

OPTI-Sim: Co-simulation based virtualization of large scale DHC-networks

Wolfgang Birk¹,

Yvonne Ritter², Nicklas Linder², Ulrich Odefey²,

Peter Lingman³, Vikas Chandan⁴

¹Luleå University of Technology, ²TWT GmbH Science & Innovation, ³Optimation AB, ⁴IBM India

Outline

- Motivation and approach
- Example for a thermal grid
- Challenge
- State of the art
- Automatic model generation
- Co-simulation
- Model integration methods
- Use cases
- Conclusions & Outlook

Motivation and approach

- Model-based development enables more efficient and accurate engineering solutions.
- Dynamic modeling and simulation can generate new insight.
- The OPTi project addresses the optimization of thermal grids.

Tools and methods for

- design of DHC systems
- operation of DHC systems
- increased energy efficiency

An example for a thermal grid

3,5 tim.

What is the challenge?

A glimpse on the complexity:

- approx. 23000 double pipes
- more than 400km total pipe length
- more than 9000 buildings

Modeling challenges:

- large and complex networks
- various models/granularity
- system dynamics
- simulation performance
- validation

Approach:

- →automatic model generation and simplification
- →co-simulation of complete DHC networks

State of the art

Scientific state of the art:

- Simplified dynamic models for DHC network simulations.
- Usually, the control system is not represented or extremely simplified

State of the art in industry:

- commercial tools based on static models: Termis, TRNSYS and Netsim not suitable to investigate short-term fluctuations in the network
- Open source simulation tool Dhemos, also uses static models
- APROS (from VTT Finland, originally used for nuclear power plants) unclear how control systems can be represented and not modular
- Dedicated and specialized simulators are available at different utilities

Automatic model generation and simplification (1/3)

The raw data

• Utilities maintain databases on all components.

Automatic model generation and simplification (2/3)

Remodelling the raw data

Automatic processing of GIS data ensures up-to-date model

Approach complies with goals of European roadmap for industrial process automation

Automatic model generation and simplification (3/3)

Returning to the example

- Luleå grid: > 10,000 consumers, > 45,000 pipes, 4 production units, sensors, pumps, valves
- Need for network reduction, simplification and automatic generation of dynamic models

Advantage: Can be regeneration as soon as a change occurs!

Co-simulation of complete DHC networks

Co-Simulation Framework

TWT CoSimLab manages signal exchange between

- multiple simulations, running in
- different tools, possibly located on
- multiple hosts.

Features:

- implemented in Java
- control and monitoring GUI
- connectors for several simulation tools
- FMI compliant

FMI: Functional Mock-up Interface

- Open interface standard for model exchange and tool coupling
 - FMI: .xml description of interface
 - **FMU:** .xml + model implementation (source or binary)
- Widely adopted (> 30 tools) in various disciplines

OPTi-Sim:

- FMI compliant co-simulation
- Secures flexibility and reusability

Model integration methods

Pilot use cases for OPTi-Sim

Four pilot use cases are performed by Luleå Energi AB

- 31,000 households
- base heat production: 185 MW
- peak production units: 350 MW

Use cases:

- 1) Peak load reduction
- 2) Lowered DH supply temperature
- 3) Limitations in the DH grid
- 4) Valve optimisation

Conclusion

Summary: OPTi-Sim

- facilitates virtual representation of the real DHC network
- features automatic model generation and simplification
- integrates different models using FMI compliant co-simulation

Future challenges

- validation of models and simulations, optimisation and control
- sensitivity analysis
- integration of sensor data from real-life network: "tracking simulation"
- on-line simulation functionality

Acknowledgements

Contacting us: www.opti2020.eu, contact@opti2020.eu, or on LinkedIn

