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1 Introduction

Category theory is in some sense the theory of abstract functions. If one important general
observation is that almost everything in mathematics can be realized as a set then another equally
important observation might be that what we actually care about is how these mathematical
objects relate to each other. Ideally we want to find deep, beautiful and surprising connections
between different mathematical objects. In reality, and perhaps more so in the field of abstract
algebra, such connections are often codified by structure preserving functions between objects
of a certain type, for example group homomorphisms between groups. In a lot of cases these
structure preserving functions can be composed in an associative way and we also generally have
an identity function for every object. If this is the case we can form a category consisting of
such objects and their associated structure preserving composable functions.

Category theory gives us a formal framework and language for investigating relations between
objects. These abstract functions are called morphisms and much of the power of category
theory can perhaps be summarized by saying that morphisms matter.

Category theory grew out of algebraic topology where it basically was needed in order to for-
malize what is meant by naturality. However, over time category theory has developed into its
own self-contained diverse field of study and there is even real life applications of its theory in
functional programming. It has also been suggested as a foundation of mathematics.

In this thesis we will review the some of the elementary concepts and results in category theory.
We will define categories, consider some examples, define functors (functions between categories),
natural transformations (functions between functors), adjoints, state and prove the classical
Yoneda lemma.

In the last two sections we will define bicategories and in particular 2-categories, which are
the simplest nontrivial higher categories, in which we not only have objects and morphisms
between objects but also morphisms between morphisms. We will then define some 2-categorical
analogues of functors and natural transformations and finally, we provide a 2-categorical version
of the Yoneda lemma.

2 Categories, functors and natural transformations

We begin by defining categories, subcategories, functors and natural transformations between
functors.

2.1 Definition and subcategories

Definition 1. A category C consists of a class of objects a, b, c, . . . and a class of arrows f, g, h, . . ..
To every arrow f we assign an object a = dom(f) and an object b = cod(f).

We also require that every object a has an identity arrow 1a : a→ a and that for arrows f : a→
b, g : b → c with cod(f) = b = dom(g) we have composition arrow g ◦ f : a → c, which is
associative i.e. for a→f b→g c→h d the following equality always holds

h ◦ (g ◦ f) = (h ◦ g) ◦ f.
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Finally, we have the unit law, which asserts that for all arrows f : a → b, g : b → c composition
with the identity arrow 1b gives

1b ◦ f = f and g ◦ 1b = g.

Arrows are also called morphisms and cod and dom should be understood as domain and
codomain of a set theoretical function in the usual way, even though, as we shall see, in general
morphisms need not be ordinary functions and objects might not be sets.

It is often emphasized that the most important thing in category theory are the morphisms
and not the objects. This is not just semantics but true to the extent that we can dispense
with objects altogether and only work with arrows. This is can be achieved by identifying
each object with its identity arrow. The following definition makes this arrow-only construction
precise.
Definition 2. A category C consist of arrows, certain ordered pairs < g, f >, called the com-
posable pairs of arrows, and an operation assigning to each composable pair < g, f > an arrow
gf , called their composite. We say that gf is defined for < g, f > is a composable pair.

We define an identity in C to be an arrow u such that fu = f whenever the composite fu = f
and ug = g whenever ug is defined.

This data must obey the following three axioms

• For each arrow g in C there exists identity arrows u and u′ of C such that u′g and gu are
defined.

• The composite (kg)f is defined if and only if the composite k(gf) is defined. When either
is defined, the are equal and is written kgf .

• The triple composite kgf is defined whenever both composites kg and gf are defined.

It is easy to see that these two definitions of a category are equivalent.

Definition 3. For a category C and i, j ∈ Obj(C ) we denote by; Hom(i, j),HomC (i, j) or simply
C (i, j), the set of all morphisms between objects i and j in C .

This definition of homsets is actually somewhat sloppy since in general we have no guarantee
that the collection of morphisms between any two objects is in fact a set (in the ZFC sense). A
category where all homsets are sets is said to be (locally) small.

We prefer to ignore this and promptly assume that all our categories are small and leave foun-
dations to the philosophers.

One remark regarding both of our definitions of a category; a category consists of objects,
morphisms between objects and a rule of composition of morphisms. The right, and perhaps
more categorical way to view composition of arrows in a category is to view it as a functions
between homsets. This is a fair concept since we always assume that our categories are small
and thus our homsets are sets and not proper classes.

Let C be a category and let i, j, k, l be objects in C then we can view composition ◦ between
morphisms as a well defined function:

◦ : Hom(j, k)×Hom(i, j)→ Hom(i, k)
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One of the main points of looking at composition this way it that we can express associativity
as a commutative diagram:

Hom(k, l)×Hom(j, k)×Hom(i, j)

(◦,id)
��

(id,◦)
// Hom(k, l)×Hom(i, k)

◦
��

Hom(j, l)×Hom(i, j) ◦
// Hom(i, l)

Explicitly, let h ∈ Hom(k, l), g ∈ Hom(j, k) and f ∈ Hom(i, j) then

(h, g, f)
_

��

� // (h, g ◦ f)
_

��

(h ◦ g, f) � // (h ◦ g) ◦ f = h ◦ (g ◦ f)

We can also view identity morphisms in a similar way:

For every two objects i, j in C there exists morphisms 1i ∈ Hom(i, i),1jHom(j, j)

Such that

_ ◦ 1i : Hom(i, j)→ Hom(i, j)

1j ◦_: Hom(j, i)→ Hom(j, i)

both are identity functions.

We will now provide a number of examples of categories.

2.2 The Category of Sets:

The most canonical example of a category is Set which has:

• Objects: Sets.

• Arrows: Functions between sets.

• Identity arrows: Identity functions.

It is easy to see that this obeys the category axioms. Composition of set theoretical functions
are well defined and works as expected.

Every function has a domain and codomain and every set i has a identity function 1i : x 7→ x
for all x in i such that for f : i→ j, f ◦1i = f and g : j → i,1i ◦ g = g. Composition of functions
is of course associative.
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2.3 The Category of Groups and categories of other algebraic structures

Our next example is slightly more interesting and is the category of groups, Grp.

• Objects: Groups (G, ·G, eG), (H, ·H , eH), . . .

• Arrows: Group homomorphisms, i.e. functions φ : G→ H such that φ(a·Gb) = φ(a)·Hφ(b),
for all a, b ∈ G.

• Identity arrows: Identity functions.

Grp is a category since for any group (G, ·G, eG), the identity function 1G : G→ G is a homo-
morphism. Composition of homomorphisms is a homomorphism, composition homomorphisms
is associative and the unit law holds.

In order to verify this we actually have to prove all this but we will leave that as a straightforward
exercise to the reader.

In fact, all algebraic structures; semigroups, monoids, abelian groups, rings, commutative rings,
integral domains, fields, left R-modules, K-vector spaces, unital associative K-algebras, etc. all
give rise to categories consisting of the class of all algebraic structures of a particular type as
objects and as arrows; homomorphisms corresponding to that type, in other words functions
preserving initial minimal algebraic structure.

This provides us with a great number of useful and easy examples. To name a few:

• SGrp - The category of semigroups.

• Mon - The category of monoids.

• Ab - The category of abelian groups.

• Rng - The category of all rings.

• CRng - The category of commutative rings.

• R−Mod - The category of left R-modules, for some ring R.

• Vect(K) - The category of vector spaces over K and K-linear transformations for some
field K

• Alg(K) The category of associative K-algebras.

We will often write, for example G ∈ Ab even though we actually mean G ∈ Obj(Ab), i.e. that
G is an object in the category of abelian groups. However this should more often than not be
completely clear from the context. This is sloppy but acceptable notation in the same way we
often write "let G be a group" but we really mean "let(G, ·, e)beagroup".

2.4 Monoids as a one-object category

Let (M, ·, e) be a monoid, that is M is a nonempty set and · : M ×M →M is associative with
the double sided identity e. It turns out that every monoid can be viewed as a category in the
following way.

Given a monoid M we can form the category M# with
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• Objects: One formal object #.

• Morphisms: The elements of M .

To verify that this indeed is a category we need to define composition and the identity mor-
phisms.

We define composition in M# to be the binary relation · : M ×M → M , so for every element
a ∈ M we have an arrow a : # → #. So for a, b, c ∈ M we have arrows a · b, b · c are arrows in
M# such that;

(a · b) · c = a · (b · c)

since our binary operator is associative.

M# has exactly one object, # so we need an identity arrow 1# : # → # such that composed
with any other arrow we get that arrow back. We really only have one, very obvious, choice;
1# := e.

So, given a monoid M we can view it as a category M# with elements as morphisms on one
formal object. This raises an interesting perspective on the whole notion of categories. One way
to think about categories is to view them as generalized monoids, in fact the category axioms are
almost identical to the axioms constituting monoids, with the exception that we have multiple
objects in a category which must play nicely with each other.

Note that a group G is a special monoid where every element is invertible. If we construct the
one-object category GX as above we get a category in which every morphism is invertible, in
general such a category is called a groupoid, not to be confused with groupoid as in magma, the
most primitive algebraic structure in which we only require closure of the binary operator.

2.5 Quivers and their path categories

A quiver Q = (Q0, Q1) is defined to a directed graph consisting of a set of verticies Q0 and a set
of edges Q1 between verticies in Q0. We allow loops, isolated points and multiple edges between
verticies. In other words as the name suggests; a quiver is a box of arrows so we shouldn’t be
too surprised that quivers have a categorical interpretation.

Some examples by their visual representation as graphs:

1 2α 1 2 · · · n

2

1 5 3

4

1 1
α1

α2

···
αn

1 2
α

β
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Recall that, given some fixed field K, any quiver Q = (Q0, Q1) give rise to a (semigroup-)algebra,;
Q(K), by taking all edges, including the trivial path εi for every vertex vi to itself, and forming
the path-semigroup of Q under concatenation (the product of any two non-composable is defined
to be 0). Q(K) is then the set of all formal sums over the path-semigroup with coefficients in
K. This makes K an associative K−algebra.

Similarly we can construct the path category QQ for any quiver Q.

• Objects in QQ are the verticies of Q, Q0.

• Morphisms are oriented paths.

• Identity morphisms are the trivial paths εi : vi → vi.

• Composition is concatenation of paths.

One subtle point is that the trivial paths are not actually a part of the design Q but something
we impose on the quiver when constructing path algebras and path categories.

2.6 Posets

Let (X,≤) be a poset (partial ordered set). We show that any poset can be understood as a
category.

• Objects: Elements x, y, z ∈ X.

• Morphisms: There exists one, and only one, morphism between x, y ∈ X if x ≤ y.

To see that this is a category we need identities and well-behaved composition. This falls out
quite naturally by the definition of posets.

For every x ∈ X we have x ≤ x so there is a morphism x→ x which we take to be the identity
morphism.

Assume there exists morphisms x → y, y → z then we can formally compose them in a clear
way using transitivity of ≤:

(x→ y) ◦ (y → z) =⇒ x ≤ y =⇒ x ≤ y =⇒ x→ y

For associativity, assume x→ y, y → z, z → w then we have

(x→ y) ◦ [(y → z) ◦ (z → w)] =⇒ (x ≤ y) ◦ (y ≤ w) =⇒ x ≤ w =⇒ x→ w

and

[(x→ y) ◦ (y → z)] ◦ (z → w) =⇒ (x ≤ z) ◦ (z ≤ w) =⇒ x ≤ w =⇒ x→ w

which show that associativity holds since the unique existence of a morphism is enough and
hence every poset can be viewed as a category.
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2.7 Categories of topological Spaces, regular surfaces and manifolds

Category theory was developed in the context of algebraic topology in the 1940s so it is appro-
priate to very briefly mention a few categories of the topological variety.

• Top

– Objects: Topological spaces.

– Morphisms: Continuous maps.

An example from elementary differential geometry is the category of regular surfaces.

• reg

– Objects: Regular surfaces (subsets of R3 with together with a parameterization from
open set(s) in R2).

– Morphisms: Differential maps between regular surfaces.

These differentiable maps turns out to be composable and we always have the identity
map. This reg is a special case of the more general category of manifolds:

• ManP

– Objects: Manifolds of smoothness class CP .

– Morphisms: p-times continuously differentiable maps.

2.8 The Category of Partitioned Binary Relations

A somewhat more complicated and exotic example of a category, from [7], is the category of
Partitioned Binary Relations (PBRs) on finite sets.

Let X and Y be finite sets. A partitioned binary relation (PBR) on (X,Y ) is a binary relation
α on the disjoint union of X and Y (X

∐
Y ). X is called the domain of α and Y is called the

codomain of α. (a, b)α is called an edge.

A PBR can be visualized as a directed rectangular graph. If α contains an edge (a, b) ∈ (X
∐
Y )2

we denote this by (a, b) ∈ α and visualize it by an arrow from a to b on the graph.

So a PBR is basically a directed graph with |X| + |Y | number of vertices (on fixed positions)
and arrows between verticies that can go to any x ∈ X

∐
Y .

If we have the situation that X ∩ Y 6= ∅ or X = Y , to distinguish between elements of the
domain and the codomain, we write a(d) or a(c) for elements of Dom(α) and Cod(α).

Below we show an example of a partitioned binary relation α on X = {x1, x2} to Y =
{y1, y2, y3, y4, y5} in the form of a diagram:
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α

Y X

y1 •
||

��
y2 • •

""
x1

y3 • bb

ii

y4 • •
nn

x2

y5 •

<<

33

If we have a PBR α on (X,Y ) and another PBR β on (Y,Z) we can define a notion of composition
of β and α so that β ◦ α is a PBR on (X,Z).

It will be convenient to start slightly more generally. Let A = (α1, α2, α3, . . . , αk) be a sequence
of composable partitioned binary relations.

We then define

• Xi = Dom(αi) for i = 1, 2, . . . , k.

• Xk+1 = Cod(αk).

• X∐ =
∐k+1
i=1 Xi.

Then a sequence of edges in a PBR;

(a1, b1), (a2, b2), . . . , (am, bm)

is said to be A-connected if

1. No two successive edges in the sequence are in the same PBR.

2. For every i = 1, 2, . . . ,m− 1 we have bi = ai+1 (as elements of X∐).

We can now finally define what it means to compose two PBRs:

Let α be a PBR on (X,Y ) and β be a PBR on (Y, Z). We define β ◦ α to be a PBR on
(X,Z) where for every a, b ∈ X

∐
Z we have that (a, b) ∈ β ◦ α if and only of there exists an

(α, β)-connected sequence.

In other words, the composition PBR contains an edge (a, b) if and only if, when we put the
graphs of β and α next to each other, we can draw a connect path beginning in a and ending in
b, using existing "composable" edges in β and α.

We prove a visual example to illustrate how this composition works:
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β α β ◦ α

•

rr

""
•
||

{{
•

��

•

##

• •
""

• **

$$

•<<
• • • bb

jj

•
•
ll

• • •
nn

•
ii

•
pp

•

``

•
..

55

We claim that composition of partitioned binary relations is associative.

Proof. Let α be a PBR on (X,Y ), β be a PBR on (Y,Z), and γ be a PBR on (Z,U). Set
A = (α, β, γ), ξ = β ◦ α and ζ = γ ◦ β.

We will prove the claim by showing that

(a, b) ∈ γ ◦ ξ =⇒ (a, b) ∈ ζ ◦ α

and conversely that

(a, b) ∈ ζ ◦ α =⇒ (a, b) ∈ γ ◦ ξ.

Assume (a, b) ∈ γ ◦ ξ for some (a, b) ∈ (X
∐
Z)2. Then there must exist some (ξ, γ)-connected

path S1 : (a1, b1), (a2, b2), · · · , (ak, bk) connecting a to b.

From the definition of composition there must exist some some (α, β)-connected sequence con-
necting ai to bi in S1.

We can use this to define a new sequence S2 by replacing every edge (ai, bi) ∈ ξ with some
(α, β)-connected sequence connecting ai to bi.

We must have that S2 is A-connected.

Consider now all maximal consecutive subsequences in S2 consisting exclusively of edges from
β and γ.

By maximality it follows that any such subsequences is both preceded and followed by an edge
from α, if any.

Since original sequence is A-connected it follows that any maximal subsequence is a (β, γ)-
connected sequence connecting its first element to its last element.

We can now construct one last sequence S3 by replacing each such maximal (β, γ)-connected
subsequence by the pair of elements which this subsequence connects.

This pair of elements gives an edge in ζ by definition. As a result, we obtain an (α, ζ)-connected
sequence connecting a to b. Which implies that (a, b) ∈ ζ ◦ α.

The converse follows in a similar manner.
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Finally, we define identity PBRs. Let X be a finite set. The PBR 1X is the identity morphism
for X with respect to composition, 1X ◦ α = α for any PBR α on (Y,X), and β ◦ 1X = β for
any PBR β on (X,Y ).

1X

X X

• ** •jj

• ** •jj

. . .

• ** •jj

• ** •jj

Thus, in conclusion we can define the category of partitioned binary relations in the following
way:

• Objects: Finite sets.

• Morphisms: For finite setsX and Y Hom(X,Y ) is the set of all partitioned binary relations
on (X,Y ).

• Composition of morphisms and identity morphisms as described above.

Since we have objects, morphisms, associative composition and identity morphisms this is indeed
a category.

2.9 The Category of Propositional Proofs

Our next example comes from mathematical logic, [1] and is the category Prf of propositional
proofs:

• Objects: Propositions.

• Morphisms: Formal conclusions (propositional proofs).

To formally show that this is a category requires some tedious work we will not do here but it
basically boils down to the fact that proofs can be chained together, that is if B is a consequence
of A and C is a consequence of B then C is a consequence of A. So we have composition. We
also have the tautology proof-rule; any proposition is a consequence of itself, which serves as
identity morphisms.

We believe that this informally stated example elegantly illustrates how categories pops up in
the most unlikely places in mathematics.
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2.10 Subcategories

When defining the category of groups Grp we briefly also mentioned Ab, the category of abelian
groups. Of course every abelian group is a group so we have that every object and homset in
Ab also lies in Grp. This kind of situation prompts us to define the notion of subcategories.

Definition 4. A subcategory B of a category C is a category such that

• Obj(B) is a subclass of Obj(C ).

• For all i, j ∈ B,B(i, j) ⊂ C (i, j).

• For all i ∈ B,1i ∈ B(i, i).

• For all i, j, k ∈ B and all α ∈ B(i, j), β ∈ B(j, k) we have β ◦ α ∈ B(i, k)

We also have a special type of subcategories:

Definition 5. A subcategory B of C is called full when B(i, j) = C (i, j) for all ij ∈ B

2.11 Subcategories of Set

Let us consider Set the category of all sets. We can form the category FSet with finite sets
as objects and functions between finite sets as arrows. The reader can verify that this is a
subcategory of Set but more interestingly is it a full subcategory of Set since for any two finite
sets i, j the set of all functions from i to j is the same both in FSet and Set.

Three other subcategories of Set are Inj, Sur and Bij, which has the same objects as in Set
but with respectively only injective, surjective and bijective functions between sets. This holds
since the identity function is injective and surjective and composition of two injective functions
is again injective and likewise for surjections. None of these subcategories are however full
since

Inj(i, j) = Set(i, j) = Sur(i, j)

does not hold in general.

A semi-interesting fact is that the subcategories FSur,FInj of FSet coincide.

2.12 Finite dimensional vector spaces

VectK is the category of vector spaces over the field K together with K-linear transforma-
tions.

We can then form a full subcategory vectK consisting of all finite dimensional K-vector spaces.
To see that this a full subcategory we take V,W ∈ vectK and note that there can’t exist a
T ∈ VectK such that T /∈ vectK so vectK must be full.
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2.13 Isomorphic objects

Given some category C we have the notion of isomorphisms between objects in C , i.e. we have
a categorical way of describing isomorphic objects.

Definition 6. Two objects i, j in a category C are said to be isomorphic, denoted i ∼= j if
there exists some arrow f ∈ Hom(i, j) and some arrow g ∈ Hom(j, i) such that g ◦ f = 1i and
f ◦ g = 1j.

The categorical isomorphism concept clearly corresponds to isomorphism in usual sense. For
two easy examples consider isomorphisms between sets (bijections) and isomorphisms between
groups (bijective group homomorphisms).

2.14 Functors

After defining what a category is, it is natural to want to compare categories to each other. The
algebraic way to compare and understand mathematical objects is to define mappings which
preserves algebraic structure i.e. if we have two groups, we can study them by constructing
group homomorphisms between them. It turns out we can do the same thing with categories.
A morphism between categories is called a functor and preserves categorical structure.

Definition 7. For categories C and D , a functor T : C → D with domain C and codomain D
consists of two functions,

1. The object function T which for every object i in C assigns an object Ti in D .

2. The arrow function T that assigns to every arrow f : i → j in C an arrow Tf : Ti → Tj
in D such that

T (1i) = 1T i,

T (g ◦ f) = Tg ◦ Tf,

whenever g ◦ f is defined in C .

Note that for categories C ,D ,E and functors

T : C → D , S : D → E

then S ◦ T : C → E is a functor. If we have two functors whose codomain and domain agree in
the usual way, we can form a composition functor from them.

For every category C we have the identity functor idC : C → C which sends everything to itself,
i.e. idC (i) = i for all objects i and for a morphism f : i→ j, idC (f) = f .

Let B be a subcategory of a category C then we have the inclusion functor I : B → C which
sends everything in B to itself but seen from C .

Consider the category of small groupsGrp and group homomorphisms. We can define a forgetful
functor to the category of sets
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F : Grp→ Set

Such that for any group (G, ·, e) in Grp

F [(G, ·, e)] := G ∈ obj(Set)

In other words we take a group and send it to it’s underlying set and completely forgets and
disregards the binary operator in the group and thus also reducing any group homomorphism
φ : (G, ·, e)→ (H, ·′, e′) to φ : G→ H, a function between sets.

Similarly we can define a forgetful functor from the category of small ringsRng to the category of
abelian groupsAb, where we send every ring (R,+, ·, e) to its underlying abelian group (R,+, e).

Definition 8. A functor T : C → D is said to be full if for every pair i, j of objects in C and
to every arrow g : Ti→ Tj in D there exists an arrow f : i→ j of C such that Tf = g

We can also have so called faithful functors:

Definition 9. A functor T : C → D is faithful (or an embedding) if when to every pair of
objects i, j in C with arrows f, g : i→ jin C Tf = Tg =⇒ f = g

Combining the two above definitions:

Definition 10. A functor is called fully faithful if it is both full and faithful.

Let B be a subcategory of C , then we have the canonical inclusion functor

i : B → C

For every subcategory this inclusion functor is always faithful and if B is a full subcategory
then i is a full functor and hence fully faithful.

2.15 The Category of Categories

A curious consequence of the defining categories is they they pop up everywhere and we can use
very elementary machinery to create new categories ad infinitum.

At this stage we basically have categories and functors between categories. It turns out that
if we put these together we can form a new interesting category Cat which has the following
data:

• Objects: (Small) Categories.

• Morphisms: Functors.

It almost trivial to see that this is category. Every category has a identity functor, composable
functors can be composed to get new functors and if we compose the identity functor with any
other functor we get back that other functor.

We shall see more of this special and interesting category in a later part of this thesis.
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2.16 Isomorphism between categories

All algebraic structures has the concept of isomorphism and categories are no exception.

Definition 11. Two categories C and D are said to be isomorphic if there exists an functor
T : C → D which is a bijection that respects both objects and morphisms. Or equivalently if
there exists another functor T : D → C such that S ◦ T = IdC , the identity functor of C and
T ◦ S = IdD , the identity functor of D .

It is however quite rare to find isomorphic categories in wild. Also, if we have a fully faithful
functor between two categories this does not imply an isomorphisms between categories since
this functor might not be surjective, in the sense of isomorphism between categories. However
one might argue that a fully faithful embedding is a weaker form of "sameness". In the next
subsection we will study yet another form of sameness of categories.

2.17 Nontrivial example of isomorphic categories

Here we present one of those rare instances where two categories turn out to be isomorphic.

• We define C to be the category with

– Objects: n = {1, . . . , n}, n ∈ N = {1, 2, 3, . . .}.

– Morphisms: Hom(n, k) is binary relations : n→ k. Hom(n, k) 3 P ⊂ k × n.

– Identity morphisms: 1n = iRj ⇔ i = j

• D is the category with

– Objects: n ∈ N.

– Hom(n, k) = Matk×n(B). Where B = {0, 1} is the boolean semiring with:

+ 0 1
0 0 1
1 1 1

· 0 1
0 0 0
1 0 1

– Identity morphisms: Identity n× n matrices, denoted En.

– Composition: Matrix multiplication.

We claim that C and D are isomorphic categories.

Proof. We will show that C ∼= D by defining functors

F : C → D , G : D → C

such that

G ◦ F = IdC and F ◦G = IdD

17



• First we define a functor from C to D and show that it is indeed functorial.

F : C → D

n 7→ n

Hom(n, k) 3 P 7→Mp = (mi,j) ∈ Matk×n(B),

mi,j =
{

1 , (j, i) ∈ P
0 , (j, i) /∈ P

To show that F is functorial is to show that it maps identity morphisms to identity
morphisms and that it respect composition.

– For identity morphisms, 1n we have:

F (1n) = M1n = (mi,j)

Where mi,j = 1 =⇒ (j, i) ∈ 1n =⇒ j = i and mi,j = 0 =⇒ /∈ 1n =⇒ j 6= i. So
(mi,j) has nonzero entries on the diagonal which implies that:

F (1n) = En = EF (n

– We also need to show that for P1 ∈ Hom(n, k), P2 ∈ Hom(k,m) the following equality
holds:

F (P2 ◦ P1) = F (P2) ◦ F (P2)

So let P1 ∈ Hom(n, k), P2 ∈ Hom(k,m) so that P2 ◦ P1 ∈ Hom(n,m)

Then F (P2 ◦ P1) = MP2◦P1 = (mi,j) ∈ Matm×n(B) and

F (P2) = (ai,j) = A ∈ Matm×k, F (P1) = (bi,j) = B ∈ Matk×n and let

F (P2) ◦ F (P2) = AB = C = (ci,j)

We will prove that C = F (P2 ◦ P1) by showing that all entries in the two matrices
are equal.

Every entry in C is obtained by matrix multiplication so we have the following ex-
pression:

ci,j =
k∑
t=1

ai,tbt,j

Suppose thatmi,j = 0 in F (P2◦P1) for some fixed i, j and assume towards contraction
that ci,j 6= 0 Then we have that

ci,j =
k∑
t=1

ai,tbt,j = ai,1b1,j + . . .+ ai,kbk,j = 1

18



Since this sum is nonzero and since we have no additive inverses in B there must exist
some x such that ai,xbx,j 6= 0 which implies that

ai,xbx,j = 1

By the multiplication in B =⇒ ai,x = bx,j = 1 So have that (j, x) ∈ P1 and
(x, i) ∈ P2 =⇒ (j, i) ∈ P2 ◦P1. This is contradiction since this would imply that the
corresponding entry mi,j in F (P2 ◦ P1) is 1 but mij = 0 by our assumption. So we
have no ai,xbx,j 6= 0 =⇒ ci,j = 0

Now suppose that mi,j = 1 in F (P2 ◦ P1) for some fixed i, j and assume towards yet
another contradiction that for the same i, j,

ci,j = 0

which implies that ci,j =
∑k
t=1 ai,tbt,j = ai,1b1,j + . . . + ai,kbk,j = 0. Again, the lack

of additive inverses forces us to conclude that

ai,tbt,j = 0∀ 1 ≤ t ≤ k

By looking at the multiplication table for B we then have three cases

1. ai,t = bt,j = 0 =⇒ (t, i) /∈ P2, (j, t) /∈ P1,

2. ai,t = 1, bt,j = 0 =⇒ (t, i) /∈ P2, (j, t) ∈ P1,

3. ai,t = 0, bt,j = 1 =⇒ (t, i) ∈ P2, (j, t) /∈ P1.

Since every t ≤ k corresponds to one of these cases there is no t such that (j, i) ∈ P2◦P1
but this contradicts our assumption that mi,j = 1 so we must have that ci,j = 1. So
the to matrices agrees in all entries hence as desired we have that

F (P2 ◦ P1) = F (P2) ◦ F (P2).

So F is functorial.

• We will now define our second functor

G : D → C

n 7→ n

Matm×n(B) 3M = (mi,j) 7→ {(j, i) ∈ m× n : mi,j 6= 0}

We need to show that G is functorial:

– Let E = (ei,j) = 1n in D . Then G(1n) = G(E) = {(j, i) ∈ n×n : ei,j 6= 0} = {(j, i) ∈
n× n : i = j} = 1n = 1G(n)
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– Let A ∈ Matm×k(B) and B ∈ Matk×n(B). We need to show that

G(AB) = G(A) ◦G(B)

By definition G(AB) = {(j, i) ∈ m× n : mi,j 6= 0}. Let (j, i) ∈ G(AB) then∑k
t=1 ai,tbt,j 6= 0 =⇒ ∃ t ∈ k such that ai,tbt,j 6= 0 =⇒ ai,t = bt,j = 1.

Thus we have that (t, i) ∈ G(A) and (j, t) ∈ G(B) so (j, i) ∈ G(A) ◦G(B) hence

G(AB) ⊆ G(A) ◦G(B)

Conversely, suppose that (j, i) ∈ G(A) ◦ G(B). Then there exists some t ∈ k such
that (j, t) ∈ G(B) and (t, i) ∈ G(A) =⇒ ai,t = bt,j = 1.

If AB = C = (ci,j) =⇒ ci,j 6= 0 since ai,t = bt,j = 1 =⇒ ai,tbt,j = 1.

If ci,j 6= 0 =⇒ (j, i) ∈ G(AB) =⇒ G(A) ◦G(B) ⊆ G(AB)

So we can conclude that
G(AB) = G(A) ◦G(B)

and hence G is functorial.

• Finally, we will show that F and G composed with each other gives identity functors and
hence C ∼= D .

– F ◦G = IdD For objects;
F ◦G(n) = F ((n)) = n

Let M : n→ k be a morphism in D , M = (mi,j) = M ∈ Matk×n(B) then,

F ◦G(M) = F [{(j, i) ∈ k × n : mi,j 6= 0}] = F (P ) = MP = (m′i,j)

where

m′i,j =
{

1 , (j, i) ∈ P
0 , (j, i) /∈ P

.

So we have that m′i,j = mi,j and thus MP = M and F ◦G = IdD .

– G ◦ F = IdC

For objects it is clear; G ◦ F (n) =)G(n) = n.

Let P ∈ HomC (n, k). Then G ◦ F (P ) = G(MP ) = {{(j, i) ∈ k × n : mi,j 6= 0} =
{{(j, i) ∈ k × n : (j, i) ∈ P} = P .

In other words, we have that

G ◦ F = IdC .

Since we have that both F ◦ G = IdD and G ◦ F = IdC holds so C and D are isomorphic
categories.
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2.18 The Yoneda Functor

One last but nevertheless hugely important example of a functor is the Yoneda functor. Let C
be a small category and i, j be objects in C . Since C is small, the set of all morphisms between
i and j, Hom(i, j) is a set. So we can define the functor

Hom(i,_): C → Set

j 7→ Hom(i, j)

Let f ∈ Hom(c, c′) then Hom(i,_)[f ] = Hom(i, f) which works in the following way.

Hom(i, f) : Hom(i, c)→ Hom(i, c′)

_ 7→ f ◦_

It is easy to check that the Yoneda functor is indeed functorial. We will see more of this later
on.

2.19 Natural Transformations

It is often said that categories were defined in order to define functors and that functors were
defined in order to define natural transformations.

Natural transformations are in essence morphisms between functors and shall play an important
roll in later sections. We also provide some examples to illustrate this concept and why it is
useful.

Definition 12. Given two functors S, T : C → D , a natural transformation τ : S → T is a
function which assigns to each object i of C an arrow τi = τi : Si→ Ti in D such that for every
morphism f : i→ j in C the following diagram commutes

i

f
��

Si

Sf
��

τi // Ti

Tf
��

j Sj
τj
// Tj

In other words Tf ◦ τi = τj ◦ Sf .

Functors S, T : C → D are morphisms of categories:

C
S
))

T

55 D

Since natural transformations are morphisms of functors we sometimes write:
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C

S

$$

T

;;�� η D

For a natural transformation η : S → T . We will see more of this in some detail later on.

As we have seen, two objects in a category can be isomorphic but we can have an even stronger
type sameness between objects by making use of functors and natural transformations.

Let S, T : C → D be two functors.

Definition 13. A natural transformation τ : S → T is called a natural equivalence or natural isomorphism
denoted τ : S ∼= T , if every τi is invertible in D . I.e every (τi)−1 are the components of a natural
isomorphism τ−1 : T → S.

2.20 Examples of natural transformations

• Fix a nonempty set S and consider the Yoneda functor

Hom(S,_): Set→ Set

Then we can take the evaluation function

τX : Hom(S,X)× S → X

(f, s) 7→ f(s)

and by fixing some arbitrary element s ∈ S we can define the function

τ s : Hom(S,X)→ X

f 7→ f(s)

We claim that τ s_ is a natural transformation between Hom(S,_) and the identity functor
Id of Set

Proof. To show that τ s_ is natural transformation between the two functors in question,
we must show that the following diagram commutes for every f ∈ Hom(X,Y ).

X

f

��

Hom(S,X)

f◦_
��

τsX // X

f

��

Y Hom(S, Y )
τsY // Y

To see that this is the case we take any g ∈ Hom(S,X) and chase the diagram.
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– τ sY ◦ (f ◦_)[g] = τ sY (f ◦ g) = f ◦ g(s)

– f ◦ τ sX(g) = f ◦ g(s)

The diagram commutes and hence τ s_ is natural transformation between Hom(S,) and Id
of Set.

• Let B and C be groups in the categorical sense as we saw earlier. Note that any functor
between B and C is a group homomorphism.

We show here that there exists a natural transformation τ : S → T of functors S, T : B → C
if and only if S, T are conjugate. Recall that two group homomorphisms are conjugate if
for all g ∈ B there exists an h ∈ C such that Tg = h(Sg)h−1.

Proof. Assume there exists a natural transformation τ : S → T then for all morphisms
(group elements) g : B → B the following diagram commutes:

B

g

��

SB

Sg
��

τB // TB

Tg
��

B SB
τB // TB

This is equivalent to saying that the following equation holds

Tg ◦ τB = τB ◦ Sg

But composition on C is exactly group multiplication and all terms are group elements
which implies that there exists an element τ−1

B such that

Tg = τbSgτ
−1
B

Which shows that if there exists a natural transformation between S and T then they are
conjugate.

Conversely, assume that S and T are conjugate. Then for all g ∈ B there exists an h ∈ C
such that Tg = h(Sg)h−1. We want to show that there exists a natural transformation
τ : S → T . We want

B

g

��

SB

Sg
��

τB // TB

Tg
��

B SB
τB // TB

to commute, so we have to explicitly define τ such that

Tg ◦ τB = τB ◦ Sg
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We will use the fact that Tg = h(Sg)h−1 which equivalent to (Tg)h = h(Sg) which is very
similar to Tg ◦ τB = τB ◦ Sg.

Define τ : S → T as τ = h ∈ C such that Tg = h(Sg)h−1 then the diagram commutes and
τ : S → T is a natural transformation, as desired.

• Fix a group H and define the functor

H ×_: Grp→ Grp

G 7→ H ×G

Which has the morphisms functor

Hom(G1, G2) 3 φ 7→ (1H , φ) ∈ Hom(H ×G1, H ×G2)

Then we have a natural transformation between any two such functors

τ : H ×_→ K ×_

by fixing some morphism f : H → K then we can define

τG = (f,1G)

This is a natural transformation.

Proof. For every φ ∈ Hom(G1, G2)

G1

φ
��

H ×G1

(1H ,φ)
��

τG1 // K ×G1

(1K ,φ)
��

G2 H ×G2
τG2 // K ×G2

Since

τG2 ◦ (1H , φ) = (f,1G2) ◦ (1H , φ) = (f ◦ 1H ,1G2 ◦ φ) = (f, φ) and

(1K , φ) ◦ τG1 = (1K , φ) ◦ (f,1G1) = (1K ◦ f, φ ◦ 1G1) = (f, φ)

are equal, which follows by the category axioms, in particular the unit law. So τ is a
natural transformation between H ×_→ K ×_
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2.21 V ∼= V ∗∗ is a natural isomorphism

We have the classic result in linear algebra that for any V ∈ VectK we have an injective map
to the double dual space V ∗∗ of V and in particular if V ∈ vectK (V is finite dimensional) then
this map is also surjective so we have a isomorphism between V and V ∗∗.

This result is often accompanied by a mumbling hand-wavy remark that this isomorphism is
canonical in contrast to the isomorphism between V and V ∗ which requires an explicit choice of
basis.

This is certainly not false but it is not the whole truth. We can make use of the machinery of
category theory, in particular natural transformations between functors, to make this statement
precise.

First we need some preliminaries

Let V ∈ obj(VectK) and recall that the dual space V ∗ of V is the set of all functionals

Λ: V → K

We also denote the dual space V ∗ = L (V,K) We claim without proof that the dual space V ∗
of V is a K-vector space that it is (non-canonically) isomorphic to V .

Theorem 1. The dual of the dual space V ∗∗ of a finite dimensional vector space V is (canoni-
cally) isomorphic to V .

Proof. We will show that

Ψ: V → V ∗∗

v 7→< _, v >

is an isomorphism.

• First note that
< _, v > : V ∗ → K

Λ 7→ Λ(v)

is linear. Fix some arbitrary element v ∈ V then

< Λ1 + Λ2, v >= [Λ1 + Λ2](v) = Λ1(v) + Λ2(v) =< Λ1, v > + < Λ2, v >, ∀ Λ1,Λ2 ∈ V ∗

k < Λ, v >= k(Λ(v)) = [kΛ](v) =< kΛ, v > ∀ k ∈ K

So < _, v > is indeed linear.

• Ψ is injective. Let v ∈ Ker(Ψ) =⇒ Ψ(v) =< _, v > is the zero transformation for all
Λ ∈ V ∗ =⇒ Λ(v) = 0∀ Λ ∈ V ∗ and we can only have one element in V which evaluates
to zero on all functionals, namely v = 0. So Ψ has a trivial kernel and must be injective.
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• Ψ is surjective, i.e. Im(Ψ) = V ∗∗, let us assume that Dim(V ) = n < inf then by the
dimension formula

Dim(V ) = n = Dim(Ker(Ψ)) +Dim(Im(Ψ)) = 0 +Dim(Im(Ψ)) since Ker(Ψ) = {0} which
implies that Dim(Im(Ψ)) = n and we already know that a finite dimensional vector space
and it’s corresponding dual has the same dimension so

n = Dim(V ) = Dim(V ∗) = Dim((V ∗)∗) = Dim(V ∗∗) = Dim(Im(Ψ)) = n

So Ψ is surjective.

Thus V ∼= V ∗∗ as desired.

Instead of mumbling about how this isomorphism does not depend on any choice in V we will
instead show that this is natural isomorphism in vectK in the categorical sense and thus making
this result precise.

Theorem 2. Let
T : vectK → vectK

be the double dual functor which sends

T : V 7→ V ∗∗

and for morphisms, i.e. linear maps, f ∈ L (V,W )

T : f 7→ f∗∗ : V ∗∗ →W ∗∗

We claim that there exists a natural transformation τ : id → T , where id denotes the identity
functor of VectK

Proof. Technically we have one contravariant functor

S : vectK → vectK

sending every vector space to its dual and every linear transformation to its dual map, such that
the covariant double dual functor T can be described as T = S ◦ S.

We will use the contravariant functor S when describing how T acts on morphisms.

Let V,W ∈ vectK and f ∈ Hom(V,W ). Then S(f) = f∗ : W ∗ → V ∗, such that for any λ ∈W ∗

f∗ : λ 7→ λ(f)

where λ(f) : V → K, v 7→ λ(f(v)) ∈ K. Let us now consider the double dual functor T : VectK →
VectK . Since S is contravariant and T = S ◦ S we must have that T is covariant. For vector
spaces, T (V ) = V ∗∗. How about morphisms?

T (f) = f∗∗ : V ∗∗ →W ∗∗

For Λ ∈ V ∗∗ we define
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f∗∗(Λ) = Λ(f∗).

To see that this definition works, let ξ ∈ W ∗ then Λ(f∗)[ξ] = Λ(f∗(ξ)) ∈ K since f∗(ξ) ∈ V ∗
and Λ maps functionals in V ∗ to elements in K.

We will now show that T is functorial.

• For 1V ∈ Hom(V, V ):

We have that S(1V ) = (1V )∗ : λ 7→ λ(1V ) = λ =⇒ (1V )∗ = 1V ∗

For our double dual functor we have that:

T (1V ) = (1V )∗∗ : Λ 7→ Λ(1V ∗) = Λ

Which implies that:

T (1V ) = 1V ∗∗

• Suppose f ∈ Hom(V,W ) and g ∈ Hom(W,U) then

T (g ◦ f) = (g ◦ f)∗∗ : Λ 7→ Λ((g ◦ f)∗) = Λ(g∗ ◦ f∗) by assumption that the dual functor S
is factorial.

On the other hand:

T (g)◦T (f) = g∗∗◦f∗∗ = [g∗∗ : Ξ 7→ Ξ(g∗)]◦[f∗∗ : Λ 7→ Λ(f∗)] = g∗∗◦f∗∗ : Λ 7→ Λ(g∗(f∗)) =
Λ(g∗ ◦ f∗) So we have that:

T (g ◦ f) = T (g) ◦ T (f).

Which shows that T is functorial.

To show that τ is a natural transformation between id and T is an easy exercise:

τV : V → V ∗∗

v 7→ < _, v >

If τ : id → T is a natural transformation then for any f ∈ Hom(V,W ), the following diagram
must commute:

V

f

��

id(V )

id(f)
��

τV // T (V )

T (f)
��

W id(W ) τW // T (W )

V

f
��

τV // V ∗∗

f∗∗

��

W
τW //W ∗∗

Which is the case since
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T (f) ◦ τV [v] = f∗∗ ◦ τV [v] = f∗∗(< _, v >) = < f∗(_), v > = < f∗(_),_ > [v] =

f∗(< _,_ >)[v] = < _, f(_) > [v] = < _, f(v) > = τW (f(v)) = τW ◦ f [v].

We have shown that τ : id → F is a natural transformation and thus V ∼= V ∗∗ is a natural
transformation in the categorical sense and we are done.

2.22 Equivalence of Categories

Definition 14. A natural transformation τ : F → G between functors F,G : C → D is called
natural equivalence or natural isomorphism, denoted τ : F ∼= G if with every component τc
invertible in D . The inverses (τc)−1 in C are the components of a natural isomorphism
τ−1 : G→ F .

We can use natural isomorphisms to define equivalence between categories:

Definition 15. Two categories C and D are said to be equivalent if for a pair of functors
F : C → D , G : D → C there exists natural isomorphisms τ : F ◦G→ IdD and η : IdC → G ◦ F .

This concept allows us to compare categories alike but of different sizes and equivalence is often a
better and more useful variant of "sameness" of categories, rather than strict isomorphisms.

2.23 Example of equivalence between categories

We show that vectK - the category of finite dimensional vector spaces and K-linear transfor-
mations and MatrK the category of natural numbers and rectangular matrices with entries in
K, are equivalent.

Proof. We have the functors:
F : vectK →MatrK

Which sends V ∈ vectK , with basis v such that |v| = n, to n ∈ Obj(MatrK).

Let W be a finite dimensional K-vector space with basis w, with |w| = m, then for some some
linear transformation T ∈ Hom(V,W ), F maps f to the matrix representation of f with respect
to the bases v and w.

F (T ) = [T ]w,v ∈ Matn×m(K)

G : MatrK → vectK
n 7→ Kn

For some A ∈ Hom(n,m), i.e. A ∈ Matn×m(K), we can view A as a linear transformation
between Kn and Km so:

G(A) = A ∈ Hom(Kn,Km)
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We will now define our natural transformations:

η : F ◦G→ IdMatrK

Note that for an object n ∈MatrK

F ◦G(n) = F (Kn) = n = IdMatrK (n)

and for some A ∈ Hom(n,m)

F ◦G(A) = F (A) = [A] = A.

So we end up with this diagram:

n

A
��

n

A
��

ηn
// n

A
��

m m
ηm
// m

We want this diagram commute so we have no choice but to define the component function of
η : F ◦G→ IdMatrK as the identity function.

We also need a natural transformation:

τ : IdvectK → G ◦ F

Let V,W ∈ vectK , with bases v such that |v| = n, w with |w| = m, respectively. Then for any
T ∈ Hom(V,W ) we get the following diagram:

V

T
��

V

T
��

τV // G ◦ F (V )

G◦F (T )
��

W W
τW// G ◦ F (W )

Since G ◦ F (V ) = G(n) = Kn, G ◦ F (W ) = G(m) = Km and G ◦ F (T ) = G([T ]w,v) = [T ]w,v we
can rewrite the diagram as:

V

T
��

V

T
��

τV // Kn

[T ]w,v
��

W W
τW // Km

We can see that it is most appropriate to define the component function of τ : IdvectK → G ◦ F
as the canonical coordinate function associated to a finite dimensional vector space.

Since both η and τ are natural isomorphisms we have that the categories vectK and MatrK
are equivalent.
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2.24 Functor categories

This is a very important and perhaps our first nontrivial categorical construction which hints
at the bottomless rabbit hole that is (higher) category theory.

Let C and D be any two categories. We can then form a new category called a functor category,
denoted Hom(C ,D) with the following data.

• Objects: Functors F,G,H, . . . : C → D

• Morphisms: Natural transformations θ, τ, η, . . . between functors between C and D .

We claim that Hom(C ,D) is a category.

Proof. We need to back to the initial definition of category and check the following:

• Composition of natural transformations is a natural transformation.

Let F,G,H ∈ Hom(C ,D) and let τ : F → G, θ : G→ H be natural transformations. Then
for any f ∈ HomC (i, j) the following two diagrams commutes.

i

f
��

Fi

Ff
��

τi // Gi

Gf
��

j Fj
τj
// Gj

Gi

Gf
��

θi // Hi

Hf
��

Gj
θj
// Hj

Gf ◦ τi = τj ◦ Ff, Hf ◦ θi = θj ◦Gf

We want to show that θ ◦ τ is a natural transformation so for i ∈ C , we define:

(θ ◦ τ)i = θi ◦ τi

We must show that the following diagram commutes.

i

f
��

Fi

Ff
��

(θ◦τ)i
// Hi

Hf
��

j Fj
(θ◦τ)j

// Hj

Thus:

Hf ◦(θ◦τ)i = Hf ◦(θi ◦τi) = (Hf ◦θi)◦τi = (θj ◦Gf)◦τi = θj ◦(Gf ◦τi) = θj ◦(τj ◦Ff) =
(θj ◦ τj) ◦ Ff = (θ ◦ τ)j ◦ Ff

So the diagram commutes and we can conclude that that a composition of two natural
transformations is a natural transformation.
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• Every functor has an identity natural transformation to itself.

Let F : C → D be a functor then we have natural transformation ιF ∈ Hom(F, F ) for
any object i ∈ C we define ιi = 1F (i). To see that ι is a natural transformation, let
f ∈ HomC (i, j) we get the following diagram:

i

f
��

Fi

Ff
��

ιi // Fi

Ff
��

j Fj
ιj
// Fj

Which clearly commutes since

Ff ◦ ιi = Ff ◦ 1Fi = Ff

ιj ◦ Ff = 1Fi ◦ Ff = Ff

It is also clear that for for any natural transformation τ : F → G we have τ ◦ ιF = τ and
ιG ◦ τ = τ

• Composition of natural transformations is associative.

Let F,G,H,K ∈ Hom(C ,D) and suppose that τ : F → G, θ : G → H, η : H → K are
natural transformations. We want to prove that

η ◦ (θ ◦ τ) = (η ◦ θ) ◦ τ.

By definition, for all i ∈ C , ηi, θi, τi are just morphisms in D and we have already shown
that composition of natural transformations is a natural transformations. Thus, consider
the morphism [η ◦ (θ ◦ τ)]i

[η ◦ (θ ◦ τ)]i = ηi ◦ (θ ◦ τ)i = ηi ◦ (θi ◦ τi).

Since these are just morphisms in D it follows that

ηi ◦ (θi ◦ τi) = (ηi ◦ θi) ◦ τi = (η ◦ θ)i ◦ τi = [(η ◦ θ) ◦ τ ]i

Which implies that
η ◦ (θ ◦ τ) = (η ◦ θ) ◦ τ

Since all points above holds, we have shown that Hom(C ,D) is a category.
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3 Adjoints

This section contains a very short basic introduction to the concept of adjunctions; adjoint
functors. We will define what it means for two functors to be adjoint, provide some examples
and finally examine the beautiful and interesting connection between adjoints and equivalence
of categories.

3.1 Motivation and definition

The concept of adjointness, due to Kan, formally provides an alternative description of properties
of free objects and other universal constructions. Though informally adjointness is heavily
inspired and motivated by adjointness of linear transformations and adjointness as it is defined
in the theory of semigroups. We feel that adjoints are far less intimidating if one keep in mind
the analogue of adjoint linear maps.

Let C and D be (small) categories.

Definition 16. An adjunction from C to D is a triple < F,G, φ > : C → D . Where F : C → D ,
G : D → C are functors and φ is a function which assigns to every pair of objects i ∈ C , j ∈ D
a bijection of sets

φ = φi,j : D(Fi, j) ∼= C (i, Gj)

which is natural in both arguments i and j.

Let us deconstruct this definition to some extent. Since we assume that both our categories are
small we have that D(Fi, j) and C (i, Gj) always are sets.

If we fix some i ∈ C we get two covariant functors:

D(Fi,_),C (i, Gj) : D → Set

If we instead fix some j ∈ D we get two contravariant functors:

D(F (_), j),C (_, Gj) : DOp →→ Set

Contravariant meaning that it flips the direction of arrows, and DOp is the opposite category of
D , with the same objects as in D but with all arrows reversed.

Just to make everything crystal clear we also review the required naturality of the arguments i
and j which can be described by forcing the following two diagrams to commute, for all f : j → j′

in D and all g : i′ → i in DOp:

j

f
��

D(Fi, j)

f∗
��

φ
// C (i, Gj)

(Gf)∗
��

j′ D(Fi, j′) φ
// C (i, Gj′)

i′

g

��

D(Fi, j)

(Fg)∗
��

φ
// C (i, Gj)

g∗
��

i D(Fi′, j) φ
// C (i′, Gj)
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Another equivalent way of looking at adjunctions is to define it as a bijection which assigns to
each arrow h : Fi→ j an arrow φh : i→ Gj in such a way that the naturality condition

φ(f ◦ h) = Gf ◦ φh, φ(h ◦ Fg) = φh ◦ g

holds for all f and all arrows f : j → j′ in D and all g : i′ → i in DOp. This is equivalent to
require that φ−1 be natural.

If we have an adjunction then F is said to be the left-adjoint of G and G is called the right-adjoint
of F .

Before digging into a well chosen example, why should we care about adjoints? Because they
turn up everywhere in all branches of mathematics.

3.2 Free groups and free functors

This subsection contains some basic preliminaries before we we will show that the forgetful
functor U : Grp→ Set has a left-adjoint.

Recall the definition of a free group.

Let S be any set. Assume that F (S) is a group and i : S → F (S) is a function.

Definition 17. F (S) is said to be free on S if for all groups G and all functions f : S → G
there exists a unique group homomorphism φ : F (S)→ G such that the diagram commutes:

S

f
��

� � i // F (S)

∃!φ
||

G

That is, φ ◦ i = f .

A free group exists.

Proof. Let S be a nonempty set, we construct the free group W (S) by assigning to every s ∈ S
another formal element s−1 ∈ S−1. We call s−1 the inverse of s. The elements in W (S)
will be reduced finite words constructed from the alphabet S ∪ S−1. The binary operation is
concatenation of words and the identity element is the empty word, ε.

It is easy to verify that

• Concatenation of two words is a word.

• Concatenation of a word with the empty word does not change the word.

• Every word has a unique inverse

• Concatenation of words is associative.
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So W (S) is a group.

W (S) also satisfies the universal property in the definition of a free group.

Since S is nonempty we have the inclusion function i : S → F (S), s 7→ s. Let (G, ·, e) be any
group and f : S → G a function. We then have that for any w = s1i(s2) . . . sn ∈ W (S) since
i(sj) = sj seen as a one letter word, we have that

w = i(s1)i(s2) . . . i(sn)

Assuming that w is reduced; sj+1 6= s−1
j for all j = 1, . . . , n− 1.

We can then define the map
φ : W (S)→ G

s1 . . . sn 7→ f(s1) · . . . · f(sn)

φ is a clearly a unique group homomorphism and the diagram

S

f
��

� � i //W (S)

φ
||

G

commutes since for all s ∈ S, φ ◦ i(s) = φ(s) which by construction is equal to f(s).

We can now define a functor G : Set → Grp called the free functor, sending every set S to its
associated free group F (S).

For morphisms, let f : S → S′ be a function between sets. G(S) = F (S) and G(S′) = F (S′) are
free groups so we have the following two commutative diagrams.

S

h
��

� � i // F (S)

∃!φ
||

G

S′

h′

��

� � i′ // F (S′)

∃!φ′
||

G′

Using the universal property of F (S) we can take G as F (S′) and h as f : S → S′ ⊂ F (S′)
to obtain a unique group homomorphism φ : F (S) → F (S′) such that the following diagram
commutes:

S

f
��

� � i // F (S)

∃!φ{{

F (S′)

We define G(f) = φ as the unique group homomorphism between F (S) and F (S′) extending f ,
described above.

To see that G is functorial:
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• Consider the identity map 1S : S → S. If we let G act on this map we get the diagram

S

1S
��

� � i // F (S)

∃!φ=G(1S){{

F (S)

Since for all s ∈ S we have that φ ◦ i(s) = 1S(s) = s =⇒ φ = 1F (S) =⇒ G(1S) = 1F (S).

• Let f : S → S′, g : S′ → S′′ be maps between sets. We want to show that the functor G
respects composition.

One one hand we have the commutative diagram:

S

g◦f
��

� � i // F (S)

∃!G(g◦f){{

F (S′′)

On the other hand we have

S

f
��

f

zz

� � i // F (S)

∃!G(f){{

S′

g

��

� � i′ // F (S′)

∃!G(g)zz

F (S′′)

Which by the uniqueness in universal property of F (S), F (S′) and F (S′′) implies that:

S

g◦f
��

� � i // F (S)

G(g)◦G(f)=G(g◦f){{

F (S′′)

3.3 The left-adjoint of the forgetful functor from Grp to Set

We have the forgetful functor U : Grp → Set and in the previous subsection we defined the
free functor G : Set → Grp. We claim that G is a left-adjoint of U , in other words we have a
bijection

Grp(G(X), Y ) ∼= Set(X,U(Y ))

which is natural in both arguments X ∈ Set and Y ∈ Grp.
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Proof. We use the definition of a free group, in particular the universal property to define the
function:

Ψ: Set(X,U(Y ))→ Grp(G(X), Y )

f 7→ g

Where g is the map such that

X

f

��

� � i // U(G(X))

U(g)yy

U(Y )

commutes.

By inspecting the above diagram we note that for any g ∈ Grp(G(X), Y ), we have U(g) ◦ i ∈
Set(X,U(Y )). Where i is the inclusion i : X → U(G(X)). So it is suitable to define the inverse
function Φ in the following way:

Φ: Grp(G(X), Y )→ Set(X,U(Y ))

g 7→ U(g) ◦ i

Let f ∈ Set(X,U(Y )) and h ∈ Grp(G(X), Y ) then:

• Φ ◦Ψ(f) = Φ(g). Where g ∈ Grp(G(X), Y ) such that the following diagram commutes:

X

f
��

� � i // U(G(X))

U(g)yy

U(Y )

Φ(g) = U(g) ◦ i = f , by the universal property of G(X).

• Ψ ◦ Φ(h) = Ψ(U(h) ◦ i) which corresponds to the following diagram:

X

U(g)◦i
��

� � i // U(G(X))

U(k)yy

U(Y )

Where k ∈ Grp(G(X), Y ). We can extend the diagram:
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X� _

i
��

� � i // U(G(X))

U(k)

��

U(G(X))

U(g)
��

U(Y )

The only possible way to make this commute is to set k = h.

=⇒ Ψ(U(h) ◦ i) = h.

Φ ◦Ψ(f) = f and Ψ ◦ Φ(h) = h =⇒ Grp(G(X), Y ) ∼= Set(X,U(Y ))

It remains to show that this isomorphism is natural in X ∈ Set and Y ∈ Grp.

• Naturality in Y ∈ Grp.

Fix some set X ∈ Set and define the natural transformation

τX,_ : Grp(G(X),_)→ Set(X,U(_))

By the function Φ,

τX,Y : Grp(G(X), Y )→ Set(X,U(Y ))

f 7→ Φ(f) = U(f) ◦ i

as defined earlier.

Now let h : Y → Z be any group homomorphism. To show naturality in Y is to show that
the following diagram commutes:

Y

h
��

Grp(G(X), Y )

h◦_
��

τX,Y
// Set(X,U(Y ))

U(h)◦_
��

Z Grp(G(X), Z)
τX,Z

// Set(X,U(Z))

Let f ∈ Grp(G(X), Y ) then:

– U(h) ◦ τX,Y (f) = U(h) ◦ (U(f) ◦ i) = U(h) ◦ U(f) ◦ i

– τX,Z ◦ (h ◦ f) = U(h ◦ f) ◦ i = U(h) ◦ U(f) ◦ i

The diagram commutes!

• Fix some group Y ∈ Grp and define the natural transformation

θ_,Y : Grp(G(_), Y )→ Set(_, U(Y ))

as above.
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Now, let X,X ′ be sets, i′ : X ′ → U(G(X ′)), i : X → U(G(X)) inclusions and finally let
h ∈ Hom(X,X ′).

We want the following diagram to commute for all f ∈ Grp(G(X ′), Y ) :

X

h
��

Grp(G(X ′), Y )

_◦G(h)
��

θX′,Y
// Set(X ′, U(Y ))

_◦h
��

X ′ Grp(G(X), Y )
θX,Y

// Set(X,U(Y ))

Let f ∈ Grp(G(X ′), Y ) by chasing the diagram we get:

– (_ ◦ h) ◦ θX′,Y (f) = θX′,Y (f) ◦ h = (U(f) ◦ i′) ◦ h = U(f) ◦ i′ ◦ h

– θX,Y ◦ (f ◦G(h)) = θX,Y (f ◦G(h)) = U(f ◦G(h)) ◦ i = U(f) ◦ U(G(h)) ◦ i

We need to show that the equality U(f) ◦ i′ ◦ h = U(f) ◦ U(G(h)) ◦ i holds. However it
suffices to show:

i′ ◦ h = U(G(h)) ◦ i

Since h ∈ Hom(X,X ′) and by the universal property of G(X) and G(X ′):

X

i′◦h
��

� � i // G(X)

∃!φzz

G(X ′)

There exists a unique homomorphism φ : G(X) → G(X ′) such that i ◦ φ = i′ ◦ h but we
also have that G(h)φ which implies that:

i′ ◦ h = φ ◦ i = G(h) ◦ i

So we must have that i′ ◦ h = U(G(h)) ◦ i which concludes the proof.

One can view this result as demonstrating the existence of a very weak inverse to the forgetful
functor.
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3.4 Other examples

We have shown that the free functor is a left adjoint of the forgetful functor from the category
of groups to the category of sets. This relation between a forgetful functor and a free functor is
not unique to groups:

For the forgetful functors:

• U : R-Mod→ Set

• U : Cat→ Grph

• U : Ab→ Set

• U : Mon→ Set

• U : Ab→ Grp

We have corresponding free functors as left-adjoints.

In particular consider the forgetful functor U : Fld→ Domm from the category of fields to the
category of integral domains where the morphisms are restricted to monomorphisms; injective
ring homomorphisms. Surprisingly we have a left-adjoint F to U .

F : Domm → Fld
D 7→ Q(D)

Where Q(D) is the field of fractions of D, i.e. the generalization of how we construct the rational
number field Q from the integral domain Z. Q(D) is the smallest field containing D in the sense
that every field of fractions Q(D) comes with an injection i : D → Q(D) and for every K ∈ Fld
such that D ⊂ K there is a monomorphism:

f : Q(D)→ K

Which restricted to D, is the identity function. However, the inclusion D ⊂ K can be replaced
by any monomorphism j : D → K, this universality shows why we need the restriction on the
morphisms of Dom to monomorphisms. Since for example considering all homomorphisms of
Dom this universality fails for Z→ Zp where p is a prime.

Another interesting example concerns posets and will be stated as a theorem without proof.

Theorem 3. Let P and Q be two posets (viewed as categories) and S : P → QOp, T : QOp → P
two order-preserving functions (viewed functors). Then S is a left adjoint to T if and only if,
for all p ∈ P and q ∈ Q,

Sp ≥ q ∈ Q⇔ p ≤ Tq ∈ P

When this is the case, there is exactly one adjunction φ making S the left adjoint of T . For all
p and q, p ≤ TSp and STq ≥ q so we also have that

Sp ≥ LTLp ≥ Sp, Tq ≤ TsTq ≤ Tq.
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3.5 Connecting adjunction to equivalence of categories

Recall that functor S : C → D is an equivalence of categories if there exists a functor T : D → C
and natural isomorphisms:

ST ∼= Id: D → D , TS ∼= Id: C → C .

Our goal in this subsection is to connect the notion of equivalence of categories to the concept
of adjunction.

Definition 18. An adjoint equivalence of categories is an adjunction < T, S, τ, θ > : C → D in
which both tau : Id→ ST ad θ : TS → Id are natural isomorphisms.

If < T, S, τ, θ > : C → D is an adjoint equivalence, then we have that Id ∼= TS and ST ∼= Id
which implies that τ−1 and θ−1 are also natural isomorphisms. Thus < S, T, θ−1, τ−1 > : D →
C is an adjunction. This implies that for an adjoint equivalence < T, S,_,_ > the functor
T : C → D is the left adjoint of S : D → C with unit τ while at the same time T is the right
adjoint of S with unit θ−1.

We now have the machinery necessary to present and prove the main theorem of this subsection.

Theorem 4. The following properties of a functor S : D → C are equivalent:

1. S is an equivalence of categories.

2. S is part of an adjoint equivalence < T, S, τ, θ > : C → D .

3. S is fully faithful and all i ∈ C is isomorphic to Sj for some j ∈ D .

Proof. We will proceed with a round-robin style proof, showing that:

2. =⇒ 1. =⇒ 3. =⇒ 2.

• 2. =⇒ 1.

Assume that S : D →→ C is part of an adjoint equivalence < T, S, τ, θ > : C → D .

Then by definition τ : Id→ ST, θ : TS → Id are natural isomorphisms which implies that
S is an equivalence of categories.

• 1. =⇒ 3.

Now assume that S : D → C is an equivalence of categories. By definition this implies the
existence of a functor T : C → D and natural isomorphisms ST ∼= Id and TS ∼= Id.

ST ∼= I : C → C =⇒ for all all i ∈ C we have i ∼= S(Ti). Set j = Ti ∈ D .

Now we must show that S is fully faithful.

We have the natural isomorphism θ : TS → Id which for all f ∈ C (j, j′) gives us the
following commutative square:
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TSj

TSf
��

θj
// j

f
��

TSj′
θj′

// j′

=⇒ f ◦ θj = θj′ ◦ TSf =⇒ f = θj′ ◦ TSf ◦ θ−1
j .

Suppose there exists some f ′ ∈ C (j, j′) such that Sf = Sf ′.

Then we have that f ′ = θj′TSf
′ ◦ θ−1

j = θj′ ◦ TSf ◦ θ−1
j = f

So S is faithful.

For any h : Sj → Sj′ take f = θj′ ◦ Th ◦ θ−1
j .

TSj

Th
��

θj
// j

f=θj′Th◦θ
−1
j

��

TSj′
θj′

// j′

=⇒ f ◦ θj = (θj′Th ◦ θ−1
j ) ◦ θj = θj′ ◦ Th.

Since S is faithful this implies that Sf = h =⇒ S full and thus fully faithful.

• 3. =⇒ 2.

To show the final implication suppose that S is fully faithful and all i ∈ C is isomorphic
to Sj for some j ∈ D .

We must construct an adjoint equivalence of which S is a part of.

To define a left adjoint T of S, note that for all i ∈ C we can choose some j0 = T0(i) ∈ D
and an isomorphism θi:

θi : i

f
##

∼= // S(T0i)

Sg

��

T0i

g

��

S(j) j

For all arrows f : i→ Sj the composite f ◦ θ−1
i has the form Sg for some unique g which

follows from the assumption that S is fully faithful. This implies that f = Sg ◦ θi for some
unique g. Then we can construct T : C → D in exactly one way such that θ : Id→ ST is
natural. So T is a left adjoint of S, with unit isomorphism θ.

For the counit τ : Sθj ◦ τSj = 1Sj =⇒ Sθj = τ−1
Sj and since S is fully faithful and the

counit τ is also invertible and we have am adjoint equivalence, as desired.
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4 The Yoneda Lemma

We have now reached the first real highlight of this thesis; the Yoneda Lemma, a classic categor-
ical representation result formulated, but not proved by, Nobuo Yoneda in a paper from 1954.
The Yoneda Lemma is a beautiful result which can be viewed from many different angles with
interesting corollaries corollaries.

It may be one of the more powerful theorems in basic category theory and interestingly enough
we do not need much in terms of technical machinery to prove it.

4.1 Formulation and proof

We begin by reviewing two concepts we have seen earlier.

Let C be a category and fix an object i ∈ C . Recall the covariant Yoneda functor:

C (i,_): C → Set

This functor sends objects j ∈ C to the homset C (i, j) and sends morphisms f ∈ C (k, l) to
f ◦_, post-composition by f .

We also have the contravariant Yoneda functor:

C (_, i) : C Op → Set

Which works in a similar way as the covariant Yoneda functor but sends morphisms to precom-
position.

Also, we should recall the notion of a functor category. Let C and D be categories then we
can form the functor category denoted [C ,D ],Nat(C ,D) or Mor(C ,D) consisting of as objects;
functors from C to D and as morphisms; natural transformations between such functors. Thus, if
we have two functors F,G : C → C then Nat(C ,D)(F,G is the set of all natural transformations
η :

C

F

$$

G

;;�� η D
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We are now ready to state and prove the Yoneda Lemma:

Theorem 5. The Yoneda Lemma. Let C be a locally small category. Then

Nat(C ,Set)(C (i,_), F ) ∼= Fi

natural in i ∈ C and F ∈ Nat(C ,Set).

Proof. Let us fix some i ∈ C and F ∈ Nat(C ,Set). To prove the Yoneda Lemma we have to
find a bijection between Nat(C ,Set)(C (i,_), F ) and F (i) and show that it is natural in both
arguments.

For η ∈ Nat(C ,Set), η : C (i,_)→ F is a natural transformation, we claim that the function:

Ψ: Nat(C ,Set)(C (i,_), F )→ F (i)

η 7→ ηi(1i)

Gives us a bijection. To show this we need to prove that Ψ is both injective and surjective.

To show that Ψ is injective. Suppose that Ψ(η) = Ψ(τ) for two morphisms η, τ ∈ Nat(C ,Set).
Since η, τ are natural transformations, we have, for any α ∈ C (i, j), the following two commu-
tative squares:

i

α

��

C (i, i)

α◦_
��

ηi // Fi

Fα
��

j C (i, j)
ηj

// Fj

C (i, i)

α◦_
��

τi // Fi

Fα
��

C (i, j)
τj

// Fj

We now make a choice and take 1i ∈ C (i, i) and chase the diagrams:

=⇒
{
Fα ◦ ηi(1i) = ηj ◦ (α ◦ 1i) = ηj(α)
Fα ◦ τi(1i) = τj ◦ (α ◦ 1i) = τj(α)

By assumption Ψ(η) = Ψ(τ) so we get the equality:

ηj(α) = Fα ◦ ηi(1i) = Fα ◦Ψ(η) = Fα ◦Ψ(τ) = Fα ◦ τi(1i) = τj(α)

ηj(α) = τj(α) =⇒ η = τ.

Since we have equality of the components functions of η and τ for an arbitrary α ∈ C (i, j), η
and τ must be the same natural transformation and hence equal. So Ψ(η) = Ψ(τ) =⇒ η = τ .
Ψ is injective.

To show that Ψ is surjective; Im(Ψ) = Fi, we must for every x ∈ Fi construct an explicit natural
transformation ξx ∈ Nat(C ,Set) such that Ψ(ξx) = ξxi (1i) = x ∈ Fi.

Again, by choosing 1i ∈ C(i, i) and some arbitrary α ∈ C (i, j) and inspecting the diagram:
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i

α

��

C (i, i)

α◦_
��

ξxi // Fi

Fα
��

j C (i, j)
ξxj

// Fj

We see that it is suitable to define the component function of natural transformation as ξxj (α) :=
Fα[x], the evaluation of Fα ∈ Hom(Fi, Fj) at x ∈ Fi. Then:

Ψ(ξx) = ξxi (1i) = F (1i)[x] = 1Fi(x) = x

We also have to check that ξx indeed is a natural transformation. To show this we need to show
that for all α ∈ C (j, k) the square commutes:

j

α

��

C (i, j)

α◦_
��

ξxj
// Fj

Fα
��

k C (i, k)
ξxk // Fk

Choose some arbitrary β ∈ C (i, j), if the diagram commutes we have:

β_

α◦_
��

� ξxj
// ξxj (β)

_

Fα◦_
��

α ◦ β � ξxk // ξk(α ◦ β) = Fα ◦ ξxj (β)

We need to show that ξk(α ◦ β) = Fα ◦ ξxj (β),

F (α ◦ β)[x] = ξxk (α ◦ β) = Fα ◦ ξxj (β) = Fα ◦ F (β)[x] = F (α ◦ β)[x].

The diagram commutes which implies that ξx is a natural transformation and hence Ψ is sur-
jective. Since Ψ is both surjective and injective we have shown that it is a bijection.

Now we have to show that this bijection is natural in both argument. Let ΨF
i denote the function

giving the bijection Nat(C ,Set)(C (i,_), F ) ∼= Fi.

First, note that if α ∈ Nat(C ,Set)(C (i,_), F ) then, given some arrow f : C (i, j), we can get a
natural transformation in Nat(C ,Set)(C (j,_), F ) by α 7→ α ◦ [_ ◦ f ] ∈ Nat(C ,Set)(C (j,_)

Where α ◦ [_ ◦ f ] for some a ∈ C has the component function:

(α ◦ [_ ◦ f ])a : C (j, a)→ F (a)

_ 7→ αa(_ ◦ f)

To see that α ◦ [_ ◦ f ] really is a natural transformation let f ∈ C (a, b). We show that
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a

g

��

C (j, a)
g◦_
��

(α◦[_◦f ])a
// Fa

Fg

��

b C (j, b)
(α◦[_◦f ])b

// Fb

commute. Let φ ∈ C (j, a) then we have

Fg ◦ (α ◦ [_ ◦ f ])a(φ) = Fg ◦ αa(φ ◦ f)

and

(α ◦ [_ ◦ f ])b(g ◦ φ) = αb((g ◦ φ) ◦ f) = αb((◦(φ ◦ f)).

Since α is a natural transformation,

a

g

��

C (j, a)
g◦_
��

αa // Fa

Fg

��

b C (i, b)
(αb

// Fb

commutes, in other words Fg ◦ αa = αb ◦ (g ◦_) and since φ ◦ f ∈ C (i, a), we have that:

Fg ◦ αa(φ ◦ f) = αb(g ◦ (φ ◦ f))

So Fg◦(α◦ [_◦f ])a = (α◦ [_◦f ])b(g◦_) which shows that α◦ [_◦f ] ∈ Nat(C ,Set)(C (j,_), F ).

Now, to show naturality in i, we must prove that for some fixed functor F ∈ Nat(C ,Set),

ΨF
[_] : Nat(C ,Set)(C ([_],_), F )→ F ([_])

is a natural transformation. That is, for every f : i→ j ∈ C the square

i

f

��

Nat(C ,Set)(C (i_), F )

(_)◦[_◦f ]
��

ΨFi // Fi

Ff

��

j Nat(C ,Set)(C (j_), F )
ΨFj

// Fj

must commute; ΨF
j ◦ ((_) ◦ [_ ◦ f ]) = Ff ◦ΨF

i . To show this let τ ∈ Nat(C ,Set)(C (i_), F ) by
chasing the diagram:

Ff ◦ΨF
i (τ) = Ff ◦ (τi(1i)) = Ff(τi(1i))

On the other hand:
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ΨF
j ◦((_)◦ [_◦f ])[τ ] = ΨF

j ◦(τ ◦ [_◦f ]) = ΨF
j (τ ◦ [_◦f ]) = (τ ◦ [_◦f ])j [1j ] = τj(1j ◦f) = τj(f),

but since τ is a natural transformation we have that

Ff ◦ τi = τj ◦ (f ◦_).

Take 1i ∈ C (i.i) in the above equation to obtain:

Ff ◦ τi(1i) = τj ◦ (f ◦ 1i) = τj(f) =⇒ ΨF
j ◦ ((_) ◦ [_ ◦ f ]) = Ff ◦ΨF

i .

So ΨF
[_] is a natural transformation and we have eastablished naturality in i.

Naturality in F ∈ Nat(C ,Set) states that for some fixed i ∈ C

Ψ[_]
i : Nat(C ,Set)(C (i,_), [_])→ [_](i)

is a natural transformation. This means that for every natural transformation:

C

F
%%

G

::�� τ Set

the following square must commute:

Nat(C ,Set)(C (i,_), F )

τ◦_
��

ΨFi // Fi

τi

��

Nat(C ,Set)(C (i,_), G)
ΨGi // Gi

=⇒ ΨG
i ◦ (τ ◦_) = τi ◦ΨF

i .

Let θ ∈ Nat(C ,Set)(C (i,_), F ) then

ΨG
i ◦ (τ ◦_)[θ] = ΨG

i ◦ (τ ◦ θ) = ΨG
i (τ ◦ θ) = (τ ◦ θ)i[1i] = τi ◦ θi(1i)

and

τi ◦ΨF
i [θ] = τi ◦ θi(1i)

So the diagram commutes and we have established naturality in both F and i which completes
the proof.
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We also have a contravariant form of the Yoneda Lemma:

Theorem 6. The Yoneda Lemma. Let C be a locally small category. Then

Nat(C Op,Set)(C (_, i), F ) ∼= F (i)

naturally in i ∈ C and F ∈ Nat(C ,Set).

The proof is very similar.

4.2 The Yoneda Embedding

Yoneda gives us a natural bijection Nat(C ,Set)(C (i,_), F ) ∼= F (i). As a first nice corollary
note that if we for some j ∈ C let F be another homfunctor;

C (j,_): C → Set

Then according to Yoneda Lemma we have that: Nat(C ,Set)(C (i,_),C (j,_)) ∼= C (j, i). Which
shows that natural transformations between homfunctors correspond exactly to reversed arrows.
In fact, we can use this to define a special functor from the dual category COp to the functor
category Nat(C ,Set).

Theorem 7. The Yoneda Embedding. There exists a functor

Y : COp → Nat(C ,Set)

which is fully faithful and injective on objects.

Proof. By Yoneda Lemma, Y maps objects i to homfunctors C (i,_) and a reversed morphism
f ∈ C (j, i) is mapped to the natural transformation _ ◦ f : C (i,_) → C (j,_). It is clear that
Y is functorial.

To see that Y is faithful let f, g ∈ C Op(j, i) and suppose that Y (f) = Y (g) which implies that:

_ ◦ g = _ ◦ f : C (i,_)→ C (j,_)

Since these are two equal natural transformations. Choose the morphism 1i ∈ C (i, i) to get:

{
(1i ◦_) ◦ f = 1i ◦ (_ ◦ f)
(1i ◦_) ◦ g = 1i ◦ (_ ◦ g)

Choose 1i ∈ C (i, i) again to get 1i ◦ (1i ◦ f) = 1i ◦ (1i ◦ f) =⇒ f = g. So Y is faithful.

Y is full as well since for all i, j ∈ COp and all natural transformations

η : C (i,_)→ C (i,_)

are exactly on the form _ ◦ f for some f ∈ COp(j, i).
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Finally, we show that Y is injective on objects. Suppose that Y (i) = Y (j) for i, j ∈ COp, which
implies that:

C (i,_) = C (j,_): C → Set

Then i 7→ C (i, i) = C (j, i) and since 1i ∈ C (i, i) =⇒ 1i ∈ C (j, i) =⇒ j = i and we are done.

What does this mean? The dual of locally small category C is embedded fully faithfully in the
functor category. This means that the dual of a category essentially is a full subcategory of
Nat(C ,Set).

We also have the dual Yoneda embedding giving a fully faithful functor from C to Nat(C ,Set).

This is a very useful result in practice, say that we have want to study a very complicated
category then it might be easier to just apply the Yoneda functor on this category and study
natural transformations between homsets instead.

4.3 Cayley’s Theorem

Cayley’s theorem is a famous theory in group theory stating that every group G is isomorphic
to a subgroup of a symmetric group Sn, for some n. We will in this section state and prove this
theorem in the setting of ordinary basic group theory and then view Cayley’s theorem

Definition 19. A left group action of a group G on a set X is a mapping
G×X → X, (g, x) 7→ g · x such that 1 · x = x and g · (h · x) = (gh) · x, for all g, h ∈ G, x ∈ X.
We say that G acts on the left on X.

Note that in a left group action of a group G on a set X, the action σg : x 7→ g ·x is a permutation
of X and the map g 7→ σg is a homomorphism from G into SG.

Proof. If σg : x 7→ g ·x is a permutation of X then the map is a bijection from X to X. Suppose
that σg(x) = σg(y) for some x, y ∈ X. Then:

g · x = g · y =⇒ g−1 · (g · x) = g−1 · (g · y) =⇒ g−1g · x = g−1g · x =⇒ x = y

From the definition of a left group action, g−1 · x ∈ X so for every x ∈ X we have:

σg(g−1 · x) = g · (g−1 · x) = (gg−1) · x = 1 · x = xi.

So σg : x 7→ g · x is a bijection and σg ◦ σh(x) = σg(h · x) = g · (h · x) = gh · x = σgh shows that
it is a group homomorphism as well.
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Theorem 8. Cayley’s Theorem. Every group G is isomorphic to a subgroup of the symmetric
group SG.

Proof. Let G act on itself by left multiplication. We must show that φ : g 7→ σg is a injective
homomorphism from G into SG.

Since we already know that φ is a homomorphism it suffices to show that it is injective.

Let g, h ∈ G and suppose that φ(g) = φ(h) =⇒ σg(x) = σh(x) for all x ∈ G. We act on G by
left multiplication so we have that hx = gx =⇒ hxx−1 = gxx−1 =⇒ h = g.

Now let us think about this from a categorical point of view. Let G ∈ Grp and consider the
category (groupoid) #G with one formal object # and the elements of G as arrows in #G. By
Yoneda Lemma we have the natural bijection:

[#G,Set](Hom(#,_),Hom(#,_)) ∼= Hom(#,#)

Note that Hom(#,#) is the set of all morphisms from # to itself in the category #G, so
Hom(#,#) = G, seen as a set. This means that we can identify each element of the group G
with a natural transformation η : Hom(#,_)→ Hom(#,_), η ∈ Mor([#G,Set]). What can we
say about these natural transformations?

Let η : Hom(#,_) → Hom(#,_) be such a natural transformation. We claim that η is a
bijection from G to itself.

Proof. Since η : Hom(#,_) → Hom(#,_) is a natural transformation and since we only have
one object # ∈ #G, we only have one component function η# : Hom(#,#) → Hom(#,#) so
every η. We will write η but mean the component function η#. For simplicity we define Hom(#)
:= Hom(#,#).

By definition we have that for every morphism g : #→ # the following diagram commutes:

#
g

��

Hom(#)
g◦_
��

η
// Hom(#)

g◦_
��

# Hom(#) η
// Hom(#)

Which is equivalent to requiring that η(g ◦ h) = g ◦ η(h) holds for all h ∈ Hom(#)

It is clear that η is a function from G to G.

Suppose that η(x) = η(y) for some x, y ∈ G then η(x) = η(xe) = xη(e) and η(y) = η(ye) = yη(e)
then xη(e) = yη(e) =⇒ xη(e)η(e)−1 = yη(e)η(e)−1 =⇒ x = y. So η : G→ G is injective.

Assume towards a contradiction that Im(η) 6= G. Then there exists some y ∈ G such that
η(x) 6= y for all x ∈ G. Since η is a natural transformation we have that for all g, h ∈ G:

η(gh) = gη(h)
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Take g := yη(h)−1 then η(gh) = gη(h) = (yη(h)−1)η(h) = y(η(h)−1η(h)) = ye = y.

So there is in fact an element x := yη(h)−1 ∈ G such that η(x) = y. This is a contradiction so
we must have that Im(η) = G. η is indeed a bijection from G to itself.

We have shown that a group G is bijective to a set of bijections G to G which is precisely
Cayley’s Theorem. In, particular if [#G,Set](Hom(#,_),Hom(#,_)) happens to be the set of
all bijections on G then G is a symmetric group.

Another nearly identical approach is to consider one of the Yoneda embeddings of the category
#G and then meditate on the natural transformations.

So Cayley’s Theorem follows from Yoneda’s Lemma as a special case. This is not just a simple
implication but we can in fact view Yoneda’s Lemma as a vast generalization of Cayley’s Theorem
in terms of representations, of groups in the case of Cayley and categories for Yoneda.
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5 Bicategories

A peculiar and interesting property inherent in category theory is that once we have defined the
notion of a category they pop up everywhere. One nontrivial example of this might be the functor
category we saw in the last section, consisting of functors and natural transformations.

What if we have a category in which every homset happens to be a category?

This begs the question if can we have define a notion of higher dimensional category theory which
not only has objects and morphisms between objects but also morphisms between morphisms,
morphisms between morphisms between morphisms... together with appropriate composition
and identities. It turns out that the answer is yes, we can define a notion of higher dimen-
sional categories and there exists such mathematical objects. The complexity increases rapidly
with n, for n-categories so we shall restrict our attention to 2-categories, and the more general
bicategories, i.e. categories with objects, morphisms between objects and morphisms between
morphisms.

The motivation for such a generalization mainly comes from Cat which turns out to be the most
canonical example of a 2-category.

The theory of 2-categories is nontrivial and certainly more complicated than ordinary category
theory but easy and accessible enough so 2-categories is a good place to start.

Much of the material in this section comes from a paper by Leinster [3].

5.1 Definition and examples

We begin in the abstract by defining bicategory which is a lax 2-category.

Definition 20. A bicategory B consists of the following data subject to the following axioms:

Data

• A collection of objects Obj(B) (0-cells) A,B, . . .

• Categories B(A,B) with objects f, g, . . . (1-cells) and morphisms (2-cells) α, β, . . .

• Functors
CABC : B(B,C)×B(A,B)→ B(A,C)

(g, f) 7→ g ◦ f = gf

(β, α) 7→ β ∗ α

and 1A : 1→ B(A,A) (thus 1A is a 1-cell A→ A).

• Natural isomorphisms

B(C,D)×B(B,C)×B(A,B)

CBCD×1
��

1×CABC // B(C,D)×B(A,C)

CACD
��

B(B,D)×B(A,B)
CABD

// B(A,D)
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B(A,B)× 1

1×1A
��

∼

**

B(A,B)×B(A,A)
CAAB

// B(A,B)

1×B(A,B)

×1B×1
��

∼

**

B(B,B)×B(A,A)
CABB

// B(A,B)

thus 2-cells

ahgf : (hg)f → h(gf)

rf : f ◦ 1a → f

lf : 1B ◦ f → f.

Axioms

We require the following two diagram to commute.

((kh)g)f
a

xx

a∗1 // (k(hg))f
a

&&

(kh)(gf)

a
**

k((hg)f)

1∗a
tt

k(h(gf))

(gI)F

r∗1
""

a // g(If)

1∗l
||

gf

This definition is fairly long and abstract compared to the material presented earlier but it looks
more complicated than it actually is.

Informally we can say that a bicategory consists of 0-cells (objects), 1-cells (arrows/morphisms
between objects) and 2-cells (arrows/morphisms between 1-cells) together with a notion of well
behaved composition of 1-cells and 2-cells, respectively, such that associativity of composition
and unit laws holds up to isomorphism, for 1-cells.

Note that equality is a trivial isomorphisms which brings us to strict bicategories which we will
look more into in the next section. For the time being let us restrict our attention to proper
weak bicategories.
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5.2 Bicategory of bimodules

We will here define a proper bicategory in the sense that that it is not strict with respect to
associativity of composition of 1-cells.

Before defining our bicategory we have to define what we mean by a bimodule.

Definition 21. Let R,S be two rings. A bimodule is an abelian group M such that:

1. A is a left R-module,

2. A is a right S-module,

3. (ra)s = r(as) for all r ∈ R, s ∈ S and a ∈ A.

We sat that if M is a bimodule, then M ∈ R-Mod-S.

It is easy to see that a ring R itself and any two-sided ideal in R provides examples of R-R-
bimodules.

If M is a left R-module then M ∈ R−Mod-Z.

A bimodule homomorphism between two bimodules is just a module homomorphism respecting
both the right and the left action.

We can now define our proper bicategory B consisting of:

• 0-cells are rings R,S, T, . . .,

• 1-cells are bimodules M ∈ R-Mod-S,N ∈ S-Mod-T . . .,

• 2-cells are bimodule homomorphisms M → N .

Composition of 2-cells is just ordinary function composition of bimodule homomorphisms. How-
ever, we have to define composition of 1-cells (i.e. bimodules).

Consider the bimodules M ∈ R-Mod-S and N ∈ S-Mod-T , then we can construct a new
bimodule via the tensor product M ⊗S N ∈ R-Mod-T . So we define composition of 1-cells to be
the tensor product.

But ifM ∈ R-Mod-S,N ∈ S-Mod-T and N ′ ∈ T -Mod-T ′ then we have the well known canonical
isomorphism:

M ⊗S (N ⊗T N ′) ∼= (M ⊗S N)⊗T N ′

Which shows that composition of 1-cells in general only holds up to isomorphism. It is also clear
that B(R,S) is a category and the reader might want to check that the axioms holds.

5.3 Opposite bicategories

Given a bicategory B, we can form the opposite bicategory BOp by revering 1-cells but leaving
2-cells as they were. So if we have a 2-cell α in B:
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A

f

$$

g

;;�� α B

Then BOp has the 2-cell:

B

f

##

g

;;�� α A

Note the this is not canonical, we made a choice in this definition, in fact we have three different
opposite bicategories:

• only reverse 1-cells (the case we defined above),

• only reverse 2-cells,

• reverse both 1-cells and 2-cells.

As we shall see towards the end of this thesis, our choice in the definition turns out to have an
interesting and useful application.

5.4 Functors between bicategories

Given two bicategories B and B′ we can of course have morphisms between them.

Ideally, we would like to call these morphisms bifunctors but sadly a bifunctor is already well
established taken to be a functor from a product category to some other category

F : C × C ′ → D .

Definition 22. A morphism (2-functor) F := (F, φ) : B → B′ of bicategories B and B′

consists of the following data:

• Function F : Obj(B)→ Obj(B′)

• Functors FAB : B(A,B)→ B′(FA,FB)

• Natural transformations

B(B,C)×B(A,B)

a′

��

c // B(A,C)

FAC
��

B′(FB,FC)×B′(FA,FB)
c′

// B′(FA,FC)
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1

id

��

IA // B(A,C)

FAA
��

1
I′FA

// B′(FA,FA)

Thus 2-cells φgf : Fg ◦ Ff → F (g ◦ f) and φA : I ′FA → FIA.

Axioms. The Following diagrams commute:

(Fh ◦ Fg) ◦ Ff

a′

��

φ∗1
// F (h ◦ g) ◦ Ff φ

// F ((h ◦ g) ◦ f)

Fa
��

Fh ◦ (Fg ◦ Ff)
1∗φ

// Fh ◦ F (g ◦ f)
φ

// F (h ◦ (g ◦ f))

Ff ◦ I ′FA
r′

��

1∗φ
// Ff ◦ FIA

φ
// F (f ◦ IA)

Fr
��

Ff
id

// Ff

I ′FB ◦ Ff

l′

��

φ∗1
// FIB ◦ Ff

φ
// F (IB ◦ f◦)

Fl
��

Ff
id

// Ff

If φABC and φA are natural isomorphisms such that Fg ◦ Ff ∼= F (g ◦ f) and FI ∼= I ′ then F
is called a morphism (2-functor). In the special case when φABC and φA are all identities so
that Fg ◦ Ff = F (g ◦ f) and FI = I ′ then F is said to be a strict 2-functor.

We will see examples of 2-functors in the section concerning 2-categories.

5.5 Transformations

Given two 2-functors G,F : B → B′ of bicategories B and B′ we can have transformations
between them, i.e. bi/2-(natural transformations) for functors between bicategories.

Definition 23. A transformation

B

F
%%

G

;;�� σ B′

where F := (F, φ) and G := (G,ψ) are morphisms (2-functors), consists of the following data
and axioms. Note that h∗ : B(C,D) → B(C,E) here denotes the functor induces by a 1-cell
h : D → E in B and similarly for the contravariant h∗ : B(E,C)→ B(D,C).

Data

• 1-cells σA : FA→ GA
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• Natural transformations

B(A,B)

GAB
��

FAB // B′(FA,FB)

(σB)∗
��

B′(GA,GB)
(σA)∗

// B′(FA,GB)

Thus 2-cells σf : Gf ◦ σA → σB ◦ Ff

Axioms
The following diagrams commute:

(Gg ◦Gf) ◦ σA

ψ∗1

��

a′ // Gg ◦ (Gf ◦ σA)
1∗σf
// Gg ◦ (σB ◦ Ff)

a′−1
// (Gg ◦ σB) ◦ Ff

σg∗1
// (σC ◦ Fg) ◦ Ff

a′ // σC ◦ (Fg ◦ Ff)

1∗φ

��
G(g ◦ f) ◦ σA σgf

// σC ◦ F (g ◦ f)

I ′GA ◦ σA
ψ∗1
��

l′ // σA
r′−1
// σA ◦ I ′FA

1∗φ
��

GIA ◦ σA (σIA
// σA ◦ FIA

If σAB are all natural isomorphisms then σ is called a strong transformation. If σAB are all
identities then σ is called a strict transformation.

5.6 Modifications

Given two transformations between 2-functors we also have morphisms between transformations,
called modifications.

Definition 24. Given transformations σ, σ′ : F ⇒ G : B → B′, a modification Γ: σ V σ′

consists of the following data and axioms:

Data

• 2-cells FA

σA
&&

σ′A

99�� ΓA GA

Axioms

The following diagram commutes:

56



Gf ◦ σA
σf

��

1∗ΓA // Gf ◦ σ′A
σ′f
��

σB ◦ Ff ΓB∗1
// σ′B ◦ Ff

We have no variants of modifications between transformations but we will see another, fully
equivalent, easier definition of this concept in the next section.
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6 2-Categories

We will now restrict our study to strict bicategories which we call 2-categories.

6.1 Definitions

Definition 25. A 2-category is a strict bicategory, in the sense that associativity and the unit
law for 1-cells holds with equality, not only up to isomorphism.

We can also define 2-categories directly without any reference to bicategories:

Definition 26. A 2-category C consists of

• Objects (0-cells) i, j, k, . . .

• For every two objects i, j we have a category C (i, j)

– Objects in C (i, j) are denoted f, g, h, . . . and are call 1-cells.

– Morphisms in C (i, j) are called 2-cells α, β, γ . . . and composition of such morphism
are called vertical composition, denoted by •.

• For every category C (i, i) there exists a 1-cell 1i which is an identity morphism with respect
to 1-cells.

• For every two categories C (i, j),C (j, k) there exists a bifunctor

Comp : C (j, k)× C (i, j)→ C (i, k)

Which is strictly unital and associative with respect to 1-cells.

This is of course exactly identical to viewing a 2-category as a special case of a bicategory but
it is somewhat easier to work with 2-categories independent of bicategories, therefor we will
redefine some bicategorical concepts in the context of 2-categories. However first we will unpack
and review the definition.

Let C be a 2-category. Then we have 0-cells (i, j, k, . . .), 1-cells (f, g, h, . . .) and 2-cells (α, β, γ, . . .)
together with three types of strict composition. So a typical structural unit in C looks something
like:

i

f

""

g

<<�� α j

Since every C (i, j) is a category we have vertical composition of 2-cells in C (i, j), so for 2-cells
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i

f

""

g

<<�� α j and i

g

""

h

<<�� β j we have a 2-cell:

i

f

""

h

<<�� β◦α j

By the bifunctorialty of our composition functor we also have horizontal composition of 1-cells
and 2-cells, meaning that if we have:

i

f

""

g

<<�� α j

f ′

""

g′

<<�� α′ k

We have the composite:

i

f ′◦f
""

g′◦g

<<��α′◦α k

Again by the bifunctoriality of comp we have that given

i

f

""

g

<<�� α j

f ′

""

g′

<<�� α′ k

and

i

g

""

h

<<�� β j

g′

""

h′

<<�� β
′ k

We have that the following equation holds:

(β′ • α′) ◦ (β • α) = (α′ ◦ α) • (β′ ◦ β) : f ′ ◦ f ⇒ h′ ◦ h : i→ k

This equation of sometimes called the interchange law.

We also have that horizontal composition of any two vertical identity 2-cells is again a vertical
identity 2-cell.
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6.2 The Category of Categories

If Set, the category of sets and set theoretical functions, is the canonical example of a (1-
)category then Cat, the category of categories, functors and natural transformations, is the
canonical example of a 2-category.

We already know that Cat is a category so we will only provide horizontal and vertical compo-
sition of 2-cells (natural transformations). The reader might want to check the details, perhaps
in particular that everything holds strictly.

Let C and D be categories and F,G,H : C → D be functors. If τ : F ⇒ G, τ ′ : G ⇒ H are
natural transformations we can define the composite natural transformation τ ′ • τ : F ⇒ H, for
any object i ∈ C we define the component morphism (τ ′ • τ)i := τ ′i ◦ τi. To see that τ ′ • τ is a
natural transformation, let f : i→ j be a morphism in C , then we have following diagram:

i

f

��

F (i)

F (f)
��

τi // G(i)

G(f)
��

τ ′i // H(i)

H(f)
��

j F (j)
τj
// G(j)

τ ′j
// H(j)

Since the two squares commutes, the whole thing commutes so τ ′ • τ is a natural transforma-
tion.

For horizontal composition, let α and β be natural transformation:

C

F

$$

G

;;�� α D

H

##

H′

;;�� β E

We want to define the horizontal composite natural transformation β ◦α : H ◦F ⇒ H ′ ◦G.

Since α : F ⇒ G is a natural transformation, then the following diagram commutes for any
morphism f : i→ j in C :

i

f

��

F (i)

F (f)
��

αi // G(i)

G(f)
��

j F (j)
αj
// G(j)

Since β : H ⇒ H ′ is a natural transformation and αx is a morphism in D for every object x in
C we have the following commutative square:

HF (i)

Hαi
��

βFi
// H ′F (i)

H′αi
��

HGi
βGi

// H ′Gi
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So we define the component morphism of β ◦ α to be the diagonal of this square.

(β ◦ α)i := βGi ◦Hαi = H ′αi ◦ β ◦ Fi

To see that this is natural transformation, the following diagram commutes

i

f

��

HF (i)

HFf

��

Hαi // HG(i)

HG(f)
��

βG(i)
// H ′G(i)

H′Gf
��

j HF (j)
Hαj

// HG(j) βGj
// H ′Gj

6.3 Another example

Let (S, ·, e,≤) be a monoid with a partial order such that, for all s, t ∈M

s ≥ t =⇒ rs ≤ rt and sr ≤ tr, ∀r ∈ S.

We will now define the 2-category CS consisting of

• one formal 0-cell #,

• one category CS(#,#) with

– objects (1-cells) s, t, . . . ∈ S

– Hom(s, t) =
{
∅ if s � t

ms,t if s ≤ t

2-cells ms,t should be understood to be formal morphism.

To see that this a 2-category let s, t, s′, t′ ∈ S such that s ≤ t and s′ ≤ t′, i.e. we have
2-cells:

#

s

$$

t

::��ms,t #

s′

$$

t′

::��ms′,t′ #

Since s ≤ t and s′ ≤ t′ we have that rs ≤ rt and sr ≤ tr, ∀r ∈ S. So we have that s′s ≤ s′t and
s′t ≤ t′t by transitivity it follows that s′t ≤ t′t so there exists a 2-cell ms′s,t′t which implies that
horizontal composition is well defined, ms′,t′ ◦ms,t := ms′s,t′t.

Since s ≤ s for every s ∈ S and in particular we have an identity 2-cell me,e where e is the
identity element in S. s ≤ t =⇒ me,e ◦ms,t = mes,et = ms,t.

Associativity of composition of arrows in the horizontal category of 2-cells follows from associa-
tivity of S.
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6.4 2-functors

Functors between 2-categories are morphisms between (strict) bicategories which we defined
in the previous section. However it is better and easier to consider 2-functors in a purely 2-
categorical setting.

A 2-functor of 2-categories F : C → D is a triple sending 0-cells to 0-cells, 1-cells to 1-cells and
2-cells to 2-cells such that all three types of composition and all identities are preserved.

This means that a typical structural unit

i

f

""

g

<<�� α j

in C is sent via F to a structural unit in C

F (i)

F (f)
''

F (g)
77

�� Fα F (j)

A 2-functor must also respect composition of 1-cells, identity 1-cells, vertical identity 2-cells,
vertical composition of 2-cells and horizontal composition of 2-cells. Note that we define a
2-functor to here always be a strict 2-functor.

6.5 The Yoneda 2-functor

We will now provide an example of a 2-functor. Let C be a 2-category and i a 0-cell in C we
can then define a 2-functor C (i,_): C → Cat.

• Any 0-cell j is mapped to the vertical category C (i, j)

• 1-cells f : j → k is mapped to the functor

f ◦_: C (i, j)→ C (i, j)

g 7→ f ◦ g

(γ : g ⇒ g′) 7→ 1f ◦ γ

• A 2-cell α : f ⇒ g in C is mapped to horizontal post-composition:

(α : f ⇒ g) 7→ α ◦_
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The 2-functoriality of the Yoneda functor follows directly from the 2-categorical structure of
C , in particular by the fact that any homset is a category and that horizontal and vertical
composition of 2-cells are well behaved (by definition), so post-composition gives well defined
functoriality.

6.6 Transformations between 2-functors

As with bicategories, we have both strong and weak transformations (2-natural transformations)
between 2-functors but we will only work with strong such transformations so we take transfor-
mation to mean strong transformation.

Definition 27. Let C and D be 2-categories and F,G : C → D be two 2-functors. A transfor-
mation θ : F ⇒ G induces, for every 0-cell i in C , a 1-cell θi : F (i)→ G(i) in D such that, for
every for every 2-cell α : f ⇒ g : i → j in C , the following diagram commutes in the strictest
possible sense:

F (i)

θi

��

Ff

((

Fg

66�� Fα F (j)

θj

��

G(i)

Gf

((

Gg

66�� Gα G(j)

We can, of course, have weak transformations between (strict) 2-functors as well, but we will
restrict our study mostly to strong transformations.

6.7 Modifications of transformations

Modifications, morphisms between transformations, can only be defined in one way, independent
of the strictness of the functors and transformations involved, we have no variants.

For completeness we provide the definition in the context of 2-categories.

Definition 28. Let C and D be 2-categories and F,G : C → D be two 2-functors and θ, ι : F ⇒
G be two transformations. A modification Γ: θ V ι induces, for every 0-cell i in C , a 2-cell
Γi : θi ⇒ ιi in D such that, for every for every 2-cell α : f ⇒ g : i → j in C , the following
diagram commutes:

63



F (i)

θi

��

ιi

��

ks
Γi

Ff

((

Fg

66�� Fα F (j)

θj

��

ιj

��

ks
Γj

G(i)

Gf

((

Gg

66�� Gα G(j)

It is hard to find elementary examples of modifications, but we shall see some in the proof of
the 2-categorical Yoneda lemma.

6.8 Mor(F,G) - Higher dimensional morphism categories

Recall that given two categories A and B we can form the functor category Funct(A ,B) with
objects as functors between A and B and as morphisms natural transformations between such
functors.

Similarly we can form construct higher dimensional analogue of the functor category Funct(A ,B).
Let F,G : C → D be two strict 2-functors between 2-categories. By Mor(F,G) we denote the
category with:

• Objects: Strong transformations between F and G.

• Morphisms: Modifications of such transformations.

We claim that Mor(F,G) is a category:

Proof. Let θ, ι, κ : F ⇒ G be transformations. By definition, for every 2-cell α : f ⇒ g : i→ j in
C , the following three diagrams commutes:

F (i)

θi

��

Ff

((

Fg

66�� Fα F (j)

θj

��

G(i)

Gf

((

Gg

66�� Gα G(j)

F (i)

ιi

��

Ff

((

Fg

66�� Fα F (j)

ιj

��

G(i)

Gf

((

Gg

66�� Gα G(j)

F (i)

κi

��

Ff

((

Fg

66�� Fα F (j)

κj

��

G(i)

Gf

((

Gg

66�� Gα G(j)

Let Γ: θ V ι and ∆: ι V κ be modifications then for α : f ⇒ g in C as above we have the
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following two commutative diagrams:

F (i)

ιi

��

κi

��

ks
∆i

Ff

((

Fg

66�� Fα F (j)

ιj

��

κj

��

ks
∆j

G(i)

Gf

((

Gg

66�� Gα G(j)

F (i)

θi

��

ιi

��

ks
Γi

Ff

((

Fg

66�� Fα F (j)

θj

��

ιj

��

ks
Γj

G(i)

Gf

((

Gg

66�� Gα G(j)

The composite ∆ ◦ Γ: θ V κ is defined in the obvious way by defining:

(∆ ◦ Γ)k := ∆k ◦ Γk : θk ⇒ κk for k ∈ C .

Since the diagram

F (i)

θi

��

κi

��

ks
∆i◦Γi

Fg

((

Ff

66�� Fα F (j)

θj

��

κj

��

ks
∆j◦Γj

G(i)

Fg

((

Ff

66�� Gα G(j)

clearly commutes we have that ∆ ◦ Γ: θ V κ is a modification so composition of modifications
is a modification.

For every transformation θ : F ⇒ G we have an identity modification 1θ : θ V θ with for
j ∈ C , (1θ)k is defined to be the vertical identity 1θk of θk. To see that this is an identity let
Γ: θ → ι and ∆: κ→ θ be modifications then by vertical composition in D :

• Γ ◦ 1θ = Γ since for any k ∈ C , (Γ ◦ 1θ)k = Γk ◦ (1θ)k = Γk ◦ 1θk = Γk =⇒ Γ ◦ 1θ = Γ.

• Similarly 1θ ◦∆ = ∆ since 1θk ◦∆k = ∆k.

Finally, we show that composition of modifications is associative.

Let Γ: θ V ι,∆: ιV κ and Θ: κV λ be modifications. We want to show that

Θ ◦ (∆ ◦ Γ) = (Θ ◦∆) ◦ Γ.

By definition we have:
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F (i)

κi

��

λi

��

ks
Θi

Ff

((

Fg

66�� Fα F (j)

κj

��

λj

��

ks
Θj

G(i)

Gf

((

Gg

66�� Gα G(j)

F (i)

ιi

��

κi

��

ks
∆i

Ff

((

Fg

66�� Fα F (j)

ιj

��

κj

��

ks
∆j

G(i)

Gf

((

Gg

66�� Gα G(j)

F (i)

θi

��

ιi

��

ks
Γi

Ff

((

Fg

66�� Fα F (j)

θj

��

ιj

��

ks
Γj

G(i)

Gf

((

Gg

66�� Gα G(j)

To show that Θ ◦ (∆ ◦ Γ) = (Θ ◦∆) ◦ Γ is to show that [Θ ◦ (∆ ◦ Γ)]k = [(Θ ◦∆) ◦ Γ]k for all
objects k in C . Evaluating these we get:

• [Θ ◦ (∆ ◦ Γ)]k = Θk ◦ (∆ ◦ Γ)k = Θk ◦ (∆k ◦ Γk)

• [(Θ ◦∆) ◦ Γ]k = (Θ ◦∆)k ◦ Γk = (Θk ◦∆k) ◦ Γk
The equality Θk ◦ (∆k ◦ Γk) = (Θk ◦ ∆k) ◦ Γk holds since all terms are arrows in the vertical
category of 2-cells T(F (k), G(k)) in D .

F (k) Θk ◦ (∆k ◦ Γk) G(k)

θk

λk

F (k) (Θk ◦∆k) ◦ Γk G(k)

θk

λk

This implies that Γ ◦ (∆ ◦Θ) = (Γ ◦∆) ◦Θ) so we have established associativity of composition
of modifications thus we have proved that Mor(F,G) is a category.

Note that we can form a 2-category 2-Cat consisting of 2-categories, 2-functors and transfor-
mations but the result we just proved shows that 2-Cat is in fact a 3-category.
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6.9 Yoneda Lemma for 2-categories

Recall Yoneda lemma for 1-categories. Given a locally small category C , a functor F : C → Set
and an object i ∈ C , we have a natural bijection of sets:

Funct(C (i,_), F ) ∼= F (i)

Let C be a 2-category, F : C → Cat a 2-functor and i a 0-cell in C .

Theorem 9. Mor(C (i,_), F ) ∼= F (i) is an isomorphism of categories.

Proof. To prove this we have to define two functors and show that they are each others inverses.

Since F is a functor from the 2-category C to Cat it follows that F (i) is a category we have to
define a functor:

Ψ: Mor(C (i,_), F )→ F (i)

For a transformation θ : C (i,_) ⇒ F Yoneda Lemma directly gives us a way to map θ to a
object in F (i), namely the evaluation of the arrow θi : C (i, i) → F (i) at 1i. To see that this is
an object in F (i) note that θi is a 1-cells in Cat i.e. a functor and since 1i is an object in the
category C (i, i) we must have that θi(1i) is an object in F (i). We define:

Ψ(θ) := θi(1i)

Let Γ: θ V ι be a modification. We have to find a suitable morphism between θi(1i) and ιi(1i)
in F (i). We define

Since θi, ιi : C (i, i) → F (i) are functors, the 2-cell Γi : θi ⇒ ιi induced by Γ must be a natural
transformation. Thus if we evaluate Γi at 1i, here denoted Γi,1i , we get the desired morphism
between θi(1i) and ιi(1i) in F (i). We define

Ψ(Γ) := Γi,1i

It is clear that Ψ is well defined. Now we show that it is functorial.

• Let 1θ : θ V θ be the identity modification of a transformation θ : C (i,_) ⇒ F . Then
Ψ(1θ) = (1θ)i,1i = 1θi(1i) = 1Ψ(θ) : θi(1i)→ θi(1i).

• To show that Ψ respects composition let Γ: θ V ι,∆: ιV κ be modifications. Then

Ψ(∆ ◦ Γ) = (∆ ◦ Γ)i,1i = (∆i ◦ Γi)[1i] = ∆i,1i ◦ Γi,1i = Ψ(∆) ◦Ψ(Γ).

So Ψ: Mor(C (i,_), F )→ F (i) is functorial.

We now need a functor in the other direction. For objects a, b and γ ∈ F (i)(a, b), we define:

Φ: F (i)→ Mor(C (i,_), F ).
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a 7→ ξa : C (i,_)⇒ F

γ 7→ Λγ : ξa V ξb

An object a is mapped to the transformation ξa : C (i,_) ⇒ F which, for every object x in C ,
induces the component functor:

ξax : C (i, x)→ F (x)

_ 7→ F (_)[a]

This also comes from (the inverse of) Yoneda Lemma but this is not only a natural transformation
we claim that ξa is a transformation, that is, for every 2-cell α : f ⇒ g ∈ C (j, k) where j, k are
arbitrary objects in C , the following diagram commutes:

C (i, j)

ξaj

��

f◦_
))

g◦_
55

��α◦_ C (i, k)

ξak

��

F (j)

Ff

))

Fg

55�� Fα F (k)

Which holds since for any h ∈ C (i, j) we have:

• ξak ◦ (f ◦ h) = ξak(f ◦ h) = F (f ◦ h)[a] = F (f) ◦ F (h)[a] = F (f) ◦ ξaj (h),

• ξak ◦ (g ◦ h) = F (g) ◦ ξaj (h) similarly, and

• ξak ◦ (α ◦ h) = F (α ◦ h)[a] = F (α) ◦ F (h)[a] = F (α) ◦ ξaj (h).

Which shows that ξa is a transformation.

Now let γ : a→ b be a morphism in F (i). We defined Φ(γ) to be Λγ with Λγx := F (_)[γ] for every
x ∈ C . To see that this works: Note that if we take some h ∈ C (i, x) then Fh : F (i) → F (x)
is a functor (since since F is a functor from C to Cat) then F (h)[γ] : F (h)[a] → F (h)[b] is a
morphism in F (x).

C (i, x) Λγx := F (_)[γ] F (x)

ξax=F (_)[a]

ξbx=F (_)[b]

We also have to show that Λγ : ξa V ξb is in fact a modification. By definition this means that
for all 2-cells α : f ⇒ g ∈ C (j, k) the diagram
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f

α

��
g

C (i, j)

ξaj

��

ξbj

��

ks
Λγj

f◦_
))

g◦_
55

��α◦_ C (i, k)

ξak

��

ξbk

��

ks
Λγ
k

F (j)

F (f)
))

F (g)

55��F (α) F (k)

commutes. In other words, given some h ∈ C (i, j), we have to show that

F (α) ◦ Λγj [h] = Λγk ◦ (α ◦ h).

• Λγk ◦ (α ◦ h) = F (_)[γ] ◦ (α ◦ h) = F (α ◦ h)[γ] = F (α) ◦ F (h)[γ] and,

• F (α) ◦ Λγj [h] = F (α) ◦ F (h)[γ].

The diagram commutes which implies that Λγ : ξa V ξb is a modification. So Φ is well defined
on both objects and morphisms.

Next we prove that Φ is functorial.

First let a ∈ F (i) be some object and consider its identity morphism 1a ∈ F (i)(a, a). We want
to show that Φ(1a) = 1Φ(a) : Φ(a) V Φ(a).

We have that Φ(1a) = Λ1a : ξa V ξa

C (i, j) Λ1a
j = F (_)[1a] F (j)

ξaj=F (_)[a]

ξaj=F (_)[b]

By the functoriality of F and the fact that, for every 1-cell h ∈ C (i, j), we have a functor
F (h) : F (i)→ F (j), it follows that:

Λ1a
j [h] = F (h)[1a] = 1F (h)[a] = 1ξaj [h] =⇒ Φ(1a) = 1ξa = 1Φ(a).

Now let γ : a→ b, δ : b→ c be morphisms in F (i), we want to show that Φ(δ ◦ γ) = Φ(δ) ◦Φ(γ).

Φ(δ ◦ γ) = Λδ◦γ : ξa V ξc

Again, let h ∈ C (i, j) be an arbitrary morphism. Then

Φ(δ ◦ γ)[h] = Λδ◦γ [h] = F (h)[δ ◦ γ] : ξaj ⇒ ξcj .
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Yet again, by functoriality of F (h):

F (h)[δ ◦ γ] = F (h)[δ] ◦ F (h)[γ] = (F (_)[δ] ◦ F (_)[γ])[h] = (Λδ ◦ Λγ)[h].

Which shows that Φ(δ ◦ γ) = Φ(δ) ◦ Φ(γ) and hence Φ: F (i)→ Mor(C (i,_), F ) is functorial.

We now have two functors:

Ψ: Mor(C (i,_), F )→ F (i)

Φ: F (i)→ Mor(C (i,_), F ).

Our goal is to show that Mor(C (i,_), F ) ∼= F (i) which means that we have to show that
composition of our functors gives us identity functors.

Mor(C (i,_), F ) F (i)Φ◦Ψ=idMor(C(i,_),F )

Ψ

Φ

Ψ◦Φ=idF (i)

We begin with the easy direction, showing that

Ψ ◦ Φ = IdF (i).

• Let a be an object in F (i) then

Ψ ◦ Φ(a) = Ψ(ξa) = ξai [1a] = F (1i)[a] = IdF (i)(a) = a.

• Let γ : a→ b be a morphism in F (i). Applying the composite functor Ψ ◦ Φ to γ, we get:

Ψ ◦ Φ(γ) = Ψ(Λγ) = Λγi,1i = Λγi [1i] = F (1i)[γ] = IdF (i)(γ) = γ.

This proves that Ψ ◦ Φ = IdF (i).

The other direction idMor(C (i,_),F ) = Φ ◦Ψ: Mor(C (i,_), F )→ Mor(C (i,_), F ) is slightly more
involved.

Let θ be an object in Mor(C (i,_), F ) i.e. a transformation θ : C (i,_)⇒ F . Then we have

Φ ◦Ψ(θ) = Φ(θi(1i)) = ξθi(1i).

We know for sure that θ and ξθi(1i) are transformations, meaning that for every 2-cell α : f ⇒ g
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in C we have two commutative diagrams:

f

α

��
g

C (i, j)

θj

��

f◦_
))

g◦_
55

��α◦_ C (i, k)

θk

��

F (j)

Ff

))

Fg

55�� Fα F (k)

C (i, j)

ξ
θi(1i)
j

��

f◦_
))

g◦_
55

��α◦_ C (i, k)

ξ
θi(1i)
k

��

F (j)

Ff

))

Fg

55�� Fα F (k)

We have to show that θ = ξθi(1i) which is equivalent to showing that θj = ξ
θi(1i)
j , for all j ∈ C .

If we choose some h ∈ C (i, j), we have, by definition, the following two equalities:{
θk ◦ (α ◦ h) = F (α) ◦ θj [h] : θk ◦ (f ◦ h) = F (f) ◦ θj ⇒ θk ◦ (g ◦ h) = F (g) ◦ θj [h]
ξ
θi(1i)
k ◦ (α ◦ h) = F (α) ◦ ξθi(1i)j [h] : ξθi(1i)k ◦ (f ◦ h) = F (f) ◦ ξθi(1i)j [h]⇒ ξ

θi(1i)
k ◦ (g ◦ h) = F (g) ◦ ξθi(1i)j [h]

First we show that the equality F (α)◦θj [h] = F (α)◦ξθi(1i)j [h] holds. Since θ is a transformation,
it is also a natural transformation in the usual 1-categorical sense. Thus, for the same h : i→ j
in C , as above, we have that

i

h

��

C (i, i)

h◦_
��

θi // F (i)

F (h)
��

j C (i, j) θj
// F (j)

commutes, i.e. θj ◦ (h ◦_) = Fh ◦ θi. In particular, take 1i ∈ C (i, i) and we get that

θj ◦ (h ◦ 1i) = θj ◦ h = θj(h) = F (h) ◦ θi(1i).

This implies that F (α) ◦ θj(h) = F (α) ◦ F (h) ◦ θi(1i) = F (α) ◦ ξθi(1i)j [h].

Similarly we can show that θk ◦ (g ◦ h) = ξ
θi(1i)
k ◦ (g ◦ h).

The equality of 2-cells follows since we have:

θk ◦ (α ◦ h) = F (α) ◦ θj [h]

and
ξ
θi(1i)
k ◦ (α ◦ h) = F (α) ◦ ξθi(1i)k [h].

Thus we have have that Φ ◦Ψ(θ) = θ.

Finally, for any modification Γ: θ V ι in Mor(C (i,_), F ), we have to prove that Φ ◦Ψ(Γ) = Γ.

We have
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Φ ◦Ψ(Γ) = Φ(Γi,1i) = ΛΓi,1i .

To show ΛΓi,1i = Γ, we have to show that ΛΓi,1i
j = Γj , for all j ∈ C .

By definition, we have that a typical structural unit α : f ⇒ g gives rise to the two commutative
diagrams:

f

α

��
g

C (i, j)

θj

��

ιj

��

ks
Γj

f◦_
**

g◦_
44��α◦_ C (i, k)

θk

��

ιk

��

ks
Γk

F (j)

F (f)
))

F (g)

55��F (α) F (k)

C (i, j)

θj

��

ιj

��

ks
Λj

f◦_
**

g◦_
44��α◦_ C (i, k)

θk

��

ιk

��

ks
Λk

F (j)

F (f)
))

F (g)

55��F (α) F (k)

In other words, given some h ∈ C (i, j), we have the following two equalities of 2-cells:Γk ◦ (α ◦ h) = F (α) ◦ Γj [h]
ΛΓi,1i
k ◦ (α ◦ h) = F (α) ◦ ΛΓi,1i

j [h]

So, it is sufficient to prove that F (α) ◦ Γj [h] = F (α) ◦ ΛΓi,1i
j [h]. To show this, we use the fact

that Γ is a modification and consider the same h as before together with its vertical identity
2-cell 1h : h⇒ h to get the commutative diagram:

h

1h

��
h

C (i, i)

θi

��

ιi

��

ks
Γi

h◦_
// C (i, j)

θj

��

ιj

��

ks
Γj

F (i)
F (h)

// F (j)

We can now make yet another choice and take 1i ∈ C (i, i) together with its vertical identity to
get

Γj ◦ h = F (h) ◦ Γi,1i .

We want to show that F (α)◦Γj [h] = F (α)◦ΛΓi,1i
j [h]. Using the above equality, we can evaluate

the right hand side:

F (α) ◦ ΛΓi,1i
j [h] = F (α) ◦ (F (h)[Γi,1i ]) = F (α) ◦ (F (h) ◦ Γi,1i) = F (α) ◦ (Γj ◦ h) = F (α) ◦ Γj [h]

Similarly for any 2-cell in C (i, j).
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So, we have shown that ΛΓi,1i
j = Γj which implies that Γ = ΛΓi,1i and hence Φ ◦Ψ(Γ) = Γ and

Φ◦Ψ = idMor(C (i,_),F ) Thus we have an isomorphism between categories Mor(C (i,_), F ) ∼= F (i)
and we are done.

Moreover, if we consider i and F in Ψ: Mor(C (i,_), F ) → F (i) to be parameters, then by
construction, Ψ is 2-natural in these arguments.

6.10 2-Categorical Yoneda Embedding

We have just proved that Mor(C (i,_), F ) ∼= F (i). By defining F to be another (2-categorical)
homfunctor, F := C (j,_)→ Cat. we get that

Mor(C (i,_),C (j,_)) ∼= C (j, i).

Recall that we defined the opposite bicategory of a bicategory to be the bicategory of reversed
1-cells. Since every 2-category is a bicategory C Op have reversed 1-cells.

We have that the vertical category C (j, i) of C Op is isomorphic to the category Mor(C (i,_),C (j,_))
meaning that reversed arrows and their 2-cells correspond exactly to transformations between
2-categorical homfunctors and modifications between such homfunctors. We can use this to
construct a 2-categorical Yoneda embedding:

Y : C Op → Mor(C ,Cat)

j 7→ C (j,_)

(f : j → k) 7→ _ ◦ f

(α : f → g) 7→ _ ◦ α

As a side note, Mor(C (i,_), F ) is a full subcategory of MOR(C (i,_), F ) which we define to be
be the category of weak transformations and modifications.

We claim, without proof, that MOR(C (i,_), F ) ' F (i) is an equivalence of categories, giving
rise to the following interesting diagram:

Mor(C (i,_), F )� _

��

∼=

++MOR(C (i,_), F ) '
// F (i)

We also have an even more general situation if we consider bicategories.
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6.11 Bicategorical Coherence

We proved Yoneda lemma for 2-categories in this section, this is slightly easier than proving the
more general statement for bicategories but it turns out that every bicategory is biequivalent
to a strict 2-category, meaning that it is in some sense enough to consider the strictest possible
case. In this subsection we will give a very rough sketch of this result.

Let B and B′ be bicategories. A biequivalence from B to B′ consists of a pair of bicategorical
functors F : B → B′, G : B′ → B together with an equivalence 1 → G ◦ F and an equivalence
F ◦ G → 1 in the two bicategories consisting of bicategorical functors, strong transformations
and modifications.

Another way to define a biequivalence F : B → B is to require F to be a local equivalence and
surjective -up-to-equivalence of objects.

To show that every bicategory is biequivalent to a strict 2-category we take the covariant bicat-
egorical Yoneda (embedding) map Y of a bicategory B and define B′ to be the full image of Y
and define Y ′ : B → B′ to be the restriction of Y to B′. Then Y ′ is a homomorphism, surjective
on 0-cells and locally an equivalence. Since B′ is a 2-category the result follows.

Apparently, n = 2 is the highest n for which this holds true, i.e. we have some tricategory not
being triequivalent to some strict 3-category.
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