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Entanglement is one of the most studied properties of quantum mechanics for its application in quantum
information protocols. Nevertheless, detecting the presence of entanglement in large multipartite sates keeps
being a great challenge both from the theoretical and the experimental point of view. Most of the known
methods either have computational costs that scale inefficiently with the number of parties or require more
information on the state than what is attainable in every-day experiments. We introduce a new technique for
entanglement detection that provides several important advantages in these respects. First, its scales efficiently
with the number of parties, thus allowing for application to systems composed by up to few tens of parties.
Second, it needs only the knowledge of a subset of all possible measurements on the state, therefore being
apt for experimental implementation. Moreover, since it is based on the detection of nonlocality, our method
is device-independent. We report several examples of its implementation for well-known multipartite states,
showing that the introduced technique has a promising range of applications.

I. INTRODUCTION

Entanglement is the key ingredient for several proto-
cols in quantum information theory, such as quantum tele-
portation [1], quantum key distribution [2], measurement
based quantum computation [3] and quantum metrology
schemes [4]. Therefore, developing techniques to detect the
presence of entanglement in quantum states is crucial. In the
past years several methods have been introduced. However
their application to large multipartite systems turns out to be
impractical, both from the theoretical and experimental side.

The most general way to detect entanglement in a given sys-
tem consists of reconstructing its quantum state using tomog-
raphy and then applying any entanglement criterion to the re-
sulting state [5]. This, however, is costly both from an exper-
imental and a theoretical perspective. First, determining the
state of large quantum systems is impractical in experiments,
given that quantum tomography implies measuring a number
of observables that increases exponentially with the number
of systems, e.g., 3"V observables even in the simplest case of
N qubits [6]. Second, determining whether an arbitrary state
is entangled is known to be a hard problem — to the best of
our knowledge, the computational resources of the most ef-
ficient known algorithm scales as O(N exp N) [7]. Due to
these problems, it is desirable to develop entanglement detec-
tion techniques for which the experimental and computational
requirements scale efficiently with the size and dimensionality
of the systems.

One possible approach is to make use of entanglement wit-
nesses. These are criteria for detecting entanglement that re-
quire measuring only some expectation values of local ob-
servables [8]. In particular, attempts have been made to de-
rive witnesses that adapt to the available set of data [9], espe-
cially involving only two-body correlators [10] or a few global
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measurements [11, 12]. Moreover, a decisive step forward in
the direction of efficient multipartite entanglement witnessing
has been recently presented in [13]. It consists of a general
technique to derive witnesses that require a number of mea-
surement that does not scale with the number of particles in
the system. Nonetheless, entanglement witnesses constitute a
method that lacks generality, given that the known witnesses
are generally tailored to detect very specific states.

A qualitatively different approach is based on Bell nonlo-
cality [14]. The violation of a Bell inequality provides a cer-
tificate of the entanglement in the state. Moreover, it has the
advantage that it can be assessed in a device-independent man-
ner, i.e. without making any assumption on the actual exper-
imental implementation [15]. In the general case, verifying
whether a set of observed correlations violates some Bell in-
equality can be done via linear programming [16]. However,
the number of variables involved grows as 4 already for the
simplest scenarios where only two dichotomic measurements
per party are applied [15].

Here we present a novel technique for device-independent
detection of entanglement that is efficient both experimentally
and computationally. On the one hand, it requires the knowl-
edge of a subset of all possible measurements, most of them
consisting of few-body correlation functions, which makes it
suitable for practical implementations. On the other hand, it
can be applied to any set of observed correlations and can be
implemented by semi-definite programming involving a num-
ber of variables that grows polynomially with N. Of course,
all these nice properties become possible only because our
method for entanglement detection is a relaxation of the ini-
tial hard problem. However, and despite being a relaxation,
we demonstrate the power of our approach by showing how
it can be successfully applied to several physically relevant
examples.

This article is organized as follows: in Section II and III
we introduce the basic idea of the method together with the
application to a simple scenario. Section IV is devoted to the
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presentation of its geometrical interpretation together with the
comparison to the other techniques. In Section V and VI we
list some examples of application of the method to relevant
classes of states. Lastly, Section VII contains conclusions and
some future perspectives.

II. THE METHOD

We consider an entanglement detection scenario in which
N observers, denoted by Aj,..., Ay, share an N-partite
quantum state py. Each A; performs m possible measure-
ments, each having d outcomes. We represent the measure-
ment of party i by Mgi, where z; € {0,...,m — 1} denotes
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the measurement choice and a; € {0, ...,d — 1} is the corre-
sponding outcomes.

By repeating the experiment sufficiently many times, the
observers can estimate the conditional probabilities

p(al, . .,(J/N|I17 .. .,.’L‘N) = tI‘(M;lll X...Q ]\4;2]\7\[,0]\1)7 (1)

of getting the different outcomes depending on the measure-
ments they have performed. The conditional probability dis-
tribution p(ay,...,an|x1,...,2N) describes the correlations
observed among the observers when applying the local mea-
surements M7 on the state py.

Our method is based on the following chain of implications,
proven below:

A quantum state py is separable

Any local measurements performed on it produce correlations that have a local model

Local correlations can always be realized by performing commuting local measurements on a quantum state

Correlations with commuting measurements define a positive moment matrix with constraints associated to the commutation

Let us now explain all these implications in detail.

First, given a separable quantum state, ie. py =
2o pfi, any set of conditional probability distribu-
tions obtained after performing local measurements on it ad-
mits a decomposition of the following form

plat,..,an|x1,...,xN) = ZpAtr(®Mg: ®pfi)
A i

N
= ZPA Hp(ailwi,)\), 2)
A =1

where p(a;|z;, \) = tr(ngpf"’). In the context of Bell non-
locality, distributions that can be written in this form are called
local [15]. Local correlations do not violate any Bell inequal-
ity. If the set of observed distributions (1) is nonlocal, we can
conclude that the shared state is entangled.

The second ingredient is that any local set of probability
distributions has a quantum realization in terms of local com-
muting measurements applied to a quantum state [17]. In or-
der to see it more explicitly we first realise that any decompo-
sition of the form (2) can be rewritten as

N
p(al,...,aN|J;1,...,xN)=Zq>\HD(ai\x,-,)\) 3)
A i=1

where D(a;|x;, \) are deterministic functions that give a fixed
outcome a for each measurement, i.e. D(a;|7i, \) = 4, A(z,)»
such that a; = A(x;), being A(+) a function from {0, ..., m —
1} to {0,...,d — 1} [15]. Tt is easy to see that any such
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decomposition can be reproduced by choosing the multipar-
tite state px = Y, g |\)(A\|®" and measurement operators
of the form Mg: = 3\, D(a;|x;, A")|N')(X|. In particular,
(M), M) =0V i 2y, and 2],

The last step consists in using a modified version of the
Navascues-Pironio-Acin (NPA) hierarchy [18, 19] that takes
into account the commutativity of the local measurements to
test if the observed probability distribution is local (a similar
idea was introduced in the context of quantum steering [20]
— see also [21]). The NPA hierarchy consists of a sequence
of tests aimed at certifying if a given set of probability distri-
butions has a quantum realisation (1). In NPA one imposes
the commutativity of the measurements between the distant
parties. Now, we will impose the extra constraints that the
local measurements on each party also commute. The result-
ing SDP hierarchy is nothing but an application in this context
of the more general method for polynomial optimization over
non-commuting variables introduced in [22], see also [23]. As
noticed there, by imposing commutativity of all the variables
this general hierarchy reduces to the well-known Lassere hi-
erarchy, namely the relaxation for polynomial optimization of
commuting variables [24]. An application of this relaxation
technique to describe local correlations was also proposed
in [25]. However, to the best of our knowledge, no systematic
analysis of its application to multipartite scenarios has been
considered so far.

It is convenient for what follows to recall the main ingre-
dients of the NPA hierarchy [18, 19], which, as said, was de-
signed to characterize probability distributions with a quan-
tum realisation (1). Consider a set O, composed by some



products of the measurements operators { M } or linear com-
binations of them. By indexing the elements in the set as
O, with ¢ = 1,...k, we introduce the so-called moment
matrix I' as the k£ x k matrix whose entries are defined by
Iy = tr(pNOI ;). For any choice of measurements and
state, it can be shown that I' satisfies the following proper-
ties: 1) it is positive semidefinite, ii) its entries satisfy a series
of linear constraints associated to the commutation relations
among measurement operators by different parties and the fact
that they correspond to projectors, iii) some of its entries can
be computed form the observed probability distribution (1),
iv) some of its entries correspond to unobservable numbers
(e.g. when O; and Oj; involve non-commuting observables).
Based on these facts one can define a hierarchy of tests to
check whether a given set of correlations has a quantum reali-
sation. One first defines the sets O,, composed of products of
at most v of the measurement operators, and creates the cor-
responding I' matrix using the set of correlations and leaving
the unknown ones as variables. Then one seeks for values for
these variables that could make the I' positive. This problem
constitutes a semidefinite program (SDP), for which some ef-
ficient solving algorithms are known [26]. If no such values
are found this means that the set of correlations used does not
have a quantum realisation. By increasing the value of v, one
gets a sequence of stricter and stricter ways of testing the be-
longing of a distribution to the quantum set.

We can now use the same idea to define a hierarchy of con-
ditions to test whether a given set of correlations has a quan-
tum realisations with commuting measurements. To do so
we simply impose additional linear constraints on the entries
of the moment matrix resulting from assuming that the local
measurements also commute (for a more detailed discussion,
we refer to Appendix A). Thus, given a set of observed prob-
ability distributions one can use them to build an NPA-type
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matrix with the additional linear constraints associated to the
local commutation relations, and run an SDP to check its pos-
itivity to certify if the considered set of correlations can not be
obtained by measuring a separable state. The convergence of
the method follows from the results in [19, 22] and, therefore,
any nonlocal correlation would fail the SDP test at a finite step
of the sequence.

Depending on the level of the hierarchy, one might not need
the knowledge of the full probability distribution. To make
this clearer, let us define the marginal distributions

p(ail, vy aik |$i1 yos .l‘ik) = tI‘(M;:ll ® . ® M;Z:: pi1,...,ik)

“)
where 0 < i) < ... <4 < N,1 <k < Nandp;, ., is
the reduced state of py corresponding to the considered sub-
set of parties. Marginals can equivalently be obtained from
the full distribution (1) by summing over the remaining out-
comes. By looking at (4), it is evident that to define a marginal
distribution involving k parties one requires the product of k
measurements M7i. Now, given that the operators of the set
O, contain products of at most v measurement operators, the
terms in the moment matrix at level v can only coincide with
the marginals of the observed distribution of up to £ = 2v par-
ties. Therefore, in the multipartite setting, fixing the level of
the hierarchy is also a way to limit the order of the marginals
that can be assigned in the moment matrix.

We conclude this section by introducing a bit more of no-
tation, motivated by the fact that, while our method is gen-
eral and applies to any Bell scenario, in what follows we
are mostly going to consider scenarios involving two-output
measurements (resulting from projective measurements per-
formed on qubits). Then, all the information in the observed
distribution (1) can be expressed in terms of the correlation
functions, also known as correlators,

i i k. . .
(M My = ST (D tip(ag,. . ag i k) (5)
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where 0 < i3 < ... < i < N, 51 € {0,m — 1} and
1 < k < N. The value of k represents the order of the cor-
relators: for instance, expectation values (M j(jl)M ;;2)> are of
order two. Correlators of order IV are often referred to as full-
body correlators.

III. A SIMPLE EXAMPLE

After presenting the general idea of the method, it is
convenient to illustrate it with a simple example consisting

(

of two parties before applying it to relevant multipartite
scenarios. In what follows, we present the explicit form
of the moment matrix for the case of N = 2, two di-
cothomic measurements per party and level v = 2 of the
hierarchy. For the sake of simplicity, we rename the mea-
surement operators for the two parties as A, and B,, with
x,y = 0, 1. In this scenario, the set of operators reads as Oy =
{1, .Ao, Al, Bo, B1, .A().A1, .A()Bo, .A()Bl, AlBo, Allgl, B()Bl}.

The corresponding moment matrix is



1 (Ao) (A1) (Bo)  (B1) (AoBo) (AoBi1) (Ai1B1) s
(Ao) 1 (AoBo) (AoB1) (A1) (Bo)  (B1) 3 U5
<.A1> 1 <A181> (U U; <Bo> <61> (Vird
<Bo> <A080> 1 v2 U3 <A()> U5 <A1> (Crg <81>
(Bi)  (AoB1) (AiB1)  v3 1 v; (Ao o7 (A1) vs

= (A1) Vg vl 1 (A1B1) Vg V10 V11 (6)
<A()B()> <Bo> U3 <«40> Us 1 U2 v12 <A051>
(AoBy)  (By) v (Aog)  (AB1) 3 1 V13 V14
v (Bo) (A1) v7 vy Vg 1 vy (A1B)
(A1B1) (B1) o7 (A1) vl Ul vg 1
v3 v5 v7 (Bi) g vir - (AoBy) vl (AiBy) 1

where we have defined the following unassigned variables

V1 = <A0Al>a
vs = (AoBoBa) ,

U2 = <BOBl>7
v = (A1 Ag A1),

vg = (A1 Ao A1 By) , vio = (A1 Ao AL By) ,
vig = (Ao A1B1Bo), via = (AoB1BoBy),

Now, if we further impose commutativity of all the mea-
surements, namely [Ag, A1] = 0, [Bo, B1] = 0, the corre-
sponding linear constraints reduce the number of variables.
Explicitly, one gets v = v; forany ¢ = 1,.. ., 15, and also

ve = (Ao) , vg = (Bo) ,
V10 = <¢4031>7 V15 = <A1Bo>7

vg = v14 = (AoBo) ,

V11 = V12 = V13 -

(®)

For a visual representation, the variables that become iden-
tical because of the commutativity constraints are represented
by the same color in (6). For any set of observed correlations
{(Az), (By), (AzB,)}, testing whether it is local can be done
in the following steps: assigning the values to the entries of I
that can be derived from the observed correlations and leav-
ing the remaining terms as variables; then checking whether
there is a assignment for such variables such that the matrix is
positive semidefinite.

For instance, it is possible to check that any set of correla-
tions that violates the well-known CHSH inequality [27]

Teusa = (AoBo) + (AoBi) + (A1Bo) — (A1B1) <2 (9)

is incompatible with a positive semidefinite matrix (6). More-
over, we notice that, in this particular scenario, any set of non-
local correlations has to violate CHSH (or symmetrical equiv-
alent of it) [15]. Therefore, it turns out that in this case the
second level of the hierarchy is already capable to detect any
nonlocal correlation. That is, even if any finite step in the hier-
archy in principle represents a relaxation of the general prob-
lem, the second level happens to be tight in this particularly
simple case.

IV. GEOMETRICAL CHARACTERIZATION OF
CORRELATIONS

Before presenting the applications of our method, we re-
view a geometrical perspective, schematically represented in

vz = (Ao A1Bo) , vg = (Ao A1B1),

V7 = <.A1B()B1> 5 vg = <818081> ’ (7)
vi1 = (A1 AoBoBy) , viz2 = (Ao A1BoBy) ,
V15 = <A1318081>.

(

Figure 1 [15], that is useful when studying correlations among
many different parties. It is known that the set of local corre-
lations (2) defines a polytope, i.e. a convex set with a finite
number of extremal points. Such points coincide with the de-
terministic strategies D(a;|z;, A) introduced in (3) and can be
easily defined for any multipartite scenario. As represented
in Figure 1, the set of quantum correlations (1) is strictly big-
ger than the local set. All the points lying outside the set £
represent nonlocal correlations.

Determining whether some observed correlations are non-
local corresponds to checking whether they are associated to
a point inside the local set. A very simple way to detect non-
locality is by means of Bell inequalities. They are inequalities
that are satisfied by any local distribution and geometrically
they constitute hyperplanes separating the £ set from the rest
of the correlations. Violating a Bell inequality directly im-
plies that the corresponding distribution is nonlocal. How-
ever, there can be nonlocal correlations that are not detected
by a given inequality, meaning that the fall on the same side
of the hyperplane as the local correlations.

On the other hand, a very general technique to check if a
point belongs to the local set consists in determining if it can
be decomposed as a convex combination of its vertices [16].
Such question is a typical instance of a linear programming
problem, for which there exist algorithms that run in a time
that is polynomial in the number of variables [28]. Neverthe-
less, finding a convex decomposition in the multipartite sce-
nario is generally an intractable problem because the number
of deterministic strategies grows as d”™" . Already in the sim-
plest cases in which each party measures only m = 2,3 di-
cothomic measurements, the best approach currently known
stops at NV = 11 and N = 7 respectively [29].

Coming back to the SDP method presented in the previous
section, we can now show how the technique can help in over-
coming the limitations imposed to the linear program. Let
us define the family of sets £,, as the ones composed by the
correlations that are compatible with the moment matrix I" de-
fined by the observables O, and the additional constraints of
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FIG. 1. Pictorial representation of the sets of correlations, together
with our approach to detection of multipartite nonlocality. The £ and
Q sets delimit the local and quantum correlations respectively. As it
is shown in the picture, the first forms a polytope, namely a convex
set delimited by a finite amount of extremal points, while the second,
despite being still convex, is not a polytope. The light orange sets
are the first representatives of the hierarchy £1 O L2 O ... D L
approximating the local set from outside. It can be seen that some
of the quantum correlations lie outside the £, meaning that they are
detected as nonlocal from the SDP relaxation at the second level. The
dotted line shows a Bell-like inequality that can be obtained by the
corresponding dual problem.

commuting measurements. Given that any local distribution
has a quantum representation with commuting measurements,
the series £, 2 Lo O ... O L defines a hierarchy of sets
approximating better and better the local set from outside. In
Figure | we show a schematic representation of the first levels
of approximations.

We have been focusing on the first non-trivial level that
allows for nonlocality detection, namely the £5. We no-
tice that, at this level of the hierarchy, specifying the entries
I = tr((’)j O;p) requires the knowledge of up-to-four-body
correlators. Moreover, the amount of terms in the set Oy
scales as the number of possible pairs of measurements M7,
that is, as N2m?2d?. This implies that the size of the moment
matrix scales only quadratically with the number of parties
and measurements, which is much more efficient compared to
the exponential dependence d™ of the linear program.

As mentioned before, checking whether a set of observed
correlations belongs to Lo constitute a SDP feasibility prob-
lem. Since we are addressing approximations of the local set,
there will be nonlocal correlations that will fall inside £ and
that will not be distinguishable from the local ones. There-
fore, our technique can provide only a necessary conditions
for nonlocality. Nonetheless, we were able to find several
examples in which this method is able to successfully de-
tect nonlocal correlations arising from various relevant states,
proving that it has a practical implementation.

V. APPLICATIONS

The goal of this section is to show that the SDP relaxation
can be successfully employed for detection of nonlocality in
a broad range of cases. We focused particularly in exploring
the efficient scaling of the method in terms of number of par-
ties. To generate the SDP relaxations, we used the software
Ncpol2sdpa [30], and we solved the SDPs with Mosek [31].

We collected evidence that, from a computational point of
view, the main limiting factor of the technique is not time but
the amount of memory required to store the moment matrix.
Indeed, the longest time that was taken to run one of the codes
amounted to approximately 9 hours [32]. Despite the memory
limitation, the SDP technique allowed us to consider multi-
partite scenarios that cannot be dealt with the standard linear
program approach to check locality. Indeed, for the scenarios
with m = 2, 3, we were able to detect nonlocality for systems
of upto N = 29 and N = 15 respectively, thus overcoming
the current limits of [29].

In the following subsections we list the examples of states
we considered. Given that we have studied cases with di-
chotomic measurements only, we present them in the ex-

pectation value form, namely by using the notation Mm(z) =
Ml — M?
xT; xT;*

W state

As a first case, we analysed the Dicke state with a single
excitation, also known as W state, namely

L
VN

Let us consider the simplest scenario of m = 2 dichotomic
measurements per party, were each observer performs the

[Wx) = ——=(]0...01) +|0...10) ... 4+ |10...0)).  (10)

same two measurements, that is, Mél) = o, and Ml(l) =0,
forall i = 1,..., N. We were able to show that the obtained
probability distribution is detected as nonlocal at level Lo for
N < 29. It is worth estimating the complexity of this test,
both from a computational and experimental perspective. For
this level, the rows and columns of the moment matrix corre-
spond to the product of at most two observables. Therefore,
the elements of the moment matrix involve at most four oper-
ators, which implies that the number of measurements to be
estimated in the experiment scale as

(JZ) = O(N*%). (11)

At the same time, the size of the matrix scales as O(N?). As
announced, our relaxation has a scaling polynomial with the
number of parties.

We have also studied the robustness of our technique to
white noise,

1
pn(p) = (L =pIWn)(Wrl +p5y  (12)



where 0 < p < 1 and 1y represents the identity operator
acting on the space of N qubits. We estimated numerically the
maximal value of p, referred to as p,,q., for which the given
correlations are still nonlocal according to the SDP criterion.
Table I reports the resulting values as a function of the number
of parties.

N | pmaz || N |Pmaz || N |Pmaa
510.295({1410.1411{{23]0.083
610.296(/15(0.1311{{24|0.079
7
8
9

0.277(/16|0.122/25|0.076
0.251{17|0.114/26|0.073
0.225(|18(0.107/27|0.070
10{0.202{/19|0.101 (|28 |0.068
11{0.183{/20/0.096(/29|0.065
1210.167{|21|0.091
13/0.153|22|0.087

TABLE I. Robustness of nonlocality to white noise in the case of the
W state, reported as a function of V.

While the robustness to noise decreases with the number
of parties, the methods tolerates realistic amounts of noise,
always larger than 6%, for all the tested configurations.

Finally, in order to study the robustness of the proposed test
with respect to the choice of measurements we also considered
a situation where the parties are not able to fully align their
measurements and choose randomly two orthogonal measure-

ments (ROM)[33]. More precisely, we assumed that Méi) =

:E'E)i) - ¢ and Mfi) = fgi) - &, where ¢ = (0,,0y,0.) and
a_c'éz), :T:'gz) are vectors chosen uniformly at random, with the

only constraint of being orthogonal, namely féi) . fgi) =0

forall = 1,..., N. We calculated numerically the proba-
bility pn for the corresponding correlations to be detected
as nonlocal at the second level of the relaxation. To estimate
pnL, we computed the fraction Ny /N, of Ny nonlocal
distributions obtained over a total of /V,, = 1000 rounds. The
corresponding results are reported in the following table as a
function of N.

N| pno ||N| pNL
31502 %/ 7 121.0 %
41444 %|| 8 |12.8 %
5 9

6

384 % 6.3 %
28.8 %||10| 2.7 %

The results for random measurements also exemplify one
of the advantages of our approach with respect to previous
entanglement detection schemes. Given some observed corre-
lations, our test can be run and sometimes detects whether the
correlations are nonlocal and therefore come from an entan-
gled state. To our understanding, reaching similar conclusions
using entanglement witnesses or other entanglement criteria
is much harder, as they require solving optimisation problems
involving N-qubit mixed states.

G HZ state

Another well studied multipartite state is the Greenberger-
Horne-Zeilinger (GHZ) state, given by

_ 1 ®N ®N
|GHZy) 7% (J0yEN 4 1)) . (13)
Contrarily to the W, such state is not suited for detection
of nonlocality with few-body correlations because all the k-
body distributions arising from measurements on (13) are the
same as those obtained by measuring the separable mixed
state £ (|0)(0|®% + |1)(1|®*). Therefore, in order to apply our
nonlocality detection method to the GH Z we need to involve
at least one full-body term.
The solutions we are going to present are inspired by the
self-testing scheme for graph states introduced in [34]: the
first scenario involves m = 3 dichotomic measurements per

party, namely Mo(i) = o4, Ml(i) = o4 = %(Jx + 02)

and Mz(z) = ¢, forall ¢ = 1,...,N. To introduce full-
body correlators in the SDP we define the set O, =
{00, (MM MMy, (P P )Y, The mo-
ment matrix corresponding to such set will represent a mixed
level of the relaxation, containing also two full-body corre-
lators in the entries. However, since the number of added
columns and rows is fixed to 2 for any [V, this level is ba-
sically equivalent to level Lo. Therefore, we preserve the ef-
ficient O(N*) scaling with the number of parties of elements
in the moment of matrix and measurements to implement.

By numerically solving the SDP associated to this mixed
level of the hierarchy we were able to confirm nonlocality of
the correlations arising from the GH Z state and the given
measurement for up to N < 15 parties. Moreover, we
checked that the number of full-body values that is neces-
sary to assign is constant for any of the considered NN, co-
inciding with the two correlators <Mél)M(§2). . .MéN)> and
(Ml(l)Méz). . .MéN)> . Lastly, we estimated that the robust-
ness to noise in this case does not depend on N and it amounts
t0 Pinaz = 0.17.

As a second scenario, we also noticed that one can pro-
duce nonlocal correlations from the GH Z at the level O,
by considering m = 2 measurement choices only. Indeed, if
ones considers Mé’) =0, M 1(1) = 04, the resulting correla-
tions are detected as nonlocal for any N < 28 (The fact that
we are not able to reach N = 29 is due to the mixed level of
the relaxations, that results in a bigger matrix compared the
scenario for WW). Table (II) shows the corresponding robust-
ness to noise, computed in the same way as for the W state.
For both configurations, the noise robustness of our scheme in
detecting GHZ states seems to saturate for large [V even if the
computational (and experimental) effort scales polynomially.

Graph states

Graph states [35] constitute another important family of
multipartite entangled states. Such states are defined as fol-
lows: consider a graph G, i.e. a set of N vertices labeled by i



N pmaac N pma:v N pmaz
50.107|[14]0.135(|23|0.145
6 (0.112{{15]0.137|24(0.146
7
8
9

0.116{16|0.138[25|0.147
0.120{|17|0.140(/26|0.147
0.123(/18|0.141/27|0.148
10/0.127/19]0.142{|28 |0.148
11{0.129{|20(0.143
1210.132{|21(0.144
13]0.134{|22(0.145

TABLE II. Robustness of nonlocality to white noise in the case of
the GH Z state and 2 dicothomic measurements per party, reported
as a function of V.

o—eo—0o—o-
b) c) k
2 .
N -1 I
: : : : : :

N=Ixk

FIG. 2. Representatives of the graphs associated to the classes of
states that have been studied with the SDP method: a) Linear graph
states. b) Loop graph states. c¢) 2D cluster states.

connected by some edges &;; connecting the vertices ¢ and j.
We associate a qubit system in the state |+), for each edge i
and apply a control-Z grate C'Z;; = diag(1,1, 1, —1) to every
pair of qubits ¢ and j that are linked according to the graph G.

We considered some exemplary graph states such as the
1D and 2D cluster states and the loop graph state illustrated
in Figure 2. Inspired by the self-testing scheme in [34], we
considered that each party applies three measurements given
by o,,0, and o4. We were able to detect nonlocality in the
obtained correlations at level Lo for states involving up to
N = 15 qubits. Again, the method at this level scales as
N4,

Interestingly, our approach for the detection of nonlocality
in graph states shows to be qualitatively different from McK-
auge’s scheme in [34]. While the latter requires correlators
of an order than depends on the connectivity of the graph
(namely, equal to 1 plus the maximal number of neighbours
that each vertex has), our method seems to be independent of
it. Indeed, we were able to detect nonlocality with four-body
correlators in 2D cluster states, whose connectivity would im-
ply five-body correlators for the self-testing scheme.

VI. EXPLICIT BELL INEQUALITIES

Another nice property of our nonlocality criterion comes
from the fact that, as it can be put in an SDP form, it imme-
diately provides a method to find experimentally friendly Bell
inequalities involving a subset of all possible measurements.
In fact, it turns out that the the SDP proposed in Sec. II has a
dual formulation that can be interpreted as the optimisation of
a linear function of the correlations that can be seen as a Bell-
like functional, i.e. a functional that has a nontrivial bound for
all correlations in Ly, [19] (see Appendix A for details). Thus,
if a set of correlations are found to be nonlocal, then the solu-
tion of the SDP provides a Bell inequality that is satisfied by
correlations in £, and that is violated by the tested correla-
tions. Importantly, this Bell inequality can further be used to
test other sets of correlations.

By using the two sets of correlations obtained by measuring
3 dicothomic observables per party in the GHZ state we were
able to find the following Bell inequality:

N N
1 '3 1 3
T3 =Y (MM = ST (Y )+
1=2 =2
H(N = D)(MOPMP . Y4

H(N = D)(MOMP MmNy <2V —1)

(14)

Numerically, we could only certify the validity of this inequal-
ity for up to N < 15. Moreover, in principle the bound of
Bc = 2(N — 1) is only guaranteed to be satisfied by corre-
lations in L,,;,. However, motivated by the obtained numeri-
cal insight, we could prove that this bound actually coincides
with the true local bound and therefore (14) is a valid Bell in-
equality for all N (for all the analytical proofs regarding this
subsection we refer to Appendix B). This shows that, at least
in this instance, the £,,,;, defined by the SDP relaxation asso-
ciated to O,,;, is tight to the local set.

It is also easy to show that (14) is violated by the GHZ
state and the previously introduced choice of measurements.
In particular, the value reached is 73,5, , = (1 +v2)(N — 1)
for any N. Given that both the local bound and the violation
scale linearly with [V, the robustness of nonlocality to white

noise is constant and amounts t0 Pyar = gi ~ 0.174.
We notice that this results is in agreement with what achieved
numerically with the SDP for up to N = 15.

Similarly, we also found the following Bell inequality by
using the set of correlations involving only two measurement

per party described for the GHZ state:

N N
1 7 1 7
T2, = S (MM =S (Y M)+
1=2 1=2

(15)
H(N = )(MPMP . Y4

H(N = D)(MOMP MmNy <2V —1)

Once more, although this inequality was found numerically
for up to N < 28 we could prove that it is valid for any N.



Moreover the bound 8¢ = 2(N — 1) is not only valid for
correlation in L,,;, but for any local set of correlations. The

G H Z state and the given measurements result in a violation of

T2y, = 2572, Given that in this case the relative violation

is lower, we also have a lower robustness to noise, coincid-

ing with Py, = gls ~ 0.09 for any N. We notice that
this value is different than the ones reported in Table (II). The
reason is that, to derive inequality (15) from the dual, we re-
stricted to assign only the values of the two-body correlations
and the two full-body ones. On the other hand, the results in
Table (II) take also into account the assignment of the three-
and four-body correlators, showing that this additional knowl-
edge helps in improving the robustness to noise.

As a final remark, we stress that the measurement settings
considered to derive an inequality from the dual might not
be the optimal ones. For instance, we were able to identify
different measurement choices for the case of (15) which lead
to a higher violation of such inequality, hence resulting also in
a better robustness to noise (see Appendix B for details).

VII. CONCLUSIONS

We introduced a technique for efficient device-independent
entanglement detection for multipartite quantum systems. It
relies on a hierarchy of necessary conditions for nonlocality
in the observed correlations. By focusing on the second level
of the hierarchy, we considered a test that requires the knowl-
edge of up to four-body correlators only. We showed that it
can be successfully applied to detect entanglement of many
physically relevant states, such as the W, the GH Z and the
graph states. Besides being suitable for experimental imple-

mentation, our technique has also an efficient scaling in terms
of computational requirements, given that the number of vari-
ables involved grows polynomially with /V. This allowed us to
overcome the limitation of the currently known methods and
to detect entanglement for states of up to few tens of particles.
Moreover, the proposed technique has a completely general
approach and it can be applied to any set of observed correla-
tions. This makes it particularly relevant for the detection of
new classes of multipartite entangled states.

On a more fundamental side, it would be interesting to
study how accurate is the approximation of the local set of
correlations provided by the second level of the hierarchy. In
some of the scenario that we considered the approximation
was actually tight to the local set, but this is not generally
the case. A possible approach could be to compare the lo-
cal bound of some known Bell inequalities with that resulting
from the hierarchy.

Lastly, we notice that the second level of the hierarchy has
also an efficient scaling with the number of measurements per-
formed by the parties. This would allow to inquire whether
an increasing number of measurement choices can provide an
advantage for entanglement detection in multipartite systems.
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Appendix A: Details of the method

Here we present in more detail the SDP relaxation associ-
ated to quantum realization with commuting measurements.
In order to be consistent with the examples we presented in
the main text, we will introduce it in the correlators approach,
but we stress that a formulation in terms of projector and prob-
abilities for higher numbers of outcomes is also possible.

Let us consider that the N observers A; are allowed to per-
form m dicothomic measurements each. We can therefore de-
fine the operators M. = M3 — M in terms of measure-
ments M7i. It can be easily seen that expectation values of

the M. ;l) corresponds to the correlators (5).
For any quantum realization of such operators, it is possible
to show that they satisfy the following properties:

i) (Mg(f))lr = Mﬂ(f) foranyi=1,...Nandz; = 1,...,m,
i) ( 9(6?)2 =1foranyi=1,...Nandz; =1,...,m,
iii) [MI(Z),Mg)] =0 foranyi# jandx;,z; =1,...,m.

Now, let us consider that the sets O, introduced in section II
consist exactly of all the products of the {MS)} up to order
v. Then, by indexing the operators in the sets as O; for i =
1,...,k, we define the k£ x k moment matrix as follows

Ty = tr(pn0]0;)

where py is a generic N-partite quantum state. As it was
shown in [18, 19], for any set of quantum correlations P, the
properties i)-iii) and the fact that the associated p is a proper
quantum state reflect into the following properties of the mo-
ment matrix:

eI =T,

o' -0,

o the entries of the matrix are constrained by some linear
equations of the form

,J
where (F},);; are some coefficients and the g,, (P) can
depend on the values of the correlators composing the
P vector, as such

Tk

N
gn(P) = (gm)ot > > (gm)i k().
k=11 <...<ig
21500525

Up to this point, the method we described coincides with
the NPA hierarchy [18, 19], which is used to check whether
a set of observed correlations is compatible with a quantum
realization. In order to define a hierarchy to test for local hid-
den variables realization, we introduce the additional condi-
tion that all the measurements for the same party have also to
be commuting, namely

iv) [M;”,My)] =0 forany¢=1,...,Nandz; # vy, =
1,....,m.

It can be seen that property iv) implies a second set of linear
constraints on the I" matrix, that we identify as

Z(F’m)ijfij = glm(P) m = 1, cey l/
,J
To make it clearer, we show an example of linear con-
straint that can come only if we impose condition iv). Let
us consider the following four operators: O, = £§>M§f),
O = Mﬁf)Mg), 0, = MZSZ) and O,, = Mg) It is easy
to see that, by exploiting i)-iii) plus iv), I'y; = I',,, for any
choice of z;,y;,z; =1,...,mand,j =1,...,N.
Now, for any chosen O,,, we can test whether an observed

distribution P is compatible with a local model via the follow-
ing SDP

maximize A,
subjectto I' — A1 > 0,

Z(Fm)ijrij =gn(P) m=1,...,01, (Al)
1,

Z(F/m)ijrij =g mP) m=1,...,0",

1,

which is the primal form of the problem. A solution
min < 0 implies that it is not possible to find a semidefi-
nite positive moment matrix satisfying the given linear con-
straint. Therefore P has no quantum realization with com-
muting measurements and we conclude it is nonlocal. We no-
tice that by increasing the value of v we get a sequence of
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more and more stringent tests for nonlocality. Indeed, the lin-
ear constraints for the level v are always a subset of the ones
coming from v 4 1. Moreover, in analogy with the NPA hi-
erarchy, the series of tests is convergent, hence any nonlocal
correlation will give a negative solution A} . at a finite step
of the sequence.

Interestingly, we can also study the dual form of the SDP
problem, which reads as follows

minimize G(P) = Zykgk(P) + Zy/kglk(P)v
k k

subject to ZkukT + Zy’kF’Z =0, (A2)

k k
S e (FD) + 3y re(F) = 1.
k k

Thanks to the strong duality of the problem, a negative so-
lution for the primal implies also G(P) = A%, < 0. Since
any point in £, satisfies the SDP condition at level v with
G(P) > 0, we can interpret G(P) as a Bell-like inequality
separating the £, from the rest of the correlations. Indeed,
since the gy (P) and ¢'j (P) are linear in the terms of the prob-
ability distribution, we derive that G(P) > 0 defines also a
linear inequality for P. Violation of such inequality directly
implies nonlocality.

Appendix B: Proof of local bound and quantum violation for the
inequalities

We start by proving the local bounds for the inequalities
introduced in the main text. To do so, we remind that to derive
the maximal valued attained by local correlations it is enough
to maximize over the vertices of the local set. In the correlator
space, the deterministic local strategies (DLS) take the form

(i1) (ik)y _ (i1) (i)
(M7 M) = (M) (M) (B1)

where each M,EZ) term can take only 1 and —1 values. By
using this property, inequality (14) becomes

T32(DLS) = (N = 1) [(M{V) + (M) | To
(B2)

+ [y = ()] 7

where Ty = (M,§2)>. . .(MO(N)> and T2 = Zf\;(M;)).
For any number of parties NV, we have that 7y < 1 and 75 <
N — 1, therefore

K MMy <2N-1)  (B3)

miz

(DLS) < 2(N —

Similarly, for any deterministic strategy, inequality (15)
takes the from

10

T2, (DLS) = (N = 1) [(M{") + (™) | To
(B4)

+ () = )] 73

where 77 = Z?;(Mf”) As for before, we can use the
argument that 7o < 1 and 7; < N — 1 to conclude

72, (DLS) <2(N —1)(MVy <2(N —1)  (BS)
Regarding the quantum violation, we recall that the sce-

nario considered was |¢) = |GHZy) = %(|O>®N+|1>®N)

with measurements choices Méi) = 04 M 1(i) = 04 =
%(01 +0.) and MQ(Z) = o, foralli = 1,...,N. Itis easy
to check that, for a GH Z state of any number of parties, the
following is true

. <U§i)ag(gj)> ={ g(f)crgj)> =O0foranyi#j=1,...,N.

. <O’§i)0'§j)> = 1 and therefore <a((ii)a(j)> = % and
(6 0)y = sforanyi#j=1,...,N.
. <0§1)U§2)...0§6N)> = 1 and (agl)a§2)...a£N)> = 0,

1) _(2)

therefore (o, "0z ...aiN)> =

% for any N.

By using the properties listed above, one can check that

(T3 . Vamzy = (14+V2)(N —1)~ 241(N —1) (B6)
and, similarly, that

3+V2

5 (N—1)~221(N~1) (B7)

(Thin)cHZNY =

Moreover, we notice that by changing the measurement set-

ting, one can achieve a higher violation of Z2,, . Indeed,
. . 1

it is easy to see that by choosm;?I Mé ) = %(Jm + 0.),
MY = (0, — 0.) and M = 6, M = o, for
i =2,..., N, the resulting violation is

(T2, a2y = 2V2(N — 1) = 2.83(N — 1) (B8)

To conclude, we proceed with the analysis of the robustness
to noise. We recall that this implies considering the noisy ver-
sion of the GH Z state, namely

1
pn(p) = (1 = p)pcrzy +p271\\; (B9)

where 0 < p < 1represent the amount of white noise added
to the state. It can be easily seen that the noise affects the
values of the correlators for the GH Z in the following way



(@) oy = 1= p) el oz, (B10)

for any j; € {z,y,2z} and 1 < k < N. Therefore we can
consider the noise as a simple damping factor in the violation
of the inequalities. By using this fact, we get that 73, will
be violated as long as (1 — p)(1 4+ v/2)(N — 1) > 2(N — 1),
hence

V2 -1
V241

By the same argument, we analyse Z2,, = for the two mea-

surements settings that have been introduced. For the first one,

~ 0.17

Pmazx (Igmx) = (Bll)

the inequality will be violated as long as (1 — p) SJ”/E(N -
1) > 2(N — 1) and therefore

2—-1
Pmam(ﬁm) = v2
V2+3

~ 0.09 B12)

while for the second one, the violation is preserved for (1 —
p)2v2(N — 1) > 2(N — 1), hence

~ 0.29

|

Phnas (Triz) =1 — (B13)

Clearly, we see that for the second setting a higher violation
results also in a significantly higher robustness to noise.
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