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Abstract 
To support the shop-floor operators, decision support systems (DSS) are becoming more and more vital to 
the success of manufacturing systems in industry today. In order to get a DSS able to adapt to 
disturbances in a production system, on-line data are needed to be able to make optimal or near-optimal 
decisions in real-time (soft real-time). This paper investigates one part of such a system, i.e. how different 
priorities of maintenance activities (planned and unplanned) affect the productivity of a production 
system. A discrete-event simulation model has been built for a real-world machining line in order to 
simulate the decisions made in subject to disturbances. This paper presents a way of prioritizing operators 
and machines based on multiple criteria such as competence, utilization, distance, bottleneck, and Work-
In-Process. An experimental study based on the real-world production system has shown promising 
results and given insights of how to prioritize the operators in a good way. Another novelty introduced in 
this paper is the use of simulation-based optimization to generate composite dispatching rules in order to 
find good tradeoffs when taking a decision of which machine or operator to select. 

Keywords: maintenance, simulation, optimization. 

 

1. Introduction 
Maintenance generally means the actions needed for 

retaining or restoring equipment in a certain condition [1] and 
can be categorized into three types: (1) Preventive 
Maintenance for planning precautionary actions, (2) 
Corrective Maintenance for handling unplanned maintenance 
or repair, and (3) Predictive Maintenance to use data analysis 
to diagnose equipment state during operation. There is a great 
potential in making efficiency improvements in industry 
since the Overall Equipment Efficiency (OEE) could be as 
low as 40-60% [2]. Maintenance prioritization, mainly part of 
the corrective maintenance, is a vital task in production 
systems, since a poor priority may extend the production 
downtime, which causes production losses and waste the 
maintenance labor and resources allocated [3]. 

Operator allocation for labor working with maintenance 
(maintenance staffing) is important since it could contribute 
as up to 80% of the total maintenance cost [4]. Azadeh et al. 
[5] mean that operator allocation has an increased attention in 
industry partly because the labor cost has increased 
disproportionate against productivity.  

In today’s industry, operative decisions, e.g. setting the 
priorities of which job to take or which operator to assign to 
the job, are usually up to the operators themselves. Yang et 
al. [3] point out that in spite of substantial research within the 
area, the current practice on the shop floor indicates that 
many maintenance jobs are prioritized based on experience. 
With regard to uncertainty, humans may be good problem 
solvers [6] when it comes to sorting and prioritizing in large 
amounts of data, but it is still hard to take a good decision 
based on a system point of view.  

In order to utilize production systems in the best possible 
manner, products need to be scheduled efficiently and 
bottleneck machines have to be prioritized. However, 
bottlenecks may shift from one machine to the other over 
time and the individual operators have different skills and 
experience, making the choice of machine and operator a 

difficult task. In order to support the shop-floor operators, 
decision support systems (DSS) may become more and more 
vital to the success of manufacturing systems in industry 
today, because the near-optimal allocation of resources is 
essential in remaining highly competitive. In order to get a 
DSS able to adapt to disturbances in a production system, on-
line data are needed [3], [7], [8] to be able to make optimal or 
near-optimal decisions in real-time (soft real-time).  

All three types of maintenance would be possible to handle 
by such a system, keeping track of the planned maintenance 
activities (Preventive Maintenance), handling the unplanned 
maintenance or repair (Corrective Maintenance) and 
maintenance caused by predictive measures and analyzes 
(Predictive Maintenance).  

This paper investigates one part of such a system, i.e. how 
different priorities, mainly to handle the corrective 
maintenance, affect the productivity of a production system. 
A discrete-event simulation model has been built for a real-
world machining line in order to simulate the decisions made 
in subject to disturbances. This paper presents a way of 
prioritizing operators and machines based on multiple criteria 
such as competence, utilization, distance, bottleneck, and 
Work-In-Process (WIP). The experimental study on the real-
world production system has shown promising results and 
given insights of how to prioritize the operators and the 
machines in a good way. Another novelty introduced in this 
paper is the use of simulation-based optimization to generate 
composite dispatching rules (CDRs) in order to find good 
tradeoffs when taking a decision of which machine or 
operator to select. 

2. The shop-floor operator 
The shop-floor operators in an automated or semi-

automated system production system may be responsible for 
making machine-dependent setups (frequent tool-changes), 
sequence-dependent setups (tool changes between product 
variants), quality controls, planned maintenance, unplanned 
maintenance (failures) and material handling (moving parts). 



Furthermore, the responsibility and tasks of shop-floor 
operators are more demanding today, which requires 
extensive skills [8].  

Operators are usually divided into different work areas 
connected to their competence, and each work area contains 
several machines that need to be supported. A rather common 
and unrealistic simplification when operators are used is that 
all operators have the same competence/performance. Many 
researchers have shown that the processing time to do a job 
depends on the operator, which may have a considerable 
effect on the productivity of a system [5], [8]–[10].  

Multi-skilled (cross-trained) operators contribute as one of 
the most important factors to determine when it comes to 
operator allocation [5]. This concept means that some 
operators have the experience or training to handle several 
types of jobs or machines, even outside the normal work 
areas usually defined.  

The importance of different competence levels and how to 
assign to single-skilled and multi-skilled operators to 
different work areas have been investigated by [10] and [5] 
for cellular manufacturing system (CMS). Baines et al. [11] 
did a study to test a simulation model where consideration to 
both age and time of day affected the time to do a job. Mak et 
al. [12] compared the competence level of operators in 
relation to production batch size in simulation experimental 
study using design of experiments. They also classified 
operations as being Easy, Medium and Complex and 
operators as Experienced, Moderate and Inexperienced. 
Kannan and Jensen [13] point out that the operator efficiency 
greatly influenced factors such as operator’s emotion, 
motivation, health, skill level and experience of doing the 
similar operation previously. To create a competence matrix 
is believed to be very important in order not to assume that 
each and every operator has the same skills. In an 
experimental study using simulation, [8] showed that the 
selection of an operator to do a specific task/job affected the 
productivity to a great extent, i.e. 5.5%, when the operators 
was selected according to their competence level for a 
specific task. An example of a competence matrix can be 
seen in Fig. 1. 
  

 Operator 1  Operator 2 
      
Tool change 

         
         

      
Manual work 

         
         

      
Setup          

         
      
Preventive maintenance 

         
         

      
Quality control 

         
    

 
    

Fig. 1: Competence matrix of one machine (freely redrawn 
from [14]). 

Nord et al. [14] defined four levels of competence in which 
the range goes from (1) “having theoretical and practical 
understanding”, (2) “can do in practice”, (3) “have good 
experience, knowledge and skills” and (4) “being able to 
teach others” (Operator 1 in Fig. 1). It is possible that the 
traditional fixed work areas can be changed if a company is 

able to create competence matrices that can allow online 
operator allocation depending on their competence and other 
factors of the system.  

3. Maintenance priority and priority dispatching 
rules 

Maintenance prioritization is a crucial task in production 
systems, “especially when there are more maintenance work-
orders than available people or resources that can handle 
them” [3]. Maintenance prioritization is similar to scheduling 
which has been widely researched regarding priority 
dispatching rules (PDRs) and other scheduling techniques. A 
predictive schedule could be described as the forecasted 
schedule and when this predictive schedule is used in the real 
world, very often with regard to disturbances, it is called the 
realized schedule. One way to solve this could be to use some 
predictive-reactive method, i.e. “react and reschedule”, by 
using some sort of heuristics, e.g. PDRs, that by nature are 
reactive methods, or using some sort of robust methods. The 
same thing applies for maintenance where some activities 
may be planned and others are unplanned, which really 
causes a maintenance priority situation resulting in a realized 
schedule that is different from the predictive one planned 
beforehand. 

3.1 Priority dispatching rules 

In practice, using heuristics such as PDRs is often the rule 
rather than the exception [15], and these are often based on 
human expert knowledge [3]. Therefore, in order to 
dynamically decide which operator or job to select in a 
maintenance priority scheduling situation, heuristics can be 
used for those decisions. According to [16], PDRs can be 
classified into the following five types:   

• Simple dispatching rules only use one attribute, 
such as shortest processing time (SPT) and first 
come, first served (FCFS) to prioritize the jobs and 
are quite simple and intuitive rules.  

• Combinatorial dispatching rules, also known as 
composite dispatching rules (CDR), use a ranking 
expression to create a function of attributes [17].  

• Weighted priority indexes use a combination of 
PDRs with assigned weights to each PDR, e.g., 
[18] which assign specific weights according to the 
importance of different objectives or importance of 
jobs.  

• Heuristic scheduling rules may use human 
experience and expertise together with both simple 
PDRs and more complex rules [16].  

• Other scheduling rules may be those designed for a 
specific shop, such as mathematical functions.  

Barman [19] claimed that the consensus of researchers is 
that a combination of PDRs, in some way, is better than using 
simple PDRs and proposed a combination of PDRs at 
different production stages. Jayamohan and Rajendran [18] 
use weight-based approach where they assign specific 
weights according to the importance of different objectives or 
importance of jobs. However, there are also other dimensions 
in the classification of PDRs since a rule also can be static or 
dynamic and local or global [20]. Static PDRs or heuristics 
are not time-dependent, e.g. SPT, whilst the dynamic ones 
are, e.g. momentary bottleneck and current utilization. 
Productions systems may be highly dynamic and therefore a 



static rule may have a problem finding the best priority [3]. 
Local rules only consider the current job whilst a global rule 
has some sort of “look-ahead” strategy. 

3.2 Composite dispatching rules 

The main disadvantage of PDRs is their myopic nature 
[21], [22], because no single PDR is likely to perform highly 
on a range of complex scheduling problems [23]. Composite 
Dispatching rules (CDRs) can be generated using Genetic 
Programming (GP) which can also be positioned in the field 
of machine learning [24]. GP was first defined by [25], but 
was further developed by [26]. The latter introduced non-
linear structures, i.e. non-linear parse trees, with different 
shapes and size, see Fig. 2.  
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Fig. 2: The parse trees generated can be easily interpreted 

into a function, e.g. the parse tree on the left gets the 
following expression (phenotype): ƒ=(c1+c2)×(c3-c4), whilst 

the tree on the right gets ƒ=c1+√(c3×c4). 

The parse trees consist of nodes whose elements come 
from a function set and a terminal set. The function set is 
usually determined by the nature of the problem and this set 
may consist of arithmetic functions {+, -, *, /}, mathematical 
functions {sin, cos, exp}, Boolean functions {AND, OR, 
NOT}, Conditional functions {IF-THEN-ELSE}, Looping 
functions {FOR, REPEAT} or other specialized functions. 
The terminal set may consist of variables, constants, and 
functions with no arguments [27]. All leaf nodes of a parse 
tree necessarily come from the terminal set. 

4. Criteria of maintenance priority 
For prioritizing the maintenance tasks at the machines, it is 

important to study the objectives of production systems. To 
maximize Throughput, i.e. jobs per hour (TH), minimize 
makespan (Lmax), minimize lead time and cost-based 
performance (e.g. maintenance cost) measures are probably 
the more common measures of production systems in general. 
There are also studies that aim for reducing the cost of labor 
indirectly, e.g. reducing the number of work shifts needed 
[28]. Operator utilization [10], [12] and machine utilization 
[12] have been identified as important in maintenance 
prioritization. Based on the learning of a tasks, i.e. learning 
curve, it could also be useful to optimize against 
“competence” or “increased competence” of individuals or a 
team of individuals for certain period of time.  

Optimal placement of operators [9] is worth mentioning, 
although it is not a direct part of the maintenance priority, but 
has very much to do with competence and forming work 
areas.  

Research shows that maintenance priorities based on online 
information about the momentary bottleneck [29] based on 
the shifting bottleneck analysis [30] or buffer levels [3] may 
have a great effect on the performance of a system. 

Gopalakrishnan et al. [29] with regard to the selection of 
machine/task showed an improvement of about 5% increased 
productivity in a case study.  

5. Simulation-based optimization using Genetic 
Programming for generating CDRs 

Baines et al. [11] point out that operators are usually 
overlooked when it comes to simulation of real-world 
systems. The reason for this type of assumption and 
simplification seems to be that operators are believed to be 
complex and hard-to-model. However, discrete-event 
simulation modelling has the capability to represent dynamic 
complex real-world systems in detail, which is its main 
advantage when compared to other methods.  

In a simulation-based optimization (SO) approach a 
simulation model is integrated with meta-heuristic search 
methods, such as Tabu Search (TS) or GA [31]. In SO, the 
simulation model is seen as a black-box function evaluating 
different sets of inputs generated by an optimization 
algorithm.  

GA is a neighborhood search procedure [15] and can be 
classified as a population-based meta-heuristic. GAs also 
belong to the class of evolutionary algorithms inspired by the 
Darwinian theory of natural selection, i.e., the survival of the 
fittest. The first step of a GA is to generate initial solutions, 
usually randomly generated, to be evaluated, after which a 
new population is generated. Amongst the new population of 
solutions, some solutions are selected as “parents” to form a 
new population through reproduction. Reproduction means 
that the parent solutions generate new solutions, i.e. 
“offspring”, through exchanging genetic material (crossover) 
and randomly alter current offspring by mutation. These new 
offspring are evaluated, e.g. in a simulation model in SO, and 
the steps are iterated until the stopping criterion is met, e.g. 
time or number of iterations. The success of convergence 
towards optimal or near optimal-solutions is largely 
determined by the problem structure and the design of the 
genetic algorithm [32].  

In order to generate CDRs through GP, it is possible to use 
a GA with linear representation. The resulting representation 
can be interpreted as a parse tree typically from left to right in 
depth-first order [27]. An integer representation would be 
possible to use in order to avoid invalid solutions.  

6. The real-world case study and simulation model 
This paper investigates one part of an online maintenance 

priority system, i.e. how different priorities of maintenance 
activities (planned and unplanned) affect the productivity of a 
production system. The online maintenance priority system 
needs online status of the production system, so when a 
machine fails (e.g. due to tool breakage), it will prioritize 
among the current activities to be dispatched to the operators 
and select the most appropriate operator to take the job. In 
order to test the potential of this part of the system a 
simulation model has been built to represent a real-world 
production line with a maintenance priority situation, online 
monitoring and priority dispatching.  

6.1 The real-world production system 

The real-world production system selected is a machining 
line in the automotive industry. The production line has a 
high production quantity with a low product variety, since 



tens of thousands parts are manufactured every year during a 
two-shift production schedule (6:30am-3:06 pm and 3:06 pm-
11:42 pm). The flow shop production line has a product-
oriented layout, i.e., the machines are arranged in sequence in 
order to carry out different parts of the processing/machining 
required. The production line can be divided into three areas, 
namely rough machining, fine machining and inspection. 
There is only one product variant produced. The machining 
line is semi-automated with gantry robots that feed machines 
inside the cells, but there is manual loading in the beginning 
of the line. Typical operations carried out in these production 
lines are milling, drilling, grinding, washing, and quality 
control.  

The preventive maintenance is divided into professional 
maintenance (PM) and autonomous maintenance (AM). The 
PM activities are carried out during four hours once per week 
by the maintenance department. The AM activities are 
planned on a frequent basis and carried out by the operators 
during PM, but also at other times during the week. 
Consequently, the preventive maintenance is based on a 
calendar. The corrective maintenance tasks, e.g. tool 
breakage, are handled by the operators when they occur by 
getting an alarm on their handheld phones.  

The activities of failures, tool changes, quality controls, 
material handling are already sent to the handheld phones 
carried by the operators. The actual dispatching of how to 
prioritize, however, is actually carried out by the production 
personnel on the shop floor: operators and shift leaders. The 
consequence of these manual decisions in the machining line 
is that while some machines might be locally optimized, the 
overall performance of the line is not.  

The current work area setup of the first two parts of this 
line (rough and fine machining) is somewhat outdated and 
based on the ability to monitor with the sight of the naked eye. 
Therefore, there are as many as five work areas covering 
about 30 machines and 8 gantry robots over 20 production 
stages. Hence, the operator utilization is uneven over time, 

work areas and shifts.  
The layout with the different work areas, namely: blue 1 

(B1), blue 2 (B2), green 1 (G1), green 2 (G2) and red 1 (R1) 
is seen in Fig. 3. Additionally, when the blue or green areas 
are merged into one larger area these are called large blue 
(LB) or large green (LG) respectively. Furthermore, when the 
blue and green areas are merged into one larger area it is 
called blue green (BG) and all areas merged together is called 
all (ALL). The blue and green work areas cover the area of 
the rough machining whilst the red area covers the fine 
machining area. The competence/performance levels of 
operators are defined three levels, namely: novice (N), 
intermediate (I) and expert (E). The three levels of 
competence are formulated as time factors being multiplied 
with the length of activities, i.e. a lower time factor means a 
higher competence and lower time to execute the task. 
Interviews were made to estimate the 
performance/competence factors which were set to 1.5 for N, 
1 for I and 0.8 for E.  

6.2 The simulation model, online monitoring and priority 
dispatching 

The discrete-event simulation model has been built in 
Siemens Plant Simulation to represent the real-world 
production line with a maintenance priority situation, online 
monitoring and priority dispatching. 

The simulation model has detailed logic of machines, 
gantry robots and the different activities carried out by the 
operators. It currently includes failures, frequent tool changes, 
quality controls, material handling and tool handling. 
However, sequence-dependent setups are not handled since 
only one type of product variant is produced. The operators in 
the rough and fine machining work in different work areas as 
mentioned in the previous section, which can be seen in Fig. 
3. Different work areas based on the current and future 
possible setups have been predefined to be able to assign 
different operators to different areas. However, it is possible 
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to set an operator’s competence down to each type of activity, 
i.e. individual work areas and competence. The operators 
have been modelled to have a speed of 1.3 m/s according to 
the company’s data. 

Since the maintenance activities are mainly carried out by 
the operators, the other tasks of the operators need to be 
modelled as well since they will have an effect on the 
maintenance activities. Therefore, besides planned and 
corrective maintenance, quality controls, material handling 
and tool handling need to be handled as well. The material 
handling is mainly at the beginning of the line where the parts 
need to be unpacked and moved to the first station of the line. 
The tool handling considers grinding of tools and other 
similar tasks that need to be done by the operators, but do not 
affect the production directly (i.e. external setup).  

The online maintenance priority system needs online data 
that mainly come from a Manufacturing Execution System 
(MES). In order to find out the best way of prioritizing the 
maintenance activities, a virtual MES system has been 
implemented as part of the simulation model with 
consideration to the current MES system as well as new data 
identified. Therefore, detailed information about WIP, 
machine status, tool status, momentary (shift) operator 
utilization, operator position has been implemented in the 
simulation model. Due to the operative nature of this study, 
skills development will be excluded because it is more of a 
long-term improvement and part of our future work. 

The simulation model has been validated mainly on the 
throughput (TH) comparing the results of the simulation 
model. It is however hard to determine the exact results 
because it is impossible to know exactly how the operators 
prioritize their jobs today, and their priority criteria have 
shown to affect the results. The priority assumed to be used is 
First-In-First-Out (FIFO) when it comes to jobs (J_FIFO) and 
random (RAND) when it comes to operators (O_RAND). 
When the operators were included in the simulation model, 
the simulation model got an acceptable deviation, i.e. within 
3% when compared to the same result from the same three 
months of which the data were collected. When comparing 
the utilization of the individual operators, it was assessed as 
valid as well. The simulation model has also been validated 
through a structured model walkthrough and assumptions 
have been approved. Some of the assumptions are the 
following: Raw material is assumed to be available in the 
beginning of the production line and walking distance of the 
operators are based on the Manhattan distance, i.e. the 
distance between two points is based on the sum of the 
horizontal and vertical distance as opposed to the diagonal 
distance. 

The simulation model supports ordinary Priority 
Dispatching Rules (PDRs), e.g. FIFO, as well as customized 
Composite Dispatching Rules (CDRs) generated from the 
Genetic Programming through simulation-based optimization. 
To prioritize based on current WIP level was indicated as 
important by [3] because a machine with much WIP in the 
buffer after the machine may not need to be prioritized since 
the machine downstream will not be affected.   

More specifically the following dispatching rules for 
prioritizing operators were used: 

• Lowest competence first (O_LCOM) 
• Lowest utilization first (O_LUT) 
• Lowest distance first (O_LDIS) 

• Highest competence first (O_HCOM) 
• Highest utilization first (O_HUT) 
• Highest distance first (O_HDIS) 
• Random (O_RAND) 

More specifically the following dispatching rules for 
prioritizing jobs were used: 

• First-In-First-Out (J_FIFO) 
• Last-In-First-Out (J_LIFO) 
• Most steady state active period bottleneck first 

(J_MAPB) 
• Least steady state active period bottleneck first 

(J_LAPB) 
• Most momentary bottleneck first (J_MMB) 
• Least momentary bottleneck first (J_LMB) 
• Highest WIP before machine first (J_HWB) 
• Lowest WIP before machine first (J_LWB) 
• Random (J_RAND) 
• Lowest WIP after machine first (J_LWA) 
• Highest WIP after machine first (J_HWA) 
• Lowest Parallel Momentary Availability (J_LPMA) 
• Highest Parallel Momentary Availability 

(J_HPMA) 
Consequently, the dispatching rules implemented are based 

on the criteria identified in Section 4. Competence, utilization, 
momentary bottleneck and were identified from literature, 
and other common rules such as First-In-First-Out and 
random were added. However, new rules used for the 
maintenance priority were based on distance, active period 
bottleneck and parallel momentary availability. The position 
of each operator to be able to determine the distance for an 
operator to walk to the machine could be another important 
data. Prioritize maintenance jobs based on the active period 
bottleneck [30] is natural since prioritizing bottlenecks should 
be important. Parallel Momentary Availability (PMA) is a 
new attribute that describes the proportion of parallel stations 
(in the same production stage) currently available for 
production, e.g. not failed or setting up. PMA is not likely to 
perform well as a single PDR, but might be one of the 
attributes used by the CDRs generated from the GP. An 
assumption used for PMA are jobs at stations not affecting 
the production, e.g. grinding of tools, but still takes time from 
the operators are assumed a value of 100% PMA.  

7. Experimental results and analysis 

The experimental study aims to investigate how different 
priorities, mainly to handle the corrective maintenance, affect 
the productivity of a production system. The objectives in 
this case study mapped to how to meet these objectives are 
the following: 

• Throughput, jobs per hour (TH to be maximized): 
o Measures the TH in relation to the 

validation scenario (see Section 6.2), i.e. 
where TH 100% means exactly the same 
Throughput as the validation scenario. 

• Fair and even utilization between operators 
(Utilization difference to be minimized): 

o Calculated by taking the standard 
deviation of all operators per shift and 
then taking the average value of all 
standard deviations. This objective is 
presented as “UtilDiffSDS” in some of 



the figures below and stands for 
utilization difference with standard 
deviation based on samples.  

Simulation results have been evaluated with at least five 
replications (unless otherwise stated) and each replication 
gathers data from 20 production weeks, i.e. 100 days (7 days 
warm-up time and 107 days simulation horizon). The 2-
Sample t-test is used to determine whether the average results 
of two independent groups differ. The results are assumed to 
be normally distributed and the p-value is used to determine 
whether the results are statistically significant. In the context 
of this study, a p-value of less than or equal to 0.05 means 
that we can be confident (at least 95% confident) that the 
average results of two groups, e.g. results of different PDRs, 
differ. 

7.1 Full factorial experimental design with PDRs 

A full factorial experimental design of two factors with 
different number of levels (alternative rules), i.e. 7 PDRs of 
operator priority and 13 PDRs of job priority, was evaluated 
generating totally 91 different experimental results. In the 
first scenario, seven operators were used (work area setup: 
B1: 1N, 1E; B2: 1I; G1: 1E; G2: 1I; R1: 1I, 1E). The results 
of TH and Utilization difference (UtilDiffSDS) of the 
experiment are presented in Fig. 4. 

The results vary from 99% to 101.7% in TH related to the 
validation scenario and from 12.1 to 15.7 in utilization 
difference. The average utilization (working) of operators 
varies from 52.6% to 54.3% (excluding utilization of planned 
maintenance and breaks) which is a really low utilization.  

In order to analyze the results, the main clusters (1-5) in 
Fig. 4 are related to utilization difference which is further 
described in Table 1.  
 
 
 
 
 
 
 

Table 1: Results clusters related to operator priority. 

Cluster Rule Color 
Cluster 1 Lowest utilization first 

(O_LUT) 
Blue 

Cluster 2 Lowest distance first 
(O_LDIS) 
Random (O_RAND) 
Highest distance first 
(O_HDIS) 

Lime 
Black 
Pink 

Cluster 3 Highest competence 
first (O_HCOM) 

Turquoise 

Cluster 4 Highest utilization 
first (O_HUT) 

Purple 

Cluster 5 Lowest competence 
first (O_LCOM) 

Red 

 
Grouping the results of each dispatching rule to clarify the 

main effects of each rule can be seen in Table 2 and 3. 

Table 2: Main effects of each operator dispatching rule. 

PDR O
_L

CO
M

 

O
_L

U
T 

O
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DI
S 

O
_H

CO
M

 

O
_H

U
T 

O
_H

DI
S 

O
_R

AN
D 

TH 100.45 100.20 100.75 100.09 100.38 100.00 100.18 
Util 
Diff 15.44 12.34 12.81 13.98 14.72 12.98 12.81 

  
It is clear that the utilization difference is mainly affected 

by the operator PDRs. The reason for a fairly high difference 
is the fact that these smaller work areas are used leading to 
imbalance, both in average workload over time from area to 
area as well as imbalance from day to day. Consequently, this 
is a negative effect of the smaller work areas. When it comes 
to the main effects on TH, some of the PDRs for operators 
have a positive effect on TH, such as O_LDIS. However, it is 
mainly the job-related PDRs that have a greater positive 
effect on TH and particularly J_MAPB. Consequently, if TH 
is the main objective, J_MAPB in combination with O_LDIS 

Fig. 4: Results of seven operators with different dispatching rules. 
 



would generate a solution of 101.5 % TH (when verified with 
ten replications) and 12.9% utilization difference. Comparing 
the variation of the results regarding TH is shown in the 
boxplot in Fig. 5. 
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Fig. 5: Boxplot of TH for 7 operators. 

Consequently, it possible to state that the best PDRs found 
by the optimization (O_LDIS and J_MAPB) give 
significantly higher TH (p-value = 0.000 with a 2-sample t-
test) than the validation scenario (O_RAND and J_FIFO).  

7.2 Optimizing CDRs using GP 

The results of the same scenario using GP to generate 
CDRs are presented in Fig. 6.  
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Fig. 6: Optimization results of seven operators with CDRs. 

The attributes used find an operator CDR were: Skill 
(Competence), Utilization and distance. The attributes used 
find a job CDR were: FIFO, Active period bottleneck, 

Momentary bottleneck, WIP before machine, WIP after 
machine and Parallel Momentary availability. All of these 
attributes were normalized to a value between 0 and 1 and a 
result (from the equation) of a higher value is prioritized. It is 
possible to get a TH of 102.5% (when verified with ten 
replications) and still retain the utilization difference at 
12.7%. The variation of the results regarding TH is shown in 
the boxplot in Fig. 7. Even though it is a closer call, it is still 
possible to state that the CDRs generated by GP give a 
significantly higher TH (p-value = 0.002 with a 2-sample t-
test) compared with the best PDRs found by the optimization 
(O_LDIS and J_MAPB). So what makes the CDRs generated 
by GP better than ordinary PDRs?  

The equation generated from that experiment gives the 
following expression for operator CDR: ((0.4-
VarSkill)*(VarSkill*VarDistance)). Consequently, the PDRs 
that on average gave the highest TH in Table 2 are also part 
of the CDR generated by the GP.  

Studying the formula in greater detail it is possible to note 
that an operator with a higher skill/competence is prioritized 
compared to another operator standing on the exact same 
position. However, the distance of the operator plays a role as 
well.  
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Fig. 7: Boxplot of TH for 7 operators using GP. 

The equation generated from the experiment gives the 
following expression for job CDR: 
((VarActivePeriod+VarActivePeriod)+(VarWipIn-VarFifo)). 
Consequently, the PDR (J_MAPB) that on average gives the 
highest TH in Table 3 is also part of the CDR generated by 
the GP. However, the WIP before a machine seems to matter 
as well, which also matches the results of Table 3 where WIP 
before and after are important in order to get a higher TH. 
Additionally, First-In-First-Out order seems to be an 
additional ingredient as well. A machine/job with long 
average active periods and secondary high WIP before the 
machine is prioritized unless there are many jobs pending 
(FIFO) and the current machine just recently asked for 
service.  
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Table 3: Main effects of each job dispatching rule. 
 



7.3 Different number of operators 

The main scenario of seven operators shows significantly 
better results when compared to the basic scenario. However, 
the problem of this scenario is that the work areas are smaller 
in scale and there are many operators that can take the jobs, 
leading to a poor utilization of the workforce. Therefore, 
experiments have also been made to test how the impacts of 
priorities change by reducing the number of operators and 
meanwhile changing the size of the work areas. First initial 
results show promising results when only four operators are 
used. It is still possible to get a TH of 86.7% with the same 
priorities of the validation scenario (O_RAND and J_FIFO). 
However, the best result with PDRs when only using four 
operators is a TH of 94%, i.e. the impact of prioritizing the 
operator and job now gives a radical change (94/86.7=8.4%) 
to the productivity. Furthermore, using CDRs generated by 
GP gives an additional 2%, i.e. a TH of 96.1% compared to 
validation scenario with seven operators. Consequently, the 
best result with CDRs generated by GP is a TH that is 10.9% 
higher compared to the base scenario with four operators 
((96.1/86.7=10.9%).  The average utilization of the operators 
is now higher, i.e. between 74% and 88%.  

8. Conclusions 
Maintenance activities need to be smarter in order to be 

more resource efficient and economically sustainable. The 
authors believe that maintenance digitalization using decision 
support systems, sensors, big data and mobile visualization is 
important in order to get to a smarter maintenance, which is 
perfectly in-line with the Industry 4.0 initiative. However, 
one common obstacle to fully digitalize the gathering of 
online manufacturing data using Manufacturing Execution 
Systems is that companies may not know the potential of 
decision support systems even if they have the full access to 
in principle any data. Hence, this research study has shown 
that a decision support system being able to adapt to 
disturbances in a production system using on-line data 
together with simulation-based optimization is needed to be 
able to support making optimal or near-optimal decisions in 
real-time (soft real-time). While optimization of any activities 
in the value chain is emphasized in Industry 4.0 initiative 
[33], the full potential of how smart maintenance can 
improve the overall system performance has not been clearly 
proven, especially in a quantified way. This paper has 
contributed a step towards the smart, optimized maintenance, 
showing and proving how the optimization of the core part of 
maintenance priority can affect and improve the overall line 
performance, which has not been addressed in many smart 
maintenance studies. The recommendation for future work 
would be to continue research and develop such a system to 
support fully online maintenance priority using the Industry 
4.0 concept and related technologies.  

More specifically, this paper successfully introduced and 
implemented a way of prioritizing maintenance activities 
(planned and unplanned) based on several criteria, such as 
competence, utilization, distance, bottleneck, and WIP. 
Besides being able to prioritize using different priority 
dispatching rules, a novel technique using a combination of 
simulation-based optimization and Genetic Programming to 
generate composite dispatching rules was introduced. The 
results, generated from a simulation model, on current 
production setup showed statistical significant improvements 

on Throughput when going from current priorities to 
customized rules. Furthermore, the current work area setup is 
also based on the ability to monitor with the sight of the 
naked eye, which would be unnecessary when a decision 
support system is available. Making reductions of the number 
of work areas would also reduce the number of operators 
needed. Initial results of a major reduction of operators 
showed interesting results regarding maintenance priority. 
Hence, the impact of maintenance priority is greater when the 
operators have a higher utilization.  

Future research also aims to study how the different levels 
of operator utilization affects the results. Furthermore, 
different ways of generating CDRs using GP could also be 
further researched. Due to the operative nature of this study, 
skills development were excluded from the study since it is 
more of a strategic, long-term improvement. Obviously, skills 
development and learning could be improved over time with 
the objective to maintain a high productivity and would be an 
interesting area of future research.  
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