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Abstract

Bell inequalities have traditionally been used to demonstrate that quantum theory is non-
local, in the sense that there exist correlations generated from composite quantum states
that cannot be explained by means of local hidden variables. With the advent of device-
independent quantum information processing, Bell inequalities have gained an additional
role as certificates of relevant quantum properties. In this work we consider the problem of
designing Bell inequalities that are tailored to detect the presence of maximally entangled
states. We introduce a class of Bell inequalities valid for an arbitrary number of measure-
ments and results, derive analytically their maximal violation and prove that it is attained
by maximally entangled states. Our inequalities can therefore find an application in device-
independent protocols requiring maximally entangled states.

1 Introduction

Measurements on separated subsystems in a joint entangled state may display correlations that
cannot be mimicked by local hidden variable models. These correlations are known as nonlocal,
and they are detected by violating the so-called Bell inequalities [1, 2]. In recent years, however,
it has been become clear that non-locality is interesting not only for fundamental reasons, but
also as a resource for many device-independent (DI) quantum information tasks [2], such as
quantum key distribution [3, 4] or random number generation [5, 6]. From this new point of
view, the violations of Bell inequalities are not merely indicators of non-locality, but can be used
to infer qualitative and quantitative statements about different operationally relevant quantum
properties.

Traditionally, the construction of Bell inequalities has been addressed from the point of
view of deriving constraints satisfied by local models. Following this standard approach, the
inequalities are constructed using well-known techniques in convex geometry. Indeed, the set
of correlations admitting a local hidden variable model corresponds to a polytope [2], that is,
a convex set with a finite number of extreme points or vertices. These vertices are known and
correspond to local deterministic assignments, while the (in general) unknown facets are the
desired Bell inequalities. Such “facet Bell inequalities” form a complete set of Bell inequalities,
in the sense that they provide necessary and sufficient criteria to detect the non-locality of
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given correlations. Clauser-Horne-Shimony-Holt (CHSH) [7] and Collins-Gisin-Linden-Massar-
Popescu (CGLMP) [8] inequalities are examples of tight inequalities.

If such facet Bell inequalities are optimal detectors of non-locality, they are, however, not
necessarily optimal for inferring specific quantum properties in the device-independent setting.
For instance, in a scenario where two binary measurements are performed on two entangled
subsystems, it is well known that the violation of the CHSH inequality [7] is a necessary and
sufficient condition for non-locality. But certain “non-facet” Bell inequalities are better certifi-
cates of quantum randomness than the CHSH inequality when the two quantum systems are
partially entangled [9].

In the present work, we consider the problem of constructing Bell inequalities whose maximal
quantum violation, usually referred to as the Tsirelson bound [10], is attained for maximally
entangled states of two qudits. This is a desirable property since such states have particular
features, such as perfect correlations between outcomes of local measurements in the same
bases, and therefore many quantum information protocols rely on them. The main aim of this
work is to introduce a family of Bell inequalities with an arbitrary number of measurements
and outcomes which are maximally violated by the maximally entangled pair of two qudits.
Crucially, their maximal quantum violation can be computed analytically.

In the case where only two measurements are made on each subsystem, all facet Bell inequal-
ities are known for a small number of outputs and they are all of the CGLMP form [8]. However,
the CGLMP inequalities are not maximally violated by the maximally entangled states of two
qudits (except in the case d = 2 corresponding to the CHSH inequality) [11, 12, 13]. We should
therefore not expect a priori our inequalities to be facet inequalities, and indeed they are not.

The fact that our inequalities will not necessarily be facet inequalities also implies that we
cannot use standard tools based on convex geometry and polytopes to construct them. In fact,
no quantum property is used for the construction of tight Bell inequalities like CGLMP and, in
this sense, it may not be that surprising that their maximal violation does not require maximal
entanglement. Our approach is completely different: it starts instead from quantum theory
and exploits the symmetries and perfect correlations of maximally entangled states to derive a
Bell inequality. It is also closely linked to sum of squares decompositions of the Bell operator,
which can be used to determine their Tsirelson bound. Thus, quantum theory becomes a key
ingredient of our method for generating new Bell inequalities.

Our results have the potential to be used in DI quantum information protocols. The in-
equalities are good candidates for improved DI random number generation or quantum key
distribution protocols or to self-test [14] maximally entangled states of high dimension. Inter-
estingly, they also give further insight into the structure of the set of quantum correlations.

The paper is organized as follows: in Section 2, we review the necessary framework to
state our results. In Section 3 we introduce our Bell inequalities and their derivation, while in
Section 4 we study their properties and give their Tsirelson bound. In Sections 5 and 6, we
briefly discuss their possible application to DI protocols and the interest of our findings.

2 Preliminaries

Throughout this work, we consider a bipartite Bell scenario in which two distant parties A
and B (often taking the placeholder names Alice and Bob) perform measurements on their
share of some physical system. We suppose that they have m possible measurement choices
(or inputs) at their disposal and that each measurement has d possible outcomes (or outputs).
We denote this scenario (2,m, d). We label their inputs and outputs as x, y ∈ {1, . . . ,m} and
a, b ∈ {0, . . . , d − 1}. The correlations that can be obtained in such a Bell experiment are
described by a set of (md)2 joint probabilities P (Ax = a,By = b) that Alice and Bob obtain a
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and b upon performing the xth and yth measurement, respectively. These probabilities can be
given a geometric representation by ordering them into a vector

~p := {P (Ax = a,By = b)}a,b,x,y ∈ R(md)2 . (1)

Importantly, the set of allowed ~p can vary, depending on the physical principles the prob-
abilities P (Ax = a,By = b) obey. Thus, to every physical theory, one can assign a set of

correlations in R(md)2 . If the measurements correspond to spacelike separated events, the ob-
served correlations should obey the no-signalling principle, which prevents any faster-than-light
communication among the parties. These correlations form a convex set that is a polytope,
which we denote by N . Contained in this set is the set of quantum correlations, denoted Q,
which corresponds to those ~p whose components can be written as

P (Ax = a,By = b) = 〈ψ|P (x)
a ⊗ P (y)

b |ψ〉, (2)

where |ψ〉 is some state in a tensor product Hilbert space HA ⊗ HB whose dimension is un-

constrained, and {P (x)
a } and {P (y)

b } are projection operators defining, respectively, the mea-
surement x on Alice’s system and the measurement y on Bob’s system. Finally, the set of
correlations admitting local hidden variable models, termed also local or classical, corresponds
to those ~p that can be written as a convex sum of product deterministic correlations of the
form P (Ax = a,By = b) = δa,κxδb,λy where κx and λy denote Alice’s and Bob’s predetermined
outputs for inputs x and y, respectively.

Bell was the first to prove that not all quantum correlations admit a local hidden variable
model [1]. To this end, he used the concept of a Bell inequality I ≤ Cb with I being the so-called
Bell expression that, most generally, is a linear combination of the (md)2 joint probabilities of
the form

I :=
∑
abxy

IabxyP (Ax = a,By = b) (3)

and Cb is the local (or classical) bound of the Bell inequality and it is the maximum value

Cb = max
κx,λy

∑
abxy

Iabxyδa,κxδb,λy (4)

that I can achieve on product deterministic correlations [15]. The quantum or Tsirelson bound
of the Bell expression is the maximum value

Qb = sup
|ψ〉,{P (x)

a },{P (y)
b }

∑
abxy

Iabxy〈ψ|P (x)
a ⊗ P (y)

b |ψ〉 (5)

that it can achieve for quantum correlations. Such a Bell expression corresponds to a proper
Bell inequality—one that can be violated by quantum theory—if Cb < Qb. Let us finally define
NSb to be the maximal value of I over all no-signalling correlations. It turns out that for most
Bell inequalities the chain of inequalities NSb > Qb > Cb holds true [1, 16, 17].

The set of local correlations is a polytope which is defined through Bell inequalities. Hence, if
~p violates a Bell inequality, the correlations described by ~p are nonlocal. The set Q, on the other
hand, is not a polytope, yet it is convex. There have been several attempts to characterize it from
an operational point of view [18, 19, 20], but an operational characterization remains to be found
[21]. The main obstacle is the current lack of mathematical understanding of the structure of the
set of quantum correlations. This makes the derivation of Tsirelson bounds a difficult problem.
Indeed, given an arbitrary Bell inequality, there is no procedure that guarantees finding its
Tsirelson bound, and it was achieved analytically only in a handful of cases. There is however a
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practical approximation scheme introduced in [13] based on a semidefinite programming, which
consists in a hierarchy of sets Q1 ⊇ Q2 ⊇ · · · ⊇ Qk ⊇ . . . converging to Q as k →∞. The sets
Qk are the feasible regions of semi-definite programs, which are efficiently solvable. Although
this method yields in practice very good upper numerical bounds (often tight ones) on the
maximal violations of Bell inequalities for small Bell scenarios, it is limited by the fact that it
becomes computationally expensive for larger scenarios and for high k.

3 Class of Bell expressions

As stated in the introduction, our aim is to introduce a family of Bell expressions, whose
maximal quantum value is attained by the maximally entangled states of two qudits |ψ+〉 =
(1/
√
d)
∑d−1

i=0 |ii〉. To derive these Bell expressions, we start from the premise that their maximal
quantum values are obtained when Alice and Bob perform the optimal CGLMP measurements
introduced in [22, 8] for the case m = 2 and generalized to more inputs in [23]. The reason for
this choice is that these measurements simply generalize the CHSH measurements (d = 2) to
the case d > 2 and that they lead to non-local correlations that are the most robust to noise [22]
or give a stronger statistical test [24] (at least in the case m = 2). These measurements are
presented in detail in Appendix A.

Note that this choice of measurements is arbitrary and only used as a starting point to
determine the Bell expressions that we are looking for. But once we have determined them,
we will no longer make any assumptions on the particular measurements that Alice and Bob
perform, in particular, when we derive formally their quantum bounds.

The probabilities P (Ax = a,By = b) obtained when using the optimal CGLMP measure-
ments on |ψ+〉 have several symmetries, detailed in Appendix A. For instance, they only depend
on the difference a − b = k mod d. If we impose that our Bell expressions respect this par-
ticular symmetry, the probabilities P (Ax = j + k mod d, By = j) should be treated equally
for all j. In other words, the Bell expressions should be written as linear combinations of
P (Ax = By + k) :=

∑d−1
j=0 P (Ax = j + k mod d, By = j). Taking into account the other

symmetries (see Appendix A), a generic form for our Bell expressions is

Id,m :=

bd/2c−1∑
k=0

(αkPk − βkQk) , (6)

where

Pk :=
m∑
i=1

[P (Ai = Bi + k) + P (Bi = Ai+1 + k)] (7)

and

Qk :=
m∑
i=1

[P (Ai = Bi − k − 1) + P (Bi = Ai+1 − k − 1)], (8)

and where we define that Am+1 := A1 + 1. The parameters αk and βk are the only degrees
of freedom left and we fix them such that the resulting Bell inequalities are indeed maximally
violated by the state |ψ+〉. Note that taking αk = βk = 1− 2k/(d− 1) for m = 2, one recovers
the CGLMP Bell inequalities.

To exploit the symmetries inherent in Bell inequalities, we often write them in terms of cor-
relators instead of probabilities. For two-output measurements one can switch from correlators
to probabilities by means of an invertible transformation, but for d > 2 it becomes neces-
sary to appeal to the notion of generalized correlators. These are in general complex numbers

4



that are defined through the two-dimensional discrete Fourier transform of the probabilities
P (Ax = a,By = b), that is,

〈AkxBl
y〉 =

d−1∑
a,b=0

ωak+blP (Ax = a,By = b), (9)

where ω = exp(2πi/d) and k, l ∈ {0, . . . , d − 1}, and {Akx}k and {Bl
y}l can be thought of as

measurements whose outcomes are labelled by roots of unity ωi (i = 0, . . . , d−1). For quantum
correlations these numbers can be expressed in terms of the Born’s rule. Indeed, assuming
correlations ~p to be quantum and given by Eq. (2), we can interpret 〈AkxBl

y〉 as the average
value of the tensor product of the following operators

Akx =
d−1∑
a=0

ωakP (x)
a and Bl

y =
d−1∑
b=0

ωblP
(y)
b (10)

in the state |ψ〉. Thus, in what follows, whenever we work with quantum correlations we have
the above representation in mind. Note the operators in Eq. (10) are unitary, their eigenvalues
are the roots of unity, and they enjoy properties such as (Akx)† = Ad−kx and (Bl

y)
† = Bd−l

y for
any k, l = 0, . . . , d− 1.

Exploiting now transformation (9), expression (6) can be rewritten as

Ĩd,m =

m∑
i=1

d−1∑
l=1

〈AliB̄l
i〉, (11)

where, for clarity, the change of variables B̄l
i = alB

d−l
i + a∗lB

d−l
i−1 with al =

∑bd/2c−1
k=0 (αkω

−kl −
βkω

(k+1)l) was introduced on Bob’s side. Note that due to the convention Am+1 = A1 + 1, the
term B̄l

1 is defined in a slightly different manner as B̄l
1 = alB

d−l
1 + a∗l ω

lBd−l
m . For simplicity, we

ignored an irrelevant scalar term in (11) and rescaled the expression. To recover Id,m exactly

from Ĩd,m, one has to add that scalar term corresponding to l = 0, and divide the expression by
d.

Each choice for the free parameters αk and βk now corresponds to a choice for the variables
B̄l
i. As explained above, our aim is to fix their value according to the quantum property we

need: maximal violation by the maximally entangled state |ψ+〉. At this point, it is instructive
to look at the specific example of the CHSH Bell expression (m = 2, d = 2). In the notation
(11), we write the CHSH Bell expression 〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 as

Ĩ2,2 = 〈A1B̄1〉+ 〈A2B̄2〉, (12)

where B̄1 = (B1 + B2)/
√

2 and B̄2 = (B1 − B2)/
√

2. Notice now that for the optimal mea-
surements leading to the quantum bound of the CHSH inequality, we have that B̄1 = A∗1 and
B̄2 = A∗2. Our intuition is to fix this condition generically for any m and d: we choose the
parameters αk and βk such that the conditions

B̄l
i = (Ali)

∗ (13)

hold for l = 1, ..., d− 1 and i = 1, ...,m, in the case that the initial operators {P (x)
a } and {P (y)

b }
are the optimal CGLMP operators. Further intuition for imposing these exact conditions will
be provided in the next section, where we prove the Tsirelson bound of the expressions.
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Conditions (13) give rise to a set of linear equations for the variables αk and βk which is
solved in detail in Appendix B, giving

αk =
1

2d
tan

( π

2m

)
[g(k)− g(bd/2c)] (14)

βk =
1

2d
tan

( π

2m

)[
g(k + 1− 1

m
) + g(bd/2c)

]
(15)

with g(x) := cot(π(x+ 1
2m)/d).

To sum up, our class of Bell expressions is given by Id,m (6) or equivalently by Ĩd,m (11),
with coefficients (14) and (15). We arrived at this class of Bell expressions by first writing the
most general Bell expression satisfying the symmetry of CGLMP correlations, then re-writing
these Bell expressions in the simple form (11) through a change of variable on Bob’s side, and
then imposing the conditions (13) that generalize a property observed in the CHSH case. So
far we cannot guarantee that these Bell expressions lead to proper Bell inequalities violated by
quantum theory, nor that their quantum bound is attained by the maximally entangled state
|ψ+〉, but we show in the next section that this is indeed the case.

4 Properties of the novel Bell expressions

We now present our main results for the class of Bell expressions (11). All the values for the
bounds of (6) can be obtained directly from those of (11) as mentioned in Appendix B.

Theorem 1. The classical bound of Ĩd,m is given by

C̃b =
1

2
tan

( π

2m

){
(2m− 1) cot

( π

2dm

)
− cot

[
π

d

(
1− 1

2m

)]}
−m. (16)

Proof. We start with the probability version Id,m of the Bell expression, and since we can restrict
the problem to local deterministic strategies, finding the classical bound becomes a question of
distributing 1s and 0s over all the terms P (Ax = By + z). It turns out that the maximizing
strategy is to have 2m− 1 terms equal to 1 multiplied by α0 and 1 term equal to 1 multiplied
by β0. All other terms must be equal to 0. More details can be found in Appendix C.

Importantly, the resulting Bell inequality Ĩd,m ≤ C̃b is violated by quantum mechanics.

Indeed, we can reach the value m(d − 1) for Ĩd,m by applying the CGLMP measurements on
the maximally entangled state. This is easily seen using Eq. (13), the unitarity of Aki , and
the following property of the maximally entangled states: M ⊗N |ψ+〉 = I⊗NMT |ψ+〉 for M
and N operators. One can see how all the correlators in (11) are then equal to 1, yielding the
quantum violation of m(d− 1) after summing over i and l.

Crucially, as we prove below, the value m(d − 1) turns out to be the maximal quantum
violation of our Bell inequalities.

Theorem 2. The Tsirelson bound of Ĩd,m is given by Q̃b = m(d− 1).

Proof. Here we present a sketch of the proof, while its more detailed version is deferred to
Appendix D. The idea of the proof is to construct a sum-of-squares (SOS) decomposition of the
shifted Bell operator B̃ := Q̃bI − B, where I is the identity operator and B the Bell operator
corresponding to expression (11), as was done for instance in [25]. For any positive semidefinite
operator P, an SOS decomposition is a finite collection of operators Pλ such that

P =
∑
λ

P †λPλ. (17)
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It is clear that if the shifted Bell operator B̃ can be written as (17) it must be semidefinite
positive, which proves that Q̃b is an upper bound to our Bell expression. Indeed, for any
quantum state |ψ〉, it then holds that 〈ψ|B̃|ψ〉 ≥ 0, which implies for the Bell operator that
〈ψ|B|ψ〉 ≤ Q̃b. This approach is in principle valid for any shifted Bell operator, thus for any
Bell expression. As we expect the Pλ’s to be polynomials of the measurement operators of
Alice and Bob, we can define the order of the SOS decomposition as the largest degree of these
polynomials.

In our case, we show that Q̃b = m(d − 1) is indeed the maximal quantum violation of our
class of Bell inequalities as the shifted Bell operator Q̃b1− B can be decomposed as

Q̃b1− B =
1

2

m∑
i=1

d−1∑
k=1

P †ikPik +
1

2

m−2∑
i=1

d−1∑
k=1

T †ikTik, (18)

where Pik = 1 ⊗ B̄k
i − (Aki )

† ⊗ 1, and Tik = (µi,kB
d−k
2 + νi,kB

d−k
i+2 + τi,kB

d−k
i+3 ) with µi,k, νi,k,

τi,k ∈ R. Our Bell operator is B =
∑m

i=1

∑d−1
l=1 A

k
i ⊗B̄k

i , and the decomposition is independent of
the choice of Aki and Bk

i . The second sum of terms with coefficients µi,k, νi,k and τi,k was added
to compensate some non-vanishing terms in the first sum. The exact values of the coefficients
along with details on the SOS decomposition can be found in Appendix D.

Let us elaborate on how the SOS works in the case m = 2, which justifies a posteriori the
imposition of conditions (13). For m = 2, only the first part of the SOS decomposition (18)
remains. At the point of maximal violation, both sides of (18) applied on |ψ+〉 must yield 0.
Since the measurements are now the optimal CGLMP ones, Eq. (13) holds, and can be used
as above with the property M ⊗N |ψ+〉 = 1⊗NMT |ψ+〉 to see easily how the first sum of the
decomposition cancels. One can now grasp the intuition behind conditions (13): imposing them
leads to having an SOS of the form (18), more precisely an SOS of order one in the operators
Aki and Bk

i .
In the CHSH case, one can observe the same effect, as these same properties of the optimal

state and measurements allow the Bell operator BCHSH = A1⊗B1+A1⊗B2+A2⊗B1−A2⊗B2

to have the following SOS decomposition, which is also of order one:

2
√

21− BCHSH =
1√
2

(
P †1P1 + P †2P2

)
, (19)

with P1 = (1/
√

2)(1 ⊗ B1 + 1 ⊗ B2) − A1 ⊗ 1, and P2 = (1/
√

2)(1 ⊗ B1 − 1 ⊗ B2) − A2 ⊗ 1.
Thus, our construction generalizes this quantum aspect of CHSH. In the case m > 2, the SOS
does not generalize as directly, and one has to add “by hand” the extra terms T †ikTik. However,
the order of the SOS remains one.

Theorem 3. The no-signalling bound of Ĩd,m is given by

ÑSb = m tan
( π

2m

)
cot
( π

2dm

)
−m. (20)

Proof. In Appendix E, we provide a no-signalling behaviour and show that it attains the alge-
braic bound of our Bell expressions. It corresponds to having all the probabilities which are
multiplied by α0 in Id,m equal to 1, and all the others equal to 0.

For our expressions to form a non-trivial Bell inequalities, the classical bound must be
smaller than the quantum one for all m, d ≥ 2. We show this in Appendix F, and we also study
the scaling of the classical, quantum, and no-signalling bounds.
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Finally, note that for m = 2, our Bell expressions coincide with those introduced in Refs. [26]
and then rederived in [27] using a different approach. Moreover, the maximal quantum violations
of these Bell inequalities was computed in Refs. [28, 27] exploiting alternative techniques. On
the other hand, for d = 2 and any m, our class recovers the well-known chained Bell inequalities
[29].

5 Applications to device-independent protocols

A natural application for our expressions is self-testing, a DI protocol in which a state and
measurements performed on it are certified up to local isometries, based on the nonlocal corre-
lations they produce – here, on the violation of a Bell inequality. To perform self-testing, the
point of maximal violation must be unique, which is a property that we have not proven for
our inequalities. There exists a numerical method for self-testing called the SWAP method [30],
and we applied it to the simplest case m = 2 and d = 3. The results of the program are plotted
in Figure 1. It shows that, in this scenario, the maximal violation is unique and self-testing
the maximally entangled state of two qutrits |ψ+〉 = 1√

3
(|00〉 + |11〉 + |22〉) is possible, with

robustness.
An open question consists in generalizing these self-testing results to any dimension, which

must be done analytically. Our inequalities could then find a direct application in DI random
number generation protocols [5, 6, 31]. Indeed, if the point of maximal violation is proven to
be unique, one can successfully apply the method of [32] and use the symmetries of the Bell
expressions to guarantee a dit of randomness when observing the maximal violation. Ultimately,
by increasing the dimension d, one would achieve unbounded randomness expansion.

Our inequalities could also find applications in DI quantum key distribution. Indeed, it was
shown in [33] through the example of the CGLMP inequalities that exploiting high dimensional
systems can be beneficial in noisy scenarios. An advantage that our inequalities have over
CGLMP in that scenario is that the maximally entangled state can produce perfect correlations
between the users, which should lead to higher key generation rates than using the CGLMP
inequalities.

Figure 1: Minimum fidelity of state in the black box to the maximally entangled state of two
qutrits, as a function of the violation of a renormalised version of I3,2. At the maximal violation
2+2/

√
3, the fidelity is equal to 1, meaning that the quantum state used in the Bell experiment

must be equal to the reference state. For lower violations, the fidelity decreases.
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6 Discussion

In summary, we have introduced a new technique allowing to construct Bell inequalities with an
arbitrary number of measurements and outcomes that are maximally violated by the maximally
entangled states. It exploits the concept of SOS decompositions of Bell operators and, crucially,
allows one to compute analytically their Tsirelson bounds. We also provide the classical and
no-signalling bounds of the resulting Bell inequalities. Our results are very general as, unlike
previous works, we do not consider a particular Bell scenario, but allow the number of inputs m
and outputs d to be arbitrary. Our inequalities can be seen as the “quantum” or the DI-oriented
generalization of CHSH Bell inequality in the same spirit as the CGLMP inequality generalizes
the CHSH one classically. Indeed, while the CGLMP inequalities preserve the property of being
facets of the local polytope, our inequalities possess the same sum-of-squares structure as CHSH
at the maximal quantum violation, which leads to the important property for DI protocols of
being maximally violated by the maximal entangled state.

Moreover, let us note that deriving Tsirelson bounds allows us to gain insight about the
quantum set of correlations—more specifically its boundary—and has thus fundamental im-
plications. In particular, a feature of our class of inequalities worth highlighting is that their
Tsirelson bound corresponds to the bound obtained using the NPA hierarchy at the first level,
i.e., within the set Q1. This is a rare property, which to our knowledge has been previously
observed only for XOR games. That the Tsirelson bounds of our inequalities are attained in
Q1 follows from our SOS decomposition (see Eq. (18)). Indeed the degree of an optimal SOS
decomposition for a Bell operator is directly linked to the level of the NPA hierarchy at which
the quantum bound is obtained [34]. An SOS of degree 1, as in our case, corresponds to the
first level Q1.

This means that the boundaries of the sets Q and Q1 intersect on the point of maximal
violation of our inequalities. This observation, in conjunction with the results of Ref. [27],
raises a question about Q1. Indeed, the boundaries of Q and Q1 seems to intersect at points
that correspond to the maximal violation of Bell inequalities attained by maximally entangled
states. One should confirm whether this trend is a general property, and could perhaps use it
as a way to characterize Q1.
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[4] A. Aćın, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, Phys. Rev. Lett 98,
230501 (2007).

[5] R. Colbeck, PhD thesis, University of Cambridge (2006); R. Colbeck, and A. Kent, J. Phys.
A: Math. Theor. 44, 095305 (2011).

[6] S. Pironio et al., Nature 464, 1021 (2010).

[7] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).

[8] D. Collins, N. Gisin, N. Linden, S. Massar and S. Popescu, Phys. Rev. Lett. 88, 040404
(2002).
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A Optimal CGLMP measurements

We present here the “optimal CGLMP measurements” first introduced in [22] and generalized
to an arbitrary number of inputs in [23]. We use them throughout our work. They are defined
as follows

Ax = U †xFΩF †Ux, By = VyF
†ΩFV †y , (21)

where Ω = diag[1, ω, ω2, . . . , ωd−1], with ω = exp(2πi/d), and F is the d × d discrete Fourier
transform matrix given by

Fd =
1√
d

d−1∑
i,j=0

ωij |i〉〈j|. (22)

Then, Ux and Vx are unitary operations defining Alice’s and Bob’s measurements and read
explicitly

Ux =

d−1∑
j=0

ωjθx |j〉〈j|, Vy =

d−1∑
j=0

ωjζy |j〉〈j| (23)

with the phases θx = (x− 1/2)/m and ζy = y/m for x, y = 1, . . . ,m.

When applying these measurements on a normalised state of the form |ψ〉 =
∑d−1

q=0 γq|qq〉,
we obtain the probabilities

P (Ax = a,By = b) =

∣∣∣∣∣∣1d
d−1∑
q=0

γq exp

(
2πi

d
q(a− b− θx + ζy)

)∣∣∣∣∣∣
2

. (24)

One can observe that this depends only on the difference k = a−b and not on a and b separately.
This means that:

P (Ax = By + k) = dP (Ax = k,By = 0). (25)

Thus, all the terms P (Ax = By + k) appearing in the inequalities (6) computed for those
measurements and state have identical subterms P (Ax = b + k,By = b). Moreover, using the
values of the phases θx and ζy, one can verify straightforwardly that expression (24) has the
same value if x = y and a− b = k, and if x = y + 1 and a− b = −k. Thus :

P (Ai = Bi + k) = P (Bi = Ai+1 + k), (26)
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for i = 1, . . . ,m. Note that if one wants to replace Am+1 = A1, the symmetry is not valid
anymore and requires the definition Am+1 = A1+1, which we adopt. To sum up, all the Pk and
Qk appearing in (6) have identical subterms for those state and optimal CGLMP measurements
(in particular the state can be the maximally entangled state). These symmetries justify the
form of the Bell expressions (6): terms who have the same value appear with the same coefficient
αk or βk, thus forming “blocks”. Different blocks have different values and are multiplied by
different coefficients.

B Derivation of coefficients αk and βk

We present the details on the derivation of coefficients (14) and (15). The departure point of
the determination of αk and βk is the set of matrix conditions (13) which we restate explicitly
here

B̄l
i = (Ali)

∗ (13)

with i = 1, . . . ,m, and l = 1, . . . , bd/2c. This number bd/2c of equations stems from the fact
that Ad−lx = (Alx)† and B̄d−l

y = (B̄l
y)
†. Recall that the barred quantities B̄l

i are defined as

B̄l
i = alB

d−l
i + a∗lB

d−l
i−1 (27)

for i = 2, . . . ,m and B̄l
1 = alB

d−l
1 + a∗l ω

lBd−l
m , and the numbers al are given by

al =

bd/2c−1∑
k=0

[
αkω

−kl − βkω(k+1)l
]
. (28)

In order to solve the system (13) one has to find explicit forms of Alx and Bl
y. Introducing

Eqs. (22) and (23) into Eq. (21), one obtains

Alx = ω−(d−l)θx
l−1∑
n=0

|d− l + n〉〈n|+ ωlθx
d−1∑
n=l

|n− l〉〈n| (29)

and

Bl
y = ω−(d−l)ζy

l−1∑
n=0

|n〉〈d− l + n|+ ωlζy
d−1∑
n=l

|n〉〈n− l|. (30)

Then, one combines these formulas with equations (27) and (13), and compares the matrix
elements, which yields the following system of equations

alω
−lζi + a∗l ω

−lζi−1 = ω−lθi

alω
(d−l)ζi + a∗l ω

(d−l)ζi−1 = ω(d−l)θi , (31)

with i = 1, . . . ,m and l = 1, . . . , bd/2c, where it is assumed that ζ0 = 0. Simple algebra implies
finally that

al =
ω

2l−d
4m

2 cos(π/2m)
(l = 1, . . . , bd/2c). (32)

Having determined al, one can turn to the system (28). It consists of bd/2c equations
containing 2bd/2c variables, meaning that it cannot be uniquely solved, and, in particular, the
solutions will be generally complex. To handle the latter problem we equip this system with
bd/2c additional equations

bd/2c−1∑
k=0

[
αkω

kl − βkω−(k+1)l
]

= a∗l . (33)
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for l = 1, . . . , bd/2c. Now, both systems (28) and (33) can be condensed into the following single
one

bd/2c−1∑
k=0

[
αkω

−kl − βkω(k+1)l
]

= cl, (34)

in which cl = al for l = 1, . . . , bd/2c and cl = c∗−l for l = −bd/2c, . . . ,−1. In what follows we
solve (33) for even and odd d separately.

Odd d. We begin by noting that in this case, the system (34) consists of d− 1 equations and
involves the same number of variables, and therefore one expects it to have a unique solution.
To find it, we denote the set I := {−(d− 1)/2, . . . ,−1, 1, . . . , (d− 1)/2} and note that for any
pair k, n ∈ {0, . . . , bd/2c − 1}, the following identity holds:∑

l∈I
ω−lkωln =

∑
l∈I∪{0}

ω−lkωln − 1 = dδn,k − 1. (35)

We then multiply (34) by ωnl for some n ∈ {0, . . . , bd/2c − 1} and add the resulting equations
over l ∈ I, which by virtue of Eq. (35) gives

αn =
1

d
S +

1

d

∑
l∈I

clω
nl (n = 0, . . . , bd/2c − 1), (36)

where we have denoted

S =

bd/2c−1∑
k=0

(αk − βk). (37)

The coefficients βn can be determined in an analogous way and we obtain:

βn = −1

d
S − 1

d

∑
l∈I

clω
−(n+1)l (n = 0, . . . , bd/2c − 1). (38)

To fully determine αn and βn, it is in fact enough to compute the sum in Eq. (36) as the
second one and S can be obtained from it by replacing n by −(n+ 1) and bd/2c, respectively.
To compute this sum, we first express it as

∑
l∈I

clω
nl =

1

cos(π/2m)

bd/2c∑
l=1

Re
(
ω(2l−d)/4mωnl

)

=
1

cos(π/2m)

cos
( π

2m

) bd/2c∑
l=1

cos

(
2πl

d
ξ

)
+ sin

( π

2m

) bd/2c∑
l=1

sin

(
2πl

d
ξ

) (39)

where we have denoted ξ = n + 1/2m. Using the Euler representations of the cosine and sine
functions the above two sums can be easily computed and they read

bd/2c∑
l=1

cos

(
2πl

d
ξ

)
=

1

2

[
sin(πξ)

sin(πξ/d)
− 1

]
(40)

and
bd/2c∑
l=1

sin

(
2πl

d
ξ

)
=

1

2

[
cot

(
πξ

d

)
− cos(πξ)

sin(πξ/d)

]
. (41)

13



Introducing them into Eq. (39) and with the aid of some trigonometric formulas, one obtains∑
l∈I

clω
nl =

1

2

{
sin(πξ)

sin(πξ/d)
− 1 + tan

( π

2m

)[
cot

(
πξ

d

)
− cos(πξ)

sin(πξ/d)

]}
=

1

2

{
tan

( π

2m

)
cot

[
π

d

(
n+

1

2m

)]
− 1

}
. (42)

By replacing n with −(n+ 1) in the above formula we then arrive at the expression for the sum
in Eq. (38), that is,∑

l∈I
clω
−(n+1)l = −1

2

{
tan

( π

2m

)
cot

[
π

d

(
n+ 1− 1

2m

)]
+ 1

}
. (43)

Finally, setting n = bd/2c = (d− 1)/2 in Eq. (42) one obtains a formula for S:

S =
1

2

{
1− tan

( π

2m

)
cot

[
π

d

(⌊
d

2

⌋
+

1

m

)]}
. (44)

Substituting Eqs. (42), (43), and (44) into Eqs. (36) and (38), we eventually obtain the
coefficients αn and βn in the following form

αn =
1

2d
tan

( π

2m

){
cot

[
π

d

(
n+

1

2m

)]
− cot

[
π

d

(⌊
d

2

⌋
+

1

2m

)]}
(45)

and

βn =
1

2d
tan

( π

2m

){
cot

[
π

d

(
n+ 1− 1

2m

)]
+ cot

[
π

d

(⌊
d

2

⌋
+

1

2m

)]}
. (46)

with n = 1, . . . , bd/2c. As in the main text, the coefficients can be expressed using function
g(x) := cot(πd (x+ 1

2m)).

Even d. Clearly, in the case of even d, one can solve the system (34) analogously. The
difference is, however, that (34) is the same equation for l = −d/2 and l = d/2, and therefore
the system consists of d− 1 equations for d variables. A non-unique solution is then expected.

Denoting Ie = {−(d−1)/2, . . . ,−1, 1, . . . , d/2} and following the same methodology as above
with the set I replaced by Ie one arrives at αn and βn given by

αn =
1

2d

{
tan

( π

2m

)
cot

[
π

d

(
n+

1

2m

)]
− 1

}
+

1

d
S (47)

and

βn =
1

2d

{
tan

( π

2m

)
cot

[
π

d

(
n+ 1− 1

2m

)]
+ 1

}
− 1

d
S, (48)

where S is given by the same formula as in Eq. (37). Here, the quantity S (or, equivalently,
one of the variables αn or βn) cannot be uniquely determined. We fix it in such a way that the
resulting αn and βn are given by the same formulas as those in the odd d case, that is,

S =
1

2

{
1− tan

( π

2m

)
cot

[
π

d

(⌊
d

2

⌋
+

1

2m

)]}
. (49)

As a consequence the coefficients αn and βn are given by Eqs. (45) and (46), both in the
odd and even d cases.

It is finally worth mentioning that the values of the two Bell expressions—in terms of prob-
abilities (6) and in terms of generalized correlators (11)—are related in the following way:

Ĩd,m = dId,m − 2mS, (50)

where S is given by equation (44).
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Special cases. Let us now consider two special cases of d = 2 and any m, and m = 2 and
any d. In the first one, the Bell expression in the probability form (6) simplifies to

I2,m = α0P0 − β0Q0 (51)

where

P0 =
m∑
i=1

[P (Ai = Bi)+P (Bi = Ai+1)], Q0 =
m∑
i=1

[P (Ai = Bi−1)+P (Bi = Ai+1−1)] (52)

and

α0 =
1

2 cos(π/2m)
, β0 = 0. (53)

Moreover, there is a unique coefficient a1 and it simplifies to 1/[2 cos(π/2m)], so that in the
correlator form our Bell expression for d = 2 becomes

Ĩ2,m =
1

2 cos(π/2m)

[
〈A1B1〉 − 〈A1Bm〉+

m∑
i=2

(〈AiBi〉+ 〈AiBi−1〉)

]
, (54)

and Theorems 1, 2, and 3 give C̃b = (m − 1)/ cos[π/2m], Q̃b = m, and ÑSb = m/ cos[π/2m],
respectively. This is the well-known chained Bell inequality [29], which was recently used in
Ref. [35] to self-test the maximally entangled state of two qubits and the corresponding mea-
surements.

In the second case, i.e., that of m = 2 and any d, the Bell expression Id,2 in the probability
form is given by Eq.

Id,2 :=

bd/2c−1∑
k=0

(αkPk − βkQk) , (55)

with the expressions Pk and Qk simplifying to

Pk = P (A1 = B1 + k) + P (B1 = A2 + k) + P (A2 = B2 + k) + P (B2 = A1 + k + 1) (56)

and

Qk = P (A1 = B1−k− 1) +P (B1 = A2−k− 1) +P (A2 = B2−k− 1) +P (B2 = A1−k), (57)

where we have exploited the convention that A3 = A1 + 1. Then, the coefficients αk and βk are
given by

αk =
1

2d

[
g(k) + (−1)d tan

( π
4d

)]
, βk =

1

2d

[
g (k + 1/2)− (−1)d tan

( π
4d

)]
, (58)

with g(k) = cot[π(k + 1/4)/d]. On the other hand, in the correlator form one obtains

Ĩd,2 =

d−1∑
l=1

[
al〈Al1Bd−l

1 〉+ a∗l ω
l〈Al1Bd−l

2 〉+ al〈Al2Bd−l
2 〉+ a∗l 〈Al2Bd−l

1 〉
]
, (59)

where al = ω(2l−d)/8/
√

2. In this case Theorems 1, 2, and 3 give

C̃b =
1

2

[
3 cot

( π
3d

)
− cot

(
3π

4d

)]
− 2, (60)

Q̃b = 2(d − 1), and ÑSb = 2 cot[π/(4d)] − 2. It should be noticed that this Bell inequality
previously studied in Refs. [26] and [27], and, in particular in Ref. [27] and [28] the maximal
quantum violation was found using two different methods.
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C Classical bound of the inequalities

Let us start with expression (6) and note that we can rewrite it as:

Id,m :=

d−1∑
k=0

αk

m∑
i=1

[P (Ai = Bi + k) + P (Bi = Ai+1 + k)], (61)

with Am+1 = A1 + 1. This is possible because of the form (14) and (15) of coefficients αk and
βk. Indeed, since αk = −βd−k−1, the terms of the sum which were attached to the βk coefficients
can be shifted to indices k = bd/2c, . . . , d− 1 and now associated to an αk. In the odd case, we
should in principle impose that the term k = bd/2c disappears, but it happens naturally since
αbd/2c = 0.

As stated in the main text, finding the classical bound of expression (61) reduces to comput-
ing the optimal deterministic strategy. Thus, to describe the difference between the outcomes
associated to Ax and By, we can assign one value q such that P (Ax = By + k) = δkq. As q
depends on inputs x and y but not all pairs of Ax and By appear in the Bell expression, we
thus define 2m variables qi ∈ {0, 1 . . . , d− 1} such that:

A1 −B1 = q1,

B1 −A2 = q2,

A2 −B2 = q3,
...

Am −Bm = q2m−1,

Bm −A1 = q2m + 1. (62)

Due to the chained character of these equations, q2m must obey a superselection rule involving
the other qi’s, which is

q2m = −1−
2m−1∑
i=1

qi, (63)

where the sum is modulo d. Due to the fact that the dependence of the coefficients αk on k is only
through the cotangent function, proving Theorem 1 boils down to the following maximization
problem.

Theorem 1. Let

α̂k := cot

[
π

d

(
k +

1

2m

)]
,

and let

Ĉb := max
0≤q1,...,q2m−1<d

(
2m−1∑
i=1

α̂qi + α̂−1−
∑2m−1

i=1 qi mod d

)
. (64)

Then, Ĉb = (2m− 1)α̂0 + α̂d−1.

Notice that to recover the exact expression C̃b from the main text, one needs to reintroduce
the constant factors appearing in the definition of αk and use Eq. (50). To prove the theorem,
we first demonstrate two lemmas. Note that throughout this appendix, we assume that m ≥ 2
and d ≥ 2. Although these are not tight conditions to prove our results, they are in any case
satisfied by the definition of a Bell test.
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Lemma 1. Let g(x) = cot[π(x+ 1
2m)/d]. For all x, y satisfying 0 ≤ x < y < d− 1

2m , we have

(1 + 2mx)g(x) > (1 + 2my)g(y). (65)

Proof. Let us consider the function f(z) := z cot z, which is strictly decreasing in the interval
0 < z < π. This can be shown for instance by noting that f is holomorphic and by studying
the sign of the coefficients of its Laurent series in a ball of radius π centered at z = 0. Thus,
for every c ∈ (0, π), f(c) > f(z) for all c < z < π. In particular, we can pick c := π

2dm(1 + 2mx)
so that:

π

2dm
(1 + 2mx) cot

( π

2dm
(1 + 2mx)

)
> zf(z), (66)

for π
2dm(1 + 2mx) < z < π. By introducing the change of variables z = π

2dm(1 + 2my), equation
(65) follows. Note that for integer values of x and y, namely k and l, Lemma 1 becomes:

(1 + 2Mk)α̂k > (1 + 2Ml)α̂l, ∀0 ≤ k < l < d. (67)

Lemma 2. For integer indices k, l, p such that 0 < k, l < d and 0 ≤ p < d, we have:

α̂0 + α̂p > α̂k + α̂l. (68)

Proof. Because all the alphas are ordered α̂0 > α̂1 > α̂2 > · · · > α̂d−1, we have that α̂0 + α̂p ≥
α̂0 + α̂d−1 and α̂1 + α̂1 ≥ α̂k + α̂l. Hence, it suffices to prove that

α̂0 + α̂d−1 > 2α̂1. (69)

Let us rewrite this inequality using the function g introduced in Lemma 1. To this end, we
note that the symmetry of the function cot(x) = − cot(−x) translates to g(x) in the following
manner : g(x) = −g(−x− 1/m). Thus, in order to prove (69), we need to show:

g(0) > 2g(1) + g(1− 1/m). (70)

Using Lemma 1 twice, we can express that:

g(0) > (2m− 1)g(1− 1/m) > g(1− 1/m) + 2(m− 1)
(1 + 2m)

(2m− 1)
g(1). (71)

To obtain the second inequality, one of the 2m−1 terms was isolated, and Lemma 1 was applied
only on the remaining 2(m − 1) terms. The minimum of 2(m − 1)(1 + 2m)/(2m − 1) is found
for m = 2 and it is equal to 10/3. Since g(1) is positive, and 10/3 > 2, we can conclude that
g(0) > g(1− 1/m) + 2g(1), which is exactly relation (70).

Proof of Theorem 1. To demonstrate the theorem, we employ a dynamical programming pro-
cedure which allows us to rewrite Eq. (64) as a chain of maximizations, each over a single
variable. Let us first define

h(x) := max
0≤y<d

(α̂y + α̂−1−x−y) , (72)

where the indices are taken to be modulo d. As a direct consequence of Lemma 2, h(x) =
α̂0 + α̂−1−x. Indeed, the lemma implies that α̂0 + α̂−1−x > α̂y + α̂−1−x−y if y > 0 and
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x 6= d− 1− y. For the cases where y = 0 or x = d− 1− y, the maximum is directly attained.
This allows us to write the classical bound as:

Ĉb = max
q1

(
α̂q1 + max

q2

(
α̂q2 + . . .+ max

q2m−2

(
α̂q2m−2 + h

(
2m−2∑
i=1

qi

))
. . .

))
. (73)

Using the properties of h, we find that

max
qk

[
α̂qk + h

(
k∑
i=1

qi

)]
= α̂0 + h

(
k−1∑
i=1

qi

)
(74)

for all k. By applying this step 2(m− 1) times to expression (73), we obtain:

Ĉb = (2m− 2)α̂0 + h(0) = (2m− 1)α̂0 + α̂−1. (75)

D Tsirelson bound of the inequalities

We give here a few more details on the SOS decomposition of any Bell operator corresponding
to our new Bell inequality Ĩd,m. Concretely, we show that the identity (18), which we restate
here as

Q̃b1− B =
1

2

m∑
i=1

d−1∑
k=1

P †ikPik +
1

2

m−2∑
i=1

d−1∑
k=1

T †ikTik, (76)

is valid independently of the choice of Aki and Bk
i . The operators are thus not specified. Here,

Pik = 1⊗ B̄k
i − (Aki )

† ⊗ 1, and

Tik = µi,kB
d−k
2 + νi,kB

d−k
i+2 + τi,kB

d−k
i+3 , (77)

where the coefficients µik, νik and τik are given by

µi,k =
ω(i+1)(d−2k)/2m

2 cos(π/2m)

sin(π/m)√
sin(πi/m) sin [π(i+ 1)/m]

,

νi,k = − ω(d−2k)/2m

2 cos(π/2m)

√
sin [π(i+ 1)/m]

sin(πi/m)
,

τi,k =
1

2 cos(π/2m)

√
sin(πi/m)

sin [π(i+ 1)/m]
= − ω(d−2k)/2m

4 cos2(π/2m)
ν−1ik , (78)

for i = 1, . . . ,m−3 and k = 1, . . . , d−1, while for i = m−2 and k = 1, . . . , d−1 they are given
by

µm−2,k = − ω−(d−2k)/2m

2
√

2 cos(π/2m)
√

cos(π/m)
,

νm−2,k = − ωkω(d−2k)/2m

2
√

2 cos(π/2m)
√

cos(π/m)
,

τm−2,k =

√
cos(π/m)√

2 cos(π/2m)
. (79)
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Now, in order to check the validity of the SOS decomposition (76) let us first introduce the
explicit form of Pik into the first term of the right-hand side of (76), which gives

m∑
i=1

d−1∑
k=1

P †ikPik = Q̃b1− 2B + 1⊗
m∑
i=1

d−1∑
k=1

(B̄k
i )†(B̄k

i ), (80)

where we have used the fact that the Bell operator B is Hermitian.
Let us then introduce the explicit form of the operators Tik into the last term of the right-

hand side of (76), which, after some simple algebra, leads us to

m−2∑
i=1

d−1∑
k=1

T †ikTik =
m−2∑
i=1

d−1∑
k=1

(
|µi,k|2 + |νi,k|2 + |τi,k|2

)
1

+
d−1∑
k=1

[
µ∗1,kν1,k(B

d−k
2 )†(Bd−k

3 ) + µ1,kν
∗
1,k(B

d−k
3 )†(Bd−k

2 )
]

+
d−1∑
k=1

[
µ∗m−2,kτm−2,k(B

d−k
2 )†(Bd−k

1 ) + µm−2,kτ
∗
m−2,k(B

d−k
1 )†(Bd−k

2 )
]

+
m−3∑
i=1

d−1∑
k=1

[
(µ∗i,kτi,k + µ∗i+1,kνi+1,k)(B

d−k
2 )†(Bd−k

i+3 )

+(µi,kτ
∗
i,k + µi+1,kν

∗
i+1,k)(B

d−k
i+3 )†(Bd−k

2 )
]

+
m−2∑
i=1

d−1∑
k=1

[
ν∗i,kτi,k(B

d−k
i+2 )†(Bd−k

i+3 ) + νi,kτ
∗
i,k(B

d−k
i+3 )†(Bd−k

i+2 )
]
. (81)

Now, it follows from Eqs. (78) and (79) that µ∗i,kτi,k+µ
∗
i+1,kνi+1,k = 0 for i = 1, . . . ,m−3 and k =

1, . . . , d− 1, which means that the fourth and fifth lines in the above vanish. Then, one notices
that µ∗1,kν1,k = µm−2,kτ

∗
m−2,k = ν∗i,kτi,k = −a2k for i = 1, . . . ,m − 3 and k = 1, . . . , d − 1, and

νm−2,kτ
∗
m−2,k = −ωk(a∗k)2 for k = 1, . . . , d−1, where, as before, ak = ω−(d−2k)/4m/[2 cos(π/2m)].

Therefore, the remaining terms on the right-hand side of Eq. (81) can be wrapped up as

m−2∑
i=1

d−1∑
k=1

T †ikTik =
m−2∑
i=1

d−1∑
k=1

(
|µik|2 + |νik|2 + |τik|2

)
1

−
m−1∑
i=1

d−1∑
k=1

[
a2k(B

d−k
i )†(Bd−k

i+1 ) + (a∗k)
2(Bd−k

i+1 )†(Bd−k
i )

]
−
d−1∑
k=1

[
ωk(a∗k)

2(Bd−k
1 )†(Bd−k

m ) + ω−ka2k(B
d−k
m )†(Bd−k

1 )
]
. (82)

By substituting Eqs. (80) and (82) into Eq. (76) and exploiting the explicit form of the operators
B̄k
i , one obtains

1

2

m∑
i=1

d−1∑
k=1

P †ikPik +
1

2

m−2∑
i=1

d−1∑
k=1

T †ikTik =
1

2
Q̃b1− B

+
d−1∑
k=1

[
m|ak|2 +

1

2

m−2∑
i=1

(
|µi,k|2 + |νi,k|2 + |τi,k|2

)]
1.

(83)
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It is easy to finally realize that the last two terms in the above formula amount to (1/2)Q̃b =
(1/2)m(d− 1), which completes the proof.

E No-signalling bound of the inequalities

As for the proof of the classical bound we start from the Bell expression written as:

Id,m :=

d−1∑
k=0

αk

m∑
i=1

[P (Ai = Bi + k) + P (Bi = Ai+1 + k)], (84)

with Am+1 = A1 + 1. Following considerations from Appendix C, the coefficient α0 is the
biggest of the sum. Clearly, the algebraic bound of Id,m is then 2mα0. To complete the proof,
we provide a no-signalling behaviour that reaches this bound. Let us recall the no-signalling
conditions for a probability distribution:∑

b

P (Ax = a,By = b) =
∑
b

P (Ax = a,By′ = b) ∀a, x, y, y′∑
a

P (Ax = a,By = b) =
∑
a

P (Ax′ = a,By = b) ∀b, y, x, x′, (85)

which express that the marginals on Alice’s side do not depend on Bob’s input, and conversely.
The behaviour that we present is the following. For inputs x and y such that x = y or x = y+1:

P (Ay = a,By = b) = P (Ay+1 = a,By = b) =

{
1/d if a = b
0 if a 6= b.

(86)

There is a special case for x = 1 and y = m:

P (A1 = a,Bm = b) =

{
1/d if a = b− 1
0 if a 6= b− 1,

(87)

where the addition is modulo d. For all the other input combinations (i.e. the ones not appearing
in the inequalities), we have:

P (Ax = a,By = b) = 1/d2 ∀a, b. (88)

One can easily verify that this distribution satisfies conditions (85). To obtain the expression
from Theorem 3, it suffices to write explicitly 2mα0 and to use relation (50).

F Scaling of the bounds

Here, we study the asymptotic behaviour of the bounds of our Bell expressions for large numbers
of inputs m and outputs d. We also show that for any values of m and d, the classical bound is
strictly smaller than the quantum bound, which is strictly smaller than the no-signalling bound.
This ensures in particular that the Bell inequality is never trivial.

Let us start with the quantity:

Q̃b

C̃b
=

2m(d− 1)

tan
(
π
2m

) [
(2m− 1) cot

(
π

2dm

)
− cot

(
π
d (1− 1

2m)
)]
−m

(89)

which is the ratio between the quantum and classical bounds. We also consider the ratio between
the no-signalling and quantum bounds, which is:

ÑSb

Q̃b
=

tan
(
π
2m

)
cot
(

π
2dm

)
− 1

d− 1
. (90)
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To observe the behaviour of these quantities for high number of inputs m and outputs d, we can
use the Taylor series expansion in two variables, 1/m and 1/d, and keep the dominant terms.
We obtain:

Q̃b

C̃b
= 1 +

1

2m
− π2 − 6

12m2
+ · · · (91)

ÑSb

Q̃b
= 1 +

π2/12− π2/12d2

m2
+ · · · (92)

Thus, when the parameters m and d are of the same order and both very large, i.e. m = Θ(d),
both ratios tend to 1. It is interesting to consider how fast the bounds tend towards each other:
since the ratio between the no-signalling and quantum bounds lacks a term in 1/m, it is clear
that the quantum bound approaches the no-signalling bound faster than the classical bound
approaches the quantum bound.

If we fix the number of outputs d and consider the limit of a large number of inputs m, the
ratios still tend to 1. However, if we fix m and considers the limit of large d, both ratios tend
to constants which are a bit bigger than 1. They are :

lim
d→∞

Q̃b/C̃b =
(2m− 1)π cot (π/2m)

4m(m− 1)
(93)

lim
d→∞

ÑSb/Q̃b =
2

π
m tan

( π

2m

)
. (94)

It is worth mentioning that both functions of m appearing on the right-hand sides of the above
formulas attain their maxima for m = 2 which are 4/π and 3π/8, respectively. To give the
reader more insight, we present in Tables 1 and 2 the numerical values of these ratios for low
values of m and d.

Now, let us show that these ratios are strictly larger than 1 for any value of m and d
consistent with a Bell scenario.

Lemma 3. For any m, d ≥ 2, the quantum bound of Ĩd,m is strictly larger than the classical
one, that is,

Q̃b/C̃b > 1. (95)

Proof. We prove that Q̃b − C̃b > 0, which is equivalent to (95) since both bounds are larger
than 0. This inequality can be written as:

2md cot
( π

2m

)
− 2m cot

( π

2dm

)
+ cot

( π

2dm

)
+ cot

(
π

d

(
1− 1

2m

))
> 0. (96)

If we define a = 1/d and x = π/2m, it becomes:

ax cot(a(π − x)) + a(x− π) cot(ax) + π cot(x) > 0, (97)

for 0 < a ≤ 1/2 and 0 < x ≤ π/4. Since the first term is positive for these intervals, it suffices
to show that

u(a, x) := a(x− π) cot(ax) + π cot(x) > 0. (98)

Clearly, u(a, x) ≥ mina(u(a, x)). This minimum corresponds to the limit a → 0, since the
derivative ∂u(a, x)/∂a of u(a, x) with respect to a is strictly positive on the considered intervals
of a and x. Indeed, it holds that

∂u(a, x)

∂a
= (x− π) cot(ax)− ax(x− π)

sin2(ax)
, (99)
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which can be rewritten as

∂u(a, x)

∂a
=

π − x
2 sin2(ax)

[2ax− sin(2ax)] . (100)

Now, due to the fact that y > sin y for 0 < y ≤ π/8, one has that 2ax > sin(2ax) for 0 < a ≤ 1/2
and 0 < x ≤ π/4, and therefore the right-hand side of Eq. (100) is strictly positive within the
above intervals.

Now, computing the limit of u(a, x) when a→ 0, one obtains

lim
a→0

u(a, x) = 1− π

x
+ π cot(x). (101)

It can be verified straightforwardly that this expression is strictly positive in the interval 0 <
x ≤ π/4, by comparing the two functions π cot(x) and π

x−1, and noticing that the former upper
bounds the latter in the interval 0 < x ≤ π/4. Indeed, at x = π/4, we have that π cot(π/4) > 3,
and in this interval, both their derivatives are negative, with the derivative of the first function
smaller than the derivative of the second one. Thus, u(a, x) > 0.

Lemma 4. For any m, d ≥ 2, the no-signalling bound of Ĩd,m is strictly larger than the quantum
one, that is,

ÑSb/Q̃b > 1. (102)

Proof. Writing the inequality explicitely as in (90), it follows that it is enough to show that
tan(π/2m) cot(π/2dm) > d. Let us prove a slightly simpler inequality:

tan(π/2m) > d tan(π/2dm). (103)

To this end, we show that tan(ax) > a tan(x) for any 0 < x ≤ π/2a and any integer a ≥ 2.
We notice that for x = 0, tan(0) = a tan(0), and that [tan(ax)]′ ≥ [a tan(x)]′ ≥ 0, meaning
that both tan(ax) and a tan(x) are monotonically increasing functions and that the former
grows faster than the latter. The inequality for the derivatives holds true because cos(x) is a
monotonically decreasing function for 0 ≤ x ≤ π/2a which implies that cos(x) ≥ cos(ax).

To complete the proof we note that tan(π/2m) = tan[d(π/2dm)] and using x = π/2dm
and a = d, one can exploit the above inequality to obtain Eq. (103). This finally implies Eq.
(102).

HH
HHHHd

m
2 3 4 5 6

2 1.414 1.299 1.232 1.189 1.159
3 1.291 1.214 1.167 1.137 1.116
4 1.252 1.186 1.146 1.120 1.102
5 1.233 1.173 1.136 1.112 1.095
6 1.222 1.165 1.130 1.107 1.091

Table 1: Numerical values of the ratio Q̃b/C̃b for low number of inputs m and outputs d. For
m = d = 2, one recovers the well-known CHSH

√
2 ratio.
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HHH
HHHd

m
2 3 4 5 6

2 1.414 1.155 1.082 1.051 1.035
3 1.366 1.137 1.073 1.046 1.031
4 1.342 1.128 1.069 1.043 1.029
5 1.328 1.123 1.066 1.041 1.028
6 1.319 1.120 1.064 1.040 1.027

Table 2: Numerical values of the ratio ÑSb/C̃b for low number of inputs m and outputs d. For
m = d = 2, one recovers the well-known CHSH

√
2 ratio.
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