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Abstract

Introducing quality assessment and efficient
management of cellular thermal shift assay mass
spectrometry data
Joakim Hellner

Recent advances in molecular biology has led to the discovery of many new potential 
drugs. However, difficulties with in situ analysis of ligand binding prevents quick 
advancement in clinical trials, which stresses the need for better direct methods. A 
relatively new methodology, called Cellular Thermal Shift Assay (CETSA), allows for 
detection of ligand binding in a cells natural environment and can be used in 
combination with Mass Spectrometry (MS) for readout. With help from the Pelago 
Bioscience team, I developed a pipeline for processing of CETSA MS data and a web 
based system for viewing the results. The system, called CETSA Analytics, also 
evaluates the results relevance and helps its users to locate information efficiently. 
CETSA Analytics is currently being tested by Pelago Bioscience AB as a tool for 
experimental data distribution.
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Popul

¨

arvetenskaplig Sammanfattning

Läkemedelsframställning är idag en strikt kontrollerad process med höga krav p̊a den nya sub-

stansens egenskaper. Kliniska studier är samtidigt väldigt dyra och många projekt tvingas till

avslut i förtid om man har sv̊art att p̊avisa läkemedlets verkan. Ett av de mest problematiska

momenten är att f̊a fram tillräckliga bevis för att substansen har den önskade e↵ekten i dess

biologiska miljö. Analys av renat protein ger ofta en simplifierad version av verkligheten där

många faktorer inte tas i beaktning, e. g. membrantransport och hjälpproteiner. Det finns

därför ett starkt behov av nya direkta metoder som kan ersätta dagens alternativ, vilka ofta

inkluderar dyra a�nitets-prober.

Under de senaste åren har intresset stigit för en ny metod, där man detekterar en substans

bindning till ett protein genom att studera komplexets värmetolerans. När en ligand binder till

ett protein sker förändringar i dess struktur, vilka har direkt p̊averkan p̊a komplexets stabilitet.

Genom att kvantifiera proteiner i ett stegvis ökande temperaturintervall kan man s̊aledes särskilja

proteiner vilka bundit en ligand fr̊an de som förblivit op̊averkade. Denna princip utnyttjas i

metoden, vilken har namngivits Cellular Thermal Shift Assay (CETSA). Metodiken kan även

utföras i samband med mass spectrometri (MS) under detektionsfasen, vilket till̊ater storskaliga

studier av hela proteom.

CETSA MS producerar stora dataset som ofta motsvarar närmare fem tusen proteiner. Utan

tillräcklig teoretisk bakgrund, b̊ade inom dataanalys och proteinbiologi, kan resultatet vara

sv̊artolkat och tidskrävande att g̊a igenom. Av denna anledning har jag, i sammarbete med Pe-

lago Bioscience AB, utvecklat ett arbetsflöde för automatiserad analys som även utvärderar da-

takvalitén samt indikationer p̊a ligandbinding. Detta möjliggör för rankning av resultatet, vilket

e↵ektiviserar tolkningsprocessen. För att underlätta åtkomsten av resultatet och slippa proble-

matiken med olika plattformar, utvecklades även ett webbaserat system vid namn CETSA Ana-

lytics. CETSA Analytics lagrar all experimentell data ner till peptidniv̊a och hjälper användaren

att utvärdera sitt resultat i ett användarvänligt gränssnitt.



Abbrevations

TE Target Engagement

CETSA Cellular Thermal Shift Assay

ITDR Isothermal Dose Response

MS Mass Spectrometry

TMT Tandem Mass Tags

iTRAQ isobaric Tags for Relative and Absolute Quantification

CSV Comma Separated Values

SQL Structured Query Language

PHP Hypertext Preprocessor

HTML HyperText Markup Language

CSS Cascading Style Sheets
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Chapter 1

Introduction

Advances in drug discovery has led us to many innovative therapies over the last couple of years.

However, clinical trials have relatively low success rate due to di�culties with in situ analysis,

which stressed the need for more direct methods that can work as an alternative to the expensive

a�nity probes [1].

One of the most prominent challenges in drug discovery is to ensure that the compound binds

to its cognate target protein with su�cient a�nity and specificity, a process commonly referred

to as Target Engagement (TE). Interactions with proteins other than the intended target, so

called o↵-targets, may potentially cause undesired e↵ects. Such e↵ects have to be considered,

but producing conclusive results of TE in situ has proven di�cult [1][2].

In recent years a new promising methodology has become increasingly popular, called Cel-

lular Thermal Shift Assay (CETSA), which uses a heat pulse to provoke unfolding of proteins.

Proteins that have bound a compound will unfold di↵erently from those that have not, allowing

identification of TE. The method can be combined with mass spectrometry (MS) for readout,

which o↵ers proteome-wide analysis of wanted and potentially unwanted proteins [2][3].

CETSA MS produce large datasets, which is why e�cient processing workflows are essential.

Estimating the results relevance can also be challenging, especially without su�cient theoretical

knowledge on the studied system. This report describes the development of a data management

system and the formation of a CETSA MS processing pipeline. The aim was to provide easy

access and distribution of data in a user friendly environment, that can help to locate and

interpret experimental results.



BACKGROUND THEORY 2

Chapter 2

Background Theory

2.1 Biophysical Stability of Proteins

The stability of a protein is highly dependent on its conformational stucture. When a protein’s

tertiary structure changes, the energy of the bonds between the amino acid chains will change

with it. Some bonds will break or form, and others will experience minor shifts in energy induced

by the new distance. This results in an overall shift in Gibbs free energy, and thus the protein’s

stability [5].

When a ligand binds to its cognate target protein, it induces a conformational shift and

hence an increase or decrease in stability. By measuring this change, it is possible to distinguish

between proteins that bind a ligand and those that do not [4].

2.2 Cellular Thermal Shift Assay

Thermal shift assays are one of the most common methods used to study TE. It builds on the

principle that changes in stability also a↵ects the temperature at which the protein unfolds,

and you can thus detect target engagement by comparing melting characteristics. An increased

stability comes with higher resistance to heat-induced unfolding, and vice versa [6].

In 2013, an article titled Monitoring Drug Target Engagement in Cells and Tissues Using

the Cellular Thermal Shift Assay was published in the Science journal, describing a promising

new method called Cellular Thermal Shift Assay. As the name suggests, CETSA can be applied

to intact cells, which allows for valuable TE analysis in the proteins biological environment. The

method is currently becoming increasingly popular in a variety of di↵erent studies, since it also

allows for studies of membrane transportation rates and downstream cellular events [1].
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2.2.1 Experimental Setup

In a typical experiment, a treated and a control sample are aliquoted and heated to temperatures

between 37-70 degrees and allowed to cool down. Soluble proteins are then separated from the

precipitated fraction in a centrifugation step and quantified with western blot. The samples

are plotted in consecutive order with an increasing temperature on the X-axis, showing a curve

with a negative slope around the protein’s melting temperature [2]. The resulting melt curve

has a central role in CETSA analysis. The idea is to use the fraction of intact protein as an

indicator of whether the protein has bound a ligand or not. Since the increased stability allows

the complex to stay intact in higher temperature, it will show as a shift between the control and

drug treated curve, see figure 2.1a.

(a) Melt curve (b) Dose response

Figure 2.1: Example CETSA curves that indicate TE.

2.2.2 Isothermal Dose Response

In a CETSA study it is common to derive the Isothermal Dose Response (ITDR) of a protein,

as complementary data to the standard melt curves. ITDR experiments follow an almost iden-

tical procedure except that, instead of varying the temperature, the dosage di↵ers between the

samples and the temperature is kept constant[2]. Substrate binding is recognized as a sudden

increase in intensity around a certain concentration, as is shown in figure 2.1b.
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2.2.3 Proteome-wide mass spectrometry CETSA

In MS, molecular compounds are broken up and accelerated in electromagnetic fields to deter-

mine its identity through its mass. The theory is that the movement of heavier compounds will

be less a↵ected by the fields and therefore hit the sensor in a di↵erent location or at a di↵erent

time, depending on the type of MS instrument. Each impact registers as a peak, and by adding

them together you can form a spectrum. The spectra can in turn be matched to molecular

specific patterns and sequence information to determine their quantity and identity [3][7].

CETSA can be used in combination with MS readout for proteome-wide analysis. CETSA

MS allows detection of directly and indirectly a↵ected proteins, which in clinical trials can

provide valuable information about a compounds wanted and unwanted e↵ects. It can also be

used to find the molecular origin of side-e↵ects observed during pre-existing drugs therapies [3].

2.2.4 Isobaric Mass Tag Labeling

In the quantification step of CETSA MS, multiplexing of typically 8-10 temperatures or dosages

can be enabled by using isobaric tandem mass tags (TMT10) or isobaric tags for relative and

absolute quantification (iTRAQ). These strategies uses di↵erent isobaric tags to label the soluble

fractions after the heat up phase, allowing tracking of the individual temperatures during MS-

readout. Each replicate consequently require two labeling and MS sessions, one for the drug and

one for the control sample [3].
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Chapter 3

Data Reduction & Processing

3.1 Input Data

Two pipelines that automate the data processing have been developed in R [8], one for melt

curves and one for dose responses. The starting points are the output files produced by Proteome

Discoverer or MaxQuant [9][10]. These software are used to process raw data of dose responses

or melt curves into txt-files, where peptides have been assigned to protein groups with a false

discovery rate of less than 4%. This ensures that the poorest and general data has already been

removed.

The cornerstone of the analysis are the intensities, representing the samples. Information

about the master accession number, peptide sequence, modifications, description, identity score

are also considered, while remaining columns are discarded. A total of four scripts are used

to process melt curves and dose responses from both programs, since the file structure di↵ers

between them. For validating purposes all data considered stem from experiments conducted

twice, thus represented by two datasets.

3.2 Normalization

Before further processing can be done, the data has to undergo a normalization step. This

is necessary to avoid bias, since the intensities can vary between the di↵erent peptides due to

its abundance in the sample. By dividing the peptides intensities with the value from its first

sample, we transform the data to relative intensities that are easier to work with.

For the dose responses we also perform a second normalization for every column, to account

for independent variance between samples that could have been caused by human or technical
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errors, e.g. pipetting errors. Here we divide every sample intensity with the mean value of

that column, i.e. the mean intensity for that particular sample. Since few proteins actually are

a↵ected by the substrate, i.e. the relative intensity will remain constant at one, this allows us

to correct for possible errors without risking to alter correctly performed experiments. Even

though it is not done here, this kind of normalization can also be conducted for melt curves.

However, note that melt curves can look very di↵erent from case to case, and normalizing the

columns can therefore lead to a more noticeable e↵ect.

3.3 Curve Fitting

In order to facilitate comparison of curves, their inflection points are determined by applying a

curve fitting model. This measurement, representing the point at which the curve changes from

being concave to convex, is known as the EC50 value or the melting temperature (Tm) for dose

responses and melt curves, respectively.

Both dose responses and melt curves have previously been shown to follow the pattern of a

logistic function, which is why it can be advised to use the R package Self-Starting Nls Four-

Parameter Logistic Model . It applies the formula shown in 3.1 and a non linear least square

method to find the curve which best follows the intensities. Where A and B are the horizontal

extreme values, to the left and right. Xmid represents the inflection point, and scale is a scaling

parameter that reflects the steepness of the curve. The resulting coe�cients and R2 error value

provides the measures to recreate the curve and an indication of how well the curve fits the

points.

A + (B � A)

1 + e

(xmid�input)/scale
(3.1)

3.4 Z-test

The curves representing the protein groups are determined by the mean value of their underlying

peptide data. For the dose response data this concludes the processing, since no analysis has to

be conducted between repeats. Melt curves, however, needs further processing to decide if the

two treated samples di↵er from the controls.

As a first step, a two sided Z-test is performed to check if any possible shift can be explained

with a normal distribution. The peptide data of both controls are pooled and compared to
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corresponding data of the drug treated samples, individually. Their standard deviation and

di↵erence in Tm are used as determining factors to derive a p-value for each replicate. This

value reflects the likeliness of observing the same shift by coincidence.

3.5 Shift Size

The p-values reflect significance of shifts but do not account for resolution. Consequently, very

low p-values can be assigned to shifts too small to identify substrate binding. To strengthen

the signal of true target engagement, a complementary measurement of the shift size is derived.

The value is given by the optima searched for within the interval described by formula 3.2, also

illustrated in figure 3.1. The margin of 0.1, removed from both sides of the interval, is intended

to exclude the flattening sections where unproportionally large shifts can occur.

]maxmin(drug, control) + 0.1,minmax(drug, control)� 0.1[ (3.2)

Figure 3.1: Maximum shift size is searched for within the interval indicated by the blue arrow.
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(a) Melt curve (b) Dose response

Figure 3.2: Example output curves, produced in the final step of the pipeline.

3.6 Plotting & Saving

As a final processing step, all curves representing protein groups are plotted and saved to a local

directory. Peptide distribution, in form of a standard deviation, is indicated by error bars, as is

shown in figure 3.2. For further details about a certain protein and its underlying data, one must

open the tables that are saved as comma-separated values (CSV) files or, more conveniently,

insert them into a database and use queries.

3.7 Passing Criteria

Not all data are fit, or even possible, to process. Rules have therefore been set to filter out data

that, due to di↵erent reasons, have been deemed too poor. Table 3.1 shows a summary of the

excluded data and the reasoning behind it.



3.7 Passing Criteria 9

Table 3.1: Excluded data during processing

Excluded Reasoning

Peptides assigned to

more than one

protein group

This happens when an MS spectra can not be uniquely

tied to single protein group, which in proteomics can be

due to conserved regions or isoforms. Allowing these

peptides to persist would provide false positives for the

falsely listed groups, which may skew the result. Removing

them, however, weakens the signal for the correctly listed

one. This is always the tricky trade o↵ between sensitivity

and selectivity. Here the more selective approach is chosen.

Peptides with any

normalized intensity

above two *

An increase in intensity indicates that the protein

suddenly becomes more abundant. In reality, this is close

to impossible and is more likely to have its explanation in

structural biology or a technical/human error. A cuto↵ is

therefore placed to remove some data that does not make

sense.

Peptides with data

points not

manageable by the

curve fitting model

The model used can only work with data points that

somewhat follow the pattern of a four variable logistic

function, due to the formula used. Poor and fluctuating

data may fall too far from the pattern and provoke an

error. Removing this data simply allows us to discard data

that would provide unreliable results. In addition, dose

responses that show no signal, form constant lines and are

thus also removed by this criteria.

* Only applied in the melt curve pipeline
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Chapter 4

Quality Assessment

Sorting out the most interesting parts in a proteome-wide dataset can prove challenging, espe-

cially if you do not know what to look for. By implementing a value that estimates the result’s

relevance, you can narrow the search field and thus save time as well as lower the bar for re-

quired theoretical knowledge. The solution used here is a threshold based score, derived from

a number of parameters, summarized in table 4.1. As you will notice, some parameters di↵er

between dose responses and melt curves, due to di↵erent characteristics of the method. Ligand

binding in melt curves are for example indicated by shifts, thus p-value and shift size will play

an important role. In dose responses, however, the most important factor is the max value, i.e.

the response to the treatment. Exactly what thresholds are used and how points are assigned,

is shown in table 4.2 and 4.3.

The final score given to a protein group does not only reflect the indication of ligand binding,

but also the data quality. Ranks from A to D are set in a number of categories, based on their

underlying value, to make the scoring easier to follow. The weights placed on the di↵erent ranks

has been decided by testing the algorithm on a well studied test set and evaluate the result. The

aim is to rank cases were a shift can be observed in the top, but still punish for poor quality

enough to degrade data that is not trustworthy. In the ideal case we will get the shifts with

su�cient data quality in the top, followed by high quality data showing no shift. This will bring

unreliable shifts down in rank, which should give a good indication that they are to be treated

with care.
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Table 4.1: Parameters used to determine curve quality

Parameter Description

Shift size** Distance between the control and treated sample. The

parameter is treated as a boolean value in the scoring

process, meaning that its either a shift or its not, nothing in

between. View section 3.5 for further details.

P-value** Shift significance, based on the melting temperature of all

involved peptides. The value is decided by a two sided

Z-test, see section 3.4.

Max* Max value of the protein function, which is the same as the

B-value in formula 3.1. This indicates how much stability is

gained by the treatment, for that particular protein group.

Common peptides Number of peptides the samples have in common. This

parameter reflects how robust the result is. An indication of

ligand binding is more trustworthy if it can be shown for the

same peptide in all samples, preferably several peptides.

Standard deviation A measure to reflect the distribution of peptides. A low value

indicates that the peptides of a particular sample follow the

same pattern. The thresholds used for setting the score are

determined by partioning a sorted test set into four equally

large sections and capturing the border values.

R2 error The R2 error is fetched from the curve fitting model that

assembles the peptides to a protein group. It describes how

well the points reflects the final curve, calculated as the sum

of squares. Thresholds are set the same way as for the

standard deviation parameter.

* Only used for dose responses

** Only used for melt curves
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Table 4.2: Score thresholds for melt curve parameters

Measure Value Ranking Score

P-value < 0.05 A 40

< 0.10 B 30

� 0.10 C 10

NaN D 0

Shift Size > 2 Y 30

 2 N 0

Common peptides > 4 A 10

4 B 8

3 C 5

 2 D 0

Standard deviation  2.4 A 10

 2.8 B 8

 3.3 C 5

> 3.3 D 0

R2 error  0.032 A 10

 0.045 B 8

 0.060 C 5

> 0.060 D 0
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Table 4.3: Score thresholds for dose response parameters

Measure Value Ranking Score

Max Repeat 1 & Repeat 2 > 3 A 55

Repeat 1 & Repeat 2 > 2 B 40

Repeat 1 or Repeat 2 > 2 C 25

Repeat 1 & Repeat 2  2 D 0

Common peptides > 4 A 15

4 B 10

3 C 5

 2 D 0

Standard deviation  0.48 A 15

 0.67 B 10

 0.89 C 5

> 0.89 D 0

R2 error  0.01 A 15

 0.019 B 10

 0.034 C 5

> 0.034 D 0
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Chapter 5

CETSA Analytics

Making the result accessible and easy to interpret had a high priority in this project. If data are

to be viewed by multiple persons, it quickly becomes ine�cient to pass files between local com-

puters, and factors like computer experience, formats and operating system can become obstacles

along the way. With this in mind, a web based system named CETSA Analytics was developed,

which allows clients to access the data directly from their browsers. The systems structure is

formed by a website and a Structured Query Language (SQL) database, both uploaded to a web

hotel. New data can be uploaded to the server at any time from any computer, provided that

you have access to the credentials. With the many styling options in a web environment its also

possible to present the result in an appealing manner.

5.1 Database

Databases are key components in any system that repeatedly needs to locate information. Doing

so in a large dataset can prove challenging, even more so if it lacks in structure. By inserting

data into a database, you provide it with a solid structure that facilitate searching as well as

storing of data.

The processing pipeline described in chapter 3 generates three related files, containing

protein-, peptide- and quality data, of which the largest hold about one million rows. This

makes the use of a MySQL database especially convenient. MySQL has high performance for

data that are somehow related, i.e. have one or more attributes in common, and that scale well

thanks to indexing [11]. The database can also be made accessible through the web program-

ming language Hypertext Preprocessor (PHP), allowing queries to be determined and executed
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in a web browser environment [12]. The structure used here consists of six tables, containing

proteins, peptides and quality for dose responses and melting curves, separately. All which can

be imported directly from the CSV files provided by R.

5.2 User Interface

The environment in which the user operates is commonly referred to as the Graphical User

Interface (GUI) or just User Interface (UI). In CETSA Analytics the UI is built similarly to

any website, with HyperText Markup Language (HTML), Cascading Style Sheets (CSS) and

JavaScript [13][14][15]. The only exception is that it also include PHP code, which is required

to communicate with the database and perform checks to maintain a level of security. What

elements the site contains, e.g. tables, pictures and text, and their styling is decided by HTML

and CSS. JavaScript is used to add scripts to the site that can provide convenient features, e.g.

interactively show or hide elements.

5.2.1 Site architecture

The site uses a one tier layout, in the sense that no section is a subsection of another. Multiple

tiers usually make sites easier to navigate, but may feel unnecessary with only a few di↵erent

pages. There is, however, a navigation bar with topics to guide you to the right location. Figure

5.1 shows a complete picture of the site architecture.

Figure 5.1: The site architecture, where dotted lines represent automatic procedures and semi

drawn lines indicate sections only accessible with admin permissions.
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5.3 Security

One of the drawbacks with utilizing a web based system is the ever present risk of security

breaches. To develop a completely secure system is next to impossible, but you can lower the

risk significantly by implementing some features. The most obvious and important security

feature in CETSA Analytics is hashed passwords. It means that the passwords are encrypted

with a key before stored in the database, making the information nonsense unless you can get a

hold of both parts. The same key is then used again to decipher the passwords when called for

during login attempts. During login, the system also checks for brute-force attempts, by storing

time stamps in a table, and blocks the user if wrong password is given too many times within a

time window. As a measure to ensure that clients only are able to browse their own data, there

are also permission codes added to the data, only allowing a user matching the permission to

view it.

5.4 Use Cases

The main focus of CETSA Analytics is to allow easy access and interpretation of processed dose

response and melt curve data. However, as is stated in section 5.2.1 it is also intended to have

an administrative, experimental and tutorial section, of which the latter two are not yet fully

implemented. To clarify how the system can be used more specifically in its current state, a

number of use cases are demonstrated.

5.4.1 View detailed result data

The detailed result page is the core of the system, seen in figure 5.2. Every protein group present

in the database can be viewed individually here, with score and underlying peptide data. The

two graphs at the top of the page represent the protein group and all its peptides, colored to

represent controls and treated samples, or repeat one and two for dose responses. A number

is shown directly beneath the peptide graph, indicating the score, ranging up to one hundred.

Here you also have the rankings the score is based on, as well as a link the uniprot page for the

protein. By scrolling down you can view the underlying petide data for the individual samples,

in form of tables and graphs. This allows you to follow exactly what peptides are present and

how they are distributed.
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(a) Melt curve

(b) Dose response
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(c) Peptide tables

(d) Peptide graphs

Figure 5.2: Detailed result page of CETSA analytics. a) & b) Example protein plot, com-

bined peptide plot and score section of a protein group from a melt curve and dose response

experiment, respectively. c) Example peptide table belonging to a protein group from a melt

curve experiment. d) Example peptide plots belonging to a protein group from a melt curve

experiment. Every sequence can be tracked individually by hovering over a series.
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5.4.2 Perform searches

A most important feature when dealing with large datasets is the ability to search. This page

can be accessed from Results, but require you to know the accession number or name of the

protein group you are interested in. If you just provide the first two or three letters, all proteins

starting with those will be listed. With this done you now have two options, you can either

click directly on the group of interest to view its detailed result page, or you can add it to the

preview. The preview is a smaller window at the bottom if the page that updates when you

click the add to preview button. This will only show the protein curves, without any details,

but allows you to add additional graphs next to it, in case you want to compare it with others.

You are now allowed to perform a new search without removing the data in the preview, unless

you decide to press the reset button. Figure 5.3 shows an example page, where a search has

been executed and three proteins have been added to preview from previous searches.



5.4 Use Cases 20

Figure 5.3: A search example, where two censured dose responses and one melt curve have been

added to the preview. The scores of the searched proteins have been removed, with respect to

the owner of the dataset.
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5.4.3 View most relevant protein groups

The first page visited after conducting a new experiment is probably Top Ranked , found under

Results. Here you have the option to view the best scoring protein groups of a particular

experiment in descending order, see figure 5.4. The layout is similar to that of preview in the

search section, in the sense that it only draws the protein curves. You can, however, click on

any graph you find interesting to jump directly to its detailed result page.

Figure 5.4: Best scoring proteins of a selected experiment.
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5.4.4 Register

Registration of new accounts can only be done by an administrator. With such permissions you

will see a topic named Administration in the navigation bar, under which you can find Register

new user . Here you type in all the credentials, including permission code, and store it to the

database, see figure 5.5. The permission code decides what data the user will be able to view,

and must match with their datasets. If you later add more data for that particular client, you

can visit Existing users to check what code they where given.

Figure 5.5: Registration page. Only accessible by admin users.
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Chapter 6

Discussion

CETSA Analytics is currently being tested by Pelago Bioscience AB, as a tool to reach out to

their clients with results of ordered experiments.

The system features searching and viewing of CETSA MS data of both melt curve and

dose response character, and the experimental section is under construction. It runs on servers

provided by One.com, which also oversees the storage of the SQL-database, and is fully available

from any web-browser. Appropriate theoretical knowledge is still required, but future plans

include development of a tutorial section.

We have yet to see how robust and resilient to stress the system is. It has so far only been

tested for three simultaneous users, but it is likely to host more users in the future. If system

crashes start occurring, it could be due to insu�cient memory on the server or passages of code

that tend to go into loops. A well developed error handling could in such cases help to pinpoint

the problem and find the code that needs to be rewritten.

In its current state the system can draw the top 500 proteins in about 12 seconds and

perform a search in under a second. This indicates that the bottleneck is the drawing of the

curves, which is an issue with the processor on the server rather than the database. If 12 seconds

feel unbearable, or more than 500 proteins is desired, it is possible to upgrade the account at

one.com to gain access to more processor power.

As data accumulates in the database, we will also experience increased query times. This can

be prevented by keeping data in the system for a limited time and then store it to a local backup

instead. It is also possible to increase the performance by introducing a slave-master setup for

the hard drives, where the drives have di↵erent designated tasks. However, this is something

that would have to be done at the server side, by one.com, if not already implemented.
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The processing pipelines will be evaluated, and possibly reworked, after comparison with

alternative workflows from other organizations that practice CETSA. The grading system is

especially likely to change over time, as we adjust the weights of the parameters. It would prob-

ably be for the better if the threshold based score in time can be replaced with a mathematical

formula, but this has to be done carefully. The advantage with using a threshold base score

is the robustness it brings. Outliers, consisting of very high or low values, are given the same

score as other values surpassing our predefined criteria. A p-value of 10�17 are for example not

given a better score than one of 10�3. If we are to implement a continuous formula we have to

carefully consider what will happen to those outliers and minimize their impact. However, if

this can be achieved, a continuous formula would prevent the problems we are now facing with

unrealistically big jumps in the score. For example, if our predefined threshold of a shift is set

to one, we will have a 30 points di↵erence between a shift of 0.99 and one of 1.01. This is of

course not ideal.

Even though the system still lacks in some regards, it has proven decently accurate at picking

out the most interesting results of an experiment. It is also, as far as we know, the only system

that provide melt curve analysis and scoring that consider data at peptide level. The fact that

it is based on peptide data allows for a robust analysis where it is easy to follow and evaluate

the result, even in cases where the performance of the scoring algorithm is questionable. By the

increased e�ciency o↵ered by the system in regards of distribution and interpretation, it will

hopefully be a helpful tool in the struggle towards faster progression of ligand analysis.
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