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Abstract:  This study focuses on identifying key factors that influence large-scale hydrological model performance. It draws on 
experiences from modelling in the Arctic, West Africa, and Europe with the HYPE model (HYdrological Prediction 
of the Environment). We use multiple evaluation criteria to analyse the influence of catchment delineation, climate 
input data, model parameterisation, and water management. For each factor, we compare the model performance of 
reference models and refined models using time-series of observed river discharge ranging from ten to a thousand 
stations (depending on application). The results show that all investigated factors influence model performance to 
varying extents. Accurately representing catchment size is critical. European stations with small deviation between 
modelled and published catchment size performed better than stations with large deviations, even after aligning the 
stations to the modelled topography (NSE: +10%, aRE: −12%). Refining the climate input data substantially increased 
model performance in a number of cases. In the Niger River basin, the simulation of both daily discharge dynamics 
and cumulative volumes improved significantly (NSE: +40%, aRE: −26% on average). In Europe, a refined 
precipitation data set resulted in a similar performance enhancement (NSE: +2%, aRE: −8%) as a refined temperature 
data set (NSE: +2%, aRE: −4%), on average. However, the temperature refinement was more consistent spatially. 
Linking lake parameters to spatially varying hydrological characteristics improved model performance across the 
Arctic domain (NSE: +11%, aRE: −8%). Refining infiltration capacities in the Niger basin improved both flow 
dynamics (NSE: +60%) and cumulative volumes (aRE: −40%) through modified flow paths and enhanced 
evaporation. Irrigation water management in the Arctic only affected model performance locally. Model performance 
was generally better in large and wet catchments with high runoff coefficients compared with relatively small, dry 
catchments with low runoff. These factors are also likely to affect model performance in other areas of the world. 
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1. INTRODUCTION 

Hydrological modelling is important for a wide range of applications, including operational 
forecasting, water resources planning and management, flood risk assessment, infrastructure design; 
and for coupled systems modelling, such as water quality, hydro-ecology and climate change 
(Pechlivanidis et al., 2011; Singh and Frevert, 2006). Considerable effort has been given on 
improving process understanding at local scale using basin-scale hydrological models. However, 
recent needs target towards a better understanding at regional, national and global scales. Large-
scale hydrological modelling has the potential to encompass many river basins, cross regional and 
international boundaries and represent a number of different geophysical and climatic zones 
(Alcamo et al., 2003; Gupta et al., 2014; Samaniego et al., 2011). This type of modelling takes 
advantage of regional and global databases as driving inputs, whereas increased computer 
processing speeds allow model setup and use at high spatiotemporal resolution for multiple river 
basins (Strömqvist et al., 2012; Widén-Nilsson et al., 2007). 

The performance of large-scale hydrological models is subject to several sources of uncertainty, 
which may be caused by imperfect process understanding, model parameterisation or input data 
(Gudmundsson et al., 2012). For instance, large river basins are often strongly influenced by human 
activities (e.g. irrigation, reservoirs, and groundwater use) for which information is rarely available 
(Döll et al., 2009). In addition, global data sets can be inconsistent, erroneous, or only available at a 
coarse resolution (Hunger and Döll, 2008). Moreover, physical properties (e.g. vegetation and soil 
type) exhibit high spatial variability, generally not resolved in large-scale data sets, which 
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introduces high uncertainty on model parameter estimates and significant differences in simulated 
system behaviour (Teuling et al., 2009). Model uncertainty increases due to these issues, 
particularly for ungauged basins (Hrachowitz et al., 2013; Sivapalan, 2003) and when predicting 
consequences of hydrological and societal change (Montanari et al., 2013). 

 

Figure 1. Map of HYPE model applications at SMHI. 

The Swedish Meteorological and Hydrological Institute (SMHI) has developed a set of large-
scale hydrological models that use spatially distributed meteorological variables, topography, soil, 
and vegetation as inputs to predict spatially varying basin behaviour (Arheimer et al., 2012). The 
overall practical aim is to provide discharge, and often water quality, statistics and time-series to 
water authorities for: (i) flood forecasts, (ii) characterisation of water body status (e.g. water 
balance and dynamics), (iii) compliance assessment of environmental goals and directives (e.g. for 
the EU Water Framework Directive, using an integrated approach as suggested by Tsakiris and 
Alexakis (2012)), (iv) planning of remedial measures, and (v) projecting changes in water fluxes 
with climate change. Applications of large-scale hydrological modelling at SMHI are widely spread 
around the world, including Sweden, the Baltic Sea, Europe, Arctic, the Niger River, India, Middle 
East and North Africa, and the La Plata basin (Figure 1). 

In this article, we identify and quantify key factors that improve performance of large-scale 
hydrological models drawing from our experience in Europe, Arctic and the Niger River. Among 
the several factors controlling model performance, we focus on: (1) catchment delineation and 
linking of contributory areas, (2) meteorological input data (i.e. precipitation and temperature), (3) 
model parameterisation, and (4) water management (i.e. irrigation). 

2. MODELS AND METHODOLOGY 

We simulate hydrological processes with the HYPE model (Lindström et al., 2010); a semi-
distributed, process-oriented, rainfall-runoff model (Figure 2). We quantify the improvement in the 
model performance by implementing a number of model refinements. The analysis is based on 
comparing reference and refined models. 

2.1 Reference models 

The HYPE model was set up for all river basins in Europe (Donnelly et al., 2015), all river 
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basins draining into the Arctic Ocean, and for the Niger River basin using available large-scale data 
sets on topography, land use, soil, precipitation, temperature, lakes, reservoirs, crop types, 
irrigation, evaporation, snow and discharge (Table 1).  
 

 

 

 

 

 

 

 

Figure 2. Conceptual overview of the HYPE model. (a) The model domain is divided into several nested spatial units: 
each domain contains one or more river basins, each river basin contains a set of sub-basins, each sub-basin contains a 
number of hydrological response units (HRUs, unique combinations of soil and landuse). (b) In each HRU, a number of 

key hydrological processes are simulated. Runoff from the soil and land surface is aggregated to sub-basin scale and 
subsequently routed through the river network and through lakes and reservoirs. See Lindström et al. (2010) for the full 

model description. 

Table 1. Data sources and characteristics of the reference model setups. 

 Europe Arctic Niger River 

Acronym in this paper E-HYPE ARCTIC NIGER 

Total area (km2) 9.6 million 23.3 million 2.1 million 
No. of sub-basins 35000 30770 803 

No. of discharge stations 1007 1349 71 

Topography HydroSHEDSa, Hydro 1Ka Hydro 1Ka HydroSHEDSa 

Land Use CORINEa, GLC2000a GLC2000a GLC2000a 

Soil ESDa, DSMWa HWSDb HWSDb, WISEc 

Discharge observations GRDCa, EWAa, BHDCa GRDCa, USGSd, R-ArcticNETe GRDCa, ABNf 

Precipitation ERA-INTERIMa WFDEIg WFDh 

Temperature ERA-INTERIMa WFDEIg WFDh 

Lakes and reservoirs GLWDa GLWDa GLWDa, GranDi 

Irrigation EIMa, GMIAa - - 

Crop types MIRCA2000j, CAPRIa - - 

a:(see Donnelly et al., 2015), b:(FAO et al., 2009), c: (Batjes, 2012), d:(USGS, 2011), e:(R-ArcticNET, 2011),   
f:(ABN, 2008), g:(Weedon et al., 2012), h:(Weedon et al., 2011), i:(Lehner et al., 2011), j: (Portmann et al., 2010) 

2.2 Model refinements 

A number of model refinements were implemented to test their impact on model performance 
(Table 2). The first refinement concerns accurately representing the catchment size of the discharge 
stations, which we here illustrate in Europe with the “E-HYPE-Adiff” experiment. The locations of 
all the discharge stations were adjusted to match the underlying topography and drainage 
accumulation data based on published and computed upstream areas, respectively. We used an 
automated method that moved the stations to the location with the smallest difference in upstream 
area, within a pre-defined search radius. We then calculated the residual geometric relative error 

(a) (b) 
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between estimated and published catchment area (sensu Donnelly et al., 2012) and compared the 
model performance at stations where the method reduced the residual error to within acceptable 
limits (<±10%) against stations where the residual error remained large (>±10%, Figure 3). 

 
Table 2. Characteristics of each reference model and each refined model, respectively. 

Acronym Reference model Refined model 
E-HYPE-Adiff Stations with large difference in catchment area 

(>±10%) 
Stations with small difference in catchment 

area (<±10%) 
E-HYPE-Pcp ERA-INTERIM precipitation Scaled ERA-INTERIM precipitation 
E-HYPE-Temp ERA-INTERIM temperature Adjusted ERA-INTERIM temperature 
NIGER-Clim WFD climate input WFDEI climate input 
NIGER-Flowpath High surface runoff parameterization Low surface runoff parameterization 
ARCTIC-Lake* Generic rating curve for all lakes Specific rating curve for each lake 
ARCTIC-Irr† No irrigation Irrigation abstraction included, based on 

GMIA and MIRCA2000 
*: for all river mouths draining to the Arctic Ocean †: for the Ob River 

 
The second refinement focuses on meteorological input data. In Europe, the GPCC data set 

(Schneider et al., 2011) was used to bias adjust the daily ERA-INTERIM precipitation by applying 
a monthly scaling factor to each day in the month (E-HYPE-Pcp, see Donnelly et al., 2013). In 
addition, we adjusted the mean daily ERA-INTERIM air temperatures based on the elevation 
differences between grid cells and sub-basins using a scaling factor of 0.6°C/100m (E-HYPE-
Temp). The model performance with and without each ERA-INTERIM adjustment was then 
compared. In West Africa, we replaced the precipitation and temperature from WFD (based on 
ERA-40) with that of WFDEI (based on ERA-INTERIM), and compared the model performance 
with each data set (NIGER-Clim). 

The third category of refinements centres on model parameterisation. In the Niger basin, we 
examined the effect of adjusting the mactrinf model parameter controlling soil infiltration capacity 
and surface runoff. We compared a parameterisation of low infiltration capacity and high surface 
runoff (mactrinf=10) with a parameterisation of high infiltration capacity and low surface runoff 
(mactrinf=75). This parameter change was applied equally on all soils across the model domain 
(NIGER-Flowpath). Another approach is to distribute parameter values based on varying physical 
properties. We illustrate this in the Arctic domain, where all major lakes in the reference model had 
identical rating curves versus the refined model where we calculated specific rating curves for each 
lake using data on individual catchment and lake area (ARCTIC-Lake).  

Finally, the fourth refinement exemplifies the impact of accounting for water management on 
model performance. In the Ob River basin (3 million km2), we compared model performance with 
and without irrigation abstractions (ARCTIC-Irr). Irrigation practices were dynamically simulated 
based on data specifying the areal extent of irrigation, crop type, cropping season, temporal crop 
water demand profiles, sources of irrigation water, and irrigation efficiency. The required 
information was extracted from the GMIA and MIRCA2000 data sets. 

2.3 Evaluation criteria 

We used two performance measures to compare the reference and refined models: (1) the Nash-
Sutcliffe Efficiency (NSE) and (2) the absolute value of the cumulative relative error (aRE, [%]): 
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where c is simulated value, r is observed value, r is the arithmetic mean of the observations, m is 
number of observations in the time-series. The NSE ranges between 1 (perfect fit) and -∞, whereas 
aRE ranges between 0 (perfect fit) and ∞. Hence, a model improvement is signified by an increase 
in NSE or a reduction in aRE. The criteria were calculated on daily resolution for all comparisons 
except for ARCTIC, where a monthly resolution was used instead due to data availability. The 
model performance was judged against a set of discharge stations reporting observed river flow. 
Only stations with positive NSE (>0) in either the reference model or the refined model were 
included in each comparison in order to focus on locations where the model performance was 
acceptable. We used NSE to evaluate the model’s capacity to capture daily dynamics and aRE to 
evaluate the long-term water volume, respectively. 

 

Figure 3. Geometric relative error vs. published catchment area for the E-HYPE-Adiff evaluation stations. The red 
dashed line indicates the selection of stations with acceptable residual errors (<±10%). 

3. RESULTS AND DISCUSSION 

Figure 4 summarises the performance of the reference and refined models, respectively, for all 
discharge stations analyzed in each model refinement. Furthermore, in Figure 5 we present example 
hydrographs for selected stations to illustrate the impact of various refinements on flow dynamics. 

3.1 Impact of catchment delineation and linking of contributory areas 

In E-HYPE-Adiff, we found that the automated method to align the topographic and observed 
discharge data sets improved model performance (Figure 4). The median NSE increased by 9.7%, 
whereas the median aRE decreased by 12%. The aRE distribution also narrowed, indicating an 
improvement across the model domain. Hence, accurately representing the catchment size of the 
discharge stations has a large impact on model performance. This involves correctly delineating the 
sub-basin boundaries, and correctly describing sub-basin connectivity. The topographic information 
is fundamental in this pursuit. However, data resolution and coordinate system differences often 
result in substantial catchment area differences, which require careful attention in model setup. If 
this type of alignment would be ignored in the model setup, the model errors would become 
enormous for HYPE and all other hydrological models relying on the principle that runoff is 
generated from precipitation falling on a given catchment area. 

3.2 Impact of climatic information 

The primary dynamic input data for the HYPE model is daily precipitation and temperature. 
Consequently, one would expect the model performance to be sensitive to inaccuracies in these data 
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sets. E-HYPE-Pcp, E-HYPE-Temp, and NIGER-Clim all verify this hypothesis (Figure 4). The 
GPCC precipitation correction of E-HYPE-Pcp decreased aRE by 8% on average, and increased 
NSE by 2%. The worst performing stations in the reference model improved the most, as shown by 
the reduction in the 75th percentile of the aRE distribution. Figure 5a illustrates the greater capacity 
of the refined model to capture the observed monthly flow dynamics at Le Mas d’Agenais station. 
However, the impact of the E-HYPE-Pcp refinement was very variable: aRE increased more than 
100% for some stations, and the inter-quartile range of the change in aRE was large (94 percentage 
points). A possible reason could be the method’s uniform scaling approach applying a monthly 
scaling factor across all daily precipitation intensities, which may have exaggerated precipitation 
extremes. Alternatively, the accuracy of GPCC and ERA-INTERIM varies substantially depending 
on location (e.g. being worse in areas with low station density). This suggests that a more refined 
approach is needed to achieve spatiotemporally consistent results (e.g. based on the methods 
introduced by Andersson et al., 2012 and Yang et al., 2010). 

 

 

Figure 4. Distribution of (a) NSE and (b) aRE values for the reference and the refined models respectively (Table 2). 
Each boxplot summarizes the distribution for all discharge stations with positive NSE in either the reference model or 

the refined model. The number of stations used in each analysis is given in grey at the bottom of the figure. 

E-HYPE-Temp led to more consistent improvements of model performance (inter-quartile range 
of the change in aRE: 22 percentage points). The influence of the simple elevation correction of 
temperature was surprisingly large (median improvement in NSE: 2% and aRE: 4%, i.e. similar to 
E-HYPE-Pcp). Temperature controls evaporation, snowfall and snowmelt in HYPE. Hence, E-
HYPE-Temp shows the importance of accurately representing these hydrological processes in 

(a) 

(b) 
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different parts of Europe. The importance of accurate climate information has also recently been 
assessed and confirmed for five large-scale models across Europe (E-HYPE, LISFLOOD, LPJmL, 
VIC and WBM; Greuell et al., 2015).  

In the Niger River basin, the NIGER-Clim refinement led to significant improvements in model 
performance, particularly for NSE (median improvement: 40%), but also for aRE (median 
improvement: 26%). Using the WFD data to drive the model, 11 out of 15 stations had negative 
NSE; whereas with WFDEI data, 13 out of 15 stations had positive NSE. The NSE distribution also 
became substantially narrower, indicating a more consistent model performance (Figure 4a). 
Although water volumes generally improved, aRE remained quite large for some stations. This 
suggests that other factors are also critical to address in order to obtain better performance across 
the model domain. 

 

 

Figure 5. Example hydrographs to illustrate specific impacts of selected model refinements. (a) Median monthly 
discharge at Le Mas d’Agenais station illustrating E-HYPE-Pcp. (b) Daily discharge for year 1995 at Kouroussa 

station illustrating NIGER-Flowpath. (c) Daily discharge for year 1993 at Herman River station illustrating ARCTIC-
Lake. (d) Median monthly discharge at Stepnoye station illustrating ARCTIC-Irr. 

3.3 Impact of model parameterisation 

The flow of information through the model is conducted by equations and parameters defining 
process dynamics. HYPE model parameters regulate, for example, hydrological flow path: whether 
water flows slowly to the streams through sub-surface flow, or more rapidly as surface runoff. The 

(a) 
(b) 

(c) (d) 
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NIGER-Flowpath experiment shows that the flow path parameterisation has a large impact on 
model performance (median improvement in NSE: 60% and aRE: 40%). The large percentage 
change is partly due to the poor reference model performance, but moving from only negative NSE 
to only positive NSE and substantially narrowing the NSE distribution still indicates a significant 
performance improvement (Figure 4a). Figure 5b exemplifies the importance of the flow path 
parameterisation for simulating discharge in the Niger River basin. The large improvement in aRE 
is at first glance surprising since no changes were made that directly affect the water inputs and 
outputs (precipitation and evaporation). However, the improved aRE is the result of a second-order 
effect where the increase in infiltration capacity subjected more water to the strong evaporative 
demand in the region, which increased evaporation by, on average, 9% and reduced discharge 
volumes accordingly. This effect would probably be more subdued if HYPE had simulated 
evaporation from surface runoff. 

Another way to improve model performance is to vary parameter values according to the varying 
physical conditions of the catchments instead of applying constant parameter values across the 
model domain. In large-scale modelling, such spatial parameter distribution needs to be simple 
enough to be applicable in ungauged basins and for thousands of sub-basins where individual fine-
tuning is impracticable. In the ARCTIC-Lake experiment, we applied a simple method based on 
widely available data, which improved model performance (mean NSE improvement: 11%, mean 
aRE improvement: 8%, and narrower NSE and aRE distributions in Figure 4). This model 
refinement was particularly helpful in areas with a high lake density (Figure 5c). 

3.4 Impact of water management 

Water management and regulation is another factor that can affect river flows substantially. This 
includes impoundments (e.g. dams), transfers (e.g. inter-basin canals) and abstractions (e.g. 
pumping from rivers, lakes and groundwater). In large-scale modelling, most rivers are affected by 
regulation in some form; however, the impact is highly dependent on location. Irrigation 
abstractions in the Ob River illustrate this in the Arctic domain (ARCTIC-Irr). On the river basin 
scale, irrigation did not significantly affect the model performance (average improvement in NSE: 
0.5% and aRE: 1%). This is probably because irrigation only occupies 0.2% of the river basin area. 
However, locally, irrigation withdrawals from lakes and rivers improved model performance 
noticeably (reducing aRE by >10%; Figure 5d). In river basins with more extensive irrigation, the 
impact is more substantial (e.g. Donnelly et al., 2015; Yilmaz and Harmancioglu, 2012). 

3.5 Hydro-climatic catchment characteristics and model performance 

We finally investigated the relationship between model performance and long-term hydro-
climatic catchment characteristics to better understand the model behaviour. We calculated the 
runoff coefficient (RC, the ratio of mean annual runoff to mean annual precipitation) the wetness 
index (WI, the ratio of mean annual precipitation to mean annual potential evaporation), the energy 
availability index (Energy, the inverse of WI), the moisture availability index (Moisture, the ratio of 
mean annual actual evaporation to mean annual precipitation), and the upstream drainage area (A) 
for each gauging station to assess their varying impact on model performance (Figure 6).  

Overall, aRE performance seems to increase from dry to wet regions, with more impervious area, 
and with larger drainage area (Figure 6b). In contrast, relatively small, dry catchments with low 
runoff coefficients (RC < 0.4) in the Niger basin displayed the largest water balance errors. These 
stations also had low NSE performance, although NSE and aRE were not significantly correlated 
overall. The aRE performance is generally controlled by parameters that are sensitive to the volume 
rather than the shape of the hydrograph, which impacts the long-term water balance (e.g. the cevp 
parameter controlling potential evaporation). Moreover, the aRE tends to increase the further away 
the station is from the idealized Budyko curve (Gerrits et al., 2009), particularly for dry catchments 



European Water 49 (2015)   85 

 

(Energy > 1, Figure 6d). This indicates that accurately partitioning between evaporation and runoff 
is critical for improving model performance, also beyond the stations assessed in the NIGER-
Flowpath experiment. 

No clear relationship between NSE and the catchment characteristics was observed. A wide 
range of NSE values were obtained for all model domains, in small and large basins, in wet and dry 
basins, for a range of runoff coefficients, and in areas with both energy and moisture limitations 
(Figure 6a&c). However, the highest concentration of relatively high NSE values were obtained in 
the middle of the spectrum (i.e. for stations with RC ≈ 0.6 and WI ≈ 2). Additional analysis against 
remotely sensed snow cover data (http://www.globsnow.info/) showed a discrepancy in the rate of 
snow-melt in the Arctic domain. This led to a mismatch in the simulated temporal dynamics of the 
system, and is a probable reason for the low NSE observed in some areas. Inadequate parameter 
identification could also be a reason for low NSE, since the shape of the simulated hydrograph is 
sensitive to several HYPE model parameters. In addition, inadequate representation of river 
regulations, affecting daily dynamics, could cause low NSE across the spectrum of catchment 
characteristics. 

  

 

Figure 6. Scatter plots demonstrating model performance as a function of (a,b) the runoff coefficient (RC), the wetness 
index (WI), and the drainage area (A); and (c,d) the Energy availability index, the Moisture availability index, and the 

Budyko curve, evaluated with (a,c) NSE, and (b,d) aRE. 

(a) (b) 

(c) (d) 
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3.6 Limitations of this study and future work 

It is important to note the various assumptions and limitations in these modelling experiments. 
The reliability of the input data used to drive large-scale multi-basin hydrological models, 
particularly those derived from global data sets, has been questionable (Kauffeldt et al., 2013). In 
most experiments, a comparison of the applied climatic and physiographic data against national data 
was conducted if available. For instance, our analysis showed some inconsistencies of soil types in 
Europe. Hence, our results are subject to the quality of the selected input data. However, this study 
also illustrates that significant gains can made by making simple improvements to input data. Future 
research should involve additional sensitivity analysis to make further improvements of the 
different input data sets and models relying on them. This is critical for improving risk assessments 
in integrated water resources management (Walczykiewicz et al., 2012), since models are typically 
used to quantify management alternatives. 

Given that the experiments were tested simultaneously on many stations covering a large range 
of physiographic conditions in each model application, there is already some evidence of generality 
of the conclusions. Future research could assess this further by testing all experiments in all regions. 

Performances from each of the three model setups were grouped and analysed; however the 
predictability and consistency of each model (here described by the model’s performance) varies in 
every application. All models can adequately represent the long-term average fluxes and seasonal 
variation in their domain; however poor performances have been identified at various regions. It is 
expected that the models’ performance can be increased from a better spatial resolution of input 
data and a finer spatial representation of the existing sub-basins (Lobligeois et al., 2014). Model 
consistency can also be improved by introducing new discharge observations both in space 
(representing different hydro-climatic systems) and time (increasing data length and temporal 
resolution), while additional variables (e.g. evapotranspiration, snow covered area) could provide 
information to enhance our process understanding (Döll et al., 2008). Finally, our study is limited 
by the assumed stationarity in the hydrological systems during the investigated periods. It is 
recognised that non-stationarity exists as a characteristic of the natural world due to various 
environmental changes (land use and man-made alterations) (Wagner et al., 2013). Future research 
should aim to model the system responses in a dynamic way addressing changes due to individual 
factors, i.e. climate, land use, man-made, and population as they evolve (Ehret et al., 2014). 

4. CONCLUSIONS 

Several factors affect HYPE model performance in large-scale applications. Key factors to refine 
in order to improve performance include the catchment delineation, meteorological input data, and 
model parameterisation. The impact of the simple temperature refinement was surprisingly large, 
reflecting its linkage to several hydrological processes in the model. Irrigation water management 
was important locally, but not for the entire Ob River basin. The impact would likely be more 
significant in other river basins dominated by irrigated agriculture. The model setups included in 
this study cover a substantial variation in climate and physiographic characteristics. Hence, our 
conclusions are likely applicable for improving large-scale hydrological models in other areas of the 
world exhibiting similar variability in catchments characteristics. 
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