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In classical hydrodynamics with uniform density, vortices move with the local fluid velocity. This
description is rewritten in terms of forces arising from the interaction with other vortices. Two such
positive straight vortices experience a repulsive interaction and precess in a positive (anticlockwise)
sense around their common centroid. A similar picture applies to vortices in a two-component two-
dimensional uniform Bose-Einstein condensate (BEC) coherently coupled through rf Rabi fields.
Unlike the classical case, however, the rf Rabi coupling induces an attractive interaction and two such
vortices with positive signs now rotate in the negative (clockwise) sense. Pairs of counter-rotating
vortices are instead found to translate with uniform velocity perpendicular to the line joining their
cores. This picture is extended to a single vortex in a two-component trapped BEC. Although two
uniform vortex-free components experience familiar Rabi oscillations of particle-number difference,
such behavior is absent for a vortex in one component because of the nonuniform vortex phase.
Instead the coherent Rabi coupling induces a periodic vorticity transfer between the two components.

PACS numbers: 03.75.Mn, 67.85.Fg, 05.30.Jp

I. INTRODUCTION

Onsager and Feynman revolutionized superfluid
physics with the concept of quantized vortex lines. Orig-
inally, this idea was introduced to describe superfluid
“He, but it also applied to the more recent ultracold
atomic Bose-Einstein condensates (BECs). Initial vor-
tex research emphasized the equilibrium configurations,
for example in rotating superfluid BECs where imaging
an expanded condensate provided direct visualization of
the vortex arrays.

In certain cases for atomic BECs, however, the dynam-
ics of one or two vortices is not only calculable but also
observable experimentally in real time, providing a rare
opportunity to study such time-dependent phenomena.
Note that the analogous vortex dynamics in superfluid
4He is largely inaccessible owing to the very small vor-
tex core. Here we analyze the effect of coherent rf Rabi
coupling on the dynamics of one or two vortices in a two-
component BEC mixture.

The physics of two coupled Bose-Einstein condensates
has been of great interest since the early JILA exper-
iments using two hyperfine states of 8"Rb [1]. Ini-
tially, these coupled condensates had the usual mean-
field interactions, in which case the typical Gross-
Pitaevskii equation contains two interaction terms pro-
portional to the two local particle densities n; and
nge. Correspondingly, the interaction energy density is
5int = %Zij:lz Gij NNy, where n; = ‘¢j|2 is the con-
densate density for component j, and g;; is a set of inter-
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action parameters. Since this interaction energy depends
solely on the densities, it carries no information on the
relative phase of the two condensates.

Subsequently, the JILA group added coherent rf Rabi
fields involving direct linear off-diagonal coupling of the
two order parameters [2-4]. In the time-dependent GP
equation for (say) i, there is a term with o pro-
portional to the Rabi frequency €2, which is related
to the strength of the rf coupling fields. The corre-
sponding coherent rf Rabi interaction energy density
Eq=—3hQ Vo, U = —%hQ(@b;{wg +pdapy) is very differ-
ent from the more familiar mean-field form given above.
As aresult, the two components now form a coupled two-
level system with dynamics analogous to coherent motion
on a Bloch sphere.

In 2002 [5], Son and Stephanov pointed out the cru-
cial role of such coherent rf Rabi coupling, emphasizing
the presence of a narrow domain wall between two vor-
tices, whose dynamics closely mimics string-breaking pro-
cesses in quantum chromodynamics. With the density-
phase representation of the condensate order parameters
b = /nj e"% | the coherent coupling energy density be-
comes Eq = —hQ/n1ns cos(S; — Ss), involving the phase
difference between the two condensates. Note that this
long-wavelength rf coupling is spatially uniform, in con-
trast to the finite-wavelength Raman coupling introduced
by Spielman [6, 7], where the spatial dependence of the
coupling term is significant.

The Lagrangian density is L = T — Egp, where
T = $ih[UT9, ¥ — (9,¥T)V¥] and the remaining term is
the usual GP energy density functional, including the ki-
netic energy, the trap energy, the interaction energy and
the Rabi coupling energy. Expressed in terms of number
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density and phase, the Lagrangian density becomes

L= Z[rmm

1=1,2

1
+ hQdy/ning cos(S1 — Sa) — ign2 + 0g1aning, (1)

2 2

h 2 h 2

where n = nj + ny is the total number density. Here
and throughout, the trap is omitted (except for Secs.
VI and VII) and this simple model assumes interaction
constants g11 = goo = g and dg12 = g — g12 > 0. These
parameters are appropriate for ’Rb and imply that the
uniform system does not phase separate. This form of the
Lagrangian density is useful for studying the dynamics of
vortices in coherently coupled BECs. Much of the present
analysis will focus on a tightly confined effectively two-
dimensional condensate, in which case n; represents a
two-dimensional particle density with dimension of an
inverse area and the corresponding coupling constants
are renormalized by the tight axial harmonic trapping
potential ¢ — gop = g/(d.\/27), where d, = \/h/(Mw.,)
is the axial oscillator length. For simplicity, we will use
g to denote the two-dimensional coupling constant with
units of energy x area. Hence gM/h? is dimensionless.

Section II briefly reviews the dynamics of classical rec-
tilinear vortices in a single-component fluid. Section ITI
then rewrites the dynamical equations in terms of forces
arising from intervortex potentials; it also derives the
same vortex dynamics for a one-component dilute BEC
from a variational Lagrangian formalism. Section IV
summarizes the essential features of the coherent cou-
pling in a two-component BEC from [5], focusing on the
domain wall of relative phase. These various features
combine in Section V to describe the dynamics of two
vortices in coherently coupled uniform BECs with one
vortex in each component. Section VI studies instead
the dynamics for a single vortex in a trapped condensate,
where the coherent coupling induces periodic transfer of
vorticity between the two condensates. Section VII then
investigates the Josephson-like dynamics of the coherent
transfer of population between two coherently coupled
condensates. In the absence of a vortex, the population
difference exhibits familiar Rabi oscillation [2]. When a
vortex is present in one condensate, however, the lack of
overall global phase leads to a cancelation, and instead
the vorticity transfers periodically between the two com-
ponents with no coherent population transfer, in analogy
with similar results for coherently coupled annular con-
densates [8].

II. VORTEX DYNAMICS IN CLASSICAL
HYDRODYNAMICS

In thinking about vortex dynamics in two-dimensional
BECs, it is simplest to start from classical incompressible
hydrodynamics and focus on a set of point vortices at r;.

Each vortex generates its own circulating velocity field

h zZ2x(r—rj)

o (r) = 4; 1 , 2

[r =7
where ¢; = =1 characterizes the sense of circulation,
which is quantized in units of 2rfi/M (alternatively, the
velocity is h/M times the gradient of the phase S;). A
given vortex at r; has a translational velocity

;= Z’Uj(rz Z%J\Z Zx (ri—rj) (3)
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equal to the total velocity at its position induced by all
the other vortices (and, in principle, any additional im-
posed flow).

It is helpful to focus on two vortices at r; and ro sepa-
rated by a distance r15. Their dynamical equations lead
to the expected dynamics

. h ~ T — T2
TL=Q ;2 X T, 4
S VR o (4)
so that vortex 1 moves with the velocity induced at its
location by vortex 2. Similarly,

™ To—T1
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T2 =q (5)
If they have the same circulation with g1go = 1, they
rotate at fixed 15 around their joint center at an instan-
taneous linear speed //(Mr12) with a sense determined
by their individual circulations [equivalently, the angular
velocity around the common center is 2h/(Mr%,)]. If they
have opposite circulations ¢q1q2 = —1, they are called a
vortex pair or a vortex dipole and move uniformly at fixed
r12 with translational velocity ii/(Mr12) in the direction
of the flow between them. The Arizona group [9] has
created such vortex dipoles reproducibly in disk-shaped
BECs and followed their dynamical trajectories. The fi-
nite boundaries significantly affect the motion, and the
experiment observed one full cycle of the vortex dipole
orbits.

As seen below, the energy of two vortices in an un-
bounded medium depends only on the distance between
them, so that both these dynamical motions maintain
the total energy. This behavior reflects the lack of any
dissipative mechanism in classical hydrodynamics.

In a uniform dilute Bose gas obeying the Gross-
Pitaevskii (GP) equation, the same result holds as long
as the vortices are well separated relative to the heal-
ing length ¢ = h/+/2Mng, which characterizes the vor-
tex core radius. Reference [10] proved this result by di-
rect examination of the time-dependent GP equation, as-
suming that the time dependence arises solely from the
rigid motion of the vortices. This result is not surpris-
ing, for the time-dependent GP equation implies both the
usual conservation of particles and a Bernoulli equation
for isentropic compressible flow; these two suffice to de-
scribe classical inviscid hydrodynamics, including vortex
motion [11].



IIT. VORTEX RESPONSE TO APPLIED FORCE

From one perspective, Eq. (3) wholly suffices to de-
scribe the motion of point vortices in a uniform two-
dimensional fluid, but it is instructive to generalize and
think of effective forces. Note the simple identity [12]

5=V (i) , (6)

where In(1/7) is essentially the Coulomb Green’s function
in two dimensions. This approach is equivalent to the
use of a stream function instead of a velocity potential.
Define

- 1
Vii(r) = 2whn qiqj% In (r) =2nhnVi;(r), (7)

where Vi;(r) = ¢q;hiln(1/r)/M omits the dimensional
factor 27hn. Here, Vi;(r) is the interaction energy be-
tween two point vortices in two dimensions. Note that
for two vortices with the same sign ¢1q> = 1, the interac-
tion is repulsive and diverges to oo as r — 0, whereas for
two vortices with opposite sign q1g2 = —1, it is attractive
and diverges to —oo as r — 0.

In particular, again focus on two vortices in a one-
component fluid, in which case the equations of vortex
motion now become

@71 = —2 X V1 Via(ri2),
qQ’f‘Q = —2 X V2V12(T12). (8)

Apart from an overall factor, the quantity —V;1Vi2(r12)
is effectively the force F} that vortex 2 exerts on vortex
1. Hence Eq. (8) assumes the simple and physical form

@ =z x
qQ":'QZZAXFQ:*ﬁXFl, (9)

where F} = —F5, since they arise from a central poten-
tial. It says that each vortex moves perpendicular to the
force F' on it, in a direction determined by ¢; 2 x Fj.
Such behavior is often called the Magnus effect.

By inspection, the vector quantity qi171 + q2r2 is con-
served. Also, Eqs. (4) and (5) show that the relative
vector r13 = 11 — T3 obeys the dynamical equation

’f'lg = ]\;‘%Q (Q1 + QQ) zZ X T12. (10)
If g1 = g2 = 1, then the two vortices precess around
each other at fixed separation with an angular veloc-
ity 2h/(Mr?,) in the positive sense, as found previously.
If ¢4 = —g2 = 1 (a vortex pair/vortex dipole), then
r1 — ro remains constant, and Eq. (9) indicates that
% (71 + 72) = 2 X F1, so that the center of the pair moves
uniformly.
The operation 2x allows these dynamical relations to
be rewritten as FjM + F; =0, where

FjM =q; 2 X 1 (11)

is called the Magnus force. In this latter form, the vector
sum of all forces acting on the vortex must vanish, which
thus determines the motion of the vortex. Effectively, a
vortex has intrinsic angular momentum arising from its
circulating flow and acts like a gyroscope.

For subsequent reference, it is also useful to study the
behavior of two vortices in a uniform single-component
two-dimensional BEC with the time-dependent La-
grangian formalism, which is equivalent to Eq. (1) with
only a single uniform two-dimensional density n (ignor-
ing the vortex core structure) and phase S. Assume two
vortices at 71 and o with unit circulations ¢; and g and
total phase S = 57 + S5, where

S; = qjarg[(x —x;) +i(y —y;)] = qj arg(z — z;), (12)

where arg(z) = z/|z| is the phase of the complex number
z = x +ty. Here, S; and Ss refer to distinct vortices in
the same component. Based on this form for the phase
arising from each vortex, it is not hard to find the time-
dependent term in the Lagrangian

T=hmn(q12 X7 -T1+ @2 X T2 T9), (13)

which is unusual in depending linearly on the coordinate
and the velocity of each vortex.

The corresponding fluid velocity is vy + v2, where
v; is given in (2), and the kinetic energy density
is 1Mn (v1 +v2)°.  Apart from the divergent self-
energy of each vortex, the interaction energy density is
E12 = Mnwvi-vs = (q1g2h*n/M)V In|r—r1 |-V In [r—ry|.
The interaction energy Fio = d?r &5 involves a
two-dimensional integral, which may be computed us-
ing the divergence theorem and the two-dimensional

Coulomb Green’s function Go(r) = —In(r) that satis-
fies the equation V2Go(r) = —27m83)(r) [equivalently,
V2Inr = 2763 (r)]. As a result,
21h%n 1
Ei2 = q1g2 1 (14)

M n|r1—r2|7

which is just the interaction energy ‘712(7"12) from Eq. (7).
Hence the total Lagrangian becomes

L:hﬂn(q12X'f.'l"r'l—f'qzﬁx'f'Q'rQ)

2hn 1
— q1q In . (15
192 M |T1 — 7‘2‘ ( )
Focus on vortex 1, when OL/0r7y = —hmngz X 7y.

The Euler-Lagrange equation (d/dt)(0L/071) = OL/dr
yields the same dynamics as found in Eqgs. (4) and (5).
Note the unusual feature that the equations of vortex
dynamics are first order in time, with no term associated
with vortex mass and acceleration. For a system of many
vortices in unbounded space, one can define a Hamilto-
nian H = 1 > ixj Vij(ri;) that depends on all the vortex
coordinates [13]. The equations of vortex dynamics have
a Hamiltonian form with x; and y; as canonical coordi-
nates. In the presence of boundaries, the factor In(1/7;;)



is replaced by the appropriate Green’s function G(r;,r;)
that satisfies the relevant boundary condition [14].

This description is readily generalized to include a
type-1I superconductor. In general, a superconductor
can screen a static magnetic field beyond the charac-
teristic London penetration length A\;, = ¢/Qg, where
Qs = y/nse2/meeg is the effective superconducting
plasma frequency defined with the superconducting elec-
tron density ns [15]. A type-II superconductor is one
for which the London penetration length A is larger
than the vortex core radius . In such a superconductor,
the magnetic field penetrates the material as an array of
quantized flux lines (charged vortices). The interaction
between two flux lines is logarithmic for small separations
r;; < Ar but it decays exponentially for separations large
compared to Az, [16]. Apart from overall factors, the in-
teraction energy is proportional to the Bessel function
Ko(rij/AL). Since A2 o 1/e?, where —|e| is the electronic
charge, a neutral superfluid can be considered the limit
of a type-II superconductor as e? — 0 and Az, — oo [16].

A similar description also holds for two-dimensional
vortices in thin superconducting films, as first dis-
cussed by Pearl [17] and subsequently expounded by de
Gennes [18]. In this thin-film geometry, the point vor-
tices interact mainly through the fringing magnetic fields
in the surrounding vacuum. Hence the long-range inter-
action potential varies like 1/7;;, intermediate between
the Inr;; dependence of a neutral superfluid and the
exp(—r;;/A1) dependence of a bulk type-II superconduc-
tor [19]. This latter paper also contains a general discus-
sion of the relation between the hydrodynamic view that
each vortex moves with the local superfluid velocity and
the energy view based on the interaction potential and
the Magnus effect.

IV. DOMAIN WALL OF RELATIVE PHASE

Son and Stephanov [5] emphasize that two uniform
interacting condensates have two basic normal modes,
analogous to those of two coupled pendula, namely in-
phase and out-of-phase. In the first mode, the total den-
sity n couples strongly to the overall phase S7 + Ss; in
the second mode, the density difference n; — ns couples
strongly to the relative phase S; — Ss.

For the in-phase mode, the Euler-Lagrange equa-
tion for the overall phase yields a conservation equa-
tion involving the density-weighted mean phase gradient
n1VS1 + noVS,. Correspondingly, the Euler-Lagrange
equation for n yields a Bernoulli-like equation. Tak-
ing plane-wave amplitudes o e!(¥7=“* and ignoring the
small coupling to the out-of-phase mode give the ex-
pected Bogoliubov dispersion relation i%w? ~ 2exng+ez,
where ¢, = h2k?/(2M) and 6g;2 is ignored relative to the
much larger g. The long-wavelength dispersion relation
is linear, with the usual speed of sound v = y/ng/M, and
the crossover between the two terms determines the heal-
ing length & = %h/\/Mng ~ 0.2 pm quoting the typical

value from SS at the end of Sec. I (note that their defini-
tion for ¢ is smaller by a factor /2 than the conventional
one given near the end of Sec. II).

As emphasized by SS, the out-of-phase mode is more
unusual, for it involves the Rabi coupling that depends
on hQy/ning cos(S; — S2). A similar procedure for
Q = 0 again gives a Bogoliubov dispersion relation with a
smaller squared speed of sound v?y ~ 2(8g12/M) ning/n,
involving the quantity dg12 = g — g12 instead of the usual
interaction constant g. The corresponding healing length
now becomes £15 ~ h\/n/(8M5912n1n2) ~ 3 pm, again
taking the value from SS. When the coherent Rabi cou-
pling Q is added, the out-of-phase mode acquires a fre-
quency gap x /€ dgian/h for small Q [5].

In Sec. III of SS, they study a model with constant
and uniform three-dimensional densities ny and ns, fo-
cusing on the variations in phases over length scales large
compared to £12. The resulting energy-density functional
follows directly from Eq. (1)

2

I}
&[S, 8] = —

oM 1 (V51)2 —+ no (VSQ)2

— hQy/ning cos(S; — Sa2).  (16)

The two phases S; and S5 obey coupled sine-Gordon
equations that occur, for example, in Josephson’s phe-
nomenological field theory of the phase difference be-
tween two superconducting half spaces separated by
a thin insulating layer [20]. In particular, a one-
dimensional domain wall S; — S; = Si5 has the simple
analytic expression

MO n
h ,/n1n27

where y is the coordinate perpendicular to the domain
wall. The thickness £~! of the domain wall is compa-
rable with the Rabi oscillator length lg = /h/(MQ),
which here sets the basic length scale. If the relative
phase starts at 0 for large negative y, then the net change
in relative phase across the domain wall is 27. It is not
difficult to show that the domain wall has a surface ten-
sion (energy per unit area)

o =8hQUgn ("222)3/4 = 8@71("7{;‘2)3/4, (18)

which is Eq. (25) of SS.

Toward the end of Sec. III, SS point out that their ap-
proximation of uniform densities n; and ny fails when
lg < &9, since the full energy functional allows the do-
main wall to unwind. Their App. A studies this problem
of metastability in detail, confirming the above qualita-
tive estimate.

The coherent coupling also can induce time-dependent
Rabi oscillations between the two states i1 and s, as
discussed briefly in SS below their Eq. (10) and seen ex-
perimentally, for example, in [2]. SS include a related

with k% =

Sio(y) = 4arctan e, (17)




effect in their study of the stationary domain wall of rel-
ative phase (Sec. IV), where the total current is con-
served, with the currents of the two components having
opposite contributions that cancel. Our Sec. VI stud-
ies the corresponding behavior for a single trapped vor-
tex in a two-component coherently coupled condensate.
Here, the vorticity transfers coherently and periodically
between the two condensates, with no associated popu-
lation transfer. Section VII studies the population and
vorticity transfer in more detail.

V. TWO VORTICES IN TWO UNBOUNDED
COHERENTLY COUPLED BECS

How does this Rabi-coupling energy affect the mo-
tion of one or more vortices in a uniform two-component
BEC? In the following, we use the time-dependent varia-
tional Lagrangian formalism to provide approximate an-
swers in both limits of large lo = +/hi/(MQ) (namely
weak Rabi coupling) and small I (namely strong Rabi
coupling).

For weak coupling, assume that each component
¥ = /M;e"% has a vortex with winding number ¢; = +1
at the two-dimensional position 7;, with phase given in
Eq. (12). In the absence of coherent Rabi coupling, each
vortex has the familiar phase pattern with radial lines
of constant phase stretching outward from the source at
r;. The kinetic energy of each vortex appears separately
in Eq. (1), so that they are uncoupled, apart from the
small effect of their well-separated cores. A weak Rabi
coupling with lg > rq2 changes this picture only for large
distances, distorting the vortex phase patterns to link the
two vortices with a domain wall of large thickness ~ lq.
In this limit, use the unperturbed phases to compute the
coupling energy [an integral of h{),/ning cos(S;—S2) over
the two-dimensional space]. The resulting coupling en-
ergy Eq is positive and proportional to 7%, with logarith-
mic corrections, leading to an attractive force F' o 7.

In contrast, the strong-coupling energy Fq = orio fol-
lows from the SS analysis quoted above in Eq. (18). We
here study how vortices in coherently coupled BECs re-
spond to such forces. Section IIT of SS argues that on
scales large compared to &1, the density of each com-
ponent can be taken as a spatial constant, so that the
relevant parts of Eq. (1) become

2
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L= —thl — thSQ — mnl (V51)2
2

_ 2%@ (VS2)? + hQy/mingz cos(S) — Sa),  (19)

which here omits any trapping potential.

As a simple and interesting example, consider the case
of a single vortex in each component at r; and ry with
circulations qg; = £1 and ¢go = £1. The time-dependent
part of the Lagrangian obtained by integrating (19) is

like that in Eq. (15)
T:fm(qlnlﬁ><7"1~r1+q2ngﬁ><7"2~r2), (20)

but the two vortices now exist in two different compo-
nents, each with its own number density. In addition,
the integral of the kinetic-energy density [the two terms
proportional to (V.S;)?] yields only the two self-energies,
for there is no term involving V.S; - VS5. Hence these
terms have no effect on the dynamical motion. As a
result, two vortices, one in each component, remain sta-
tionary unless they are coherently coupled by the Rabi
energy

Eq = —hQ w/nlng/dzr cos(S1 — Sa). (21)

Independent of the strength of the coupling, this Rabi
energy Eq(ri12) acts like a two-dimensional central po-
tential, assuming that the system is unbounded and uni-
form (hence translationally invariant). Equations (20)
and (21) yield the Lagrangian L = T — Egq; it determines
the dynamical equation of motion for each vortex. Vortex
1 in component 1 obeys

27rhq1n17'“1 =2z X Flﬂ, (22)
where F{? = —V, Eq. Similarly,
2hgongty = 2 X FY, (23)

where Fs! = —VyEq = —F{%.

By inspection, the motion conserves the vector quan-
tity ¢1mir1 4+ ganaore. In addition, the relative vector
T12 = 11 — T2 obeys the dynamical equation

amt @z ;. opo (24)

T2 =
27hg1q2nine
As a simple example, consider two positive vortices

with ¢ = ¢ = 1. In this case, the corresponding density-

weighted centroid n171 +nory remains fixed. In contrast,
the relative vector rio satisfies
Flo = ———2 X F{, (25)
2whnins

but the details depend on the explicit form of the Rabi

coupling energy Fq(riz).

More generally, for two vortices with unit charges ¢
and ¢o, the center of motion 7, = %(rl + 72) obeys the
dynamical equation

1 qng —qn Q
Tem=— ————2 X F}°. 26
M Anh n1Ng ! (26)
Specifically, for a vortex pair/vortex dipole with
q1 = —qo = 1, this result reduces to
1 no, Q
Pem = —— x F, 27
Tem Arh nine z 1> ( )

leading to a uniform translation perpendicular to the rel-
ative vector rqs.



A. Weak Rabi coupling

If the coherent coupling is weak, namely if
lo = /h/(MQ) is large compared to the intervortex
separation r12 (and 712 > £12), then the phase pattern
of each vortex can be taken as undisturbed over physi-
cally relevant distances. Thus, evaluate the Lagrangian
per unit length L = [d*rL by integrating over an un-
bounded two-dimensional Rabi-coupled two-component
condensate.

In the present limit of weak Rabi coupling, it suffices to
compute the energy E% of the coherent coupling using
the unperturbed phases of each component, where the
product g1g2 = *+1 determines the sign +. Thus, it is
necessary to evaluate the integral

EE = hQ«/inlng/dzr [Cy —cos(S) —S2)],  (28)
J

HQ wuo 2m
Eg = T\/nlng er/ udu/ do
0 0

Here the radial integral diverges logarithmically at the
upper limit and ug is a cutoff parameter.

The angular integral can be evaluated in terms of com-
plete elliptic integrals, and use of Landen’s transforma-
tion in the Appendix gives

4A
Bl ~ ghQ\/nlng 7%y In ( ) , (32)

T12

for two vortices with the same sign, where A is a large-
distance cutoff, either the size of the container or the
condensate.

A similar expansion for two vortices with opposite signs
yields

5.1361A> . (33)

Eg =~ % hQy/ning 12y In <

12

Apart from the logarithmic cutoff, the dominant behavior
is a quadratic (harmonic) dependence on the separation
r1o of the vortices. Note that both results are positive
and attractive (they differ by roughly a factor of 2).

Let F}? = —V1E§ be the force on vortex 1 arising
from the Rabi coupling. This force acts along —ry2, to-
ward vortex 2 and is always attractive. This behavior is
quite different from that for two vortices in classical hy-
drodynamics (or in a one-component condensate), where
the potential in Eq. (7) is proportional to ¢1gs In(1/r12),
namely positive and repulsive for ¢;¢q2 = 1, but negative
and attractive for q1qgo = —1.

where Cy is a constant that eliminates the leading di-
vergence of the integral; it depends only on the product
q1q2: C+ =1but C_ =0.

Comparison with Eq. (12) shows that

cos S = P——y and sinS; = qj%. (29)
J j

To simplify the calculation, choose (z1,y1) = (—%Tlg, 0)
and (z2,y2) = (3712, 0), so that the two vortices are sym-
metrically placed on the = axis with separation ri5. As

a result,

2_ 1,2 2
¥ —3rig Ty

V(@2 + bty +42) —aed,

cos(Sy — Sa) = (30)

To evaluate Eg in (28), use plane polar coordinates
x = rcosf and y = rsinf, and introduce the dimen-
sionless variable u = 2r/ri2, so that

u? (0052 6 =+ sin® 9) -1

Cy—
\/(u2 +1)* — 4u2 cos? 0

(31)

To be specific, consider two positive vortices. The
vector 11 rotates around (niry 4+ nara)/n in a negative
(clockwise) sense at an angular velocity

Qo = —— {m (4A> - 1] ~ —Qln <4A) (34)
2y/ning T12 T12
where the last form holds for n; = ny = n/2, and for
A/ri2 > 1. This rotation is opposite to the sense of rota-
tion for two positive vortices in classical hydrodynamics.
As we will see below, we and Ref. [21] also find a similar
behavior in the strong-coupling limit.

Next consider the two-component analog of a vor-
tex pair with ¢¢ = 1 and ¢ = -—1. In
this case, the density-weighted vector nir; — ngrs
remains constant. In addition, Eq. (27) shows
that the center of motion 7., moves according to
Fem = —3Q(n/\/minz) 2 x r12[In(5.1361A/r12) — 1],
namely in the direction of flow between the two vortices.
This motion has the same sense a vortex pair/dipole in
classical hydrodynamics, but note that r5 itself rotates
according to Eq. (24) unless ny = no.

This dynamical motion for one vortex in each compo-
nent arises from the effective quadratic dependence on
r12 in Egs. (32) and (33). The present approximation
that the phase field of each vortex extends far beyond
their separation distance can be considered a variational
trial function for the Lagrangian L. Hence this behav-
ior should hold for lg 2 712 2 &12. As the Rabi fre-
quency increases (and the Rabi oscillator length I de-
creases), however, the situation becomes quite different,



because the domain wall of relative phase significantly
distorts the separate vortex phase patterns over the scale

lo = /h/(MQ).

B. Strong Rabi coupling

It is interesting also to consider the case of strong Rabi
coupling, when lo < r15. In this limit, the phase differ-
ence S — S5 is confined to the domain wall, and the Rabi
energy becomes Eq =~ oris, where o is the surface en-
ergy in Eq. (18). Correspondingly, the resulting force on
vortex 1 is FlQ = —V1Eq = —0r12/712, again attractive
and along the vector —r15. For two positive vortices, one
in each component, Eq. (24) gives

n g

Z X T12, (35)

T2 = —
ning 2whris

which predicts a rotation rate

on __4\/5%

Qrot = - =
271'77/1117127“12 ™ T12

(36)

in the negative (clockwise) sense. Here, the last form
holds for Ny = Ny = N/2.

Note that this result describes a uniform unbounded
condensate. The Trento group [21] studies two such vor-
tices symmetrically placed in a harmonic trap and finds
the same result for the rotation frequency €2.,; in the
strong-coupling limit [see their Eq. (5), and note that
their d is %ru]. In this strong-Rabi-coupling limit, the
trap has negligible effect on the dynamics. Such agree-
ment lends credence to the present Lagrangian approach.

It is also interesting to consider two oppositely charged
vortices (a vortex pair/vortex dipole, with g1 = —go = 1).
In the presence of coherent coupling, they move uni-
formly in the same direction as classical vortices do be-
cause both situations involve attractive forces. Specifi-
cally, in the strong-coupling regime when the Rabi cou-
pling energy is Eq(r12) =~ oria, Eq. (27) readily yields
the translational speed of the pair

g n

C2V2Qlo . slo
=S =2 ()

Upair =
P 4mh ning

where the last two results hold for n; = ng = n/2, and
T = 27/ is the Rabi period.

Neely et al. [9] have observed similar dynamical motion
for a vortex pair/dipole in single-component 3"Rb disk-
shaped condensate. In practice, the boundaries tend to
dominate the dynamics: in the single-component case, as
the pair approaches the TF radius, the vortices separate
and follow the boundary, eventually reuniting on the op-
posite side. This periodic motion has been observed for
one full cycle.

C. Numerical results

The simulations we show below have been obtained
exploiting a Trotter-Suzuki solver we recently devel-
oped [22, 23]. The Trotter-Suzuki formula provides an
approximation to the operator evolution that preserves
its unitarity, while having a low computational complex-
ity. This results in a stable, high precision and fast evolu-
tion. The code is publicly available under an open source
license and it is written in C++4, with a Python wrap-
per for ease of use [24]. The code has been optimized
to use parallel and distributed computational resources
providing an almost linear scaling across the nodes of a
super-computer. Nonetheless, most of the results pre-
sented here are obtained on a standard desktop machine.
To facilitate reproduction of the results, a complete com-
putational appendix is available online [25].

In this section, we wish to study the motion of two
vortices in a uniform two-component BEC, one vor-
tex per component. We consider equal populations
Ny = Ny = N/2, equal masses and equal intra-
component interaction constants (g11 = g2 = ¢),
and vanishing inter-component interaction constant
(12 = 0). For numerical purposes, we enclose the two
components in a circular well with a hard wall located
at radius R. We chose the radius R to be much greater
than the vortex separation ri2, and we considered rel-
atively strong interactions g;;, so that the vortex core
radius ~ £ is smaller than ri5. In this way, we ensure
that the two vortices are well separated from each other,
and move in a relatively flat density profile.

We initialize the system with two co-rotating vortices
located symmetrically across the center of the container,
at positions (£712/2,0). The vortices, and the corre-
sponding domain wall in the relative phase between them,
are obtained performing a short imaginary time evolu-
tion, which proceeds along the following steps: (i) we
start with normalized wavefunctions which take a con-
stant value inside the circular well, ¥ = 99 = \/1/7R?,
and vanish outside; (ii) we phase-imprint two co-rotating
vortices, one per component, so that ¥; — e*Si ¥, where
S; is given in Eq. (12), and 71 = —r2 = 712/2; (iii) we
start the imaginary time evolution, in the presence of an
additional pinning potential (two sharply peaked gaus-
sians centered at +r1) aimed at keeping the vortex cores
stationary (otherwise, they would approach each other
during the imaginary time evolution). Once the gas has
stabilized, we remove the pinning potential, and we let
the system evolve in real time. The precession frequency
Q.01 of the vector r15 is obtained by averaging typically
over ~ 5 full revolutions. Our results are summarized in
Fig. 1.

At strong Rabi coupling, where I < 712, the preces-
sion frequency is negative (i.e., the vortices precess in a
direction opposite to the one of their circulation), and
it becomes independent of the radius of the container,
nicely converging to the analytical prediction, Eq. (36).
The results are also independent of the strength of the
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Figure 1. (Left) Precession frequency of two co-rotating vortices, one per component. Colors indicate results obtained for
different radii R of the circular container; solid lines are results with £ = r12/10, and dashed ones results with £ = r12/40. The
dash-dotted line is the strong-coupling limit, Eq. (36). The diamonds are instead results for counter-rotating vortices: for large
Rabi coupling vortex-antivortex pairs move uniformly, without precessing. (Right) The same data are plotted with different
axes, to highlight the behavior at weak-coupling. Here w1z = h/M r2,, and the dots are the result expected for a single vortex

in a single component BEC inside a cylinder, Eq. (38).
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Figure 2.  Translational velocity of two oppositely charged

vortices, one in each component, in a circular container of
radius R. The simulation result, shown with diamonds, is
compared to the analytical formula Eq. (37), valid for strong
Rabi coupling.

interaction between atoms if the coherence length is suf-
ficiently small. Indeed, we observe that for very large
Rabi frequency (lg < 712/2) the domain wall between
the vortices rapidly breaks up in the case £ = r12/10,
while it remains relatively stable over the whole fre-
quency range studied when £ = ry5/40. Computations
with small £ are particularly expensive, as they require
a very closely-spaced computational grid to sample cor-
rectly the rapidly-varying vortex core. In order to al-
ways satisfy the inequality lo > £ which ensures sta-
ble domain walls, we therefore considered two values of
the intra-component interaction constants, depending on

the value of lg. In particular, we used £ = r12/10 for
lg > 7’12/2, and f = 7’12/40 for I < 7’12/2.

For weak coupling, instead, our numerical results in-
dicate a behavior that differs from the one discussed in
Sec. VA. The presence of a container (necessary in our
simulations) rules out the observation of the logarithmic
behavior predicted in Eq. (34). At large lg we find that
the precession frequency changes sign and saturates to a
small, positive value, somewhat in agreement with that
found in [21]. For sufficiently large containers, our data
converge to the result expected for a single vortex in a
single component BEC, located inside a cylinder, at dis-
tance r15/2 from its axis. This configuration is discussed,
e.g., in Refs. [26, 27], and the precession frequency is pre-
dicted to be

h

Qro = 357 Do 2 a0
' M(R? —r{,/4)

(38)

a result which is displayed with colored dots in the right
panel of Fig. 1.

Finally, we simulated the case of oppositely charged
vortices, with ¢y = —¢2 = 1. Once more, the simula-
tions reproduce the predicted behavior in considerable
detail. In particular, away from the boundaries the vor-
tex dipole evolves with vanishing precession frequency,
see diamonds in the left panel of Fig. 1. The vortex pair
instead translates uniformly, and in the strong-coupling
limit its velocity converges to the analytical prediction
given in Eq. (37), see Fig. 2. Approaching the edge of
the computational grid, where hard wall boundary con-
ditions are imposed, the dynamics gets however more
involved. In particular, over some long simulations we
observed that two extra vortices are nucleated at the
boundary, and enter the condensate. The new vortices,
one per component, have charges ¢ = —¢go = —1, oppo-



site to the charges of the initial vortices. At this point,
the relative phase displays two narrow domain walls, one
connecting the two vortices with ¢ = ¢2 = 1, and the
other joining the two vortices with ¢ = ¢o = —1. If
the two pairs are sufficiently far apart, these will behave
independently, each pair precessing smoothly around its
own center of mass, as discussed earlier on in this Sec-
tion. In agreement with theory, the pair of positive (neg-
ative) vortices is found to precess in the clockwise (an-
ticlockwise) direction. A video of the complete simula-
tion is available in the Supplemental Material [32]. Note
that this behavior agrees with that predicted by Son and
Stephanov [5], namely that domain walls naturally run
between two same-sign vortices, one in each component.

VI. SINGLE VORTEX IN TRAPPED
TWO-COMPONENT CONDENSATE WITH
COHERENT COUPLING

One other case for coherent Rabi coupling also merits
careful study: a single vortex at 71 with |¢1| = 1 in com-
ponent one of a trapped Thomas-Fermi two-component
condensate. The nonuniform density arising from the
harmonic trap potential exerts a force on the vortex so
that it precesses in the same sense as its circulation, but
the effect of the Rabi-induced harmonic coupling requires
a detailed analysis. In addition, we briefly consider the
similar but simpler case of a vortex in one component of
a two-component condensate with weak interaction con-
stants, where a Gaussian variational trial function is ap-
propriate.

A. Analytical results for strong-coupling
Thomas-Fermi limit

The normalized two-component trial function here has
the form used in studying the motion of a vortex in
a trapped two-dimensional spin-orbit coupled conden-
sate [28]

o)) ().

where S} is the phase given in Eq. (12) for a vortex in
component one at position r; with circulation ¢; and ¢
is an additional phase, initially taken as constant. Our
numerical studies show clearly, however, that ¢ varies
linearly with time, and we henceforth assume ¢ = kt,
where £ is constant.

The evaluation of the trap energy and interaction en-
ergy for g1 = go = g1o = 4mwah?/(vV2rMd,) is given
in [28], yielding the variational estimate

16 Nadi

R* =
vV 27T dz

(40)

for the Thomas-Fermi condensate radius R. Since these
contributions have no effect on the vortex motion, they
are ignored in the subsequent study.

The resulting Lagrangian density (19) now contains
only contributions from the time and space varying phase
S1, and the time-dependent term in the Lagrangian fol-
lows from Eq. (11) of Ref. [28]

2hIN 1
T=— R21q1 (1—21@)7'“1 Xﬁ'?’j
. 1
= —2hN1ql¢1 <u% — 2u‘11) 5 (41)

where we omit a constant term arising from the time de-
pendence of ¢ = xt. Here the second form uses plane
polar coordinates r; = (rq1, ¢1), with w3 = r;/R. Sim-
ilarly, the kinetic energy of the circulating flow around
the vortex follows from Eq. (10) of [28]

2 2\ p2
By = LJ]\; {(1u§)1n [(1;21)3/} +2u? — 1}.
(42)

Finally, the Rabi coupling energy involves the integral
of —hQ /niny cos(S1 — wt). This integral also appears
in the study of vortices in spin-orbit coupled BECs; it
is evaluated in Eqgs. (28) and (29) of [28] for the present
case of a half-quantum vortex, namely one vortex in one
component and no vortex in the other. The resulting
Rabi coupling energy becomes

EQ = hQ\/ N1N2 |f(u1)\ COS(¢1 - ﬂt), (43)
where we have |[f(u1)] ~ jui — cuf and
¢ = 4/3 — 128/(457) ~ 0.428. Note that |f(u1)]
vanishes for u; = 0 and is positive for 0 < u; < 1
(the relevant range). Here the two components have a
relative phase ¢ = xt, and the last factor cos(¢; — kt)
rotates the contours in the center and right part of
Fig. 3 through an angle xt. The total energy is the
sum E = Fi + FEq. Both terms are positive, but Ej is
isotropic and decreases with increasing u;, whereas Eq
contains a factor cos(¢y — kt).

It is convenient to normalize all these terms by the
characteristic energy h2Ny /(M R?), in which case we find
the dimensionless quantity

2MR? . 1
W Q101 (U% - 2“?) . (44)

Po
Similarly, the dimensionless total energy is

E(u1,¢1) = (1—u?) [21n (?) +In(1 — uf)} +2u? -1

MQR? [N,

~ [f(u1)[cos(¢r — kt).  (45)

+ h Ny

The dimensionless Lagrangian thus becomes L =T — E.



Since L does not involve 1y, the Euler-Lagrange equa-
tion for u; takes the simple form OL/Ou; = 0, which
yields the effective precession rate

h aq1 8E

o= TR 2u1 (1 — u2) Ouy

h a1 R 1 2 1
=B () 4 S —ud) - 2
MR21—u2 {n(§>+2 nl-w) =3

Qq Ny d|f (uy)|
Tdu(1- ) \/;1 cos(gy — ) =7 (46)

The corresponding Euler-Lagrange equation for ¢ be-
comes
_ha oF
- 2MR? 2uy(1 —u?) O

Uy

Qq Ny .
= Tma-Vm |f(u1)] sin(gy — kt). (47)

Note that dE/dt = (OUIE) w1 + (8¢1E> él + 8,E no
longer vanishes because of the last term arising from the
explicit time-dependence of ¢. Nevertheless, it is still
instructive to exhibit contours of constant E. Figure 3
shows contour plots of E for Ny = Na, illustrating how
the inclusion of the Rabi coupling term affects these en-
ergy contours. Left side is for MQR?/h = 0, with concen-
tric axisymmetric contours; center is for MQR?/h = 1,
showing displaced nearly circular contours; and right
side is for MQR?/h = 10. Note that in these latter
cases, some or all trajectories will leave the condensate.
For small Rabi coupling with MQR?/h = R?/I3 < 1,
the perturbation has a time-dependent dipolar form
o cos(¢1 — kt), corresponding to a lateral displacement
of the circular contours to first order in the small param-
eter.

The Amherst group [29] has developed a valuable
thermal-quench technique that creates one vortex in
a single-component BEC with probability about 25%.
There is no obvious reason why this rapid thermal-quench
technique should not work for a two-component coher-
ently coupled condensate. It may be simplest first to
create a half-quantum vortex and then turn on the Rabi
coupling, but other experimental options could be prefer-
able.

B. Analytical results for weak-coupling

The previous Sec. VI A used the Thomas-Fermi model,
which applies to a strong-coupling limit with R/d; > 1,
where as before R is the Thomas-Fermi radius and d is
the two-dimensional oscillator length. The present weak-
interaction case involves a quite different approximation,
using the low-lying states of the two-dimensional har-
monic oscillator as a basis [30, 31].

We first examine two vortex-free components that set
the basic energy Fgpg. As before, the condensates are
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assumed to be tightly confined in the axial (perpendicu-
lar) direction. The axial kinetic and trap energy are an
overall shift and will be ignored. The energy functional
is given by

h? 1
EGP = /dQT [m |VJ_\II‘2 + §Mw3_7“2|\1/|2

+ % > gigning — %hQ (Y12 + 11)51#1)}» (48)
i

where ¥ is a two component vector with elements
(th1,12) and n; = [1;]? is the particle density of the ith
component.

In the absence of a vortex, take a normalized gaus-
sian trial function with a variable radius scaled by the
parameter (3

Evaluating the ground-state energy is straightforward
and gives

hw, N 1
Ecpo = QL (52+ ;;g)_hQ\/NlNz, (50)

where the first term (in parenthesis) is the trap energy,
the kinetic energy, and the interaction energy, and the
Rabi energy is simply another constant shift. The di-
mensionless interaction contribution is

1
-~ 27wd? hw N

g (911NT + g22N3 + 2912 N1 N2) . (51)

Minimization with respect to 8 readily yields the ex-
pansion parameter

gr=1+6, (52)

which replaces Eq. (40) for the ratio R*/d* in the TF
version. As a variational treatment, this value of 3 is
chosen as fixed even in the presence of a vortex. Note
that positive interactions indeed expand the condensate.
In the limit of large G, the kinetic energy is negligible,
and this model becomes a gaussian approximation for the
TF limit.

For a TF condensate, the vortex core size (~ & < d])
is the small healing length. Hence the main effect is the
phase 57 associated with a vortex. For the weak-coupling
case, however, the core size is comparable with the trap
oscillator length d, which effectively replaces the heal-
ing length when gn < p ~ hAw, in a one-component
condensate. Use the normalized one-component ground
state xo(r) = (diBv/m) Lexp(—r?/2d% 3?), and the
first excited state with a central positive vortex
xi1(r) = (2/diB)xo(r), where z = z + iy = re®. A
linear combination of these two states o« (z — 2z1)xo char-
acterizes a single vortex located at z; = x1 +iy; = r1e*®!
in plane-polar coordinates. Note that this state has a
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Figure 3. Contours of equal dimensionless energy F, for N1 = N», ¢ = 0, and R/¢ = 5. From left to right, MQR?*/h = 0, 1, 10.

For ¢ # 0, the contours would be rotated in the plane by an angle ¢.

node at z = z1, and the phase of the wave function in-
creases by 27 on once encircling the node in the positive
sense.

Introduce dimensionless units with d; as the length
scale, hw as the energy scale and wj_l as the time scale.
In this way, the trial state ¥;(r) for a vortex in com-
ponent 1 located at complex coordinate z; has the two
normalized components

VN
hin) = e () e
B\ B% +riym
BT

where again ¢ = st based on our numerical studies.

With the same dimensionless variables, and omitting
a constant term arising from the time dependence of
¢ = kt, the time-dependent part of the Lagrangian in-
volves only 911 /0t, and one finds

Ual(r) e~ /287 oid (53)

~ Nur} 941
B2+r? ot

= (54)
this expression should be compared with Eq. (41) for the
TF limit, especially the last form (note that w; there is
effectively r1 here, and that the extra quartic term there
reflects the TF condensate profile).

The relevant GP vortex energy for a weak-coupling
system is the difference between the GP energy Fgpi
evaluated with ¥y in (48) and the ground-state energy
Eq. (50). A straightforward analysis gives

v N(A+8Y) g1,
F2( ) 20842

g1N? 5°
4(82+r2)’2m
—_———

kinetic+trap interspecies intraspecies
| N1Np
+Q —52 2 71 COS(¢1 - ’it) . (55)
1

Rabi

Thus the total Lagrangian for the vortex dynamics has
the same form as in the TF limit

L=T - Egp, (56)

where T follows from Eq. (54).

The Euler-Lagrange equations for L readily provide
the dynamical equations for the motion of the vortex in
this weak-coupling model

gy (B2+r)? OEY,

dt - 2N1ﬁ27”1 87“1
_ 148t geNe g1
232 432 4Am(B2 +r?)

SN R " cos(ér —nt)  (57)

VW, L cos ¢1 — Kt

and

dri (8 +1r1)* OEp
dt — 2N1B%r1 Oy

Q /N
=2 Fi (8% +73)%? sin(¢1 — Kt). (58)

If there is no Rabi coupling, then Eq. (57) shows that
the vortex orbits are concentric circles. Evidently, repul-
sive interactions act to reduce the precession frequency,
and the details depend on the assumed values for the
set g;;. Note that the precession frequency in the TF
limit is of order /(M R?)In(R/£), which is much smaller
than h/(Md?) = w,, so that such a reduction is to be
expected. It is intriguing to observe that attractive in-
teractions (with negative g;;) would act to increase the
precession frequency. Whether such an effect would be
observable remains an open question.



C. Numerical results

To illustrate the coherent oscillations of vortic-
ity induced by the Rabi coupling €, we con-
sider a two-component BEC with equal populations
(N1 = Ny = N/2), interaction strengths characterized
by g12 = g, in a two-dimensional harmonic trap of fre-
quency w, . We prepare the system by phase-imprinting a
single vortex with positive circulation in the center of the
first component, and we find the corresponding ground
state by performing a short evolution in imaginary time
in absence of Rabi coupling, which allows the formation
of a vortex core with the suitable profile at the center of
the first component. After equilibration, we switch on
the Rabi coupling, and let the system evolve in real time
for a variable time ¢ > 0.

The dynamics we observe is summarized in Fig. 4. In
the simulation, we have chosen a Rabi coupling such that
R%*/13 ~ 10. At t = 0, the vortex core starts at the
center of the first cloud. As time progresses, we observe
that the vortex core slowly drifts towards the edge of
the first component, and exits the first component to
reappear almost simultaneously in the second. A pair
of vortices, one in each component, is actually visible
for a brief interval of time centered around (2n + 1)T'/4,
with n = 0,1,2,..., where T = 27/Q. After half a Rabi
period (i.e., at t = T/2, as shown in the central row of
the Fig. 4), the vortex core sits right in the middle of na,
and after a full Rabi cycle the vortex has returned to its
starting position, at the center of ny (bottom row of the
Fig. 4). This coherent transfer of vorticity repeats itself
rather uniformly over time. In various simulations, we
have for example observed ten complete cycles. Related
effects have been discussed theoretically in toroidal traps
in Ref. [8], and in harmonic traps in Ref. [21].

In each panel of Fig. 4, we plot also the analytical
prediction for the trajectory of the vortex (continuous
lines), as given by Eqgs. (46) and (47). In this case, the
analytical equations were solved using k = 0.485w , the
value which minimizes the mismatch between the simu-
lated and analytical trajectories over five Rabi periods.
The vortex core follows very closely the analytical trajec-
tory, with a slight mismatch only visible at the border of
the condensate, where the Thomas-Fermi approximation
is not appropriate.

In the case of weaker interactions, we observe a very
similar dynamics, displaying coherent transfer of vortic-
ity over many periods. An example of weak coupling
dynamics is shown in Fig. 5. Here, the analytical tra-
jectories of the vortices are given by the solution of Egs.
(57) and (58), and we have chosen x = 0.93 to mini-
mize the difference between the predicted and simulated
trajectories over five Rabi periods.

We wish now to discuss the dependence of k on the
interaction strength. In Egs. (39) and (53) we intro-
duced ¢, the “global” phase difference between the two
components. To a first approximation, ¢ varies in time
due to the energy difference between the first and sec-
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ond component: ¢ = AFEt/h. In the limit gN = 0,
the second component is in the ground state with en-
ergy hw, , whereas the first has a vortex and its energy is
2fiw, , hence AE = hw, . In general, the vortex energy in
the weak-coupling limit is fiw, = h?/(Md?%). In the TF
limit, it is ~ Ch?/(M R?) where R is the TF radius and C
is an overall numerical factor that depends on the density
profile and a slowly varying logarithmic factor log(R/£).
In our model, R*/d% is given by the dimensionless ratio

ey
d‘j__ﬂ Rz

(59)

which is small in the weak-coupling limit and large in the
TF limit. A simple interpolation formula gives

AE = i = o,
M\/d%{ + R*/C? \/1+ R*/(d}C?)
hw

(60)

~ /11 4gNM/(xh2C?)

Numerically, as we show in Fig. 6, we find indeed that x
monotonically decreases with increasing interactions, and
it doesn’t depend pronouncedly on the Rabi frequency §2.
Assuming that AE = hx and C = 4, Eq. (60) is in a very
good agreement with our simulations.

As discussed in section VI A, the vortex energy is time
dependent, and its evolution is shown in Fig. 7. Note
the close agreement between the analytical expression
Eq. (45) evaluated at the instantaneous position in each
component and the corresponding simulated results.

When g12 < g, we observe instead a departure from
the coherent behavior observed here. In analogy with the
results from Ref. [8], we find that the system first displays
incoherent features (such as delays in the vortex trans-
fer, and trajectories which do not cross the cloud center),
and for sufficiently large g, and small g;2, the system fi-
nally enters a regime of “vortex trapping”, where a vor-
tex initially present inside a given component remains
forever inside that same one. A sample video of inco-
herent dynamics, obtained with parameters as in Fig. 4
but choosing this time g1 = ¢/5, may be found in the
Supplemental Material [32].

VII. DYNAMICS OF THE COHERENT
TRANSFER OF POPULATION

We wish to study here the transfer of population (or
“pseudo-spin dynamics”) induced by a coherent Rabi
coupling in a two-component BEC, comparing specifi-
cally the case where both components have a uniform
phase to the case where one component contains a vor-
tex. Following Ref. [33], we introduce the Ansatz for the
two components’ wave function

V1(t, 1) = /N1 (1)1 Db, (r),
Yot 1) = /No(t)e 2D dy (1), (61)
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Figure 4. Transfer of vorticity in a harmonically trapped two-component BEC, in the presence of a Rabi frequency 2 = 2w, .
In this simulation we used a relatively strong coupling, gN = gi2IN = 40h2/M7 so that Rz/lgz ~ 10 and (R/dl)4 =~ 50. From
left to right, the columns show, respectively, the particle densities n1 and mn2, the phase Si of ¥1, and the phase difference
S1 — Sz at given times: from top to bottom, ¢/7° = {0, 0.25, 0.5, 0.75, 1}, with T" = 27/Q the Rabi period. Markers indicate
the trajectory of the vortex core, up to the time at which the screenshot is taken (circles and squares for vortex core in first and
second component respectively). The color of the markers indicate at what (past) time the core was at that specific position.
Top row: initial condition, with a vortex at the center of the first component. Second row: the system imaged after one
quarter of a Rabi period (¢ = T'/4). The vortex core follows the trajectory marked by the symbols: from black (¢t = 0) to gray
(t =1T/4), it travels until the edge of the first component; just before t = T'/4, while the first vortex is still inside the first cloud,
a second vortex enters the second cloud, and a domain wall in the relative phase is clearly visible in the fourth column. Third
row: after half a Rabi period (¢ = 7'/2), the first vortex has completely disappeared from the first component, while the new
one gradually migrates to the center of the second component. Fourth row: at ¢ = 37/4, two vortices are again visible, one
in each component, with a domain wall in-between them. Bottom row: after a full Rabi period (¢ = T'), the vortex leaves the
second component, reappears inside the first, and returns back to its center. Continuous lines show the predicted trajectory
given by Eqs. (46) and (47), for k = 0.485w, . A video of the complete simulation, running over five full Rabi cycles, is available
in the Supplemental Material [32].
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Figure 5. Dynamics at weak-coupling (¢N = g1oN = 2h?/M): from left to right, we show the particle densities and phases
of first and second component of the BEC, after an evolution of half a Rabi period. Markers depict the numerical vortex
trajectory, while continuous lines show the predicted trajectory as given by Eqgs. (57) and (58). The Rabi frequency is set to

Q) =2w,, as in Fig. 4.
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Figure 6. Dependence of k on the coupling gN. Dots repre-
sent the values of xk that minimize the difference between the
simulated trajectories, and the ones predicted by Egs. (57)-
(58) for the weak coupling regime (gN < 20h?/M), or Egs.
(46)-(47) for the strong coupling regime (gN > 20%%/M). For
gN < 201 /M we used Q = 2w, , whereas for gN > 20k /M
we used Q = 2w, /5. In all simulations we used gi12 = g. We
do not see variation of x for different values of €2, and our re-
sults are in close agreement with Eq. (60), plotted here with
C = 4 as a continuous line.

with real ®;(r). Inserting this Ansatz in the coupled GP
equations, one may derive Josephson-type equations of
motion for the population imbalance n = (Ny — Ny)/N
and relative phase S = Sy — Sy:

d

—n = —k(1—n*)""?sin(S) = f(n,9), (62)
d

8= —(n2 =) + k(1 — n?) "2 cos(S) = g(n, S),

where k = —Q [ d?r ®;(r)®2(r) is proportional to the
Rabi frequency, and to the spatial overlap of the compo-

ISy
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1.0 e 1o & Simulated—Component2 |
_15 I I T T
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Figure 7. The vortex energy E, given by Eq. (45), is evaluated
at the vortex core as a function of time for the simulation
shown in Fig. 4. The blue and green lines depict, respectively,
the vortex energy E in component 1 and 2, evaluated at the
solutions of Egs. (46) and (47), using x = 0.485w,. Dots
represent E computed using the position of the vortex given
by the GPE simulation.

nents. Taking the second derivative of n we have
d? 7
— =k

dt? A/1 — 772

and using once more Eqs. (62) we find the alternative,
more transparent equation

nsin(S) — kcos(S)y/1 —n2S  (63)

d2

2" = R+ (2 — p)kV/1 = n? cos(S). (64)

In uniform space, we have pa — 1 = (g — g12)nn, with
n = N/V. It is now not difficult to show that Egs. (62)
support two kind of solutions: harmonic oscillations of
the population imbalance when (g—g12)n(0) cos S(0) < k,
and anharmonic ones otherwise. The latter are still peri-
odic, but display 4 changes of curvature per period; see,
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Figure 8. Pseudo-spin oscillation of Rabi-coupled BECs, ob-
tained by the numerical solution of the coupled GP equations
in a square box of area L?. As initial conditions we take the
ground state of the uncoupled BECs with N1 = Ny = N/2,
gN = 40h*/M and T = 27/Q = M L?/h. (Top) Dynam-
ics of the population imbalance n with g = g12, for various
values of the initial phase difference S(0). (Bottom) Evolu-
tion of the population imbalance n at fixed phase difference
S(0) = /6, for different values of the inter-species interaction
g12; the pseudo-spin oscillations become perfectly harmonic in
the SU(2)-invariant case gi2 = g.

e.g., the thin blue line in the bottom panel of Fig. 8.
Moreover, for a gas with SU(2)-invariant interactions
(i.e., with g12 = g) these equations predict that the
gas will perform undamped harmonic oscillations with
frequency exactly equal to €2. This dynamics is shown
in Fig. 8, where we evolved an untrapped system in
imaginary-time, reaching the ground state, and then let
it evolve. Our simulations follow very closely the predic-
tions of Egs. (62). Whenever g12 < g, we see periodic os-
cillations of the population imbalance, that become har-
monic and with frequency 2 for g1o = g. The amplitude
of the oscillation depends on the phase difference between
the two components. In particular when g5 = g the dy-
namics of 7 is identical to the one for a system with no
interaction: the amplitude of the oscillations is propor-
tional to sin S(0), and the period coincides with 27/,
as shown in Figs. 8.

Harmonic oscillations of the population difference
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0 0.25 0.5 0.75 1
t/T

Figure 9. Evolution of population imbalance n and rel-
ative phase S for two Rabi-coupled BECs in a harmonic
trap. The results of our simulations, shown with symbols,
are compared with equations (62), shown as lines. As ini-
tial conditions we took the ground state of the uncoupled
BECs with N; = Ny = N/2 and S(0) = =/3. Here
gN = gi2N = 40h*/M and T = 7/w.

appear also when an interacting gas is harmonically
trapped. Figure 9 illustrates such scenario, and our sim-
ulation is seen to be in perfect agreement with Egs. (62),
with ®;(r) the ground state wave function of the har-
monic oscillator in component 1.

Finally we compare the case of uniform phases with the
one where a single vortex is imprinted in a given trapped
TF component. Our results are summarized in Fig. 10.
Here, we have chosen the same interaction strengths and
Rabi coupling as in Fig. 4. The continuous lines show
the time dependence of the population of the first com-
ponent when no vortex is present at ¢ = 0: the rela-
tive phase is in this case homogeneous across the cloud
so that, in analogy with that observed previously, pro-
nounced oscillations are observed when S(0) = /2 (blue
line); the oscillations instead disappear when S(0) = 0, as
their amplitude is proportional to sin(S(0)). The dotted
line displays instead the evolution observed after phase-
imprinting a vortex in the first component: the coherent
transfer of vorticity observed in Fig. 4 happens, to a very
good approximation, in the absence of pseudo-spin oscil-
lations. This absence may be understood by observing
that, in the presence of vortices, it becomes impossible
to define a global relative phase between the two com-
ponents. A relative phase may still be defined locally,
but the latter will evolve uniformly from 0 to 27 along
a path encircling the origin, so that on one side of the
trap center one will find coherent transfer of particles
from component 1 to 2, while an opposite and (approxi-
mately) equal transfer will happen on the opposite side,
yielding a globally vanishing pseudo-spin oscillation.
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Figure 10. Pseudo-spin oscillations in the presence of both
trapping and interactions. The dotted line displays the pop-
ulation imbalance n for the simulation shown in Fig. 4: the
transfer of vorticity we observed there happens in complete
absence of population transfer. For comparison, the lines
show the evolution obtained starting from the same initial
conditions, but without vortices in either component: green
and blue lines represent, respectively, the cases where the rel-
ative phase at t = 0 is 0, and 7/2.

VIII. DISCUSSION AND CONCLUSIONS

The present consideration of vortex dynamics starts
from classical hydrodynamics and then introduces the
idea of logarithmic vortex interactions. In contrast, the
time-dependent variational Lagrangian formalism focuses
on the phase S of the condensate wave function for var-
ious components, and it is worth examining this aspect
in more detail.

The simplified Lagrangian density in (19) studies the
phase of each condensate S7 and Sy, omitting any spatial
and temporal variation in the densities n; and ns along
with the trap potential. The time derivatives yield the
time-dependent term 7 in the Lagrangian, L = T — E,
and the gradient terms yield the kinetic term in the GP
energy Fgp. In the limit of relatively weak Rabi rf cou-
pling (Ig 2 r12), it is natural to assume that the phase
functions are those of the pure vortex with S;[r — r;(t)]
from Eq. (12). As a result, the time derivative becomes
S"j = —7; - VS;. Thus VS; determines both the time
term 7T and the kinetic energy part of £ in the Lagrangian
L=T-FE.

The presence of Rabi rf coupling alters this picture
because it provides an additional term F¢ in the energy.
This energy gives rise to an additional force F, = —V Eq
with different dependence on the vortex separation and
even a different sign from that arising from the intervor-
tex potential. Indeed, for two positive vortices, one in
each component of a two-component unbounded conden-
sate, the rotation rate is in the negative sense. In con-
trast, two positive vortices in classical hydrodynamics or
in a one-component BEC would rotate in the positive
sense.
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The picture changes significantly for strong Rabi cou-
pling lg < r;; for uniform condensates (or lg S R for TF
trapped condensates). The coupling energy now varies
linearly with the vortex separation, and the rotation fre-
quency in (36) agrees with that found with somewhat
different methods by the Trento group [21].

The results of our numerical simulations closely match
the theoretical derivations. In particular, we have verified
that the rotation frequency of a pair of positive vortices
changes sign as a function of the applied Rabi frequency,
and our results converge to the theoretical prediction of
the Lagrangian formulation at strong Rabi coupling, and
to the value expected for single off-centered vortices in a
cylindrical container in the opposite limit of weak Rabi
coupling.

Moreover, we have verified that if a single vortex is
imprinted in only one of the components, the Rabi cou-
pling drives an interesting dynamics, where the vortex is
coherently transferred from one component to the other.
Finally, we have shown that this coherent transfer of vor-
ticity happens with no transfer of population.

The numerical results rely on an open source li-
brary [24], and we wish to promote the practice of open
science by making the steps involved in the simulations
available online [25]. This will ensure a straightforward
reproduction of the plots, and we also hope that it will
make it easier to extend our work.
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APPENDIX

This Appendix provides an analytical derivation of the
results given in Egs. (32) and (33). It involves Landen
transformations for complete elliptic integrals. For the
g1g2 = + case, a change of variable § = 7/2 — x and
symmetry yield the relevant dimensionless integral

1 u? —1 1
u? +1 1 — k2sin® y

uo 2_1
:4/ udu E—uziK
0 2 w+1

where ug = 2A/r12. Here K(k) is the complete elliptic
integral of the first kind and k = 2u/(1 + u?) [note that
K (k) is the usual notation in mathematics, but it dif-
fers from EllipticK(k?) in Mathematica, which uses the
variable k? instead of k].

Elliptic integrals obey identities known as Landen
transformations [34]. For a given k < 1, they involve
the sequence of transformations k' = /1 — k2 followed
by k1 = (1 —k')/(1 + k’). For example, if u* < 1,

). (65)

K (1_2:‘”2> — (1 +u?)K (), (66)

whereas if u2 > 1,

K (&) — (1 +u K (u?), (67)

These results allow the previous integral to be rewritten
in a different form (it is necessary to separate the two
regions v < 1 and w > 1, and the latter contains the
cutoff) T+ =71 + 73

The first integral is straightforward (change variable
to v = u?) and is simply a number

Ij:Q/ldu [§+K(v)—vK(v)} — 714G —2, (68)
0

where G ~ 0.91597 is Catalan’s constant [35]. For the
second integral, the new variable v = u ™2 gives

1
Ii:2/ dv{WK(v)+

-2 202 v2

Kf}”)] . (69)

In the limit ug — oo, the first two terms give a convergent
integral fol dvv=2[r — 2K (v)] = —m + 2. The last term
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can be written

1
e 2/ dv [K(’U) - g} +27 Inug = 27 In 2—4G+27 In uy.
O v

The sum of all the various terms gives the final result
It =~ 2mIn(2ug) =~ 2w In(4A/r12), leading to Eq. (32).

For the other integral Z—, the same change of variable
0 =m/2— x gives

ug /2 1 1 2_22-2
I_:4/ udu/ dx |1— tu 4o X
0 o u? +1

V1 —k2sin? x

A bit of algebra shows that
uo
- = 2/ wdu [(1— w?)E(k) + (1 + ?)K k)], (70)
0

where, as before, ug = 2A/r12, k = 2u/(u?+1), and E(k)
is the complete elliptic integral of the second kind.
The Landen transformation [34] now
Ek) = (1 + K)E(k) — K K(k).

u? <1,

gives
In particular, if

2[1—=w?)E(k) + (1 +u*)K (k)] =4E(wW?).  (71)
In contrast, if u? > 1, a similar analysis gives

2[(1 = w)B() + (1 + u*) K (k)] =

—4 {UQE (;2) + 1;2“41( (:2)} . (72)

Hence 7= = I +I<, and the second piece again contains
the divergent logarithmic part.

The first integral is a known quantity, and the variable
v = u? gives

1
1= 2/ dv E(v) =1+ 2G ~ 2.83193. (73)
0

For the second integral, the substitution v = 1/u? yields
a logarithmic divergence near the origin. An expansion of
the integrand for small v gives the approximate behavior
that can be added and subtracted. In this way,

2

15 ~ /1 = {E(v) + (0= DE(v) — %

+ 7 ln(up).

Here, the first integral is finite, and the second term is
the logarithmic leading contribution 7 In(2A/r12). Nu-
merical integration gives Z3 ~ 0.131053 + 7w In(2A/r12).
The sum of these various terms yields

I~ = 7wln(2A/r12) + 2.96298 ~ 7 1n(5.1361A /712),

which is the value quoted in Eq. (33).
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See https://wuw.youtube. com/watch?v=hKxT-qv4oHI for a video displaying a complete simulation of dynamics
of two counter-rotating vortices, one in each component (¢; = —qa = 1), with lg/r12 = 0.5 and r12/£ = 10. The unit
of length in this simulation is 15, the distance between the two vortices at ¢t = 0.

Moreover, see https://www.youtube.com/watch?v=LGyrvHOQUDk for a video displaying a complete simulation of
coherent evolution of a single vortex in a two-component condensate with g2 = g, and https://www.youtube.
com/watch?v=ebD7LUmnLRJ4 for a video of incoherent evolution obtained with a smaller inter-component interaction,
g12 = ¢/5. In both these videos, all other parameters are set as in Fig. 4.
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