-oIebAtC9yaZozbzQpOJQaAuYc8P8HAQ
http://yosriady.com/2016/01/07/stateless-authentication-with-json-web-tokens/
http://yosriady.com/2016/01/07/stateless-authentication-with-json-web-tokens/
http://robertheaton.com/2014/03/27/how-does-https-actually-work/
http://robertheaton.com/2014/03/27/how-does-https-actually-work/
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

[47] Base64 encoding and decoding. [Accessed: 2016-05-16]. url: https://developer.
mozilla.org/en/docs/Web/API/WindowBase64/Base64_encoding_and_
decoding.

[48] How To Safely Store A Password. [Accessed: 2016-05-16]. url: https://
codahale.com/how-to-safely-store-a-password/.

[49] Package bcrypt implements Provos and Mazières’s bcrypt adaptive hashing
algorithm. [Accessed: 2016-05-16]. url: https://godoc.org/golang.org/
x/crypto/bcrypt.

[50] Encoding vs. Encryption vs. Hashing vs. Obfuscation. [Accessed: 2016-05-
16]. url: https://danielmiessler.com/study/encoding-encryption-
hashing-obfuscation/.

[51] Salted Password Hashing - Doing it Right. [Accessed: 2016-05-16]. url: http:
//www.codeproject.com/Articles/704865/Salted-Password-Hashing-
Doing-it-Right.

[52] Why You Should Always Salt Your Hashes. [Accessed: 2016-05-16]. url:
https://www.addedbytes.com/blog/why-you-should-always-salt-
your-hashes/.

[53] Where to Store your JWTs – Cookies vs HTML5 Web Storage. [Accessed:
2016-05-16]. url: https://stormpath.com/blog/where-to-store-your-
jwts-cookies-vs-html5-web-storage.

[54] Build Secure User Interfaces Using JSON Web Tokens (JWTs). [Accessed:
2016-05-16]. url: https://stormpath.com/blog/build-secure-user-
interfaces-using-jwts.

[55] Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet. [Accessed: 2016-
05-16]. url: https://www.owasp.org/index.php/Cross-Site_Request_
Forgery_(CSRF)_Prevention_Cheat_Sheet#Double_Submit_Cookies.

[56] Same-origin policy. [Accessed: 2016-05-16]. url: https://developer.mozilla.
org/en-US/docs/Web/Security/Same-origin_policy.

[57] Angular’s XSRF: How It Works. [Accessed: 2016-05-16]. url: https://
stormpath.com/blog/angular-xsrf.

[58] Running MongoDB Queries Concurrently With Go. [Accessed: 2016-05-16].
url: http://blog.mongodb.org/post/80579086742/running-mongodb-
queries-concurrently-with-go.

[59] A JavaScript event calendar. Customizable and open source. [Accessed: 2016-
05-22]. url: http://fullcalendar.io/.

[60] A complete AngularJS directive for the Arshaw FullCalendar. [Accessed:
2016-05-22]. url: https://github.com/angular-ui/ui-calendar.

32

https://developer.mozilla.org/en/docs/Web/API/WindowBase64/Base64_encoding_and_decoding
https://developer.mozilla.org/en/docs/Web/API/WindowBase64/Base64_encoding_and_decoding
https://developer.mozilla.org/en/docs/Web/API/WindowBase64/Base64_encoding_and_decoding
https://codahale.com/how-to-safely-store-a-password/
https://codahale.com/how-to-safely-store-a-password/
https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt
https://danielmiessler.com/study/encoding-encryption-hashing-obfuscation/
https://danielmiessler.com/study/encoding-encryption-hashing-obfuscation/
http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right
http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right
http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right
https://www.addedbytes.com/blog/why-you-should-always-salt-your-hashes/
https://www.addedbytes.com/blog/why-you-should-always-salt-your-hashes/
https://stormpath.com/blog/where-to-store-your-jwts-cookies-vs-html5-web-storage
https://stormpath.com/blog/where-to-store-your-jwts-cookies-vs-html5-web-storage
https://stormpath.com/blog/build-secure-user-interfaces-using-jwts
https://stormpath.com/blog/build-secure-user-interfaces-using-jwts
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#Double_Submit_Cookies
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#Double_Submit_Cookies
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://stormpath.com/blog/angular-xsrf
https://stormpath.com/blog/angular-xsrf
http://blog.mongodb.org/post/80579086742/running-mongodb-queries-concurrently-with-go
http://blog.mongodb.org/post/80579086742/running-mongodb-queries-concurrently-with-go
http://fullcalendar.io/
https://github.com/angular-ui/ui-calendar

[61] Using HTTP Methods for RESTful Services. [Accessed: 2016-05-22]. url:
http://www.restapitutorial.com/lessons/httpmethods.html.

[62] gopkg.in - Stable APIs for the Go language. [Accessed: 2016-05-12]. url:
http://labix.org/gopkg.in.

33

http://www.restapitutorial.com/lessons/httpmethods.html
http://labix.org/gopkg.in

	Introduction
	Goal and Purpose
	Social, Ethical, and Enviromental Considerations

	Background
	The Go Language
	Basic Syntax, Functions & Methods
	Inheritance
	Concurrency
	Generic Types
	Garbage Collection

	HTTP
	REST API

	Method
	Design & Implementation
	Simple Web Server
	Client-Server Interaction
	Support for REST
	Database Support
	Login System
	Booking System

	Results
	Login System
	Booking System

	Discussion
	The Bad and Good Parts of Go
	Limitations
	Conclusion

	References

