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Wave phenomena appear in many fields of science such as acoustics, geophysics, and quantum
mechanics. They can often be described by partial differential equations (PDEs). As PDEs
typically are too difficult to solve by hand, the only option is to compute approximate solutions
by implementing numerical methods on computers. Ideally, the numerical methods should
produce accurate solutions at low computational cost. For wave propagation problems, high-
order finite difference methods are known to be computationally cheap, but historically it has
been difficult to construct stable methods. Thus, they have not been guaranteed to produce
reasonable results.

In this thesis we consider finite difference methods on summation-by-parts (SBP) form. To
impose boundary and interface conditions we use the simultaneous approximation term (SAT)
method. The SBP-SAT technique is designed such that the numerical solution mimics the
energy estimates satisfied by the true solution. Hence, SBP-SAT schemes are energy-stable by
construction and guaranteed to converge to the true solution of well-posed linear PDE. The SBP-
SAT framework provides a means to derive high-order methods without jeopardizing stability.
Thus, they overcome most of the drawbacks historically associated with finite difference
methods.

This thesis consists of three parts. The first part is devoted to improving existing SBP-SAT
methods. In Papers I and II, we derive schemes with improved accuracy compared to standard
schemes. In Paper III, we present an embedded boundary method that makes it easier to cope
with complex geometries. The second part of the thesis shows how to apply the SBP-SAT
method to wave propagation problems in acoustics (Paper IV) and quantum mechanics (Papers
V and VI). The third part of the thesis, consisting of Paper VII, presents an efficient, fully explicit
time-integration scheme well suited for locally refined meshes.
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1. Introduction

Waves appear in many shapes in the world we live in: the sounds we hear are
pressure waves, the tremors we sense during an earthquake are seismic waves,
and the water waves we can see on a lake are gravity waves. Less obvious to
our senses, yet fundamentally important, are quantum mechanical waves—on
atomistic length scales, subatomic particles may behave as waves and waves
may behave as massive particles. Visible light, for instance, clearly exhibits
wave-like behavior as it is dispersed by water droplets to form a rainbow. Yet
the photoelectric effect, whereby a metal exposed to light of sufficiently short
wavelength will emit electrons, can only be satisfactorily explained if light
beams consist of discrete packets or particles (known as photons) rather than
waves. Similarly, electrons, protons, and neutrons, although often thought of
as massive particles, frequently exhibit wave-like behavior.

The wave phenomena mentioned above have in common that they are gov-
erned by partial differential equations (PDEs). The advection equation in one
dimension provides the simplest example of a PDE describing wave propaga-
tion,

ut +ux = 0 , x ∈ (0, L) , t > 0 ,
u(0, t) = g(t) , t > 0 ,

(1.1)

where subscripts denote partial derivatives, x is the spatial coordinate, t the
time variable, and g(t) a known function. We assume that the solution u is
known at the initial time t = 0. The equation (1.1) propagates features in u(x, t)
to the right with unit speed. At the outlet x = L, the features simply leave the
domain. At the inlet x = 0 however, we must specify what is flowing into
the domain—this is accomplished by the boundary condition u(0, t) = g(t).
Without the boundary condition, the solution would not be unique.

While (1.1) is simple enough that it can be solved on the back of an en-
velope, PDEs are more often than not so complex that we have to resort to
numerical approximation algorithms to solve them. As the title suggests, this
text concerns efficient numerical methods. To explain what makes an efficient
method, we consider the numerical solution of (1.1). There are many numeri-
cal methods for PDE, but they all involve representing the solution u by a finite
number of values. For example, one may discretize the spatial part of (1.1) by
introducing the equidistant grid points

x j = ( j−1)h, j = 1, . . . ,N , (1.2)
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where h = L
N−1 . We may then introduce a discrete solution vector

u = [u1,u2, . . . ,uN ]
T , where ui(t) is intended to approximate u(xi, t). Approxi-

mating the spatial derivative by for example finite differences leads to a system
of N ordinary differential equations (ODEs),

du
dt

= Mu+G(t) , (1.3)

where the exact forms of the matrix M and the vector-valued function G(t)
depend on the method used. The equation is a semi-discrete problem in the
sense that we have discretized space while leaving time continuous. Solving
(1.1) of course requires discretizing the time variable too, but for now we focus
on the spatial discretization.

By applying a numerical method to (1.1), we have transitioned from a sin-
gle PDE to a system of ODEs. This is good because ODEs are conceptually
simpler than PDEs, but also bad because we now face a system of N equations
(the reader should think of N as large). Solving (1.3) will inevitably require
many arithmetic operations, which makes it a daunting task for a human be-
ing. Computers, however, are very good at arithmetic. Modern computers can
easily perform billions of operations per second. By implementing numeri-
cal algorithms on computers, it is possible to simulate many kinds of wave
phenomena governed by PDEs far more complicated than (1.1).

At this point, a word of caution is called for. Even for the simple equation
(1.1), naïve numerical methods may fail spectacularly—for instance, unstable
methods will cause the numerical solution to grow exponentially in time even
though the true solution does not grow. To avoid such setbacks, we call for ro-
bust numerical methods, which produce reasonable results in many different
settings. An ideal method should be guaranteed to converge to the true solu-
tion as N increases (or, equivalently, as h decreases). Of course, the drawback
to increasing N is that the algorithm becomes more computationally demand-
ing, which means that the simulation will take longer to run. Hence, to be
able to solve large problems, it is imperative to use cheap numerical methods.
By cheap we here mean that, when all goes well, the method requires few
computational resources to compute the solution to within a specified error
tolerance.

In addition to computational resources, we should consider the manpower
spent on implementing numerical algorithms. Naturally, a desirable property
is that the method is simple in the sense that it is easy to program, but that is
not all. When investigating wave phenomena, the exact form of the equations
of interest is typically not known a priori. More often than not, one wants to
investigate what happens when certain parameters are changed slightly. If the
numerical method is too tightly tied to a certain problem, we may be forced to
switch to a different method, which results in a lot of extra work. We therefore
seek flexible methods, which with only minor modifications can treat wide
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ranges of parameters in the equations, different types of boundary conditions,
and so on.

Based on the considerations above, we conclude that efficient numerical
methods should be robust, cheap, simple, and flexible. For numerical solution
of PDEs there are many methods available, all of which have their strengths
and weaknesses. Popular methods include finite volume, finite element, fi-
nite difference and spectral methods. In this thesis we will work with finite
difference methods. They are conceptually simple as well as easy to im-
plement in an efficient manner. For wave propagation problems, high-order
methods are typically cheaper than low-order methods [27]. Compared to
finite volume and finite element methods, finite difference methods are advan-
tageous because they can be extended to high order while naturally allowing
for fully explicit time-stepping. Unfortunately, increasing the order of accu-
racy tends to make difference methods less robust when non-periodic bound-
ary conditions are considered. Hence, practitioners were often forced to trade
cheapness for robustness in the past. Today, so-called summation-by-parts–
simultaneous-approximation-term finite difference methods [10, 39] have re-
solved this dilemma by providing a means to systematically construct robust
high-order methods. The technique is flexible in the sense that it applies to a
wide variety of PDEs and boundary conditions.

We will give an introduction to the summation-by-parts technique in Chap-
ter 3. We proceed to consider multi-dimensional settings in Chapter 4 and
complex geometries in Chapter 5. But before discussing numerical techniques,
we take a closer look at the wave equations governing quantum mechanics in
Chapter 2.
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2. Quantum mechanical waves

On the scale of atoms, classical physics fails to describe nature. The scientific
field that explains the microscopic world of subatomic particles is known as
quantum mechanics. Because human intuition is based on our observations
of the macroscopic world, many features of quantum mechanics may seem
counter-intuitive. A quantum mechanical system is completely described by
its wave function, which provides probability densities for measurable quanti-
ties such as position and momentum. Measurements of the position of a parti-
cle in a single-particle system may be regarded as realizations of a stochastic
variable with the probability density function corresponding to the system’s
wave function.

The evolution of the wave function is usually described by the time-dependent
Schrödinger equation (SE) [35], which is a scalar PDE. For a single-particle
system, the PDE can be posed on the regular physical three-dimensional space.
For a quantum system with Np particles, however, the wave function describ-
ing the system lives in an abstract 3Np-dimensional space. If one is not inter-
ested in the absolute position and orientation of the system, which is typically
the case, the number of dimensions can be reduced to 3Np−6. Still, quantum
mechanical equations are often very high-dimensional.

The SE is not consistent with the theory of relativity. Hence, it does not
provide an accurate description for high-energy systems, where particle ve-
locities approach the speed of light. A better model for such cases is the Dirac
equation (DE) [12], in which the wave function is a vector of four components.
For a quantum system consisting of a single electron, the wave function can
be regarded as a superposition of a spin-up electron, a spin-down electron, a
spin-up positron, and a spin-down positron. Thus, in addition to incorporat-
ing relativity, the DE describes spin evolution as well as particle-antiparticle
interactions.

The remaining part of this chapter is devoted to analyzing and comparing
the SE and DE from a mathematical point of view.

2.1 The Schrödinger equation
The SE for a single particle in an electric field reads

ih̄ψt =

(
− h̄2

2m
∆+qU

)
ψ ,
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where ψ = ψ(r, t) is the wave function, r denotes position, m is the particle’s
mass, q its charge, h̄ the reduced Planck constant, and U the electric potential.
In free space (that is, when U = 0), the equation admits plane-wave solutions

ψ(r, t) = e
i
h̄ (r·p−Et) ,

where E is the classical kinetic energy corresponding to momentum p = |p|,

E =
p2

2m
.

We note that the spatial frequency (or wavenumber) of a wave is proportional
to the momentum, while the temporal frequency is proportional to the energy.
The group velocity is

cg =
∂E
∂ p

=
p
m
,

which shows that the SE is dispersive—the group velocity grows linearly with
the wavenumber. The unbounded wave speed makes the SE difficult to solve
numerically, partly because of stringent constraints on the time-step for ex-
plicit time-integrators.

2.2 The Dirac equation
The DE for a spin- 1

2 particle in an electrostatic potential reads

ih̄ψt = Hψ , (2.1)

where the Hamiltonian operator H is given by

Hψ = (c~α · p̂+mc2
β +qU)ψ . (2.2)

The first term in the right-hand side of (2.2) is related to kinetic energy; c de-
notes the speed of light and p̂ =−ih̄∇ is the momentum operator. The second
term is the rest energy; m denotes particle mass. The third term corresponds
to potential energy; q is the electric charge of the particle and U is the electric
potential.

The operators ~α and β are defined as

~α = (α1,α2,α3), β =

[
I2 0
0 −I2

]
,

where I2 denotes the 2-by-2 identity matrix and the αi can be expressed in
terms of the Pauli matrices σi as

αi =

[
0 σi
σi 0

]
, i = 1,2,3 .
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The Pauli matrices are

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.

The DE is a hyperbolic system of four equations. For a particle in free space
the electric potential is zero and (2.1) admits analytic plane-wave solutions of
the form

ψ(r, t) = upe
i
h̄ (r·p−Ept),

where the momentum vector is p = (px, py, pz) and the relativistic energy cor-
responding to momentum p = |p| is

E2
p = p2c2 +m2c4. (2.3)

For positive energies Ep =
√

p2c2 +m2c4 there are two linearly independent
solutions:

u(1)
p =


1
0

cpz
Ep+mc2

c(px+ipy)

Ep+mc2

 and u(2)
p =


0
1

c(px−ipy)

Ep+mc2
−cpz

Ep+mc2

 .

For negative energies Ep =−
√

p2c2 +m2c4 we have

u(3)
p =


−cpz
|Ep|+mc2

−c(px+ipy)

|Ep|+mc2

1
0

 and u(4)
p =


−c(px−ipy)

|Ep|+mc2
cpz

|Ep|+mc2

0
1

 .

Without restriction we now let the momentum be directed along the positive
x-direction such that p = px and py = pz = 0, which yields

ψ(r, t) = upe
i
h̄ (px−Ept) .

Differentiating (2.3) with respect to p yields

2Ep
∂Ep

∂ p
= 2pc2 .

Hence, the group velocity is

cg =
∂Ep

∂ p
=

pc2

Ep
.

In the classical limit of low kinetic energy, we have p << mc such that for
Ep > 0 we get

cg =
pc2√

p2c2 +m2c4
=

pc√
p2 +(mc)2

≈ pc√
(mc)2

=
p
m
.
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Figure 2.1. Group velocity as a function of momentum for the Schrödinger and Dirac
equations.

This shows that, in the classical limit, the dispersion relation is exactly the
same as that of the SE; large wavenumbers (or large momenta) travel faster
than small ones. In the relativistic limit p >> mc, however, we obtain

cg =
pc2√

p2c2 +m2c4
=

pc√
p2 +(mc)2

≈ pc√
p2

= c .

Thus, as the momentum tends to infinity, the group velocity approaches—but
does not exceed—the speed of light. This is consistent with the theory of
special relativity, which states that no information can propagate faster than
the speed of light. Since the SE does not incorporate relativity, it violates this
principle. The group velocities as functions of momentum are presented in
Figure 2.1. An interesting observation is that the unlimited wave speed, which
is part of the difficulty associated with numerical solution of the SE, is to some
extent an artefact of an incomplete model.
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3. The summation-by-parts finite difference
method

Wave propagation problems often feature waves that are transported long dis-
tances. In such settings, the ground-breaking 1972 paper [27] by Kreiss and
Oliger showed that high-order finite difference methods outperform second-
order methods by requiring far fewer degrees of freedom for a given error
tolerance. After that, there was a surge of interest in high-order difference
methods. While it is easy to construct stable high-order schemes for periodic
problems, it is non-trivial to find accurate and stable schemes close to bound-
aries. Kreiss and Scherer [26, 34] took the first step towards stable differ-
ence schemes by developing the summation-by-parts (SBP) concept. In 1994,
Carpenter et al. [6] combined SBP operators with the simultaneous approx-
imation term (SAT) method of imposing boundary and interface conditions
weakly. The combined SBP-SAT method leads to semi-discrete approxima-
tions that satisfy energy estimates completely analogous to the energy esti-
mates of the true solution. Thus, the method allows for stability proofs via the
energy method.

3.1 The continuous problem
To introduce the SBP-SAT method, we again consider the advection equation
(1.1). Let v, w ∈ L2[0,L] be smooth complex-valued functions and let (·, ·) and
‖ · ‖ denote the standard L2 inner product and norm such that

(v,w) =
L∫

0

v∗wdx , ‖v‖2 = (v,v),

where ∗ denotes conjugate transpose. For future use we note that the integration-
by-parts formula can be expressed in terms of the inner product as

(v,wx) = v∗w|L0− (vx,w) . (3.1)

In the special case v = w, the formula (3.1) reduces to

(v,vx)+(vx,v) = |v|2
∣∣L
0 . (3.2)
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Now, we shall attempt to estimate how fast the solution u of (1.1) grows in
time. To this end, we use what is called the energy method. That is, we
multiply the PDE by u∗ and integrate in space, which yields

(u,ut) =−(u,ux) . (3.3)

Adding (3.3) and its conjugate transpose leads to

(u,ut)+(ut ,u) =−(u,ux)− (ux,u) =− |u|2
∣∣L
0 ,

where we used the formula (3.2). By noting that (u,ut)+(ut ,u) = d
dt ‖u‖

2 and
using the boundary condition, we obtain the energy estimate

d
dt
‖u(·, t)‖2 = |g(t)|2−|u(L, t)|2 .

With the homogeneous boundary condition, that is when g = 0, we find that

d
dt
‖u(·, t)‖2 =−|u(L, t)|2 ≤ 0 , (3.4)

which shows that ‖u(·, t)‖ is non-increasing in time.

3.2 The semi-discrete problem
We now seek a convergent finite difference scheme. By the famous theorem
due to Lax and Richtmyer [28], for well-posed linear PDE the approximate
solution converges to the true solution if and only if the method is stable and
consistent. Since all reasonable methods are consistent by construction, sta-
bility and convergence will be equivalent in our discussion. Loosely speaking,
a scheme is stable if the approximate solution does not grow uncontrollably.
If we can derive an energy estimate for the semi-discrete solution similar to
the continuous energy estimate (3.4), which shows that the solution is non-
increasing, then that is certainly enough for stability (in principle the semi-
discrete solution could be allowed to grow in time [19]).

We introduce the N equidistant grid points in (1.2). Let u(t) ∈ CN denote
the semi-discrete solution vector, u = [u1,u2, . . . ,uN ]

T . A Hermitian positive
definite matrix P ∈ CN×N induces an inner product (v,w)P = v∗Pw with cor-
responding norm ‖v‖2

P = (v,v)P, for v, w∈CN . We also introduce the vectors

el = [1,0, . . . ,0]T , er = [0, . . . ,0,1]T ,

such that eT
l u = u1 and eT

r u = uN .
To derive an energy estimate for the discrete solution, we will need a special

approximation of the spatial derivative:
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Definition 1. A matrix D1 is an SBP operator for the first derivative if it can
be decomposed as

D1 = H−1
(

Q+
1
2

B
)
,

where H = HT > 0, Q+QT = 0, and B = ereT
r − eleT

l =

−1

1

.

The matrix H will be referred to as the norm matrix. As we will see later, H
must correspond to a quadrature rule. Thus, if v and w denote the restrictions
of the functions v and w to the grid, then (v,w)H approximates (v,w). The
rationale for Definition 1 is that D1 mimics the integration-by-parts formula
for the first derivative in the inner product defined by H. That is,

(v,D1w)H = v∗HD1w = v∗
(

Q+
1
2

B
)

w = v∗
(

B− 1
2

B−QT
)

w

= v∗
(
B−DT

1 H
)

w = v∗NwN− v∗1w1− (D1v,w)H ,

(3.5)

which is analogous to the continuous formula (3.1). In the special case w = v,
the formula (3.5) simplifies to

(v,D1v)H +(D1v,v)H = |vN |2−|v1|2 , (3.6)

which mimics (3.2). Thus, the SBP operator allows us to construct a semi-
discrete scheme such that the numerical solution mimics the true solution ex-
actly when it comes to integrating by parts. Considering that the energy es-
timate (3.4) followed from the integration-by-parts formula, we may hope to
derive a similar estimate for the semi-discrete solution. Using D1 to discretize
(1.1) in space leads to

du
dt

+D1u = τ(eT
l u−g) , (3.7)

where we have added the SAT, which imposes the boundary condition, to the
right-hand side. The SAT penalizes the solution by its deviation from the
boundary condition, which makes the solution satisfy the boundary condition
to the order of accuracy. The penalty parameter τ will be chosen such that
the scheme is stable. By Duhamel’s principle, it is enough to show stability
for the homogeneous boundary condition [18], obtained when g = 0. Hence,
we let g = 0 from now on. The discrete energy method, which amounts to
multiplying (3.7) by u∗H from the left, yields(

u,
du
dt

)
H
=−(u,D1u)H +u∗Hτ(eT

l u−0) .
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The Ansatz τ = σH−1el , where σ is a real scalar, yields(
u,

du
dt

)
H
=−(u,D1u)H +σu∗el(eT

l u−0) =−(u,D1u)H +σ |u1|2 . (3.8)

Adding (3.8) and its conjugate transpose leads to(
u,

du
dt

)
H
+

(
du
dt

,u
)

H
=−(u,D1u)H − (D1u,u)H +2σ |u1|2 .

By (3.6), we get

d
dt
‖u‖2

H =−|uN |2 + |u1|2 +2σ |u1|2 =−|uN |2 +(1+2σ) |u1|2 .

We obtain an energy estimate if 1+2σ ≤ 0 so that

d
dt
‖u‖2

H =−|uN |2 +(1+2σ) |u1|2 ≤−|uN |2 ≤ 0 ,

which shows that also ‖u‖H is non-increasing in time. That is, the scheme is
stable.

Although any σ ≤ −1/2 is sufficient for stability, the choice σ = −1 is
often optimal. It makes the scheme dual-consistent, which leads to super con-
vergence for linear functionals of the solution [5, 20]. A very large |σ | would
increase the spectral radius of the discretization and thus affect the time-step
restriction negatively for explicit time-integrators.

We will show how to generalize the SBP-SAT method to multi-dimensional
problems in Chapter 4. The technique also generalizes to systems of equations
such as the Dirac equation, see for example Paper V. Furthermore, the SBP
concept can be extended to order q derivatives by constructing discrete opera-
tors that mimic the integration-by-parts formula for inner products of the form(

v, ∂ qw
∂xq

)
. D1 applied q times is an SBP operator for the q:th derivative, but it is

neither optimally cheap nor optimally accurate. In [29] and [30], Mattsson de-
rived better operators for the second derivative with variable coefficients and
constant-coefficient third and fourth derivatives.

3.3 The accuracy of SBP operators
We have shown that SBP operators enable us to construct provably stable
schemes, but what is the accuracy of such schemes? We will use the following
definition of accuracy:

Definition 2. Let xq denote the restriction of the monomial xq

q! to the grid, with
the convention that x−1 = 0. We say that a difference operator D1 for the first
derivative is accurate of order p if the error

D1xq−xq−1
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vanishes for q = 0, . . . , p.

The following result shows that for D1 to be accurate, the norm matrix H must
be an integrator.

Theorem 1. A necessary condition for an SBP operator of order p to exist
is that the entries in H be the weights of a quadrature rule of degree at least
p−1.

Proof. See e.g. [9].

In principle the SBP concept is very general; the SBP operator D1 could be
a full matrix and the grid need not be equidistant. Hence, many methods can
be written on SBP form, including spectral collocation methods [7] and some
discontinuous Galerkin and finite volume methods [15, 37]. In this thesis we
consider finite difference methods exclusively. We will restrict ourselves to
grids that are equidistant in the interior and only consider operators with a
repeating stencil in the interior. The interior stencil will be a centered finite
difference stencil of order 2p, p∈N, with minimal width. Close to the bound-
aries, we will have to transition from the centered stencil to skewed stencils
in a way that retains the SBP properties in Definition 1. It turns out that the
boundary stencils will necessarily be less accurate than the interior stencil;
how much less depends on the requirements we place on the norm matrix H.
We will discuss the accuracy of diagonal norm and block-diagonal norm SBP
operators later in this section. First, we discuss how the locally reduced accu-
racy affects the global convergence rate.

3.3.1 Convergence rates for difference approximations
Gustafsson and Abarbanel et al. [1, 17] showed that, under certain assump-
tions, difference schemes with interior accuracy pi and reduced accuracy pb
at a fixed number of points close to the boundaries converge with order pb +1
for first order hyperbolic equations. The assumptions are usually satisfied
by SBP-SAT discretizations of interior accuracy two, but not by higher or-
der SBP-SAT schemes. Extensive numerical experiments do indicate that also
higher-order accurate SBP-SAT schemes converge with rate pb +1, however.
A useful rule of thumb supported by many experiments is that, for PDE in-
cluding order q derivatives in space, SBP-SAT discretizations converge with
rate min(pb + q, pi). It has been suggested that this rate can be guaranteed
for pointwise stable schemes [38], but recent work indicates that there may
be exceptions [41]. To avoid further discussions on convergence rates, we
will in this thesis assume that the convergence rate is the rule-of-thumb rate
min(pb +q, pi), which usually is the case in practice.
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3.3.2 Diagonal-norm SBP operators
Diagonal-norm SBP operators come with many benefits, which have made
them the most commonly used ones in applications. Only diagonal H can
guarantee stability for problems with variable coefficients or complex domains
(see Chapter 5). Furthermore, recent efforts towards nonlinear stability show
that diagonal-norm SBP operators can be used to develop entropy-consistent
and entropy-stable schemes for nonlinear conservation laws [13, 14]. Diago-
nal H also leads to fully explicit schemes when combined with explicit time-
integrators, since the inverse of a diagonal matrix is immediately available. A
significant drawback, however, is that the boundary stencils are restricted to
order p (see e.g. [36]), i.e. half the order of the interior stencil, which limits
the convergence rate to order p+1 for first order equations. For example, the
operator presented in Figure 3.1 is fourth-order accurate in the interior and
second-order accurate in the boundary stencils, which would yield third order
convergence. The corresponding norm matrix is

H = h



17
48

59
48

43
48

49
48

1

1
. . .


.

Notice that the interior rows in D1 correspond to the standard fourth-order
accurate finite difference approximation:

(D1u)i =
1

12 ui−2− 2
3 ui−1 +

2
3 ui+1− 1

12 ui+2

h
.

3.3.3 Block-norm SBP operators
One can allow the norm matrix to have non-zero entries not only on the diag-
onal, but also in n×n blocks in the upper left and bottom right corners. This
approach introduces more free parameters in the boundary closure and makes
it possible to improve the boundary accuracy from p to 2p−1 (see e.g. [36]),
which yields the optimal convergence rate of order 2p, i.e. the same order as
the interior stencil. Hence, for large p the block-norm operators produce sig-
nificantly more accurate results than their diagonal-norm counterparts. The
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D1 =
1

h

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−24
17

59
34 − 4

17 − 3
34 0 0 0

−1
2 0 1

2 0 0 0 0

4
43 −59

86 0 59
86 − 4

43 0 0

3
98 0 −59

98 0 32
49 − 4

49 0

0 0 1
12 −2

3 0 2
3 − 1

12

0 0 0 1
12 −2

3 0 2
3 − 1

12

. . .
. . .

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 3.1. A diagonal-norm SBP operator D1 with a fourth order interior stencil. The

skewed difference stencils in the boundary block are second order accurate.

schemes are still fully explicit since H−1 has the same structure as H and can

be computed once and for all. The drawback of block-norm operators is that

they are not provably stable on curvilinear grids or for problems with variable

coefficients. Deriving an energy estimate for such equations requires that H
commutes with a diagonal matrix A (A typically contains the restriction of a

variable coefficient to the grid on the diagonal), which can only be guaran-

teed for general A if H is diagonal. This lack of a stability proof reduces the

usefulness of block-norm operators in realistic applications.

3.3.4 Diagonal-norm SBP operators on non-equidistant grids

If we require H to be diagonal, we may still introduce more free parameters

in the boundary closure by allowing the grid points close to the boundary to

be non-equidistant, see Paper II. The free parameters are tuned to minimize

the leading order truncation errors of the differential operators. Here, both the

locations of the grid points and the coefficients of the differential operator are

outputs of the optimization process. While it remains impossible to improve

the formal order of accuracy of the boundary closure beyond order p, it is

possible to decrease the leading order error constants significantly. Thus the

expected convergence rate as h→ 0 is still only p+1, but in the pre-asymptotic

regime one often observes significantly higher rates. The optimized operators

retain the provable stability of equidistant diagonal-norm operators. Numeri-

cal studies have indicated that the stability constraint on the time-step is only

slightly affected by the small grid-spacings close to the boundaries.
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Figure 3.2. An accuracy comparison with three different SBP operators that have the
same eighth order stencil in the interior.

3.3.5 Numerical experiment with different operators
To compare the accuracy properties of the different kinds of SBP operators,
we consider the model problem

ut +ux = F(x, t) , x ∈ (0, 1) , t > 0 ,
u(0, t) = g(t) , t > 0 ,

where F , g, and the initial data are chosen such that the exact solution is
u(x, t) = (cos(kx)+ sin(kx))sin(ωt) with k = 16π and ω = 2π . For this com-
parison we pick three different SBP operators with eighth order interior accu-
racy:

1. A traditional diagonal-norm operator on an equidistant grid
2. A traditional block-norm operator on an equidistant grid
3. The diagonal-norm operator on a non-equidistant grid from Paper II.

Note that the three schemes differ only in a few grid points close to the bound-
aries. We expect 1) to converge as h5 and 2) to converge as h8. In the limit
h→ 0 we expect 3) to converge as h5, but numerical experiments in double
precision usually show higher rates until round-off errors start to dominate.
Figure 3.2 shows the l2-errors as functions of h. We observe the expected
convergence rates for 1) and 2), and as expected 2) is much more accurate
than 1) already on relatively coarse grids. By comparing 1) and 3), we can
conclude that the gain in accuracy obtained by allowing a few non-equidistant
grid points is enormous. We also note that 3) is on par with 2) which in the
author’s opinion means that there is little reason to use block-norm operators,
considering the many favorable properties of diagonal norms.
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4. Multi-dimensional domains

Motivated by the fact that quantum mechanical problems can be high-dimen-
sional, we will outline how to use the SBP-SAT technique for multi-dimensional
problems. Due to the curse of dimensionality, high-dimensional problems
are computationally costly—for standard techniques, the storage requirements
and number of floating point operations grow exponentially with the number
of dimensions. Adaptive mesh refinement as in [31] can lead to significant
savings, but problems with more than five or six dimensions are usually out of
reach without some kind of model reduction.

Consider the advection equation in the m-dimensional cube Ω = [0, L]m,

ut +~a ·∇u = 0, ~x ∈Ω, t > 0 ,
u(~x, t) = g(~x, t), ~x ∈ ∂Ω0, t > 0 ,

(4.1)

where the velocity vector ~a = (a1, a2, . . . , am) is assumed to be real and con-
stant and ~x = (x1, x2, . . . , xm) is the position vector. Without restriction, we
also assume that ~a has only positive components. Let Γl

i denote the part of
∂Ω corresponding to xi = 0 and Γr

i the part corresponding to xi = L. The sec-
ond equation in (4.1) imposes a boundary condition on ∂Ω0 =

⋃m
i=1 Γl

i , which
corresponds to the inflow boundaries of Ω.

4.1 Multi-dimensional integration-by-parts formulas
Let v, w ∈ L2(Ω) be smooth complex-valued functions and let (·, ·) and ‖ · ‖
denote the standard inner product and norm on L2(Ω). Expressed in terms
of the inner product, the integration-by-parts formula in multiple dimensions
reads(

v,
∂w
∂xi

)
=
∫

∂Ω

v∗wni dS−
(

∂v
∂xi

,w
)
=
∫
Γr

i

v∗wdS−
∫
Γl

i

v∗wdS−
(

∂v
∂xi

,w
)
,

where ni denotes the i:th component of n̂, the outward unit normal. We define
the Hermitian, positive semi-definite bilinear forms

〈v,w〉i,l =
∫
Γl

i

v∗wdS , 〈v,w〉i,r =
∫
Γr

i

v∗wdS , (4.2)
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so that the integration-by-parts formula can be written(
v,

∂w
∂xi

)
= 〈v,w〉i,r−〈v,w〉i,l−

(
∂v
∂xi

,w
)
. (4.3)

The forms defined in (4.2) induce semi-norms

|||v|||2i,l = 〈v,v〉i,l , |||v|||2i,r = 〈v,v〉i,r . (4.4)

Using (4.3), we can derive

(v,~a ·∇w) =
(

v,ai
∂w
∂xi

)
= 〈v,aiw〉i,r−〈v,aiw〉i,l−

(
∂v
∂xi

,aiw
)

= 〈v,aiw〉i,r−〈v,aiw〉i,l− (~a ·∇v,w)
(4.5)

where we have adopted the Einstein summation convention to sum over re-
peated indices. This convention will be used henceforth. In the special case
v = w, the formula (4.5) reduces to

(v,~a ·∇v)+(~a ·∇v,v) = 〈v,aiv〉i,r−〈v,aiv〉i,l = ai|||v|||2i,r−ai|||v|||2i,l . (4.6)

4.2 Energy analysis for the continuous equation
To derive an energy estimate we multiply the PDE (4.1) by u∗ and integrate in
space, which yields

(u,ut) =−(u,~a ·∇u) . (4.7)

Adding (4.7) and its conjugate transpose leads to

(u,ut)+(ut ,u) =−(u,~a ·∇u)− (~a ·∇u,u) =−ai|||u|||2i,r +ai|||u|||2i,l ,

where we used the formula (4.6). Using the boundary condition, we obtain the
energy estimate

d
dt
‖u(·, t)‖2 =−ai|||u|||2i,r +ai|||g|||2i,l ,

which for g = 0 simplifies to

d
dt
‖u(·, t)‖2 =−ai|||u|||2i,r ≤ 0 .

4.3 Multi-dimensional summation-by-parts operators
We introduce a tensor-product grid in Ω with Ni grid points in coordinate di-
rection i, which leads to a total of N = N1N2 · · ·Nm grid points. To each
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coordinate direction we can associate a one-dimensional SBP operator corre-
sponding to Ni grid points,

D(1D)
xi = H−1

xi

(
Qxi +

1
2
(
exi,re

T
xi,r− exi,le

T
xi,l
))

= H−1
xi

(
Qxi +

1
2

Bxi

)
.

In the following we will frequently use the Kronecker product. If B is an m×n
matrix and C is a p×q matrix, then the Kronecker product B⊗C is the mp×nq
block matrix

B⊗C =

b11C · · · b1nC
...

. . .
...

bm1C · · · bmnC

 .

For convenience we also introduce the notation

(B1, B2, . . . ,Bm) · (C1,C2, . . . ,Cm) = BiCi ,

for matrices Bi, Ci. We further let Ixi denote the Ni×Ni identity matrix. Us-
ing the one-dimensional operators as building blocks, we can can construct
multidimensional differentiation matrices:

Dxi = Ixm⊗ Ixm−1⊗·· ·⊗ Ixi+1⊗D(1D)
xi ⊗ Ixi−1⊗·· ·⊗ Ix1 ,

a matrix that integrates over Ω:

H = Hxm⊗Hxm−1⊗·· ·⊗Hx1 ,

matrices that integrate over the boundaries of Ω:

H
Γl

i
= Hxm⊗Hxm−1⊗·· ·⊗Hxi+1⊗ exi,le

T
xi,l⊗Hxi−1⊗·· ·⊗Hx1 ,

HΓr
i
= Hxm⊗Hxm−1⊗·· ·⊗Hxi+1⊗ exi,re

T
xi,r⊗Hxi−1⊗·· ·⊗Hx1 ,

matrices that integrate in one coordinate direction:

Hi = Ixm⊗ Ixm−1⊗·· · Ixi+1⊗Hxi⊗ Ixi−1⊗·· ·⊗ Ix1 ,

and matrices that select the unknowns corresponding to a certain part of ∂Ω:

eT
Γl

i
= Ixm⊗ Ixm−1⊗·· ·⊗ Ixi+1⊗ eT

xi,l⊗ Ixi−1⊗·· ·⊗ Ix1 ,

eT
Γr

i
= Ixm⊗ Ixm−1⊗·· ·⊗ Ixi+1⊗ eT

xi,r⊗ Ixi−1⊗·· ·⊗ Ix1 .

Let v, w ∈ CN . The matrix H induces an inner product and norm

(v,w)H = v∗Hw , ‖v‖2
H = (v,v)H .

The matrices H
Γl

i
and HΓr

i
induce Hermitian, positive semi-definite bilinear

forms
〈v,w〉H,i,l = v∗H

Γl
i
w , 〈v,w〉H,i,r = v∗HΓr

i
w , (4.8)
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with corresponding semi-norms

|||v|||2H,i,l = 〈v,v〉H,i,l , |||v|||2H,i,r = 〈v,v〉H,i,r . (4.9)

The definitions (4.8) and (4.9) are analogous to (4.2) and (4.4). Moreover, Dxi ,
which approximates ∂

∂xi
, satisfies

HDxi = Hxm⊗·· ·⊗Hxi+1⊗
(

HxiD
(1D)
xi

)
⊗Hxi−1⊗·· ·⊗Hx1

= Hxm⊗·· ·⊗Hxi+1⊗
(

Bxi−
(

D(1D)
xi

)T
Hxi

)
⊗Hxi−1⊗·· ·⊗Hx1

= HΓr
i
−H

Γl
i
−DT

xi
H .

Thus, we say that Dxi is an SBP operator, because it mimics the multi-dimensional
integration-by-parts formula (4.3),

(v,Dxiw)H = 〈v,w〉H,i,r−〈v,w〉H,i,l− (Dxiv,w)H . (4.10)

Using the Dxi operators as building blocks, we can construct an SBP operator
for the gradient. We approximate

∇ =

(
∂

∂x1
,

∂

∂x2
, · · · , ∂

∂xm

)
,

by
∇H = (Dx1 , Dx2 , . . . , Dxm) .

Now let Ai denote diagonal matrices with ai on the diagonal and let
~A = (A1, . . . , Am). It follows from (4.10) that ∇H satisfies

(v,~A ·∇Hw)H = v∗HAiDxiw = (Aiv)∗HDxiw = (Aiv,Dxiw)H

= 〈Aiv,w〉H,i,r−〈Aiv,w〉H,i,l− (DxiAiv,w)H

= 〈v,Aiw〉H,i,r−〈v,Aiw〉H,i,l−
(
~A ·∇Hv,w

)
H
.

Since ∇H mimics the integration-by-parts property (4.5), we say that it is an
SBP operator for ∇. In the special case v = w, we obtain

(v,~A ·∇Hv)H +(~A ·∇Hv,v)H = ai|||v|||2H,i,r−ai|||v|||2H,i,l , (4.11)

which mimics the formula (4.6).

4.4 Energy analysis for the semi-discrete equation
Let u ∈ CN denote the semi-discrete solution vector and let g ∈ CN denote
a vector containing the boundary data. The SBP-SAT discretization of (4.1)
reads

du
dt

+~A ·∇Hu = τi

(
eT

Γl
i
u− eT

Γl
i
g
)
, (4.12)
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where the penalty parameters τi are yet to be determined. Multiplying (4.12)
by u∗H leads to(

u,
du
dt

)
H
=−(u,~A ·∇Hu)H +u∗Hτi

(
eT

Γl
i
u− eT

Γl
i
g
)
.

We consider the homogeneous case g = 0 and make the Ansatz τi = σiH−1
i e

Γl
i
,

with σi being real scalars, which yields(
u,

du
dt

)
H
=−(u,~A ·∇Hu)H +σiu∗HH−1

i e
Γl

i

(
eT

Γl
i
u
)

=−(u,~A ·∇Hu)H +σiu∗HΓl
i
u

=−(u,~A ·∇Hu)H +σi|||u|||2H,i,l .

(4.13)

Adding (4.13) and its conjugate transpose leads to(
u,

du
dt

)
H
+

(
du
dt

,u
)

H
=−(u,~A ·∇Hu)H − (~A ·∇Hu,u)H +2σi|||u|||2H,i,l .

Using the formula (4.11) we obtain

d
dt
‖u‖2

H =−ai|||u|||2H,i,r +ai|||u|||2H,i,l +2σi|||u|||2H,i,l

=−ai|||u|||2H,i,r +(ai +2σi) |||u|||2H,i,l .

Choosing σi ≤−ai
2 yields the estimate

d
dt
‖u‖2

H ≤ 0 ,

which proves that the scheme is stable.
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5. Complex geometries

To cope with non-rectangular geometries one typically uses coordinate trans-
formations to solve a modified PDE on a rectangular domain, see Figure 5.1.
To illustrate the technique, we consider the two-dimensional advection equa-
tion:

ut +aux +buy = 0 , (x,y) ∈Ω, t > 0 . (5.1)

Assume that there exists a smooth one-to-one mapping{
x = x(ξ ,η)
y = y(ξ ,η)

from the unit square Ω′ = [0, 1]× [0, 1] to Ω. The Jacobian J of the mapping
is

J = xξ yη − xηyξ .

By the chain rule, [
∂

∂ξ

∂

∂η

]
=

[
xξ yξ

xη yη

][
∂

∂x
∂

∂y

]
. (5.2)

Because the mapping is one-to-one, it can be inverted and the Jacobian is
everywhere non-zero. Inverting (5.2) yields[

∂

∂x
∂

∂y

]
=

1
J

[
yη −yξ

−xη xξ

][ ∂

∂ξ

∂

∂η

]
,

which allows us to rewrite (5.1) as

Jut +αuξ +βuη = 0 , (ξ ,η) ∈Ω
′, t > 0 , (5.3)

where
α = (ayη −bxη) , β =

(
bxξ −ayξ

)
.

In transforming the PDE to the reference domain Ω′, we introduced variable
coefficients. Hence, when dealing with non-trivial geometries we will need
to handle variable coefficients, even if the coefficients a and b in the origi-
nal equation are constant. We stress that diagonal-norm SBP operators are
provably stable for (5.3), whereas the block-norm operators are not.

For more complex domains that cannot be smoothly mapped to the unit
square, one may employ a multi-block approach where the domain is divided
into blocks that are smooth mappings of the unit square. The blocks are then
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η
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x = x(ξ ,η)
y = y(ξ ,η)

Ω′ Ω

Figure 5.1. Coordinate transformation. The physical domain Ω is mapped to the

reference domain Ω′.

Figure 5.2. An embedded boundary grid in a complex 2D domain.

glued together with appropriate interface treatment. Ideally, the mappings

should be such that the grid cell size does not vary too much—unless local

mesh refinement is desired—and the cells are not too skewed. Simple and

moderately complex domains are routinely gridded with high-quality multi-

block curvilinear grids, but for truly complex geometries it is often too time-

consuming or even impossible to generate a good grid. In such cases, finite

element and finite volume methods, which support unstructured meshes, offer

more flexibility than standard finite difference methods. An alternative ap-

proach is to embed the complex geometry in a Cartesian grid, see Figure 5.2,

which renders the grid generation trivial. Embedded (or immersed) bound-

ary methods have been extensively studied, but unfortunately it has proven

very difficult to construct provably stable high-order methods for wave prop-

agation problems. There are several efforts considering hyperbolic problems

that are worth mentioning. In a series of papers [24, 25, 23, 22] by Kreiss et

al., a second-order accurate embedded boundary method for the wave equa-
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Figure 5.3. An embedded boundary grid in one dimension.

tion on second order form is developed. The method is not provably stable

and requires artificial dissipation to suppress instabilities, but can handle both

Dirichlet and Neumann boundary conditions as well as discontinuous wave

speeds. Another successful approach for the second order wave equation is

presented in [4], where a fourth-order method is achieved by using implicit

difference approximations (i.e. a non-diagonal norm matrix). Again, artifi-

cial dissipation is required to suppress instabilities. An exceptional, provably

stable and second order accurate method is presented in [2]. However, the

technique appears to be tailored specifically to Dirichlet boundary conditions

and it is not clear how to extend the approach to achieve higher-order accuracy.

In Paper III we develop a third-order accurate embedded boundary method

for first-order hyperbolic systems of equations, which applies to a wide range

of boundary conditions. The method is not provably stable in multiple dimen-

sions, but extensive numerical experiments show that it is stable in practice.

The method is based on embedded boundary SBP operators, which lead to

provably stable embedded boundary schemes in one dimension.

5.1 Embedded boundary SBP operators

Consider the problem

ut +ux = 0, x ∈ (xl , xr), t > 0 ,

u(xl , t) = g(t) , t > 0 .
(5.4)

As illustrated in Figure 5.3, we introduce an equidistant grid

x = [x1,x2, . . . ,xN ]
T , whose end points need not coincide with the interval

boundaries,

xi = x̃l +(i−1)h, h =
x̃r− x̃l

N−1
, x̃l = xl +hαl , x̃r = xr−hαr .

To discretize the equation on such a grid, we introduce an SBP operator which

is a generalization of Definition 1.
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Definition 3. A matrix D~α
1 is an embedded SBP operator for the first derivative

if it can be decomposed as

D~α
1 = H−1

~α

(
Q~α +

1
2

e~αr
(

e~αr
)T
− 1

2
e~αl
(

e~αl
)T
)
,

where H~α = HT
~α > 0, Q~α +QT

~α = 0, and e~αl,r are extrapolation operators such
that for smooth functions f ∈ L2[xl,xr](

e~αl
)T

f≈ f (xl) ,
(

e~αr
)T

f≈ f (xr) .

Note that the vector ~α = (αl,αr) contains the distances from the left and right
grid boundary points to the corresponding physical boundaries. In Paper III
we present diagonal-norm embedded SBP operators of orders 2, 4, and 6. The
operators are parameterized by the boundary distances αl,r and are presented
on closed form for αl,αr ∈

[
−1

2 ,
1
2

)
.

Similar to the scheme (3.7), the embedded boundary discretization of (5.4)
reads

du
dt

+D~α
1 u = σH−1

~α
e~αl

((
e~αl
)T

u−g
)
.

With g = 0, the discrete energy method leads to

d
dt
‖u‖2

H~α
=−

∣∣∣∣(e~αr
)T

u
∣∣∣∣2 +(1+2σ)

∣∣∣∣(e~αl
)T

u
∣∣∣∣2 ,

which shows that the embedded boundary scheme is stable for σ ≤−1
2 .
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6. Summary of papers

6.1 Paper I
When the norm matrix H is required to be diagonal, the accuracy of the SBP
operator D1 of order 2p in the interior is reduced to order p in a few grid
points close to the boundaries. For first order hyperbolic equations, this typ-
ically limits the global convergence rate to order p+ 1. If one allows H to
be block-diagonal, the boundary accuracy can be improved to 2p− 1, which
yields the optimal convergence rate of order 2p. Hence, from an accuracy
perspective, block-norm operators appear superior to their diagonal counter-
parts. Unfortunately, when deriving energy estimates, H can only be permitted
to be non-diagonal if the PDE has constant coefficients and is discretized on
a Cartesian grid. Thus, in case of variable coefficients or curvilinear grids,
block-norm operators are not provably stable, which significantly limits their
usefulness for realistic problems.

To obtain high accuracy while maintaining stability, we set out to stabi-
lize the block-norm operators. We identify that the instabilities are caused
by the boundary stencils, and therefore construct artificial dissipation that tar-
gets only the boundary points. The dissipation is constructed to damp high-
frequency modes efficiently without decreasing the order of accuracy. Nu-
merical experiments show that the artificial dissipation can indeed be tuned to
stabilize the scheme without decreasing accuracy or significantly increasing
stiffness.

Contributions
The author of this thesis performed the numerical experiments in 2D and wrote
parts of the manuscript.

6.2 Paper II
We address the same problem as in Paper I, i.e. the low boundary accuracy of
diagonal-norm operators, but with a different approach. Instead of stabilizing
block-norm operators, we focus on improving the accuracy of diagonal-norm
operators. By allowing a non-equidistant grid close to the boundaries, we in-
troduce more free parameters in the construction of the operators. The free
parameters are tuned to minimize the leading order truncation errors of the
difference operators. Here, both the locations of the grid points and the coeffi-
cients of the difference operator are outputs of the optimization process. While

31



it remains impossible to improve the formal order of accuracy of the boundary
to closure beyond order p, it is possible to decrease the leading order error
constants significantly. Numerical experiments demonstrate the superiority of
the novel operators, when compared to compared to traditional operators on
an equidistant grid. As the new operators come with a diagonal norm matrix,
they admit energy estimates just like their traditional counterparts, and are thus
provably stable.

Contributions
The author of this thesis extended the proposed method to curvilinear grids,
performed the numerical experiments in 2D, and wrote parts of the manuscript.

6.3 Paper III
The possibly largest drawback of high-order finite difference methods is their
inflexibility when dealing with complex geometries. While multi-block curvi-
linear grids do a good job in moderately complicated domains, they may be
very cumbersome or even impossible to generate in truly complex geometries.
Immersing or embedding complicated boundaries in Cartesian background
grids is a long-standing research topic that has gained a lot of attention. By not
requiring the grid to conform with the boundaries, the grid generation process
is rendered trivial. However, stable high-order embedded boundary methods
for wave propagation problems have proven inherently difficult to construct.

We derive provably stable embedded boundary methods in one spatial di-
mension. By essentially applying the 1D method on each grid line, we ex-
tend the method to 2D. The method applies to general first-order hyperbolic
systems of equations with well-posed boundary conditions. However, in the
extension from 1D to 2D the provable stability is lost. We find that artificial
dissipation is required to stabilize the 2D method. Extensive numerical ex-
periments show that it is possible to devise artificial dissipation that stabilizes
the scheme, preserves third order global accuracy, and yet combines well with
explicit time-stepping.

Contributions
The work was performed in close collaboration between the authors. The
author of this thesis focused on the extension to 2D.

6.4 Paper IV
Sound propagation problems are commonly solved using simplified models.
Examples include ray-tracing [33] and so-called parabolic equation (PE) [40]
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methods. They are usually fast, but not always accurate. We consider a bench-
mark problem proposed in [32], involving a sound source in nontrivial axi-
symmetric geometry, where the objective is to compute the sound pressure
levels one meter above ground. We develop a finite difference method for the
second order wave equation, which serves as a reliable model. We analyze
the numerical treatment of boundary conditions in curvilinear coordinates and
consider non-reflecting boundary conditions. Using the grid-converged finite
difference solution of the wave equation as the true solution, we evaluate the
accuracy of several different ray-tracing and PE methods.

Contributions
The author of this thesis had the main responsibility for preparing the manuscript
and performed most of the computations. The ideas were developed in close
collaboration with the co-authors.

6.5 Paper V
Most quantum dynamical computations are based on the SE. It is well known
that the equation is not valid for high kinetic energies and that it does not de-
scribe spin dynamics. When required, such effects are often approximated by
various correcting procedures. In this paper, we propose to base computations
on the DE rather than corrected versions of the SE. The DE inherently accounts
for relativistic effects and describes the dynamics of particle spin. Because it
is a system of four equations, practitioners often consider the DE too compu-
tationally expensive compared to the SE. We argue that, due to the differences
in dispersion relation illustrated in Figure 2.1, the DE is in some senses easier
to solve numerically, which decreases the difference in computational cost.

We derive stable finite difference discretizations of the DE and show that, as
expected, the equations give similar results for low kinetic energies. We also
demonstrate that, for high energies, the (uncorrected) SE does not produce
accurate results. In particular, we consider the classical problem of quantum
tunneling, where the two models predict quite different outcomes. The SE
predicts that particles can tunnel through potential barriers that exceed the
kinetic energy, but the tunneling probability decays exponentially inside the
barrier. In [21], Klein showed that for high-energy particles the DE predicts
a tunneling probability that tends to a nonzero limit as the barrier height goes
to infinity—this counter-intuitive phenomenon is known as Klein tunneling.
Loosely speaking, the DE predicts a much larger tunneling probability than
the SE, which is demonstrated by numerical experiments.
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Contributions
The author of this thesis had the main responsibility for preparing the manuscript
and performed all computations. The ideas were developed in consultation
with the co-authors.

6.6 Paper VI
Aharonov and Bohm showed that a charged particle may acquire a phase shift
by circling around a completely shielded magnetic flux [3]. This counter-
intuitive effect can not be explained by classical mechanics, as the electro-
magnetic field vanishes at the location of the particle, which thus experiences
no Lorentz force. The origin of the phase shift is topological: it does not
depend on the exact shape of the particle’s path around the magnetic flux.
While topological phase shifts have been observed in molecular spectroscopy,
direct observation of Aharonov-Bohm (AB) effects in molecular scattering
have been elusive in the past. Here, we demonstrate an adiabatic AB effect by
simulating the dynamics of unpolarized slow neutrons that scatter on a straight
current-carrying wire. The acquired phase shift causes destructive interference
in the forward direction, providing an unambiguous signature of the adiabatic
AB effect. We further show that the effect remains as the neutron velocity is
increased, which opens up the possibility to observe the effect in experiments
with higher velocities in the adiabatic regime.

Contributions
The first author developed the ideas and prepared the manuscript in consul-
tation with the co-authors. The author of this thesis performed all numerical
experiments.

6.7 Paper VII
For partial differential equations with small geometric features in the spatial
domain, locally refined meshes allow for accurate simulation without intro-
ducing too many spatial unknowns and are thus computationally efficient. In
the case of wave propagation problems, one typically combines the spatial
discretization with explicit time-integration. The combination of local mesh
refinement and explicit time-stepping, however, is problematic—the Courant-
Friedrichs-Lewy (CFL) stability restriction [8] on the time-step depends on the
smallest mesh-size. If the locally refined region is small compared to the en-
tire computational domain, using a tiny time-step everywhere is too expensive.
The same usually holds for using an implicit scheme everywhere. Instead, one
might hope to use different time-steps or a combination of implicit and ex-
plicit schemes. Here, we focus on explicit local time-stepping (LTS) schemes,
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which are fully explicit but decrease the time-step where the small elements
are located. Thus they permit a larger time-step in the coarser regions of the
mesh without violating the CFL stability condition.

Grote et al. [16] derived LTS methods based on explicit Runge–Kutta (RK)
methods. Their LTS methods allow for two different time steps—one global
and one local—which is all that is needed when the mesh contains only one
level of refinement. However, when the mesh contains nested patches of re-
finement, any local time-step will be unnecessarily small in some regions. To
allow for an appropriate time-step at each level of mesh refinement, multi-
level local time-stepping (MLTS) methods have been proposed [11]. In this
paper, we start from the RK-based LTS methods by Grote et al. and derive
fully explicit MLTS methods, which permit arbitrarily many different time-
steps. Thus, they adapt well to all mesh configurations. The derivation applies
to any explicit RK method, including e.g. low-storage methods. We prove
that the MLTS-RK schemes retain the order of accuracy of the underlying
RK method. Numerical experiments with the second order wave equation,
discretized in space using SBP-SAT finite difference methods and continuous
finite element methods, show the expected convergence rates. They also show
that the MLTS methods retain the CFL condition of the underlying method at
each level of refinement.

Contributions
The paper was developed in close collaboration between the authors.
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7. Sammanfattning på svenska

Vågor uppträder i många former i vår omgivning: ljuden vi uppfattar är tryck-
vågor, jordskalven efter en jordbävning är seismiska vågor och vattenvågorna
på en sjö är en typ av gravitationsvågor. Mindre påtagliga i vardagen, men än-
då av stor betydelse för oss, är kvantmekaniska vågor. På atomära längdskalor
kan alla partiklar bete sig som vågor och vice versa. Ljus, till exempel, vi-
sar ett vågliknande beteende när det träffar vattendroppar, splittras upp i olika
färger och bildar en regnbåge. Samtidigt kan den fotoelektriska effekten, där
en metall som belyses med tillräckligt kortvågigt ljus avger elektroner, bara
förklaras fullständigt om ljus består av partiklar eller vågpaket (så kallade fo-
toner) snarare än vågor. På motsvarande sätt beter sig elektroner, neutroner
och protoner ofta som vågor, även om vi gärna tänker på dem som massiva
partiklar.

Vågfenomenen ovan kan alla beskrivas med partiella differentialekvationer.
Den endimensionella advektionsekvationen är det enklaste exemplet på en ek-
vation som beskriver vågutbredning,

ut +ux = 0 , x ∈ (0, L) , t > 0 ,
u(0, t) = g(t) , t > 0 ,

(7.1)

där notationen uz betyder partiell derivata av u med avseende på z, x är en
rumskoordinat, t är tid och g(t) är en känd funktion. Vi antar att lösningen
u är känd vid begynnelsetiden t = 0. Ekvationen (7.1) parallellförflyttar alla
toppar och dalar i u(x, t) åt höger med hastighet ett. Vid inflödet x = 0 behöver
vi ange vad som flödar in i domänen; utan randvillkoret u(0, t) = g(t) skulle
lösningen inte vara unik.

Ekvationen (7.1) är visserligen så enkel att den kan lösas med papper och
penna, men i allmänhet är partiella differentialekvationer så komplicerade att
de är mycket svåra eller till och med omöjliga att lösa exakt. I sådana fall
kan vi lösa dem approximativt genom att programmera numeriska metoder
i datorer. Den här avhandlingen behandlar effektiva numeriska metoder. För
att förklara vilka egenskaper en effektiv metod bör ha använder vi (7.1) som
exempel. Det finns många olika metoder, men alla innefattar att på något sätt
representera lösningen u med ett ändligt antal värden. Ett sätt att diskretisera
den rumsliga delen av (7.1) är att införa beräkningsnätet

x j = ( j−1)h, j = 1, . . . ,N ,
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där h= L
N−1 . Vi kan sedan bilda en diskret lösningsvektor u= [u1,u2, . . . ,uN ]

T ,
så att ui(t) approximerar u(xi, t). Om vi exempelvis approximerar rumsderiva-
tan med finita differenser får vi ett system av N ordinära differentialekvationer,

du
dt

= Mu+G(t) . (7.2)

Exakt hur matrisen M och den vektorvärda funktionen G(t) ser ut beror på
vilken metod som används. Ekvationen är semi-diskret i den mening att vi
har diskretiserat rummet men låtit tiden förbli kontinuerlig. För att lösa det
ursprungliga problemet (7.1) måste vi så småningom även diskretisera tiden i
(7.2), men här fokuserar vi på rumsdelen.

Genom att använda en numerisk metod på (7.1) har vi gått från en partiell
differentialekvation till ett system av N ordinära differentialekvationer. Förde-
len är att de ordinära ekvationerna rent konceptuellt är enklare än de partiella,
men en nackdel är att vi nu står inför N ekvationer istället för en, där N kan
vara ett stort tal. Hur man än beter sig för att lösa (7.2) kommer det krävas
många aritmetiska operationer, vilket gör det till en jobbig uppgift för en män-
niska. Som tur är fungerar datorer annorlunda än vi – de är väldigt bra på att
göra enkla saker snabbt. Moderna datorer kan utan problem utföra miljarder
aritmetiska operationer per sekund. Genom att implementera numeriska al-
goritmer i datorer har vi möjlighet att simulera vågfenomen som beskrivs av
betydligt mer komplicerade ekvationer än (7.1).

När man använder numeriska metoder gäller det dock att vara försiktig.
Även för den till synes enkla advektionsekvationen finns det mycket som kan
gå fel. Instabila metoder, till exempel, kommer göra att den numeriska lös-
ningen växer exponentiellt med tiden, trots att den sanna lösningen inte växer
alls. För att undvika sådana bakslag vill vi använda robusta metoder, som ger
rimliga resultat under många olika omständigheter. Allra helst vill vi kunna
garantera att den numeriska lösningen konvergerar mot den sanna lösningen
när h går mot noll. Nackdelen med att minska h är förstås att N samtidigt ökar,
vilket gör algoritmen mer beräkningskrävande så att simuleringen kommer ta
längre tid. För att kunna lösa riktigt stora problem vill vi därför använda billi-
ga metoder. Med billig menar vi här att det, när allt går bra, krävs relativt lite
datorkraft för att beräkna lösningen till en angiven noggrannhet.

Utöver datorresurser bör vi tänka på hur många arbetstimmar vi människor
behöver lägga ner. En önskvärd egenskap är naturligtvis att metoden är enkel
på så sätt att den är lätt att programmera, men det är inte allt. När man un-
dersöker vågfenomen vet man till en början oftast inte exakt vilket problem
man vill simulera. Kanske vill man kunna variera några parametrar, lägga till
termer till ekvationerna, eller byta randvillkor. Om den numeriska metoden är
alltför skräddarsydd till ett enskilt problem kan vi bli tvungna att helt byta me-
tod, vilket leder till mycket extra arbete. Vi vill därför helst använda flexibla
metoder, som med bara små ändringar kan ta hand om ett brett spektrum av
problem.
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Baserat på ovanstående diskussion drar vi slutsatsen att effektiva numeriska
metoder bör vara robusta, billiga, enkla och flexibla. För partiella differentia-
lekvationer finns det väldigt många olika metoder som alla har sina styrkor och
svagheter. Exempel på populära metoder är finit volyms-, finita element-, finit
differens- och spektralmetoder. I den här avhandlingen behandlar vi enbart fi-
nit differens-metoder. De är lätta att förstå och enkla att implementera. När det
kommer till vågutbredningsproblem bör metoder ha hög noggrannhetsordning
för att vara billiga [27]. Jämfört med finit volyms- och finita element-metoder
har finit differens-metoder fördelen att de kan ha hög ordning och samtidigt
lämpa sig för fullt explicit tidsstegning. Tyvärr blir differensmetoderna i regel
mindre robusta när man ökar ordningen, speciellt när man måste ta hänsyn till
randvillkor. Förr gjorde detta att man ofta tvingades välja mellan billiga och
robusta metoder. Idag har så kallade SBP-SAT-metoder [10, 39] löst det pro-
blemet genom att erbjuda ett systematiskt tillvägagångssätt för att konstruera
robusta metoder av hög ordning. Tekniken är också flexibel i den mening att
den fungerar för många olika ekvationer med olika typer av randvillkor.

Den här avhandlingen kan delas in i tre olika delar. I den första delen foku-
serar vi på att förbättra existerande SBP-SAT-metoder. I Manuskript I och II tar
vi fram metoder med högre noggrannhet än standardmetoderna. I Manuskript
III konstruerar vi en metod för inbäddade ränder, som gör det enklare att han-
tera ekvationer inom komplicerade domäner. Avhandlingens andra del visar
hur SBP-SAT-metoden kan tillämpas på vågutbredningsproblem inom akustik
(Manuskript IV) och kvantmekanik (Manuskript V och VI). I den tredje delen
utvecklar vi i Manuskript VII en effektiv, fullt explicit tidsstegningsmetod som
lämpar sig för lokalt förfinade beräkningsnät.

38



Acknowledgements

First of all, I would like to express my sincerest gratitude to my adviser Ken
Mattsson. Ken, together with Kristoffer Virta you made me want to become
a PhD student by showing me how much fun it can be to do research. Since
then you have guided me through the scientific world and, perhaps more im-
portantly, provided an endless supply of inspiration, enthusiasm and optimism.
Thanks also to my coadviser Tomas Edvinsson for sharing your knowledge,
for always being friendly, and for all the nice lunches we have had, discussing
research, movies, and life. I am also grateful to my collaborators Mark Car-
penter, Ilkka Karasalo, Michaela Mehlin, and Erik Sjöqvist for being so very
friendly and willing to share their expertise.

Further, I consider myself privileged to have met so many nice people at
TDB. Many of you have become good friends of mine, but there are some that I
would like to give special mention to. I can not imagine what the last two years
would have been like without my protégé, mentor, office mate, and friend,
Jonatan Werpers. I am also grateful to Fredrik Hellman, Hanna Holmgren, and
Simon Sticko, for being the wonderful people that they are and for supporting
me whenever I needed it the most. Additionally, I would like to thank Ylva
Rydin for her valuable comments on a draft of this comprehensive summary.

Sist men absolut inte minst vill jag tacka min familj: mamma, pappa och
Isabelle. Utan allt ni har gjort för mig under alla år hade den här avhandlingen
aldrig tryckts, skrivits eller ens påbörjats!

39



References

[1] S. Abarbanel, A. Ditkowski, and B. Gustafsson. On error bounds of finite
difference approximations to partial differential equations—temporal behavior
and rate of convergence. Journal of Scientific Computing, 15:79–116, 2000.

[2] S. Abarbanel, A. Ditkowski, and A. Yefet. Bounded error schemes for the wave
equation on complex domains. Journal of Scientific Computing, 26:67–81,
2006.

[3] Y. Aharonov and D. Bohm. Significance of electromagnetic potentials in the
quantum theory. Physical Review, 115:485–491, 1959.

[4] D. Appelö and N. A. Petersson. A fourth-order accurate embedded boundary
method for the wave equation. SIAM Journal on Scientific Computing,
34:A2982–A3008, 2012.

[5] J. Berg and J. Nordström. Superconvergent functional output for
time-dependent problems using finite differences on summation-by-parts form.
Journal of Computational Physics, 231:6846–6860, 2012.

[6] M. H. Carpenter, D. Gottlieb, and S. Abarbanel. Time-stable boundary
conditions for finite-difference schemes solving hyperbolic systems:
methodology and application to high-order compact schemes. Journal of
Computational Physics, 111:220–236, 1994.

[7] M. H. Carpenter and D. Gottlieb. Spectral methods on arbitrary grids. Journal
of Computational Physics, 129:74–86, 1996.

[8] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen
Differenzengleichungen der mathematischen Physik. Mathematische Annalen,
100:32–74, 1928.

[9] D. C. Del Rey Fernández, P. D. Boom, and D. Zingg. A generalized framework
for nodal first derivative summation-by-parts operators. Journal of
Computational Physics, 266:214–239, 2014.

[10] D. C. Del Rey Fernández, J. Hicken, and D. Zingg. Review of
summation-by-parts operators with simultaneous approximation terms for the
numerical solution of partial differential equations. Computers & Fluids,
95:171–196, 2014.

[11] J. Diaz and M. J. Grote. Energy conserving explicit local time stepping for
second-order wave equations. SIAM Journal on Scientific Computing,
31:1985–2014, 2009.

[12] P. A. M. Dirac. The quantum theory of the electron. Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences,
117:610–624, 1928.

[13] T. C. Fisher, M. H. Carpenter, J. Nordström, N. K. Yamaleev, and C. Swanson.
Discretely conservative finite-difference formulations for nonlinear
conservation laws in split form: Theory and boundary conditions. Journal of
Computational Physics, 234:353–375, 2013.

40



[14] T. C. Fisher and M. H. Carpenter. High-order entropy stable finite difference
schemes for nonlinear conservation laws: finite domains. Journal of
Computational Physics, 252:518–557, 2013.

[15] G. J. Gassner. A skew-symmetric discontinuous Galerkin spectral element
discretization and its relation to SBP-SAT finite difference schemes. SIAM
Journal on Scientific Computing, 35:1233–1253, 2013.

[16] M. J. Grote, M. Mehlin, and T. Mitkova. Runge–Kutta-Based Explicit Local
Time-Stepping Methods for Wave Propagation. SIAM Journal on Scientific
Computing, 37:A747–A775, 2015.

[17] B. Gustafsson. The convergence rate for difference approximations to mixed
initial boundary value problems. Mathematics of Computation, 29:396–406,
1975.

[18] B. Gustafsson, H.-O. Kreiss, and J. Oliger. Time dependent problems and
difference methods. John Wiley & Sons, Inc., 1995.

[19] B. Gustafsson, H.-O. Kreiss, and A. Sundström. Stability theory of difference
approximations for mixed initial boundary value problems. Mathematics of
Computation, 26:649–686, 1972.

[20] J. Hicken and D. Zingg. Superconvergent functional estimates from
summation-by-parts finite-difference discretizations. SIAM Journal on Scientific
Computing, 33:893–922, 2011.

[21] O. Klein. Die Reflexion von Elektronen an einem Potentialsprung nach der
relativistischen Dynamik von Dirac. Zeitschrift für Physik, 53:157–165, 1928.

[22] H.-O. Kreiss and N. A. Petersson. An embedded boundary method for the wave
equation with discontinuous coefficients. SIAM Journal on Scientific
Computing, 28:2054–2074, 2006.

[23] H.-O. Kreiss and N. A. Petersson. A second order accurate embedded boundary
method for the wave equation with Dirichlet data. SIAM Journal on Scientific
Computing, 27:1141–1167, 2006.

[24] H.-O. Kreiss, N. A. Petersson, and J. Yström. Difference approximations for the
second order wave equation. SIAM Journal on Numerical Analysis,
40:1940–1967, 2002.

[25] H.-O. Kreiss, N. A. Petersson, and J. Yström. Difference approximations of the
Neumann problem for the second order wave equation. SIAM Journal on
Numerical Analysis, 42:1292–1323, 2004.

[26] H.-O. Kreiss and G. Scherer. Finite element and finite difference methods for
hyperbolic partial differential equations. Mathematical Aspects of Finite
Elements in Partial Differential Equations., Academic Press, Inc., 1974.

[27] H.-O. Kreiss and J. Oliger. Comparison of accurate methods for the integration
of hyperbolic equations. Tellus, 24:199–215, 1972.

[28] P. D. Lax and R. D. Richtmyer. Survey of the stability of linear finite difference
equations. Communications on Pure and Applied Mathematics, 9:267–293,
1956.

[29] K. Mattsson. Summation by parts operators for finite difference approximations
of second-derivatives with variable coefficients. Journal of Scientific
Computing, 51:650–682, 2012.

[30] K. Mattsson. Diagonal-norm summation by parts operators for finite difference
approximations of third and fourth derivatives. Journal of Computational

41



Physics, 274:432–454, 2014.
[31] A. Nissen, K. Kormann, M. Grandin, and K. Virta. Stable difference methods

for block-oriented adaptive grids. Journal of Scientific Computing, 65:486–511,
2015.

[32] S. Parakkal, K. E. Gilbert, D. Xiao, and H. E. Bass. A generalized polar
coordinate method for sound propagation over large-scale irregular terrain.
Journal of the Acoustical Society of America, 128:2573–2580, 2010.

[33] C. L. Pekeris. Theory of propagation of explosive sound in shallow water.
Geological Society of America Memoirs, 27:1–116, 1948.

[34] G. Scherer. On the existence of energy estimates for difference approximations
for hyperbolic systems. Ph. D. thesis, Uppsala University, 1977.

[35] E. Schrödinger. Quantisierung als Eigenwertproblem (Vierte Mitteilung).
Annalen der Physik, 386:109–139, 1926.

[36] B. Strand. Summation by parts for finite difference approximations for d/dx.
Journal of Computational Physics, 110:47–67, 1994.

[37] M. Svärd and J. Nordström. Stability of finite volume approximations for the
Laplacian operator on quadrilateral and triangular grids. Applied Numerical
Mathematics, 51:101–125, 2004.

[38] M. Svärd and J. Nordström. On the order of accuracy for difference
approximations of initial-boundary value problems. Journal of Computational
Physics, 218:333–352, 2006.

[39] M. Svärd and J. Nordström. Review of summation-by-parts-operators schemes
for initial-boundary-value problems. Journal of Computational Physics,
268:17–38, 2014.

[40] F. D. Tappert. The parabolic approximation method. Wave Propagation and
Underwater Acoustics, edited by J. B. Keller and J. S. Papadakis, Lecture Notes
in Physics, Vol. 70, 1977.

[41] S. Wang and G. Kreiss. Convergence of summation-by-parts finite difference
methods for the wave equation. Journal of Scientific Computing, in press.

42





Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1463

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through
the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-310124

ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2017


	Abstract
	List of papers
	Contents
	1. Introduction
	2. Quantum mechanical waves
	2.1 The Schrödinger equation
	2.2 The Dirac equation

	3. The summation-by-parts finite difference method
	3.1 The continuous problem
	3.2 The semi-discrete problem
	3.3 The accuracy of SBP operators
	3.3.1 Convergence rates for difference approximations
	3.3.2 Diagonal-norm SBP operators
	3.3.3 Block-norm SBP operators
	3.3.4 Diagonal-norm SBP operators on non-equidistant grids
	3.3.5 Numerical experiment with different operators


	4. Multi-dimensional domains
	4.1 Multi-dimensional integration-by-parts formulas
	4.2 Energy analysis for the continuous equation
	4.3 Multi-dimensional summation-by-parts operators
	4.4 Energy analysis for the semi-discrete equation

	5. Complex geometries
	5.1 Embedded boundary SBP operators

	6. Summary of papers
	6.1 Paper I
	6.2 Paper II
	6.3 Paper III
	6.4 Paper IV
	6.5 Paper V
	6.6 Paper VI
	6.7 Paper VII

	7. Sammanfattning på svenska
	Acknowledgements
	References



