
Ultra Wideband: Communication and Localization

VIJAYA PARAMPALLI YAJNANARAYANA

Doctoral Thesis in Electrical Engineering

Stockholm, Sweden 2017



TRITA-EE 2016:184

ISSN 1653-5146

ISBN 978-91-7729-201-2

KTH, School of Electrical Engineering

Department of Signal Processing

SE-100 44 Stockholm

SWEDEN

Akademisk avhandling som med tillst̊and av Kungl Tekniska högskolan framlägges
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Abstract

Future communication networks will have seamless and ubiquitous connectivity
among several communicating devices using different radio technologies. These de-
vices could include cell phones, TVs, refrigerators, computers, tablets, etc. Key to
this vision is low-power, low-cost and low-complexity transceivers. Ultra-wideband
(UWB) has an unprecedented opportunity here to impact future communication
technologies. The wide bandwidth of UWB enables innovative system designs to
trade bandwidth efficiency for other merits such as device complexity, power con-
sumption, etc. Large bandwidth also enables high precision localization and robust
communication systems. In this thesis, we have focused on the signal processing
aspects of UWB signals to aid communication and localization.

The first part of this thesis develops methods for UWB communication. The
UWB transceivers employed in the sensor networks are typically made up of low
cost hardware platforms. In order to meet the stringent regulatory body constraints,
the physical layer signaling technique should be optimally designed. We propose two
signaling schemes which are variants of pulse position modulation (PPM) signaling
for impulse radio (IR) UWB communication. The constraints arising from the low
cost hardware platform are considered along with the regulatory body requirements
while developing the physical layer signaling for UWB. We also propose detectors
for the signaling schemes and evaluate the performance of these detectors.

IR-UWB can be used for precise range measurements as it provides a very high
time resolution. This enables accurate time of arrival (TOA) estimations from which
precise range values can be derived. Utilizing the range information of the nodes
in the network to aid UWB communication is not a well-studied problem. We pro-
pose methods which use range information to arrive at optimal schedules for an
all-to-all broadcast problem. Results indicate that throughput can be increased on
average by three to ten times for typical network configurations compared to the
traditional methods. Next, we discuss hypothesis testing in the context of UWB
transceivers. We show that, when multiple detector outputs from a hardware plat-
form are available, fusing the results from them can yield better performance in
hypothesis testing than relying on a single detector output. We propose a multi-
detector UWB hardware platform and discuss different fusion techniques to fuse
the detector outputs.

In the second part of this thesis, the emphasis is placed on localization and joint
estimation of location and communication parameters. Here, we focus on estimating
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the TOA of the signal. The wide bandwidth of the UWB signal requires high speed
analog to digital converts (ADC) which makes the cost of the digital transceivers
prohibitively high. To address this problem, we take two different strategies. In
the first approach, we consider energy detectors operating at sub-Nyquist rates as
they can be designed using cost effective analog circuits and are power efficient.
However, they lack precision in range measurements. We propose a multichannel
receiver with each channel having a low-cost energy detector operating at a sub-
Nyquist rate. We show that the number of energy detector channels needed to
meet the digital matched filter’s performance is high at low signal to noise ratios
(SNR) and reduces as SNR increases, and finally converges to four as SNR increases
asymptotically. We also show that a Kalman filter with suitable choice of state and
measurement equations can perform the dual task of tracking the TOA as well as
fusing the multiple energy detector outputs. In the second approach, we consider
a compressive sampling based technique. Here, we propose a new acquisition front
end, using which the sampling rate of the ADC can be significantly reduced. Two
TOA estimation algorithms are proposed which can operate on the sub-Nyquist
samples to estimate TOA. Results indicate that the performance can match the
maximum likelihood (ML) based TOA estimation with only 1/4-th the sampling
rate. Also, we show that performance at low SNRs can be improved by using the
a-priori information from channel and geographical constraints of the target.

We extended the idea of compressive sampling based TOA estimation towards
joint estimation of TOA and PPM symbols. Here, two signaling methods along with
the algorithms are proposed based on the dynamicity of the target. They provide
similar performance to the ML based estimation, however with a significant savings
in the ADC resources.



Sammanfattning

Framtidens kommunikationsnätverk kommer att erbjuda användarvänlig och lättill-
gänglig kommunikation mellan olika enheter baserad p̊a radioteknologi. Exempel p̊a
enheter som skulle kunna kommunicera är mobiltelefoner, TV-apparater, kylsk̊ap,
datorer, surfplattor, etc. Nyckeln till denna vision är billiga sändtagare med l̊ag
strömförbrukning och l̊ag komplexitet. Ultra wideband radio (UWB) har här en
unik chans att p̊averka framtida kommunikationsteknologier. Den breda bandbred-
den hos UWB möjliggör en innovativ systemdesign där den effektiva bandbred-
den kan vägas emot andra karakteriserande egenskaper s̊asom enhetskomplexitet,
strömförbrukning, etc. En hög bandbredd möjliggör även lokalisering med hög pre-
cision och robusta kommunikationssystem. I denna avhandling har vi fokuserat p̊a
signalbehandlingsaspekter hos UWB-signaler som används för kommunikation och
lokalisering.

Den första delen av avhandlingen utvecklar metoder för UWB-kommunikation.
De UWB-sändtagare som används i sensornätverk är typiskt baserade p̊a billiga
h̊ardvaruplattformar. För att kunna möta stringenta regulativa spatiala krav s̊a
krävs en optimal design av signaltekniken i det fysiska skiktet. Vi föresl̊ar tv̊a
signalscheman som är varianter av pulspositionsmodulering (PPM) för impulsradio-
baserad (IR) UWB-kommunikation. Under utvecklandet av signaltekniken för UWB
i det fysiska skiktet tar vi hänsyn till b̊ade de restriktioner som följer av den billiga
h̊ardvaruplattformen, samt regulativa spatiala krav. Vi föresl̊ar även detektorer för
signalschemana och utvärderar prestandan hos dessa detektorer.

IR-UWB kan tack vare sin höga tidsupplösning användas för avst̊andsmätning
med hög precision. Detta möjliggör noggrann ankomsttidsestimering fr̊an vilken pre-
cisa avst̊andsvärden kan erh̊allas. Användandet av avst̊andsinformation fr̊an noder
i nätverket för att stötta UWB-kommunikation är ett problem som tidigare inte f̊att
mycket uppmärksamhet. Vi föresl̊ar metoder som använder avst̊andsinformationen
för att erh̊alla optimala scheman för ett alla-till-alla-sändningsproblem. Resultat
indikerar att genomströmningen kan ökas med i genomsnitt tre till tio g̊anger för
typiska nätverkskonfigurationer jämfört med traditionella metoder. Därefter disku-
terar vi hypotesprövning för UWB sändtagare. Vi visar att när utdata fr̊an mul-
tipla detektorer är tillgänglig fr̊an en h̊ardvaruplattform s̊a kan man genom att
sammanfoga resultat fr̊an dessa detektorer erh̊alla bättre prestanda under hypote-
sprövning än när man förlitar sig p̊a utdata fr̊an endast en detektor. Vi föresl̊ar en
multidetektor-UWB-h̊ardvaruplattform och diskuterar olika tekniker för att sam-
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manfoga utdata fr̊an detektorerna.
I den andra delen av denna handling s̊a ligger tyngdpunkten p̊a lokalisering

och gemensam estimering av lokaliserings- och kommunikationsparametrar. Vi fo-
kuserar p̊a att estimera signalens ankomsttid. Den bredda bandbredden hos UWB
signalen kräver analog-till-digital-omvandlare med hög hastighet vilket innebär att
kostnaden för de digitala sändtagarna verkar begränsande. Tv̊a strategier presen-
teras för att lösa detta problem. I den första metoden studerar vi energidetektorer
som implementeras med en sub-Nyquist frekvens, eftersom de är energisn̊ala och kan
designas med hjälp av kostnadseffektiva analoga kretsar. De saknar dock precision
i avst̊andsmätningarna. Vi föresl̊ar en multikanal-mottagare där varje kanal har en
l̊agkostnads-energidetektor implementerad med en sub-Nyquist frekvens. Vi visar
att antalet kanaler för energidetektorer som behövs för att uppn̊a prestandan hos
digitala matchade filter är hög vid l̊aga signal-brusförh̊allanden, minskar d̊a signal-
brusförh̊allandet ökar, och slutligen konvergerar mot fyra d̊a signal-brusförh̊allandet
ökar asymptotiskt. Vi visar även att ett Kalmanfilter med ett lämpligt val av till-
st̊ands- och mätekvationer kan b̊ade estimera ankomsttiden och sammanfoga ut-
datat fr̊an de multipla energidetektorerna. I den andra metoden studerar vi tekni-
ker baserade p̊a komprimerad sampling. Vi föresl̊ar en ny anskaffningsfront, med
vilken samplingsfrekvensen hos analog-till-digital-omvandlaren kan minskas betyd-
ligt. Tv̊a algoritmer för ankomsttidsestimering som kan appliceras p̊a sub-Nyquist
samples föresl̊as. Resultat indikerar att prestandan matchar maximum likelihood
(ML)-baserad ankomsttidsestimering med endast en fjärdedel av dess samplings-
frekvens. Dessutom s̊a visar vi att prestandan vid l̊aga signal-brusförh̊allanden kan
förbättras genom att använda a priori-information fr̊an kanalen och geografiska
bivillkor p̊a målenheten.

Vi utvidgar idén om ankomstestimering baserad p̊a komprimerad sampling till
gemensam estimering av ankomsttid och PPM-symboler. Tv̊a signaleringsmetoder
med respektive algoritmer föresl̊as baserat p̊a målenhetens dynamik. Dessa till-
handah̊aller liknande prestanda som ML-baserad estimering, men med betydande
besparingar av analog-till-digital-omvandlarens resurser.
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Chapter 1

Introduction

In the year 2021, it is predicted that there will be 15 billion devices that will be
connected. While some of the devices will be cellular, a large part will use other
radio technologies [ER15]. In this context, ultra-wideband (UWB) technology, has
an unprecedented opportunity to impact communication systems.

The radio technologies for communication systems generally employ a non-
overlapping radio frequency (RF) spectrum. That is, every radio technology like
GSM, 3G, LTE, Bluetooth etc., uses a distinct RF spectrum. A typical UWB sys-
tem employs a large bandwidth. In the 0 − 10 GHz band, there are several ra-
dio technologies, and several new ones are emerging. As a result, RF spectrum is
becoming more premium and more scarce. Communication systems using UWB
offer a promising solution in this band as they can co-exist with other radio tech-
nologies sharing the same RF band. Regulatory bodies impose stringent emission
requirements to prevent the UWB signals interfering with other radio technolo-
gies. Another interesting development is the availability of the mmWave spectrum
without stringent emission requirements. This has benefited the evolution of UWB
technology in the 30− 80 GHz spectrum.

1.1 What is UWB?

There are multiple definitions for a UWB signal. Most of the definitions on what
can be construed as UWB signal depends on the spectrum regulatory bodies. The
federal communications commission (FCC) defines the UWB signal as a signal
which meets at least one of the following criteria:

• The 10 dB fractional bandwidth is greater than 0.20.

• The 10 dB bandwidth is equal to or greater than 0.5 GHz, regardless of the
fractional bandwidth.

1



2 Introduction

0 2 3.1 4 6 8 10 10.6 12
−80

−75

−70

−65

−60

−55

−50

−45

−40

Frequency [GHz]

U
W

B
E
IR

P
em

is
si
o
n
le
v
el

[d
B
m
/
M
h
z]

0.96GHz

1.61GHz

1.99GHz

Main target area for indoor

UWB communication applications

Figure 1.1: Spectral mask specified by FCC showing the equivalent isotropic radi-
ated power (EIRP) versus frequency for indoor UWB system.

The fractional bandwith of a signal provides the signal bandwidth in relation to
the carrier frequency. It is defined as

2(FH − FL)

(FH + FL)
, (1.1.1)

where FH and FL indicate the highest and lowest frequency component of the
transmitted UWB signal, respectively.

The wide bandwidth used by the UWB signals can overlap with other radio
technologies. Thus, the regulatory bodies impose very stringent constraints on the
UWB emissions in order to protect the victim receivers. These are specified through
spectral masks which are generally defined for the 0 − 10 GHz band. Although
there exist multiple emission norms for UWB signals, here we concentrate on FCC
regulations. This is due to the fact that most of the other definitions are derived
from the FCC rules, and these regulations are the most popular regulations for
UWB. The FCC regulations are defined in [FCC02].

FCC regulations control the UWB emmisions through the constraints on max-
imal average power Pav, and maximal peak power Ppk. The average power, Pav
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is measured using a spectrum analyzer with resolution bandwidth (RBW) Bav =
1 MHz. Maximal average power constraints are specified through spectral masks.
The Figure 1.1 shows the FCC mandated spectral mask for indoor UWB emissions.
Ppk should not exceed 0 dBm when measured using a spectrum analyzer with RBW
set to 50 MHz.

The availability of unlicensed mmWave spectrum has brought renewed interest
in UWB technology. The mmWave signals have a frequency range that goes from
30 GHz to 300 GHz. More bandwidth is available at these frequencies compared
to 0 − 10 GHz. The UWB emissions in the unlicensed mmWave spectrum do not
have stringent emission norms due to the higher oxygen absorption which limits
the long-distance interference to the other devices. For example, FCC allows the
devices to transmit power up to 10 W in the 57− 64 GHz band [Nag07].

1.2 History of UWB

The first wireless communication involved spark gap transmission experiments con-
ducted by Marconi and Hertz in the late 1890s. The bandwidth consumed by these
experiments was huge and can be considered as ultra wideband communication.
This experimental setup can be considered as a crude form of impulse radio sys-
tem1. Marconi employed this method to transmit Morse code sequences across the
Atlantic ocean.

Even though wireless communications started with ultra wideband transmis-
sions, there were many challenges ranging from electronic components to antenna
design to make this a prominent transmission technique at the time. These techno-
logical limitations pushed wireless communications toward carrier modulated nar-
rowband signals. The carrier frequencies employed were typically several orders of
magnitude larger than the signal bandwidth itself.

Developments in areas such as measurement technology helped the evolution
of UWB technology. For example, impulse measurement techniques which can be
used to characterize the transient behavior of the microwave networks required
small sub-nanosecond pulses. This led to the development of circuits to generate
sub-nanosecond pulses in 1960s [MG07]. The requirements for electronic warfare
further developed UWB technology. This resulted in utilizing the pulse generation
techniques for applications such as radar devices, to enable higher spatial resolution
for the radars.

The first patent for UWB wireless communication was filed in 1973 [Ros73].
Here the authors envisaged the development of a transceiver for short-range wire-
less communications without licensing. The idea was too advanced for that time,
as there were several hurdles to adopting the proposed idea. These included the
electronic components that can operate at such large bandwidths. For the next few
decades, narrowband signals dominated the communication landscape.

1Impulse radio is a particular flavor of UWB which uses extremely short impulse like pulses.
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At the end of the 20th century, the first impulse radio proposal was made in the
seminal paper of Win and Scholtz [WS98]. This triggered much interest in academia
and industry, as the spectrum in the 0−10 GHz band was crowded and UWB was a
potential technology which could coexist with the existing spectral bands. Around
the same time in 2002, the FCC part 15 ruling allowing unlicensed usage furthered
the interest in the technology. However, much of the action in the area died down
due to challenges in the development of cost effective radio which could satisfy the
spectrum regulatory bodies’ stringent requirements.

Due to the development in the electronic technology and evolution of the signal
processing methods, today cost effective UWB radios can be designed which satisfy
the stringent requirements of the spectrum regulatory bodies. Coupled with this,
the availability of the unlicensed mmWave spectrum for UWB with less stringent
requirements has renewed interest in the UWB technology. This thesis, among other
things, also focuses on the signal processing methods, to further the progress in this
area.

1.3 UWB Characteristics

1.3.1 Multi-carrier UWB schemes

There are many ways to generate UWB signals. One approach is to combine the
spread spectrum (SS) and multi-carrier (MC) techniques. Here the incoming data
is spread using different spreading codes and up-converted on to different frequen-
cies [PH96]. Another approach is to use multi-band orthogonal frequency division
multiplexing (OFDM), where an OFDM signal is produced with approximately
528 MHz bands. The multi-carrier techniques have increased complexity and re-
quire several mixers or digital fast Fourier transform (FFT) to place the different
signal components in the required frequencies [BKM+06]. As a result of these dis-
advantages, multi-carrier techniques are rarely used for UWB.

1.3.2 Impulse radio UWB schemes

Impulse radio UWB (IR-UWB) systems employ discontinous pulses for transmis-
sion. These pulses are extremely narrow and occupy a wide bandwidth. Since these
narrow pulses are only few nano-seconds wide (impulse like), the system is called
IR-UWB. In these systems the information can be embedded in the position, form-
ing a pulse position modulated (PPM) signaling scheme, or in amplitude forming
pulse amplitude modulated (PAM) signaling schemes. A typical transmitted symbol
is spread over N pulses. This provides a processing gain similar to spread spectrum
techniques. The typical duty cycle of the pulses used is very low and therefore,
the receivers only need to “listen” to the channel for a small fraction of the period
between pulses. This can reduce the interference from the continuous source as it
is only relevant when the receiver is attempting to detect a pulse [BKM+06].
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Many pulse shapes have been explored in IR-UWB research, and commonly em-
ployed pulse shapes include Gaussian, Laplacian, and Hermitean [MGK02]. How-
ever, in practice it is difficult to generate these shapes in hardware. In many UWB
systems, the generated pulse shape can be approximated to a Gaussian doublet. In
these systems, a square pulse is generated by turning the diode on and off, which
leads to a pulse shape which is not rectangular but with its edges smoothed off.
This happens due to the imperfect doping of the diode, antenna effects, etc. The
resulting shape generated can be approximated by a Gaussian shape.

Even though the methods and algorithms disscussed in this thesis can be ex-
tended to other UWB techniques, our primary focus is on IR-UWB based commu-
nication and localization systems.

1.3.3 Propagation characteristics

There are two common approaches that are generally taken to define the propaga-
tion characteristics of the UWB signals. The first method is called the deterministic
approach. Here, first the obstacles’ geometric shape, type and its electro-magnetic
(EM) properties in the propagation environment are defined. Subsequently, the
channel response can be arrived at by using EM simulation tools via ray-tracing
techniques [YGCZ03,YZC03,SGI08]. This technique has several disadvantages as it
is site-specific and also, when the environment changes, the channel model becomes
useless. To overcome this, one can make actual channel measurements for common
types of channels, like indoor line of sight (LOS), indoor non-LOS (NLOS), indus-
trial LOS, etc. and derive a statistical model from the measurements. This type
of channel modeling is called statistical channel modeling and many popular IEEE
UWB standards use this form of channel modeling.

One of the most widely used statistical channel models for indoor propagation
was proposed by Saleh and Valenzuela [SV87]. This model is adopted in IEEE
802.15.4a CM1 standard for providing a stochastic channel model for various UWB
environments [MCC+04, Mol05]. As per this model, the discrete-time impulse re-
sponse of the UWB channel has clusters that follow Poisson arrival with parameter,
Λ, and the multipath components (MPCs) within the cluster follow a Laplacian
distribution with parameter λ. The mean cluster energy decays exponentially with
parameter Γ. The choice of Λ, λ and Γ defines various UWB propagation environ-
ments. A pictorial representation of this model is shown in Figure 1.2.

A model with C clusters having R rays (MPCs) can be mathematically expressed
as

h(t) =
C
∑

i=1

R
∑

j=1

ai,jδ(t− Ti − γi,j), (1.3.1)

where, Ti represents the arrival time of the i-th cluster and γi,j represents the time
duration of the j-th ray in the i-th cluster in relation to Ti. Note that by definition
γi,1 = 0 and T1 denotes the arrival time of the first ray of the first cluster.
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Figure 1.2: Illustration of Saleh-Valenzuela channel model.

1.3.4 Standardization

In this section, we will briefly describe the standardization activities in the area
of the UWB communication. There are two main standards that have emerged
from IEEE standards group. The IEEE 802.15.3a, which caters to high data rate
applications and the IEEE 802.15.4a, which caters to low data rate applications.

IEEE 802.15.3a

The primary goal of this standard was to develop a UWB physical layer (PHY)
standard to cater to high rate applications. The applications envisaged by the task
group included, among other things, cable-less media transfer, imaging, and multi-
media streaming. The main goal was to provide a short range, high speed, alternate
PHY for the existing IEEE 802.15.3 medium access control (MAC) standard. The
primary work of this standard committee included the development of the channel
model which can be used for UWB system evaluation. The standard supported
110 Mbps up to 10m and used OFDM technology [BKM+06].

IEEE 802.15.4a

The primary goal of this standard was to develop a UWB standard to cater to
low rate applications. The potential applications included wireless sensor networks,
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home automation, etc. The IEEE 802.15.4a TG4 group, which studied the require-
ments for the low rate UWB applications, provided standard channel models for var-
ious low rate environments like indoor LOS, industry LOS, indoor NLOS, etc. These
models are one of the most popular ways to evaluate the UWB systems. There is
also a non-IEEE standards group called multiband OFDM alliance (MBOA), which
is an alliance of academia and industry, for UWB based on OFDM techniques. The
IEEE 802.15.3a group is not active. In this thesis, the proposed methods are evalu-
ated in the context of the IEEE 802.15.4a standard to demonstrate their benefits.

1.4 Applications

There are several applications for UWB technology, primarily in the area of local-
ization, communication and medicine.

1.4.1 UWB in Localization

The development of global positioning systems (GPS) has revolutionized position-
ing and tracking technology. However, indoor environments still pose significant
challenges for GPS systems. This is because the complex physical characteristics
of the environments, such as walls, windows, etc., pose a significant obstacle in
decoding the satellite signals. A typical GPS signal occupies a bandwidth of only
2 MHz, resulting in overlapped MPCs. This makes it extremely difficult to accu-
rately measure the time of arrival (TOA) from the satellites, especially in harsh
indoor environments.

Range estimates are crucial for localization, as location information can be de-
rived from the range values from multiple anchors using triangulation. Accurate
range estimates are typically obtained by using TOA methods. The best perfor-
mance in terms of mean-square-error (MSE) for an unbiased estimator is given by
the Cramer-Rao lower bound (CRLB) and for a time of arrival (TOA) estimation
problem this is given by [GTG+05,DCW08]:

σ2
τ ≥

1

8π2SNRβ2
, (1.4.1)

where, β is the effective signal bandwidth defined by

β2 =

[
∫∞

−∞ f2|S(f)|2df
∫∞

−∞ |S(f)|2df

]

, (1.4.2)

where S(f) is the Fourier transform of the transmit pulse s(t). Since UWB uses
extremely large bandwidths with very high time resolution, they can be used for
precise range estimation. Therefore UWB is a good candidate for indoor localization
and can provide the high level of position accuracy required for indoor positioning.
This has also enabled several applications in the area of inventory tracking, assisted
living and intelligent transportation systems.
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1.4.2 UWB in Communication

There are two application scenarios in which UWB can be used. They are as follows:

• Short range high data rate applications.

• Long range low data rate applications.

From the famous Shannon-Hartley theorem, the capacity of the system can be
increased either by increasing the channel bandwidth or signal to noise ratio (SNR)
or both. Since UWB systems employ wide bandwidths, it is possible to achieve high
data rate. However, the transceiver, in order to be compliant with the spectrum
regulatory bodies’ emission requirements, needs to be of low power. This will limit
the range of the wireless communication and thus, UWB is ideal for high-rate,
low range applications. UWB can be used in wireless USB, multi-media streaming,
machine-to-machine communication, etc.

UWB also provides flexibility to trade bandwidth with range, security, multi-
user setup, etc. This can enable several low rate applications in wireless sensor
networks (WSNs). The UWB signal has interesting propagation characteristics as
it can penetrate well in harsh environments, making it an ideal candidate for search
and rescue systems. Many systems such as first responder systems, intelligent trans-
portation systems, etc. require both localization and communication. UWB, with
its ability to provide robust data communication coupled with highly accurate lo-
calization capability, is an ideal candidate for these systems [NZSH13, RRS+11].
Figure 1.3 depicts a snapshot of potential UWB communication and localization
applications.

1.4.3 UWB in Medicine

UWB’s noise-like behavior with extremely low effective isotropically radiated power
(ERIP) makes UWB signals useful for biomedical applications. UWB signals are
commonly used in medical imaging and medical sensing. The UWB medical radar
can be used for monitoring cardiac motion, blood pressure, the respiratory system,
etc. Typical medical imaging applications can include, for example, breast cancer
detection and obstetrics imaging. The UWB is also used in intensive care units to
monitor coma patients, to detect when they come out of the coma, so that much
need medical attention can be provided when they wake up. The UWB signal’s
ability to provide accurate indoor localization can be used to monitor patients
suffering from chronic disease. UWB can also be used for non-intrusive disease
diagnosis of the ear-nose-throat (ENT) organs [CSB14]. Figure 1.4 shows a snapshot
of various applications in which UWB signals can be employed.

1.5 Commercial UWB systems

Early commercial UWB systems including Ubisense and Timedomain used non-
standard or custom made communication and localization solutions [Tdm16,Ubi16].
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Figure 1.3: UWB communication and localization applications.

They used centralized architecture with anchors. These anchors are connected
through cables and their locations are known. The transmitter tags which require
localization are mounted on the targets such as a person, object, sensor, etc. The
centralized anchors are capable of determining the ranges and bearings to trans-
mitter tags using time difference of arrival (TDOA) and angle of arrival (AOA),
respectively. The TDOA/AOA values from the anchor to the tags are used to lo-
calize the target.

The evolution of the IEEE 802.15.4 standard for UWB PHY enabled interoper-
ability and made products future-proof. Companies like Bespoon, Decawave, etc.,
developed chip sets which can be used to design IEEE 802.15.4 standard-specific
UWB products. Recent trend is to use these chipsets in the UWB system design.
Some of these chip companies also are entering in to consumer market. For example,
spoonphone from Bespoon is a full blown smartphone, packed with state-of-the-art
sensors that will enable several smartphone applications which need precision lo-
calization [Com16a].

1.6 UWB Research at KTH

Extensive research on UWB communication and localization has been performed
at the Department of Signal Processing, KTH, in Sweden. An in-house low cost
UWB sensor hardware platform has been designed in the lab. The architecture
of this platform is shown in Figure 1.5. The analog UWB measurement section is
connected to the field-programmable gate array (FPGA) using a serial peripheral
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Figure 1.4: UWB medical applications. Reproduced with permission from authors
of [CSB14].
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interface (SPI). This architecture is based on time to digital conversion (TDC),
which was originally designed for ranging round-trip time calculations. However,
the same can be used to measure the time between the pulse intervals, thereby
enabling demodulation of PPM signals and thus, it can also be used for UWB com-
munication. The UWB transceiver has a pulse generator which is realized using a
step-recovery diode, and is triggered by the start signal from the FPGA. The out-
put of the energy detector, after being compared with the voltage threshold in the
on-chip comparator, provides the stop signal for the TDC measurement. Further
details of this UWB sensor hardware architecture, along with the measurement re-
sults, can be found in [ADH13]. Many novel proposals discussed in this dissertation
are applicable to the future evolution of this flexible UWB hardware platform. The
self-localization and distributed cooperative localization methods developed in the
lab are discussed in [DAH12,ZADH13].

1.7 Motivations and Objectives

Significant attention has been given to UWB research subsequent to the FCC
adopting the unlicensed UWB operation in the USA in 2002 [FCC02]. Much of
the research has been an extension of the spread spectrum concepts to UWB. One
example of this is developing the signaling methods based on time-hopping for mul-
tiple access and security. Several practical challenges have not been considered in
the research of physical layer signaling for UWB. The UWB transceivers employed
in the UWB sensor network are typically made up of low cost hardware platforms.
The constraints that emerge from these low cost hardware platforms need to be con-
sidered along with the regulatory body requirements while developing the physical
layer signaling.

There have been several research studies on using UWB signals for communi-
cation and localization. However, utilizing the location information of the sensor
nodes for UWB communication is not a well studied problem. Many UWB sen-
sor networks require cyclic all-to-all communication for information dissemination
across the network. Utilizing the sensor location in such communication can provide
significant benefits. This aspect is explored little in the UWB litrature.

In many hardware platforms, a single UWB transceiver mounted on the sensors
is used for multiple applications such as ranging, sensing and communication. Each
detector in these platforms, such as amplitude detectors (AD), energy detectors
(ED), etc. uses particular statistics of the received samples for UWB pulse detection
based on the application. The performance of hypothesis testing for these detectors
as a function of various UWB physical layer parameters, such as number of pulses,
energy of the pulse and pulse shape, is not a well researched topic. The fusion of
these detector outputs when there is no strict binding between the application and
detector can improve the hypothesis testing performance.

Accurate time of arraival (TOA) is essential in several applications including
localization and communication. The digital matched filter based detector is the
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(a) Sensor unit

(b) UWB transciver

Figure 1.5: In-house UWB hardware platform [ADH13].
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method of preference, because of its superior performance in additive white Gaus-
sian noise (AWGN) and multi-path channels. However, UWB signals occupy ex-
tremely large bandwidth and thus requires high-speed analog-to-digital converters
(ADCs). These are very expensive, and low-cost alternatives are preferred. Also,
typically the target is dynamic in nature, therefore how to estimate the TOA of
a dynamic target using multiple low cost energy detector chains is of particular
interest.

A simple approach to TOA estimation for LOS UWB channels is to choose
the location of the peak in the received signal as the TOA estimate. However, the
main source of error here will be due to the strongest mutipath components arriv-
ing later than the first path. This problem is typically addressed using threshold-
ing [GS05,DCW08,DCW06]. When these algorithms are implemented using digital
transceivers, they require a sampling rate much higher than the Nyquist rate. The
estimation of the TOA using sub-Nyquist sampling is not addressed in UWB liter-
ature. This can significantly ease the bottleneck of the ADC design due to the wide
bandwidth of the UWB signal.

Many applications, such as first responder systems require both localization and
communication. How to design the physical layer signals to aid joint estimation of
TOA and data symbols in the sub-Nyquist domain is of particular interest. This
can ease the requirements on the RF front-end sampling rate and can reduce the
cost of the UWB receivers.

The above discussion naturally leads to the following research topics which are
addressed in this thesis:

1. Hardware aware spectral efficient physical layer signaling for UWB,

2. Location aware communication,

3. Multi-detector hardware platform with fusion methods,

4. Joint fusion and estimation of TOA from dynamic target using multiple low-
cost detector chains,

5. A compressive sampling approach to UWB TOA estimation,

6. Joint estimation of TOA and data-symbol in sub-Nyquist domain.

1.8 Thesis Outline and Contribution

This section provides an outline of the thesis with a brief summary of the material
presented in each chapter. This thesis consists of 9 chapters, the summary of which
are as follows.
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Chapter 2

Chapter 2 deals with the preliminaries. Here we will briefly discuss the concepts
and tools that are needed to understand the rest of the thesis. We start with a brief
introduction to optimization methods where we discuss the convex optimization and
traveling salesman problem. Then we proceed toward statistical signal processing,
where we discuss the basics of detection and estimation theory. Followed by this is
an introduction to sparse signal processing.

Chapter 3 − 8 discuss the main contributions of this thesis. Each chapter is
complete by itself and to understand the material the reader does not need the
content of previous or subsequent chapters. However, the chapters themselves ad-
dress problems which are related. The connections between the chapters is shown
in Figure 1.6. Each chapter begins with a “Background” section, which gives the
overall context to the discussion that follows and ends with a “Conclusion” section
which summarizes the chapter along with the main concepts from that chapter.

Chapter 3

Chapter 3 discusses the physical layer signal construction for UWB. There exists
extensive research on the design of hardware platforms and algorithms for localiza-
tion and communication strategies. However, there is limited research on how to
optimize the physical layer signaling for UWB communication in view of constraints
from cost-effective hardware and regulatory bodies in the context of UWB. In this
chapter, two signaling schemes are discussed, with one requiring higher complexity
in modulation and demodulation, which can increase the range by nearly 4 times
without compromising the bitrate. This chapter also discusses demodulators for the
proposed schemes and derives the theoretical performance in terms of symbol error
rates (SER) for them. This chapter is based on the following papers:

[A] V. Yajnanarayana, S. Dwivedi, A. De Angelis, and P. Händel, “Spectral efficient
IR-UWB communication design for low complexity transceivers,” EURASIP
Journal on Wireless Communications and Networking, vol. 2014:158, no. 1,
pp. 1-13, 2014.

[B] V. Yajnanarayana, S. Dwivedi, and P. Händel, “Design of impulse radio UWB
transmitter with improved range performance using PPM signals,” 2014 IEEE
International Conference on Electronics, Computing and Communication Tech-
nologies (CONECCT), Bangalore, India, Jan 2014, pp. 1-5.

[C] V. Yajnanarayana, S. Dwivedi, A. De Angelis, and P. Händel, “Design of im-
pulse radio UWB transmitter for short range communications using PPM
signals,” 2013 IEEE International Conference on Electronics, Computing and
Communication Technologies (CONECCT), Bangalore, India, Jan 2013, pp. 1-4.
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Chapter 4

Chapter 4 deals with multiple access scheduling. A typical multiple access schedul-
ing decides how the channel is shared among the nodes in the network. Typi-
cal scheduling algorithms aim at increasing the channel utilization and thereby
throughput of the network. In this chapter, we describe several algorithms for gen-
erating an optimal schedule, in terms of channel utilization, for multiple access by
utilizing range information in a fully connected network. A detailed analysis for
the proposed algorithms’ performance in terms of their complexity, convergence,
and effect of nonidealities in the network is also discussed. The performance of the
proposed schemes is compared with non-aided methods to quantify the benefits of
using the range information in the UWB communication. The methods discussed in
this chapter have several favorable properties for scalable systems. We show that the
proposed techniques yield better channel utilization and throughput as the number
of nodes in the network increases. This chapter is based on the following paper:

[D] V. Yajnanarayana, K. Magnusson, R. Brandt, S. Dwivedi, and P. Händel, “Op-
timal Scheduling for Interference Mitigation by Range Information,” Manuscript
submitted to IEEE Transactions on Mobile Computing, 2016.

Chapter 5

Optimal detection of UWB pulses in a UWB transceiver employing multiple detec-
tor types is proposed and analyzed in Chapter 5. To enable the transceiver to be
used for multiple applications, the designers can have different types of detectors
such as an energy detector, amplitude detector, etc., built in to single transceiver
architecture. We discuss several fusion techniques for fusing decisions made by indi-
vidual IR-UWB detectors. In order to get early insight into the theoretical achiev-
able performance of these fusion techniques, we assess the performance of these
fusion techniques for commonly used detector types such as matched filter, energy
detector and amplitude detector under Gaussian assumption. These are valid for
ultra short distance communication and in UWB systems operating in millimeter
wave (mmwave) band with high directivity gain. In this chapter, we show that
the performance can be improved by fusing decisions from multiple detector types
compared to a stand-alone detector. This chapter is based on the following papers.

[E] V. Yajnanarayana and P. Händel, “Performance Evaluation of IR-UWB De-
tectors and Fusion Techniques for UWB Transceiver Platforms,” International
Journal of Ultra Wideband Communications and Systems, in press.

[F] V. Yajnanarayana, S. Dwivedi and P. Händel, “IR-UWB Detection and Fusion
Strategies using Multiple Detector Types,” 2016 IEEE Wireless Communica-
tions and Networking Conference (WCNC), Doha, Qatar, Apr. 2016, pp. 1-6.
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Chapter 6

In Chapter 6, we discuss the fusion of dynamic TOA from multiple low complexity
detectors like energy detectors operating at sub-Nyquist rate through Kalman fil-
tering. We show that by having a multi-channel receiver, with each channel having
an energy detector, we can achieve the performance of a digital implementation
with a matched filter. In this chapter, we also derive an analytical expression for
the number of sub-Nyquist energy detector channels needed to achieve the per-
formance of a digital implementation with a matched filter. Using simulations, we
also demonstrate the validity of our analytical approach. Results indicate that the
number of energy detectors needed will be high at low SNRs and converge to a
constant number as the SNR increases. We also study the performance of the strat-
egy proposed using the IEEE 802.15.4a CM1 multipath channel model and show in
simulations that two sub-Nyquist detectors are suffcient to match the performance
of a digital matched filter. This chapter is based on the following paper:

[G] V. Yajnanarayana, S. Dwivedi and P. Händel, “Multi detector fusion of dynamic
TOA estimation using Kalman filter,” 2016 IEEE International Conference on
Communications (ICC), Kuala Lumpur, Malaysia, May 2016, pp. 1-6.

Chapter 7

Chapter 7 discusses two compressive sampling based time TOA estimation algo-
rithms using a sub-Nyquist rate receiver. We also describe a novel compressive sam-
pling dictionary design for the compact representation of the received UWB signal.
One of the proposed algorithm exploits the a priori information with regard to the
channel and the range of the target. The performance of the algorithms is compared
against the maximum likelihood (ML) based receiver using IEEE 802.15.4a CM1
line of sight (LOS) UWB channel model. The discussed methods yield similar per-
formance to the ML TOA estimation at high SNRs. However, the computational
complexity and the sampling rate requirements are lesser compared to the ML es-
timator. In this chapter, we also analyze the performance of the algorithm with
respect to practical constraints such as the size of the holographic dictionary and
sampling rates. A new algorithm which can exploit both the a priori information
regarding the UWB channel and the geographical constraints on the target that
may be available at the receiver is also discussed. This algorithm can substantially
boost performance compared to the algorithm without a priori information at low
SNRs. This chapter is based on the following paper:

[H] V. Yajnanarayana and P. Händel, “Compressive Sampling Based UWB TOA
Estimator,” Manuscript submitted to EURASIP Journal on Advances in Signal
Processing, 2016
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UWB Communication Location Aided Communication

Joint Estimation of Communication

Chapter 3, Chapter 5 Chapter 4

•Symbol Estimation

•Signaling design

•Modulator and Demodulator Algorithms

•Scheduling for Multiple Access

•Cooperative Communication

UWB Localization
and Location parameters

Chapter 6, Chapter 7 Chapter 8
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•Target Tracking

•Range and Symbol Estimation

•Compressive Sampling

Figure 1.6: Schematic overview of the technical chapters presented in the thesis.

Chapter 8

Chapter 8 describes a sub-Nyquist rate receiver which can jointly estimate TOA
and data symbols. We borrow the ideas from the previous chapter to first represent
the received UWB signal in a new domain in which it is sparse. Then, we design
physical layer waveforms and estimation algorithms to exploit this sparsity for joint
estimation of TOA and PPM data symbols. The performance of the receiver is
compared against the ML based receiver using the IEEE 802.15.4a CM1 LOS UWB
channel model. The proposed algorithm yields a performance similar to the ML
based algorithms with only a fraction of the sampling rate at high SNRs (>25 dB).
This chapter is based on the following paper:

[I] V. Yajnanarayana and P. Händel, “Joint Estimation of TOA and PPM Symbols
using Sub-Nyquist Sampled IR-UWB signal,”IEEE Communication Letters, in
revision.

Chapter 9

Finally, Chapter 9 summarizes the author’s general conclusions and possible direc-
tions for future research.
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Chapter 2

Preliminaries

In this chapter, we will introduce basic concepts that are needed to understand
the rest of thesis. We will start with the fundamentals of detection and estimation
theory.

2.1 Detection Theory

Detection theory deals with the problem of choosing a particular hypothesis from
the observation, x. Typically a hypothesis maps to a particular phenomenon that
is being detected. For example, in the context of a UWB signal, we can formulate
a hypothesis for whether a particular frame has a UWB pulse or not. If there are
only two hypotheses, H0 and H1 for a phenomenon, then the detection problem
reduces to a binary hypothesis test. For a binary hypothesis, the following types of
errors can occur when deciding based on the observation:

• A type-1 error or false alarm, which occurs when the observation is decoded
as H1, for an H0 event. Probality of false alarm, PFA = Pr(H1; H0)1.

• A type-2 error or miss, which occurs when the observation is decoded as H0,
for an H1 event. Probality of miss, PM = Pr(H0; H1).

Both type-1 and type-2 errors cannot be reduced simultaneously. A typical approach
is to fix the false alarm (type-1 error) and seek an optimal detector to minimize the
type-2 error. Note that minimizing the type-2 error is the same as maximizing the
detection probability, PD = (1−Pr(H0; H1)) = Pr(H1; H1). This setup is called the
Neyman-Pearson (NP) approach to hypothesis testing. We can formalize this into
a theorem as follows:

Theorem 2.1.1. For a given false alarm, PFA = α, to maximize, PD, decide toward
H1 if,

L(x) =
p(x; H1)

p(x; H0)
> γ, (2.1.1)

1We define Pr(Hi; Hj) as the probability of choosing Hi hypothesis when Hj has occurred.
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where the threshold, γ, is obtained from

PFA =

∫

x:L(x)>γ

p(x; H0)dx = α. (2.1.2)

The equation (2.1.1) is called the likelihood ratio test [Kay98].

2.1.1 Bayesian Approach

In many applications, the prior probabilities of the hypotheses are known. For
example, in UWB communication using M -ary PPM scheme, we know that the
symbols (hypotheses) are equiprobable with probability, 1/M . If the objective is
to minimize the error or misclassification, then the optimal rule is the maximum a
posteriori probability (MAP) rule. That is, for a multi-hypotheses case with the M
possible hypotheses, decide Hi, if

Pr(Hi|x) > Pr(Hj |x),

∀i, j ∈ {1 . . . M} and j 6= i.
(2.1.3)

If we re-write (2.1.3), using Bayes theorem, we get

Pr(Hi|x) =
p(x|Hi)Pr(Hi)

p(x)
. (2.1.4)

If all the hypotheses are equiprobable, then maximizing the Pr(Hi|x) is the same
as maximizing p(x|Hi) with the choice of Hi. Under this condition the MAP rule
reduces to, decide Hi if

p(x|Hi) > p(x|Hj),

∀i, j ∈ {1 . . . M} and j 6= i.
(2.1.5)

This is called the maximum likelihood (ML) rule. In Chapter 5, we will consider a
direct sampling receiver structure and use the concepts discussed in this section to
arrive at a binary hypothesis about the presence of a UWB pulse in the received
samples.

2.2 Estimation Theory

The estimation theory deals with arriving at a quantitative conclusion about a
parameter, θ, from the observation, x. An example of this is estimating the value
of the TOA from a received UWB frame. The joint probability distribution function
(PDF), p(θ, x), denotes the complete statistical description of the parameters and
observations.
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The posterior PDF, p(θ|x), is the quantity of interest in many estimation prob-
lems. Applying Bayes rule, the posterior PDF can be written as

p(θ|x) =
p(x|θ)p(θ)

p(x)
, (2.2.1)

= αp(x|θ)p(θ), (2.2.2)

where α = 1/p(x) is a normalizing constant.
In the above formulation, we assumed that the parameter, θ, is random and

unknown. However, in certain estimation problems, θ, can be deterministic. Under
these conditions, good estimators can be designed by mathematically modeling the
observation x, through the parametrized, PDF, p(x; θ).

2.2.1 Performance of an estimator

An estimator is a function, g, which maps the observation space to the parameter
space, i.e., g : Sx → Sθ. We want to have this mapping function to have an error,
ǫ , (θ− θ̂) which is as small as possible. In particular, we look at the mean of the
squared error (MSE), that is

M = E
[

(θ − θ̂)2
]

, (2.2.3)

where, E[·] is an expectation operator and ‖·‖ is the 2-norm. In a Bayesian set up
with the unknown random parameter, the optimal estimator is the conditional mean
µθ|x , Eθ|x [x] and for such an estimator, the variance is given by the conditional
covariance, Cθ|x.

If the parameter is deterministic and unknown, then an unbiased estimate is
usually preferred. That is, θ̂ = g(x), and such an estimator has a property

E[θ̂] = θ. (2.2.4)

The variance (MSE) of any unbiased estimator is at least as high as the inverse of
the Fisher information. Where Fisher information is defined as

I(θ) = −E

[

∂2p(x; θ)

∂2θ

]

, (2.2.5)

Mi,i ≥ [I−1(θ)]i,i. (2.2.6)

The bound defined in (2.2.6) is called Cramer-Rao lower bound (CRLB).

2.2.2 Estimation Methods

Typical estimation methods depend on the model assumptions. Consider the four
scenarios [Zac13]:
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(i) Likelihood p(x|θ) and prior p(x) are available.

(ii) Only likelihood p(x|θ) is available.

(iii) First and second order statistics of the θ and x are available.

(iv) The observation can be modeled as x = h(θ) + w.

In the first scenario, a Bayesian minimum MSE (MMSE) estimator can be de-
signed using the conditional mean, µθ|x. However, in many cases it is not possible
to solve the complex integrals that arise in this setup. Hence, a more computa-
tionally amenable setup consisting of maximizing a posterior distribution (MAP)
formulation is considered. This can be written as

θ̂MAP = arg max
θ

p(θ|x). (2.2.7)

The second approach is typically applied in the absense of information about the
prior distribution of the θ. In these circumstances, it is common to treat the param-
eter as a deterministic but unknown value and obtain the estimator by maximizing
the likelihood distribution. That is

θ̂ML = arg max
θ

p(x; θ) (2.2.8)

The third model assumption leads to a linear framework, where the estimate
is a linear function of the observation, that is θ̂ = Hx. The value of H can be
obtained by

H∗ = arg min
H

Cθ̂(H),

θ̂LMMSE = H∗x
(2.2.9)

where, Cθ̂(H) = E[(θ−Hx)(θ−Hx)T]. It can be shown that only first and second
order statistics of θ and x are needed for this estimator rather than the PDFs.
These form a class of estimators called linear MMSE (LMMSE) estimators.

The fourth model assumes no statistical distributions, but only a function, h(·),
which can model the observations as a function of the θ. In these situations the
estimate can be obtained by

θ̂LS = arg min
θ

(ǫ2), (2.2.10)

where ǫ2 = (x−h(θ))T(x−h(θ)). This class of estimators are called a least squares
(LS) estimators. If we modify the ǫ2 as (x−h(θ))TW(x−h(θ)) with a weighted ma-
trix W, then the estimator is called weighted least squares estimator. In Chapter 6,
Chapter 7 and Chapter 8 we employ the LMMSE, ML and LS based estimation
principals discussed in this section.



2.3. Convex Optimization 23

x

f
(x
)

f(x1)

f(x2)

x1 x2

x1

x2

Figure 2.1: A convex function.

2.3 Convex Optimization

A function f : RN → R, is said to be convex, if it satisfies

f(cx1 + (1− c)x2) ≤ cf(x1) + (1− c)f(x2), (2.3.1)

for any x1, x2 ∈ RN and c ∈ [0, 1]. Figure 2.1 shows a convex function, f : R→ R.
The implication of (2.3.1) is that the function value should lie on or below the
straight line (since N = 1 is considered here) joining any two points x1 and x2.

A set, S, is said to be a convex set, if we have convex combination of any two
elements of a set is also contained in the set. That is, if x, y ∈ S, then for c ∈ [0, 1],
we have

cx + (1− c)y ∈ S. (2.3.2)

Convex and non-convex sets are illustrated in Figure 2.2. A convex optimization
problem is an optimization problem defined as follows

minimize
x

f(x)

subject to x ∈ S,
(2.3.3)

where f is a convex function and S is a convex set. The convex problem has a
property that the local minimum is also a global minimum. This enables efficient
methods to solve them. A class of problems within convex problems has a partic-
ular structure wherein the objective function and the constraints are linear, such
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(a) (b)

Figure 2.2: The set of all points inside and on the hexagon shown in (a) forms
a convex set and the points of (b) does not form a convex set as some convex
combination of its elements does not lie within the set.

problems are called linear programs. A typical linear program has a structure

minimize
x

aTx

subject to Ax ≤ b,
(2.3.4)

where, a, b are known vectors and A is a known matrix. The ≤ is used in a loose
sense here to depict that every element of vector Ax is less than the corresponding
element of vector b. The linear programs can be solved efficiently using simplex or
interior-point methods [BV04].

As we will see in Chapter 4, many UWB communication access problems can
be relaxed into a convex optimization problem. In many of these problems, one can
exploit the structure in the problem to arrive at the optimal solution efficiently
(less computational time for a given input size).

2.4 Traveling Salesman Problem

In this section, we state the traveling salesman problem (TSP). Consider a list of
cities with routes defined between them. The TSP attempts to derive the shortest
possible route that will visit all the cities exactly once and return to the origin city.
The solution of this problem is NP-hard (refer to the Section 2.5 about computa-
tional complexity).

The all-to-all broadcast is used in various types of networks for information
dissemination across the network to accomplish various tasks such as localization,
routing, distributed control and computation. We will show in Chapter 4 that these
types of communication can be posed as a traveling salesman problem.

The TSP is known to be NP-hard [RP89,Law76,Lov79], but there are algorithms
that can find exact solutions for small problems, and other algorithms that can find
approximate solutions for larger problems [Joh82,Lap92]. Many techniques employ
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heuristic approaches for finding the approximate solution [Hel00, Ree93, RSL77].
One of the popular heuristics is the Lin-Kernighan heuristic (LKH). There are
implementations available for these methods of solving TSP problems. For example,
we used the implementation of [Hel00] in Chapter 4 to solve the TSP problem.

2.5 Algorithm Complexity

An algorithm is a sequence of steps taken to manipulate the input to achieve a
desired output. The complexity of an algorithm deals with the amount of resources
required and the dependence of these resources on the size of the input. The resource
here could be time, memory, gates, etc. However, for many problems, it is common
to use time as a resource.

For a certain class of problems, algorithms can be designed to solve them in
polynomial-time. For these problems it is common to estimate the complexity in
an asymptotic sense. Typically for these problems the big-O notation is used to
quantify complexity. For example, if the polynomial-time for the algorithm, with
size N is given by 2N2 +3N +5, then the algorithm is said to be of O(N2). There is
a certain class of problems, for which there does not exist (at least not yet known)
algorithms that can solve them in polynomial time. This class of problems are
called non-deterministic polynomial-time (NP-hard) problems. The TSP problem
discussed above is one such problem.

2.6 Sparse Signal Processing

The UWB signals occupy a wide bandwidth and this requires ADCs to operate at
a very high rate. These ADCs are costly, suffer from poor resolution and are power
hungry. Sparsity of the received UWB signal in certain domains, can be exploited to
reduce the number of samples needed to make statistical inference. This naturally
leads to the reduced sampling rate and, therefore, reduced use of ADCs resources.

Definition 2.6.1 (Ix support of x). Support of x is defined as a set consisting of
indices of non-zero elements of x. That is

Ix , {i : xi 6= 0}, (2.6.1)

where, xi, denotes the i-th element of the vector x.

Definition 2.6.2 (l0 norm). The l0 norm of x (‖x‖0), is the number of non-zero
elements in the set x. That is, it is the cardinality of the support set, therefore,

‖x‖0 = |Ix|. (2.6.2)

Definition 2.6.3 (lp norm). The lp norm of x (‖x‖p), with p ≥ 1, is defined as

‖x‖p
p =

N
∑

i=1

|xi|p , (2.6.3)
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Figure 2.3: The intersection of l1 and l2 ball with x = {x1, x2}. The line indicates
the solution set of an equation with 2 variables. Notice that l1 solution (shown in
(a)) has one of the coordinates as 0 compared to l2 solution (shown in (b))

where N is the number of elements in the vector x.

Consider the measurement vector, y ∈ RM , which is observed after linearly
transforming the signal vector, x ∈ RN , as shown below.

y = Ax, (2.6.4)

where, A ∈ RM×N , is the measurement matrix and M < N . A standard compres-
sive sampling problem deals with finding sparse x, given the measurement y and
measurement matrix A. Also, typically, A has i.i.d. entries taken from a normal dis-
tribution. One way to find the sparse solution is to solve the following optimization
problem

arg min
x

‖x‖0

subject to y = Ax.
(2.6.5)

The solution for this is NP-hard. A computationally amenable formulation can be
achieved by modifying the objective function from l0 to l1 as given below.

arg min
x

‖x‖1

subject to ‖y = Ax‖ .
(2.6.6)

The intuition on picking l1 norm here is its ability to promote sparsity as can be
understood by Figure 2.3.

When the measurements y are noisy, then the model becomes

y = Ax + e. (2.6.7)
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Algorithm 2.1: OMP algorithm

Input: y, A, K, ∆, e0 = y, k = 0, I0 = {∅}
Output: Recoverd x (x̂).

1 repeat

2 t = arg max |〈hi, ek〉|, i = 1, · · · , N
3 k = k + 1
4 Ik = Ik ∪ t

5 ek = y−AIk
A

†
Ik

y

6 until k ≤ K

7 return x̂ = A†
IK

y

In this case, one needs to choose the x, which fits the model as well as it should be
sparse. This can be accomplished by reformualting the problem as

arg min
x

1

2
‖y−Ax‖2

2 + λ ‖x‖1 . (2.6.8)

This is a well known problem formulation and is called a basis pursuit denoising
(BPDN) problem. The λ parameter weighs the importance of the model fit and the
sparsity level.

Greedy pursuit algorithms can also be used to solve the problem defined in
(2.6.5). The central idea in these algorithms is to find the underlying support set of
x, by match filtering the columns of A with the residual signal in an iterative way.
The residual signal in each iteration is the error in the least-square fit with y, with
the chosen supports. This algorithm is called orthogonal matching pursuit (OMP).
An OMP algorithm to recover a K-sparse x from y is as given in the Algorithm
2.1.

As shown in Chapter 1, Section 1.3.3, the propagation characteristics of the
UWB signal results in a channel which can be modeled using Saleh-Valenzuela
channel model. This means that the UWB channel has multi-paths arriving as
clusters in the Poisson distributed way and the multipath components (MPCs)
within the cluster follows a Laplacian model. Since the pulses themselves are narrow
in time (impulse-like), the received signal is inherently sparse in time. As we will
see in Chapter 7 and Chapter 8, the UWB signal can be represented in a compact
way by choosing an appropriate basis.





Chapter 3

Hardware Aware IR-UWB

signaling

Ultra wideband (UWB) radio for communication has several challenges. From the
physical layer perspective, a signaling technique should be optimally designed to
work in synergy with the underneath hardware to achieve maximum performance.
In this chapter, we will discuss a variant of pulse position modulation (PPM) for
physical layer signaling, which can achieve raw bitrate in excess of 150 Mbps on a low
complexity in-house developed impulse radio UWB-platform. The signaling system
is optimized to maximize bitrate under practical constraints of low complexity
hardware and regulatory bodies. We propose a detector and derive its theoretical
performance bounds, and compare the performance in simulation in terms of symbol
error rates (SER). Modifications to the signaling, which can increase the range
by 4 times with a slight increase in the computational complexity is proposed.
Detectors for this modification and a comparative study of the performance of the
proposed UWB physical layer signaling schemes in terms of symbol error rates are
also discussed in this chapter.

3.1 Background

There are several radio technologies operating in 0 − 10 GHz band, and several
new ones are emerging as a result RF spectrum is becoming more premium and
more scarce. Communication systems using ultra wideband (UWB) offer a promis-
ing solution which can co-exist with other radio technologies. This coexistence also
saves expensive spectrum licensing fees [BKM+06, NP09]. The Federal Commu-
nications Commission (FCC) adopted license free UWB operation in the United
States of America [FCC02]. This has resulted in 7.5 GHz of spectrum available for
UWB systems. One of the direct consequences of this large bandwidth is the ability
to achieve very high data rates, as given by the Shannon-Hartley theorem. Wide
bandwidth also enables innovative system design such as trading data rate to avoid
costly channel estimation techniques in [HT02], or designing the analog transmit

29
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(a) Radio module (b) Printed circuit board (PCB)

Figure 3.1: Iconic model of the in-house developed impulse radio UWB-platform
of size 6 cm x 4 cm for ranging and communication using separate RX and TX
antennas from Greenwavescientific. (details are available at [Gwa16].)

and receive structure with non-idealities in [Orn20]. In general, there is a wide
scope of data rate, range and other parameters that can be traded off based on the
application [Lue12,ZOS+09,Mol05].

There are several ways in which a signal can be spread to large bandwidths.
The most popular methods include frequency hopping (FH) [YH02], orthogonal
frequency-division multiplexing (OFDM) [BBD+10], direct-sequence spread spec-
trum (DS-SS) [FKO+] and time-hopping impulse radio (TH-IR) [WS00]. UWB
based on OFDM and TH-IR have gone in to IEEE 802.15.3a and IEEE 802.15.4a
standards. TH-IR schemes are most popular as they provide better performance
and complexity trade-offs [ZOS+09].

The use of impulse signaling was proposed by Win and Scholtz in the 1990s.
Their work published in [Sch93,WS98,WS00] contributed significantly toward the
adaptation of TH-IR for UWB. High bandwidth enables the UWB transceiver to
generate narrow impulse signals, this fine time resolution can yield accurate position
localization and ranging. This has enabled the application of UWB for high precision
ranging and localization. Figure 3.1 shows a graphical depiction of an in-house
developed IR-UWB platform for ranging and communication. It uses a low cost
pulse generator to generate sub-nano second pulses using step recovery diode (SRD),
as described in [ADGC11]. The characterization and modeling of the UWB platform
for a distance measurement system can be found in [ADM+09] [SDAH11]. A detailed
architectural description and experimental ranging results from a prototype of the
platform have been published in [ADH13]. The power and range of the transceiver
can be easily traded by controlling the amplitude, duty cycle and number of pulses
per bit of transmission.



3.1. Background 31

There are several commercial companies which develop IR-UWB products, in-
cluding [Com16c, Com16d, Com16e, Com16a, Com16b]. Companies like Decawave
and Bespoon develop 802.15.4a standard specific IR-UWB products [DW1,Com16a].
The physical layer signals of these UWB radios are defined by the standard. There
are some companies like Timedomain and Ubisense which develop non-standard or
custom made communication and localization solutions [Tdm16, Ubi16]. In these
UWB radios, the physical layer signaling does not adhere to any standards. The
work proposed in this chapter considers a methodology to maximize the commu-
nication rate through custom physical layer signaling, subject to hardware and
regulatory constraints.

The main motivation for this chapter is from the requirement that many UWB
applications need to perform localization and communication using the same radio
module [RHFME10, Lue12]. The UWB radios of Timedomain and Ubisense both
have localization and communication capabilities; however, these radios have min-
imal communication capabilities of few Kbps and physical layer signaling in them
is not made public. This chapter is also motivated by the fact that although ex-
tensive research can be found on the design of hardware platforms and algorithms
for localization and communication strategies [ADH13, Lue12, GTG+05], but how
to optimize the physical layer signaling for communication in view of constraints
from cost effective hardware and regulatory bodies is not a well studied problem.
The achievable bitrate for the discussed methods in this chapter depends on the
hardware parameters of the UWB platform. The proposed methods suggest that
the in-house developed UWB radio shown in Figure 3.1 can achieve bitrates up
to 150 Mbps. The in-house UWB platform uses pulse round-trip time (RTT) for
localization. It has a range of about 10 m with an accuracy of 30 cm in practical
scenarios. It has a digital processing section based on a field-programmable gate
array (FPGA), which interfaces with the analog UWB sections to generate required
analog pulsed waveforms for transceiver operation. The modulator and demodulator
algorithms proposed in this chapter can be programmed in FPGA, for processing
UWB communication signals. This chapter proposes two signaling schemes with one
requiring higher complexity in modulation and demodulation, however can increase
the range by nearly 4 times without compromising on the bitrate. This is believed
to have an interest in its own right, as it corresponds to (or outperforms) today’s
state of the art. Although, the discussion in this chapter considers the in-house de-
veloped UWB radio (Figure 3.1) for demonstrating the techniques, the results are
of general importance which can enable engineers to follow similar methodology to
exploit the hardware and spectrum to achieve a higher possible range and bitrate.

In this context, through this chapter we propose a method for communication us-
ing low cost and low complexity hardware architecture which can perform ranging,
localization and communication. The main topics of this chapter are summarized
below:

• A method to design a custom physical layer signaling to maximize the datarate
by optimal choice of modulation parameters, given the constraints from hard-
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ware and regulatory bodies is illustrated. An algorithm for such a modulator
with no memory between symbols called a no-memory modulator is proposed.

• A spectrally more efficient modulator, which can improve the range of the
communication by introducing the memory between symbols called with-
memory modulator is proposed. This has a marginal increase in the com-
plexity of modulator and demodulator algorithms with an increase in range
by 4 times.

• A no-memory modulator is analyzed by deriving an expression for the symbol
error rate (SER) performance. A detector algorithm for the no-memory mod-
ulator is proposed, and its SER performance is verified through simulation.

• The detector algorithm for the with-memory modulator is proposed and de-
tector performance of no-memory and with-memory signaling are compared
in simulation.

This chapter is organized as follows: In Section 3.2, we discuss the system model
and pulse shapes used in the impulse radio. Section 3.3 discusses UWB constraints.
Section 3.4 is on low complexity UWB hardware platform for localization and com-
munication. Section 3.5 details the design of physical layer signal construction and
modulator algorithms. Section 3.6 describes detectors and their performance in
terms of symbol error rates. Finally, Section 3.7 details the conclusions from the
design and demonstrated results.

3.2 Pulse Construction and System Model

A wide range of pulse shapes have been explored for UWB communication from
rectangular to Gaussian [GMHK02]. The Gaussian pulses and their derivatives,
usually called monopulses, are effective due to the ease of construction and good
resolution in both time and frequency. In many cost effective hardware designs,
these shapes are generated without any dedicated circuits. A simple transistor or
diode, which is turned “on” and “off” to generate a narrow rectangular pulse will
form an approximate Gaussian shape due to the imperfections in micro-electronic
design [MG07].

The time domain Gaussian pulse with mean µ and variance σ2 can be written
as

1

2πσ2
e

−(t−µ)2

2σ2 . (3.2.1)

A more useful form of this equation for system design is defined in [MG07]. This is
a scaled version of (3.2.1) with zero mean and variance τ2/4π. This is given by

s(t) = −e−2π( t
τ

)2

. (3.2.2)
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In a typical UWB device, when the signal passes through the UWB antenna, it
will have a differentiation effect on the signal. A similar effect is observed when the
receiver receives the pulses. The first and second order Gaussian pulses are given
by

s′(t) =
ds(t)

dt
=

4πt

τ2
e

−2πt2

τ2 , (3.2.3)

s′′(t) =
d2s(t)

dt2
= −4πe

−2πt2

τ2

(−τ2 + 4πt2

τ4

)

. (3.2.4)

For analytical and simulation analysis, we have used the power normalized second
order Gaussian pulse as given below:

p2(t) =
(s′′(t))2

∫∞
−∞(s′′(t))2dt

. (3.2.5)

Several modulation techniques are proposed in the literature using narrow pulses
[WLJ+09a, WS00]. Primarily they are variants of PPM, binary phase shift keying
(BPSK) or on-off keying (OOK). Since our objective is to employ low complexity
hardware structure to perform synchronized ranging and communication, a variant
of PPM based signaling for communication is used. This can reuse the hardware
structure (having RTT calculation logic for ranging) for detection and demodulation
of physical layer signal. This is further illustrated in Section 3.4.

The system model comprises of three parts; transmitter, channel and receiver,
as shown in Figure 3.2. The transmitter generates the PPM variant signal. This is
a modified pulse specified in [WS00] with 1 symbol per pulse and no time hopping.
The transmitted output signal is given by

Wtr(t) =
√

Ep

∑

n

p(t− nTs − dn∆− γn), (3.2.6)

where Ts is the symbol period, dn ∈ [0, . . . , L − 1], is the nth symbol, p(t) is the
normalized pulse such that

∫∞
−∞ p2(t)dt = 1, Ep is the energy of the pulse, γn is

a parameter coming from the constraints of the typical UWB hardware which will
be explained later, ∆ is the modulation index and log2 M is the modulation order.
Though in our model each symbol is defined by one pulse, it can be easily extended
to multiple pulses for each symbol so that communication rate and detectability
can be traded.

In UWB applications which use ranging for localization, the detectors rely on
the first arriving path or line of sight (LOS). This is in contrast to the traditional
channel measurement and modeling. However, for extremely short distance high
speed communication with highly directional antennas, we can adopt a determinis-
tic single path channel [Mol05]. These short distance high speed UWB applications
include transferjet and wireless USB (wUSB). The message information is embed-
ded in the time axis of PPM signals. Due to the high time resolution of UWB
signals, the performance of the system is sensitive to the timing jitter (random
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Incoming

Pulse GeneratorModulator Detector De-Modulator

Symbols
Decoded
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Figure 3.2: System model consisting of transmitter, channel and receiver.

shift on time axis) and synchronization [GA03, GMPK07]. The effect of channel,
imperfect timing/synchronization and receiver front end thermal noise will cause
errors while demodulating the PPM signals. We combine the effect of channel,
imperfect timing/synchronization, together with receiver front end to introduce a
random jitter along with noise n(t) as shown in (3.2.7). For analytical and simu-
lation purposes, we assume Gaussian distribution with zero mean and variance σ2

j

for jitter [WLW09]. Thus, the received signal is given by

Wrx(t) =
√

Er

∑

n

p(t− nTs − dn∆− γn − j(n)) + n(t), (3.2.7)

where Er is the energy of the received pulse, j(n) ∼ N (0, σ2
j ) is the random jitter

in the received signal and n(t) is the receiver noise on the received signal.
The third part of the system model is the detector/demodulator, which demod-

ulates the signal represented in (3.2.7). In the signal model, a single user UWB
system with no multiple access interference is assumed. However, it is straight for-
ward to extend the techniques proposed in this chapter for multi-user system.

In the subsequent sections, we will show how to optimally design the modulator
and detector to the constraints of hardware and regulatory bodies. We will also
evaluate the theoretical performance of the demodulator for the chosen modulator.
In the next section, we will discuss some of the challenges in the transmission and
detection of UWB pulses from the regulatory bodies and hardware perspective.

3.3 UWB Constraints

The FCC regulations are among the most popular regulations for UWB, and most
of the regulations in other countries are derived from these regulations. The FCC
regulations, [FCC02], define a UWB system as any intentional radiator having an
absolute 10 dB bandwidth greater than 500 MHz, or a relative bandwidth greater
than 20%. Since UWB systems have to co-exist with other narrowband technolo-
gies, the compliance requirements from regulatory bodies for UWB systems are very
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stringent to ensure that they do not interfere with the existing narrowband systems.
This makes the design of UWB for communication challenging. These requirements
are generally specified through constraints on maximal average power Pav, and
maximal peak power Ppk. The average power, Pav is measured using a spectrum
analyzer (SA) with resolution bandwidth (RBW) Bav = 1 MHz. The maximal av-
erage power constraints are specified through spectral masks. Figure 3.3 shows the
FCC mandated spectral mask for indoor UWB emissions. Ppk should not exceed
0 dBm when measured using an SA with RBW set to 50 MHz.

The pulse repetition rate (PRF) (that is, 1/Ts in (3.2.6)) of the IR-UWB signal
plays a significant role on how the UWB device impacts other narrow band receivers
in its range; these receivers are called victim receivers [FCC02]. If the PRF is larger
than the bandwidth of the victim receiver, then the emission may appear as noise
like to the victim receiver. This effect is proportional to the average power of the
UWB signal within the receiver’s bandwidth. If pulse rate is smaller than the victim
receivers bandwidth, then UWB signal would appear like impulse noise to the victim
receiver and the effect is proportional to the peak power of the UWB signal. Thus,
at low PRF the output levels are constrained by the limit on the peak emission
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levels, and at high PRF by the limit on the average emission levels [FCC02].
In [TAW05], the authors specify the existence of two distinct regimes where

only one of the two power constraints are active for the IR-UWB signal. For PRF
less than 1 MHz, peak constraints are active; for PRF greater than 1 MHz, average
power constraints are active. The signaling proposed in this chapter is optimized
for high rate data communication and hence, high PRF is assumed as ≫ 1 MHz
yielding only the average power constraint relevant.

3.4 UWB Hardware

Larger bandwidth of ultra wideband signals also enables suboptimal receiver de-
signs, which are more efficient from cost and complexity perspective. Some of
these low cost designs can be found at [ADH13, KNX+12]. We breifly discussed
this in Chapter 1. In this chapter, we propose the hardware architecture platform
of [ADH13] for communication. The modulator algorithm on FPGA will generate
control signals required to trigger the step recovery diode to generate UWB pulses.
On the receive side, the transceiver has an energy detector. Whenever the signal
energy crosses a certain threshold, it sends a “Start/Stop” signal to time-to-digital
converter (TDC). TDC measures the interval between the pulses, which carries in-
formation in the PPM variant physical layer signaling. This information is further
processed by the demodulator algorithm on FPGA to demodulate the symbol. Esti-
mating the RTT on unmodulated signal can be used to localize objects as discussed
in [ADH13]. Thus, this low complexity transceiver can be used for both localization
and communication [YDAH13].

In general, in a low complexity UWB transmitter, it is not possible to transmit
arbitrary close pulses because of the recovery time required for the micro electronic
devices used in them. This creates a constraint on the signaling that the pulses
need to be separated by at least a minimum distance equal to the recovery time.
This is the reason for having γn in (3.2.6). Also, at the detector it is not possible
to resolve between arbitrarily close pulses. Thus the modulation index ∆ in (3.2.6)
cannot be arbitrarily small.

3.5 Modulator

A periodic train of impulses will result in a spectral comb formation in the power
spectral density (PSD) function. This results in inefficient usage of power and re-
duces the range of UWB nodes as the spectral peaks can cross the power levels
specified in Figure 3.3. One way to overcome the spectral comb formation is to ran-
domize the pulse interval. As an illustrative example, we can choose the probability
density function (PDF) of pulse repetition period TPRT as a uniform distribution
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Figure 3.4: Train of pulses with randomized pulse interval and its PSD. Ts = 18 ns
is employed and 1000 pulses are considered for computing PSD. Dashed line in (b)
indicates −41.3 dBm/MHz.

given by

p(TPRT) =

{

1
2Ts−T If T ≤ TPRT ≤ 2Ts,

0 Otherwise.
(3.5.1)

Here T , which is ≪ Ts is the pulse width of the pulses. TPRT is varied from T
instead of 0 to avoid collision between pulses. A train of these pulses is shown
in Figure 3.4a and its power spectrum is shown in Figure 3.4b. For this kind of
signaling on average, the pulse rate will be close to 1/Ts and the power spectrum
will be smooth, as shown in Figure 3.4b (Ts = 18 ns, T = 1 ns).

As discussed in Section 3.4, it is not possible from the hardware perspective
to generate arbitrarily close pulses. Also, from the detector perspective it is not
possible to resolve the timing between arbitrarily close pulses. For example, in the
hardware architecture proposed in [ADH13], the step recovery diode used in the
transmitter has a fixed recovery time preventing the generation of close pulses; and
TDC used in the detector has a fixed time resolution preventing the detection of
close pulses. One way to design the signaling is to have γn in (3.2.6) equal to the
minimum separation needed between the pulses Tms, and modulation index ∆ in
(3.2.6) equal to the detectors sensitivity (TDC time resolution). Thus, the resulting
transmitted signal assuming 1 symbol per pulse is given by

Wtr(t) =
∑

n

p(t− nTs − dn∆− Tms). (3.5.2)
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Figure 3.5: Signal employed to have γn in (3.2.6) equal to the minimum separa-
tion needed between the pulses Tms and modulation index ∆ in (3.2.6) is equal to
the detectors sensitivity. Here M = 8 is assumed. No memory is employed in the
signaling between symbols, hence it is called no-memory signaling.

Figure 3.5 shows the illustration of this signaling. Each symbol has a fixed gap of
Tms in the beginning between [0, Tms] and the modulated RF pulse in the interval
M∆ between (Tms, Ts]. The symbol time Ts and bitrate Rb is given by

Ts = Tms + ∆M, (3.5.3)

and

Rb =
log2 M

Ts
. (3.5.4)

For any UWB hardware, the Tms and ∆ are fixed. They come from the two
UWB hardware constraints discussed above. The modulation parameter M can be
picked to maximize the bitrate. To do this, (3.5.4) is evaluated and the optimal M
that maximizes the bitrate, Rb, is chosen. The variation of Rb versus M for various
ratio’s of Tms/∆ (indicating different transceiver hardware) is shown in Figure 3.6a.
The bitrate Rb for the optimal choice of M versus Tms/∆ is shown in Figure 3.6b.
The bitrate peak to around 160 Mbps at M = 8 when the typical parameter values
of Tms = 10 ns and ∆ = 1 ns for the in-house UWB-platform is considered.

The modulator algorithm which modulates the input symbol vector, d, is shown
in Algorithm 3.1. The algorithm is initialized with X and Y denoting the TDC
resolution and diode recovery time respectively [ZSZ10,ADH13]. The method gen-
erateRFPulse in line 6 of the algorithm is used to generate the train of RF pulses
as shown in (3.5.2). In the in-house prototype UWB platform, this is accomplished
by generating a trigger control signal from FPGA to the step recovery diode in the
transmitter [ADH13]. Since no memory is employed between symbols in this sig-
naling, it is called no-memory signaling. This modulator was introduced and briefly
described in [YDAH13].

A variant of the M-PPM signal shown in (3.5.2) with Tms = 10 ns and modu-
lation index ∆ = 1 ns is generated. 5 pulses of this signal are shown in Figure 3.7a.
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Figure 3.7: No-memory signaling and its PSD with M = 8, ∆ = 1 ns, and
Tms/∆ = 10. For computing PSD, 1000 pulses are considered. The dashed ver-
tical line in (a) indicates the symbol boundary, and the dashed horizontal line in
(b) indicates −41.3 dBm/MHz, average power constraint defined by the FCC.
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Algorithm 3.1: No-memory Signaling for UWB Modulator

1 Algorithm NoMemoryModulator(d)

2 ∆← X ⊲ Initialize to TDC Resolution

3 Tms ← Y ⊲ Initialize to diode recovery time

4 n← 1
5 while n ≤Length(d) do
6 generateRFpulse(n, dn, Tms, ∆)

⊲ Generate pulse p(t− nTs − dn∆− Tms)
7 n← n + 1

8 return

Each symbol duration, Ts = 18 ns, resulting in PRF ≫ 1 MHz causing only aver-
age power constraint being active. Each symbol constitutes a fixed constant gap of
Tms = 10 ns, and 3 bits of information are modulated in the remaining M∆ = 8 ns
(since ∆ = 1 ns, M = 8). We cannot achieve as smooth PSD as in Figure 3.4b,
because now pulse train has deterministic gaps between pulses (Tms) and the pulse
positions are quantized (∆) for it to work with the chosen UWB hardware; However,
the data can be assumed to be random because of interleaving and randomization
in the symbol rate chain of the physical layer. This leads to a relatively smooth
PSD. The PSD of this signaling scheme is shown in Figure 3.7b.

The signaling employed above has a fixed gap, Tms in every symbol, as shown
in (3.5.2). This ensures that minimum separation between pulses is greater than
or equal to the recovery time of the diode. If the modulator structure is altered
to remember the position of the transmitted pulse for the previous symbol, then
the minimum gap needed for the current symbol can be reduced. We define this
reduced gap as T

′

ms and it is illustrated in Figure 3.8. In Figure 3.8, gap T
′

ms is
reduced by 3∆ by remembering the position of the pulse in the previous symbol.
The total separation between the pulses is Tms = T

′

ms +3∆. Since the total duration
of the symbol is constant, the reduction in the gap will result in an increased region
for modulated RF pulses. Therefore, this increases the time interval bin widths
(modulation index) of the PPM scheme, which in turn increases the demodulator’s
performance. Figure 3.8 shows the increase in bin widths for the second symbol
(dn = 0) as gap, T

′

ms reduced by 3∆. Since in this method the transmitter needs to
remember the past transmitted symbol to decide on T

′

ms for the current symbol, we
call this signaling as with-memory signaling. The algorithm for implementing this
modulator is shown in Algorithm 3.2. It is initialized with X and Y denoting the
TDC resolution, ∆ and diode recovery time, Tms. The algorithm takes a vector of
symbols, d, and calls generateRFPulse with different bin widths ∆n and gap T

′

ms

to generate the train of RF pulses defined in (3.5.2).
The two primary benefits of this signaling are summarized below.

1. There is better detectability due to an increase in the bin widths (modulation
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Figure 3.8: With-memory signaling for UWB modulator showing the reduction in
the gap T

′

ms in the current symbol by remembering the position of the pulse in the
previous symbol. M = 8 is assumed.

Algorithm 3.2: With-memory Signaling for UWB Modulator

1 Algorithm WithMemoryModulator(d)

2 ∆1 = X ⊲ Initialize to TDC resolution

3 T
′

ms = Tms = Y ⊲ Initialize to diode recovery time

4 n← 2

5 generateRFpulse(1, d1, T
′

ms, ∆)

⊲ Generate pulse p(t− Ts − d1∆1 − T
′

ms
).

6 while n ≤Length(d) do

7 T
′

ms ← Tms − ((M − 1)− dn−1)∆n−1

8 if T
′

ms < 0 then

9 T
′

ms ← 0

10 ∆n ← Ts−T
′

ms
M

11 generateRFpulse (n, dn, T
′

ms, ∆n)

⊲ Generate pulse p(t− nTs − dn∆n − T
′

ms
).

12 n← n + 1

13 return

index) as explained before. Later in this chapter, we compare the performance
(in terms of SER) of this signaling with no-memory signaling.

2. The with-memory signaling leads to a better randomization of the pulses. In
contrast to no-memory signaling, there are no deterministic gaps and pulses
spread to all regions of the symbol interval.

The impact of the second point above is further smoothing of the PSD. Figure 3.9a
shows 5 symbols in the time domain, and Figure 3.9b shows the PSD of with-
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memory signaling using 1000 randomly generated bits. The order M is chosen as
8, recovery time Tms = 10 ns and modulation index ∆ = 1 ns, as discussed above.

Comparing Figure 3.9b and Figure 3.7b indicates significant smoothening of the
PSD by using with-memory signaling. This will enable the transmitter to gener-
ate pulses at a higher amplitude without violating the mask specification of the
regulatory bodies, thereby increasing the range of communication. Furthermore,
Figure 3.9a and Figure 3.7a indicates that the pulse amplitude can be increased
by approximately 4 times compared to the no-memory signaling, without violating
the regulatory bodies specifications, with the hardware having similar constraints.
For the deterministic single-path propagation model, the path loss, PL, is given by

PL =
(4πdf)2

c
, (3.5.5)

where f is the frequency of operation, d is the range, and c is the speed of light
[Sko08]. The received power, Prx, for transmitted power, Ptx, is given by

Prx =
Ptx

PL
. (3.5.6)

An amplitude increase of 4 times results in 16 times (12 dB) increase in power.
Since path loss is proportional to the square of the distance as given by (3.5.5), for
any given received power and frequency of operation, if d1 and d2 are ranges for
transmitters employing no-memory and with-memory signaling, then

Ptx

d2
1

=
16Ptx

d2
2

, (3.5.7)

which leads to
d2 = 4d1. (3.5.8)

Equation (3.5.8) means that the range in the with-memory signaling can be
increased by 4 times compared to the no-memory signaling. This increased range
comes with a cost of increased complexity in the modulator, as shown in Algorithm
3.2.

In the next section, we will evaluate the performance of the demodulator for the
proposed signaling scheme.

3.6 Detector Performance

In this section, we propose a detector for the modulators proposed before and
evaluate its performance. For analytical discussion, we assume that the symbol
timing acquisition procedure has been performed prior to data transmission. For
the no-memory signaling modulator with M = 8, a hard decision demodulator is
designed. The demodulator uses the quantized 8 time interval bins as defined in
Table 3.1. This is also illustrated in Figure 3.10.
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Figure 3.9: With-memory signaling and its PSD with M = 8, ∆ = 1 ns and Tms/∆ =
10. For computing PSD, 1000 pulses are considered. The dashed vertical line in (a)
indicates the symbol boundary, and the dashed horizontal line in (b) indicates
−41.3 dBm/MHz, average power constraint defined by the FCC.
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Figure 3.10: Quantized time bins used by the hard decision detector. The corner
bins are wider than the middle bins.

Quantized time Intervals for hard decision demodulation

∇0

[(

Tms
2

)

− (Tms + ∆)
]

∇i [(i∆ - ((i + 1)∆) ] for i ∈ [1, .., 6]

∇7

[

(Tms + 7∆)−
(

Ts + Tms
2

)]

Table 3.1: Time Intervals used for hard decision demodulation.
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Algorithm 3.3: Hard decision demodulation for no-memory signaling

1 Algorithm HardDecision(r)

2 for j ← 1 to Length(r) do
3 ∇←PeakPosition(r[j])

⊲ Find the position of the peak for symbol j
4 if ∇ ∈ ∇i, i ∈ [0, .., 7] then

⊲ ∇is are defined in Table 3.1

5 ds[j]← i

6 return

The intervals for two corner bins are larger because the detector can exploit
the dead time Tms left for the diode recovery. The algorithm for the hard decision
demodulation is shown in Algorithm 3.3. The algorithm demodulates the received
vector, r, into a vector, ds. The function “PeakPosition” in line 3 of the algorithm
returns the peak position of the received pulse for symbol-j. The function “Length”,
returns the number of symbols and r[j] denotes the address of the j-th symbol.

The performance bounds for the no-memory signaling can be derived in terms
of SER. The received signal is as defined in (3.2.7). For no-memory signaling trans-
mitter, the received signal at the receiver will have γn = Tms and is given by

Wrx(t) =
√

Er

∑

n

p(t− nTs − dn∆− Tms − j(n)) + n(t). (3.6.1)

As shown in the Table 3.1, from the detector perspective there are three different
types of symbols. The first symbol 0 and the last symbol 7 have a much larger
detection probability, since their decision intervals (∇0,∇7) are large. The middle
symbols [1 − 6] have the same and smaller decision intervals ∇i = ∆, i ∈ [1, 6]. In
general, if the modulation order is M , and all symbols are equally likely, then the
corner symbols will occur each with a probability of 1/M and middle symbols with
(M − 2)/M . If Pe1 is the probability of a symbol error for the middle symbol, and
Pe2 and Pe3 are the probabilities of symbol errors for the corner symbols, then the
probability of symbol error Pe is the average of the three types of errors; Pe1, Pe2,
and Pe3 (refer to Table 3.1 and Figure 3.10). Therefore,

Pe =

(

M − 2

M

)

Pe1 +

(

1

M

)

Pe2 +

(

1

M

)

Pe3,

=

(

M − 2

M

)

Pe1 +

(

2

M

)

Pe2.

(3.6.2)

Where, we assumed Pe2 = Pe3 in the second equality, Further, substituting for Pe1
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Figure 3.11: Comparison of theoretical and simulation performance in terms of SER
for hard decision detection based demodulator for the no-memory signaling.

and Pe2 in (3.6.2) we get,

Pe = 2

(

M − 2

M

)

Pr

(

x >
∆

2

)

+
2

M

(

Pr

(

x >
∆

2

)

+ Pr

(

x >
∆ + Tms

2

))

= 2

(

M − 1

M

)

Pr

(

x >
∆

2

)

+
2

M
Pr

(

x >
∆ + Tms

2

)

.

(3.6.3)

When the signal in (3.6.1) is passed through a peak detector, the combined effect
of the jitter j(n) and noise n(t) on the peak detector will cause an error in the
peak position. This error in the peak position w(n) can be assumed to be Gaussian
distributed with mean 0 and variance σ2. Therefore we get

Pr

(

x >
∆

2

)

=
1√

2πσ2

∫ ∞

∆
2

exp

(−x2

2σ2

)

dx

= Q

(

β

2

)

,

(3.6.4)
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where Q(·) denotes the tail probability of the standard normal distribution. The
parameter β is the ratio of bin width ∆ to standard deviation σ of the random
errors in the peak position. Similarly,

Pr

(

x >
∆ + Tms

2

)

=
1√

2πσ2

∫ ∞

∆+Tms
2

exp

(−x2

2σ2

)

dx

= Q

(

∆ + Tms

2σ

)

= Q

(

(1 + α)β

2

)

.

(3.6.5)

Here in the third equality, transceiver specific ratio (Tms/∆) = α is assumed. Sub-
stituting (3.6.4) and (3.6.5) in (3.6.3), the symbol error probability Pe is given by

Pe = 2

{(

M − 1

M

)

Q

(

β

2

)

+
1

M
Q

(

(1 + α)β

2

)}

, (3.6.6)

where β = ∆/σ and α = Tms/∆.
The performance of the proposed detector is evaluated in simulations with

M = 8, ∆ = 1 ns and Tms = 10 ns (α = 10). The simulation consisted of of
200000 randomly generated symbols. The SER for various β values are shown in
Figure 3.11. A strong correlation for Pe between theory and simulation is observed.

Algorithm 3.4: Hard decision demodulation for with-memory signaling

1 Algorithm HardDecisionDemod(r)

⊲ Demodulate the 1st symbol

2 ∆← Ts−Tms
M

3 ∇ =PeakPosition(r[1])
4 if ∇ ∈ ∇i i ∈ 0, ..7 then
5 ds[1]← i

⊲ ∇is are defined in Table 3.1

6 for j = 2→ Length(r) do

7 T
′

ms = Tms − ((M − 1)− ds[j − 1])∆

8 ∆← Ts−T
′

ms
M

9 ∇ =PeakPosition(r[j])
10 if ∇ ∈ ∇i i ∈ 0, ..7 then

⊲ ∇is are defined in Table 3.1

⊲ New ∆ computed above is used

11 ds[j]← i

12 return
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Figure 3.12: Comparison of performance of no-memory and with-memory signaling
in terms of SER.

Earlier, we proposed a modified signaling with memory in the modulator (with-
memory signaling), which claimed to have two benefits:

1. A better detectability due to an increase in the bin widths (modulation index),
as explained before.

2. Better randomization of the pulses. Unlike in the no-memory signaling, there
are no deterministic gaps and pulses are spread to all regions of the symbol
interval.

The impact of the second point is further smoothing of the PSD, which is demon-
strated earlier with the PSD plots. To quantify the performance improvement due
to the first point, detector performance of with-memory signaling and no-memory
signaling needs to be compared. We implemented a hard decision detection algo-
rithm for the with-memory signaling. This algorithm is described in Algorithm 3.4.
The algorithm demodulates the received vector, r, into a vector ds. Parameters
Tms and Ts in the algorithm should be the same as those used in the with-memory
modulator algorithm defined in Algorithm 3.2. The PeakPosition in line 4 of the
algorithm returns the peak position of the received pulse. This algorithm is simi-
lar to the no-memory demodulator defined in Algorithm 3.3, except that the bin
width ∆i changes between symbols, and it depends on the previous bin width and
previously decoded symbol.
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It is not straightforward to obtain a closed-form analytical expression for the
performance of the with-memory signaling. In the with-memory signaling, on av-
erage T

′

ms < Tms. If we assume that all the symbols are equally likely, then the
average symbol value (∈ [0, M −1]) for the previous symbol is (M −1)/2, therefore
on average T

′

ms is given by

T
′

ms = Tms −
(M − 1)

2
∆. (3.6.7)

Therefore, average bin width for with-memory signaling is given by

∆
′

=
Ts − T

′

ms

M
(3.6.8)

=
Tms − T

′

ms + M∆

M
, (3.6.9)

where in the second equality follows after substituting for Ts from (3.5.3). Further
applying (3.6.7) to (3.6.9) we get

∆
′

=

(

3M − 1

2M

)

∆. (3.6.10)

If we define β
′

as the ratio of ∆
′

/σ then we have

β
′

=

(

3M − 1

2M

)

β. (3.6.11)

Substituting (3.6.11) in (3.6.6) we get the symbol error probability for the with-
memory signaling and is given by

Pe = 2

{(

M − 1

M

)

Q

(

(3M − 1)β

4M

)

+
1

M
Q

(

(1 + α)(3M − 1)β

4M

)}

. (3.6.12)

From (3.6.10), for M = 8 we get an average bin width for the ∆
′

= 1.43∆, This
increase in the bin width will result in better detectability of symbols at receiver. In
simulation it was observed that the bin width increases by ∆

′

= 1.32∆. This reduc-
tion in the bin width is due to line 9 - 12 in the modulator Algorithm 3.2, where in
order to ensure one pulse per symbol period, T

′

ms is forced to zero resulting in the
reduction of bin width for the transmitted symbol. The performance of the detector
for with-memory signaling is evaluated in simulation with 200000 randomly gener-
ated samples, and the results are compared with no-memory signaling. Figure 3.12
compares the performance of the hard decision detectors for the no-memory and
with-memory signaling schemes. A gain of approximately 1 dB can be achieved in
terms of SNR at SER of 10−2 by using the with-memory signaling.

The presented SER performance for the proposed signaling schemes are valid
for the transceivers which are in line of sight (LOS) with short distance between
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them and having highly directional antennas as discussed in Section 3.2. For these
systems we can assume a simple AWGN channel model. However, for systems having
fading channels with multi-path, channel equalization and time of arrival (TOA)
estimation need to be performed prior to demodulation. The SER performance of
the proposed signaling schemes in such systems depends on the performance of the
channel equalization and TOA estimation algorithms.

3.7 Conclusion

In this chapter, we proposed a custom signaling which is a variant of PPM signal-
ing for IR-UWB communication. We also proposed an alternative signaling called
with-memory signaling, which requires memory in the modulator and demodulator
however can further smoothen PSD compared to no-memory signaling. The result
of this is illustrated in Figure 3.9b. We showed that range can be increased by four
times compared to no-memory signaling, without violating the regulatory body con-
straints. This gain comes with a cost of increased complexity in the modulator and
demodulator, as discussed in the modulator and demodulator Algorithms 3.2 and
3.4 respectively. We also derived the theoretical closed form expression for a hard
decision demodulator with no-memory signaling. We compared the performance of
the simulations with the derived theoretical result; This is illustrated in Figure 3.11.
We implemented a detector for the with-memory signaling proposed in this chapter.
The detector performance of with-memory signaling is compared with the detector
performance for no-memory signaling. We showed that with-memory signaling can
improve the detector performance by approximately 1 dB at 10−2 SER. Results are
illustrated in the Figure 3.12.

The performance of the proposed signaling methods of this chapter are demon-
strated in simulations in order to assess the performance gains without many plat-
form dependencies. The proposed schemes are valid for any low cost UWB hardware
platform employing a step recovery diode at the transmitter and having a need
for minimum time resolution between pulses at the detector for detection. The
transceiver in Figure 3.1 will be an integral part of our next generation infrastruc-
ture free indoor position system [NZSH13]. The radio here should be used not only
for ranging but also for the wireless communication and thus fulfill a need for the
proposed method. Today, we can use commercial UWB ranging like TimeDomain
for this purpose, however these systems do not have high bitrate communication
capabilities. The results of the proposed signaling methods indicate the possibility
of achieving a higher bitrate in excess of 150 Mbps with low probability of error
in detection as suggested by the performance curves using the parameters from
our transceiver hardware. With these findings, one can further develop the work to
implement the proposed algorithms in to our transceiver system and evaluate the
performance of in-house transceiver hardware discussed in Chapter 1. The proposed
algorithms and methods are explained in the context of in-house UWB hardware;
however, the results are of general importance which could enable engineers to ap-
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ply similar methods and algorithms towards the design of UWB communication
system.



Chapter 4

Location Aided UWB

Communication

The multiple access scheduling decides how the channel is shared among the nodes
in the network. Typical scheduling algorithms aims at increasing the channel uti-
lization and thereby throughput of the network. This chapter describes several
algorithms for generating an optimal schedule in terms of channel utilization for
multiple access by utilizing range information in a fully connected network. We also
provide detailed analysis of the proposed algorithms performance in terms of their
complexity, convergence, and effect of non-idealities in the network. The perfor-
mance of the proposed schemes are compared with non-aided methods to quantify
the benefits of exploiting the range information in the communication. The pro-
posed methods have several favorable properties for the scalable systems. We show
that the proposed techniques yields better channel utilization and throughput as
the number of nodes in the network increases. The discussed methods in this chap-
ter indicate that the throughput can be increased on average by 3− 10 times for
typical network configurations.

4.1 Background

The recent advances in sensor technology have resulted in development of low-
cost, low-power sensors, which are capable of sensing, data processing, and com-
munication. Many sensor networks have a large number of sensor nodes, which
are densely deployed over a wide geographical region to track a certain physical
phenomenon [HHKK04,RLK+09]. These sensors could have a fixed topology, as in
the case of smart sensors used in structural health monitoring [NJ07], or have a
dynamic topology, as in the case of sensors mounted on autonomous robots (see
applications discussed in [AR98,MGF+05,KMPK13]).

In sensor networks, there are many situations where every node needs to trans-
mit a message to every other node at regular intervals. This type of communication
is typically required for information dissemination across the network to accomplish

51
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various tasks such as localization, routing, distributed control and computation. For
example, in [NZSH13, RRS+11] firefighter agents share information at regular in-
tervals through point to multi-point communication, where every agent broadcasts
sensor data, like position, temperature, visibility, etc., to all other agents. This pro-
vides every firefighter with relevant information about other firefighters, thereby
increasing the efficiency of operation. This is illustrated in Figure 4.1.

This type of communication can also be found in the cooperating swarm of mi-
cro unmanned aerial vehicles (UAVs). These are low payload carrying, scaled down
quadrotor platforms with relevant sensors mounted on them [KMPK13]. Constant
updates (communication) between sensors are essential in many UAV networks,
as they need to coordinate to accomplish the required tasks. These updates could
include sensor data, position information, etc. Fig. 4.2 shows a graphical depic-
tion of qaudcopters in a particular geometric formation. Similar regular broadcast
communication by sensor nodes can also be found in other swarm networks as
discussed in [AR98, NRP+05, MGF+05]. Reporting the health of each sensor node
to all other nodes in wireless sensor networks (WSN) as described in [BA02] also
requires regular communication. In underwater acoustic (UWA) sensor networks
broadcast communication of similar nature is used for time-synchronization, coor-
dination, self-configuration and localization [KMH11, APM04]. All these networks
employ some form of all-to-all broadcast communication between nodes.

Sensor networks in which each sensor has to share information constantly with
the other sensors through all-to-all broadcast can be accomplished efficiently by
communicating through a shared broadcast channel. As the density of the sensor
network increases, the effective bitrate per sensor, Rs, drops, since the total bitrate,
Rb, supported by the shared broadcast channel is fixed. In many sensor networks,
there exists a long propagation delay in communication in relation to the scheduled
access duration (packet length)1 of the shared channel. This can arise either due to
low propagation speed of the physical layer signal in the medium or large distances
between sensors (geometric size of the topology). For example, in UWA sensor net-
works, the propagation of acoustic signal in water is five orders of magnitude slower
than in wireless radio channel, coupled with the large distances between sensors in
oceans make the above scenario common in these networks. Similar scenarios exist
in few wireless sensor networks (WSN) employing impules radio UWB (IR-UWB)
and millimeter wave (mmWave) technologies. In IR-UWB and mmWave channels
with high directivity gain can have delay spread of order of few tens of nano-seconds,
thus can have small access schedules [KWA+04,ZNCO+14,MSR15].

In this chapter, we develop an efficient broadcast schedule to access the shared
channel by exploiting the propagation delays between sensor nodes. We define one
report cycle (update cycle), TR, as the total time during which all the nodes in
the sensor network have transmitted and received one message packet to and from
all the other nodes in the network. We use this performance metric to assess the
performance of various schemes discussed in this chapter.

1Packet length and access duration are used interchangeably.
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The main aim of this chapter is to detail novel methods that optimize the
multiple access schedule by exploiting the spatial-temporal aspect of the channel
for the problem discussed above. As will be shown in Section 4.2, this can be posed
as an optimization problem, the solution for which is non-convex and computational
complexity scales exponentially with the increase in the number of nodes. The are
several works in UWA networks, where this problem is addressed, particularly for
accomplishing tasks such as self localization. For example, in [SJ01], the interference
free all-to-all broadcast in the UWA sensor networks is posed as an optimization
problem, which is similar to the problem formulation in Section 4.2. A suboptimal
solution is obtained in [SJ01] using a heuristic method, which relaxes the constraints
to enable schedule computation for the nodes in a sequential order. However, a
better schedule can be obtained by increasing the computational complexity by
changing the optimization problem, so that it can be solved using convex methods,
traveling salesman problem (TSP) and iterative path-adjusting methods proposed
in this chapter. This is discussed further in Section 4.3.

All of the posposed methods discussed in this chapter require a centralized
sensor network with a powerful coordinator node, which exploits the position infor-
mation from all participating nodes for all-to-all broadcast schedule construction.
In the networks, where the centralized configuration is not possible or position in-
formation of the nodes is unavailable, the algorithms proposed in [RFSL15,FZTS11]
can be employed. However, as will be shown in Section 4.6, solving the broadcast
schedule optimization problem using position information can significantly improve
performance.

There also exists standard time division multiple access (TDMA) schemes such
as slotted floor acquisition multiple access (FAMA) where regulated transmissions
for all the nodes can be accomplished [MS06]. However, in a regular time division
channel, the shared common channel is slotted in time and each one of the N nodes
of the sensor network will have access to a time slot which is a uniform fraction of
the report cycle, TR. As shown in Section 4.2, as the radius of the sensor network
topology and the number of nodes in it increase, the throughput per sensor and
the update rate decrease. By exploiting the range information, orthogonality can
still be maintained for overlapping time slots which leads to higher capacity. For
an ideal positioning of the nodes, the throughput can be increased by N times,
leading to a significant performance gain. Even when the positions of the nodes are
randomly distributed, the performance boost can be substantial in practice. For
the realistic examples studied in this chapter, the throughput is increased by an
order of magnitude (10 times for 100 node configurations with outliers as discussed
in Section 4.6) compared with a regular scheme.

The main discussion topics of this chapter are as summarized below.

• We introduce three novel methods, which exploit the range information for
efficient communication for the all-to-all broadcast problem discussed.

• We analyze these methods in terms of computational complexity.
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Figure 4.1: Illustration of fire fighters agents sharing information continuously with
other agents [NZSH13].

• We discuss the performance analysis of these methods for different topolo-
gies and contrast them with standard multiple access protocols such as code
division multiple access (CDMA).

• We discuss the robustness of these methods to the non-idealities such as range
and synchronization errors.

We will demonstrate the methods using a simple 3 node network shown in Fig-
ure 4.3. This will aid us in explaining the algorithms clearly. Subsequently, we will
demonstrate the performance of the proposed methods in different network topolo-
gies of varied sizes. We use the report cycle, TR, as a metric to assess performance,
with the objective to minimize this parameter.

The rest of the chapter is organized as follows: In Section 4.2, we discuss the
system model and formulate the problem. In Section 4.3, we propose algorithms
which exploit the range information to provide efficient communication between
nodes. In Section 4.4, we study the effect of synchronization and range errors on the
proposed algorithms. In Section 4.5, we compare the effective bitrate per sensor,
Rs, of the proposed algorithms with the code division multiple access (CDMA)
approach. In Section 4.6, we evaluate the proposed methods for a large number of
nodes with different topologies and demonstrate the performance gain of exploiting
the range information. Finally, in Section 4.7 we discuss the conclusions.
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Figure 4.2: A graphical illustration of a geometric configuration of a swarm network
of micro quadcopters.

Parameter Value

dAB 95 m

dBC 110 m

dCA 105 m

L 30 m

τ 100 ns

µ 3× 108 m/s

Table 4.1: Configuration for the topology in Figure 4.3.

4.2 System Model and Problem Formulation

Consider a general setup of a fully connected sensor network with N nodes. For the
sake of the discussion, we set the access duration (message packet length) per node
to be τ = 100 time units. We define the path equivalent message length as L = µτ
length units, where µ is the velocity of the physical layer signal in the propagation
medium. The message packets are said to be correctly received, if the packets do
not interfere, i.e., there is no collision of packets at the receiving node.
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Figure 4.3: Peer-to-peer ad-hoc sensor network with 3 nodes. dAB, dBC and dCA
are the path lengths between nodes A, B and C.

4.2.1 Orthogonalization with scheduled transmission

In a network of N nodes, if we assume that the K =
(

N
2

)

range values are available,
one approach to orthogonalize the transmission is by creating a sequential schedule,
where each node gets to transmit a message every TD time units, where TD is given
by

TD =
D

µ
+ τ, (4.2.1)

where D is the maximum of the K range values, that is

D = max
i,j
{dij}, ∀i, j ∈ [1, . . . , N ], i 6= j. (4.2.2)

With this approach, one report cycle, TR is given by

TR = NTD. (4.2.3)

To exemplify the above discussion, consider a 3 node peer-to-peer network as
shown in Figure 4.3. For the sake of discussion, the nodes are labeled as A, B, and
C. From (4.2.1) and (4.2.2), we get

TD =
max{dAB, dBC, dCA}

µ
+ τ =

dBC

µ
+ τ. (4.2.4)

From (4.2.3), notice that the report cycle, TR, increases linearly with the number of
nodes in the network (N) and the radius of the network topology (D). Therefore, as
the number of nodes or the geometric size of the network increases, TR will increase,
resulting in inefficient utilization of the shared common channel; thus, requiring an
improved communication method.

In many networks, the geometry of the sensor placements is such that the dif-
ference in propagation time for the message packets to arrive at nodes are larger
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(a) Interfering message packets due to concurrent transmission.
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(b) Arrival of packets without interference at A, B and C nodes after intro-
ducing delays of ∆B = 84 ns and ∆C = 150 ns in B and C nodes, respectively.

Figure 4.4: Concurrent transmission on shared common channel will result in in-
terference as shown in (a). If we solve the optimization problem defined in (4.2.6)
then the interference can be mitigated as shown in (b). The signal representing the
message packet from nodes A, B and C, (pi(t) | i ∈ {A, B, C}) is shown in green,
red, and blue respectively. The τ = 100 ns, µ = 3 × 108 m/s, and L = 30 m is
considered in the illustration.
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than the duration of the message packets themselves. These situations arise in many
sensor networks which have small message packets to be shared with other sensors,
resulting in a small value of L. This situation could also arise in future 5G networks,
where the physical layer packet lengths of devices in a macro cell are much smaller
(on the order of a few microseconds) compared to the cell dimensions (on the order
of a few kilometers) [Rap09,RSM+13,AIS+14,PZD+14]. We can reduce the report
cycle of the network by exploiting this fact. Consider a sensor network in which the
path difference between any two nodes is greater than L. Then, concurrent trans-
missions will result in message packets arriving at different times at each node,
hence all transmissions are orthogonal. In general, for an N node network to ensure
concurrent orthogonal transmissions, the network should fulfill the conditions

|dki − dkj | ≥ L
∀ i, j, k ∈ [1, 2, . . . , N ] | i, j 6= k and i 6= j,

(4.2.5)

where i, j and k denote the distinct nodes in the network and dki and dkj denote
the distance from the k-th node to node i and node j respectively. Thus, the report
cycle, TR, is equal to the maximum path delay, TD, in the network, instead of NTD

for scheduled transmission as discussed before.
For example, consider the 3 node network shown in Figure 4.3. Suppose, the

dimensions of dAB, dBC, and dCA does not follow the specifications of Table 4.1 and
if |dAB − dAC| ≥ L, then the signal transmitted simultaneously at nodes B and C
will arrive at node A at different times, and hence A can correctly receive them.
Similarly, |dBA− dBC| ≥ L and |dCA− dCB| ≥ L will ensure correct message packet
reception at nodes B and C respectively. Thus, all the three nodes can concurrently
transmit, and the report cycle can be completed in TD.

In general sensor networks, (4.2.5) is rarely fulfilled. When a network with N
nodes has a particular geometric configuration, which does not meet condition
(4.2.5), we can reduce TR by introducing a delay ∆i to each node i ∈ [1, 2, . . . , N ].
The ∆is are adjusted such that the message packets do not interfere at the receiving
nodes. The ∆is form the time schedule during which the i-th node needs to transmit.
The optimal schedule is obtained by solving the following optimization problem.

minimize
{∆i}

max
i,k

(∆i + δki)

subject to J = J1 + J2 + . . . + JN = 0,
(4.2.6)

where

Jk =
∣

∣

∣

∫

∑

ij

pi (t− δki −∆i) pj (t− δkj −∆j) dt
∣

∣

∣

∀ i, j, k ∈ [1, 2, . . . , N ] | i, j 6= k and i 6= j.

Here, pi(t), i ∈ [1, 2, . . . , N ], denotes the physical layer signal of the message packet,
Jk denotes the interference due to the received message packets at node k, and J
indicates the total interference in the system. The δki represents the path-delay
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between the k-th node and i-th node and is given by dki/µ. The report cycle with
this approach is given by

TR = max
i,j

(∆i + δji) + τ, ∀i, j ∈ [1, . . . , N ] and i 6= j. (4.2.7)

To illustrate the solution of the optimization problem (4.2.6), we once again consider
the 3 node network shown in Figure 4.3. The configuration defined in Table 4.1 is
used for path lengths. In Table 4.1, the path differences between nodes do not meet
the constraint defined in (4.2.5). That is, if all the nodes transmit simultaneously,
they will interfere with each other. For example, if at time t = 0, all the nodes A,
B and C concurrently transmit their message packets, then the received signal at
nodes A, B and C are shown in Figure 4.4a.

To accomplish short report cycle without interference in the example discussed
above, the optimization (4.2.6) is solved using the grid search method with τ =
100 ns, µ = 3× 108 m/s, and L = 30 m. In this method, we set ∆A = 0; assuming
that all nodes are synchronized to node A, J is computed by varying ∆B and ∆C

over the interval [0, TD], where TD is given by (4.2.1). The solution for the optimiza-
tion problem using the grid search method yields ∆B = 84 ns and ∆C = 150 ns.
With these delays introduced in nodes B and C, the signals are not interfering, as
shown in Figure 4.4b. Node C, will transmit last after a delay of 150 ns and the
resulting report cycle using (4.2.7) is 620 ns.

4.2.2 System Aspects

Consider a centralized sensor network, with a powerful coordinator node, which
broadcasts a beacon message with a time-stamp and the registration request. The
ordinary nodes will respond with their location information after synchronizing
their clock using the time stamp in the beacon2. This communication can employ
a conventional TDMA scheme on a control channel. The coordinator solves the
optimization problem (4.2.6) using the range values of the participating nodes to
prepare the broadcast schedules for the nodes. This information is encapsulated into
a control packet and transmitted to all participating nodes. Periodically the central
node need to collect the information from the participating nodes to resolve the
optimization problem to cater to the change in topology due to the node mobility
or node failures in the network. Note that the physical control channel on which
the registration request and the broadcast schedules are communicated are different
from the shared common channel used for all-to-all communication. Even with a
powerful coordinator the solution of (4.2.6) is not possible as the scale of the network
grows. In the later sections, we will discuss how a practical solution for (4.2.6) can
be achieved.

Even though the nodes clocks are synchronized during the initialization process,
the synchronization can be lost due to the clock drift, jitter etc. In many sensor

2Ordinary nodes can use TDOA method to account for the transmission delay during syn-
chronization.
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networks, synchronization is accomplished using a message passing technique as
proposed in timing-sync (TSYNC) or reference broadcast synchronization (RBS)
protocols [GKS03, EGE02a]. Network synchronization ensures that all the nodes
in the network have the same time scale. We also assume that exact range infor-
mation is available. Recently, there has been some work on estimation algorithms
for joint ranging and synchronization. These are proposed in [DAZH15, RvdV15].
These algorithms can yield joint accuracy levels up to few centimeters for range
and few nanoseconds for synchronization. We study the behavior of the proposed
algorithms in the presence of range and synchronization errors in Section 4.4.

4.3 Algorithms

Using the grid search method to solve (4.2.6) is costly, as the algorithm complexity,
O(qN ), increases exponentially with the number of nodes in the network. Here, q
indicates the size of the quantized grid of interval [0, TD] used in the grid search.
In this section, we propose three distinct methods to solve the above problem, each
having benefits over the other depending on the network geometry, complexity, etc.

4.3.1 Convex algorithm (CA)

The optimization problem defined in (4.2.6) is not a convex problem since the
equality constraints are not affine. The problem can however be made convex by
introducing additional constraints. Consider the arrival of messages at node k from
nodes i and j as shown in Figure 4.5. We can treat the arrived message packets as
boxes of width τ , and thus the message packets will not interfere if the corresponding
boxes do not overlap. If we have predetermined the order in which the message
packets should arrive at a particular node, we can make sure that the corresponding
boxes do not overlap using a simple linear inequality. For example, in Figure 4.5, the
inequality would be ∆i+δki+τ ≤ ∆j+δkj . Thus, we have isolated the non-convexity
of the optimization problem into selecting the order in which the message packets
should arrive at the different nodes. Suppose, we consider a sequential schedule, in
which node i+1, will transmit after node i, then we can construct the optimization
problem as

minimize
{∆i}

max
i,k

∆i + δki (4.3.1)

subject to ∆i + δki + τ ≤ ∆i+1 + δk,i+1 (4.3.2)

∆i ≥ 0 (4.3.3)

In (4.3.2), i goes from 1 to N − 1, as there is no node with index N + 1, and
k 6= i, i + 1.

This is a convex optimization problem, as the objective function is convex,
and all the inequality constraints are convex. The problem can be solved as a
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Figure 4.5: Messages from node i and j arriving at node k.

general linear program [BT97,BV04], but algorithms with lower complexity can be
constructed by exploiting the structure of the problem. We found that the most
efficient way to solve (4.3.1) is to minimize the delays ∆i sequentially in order of
increasing i. We note that ∆i+1 is minimized when it is zero or when (4.3.2) is tight
for at least one k. For the first node, the smallest possible delay is ∆1 = 0 and for
subsequent nodes the smallest possible delays are given by

∆i+1 = max

{

0, ∆i + max
k
{δki − δk,i+1}+ τ

}

. (4.3.4)

This results in a solution where none of the delays can be decreased without vio-
lating either (4.3.2) or (4.3.3), meaning that we have found an optimum of (4.3.1).
The algorithm can be thought of as sliding the boxes corresponding to transmis-
sion i + 1 to the left along the time axis until one of them hits 0 or a box from
transmission i.

In the above formulation, we have only considered interference between messages
from nodes which come directly after each other in the node order. Given that node
i does not receive a message from itself, it may be possible for messages from node
i−1 and node i + 1 to interfere when they are received at node i. This can however
never happen, as (4.3.2) implies that

∆i−1 + δi,i−1 + τ ≤ ∆i+1 + δi,i+1, (4.3.5)

for i = 2, 3, . . . , N − 1. This is shown in Appendix 4.A. Given that N delays need
to be computed and that N path delays must be considered in each computation,
the algorithm has a complexity of O(N2).

If the node order is set to A, B, C, in the configuration defined in Table 4.1,
this method produces the same solution as the grid search method, within the
grid search tolerance3. Even though the formulated problem is convex, for the N -
node scenario, sequential ordering may not be the optimal order with the lowest

3Note that the convex solution does not always produce the optimal solution, and thus may
not always match the result from the grid search method.
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Figure 4.6: The cyclic TSP solution (a) and the 3 possible linear orders that can
be created from it (b)-(d), for the network in Figure 4.3. The filled in horizontal
bars show one cycle of received messages. The times of transmission are shown as
solid vertical lines. In previous and future cycles, received messages and times of
transmission are shown as dashed bars and dashed lines respectively. The TSP-
costs along the cheapest tour can be visualised as the time differences between the
transmissions. The duration of one cycle is 30 ns. In (b), (c), and (d), the report
cycles are approximately 633 ns, 650 ns, and 700 ns respectively.

report cycle. Selecting an optimal order is in itself a combinatorial optimization
problem [Law76, Lov79]. However, for most practical scenarios, we can select an
arbitrary order and solve the convex problem as demonstrated in Section 4.6.

4.3.2 Optimizing the node order by solving a TSP

The problem of selecting a good node order can be formulated as an asymmetric
traveling salesman problem (TSP) [Law85], where the cost matrix is derived from
the path delays. To be able to do this, we modify the problem so that the nodes
transmit in a cyclic order where a second message from the first node is placed
directly after the first message from the last node. Then we solve a TSP problem
which minimizes the time between two transmissions from the same node. Finally,
we consider the N different ways in which the cyclic order can be broken into a
linear order, and select the alternative which minimizes the report cycle in the
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original problem.
The objective of the traveling salesman problem is to find the cheapest tour

which visits a number of cities exactly once. The input to the problem is a cost
matrix, C, where its element cij is the cost of going from city i to city j [Law85].
In our problem, we let each city correspond to a node in the network. We define
the cost matrix so that cij is the minimum difference between the delays of node j
and node i, allowed by (4.3.2), given that j comes directly after i in the node order.
Given that we are looking at a cyclic order, node 1 takes the role of node N + 1
in (4.3.2), and we do not need to take the constraints (4.3.3) into consideration. If
node j comes directly after node i in the selected order, we have that

∆j = ∆i + max
k
{δki − δkj}+ τ. (4.3.6)

In other words, the delay of any node is equal to the delay of the previous node,
plus the cost

cij = max
k
{δki − δkj}+ τ. (4.3.7)

By adding up all of the costs associated with the successive node pairs in the trans-
mission order (TSP tour), we therefore get the time between two transmissions
made by the same node. The problem of minimizing the time between two trans-
missions made by the same node can therefore be formulated as a TSP where the
cost matrix is defined by cij . For the 3 node configuration shown in Figure 4.3, the
algorithm is graphically illustrated in Figure 4.6.

The TSP is known to be NP-hard [RP89,Law76,Lov79], but there are algorithms
that can find exact solutions for small problems, and other algorithms that can find
approximate solutions for larger problems [Joh82,Lap92]. Many techniques employ
heuristic approaches for finding the approximate solution [Hel00, Ree93, RSL77].
The best approximate algorithms, often produce optimal or very close to optimal
solutions, for large networks with hundreds of nodes. Furthermore, the approximate
algorithms can be run multiple times with different starting points and thereby
achieve much better performance [Per94]. We have chosen to use the TSP solver
LKH [Hel00], which is based on the Lin-Kernighan heuristic. For a problem with
100 nodes, LKH requires less than a second to produce a solution which has a high
probability of being optimal. In LKH, all of the costs in matrix C, must be integers
and therefore we mapped the costs in each problem to the the interval between 0
and 106 using an affine mapping and rounded them to the closest integers. We used
version 2.0.7 of LKH with the default settings for all problems.

The report cycle will depend on which node in the TSP cycle is selected as
node 1. Therefore we consider all of the N possible choices for node 1 and solve the
convex problem defined in Section 4.3.1 for each one of them to see which alternative
results in the shortest report cycle. Given that we can reuse the costs that we
computed in (4.3.7) when we compute the delays in (4.3.4), the problem of choosing
a first node has complexity O(N2). The overall complexity is therefore dominated
by the TSP solver, which has an average complexity that scales approximately
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as O(N2.2) [Hel00]. We may introduce some sub-optimality by transforming the
problem into a problem with transmitters in a cyclic order, and LKH may also
not find the exact optimum of the TSP. The gap to optimality would however be
negligible for most practical applications.

4.3.3 Iterative path-adjusting algorithm (IPA)

The CA reduces the algorithm complexity by allowing sub-optimality due to the
fixed ordering. On the other hand, the TSP algorithm improves over the CA, by
choosing a better order without increasing the average algorithmic complexity. One
problem with both the algorithms is their inefficiency when (4.2.5) holds for most
of the nodes (i.e., nodes are scattered far-apart compared to L). For a random node
configuration, we can in theory ensure that (4.2.5) holds by making the message
length τ small enough. If τ is decreased by dτ , the report cycle of the algorithms
will however only decrease by Ndτ , as the algorithms cannot change the order in
which messages are to be received at the nodes. This results in poor performance
when τ is small in comparison to the path delays of the network. To overcome
this problem, we propose an alternative algorithm called iterative path-adjusting
algorithm (IPA). We show in the later sections that this algorithm outperforms
the convex formulation with strict ordering as defined in (4.3.2), and the TSP
algorithm, when the sensor nodes are scattered wide apart.

In this algorithm, we adjust the path differences between nodes, dki and dkj

to satisfy (4.2.5) in an iterative way. Adjusting the path difference is the same as
introducing delays at nodes i and j, so that the signals from i and j do not interfere
at node k. The algorithm is described below in three steps followed by an example
on a 3-node network.

1 Start the first iteration with l = 0 (l + 1 denotes the iteration number) and
k = 1, with d0

ki = dki. For a topology having N nodes, add additional path
lengths dl+1

∆ik
and dl+1

∆jk
, ∀i, j ∈ [1, 2, . . . , N ], i, j 6= k, i 6= j to nodes i and j to

satisfy (4.2.5). Thus, the new path lengths are given by

dl+1
ki = dl

ki + dl+1
∆ik

, (4.3.8)

dl+1
kj = dl

kj + dl+1
∆jk

. (4.3.9)

Note that to satisfy (4.2.5), the path-length needs to be added to one of the
nodes i or j. In this algorithm, we set dl+1

∆ik
= 0 and add additional path

length dl+1
∆jk

only to node j.

2 Repeat Step 1, by selecting all nodes one by one (k = 1, 2, . . . , N) in the
network. Each time, carry over additional path lengths added dl

ki + dl+1
∆ik

and

dl
kj + dl+1

∆jk
. The total adjusted path lengths at the end of iteration l are given

by

d
l+1

∆k = dl
∆k +

∑

i

dl+1
∆ik

, (4.3.10)
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for k ∈ [1, 2, . . . , N ] and k 6= i. This completes an iteration.

3 Repeat Step 1 and Step 2 until the total adjusted path length for each node
does not change across iterations, meaning that the following condition holds
for all k ∈ [1, 2, . . . , N ].

dl+1
∆k = dl

∆k. (4.3.11)

This indicates that (4.2.5) is met for all nodes simultaneously.

The proposed method is illustrated with the 3 node network shown in Figure 4.3,
with the configuration defined in Table 4.1. Figure 4.7 (a) shows that the addition
of an additional path length of 20 = (30 − (dAC − dAB)) is required at node C
to meet the constraints in (4.2.5) so that signals from B and C do not collide at
A. Similarly, Figure 4.7 (b) and Figure 4.7 (c) add additional path lengths to the
previous topology to avoid collisions at nodes B and C respectively. At the end of
the 1st iteration, the total path lengths for all of the nodes are given in Figure 4.7
(d).

The second iteration is illustrated in Figure 4.8. Notice that we carried the
new topology with added path lengths from the previous iteration (d1

∆A, d1
∆B, d1

∆C)
to iteration 2 and at the end of iteration 2, the total added path lengths are
(d2

∆A, d2
∆B, d2

∆C) = (0, 25, 45). Now the iteration is stopped as it meets the con-
ditions defined in Step 3.

Translating the path lengths into path delays by dividing by the speed of light,
c, results in (∆A, ∆B, ∆C) ≈ (0 , 84 , 150) [ns]. This is the same result as with the
grid search and convex methods. This algorithm is analyzed in the next Section.

4.3.4 Analysis of IPA

In order for the arriving signals not to interfere, (4.2.5) needs to be satisfied. We
define the path matrix, M, where each element of M, dki, denotes the distance
between node k and node i. The IPA adjusts the path matrix in such a way that
the path lengths to node k from other nodes (represented by the k-th row in the
matrix M), have path differences greater than L. For an N node network, the
algorithm starts with the original path matrix, M0, as given in (4.3.12). The path
adjusted matrix after the l-th iteration is represented as Ml.

M0 =













0 d12 · · · d1N

d21 0 · · · d2N

...
...

. . .
...

dN1 dN2 · · · 0













. (4.3.12)

Note that dkk = 0, ∀k ∈ (1, 2, . . . , N). Also, matrix M0 is symmetric, that is
dki = dik. The path adjusted matrix, Ml, has elements, dl

ij . The i-th row of the
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Figure 4.7: Iteration 1 for the 3 node network shown in Figure 4.3 with the config-
uration defined in Table 4.1.
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Figure 4.8: Iteration 2 for the 3 node network shown in Figure 4.3 with the config-
uration defined in Table 4.1.

path adjusted matrix Ml is denoted as

dl
ix =

[

dl
i1 dl

i2 · · · dl
iN

]

, (4.3.13)

similarly, the i-th column is denoted as

dl
xi =

[

dl
1x dl

2x · · · dl
Nx

]T

, (4.3.14)

where T denotes the transpose operator.
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To perform step 1 of the algorithm, there are many possibilities for additional
path lengths dl

∆ik
and dl

∆jk
, such that the arriving signals at node k, have effective

path length difference greater than L. In the discussions of this chapter, in order
to make the arriving signals to node k from nodes i and j satisfy |dl

ki − dl
kj | ≥ L,

we will add path lengths only to j, if j > i. That is,

if |dl
ki − dl

kj | < L and j > i then (4.3.15)

dl+1
∆ik

= 0, (4.3.16)

dl+1
∆jk

= L − (dl
kj − dl

ki), (4.3.17)

dl+1
xj = [dl

xj + dl+1
∆jk

1], (4.3.18)

∀i, j ∈ [1, 2, . . . , N ], i, j 6= k, i 6= j, and j > i.

Where, 1 is [1, 1, . . . , 1]T and the process, defined in (4.3.15) to (4.3.18) is repeated
for k = 1, 2, . . . , N sequentially to complete an iteration. The iterations with l =
0, 1, 2, . . . are performed until in (4.3.17), dl+1

∆jk
= 0, ∀i, j, k ∈ [1, 2, . . . , N ], i, j 6=

k and i 6= j is met. At each iteration, the elements from Ml are used for (4.3.15)
to (4.3.18).

During each iteration, when (4.3.15) is met, the additional path is added only
to one of the nodes (the node on the right). Therefore, as the iterations increase,
the path adjusted matrix, M, will converge to the state with its elements

|dl∗

ki − dl∗

kj | ≥ L,

∀i, j, k ∈ [1, 2, . . . , N ], i, j 6= k and i 6= j,
(4.3.19)

where, l∗ + 1 denotes the number of iterations required for convergence. At this
state the arriving signals to any node k from nodes i and j will satisfy (4.2.5). The
effective adjusted path is given by

dl∗

∆i = dl∗

1x(i)− d0
1x(i), (4.3.20)

and the equivalent added delay for node, i, is ∆i = dl∗

∆i/µ.
The average algorithmic complexity for IPA is evaluated by a least square poly-

nomial fit to the average computational time (in ticks) consumed by the algorithm
for networks of different sizes. The procedure followed, along with the results, are
discussed in Appendix 4.B. From the results of the Appendix 4.B, the average
complexity of the IPA algorithm is O(N3).

A summary of the average complexities of the proposed methods is shown in Ta-
ble 4.2. For CA, the average case and the worst case complexity are the same, there-
fore in networks, where the real-time guaranties are needed CA is more amenable
than TSP and IPA. The IPA opens up for a higher flexibility regarding the order
of the transmissions. Thus, it provides better throughput compared to the convex
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Algorithm Average case complexity

Grid Search
O(qN )

(q is the size of the quantized grid)

CA
O(N2)

(After exploiting the structure in the LP problem)

TSP
O(N2.2)

(Using LKH solver)

IPA O(N3)

Table 4.2: Summary of average complexity of the proposed methods.
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Figure 4.9: Two distinct 3-node configurations.

algorithm as shown in Section 4.6. In mobile sensor networks, the convex approach
with fixed ordering among the nodes opens up for schedule-based communication
and ranging; thus, node information need not be encoded in the packets [DZAH13].
On the other hand, IPA requires transmission overhead since the node information
has to be included in the packets, as the order of packet reception is not prede-
termined. However, the overhead of encoding the node information in the packet
(log2 N bits) is not significant.

The performances of the orthrogonalization, CA, TSP, and IPA under large
scale networks with different geometric formations are studied in the Section 4.6.

4.4 Effect of Syncronization and Range errors

In the discussion so far, we assumed that the sensor clocks are synchronized and the
available set of range estimates (dijs) are accurate. Accurate network synchroniza-
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tion can be achieved by synchronizing the sensor clocks to the global positioning
system (GPS) clocks or in GPS deficient systems by using the protocols discussed
in Section 4.2. Accurate range estimation can be accomplished by using TOA meth-
ods. The best performance in terms of mean-square-error (MSE) for an unbiased
estimator is given by the Cramer Rao lower bound (CRLB) and for a time of arrival
(TOA) estimation problem this is given by [GTG+05,DCW08]:

σ2
τ ≥

1

8π2SNRβ2
, (4.4.1)

where, β is the effective signal bandwidth defined by

β2 =

[
∫∞

−∞ f2|S(f)|2df
∫∞

−∞ |S(f)|2df

]

, (4.4.2)

where, S(f) is the Fourier transform of the transmit pulse, s(t). Since many tech-
nologies like UWB use extremely large bandwidths, they can be used for pre-
cise range estimation. Practical UWB hardware with ranging and communica-
tion capabilities with range estimation accuracy of a few centimeters are discussed
in [ADH13,YDAH14].

In practice, clock synchronization is not perfect and there will be range errors.
These will result in message packets colliding at the receiving nodes. The synchro-
nization error can be approximated as a zero mean normal distribution as shown
in [EGE02b,PSJ04]. In wideband RF systems [BP00,JH00], problems such as multi-
path fading, background interference, and irregular signal propagation characteris-
tics make range estimates inaccurate. The range error can also be approximated as
a zero mean normal distribution [LR03,LT02].

We assume that synchronization and range errors are independent and the net
effect will result in the packet arrival time to be randomly shifted from the in-
tended position. The distribution of this random shift from the true position can
be approximated to a Gaussian distribution, N (0, σ2

e). This shift in time of arrival
of the message packets at the receiving node can cause interference due to packet
collisions. This problem can be reduced by adding a guard interval, ǫ, to the equa-
tions of the CA, TSP, and IPA. This can be done by expanding the message packet
length τ to τ ′ = τ + ǫ in (4.3.2) and (4.2.5). Where, ǫ can be used to trade off
between tolerable interference and the report cycle time (update rate). It can be
shown that

ǫ =
√

2σeerfc−1(2(1− P)), (4.4.3)

where, 1−P denotes the percentage during which neighboring packets collide due to
the range and synchronization errors. For example, to have 95% collision avoidance
between neighboring packets, we need to have ǫ = 1.65σe. The network level per-
formance in presence of range and synchronization errors, using the above method,
for proposed algorithms are studied in Section 4.6.
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(d) TSP

Figure 4.10: Network geometry with 6 nodes scattered randomly in a 2-D plane.
Received message packets at each node after introducing the computed delays from
Table 4.3 for network topology in Figure 4.10a are shown for different algorithms.
Notice that the message packets do not interfere. The color of the message packet
is mapped to the node as shown in Table 4.4

.

4.5 Comparison with CDMA systems

In CDMA based multiple access, each node i is assigned a unique spreading code,
ui, such that ui ⊥ uj , ∀i 6= j. Each sensor transmit the packets continuously by
spreading the message with its code. At the receiver, each sensor node de-spreads
the signal using its unique code. Thus, in principal the report cycle can be completed
in Nτ [s].

However, this scheme is not well suited for the all-to-all broadcast scenario de-
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scribed in Section 4.1, due to the interference originating from the near-far problem
of CDMA [Vit95]. Unlike in many CDMA systems, this problem cannot be resolved
using the classical power-control feedback. To further illustrate this, consider two
3-node networks shown in Fig 4.9. In Fig 4.9 (a), dAB = dBC = dCA and when
all the nodes transmit messages concurrently with same power level, the received
message signals from all the nodes are at the same power level, and orthogonality of
the different spreaded signals holds. Thus, the signal belonging to different sensors
in all-to-all broadcast can be de-spread without any interference at all the nodes. In
general, for an N node network to have interference free communication, we need
the topology to have, dij = ξ, where ξ, is some constant. This is a rare scenario
and typically does not occur in practice. Now, consider a network, Fig 4.9(b), with
dBC > dCA > dAB, and a parallel transmission of an all-to-all broadcast with
same power level at all nodes. The sensor node B receives signals from A and C
at different power levels, and thus B will face severe interference when separating
the signals from A and C. Similar situation occur for the received signal at A and
C. The feedback power control does not solve the problem for all-to-all broadcast,
as adapting the power in one node to remove interference can create interference
to other nodes. As the number of nodes increases, the interference free parallel
transmission becomes infeasible4.

Another scenario where continuous transmission is not possible are in networks
which require cyclical communication. Here the transmission in the current cycle
of a sensor depends on the data it received from all the other sensor nodes in the
previous cycle of all-to-all communication. This kind of communication is found
in distributed control and distributed computation applications as discussed in
[KLO10,NZSH13,RRS+11].

However, we can exploit the spatial-temporal aspect of the underlying channel,
where the propagation delay between nodes are much longer than the access inter-
val. Here each of the N nodes transmit concurrently for a duration of τ , once every
TD seconds. Due to the random topology, and large propagation time, the arrived
pulses are spread out in time, thereby reducing the interference. It can be shown
that if a spreading code of length, M ≥ N is used and the shared common channel
can support a bitrate of Rb [bps], the effective bitrate per sensor, Rs, is given by

RCDMA
s ≤ Rbτ

MTD
. (4.5.1)

For the proposed algorithms in the chapter, in each report cycle, TR, each node
in the network will get to transmit a message packet once for the duration, τ ,
seconds. Therefore the effective throughput per sensor can be computed as

Rs =
Rbτ

TR
. (4.5.2)

4For some network geometries, the interference free all-to-all communication problem can be
solved as an optimization problem.
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Delay Values (∆is) [ns]

Node CA IPA TSP

1 0 0 11.9

2 200.9 200.8 356.8

3 807.8 199.2 1196.3

4 1341.7 117.4 789.0

5 1821.3 395.7 0

6 2665.6 987.8 1243.8

Table 4.3: Computed delay values from proposed methods for the geometric forma-
tion defined in Figure 4.10a.

Message packet

from node Color

1 Green

2 Red

3 Cyan

4 Magenta

5 Yellow

6 Black

Table 4.4: Mapping of colors to nodes in Figure 4.10 and Figure 4.14.

In the Section 4.6, we demonstrate in simulation the effective bitrate per sensor,
Rs, as a function of the number of nodes, N , to show how the position information
exploited in the proposed algorithms offer better performance compared to a CDMA
based approach.

4.6 Simulation Study

In the beginning of Section 4.2.1, we mentioned that we can orthogonalize the
message packets by separating consecutive transmissions by a time interval equal
to the maximum path delay in the network. For the configuration in Table 4.1, the
report cycle, TR, can be computed as below.

TD =
max(dAB, dBC, dCA)

µ
+ τ = 470 ns . (4.6.1)

TR = N · TD = 1410 ns. (4.6.2)

However, if the path difference between nodes in the network topology satisfies
(4.2.5), then all the nodes can concurrently transmit; thus one report cycle can be
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Figure 4.11: Performance of proposed methods as a function of N . Notice that as
the number of nodes increases, the proposed techniques yield better performance
relative to the orthogonal schedule.

completed in the time duration equal to the maximum path delay in the network
plus the packet length, that is 470 ns. More often (4.2.5) is not met. Under these
circumstances we can minimize the report cycle by solving (4.2.6). We modified the
problem so that it can be casted as a convex optimization problem. For the config-
uration in Table 4.1, we showed that, (∆A = 0 ns, ∆B = 84 ns, ∆C = 150 ns) solves
(4.3.1), therefore node C will transmit last after a delay of 150 ns and complete the
report cycle. So one report cycle for the configuration in Table 4.1 is

TR = max
ij

(∆i + δji) + τ, (4.6.3)

∀i, j ∈ [A, B, C] and i 6= j

TR = 150 + 370 + 100 = 620 ns. (4.6.4)

Thus, the reduction in the report cycle equals 56%.
To study the performance of the proposed methods for large networks, we form

two different formations; one with outliers, where a few sensor nodes are far apart
from the rest; and another with no-outliers, where the sensor nodes are scattered
uniformly. The performance is reported in terms of the time required to complete
one report cycle using the proposed methods.
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Figure 4.12: Performance of proposed methods as a function of N . Notice that as
the number of nodes increases, the IPA algorithm yield better performance relative
to TSP when the network radius is larger compared to packet length.

4.6.1 Random geometric formation with no outliers

For performance analysis with no outliers, we create a random geometric formation
by scattering the nodes in a plane. The coordinates (x, y) are drawn from a Gaussian
distribution as shown below.

(x, y) ∼
(

N (0, σ2),N (0, σ2)
)

. (4.6.5)

A typical topology of 6 nodes with σ = 50 [m] is shown in Figure 4.10a. The
transmission schedules for interference mitigation, using different proposed algo-
rithms are given in Table 4.3.

With these delays introduced, the received packets will not interfere with each
other. The received packets at each node are shown in Figure 4.10b, 4.10c, and
4.10d for CA5, IPA and TSP algorithms. Each color in Figure 4.10 is mapped to
the messages from a specific node, as shown in the Table 4.4.

Report cycle, TR, for the given set of delay values computed using CA, TSP and
IPA are given by max

i,j
(∆i +δij)+τ . For the example network shown in Figure 4.10a,

5In simulations, we employ a sequential order for CA, i.e., in (4.3.4), i, is varied from 1, . . . , N−

1, with ∆1 = 0.
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Figure 4.13: Bitrate per sensor, Rs, of proposed methods and CDMA approach as a
function of N . Notice that the proposed methods yield better performance relative
to CDMA.

the report cycles are given by 3.54 µs, 2.22 µs, and 1.86 µs for CA, TSP, and IPA
respectively.

From Figure 4.10b and Figure 4.10c, notice that the IPA is less constrained than
the convex approach; the convex formulation requires that the order of the received
message packets is the same at each receiving node. This is not the case for the
IPA algorithm. This ensures tighter schedules and explains the better performance
of the IPA algorithm.

To assess the performance over a large number of nodes N , we performed Monte-
Carlo simulations. We swept the number of nodes, N , from 10 to 100 in steps of 10
and for each N , 32 distinct random geometric formations were constructed as per
(4.6.5). The averaged report cycle is reported in Figure 4.11.

Figure 4.11 compares the proposed algorithms to the technique of orthogonal-
ization with scheduled transmission discussed in Section 4.2.1. Notice that for a 100
node randomly scattered network with σ = 50 [m], TR is reduced to approximately
1/10 for the TSP algorithm and 1/3 for the fixed order convex algorithm and the
IPA algorithm. However, if the radius of the network is scaled by a factor of 100 by
changing the variance σl = 100σ, the IPA performs better than the TSP algorithm
as explained in the earlier section and confirmed in simulation by Figure 4.12.

The effective rate per sensor for the CDMA approach and the proposed algo-
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Delay Values (∆is) [ns]

Node CA IPA TSP

1 0 0 401.6

2 266.0 266 667.6

3 0 0 0

4 1444.7 78.1 1444.7

5 939.4 0 939.4

6 2528.5 759.4 147.7

Table 4.5: Computed delay values from proposed methods for the geometric forma-
tion defined in Figure 4.14a.

rithms are as given by (4.5.1)6 and (4.5.2). Figure 4.13, shows the rate per sensor
for CDMA and the proposed algorithms, assuming Rb = 1 Gbps and τ = 100 ns.
Notice that the proposed algorithms yield better performance in terms of bitrate
per sensor, Rs, compared to CDMA.

4.6.2 Random geometric formation with outliers

In this section, we will study the performance of geometric formations of the sensor
network with a few sensor nodes far apart from the rest. To create this topology, we
construct N nodes distributed according to a mixture of two Gaussian distributions.
These distributions are as given below.

(x, y) =
(

N (0, σ2),N (0, σ2)
)

(4.6.6)

(xo, yo) =
(

N (0, σ2
o),N (0, σ2

o)
)

(4.6.7)

The node location is selected from (4.6.6) with probability of 2/3, and from
(4.6.7) with probability 1/3. We set σ = 50 and σ0 = 300; thus for a large N , 1/3 of
the nodes will be outliers. A typical topology with 6 nodes is shown in Figure 4.14a.

The transmission schedules for interference mitigation, by solving the CA, IPA,
and TSP are given in Table 4.5.

With these delays introduced, the received packets will not interfere with each
other. The received packets at each node are shown in Figure 4.14b, Figure 4.14c and
4.14d for the CA, IPA and the TSP algorithms discussed. Each color in Figure 4.14
is mapped to the message from a specific node, as shown in Table 4.4. For the
example network shown in Figure 4.14a, the report cycles are approximately given
by 4.73 µs, 4.23 µs, and 3.29 µs for the CA, TSP, and IPA respectively.

To assess the performance over a large number of nodes N , we performed Monte-
Carlo simulations similar to the no-outlier case with 32 distinct random geometric

6In simulations, for (4.5.1) equality is considered.
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(c) IPA
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(d) TSP

Figure 4.14: Network geometry with nodes scattered randomly in a 2-D plane with
outliers. Received message packets at each node after introducing the computed
delays from Table 4.5 for the network topology in Figure 4.14a are shown for dif-
ferent algorithms. Notice that the message packets do not interfere. The color of
the message packet is mapped to the node as shown in Table 4.4.

formations constructed from the mixture distribution of (4.6.6) and (4.6.7) with
probabilities of 2/3 and 1/3 respectively. The average report cycle is reported in
Figure 4.15.

Figure 4.15 compares the proposed algorithms to the technique of orthogonal-
ization through scheduled transmission discussed in Section 4.2.1. Notice that for
a network with 100 nodes, TR is on average reduced to 1/8 using TSP algorithm.
This means that the net communication or update rate can be increased by a factor
of 8 on average for the network topology with outliers. Thus, a sensor network with
geometric formations having a few outlier nodes can have higher communication
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rate using the proposed algorithms. The further away these outlier nodes are, the
greater the benefits will be, as the algorithms can pack the information packets
more efficiently there by optimally utilizing the shared common channel.

4.6.3 Performance in the presence of synchronization and range
errors

With the configurations for the no-outlier topology as discussed in the Section
4.6.1, we performed Monte-Carlo simulations to assess the average sensitivity of the
algorithms to range and synchronization errors. If there were no synchronization
and range errors, then the network would have exchanged N(N − 1) packets of
width τ , without any interference, using the proposed algorithms. However, due
to the errors, packets can interfere and we define the fraction of interference free
communication in the network, F , as

F = 1−
∑

i Ii

N(N − 1)τ
, (4.6.8)

where Ii, denotes the overlapped area of the packets at the receiving node i .
The trade-off between the guard interval, ǫ, and report cycle, TR, is to first pack
the transmissions as closely as possible to reduce TR and then increase the guard
interval, ǫ, in the optimization problem, based on the environment to decrease
the sensitivity to range and synchronization errors. Figure 4.16, shows the average
performance of F , using Monte-Carlo simulations for 20 nodes with 100 distinct
topologies constructed using the no-outlier case described earlier, with τ = 100 [ns].

4.7 Conclusion

In this chapter, we discussed a methodology for utilizing the range information to
arrive at transmission schedules for high density sensor networks. Connected sen-
sor networks need high rates of communication on a shared channel in order to
have high update rates. Therefore, an optimal schedule for accessing the shared
common channel needs to be designed for efficient communication. To accomplish
this, an optimization problem is formulated using range information for interfer-
ence mitigation. A solution for the optimization problem is found by CA, TSP and
IPA methods. The proposed methods are compared to the traditional time-sharing
technique of separating consecutive transmissions by a time interval equal to the
duration of maximum path delay in a network. The performances of the algorithms
are assessed for different types of networks with varied sizes. Two different geo-
metric formations are considered, one with a random placement of nodes with no
outliers and one with outliers. The results are demonstrated in Figure 4.11 and
Figure 4.15. A comparison with CDMA based multiple access is also presented in
Figure 4.13. The analysis of performance degradation due to non-idealities such as
synchronization and range errors is reported in Figure 4.16.
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Figure 4.15: Performance of proposed methods as a function of N . Notice that as
the number of nodes increases, the proposed techniques yield better performance
relative to the orthogonal schedule.

The three proposed algorithms performs better than CDMA or orthogonaliza-
tion by scheduling one node for maximum path delay in the network. As demon-
strated in Figure 4.15, the performance gains are higher, if the networks have few
outliers in them. Each of the proposed algorithms has a clear edge over others de-
pending on the type of the network. For example, TSP performs better than IPA
and CA for general networks, however, when the network is geometrically larger in
relation to the path equivalent message length, L, then IPA performs better than
the TSP and CA as suggested by Figure 4.12. IPA never performs worse than the
convex algorithm. From the simulation results, it appears that the IPA will give the
same solution as the CA in the worst case scenario, however, the formal proof is not
known to the authors. The proposed methods assumes full connectivity, extending
the methods for a partially connected network is a topic of further research.

Table 4.2 summarizes the average complexities of the algorithms. For IPA and
TSP, the worst case complexities are not known and for CA, the worst case and
the average case complexities are same. Thus, IPA and TSP may not be useful in
networks where real-time guarantees are needed for the schedule computations. The
impact of the synchronization and range errors on the algorithms are studied. As
expected, the tighter schedules are more susceptible to the interference due to the
imperfect ranging and synchronization. Typical system design involves, first packing



80 Location Aided UWB Communication

Combined effect of range and jitter error, σe [ns]
10-1 100 101

F
ra
ct
io
n
of

in
te
rf
er
en
ce

fr
ee

co
m
m
u
n
ic
at
io
n
,
F

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
No outliers

IPA (ǫ = 0 ns)

IPA (ǫ = 20 ns)

IPA (ǫ = 50 ns)

TSP (ǫ = 0 ns)

TSP (ǫ = 20 ns)

TSP (ǫ = 50 ns)

Figure 4.16: Interference in the system of 20 Nodes, in presence of imprecise range
and clock jitter. By increasing the guard interval, ǫ, by setting higher P , as in
(4.4.3), the interference performance can be traded with report cycle. For large σe,
the collisions are unavoidable despite the guard interval.

the transmissions as closely as possible to have low report cycle using the algorithms
discussed and then increasing the guard interval, ǫ, to decrease the interference as
illustrated in Figure 4.16.

The performances of the proposed methods are demonstrated in simulations
in order to assess the performance gains without platform or network dependen-
cies. The in-house transceiver discussed in the Chapter 1, can yield very precise
range information on the order of a few centimeters, as reported in [ADH13]. These
transceivers could be mounted on the sensors for joint ranging and communica-
tion [YDAH13,YDAH14,ADH13]. The results from the simulations of the proposed
schemes indicate that a significant improvement in performance in terms of com-
munication rate can be achieved by using the proposed schemes of this chapter.

4.A Proof that nodes i− 1 and i + 1 do not interfere in the

convex problem

In this appendix, we will prove

∆i−1 + δi,i−1 + τ ≤ ∆i+1 + δi,i+1, (4.A.1)
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Figure 4.17: The 3rd order polynomial fit to the average complexity curve, along
with the residual error for the various order polynomial fit.

which says that messages from node i−1 and node i+1 cannot interfere when they
are received at node i in the convex problem. To do this, we consider the constraint
in the convex optimization problem, for node i− 1 and node i, and get

∆i−1 + δk,i−1 + τ ≤ ∆i + δk,i for k 6= i− 1, i (4.A.2)

and
∆i + δk,i + τ ≤ ∆i+1 + δk,i+1 for k 6= i, i + 1. (4.A.3)

By setting k = i + 1 in (4.A.2) and k = i − 1 in (4.A.3) we get the following two
equations

∆i−1 + δi+1,i−1 + τ ≤ ∆i + δi+1,i (4.A.4)

∆i + δi−1,i + τ ≤ ∆i+1 + δi−1,i+1. (4.A.5)

Adding the left hand sides and the right hand sides of (4.A.4) and (4.A.5), and
using the fact that δik = δki we get

∆i−1 + δi,i−1 + 2τ ≤ ∆i+1 + δi,i+1. (4.A.6)

This shows that (4.A.1) holds and it also shows that the inequality is always strict
given that τ > 0.

4.B Average Complexity of IPA

In this Appendix, we try to arrive at the average complexity of the IPA algorithm.
We first create a random topology, by scattering the nodes in a two-dimensional
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plane. The coordinates (x, y) are drawn from a Gaussian distribution as shown
below:

(x, y) ∼
(

N (0, σ2),N (0, σ2)
)

. (4.B.1)

We sweep the number of nodes, N , from 5 to 50 and for each N , we calculate
the average time elapsed (ticks) for the IPA algorithm for 32 distinct topologies
constructed using σ = 5 [m]. The elapsed times are measured on Intel Core i5
4300U CPU at 1.9 GHz machine with 8 GB RAM running the Windows 8.1 pro
operating system. The blue curve in Figure 4.17a shows the average time elapsed
versus N for IPA. To get the average complexity, we try to fit this graph with
polynomials of various orders. We also evaluate the residual square error (square of
the L2-norm of the residual vector) for various order polynomial fits, this is shown
in Figure 4.17b, which indicates that the residual error becomes negligible for an
order 3 or more polynomial fit. The red curve in Figure 4.17a, shows that the 3rd
order polynomial, 1× 10−4x3− 2.1× 10−3x2 + 3.07× 10−2x− 0.12 , gives a perfect
fit, indicating that the average complexity of the IPA algorithm is O(N3).



Chapter 5

Detection and Fusion techniques

for IR-UWB transceivers

In this chapter, we analyze the performance of a multi-pulse impulse radio based
ultra-wideband (IR-UWB) detector in an AWGN setting and provide different fu-
sion strategies for fusing these detector outputs. To enable the transceiver to be
used for multiple applications, designers have different types of detectors such as
energy detectors, amplitude detectors, etc., built in to a single transceiver archi-
tecture. In order to get early insight into theoretically achievable performance of
these fusion techniques, we assess the performance of these fusion techniques for
commonly used detector types like matched filter, energy detector and amplitude
detector under a Gaussian assumption. The proposed methods are valid for ultra
short distance communication and in UWB systems operating in millimeter wave
(mmWave) band with high directivity gain. We also derive the detection perfor-
mance equation for each of the detectors in terms of false alarm rate, shape of the
pulse, and number of UWB pulses used in the detection, and apply these in the fu-
sion algorithms. We show that the performance can be improved by approximately
4 dB in terms of signal to noise ratio (SNR) for high probability of detection of a
UWB signal (> 95%), by fusing decisions from multiple detector types compared
to a standalone energy detector, in a practical scenario.

5.1 Background

As discussed in Chapter 1, IR-UWB schemes employ narrow impulse signals, which
can yield high time resolution, and hence can be used for accurate position lo-
calization and ranging. Narrow pulse duration coupled with low amplitude due to
the restrictions from regulatory agencies like Federal Communications Commission
(FCC) makes the detection of these pulses challenging [FCC02, AR09, YDH14].
In general, transmit signaling employs multiple pulses and the receiver aggregates
certain characteristics from these pulses like energy, amplitude, position, etc., to
make statistical inferences on the transmitted information like range (localization)
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or transmitted symbol value (communication) etc. [WS00, WLJ+09a]. The perfor-
mance of the receiver depends on how well the received pulse statistics are utilized
for a chosen application [YDH14,WLJ+09b].

In many hardware platforms, a single UWB transceiver mounted on sensors
is used for multiple applications like ranging, localization, communication, etc.,
each using particular statistics of the received samples for UWB pulse detection
[NZSH13]. For example, long distance communication using UWB may employ an
energy detector over a large number of pulses; whereas short distance tracking ap-
plications may use an amplitude detector on a few pulses. To enable the transceiver
to be used for multiple applications, the designers have different types of detectors
like amplitude detectors, energy detectors, etc., built into a single transceiver. In
this chapter, we will consider the structure of a digital sampling receiver shown in
Figure 5.1. Each detector1 uses its own detection algorithm on the received samples
to infer a hypothesis from the received samples and report it to the higher layers for
further processing. These are typically implemented in FPGA for faster processing,
and hence, only the computed hard or soft-value decisions are available. In some
applications, there are no stringent constraints to bind the usage of a particular
detector type; for example, demodulation of short range low data rate communi-
cation. In these situations, instead of resorting to a single detector type to arrive
at the hypothesis, decision information from all of the different types of detectors
can be concurrently utilized to make a more informed decision on the hypothesis.
This will utilize transceiver infrastructure better, and since every detector decision
is new information about the signaled hypothesis, it should yield better reliability
and improved performance.

We formulate a binary hypothesis problem of IR-UWB pulse detection, where
decisions from different types of detectors are fused using different fusion methods
before deciding on the hypothesis as shown in Figure 5.1. We demonstrate the meth-
ods using three commonly employed UWB detector-types (L = 3 in Figure 5.1),
with an energy detector (ED), matched filter (MF), and an amplitude detector
(AD) for Detector-1, Detector-2 and Detector-3 respectively. The binary decisions
signaling the hypothesis from these three detectors d = [d1, d2, d3] are fed to the
fusion algorithm to arrive at the binary decision regarding the hypothesis, dfused.

To illustrate the benefits of the scheme, we perform the following steps. First, we
derive performance equations for the most commonly used IR-UWB detector types
like a matched filter (MF), an amplitude detector (AD) and an energy detector
(ED). Here, we derive the analytical expression for probability of detection, PD,
as a function of false alarm rate, PFA, signal-to-noise ratio (SNR), shape of the
pulse, etc., for a multi-pulse UWB signal corrupted by additive white Gaussian
noise (AWGN). To our knowledge, such an analytical expression is not available
in the literature and is believed to be of an interest for the reader in its own
right. We discuss the performance of the detectors through the performance plots

1Detectors and detector types are interchangeably used. In Figure 5.1, each detector in the
set, (Detector-1, . . . , Detector-L) are of different type.
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and verify the theoretical derivations in simulations. Subsequently, we discuss the
fusion algorithms for a set of different detectors types (Detector-1, . . . , Detector-L),
yielding binary decisions signaling the hypothesis, d (refer to Figure 5.1). Then,
we use these expressions in the fusion algorithms discussed earlier with L = 3 and
Detector-1, Detector-2 and Detector-3 as MF, ED and AD respectively to assess
the performance. We show that, if there are multiple detectors available in the
UWB transceiver platform, then decision information from these detectors can be
concurrently utilized and intelligently fused based on the application criteria to
make a more informed decision on the hypothesis, thus leading to progress in the
hypothesis testing concerning UWB pulse detection.

In the proposed receiver structure of Figure 5.1, the received signal is filtered
by an RF band-pass filter (BPF) and is amplified using a wideband LNA. The
signal is then converted into the digital domain by a high sampling rate analog-
to-digital converters (ADC) and digitally processed. The digital receiver structure
offers several benefits such as flexibility in design, reconfigurability and scalability
[CGC10]. However, since IR-UWB signals occupy large bandwidth and have high
time resolution, the design of an IR-UWB digital transceiver is challenging. In
order to exploit the regulatory body specifications optimally, the transceivers must
operate at a 3.1 − 10 GHz range or in the unlicensed millimeter wave (mmWave)
frequency. The wideband BPF design should cover the whole of the useful UWB
frequency band. The microwave filter’s design, based on a microstrip multi-mode
resonator (MMR) and hybrid coplanar waveguide/microstrip structure can cover
these ranges. The work in [ZSM05,HHK05,SHN03,IA04] proposes several wideband
BPF filter designs for the intended purpose. The wideband LNA amplifies the signal
to the operating levels of the ADC. The work in [LN04, WWZ14] discusses the
various design aspects of the wideband LNA for UWB radios.

The most complex and costly part of the IR-UWB digital receiver is the ADC.
IR-UWB pulses are extremely narrow (orders of a few ns) and occupy very high
bandwidth, therefore high speed ADCs are needed for faithful digital representation
of the IR-UWB pulses. Typically, such high speed ADCs are designed using a flash
ADC [NBC02] or a bank of polyphase ADCs [OB05]. The recent progress in ADC
technology, as suggested by [Mur16], indicates that such high speed ADC having
a good resolution with signal-to-noise-and-distortion ratio (SNDR) of higher than
30 dB can be achieved for a bandwidth of 10 GHz. This has enabled digital designs
for IR-UWB technology. The digital samples from the ADC will be processed by
a digital baseband processing block for detection. The baseband processing block
consists of a bank of interleavers and detectors. The received frames are time inter-
leaved to avoid coherence between the detector channels. Even though, in practice,
this cannot be always accomplished, in those scenarios, the methods proposed are
only the upper bound on the achievable performance. For example, in [LG90], the
model structures based on the linear regressors for the analysis of tracking algo-
rithms are assumed independent in analysis, but are dependent in practice.

The proposed transceiver structure shown in Figure 5.1 is applicable to the
future evolution of our in-house flexible UWB hardware platform as discussed in
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Figure 5.1: Depiction of direct sampling receiver architecture with multi detector
fusion. (Detector-1, . . . , Detector-L) are the different detector types available in the
transceiver. di, i ∈ [1, . . . , L], indicates the binary decisions made by the different
detectors[1] with regard to the hypothesis. dfused, indicates the fused binary decision
for the chosen hypothesis.

Chapter 1 [ADH13,YDAH14]. This platform can be used for joint ranging and com-
munication applications. The platform has a digital processing section comprising
an FPGA, where the proposed techniques of this chapter can be implemented.
Even though the applicability of the techniques are demonstrated in simulation,
the results provide an early insight in to achievable performance. The variants
of the proposed structure in Figure 5.1 for hypotheses testing are also employed
in [LLH03] and [Wan11]. In [LLH03], the authors discuss UWB hypothesis testing
for a bank of similar analog detectors, whereas in [Wan11], the authors propose a
distributed fusion of results from multiple UWB sensors, by allocating a different
number of pulses to each sensor, under the constraint of maximum number of al-
located pulses, such that the error is minimized. Thus, both are different from the
proposed application of this chapter.

The rest of the chapter is organized as follows. In Section 5.2, we will discuss the
system model. Here, we will define the signal model which will be used in the rest
of the chapter. In Section 5.3, we will derive the analytical expression for PD as a
function of PFA, and SNR for matched filter, energy detector and amplitude detector
for a multi-pulse IR-UWB signal. Section 5.4 discuss different fusion strategies. In
Section 5.5, we will evaluate the performance of the different fusion strategies using
the performance equation of the individual detectors derived in Section 5.3. Finally
in Section 5.6, we discuss the conclusions.
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Parameter Description

PFA Probability of false alarm

SNR Signal to noise ratio

Np Number of UWB pulses used in detection

Ep Energy of the UWB pulses

s(t) Shape of the UWB pulses

Table 5.1: Parameters on which detector’s performance depends.

T = NsTs

Frame-2Frame-1 Frame-NT

Transmitted signal.

· · ·
1 · · · Ns 1 · · · Ns 1 · · · Ns

· · ·

Figure 5.2: Transmit signal structure constitutes of NT transmit frames. Under hy-
pothesis H1, each frame consists of Ns samples of UWB pulse s(t). Under hypothesis
H0, nothing is transmitted.

5.2 System Model

We consider a binary hypothesis for detection, with H0 representing that the signal
is absent and H1 representing that the signal is present. Each of the different types
of detectors like MF, ED, etc. in the UWB transceiver construct a test statistic
from the received samples, based on which inference is made about H0 or H1 by
comparing the test statistic to a threshold, γ. Different detector types have different
ways to construct the test statistic, and thus have varying degrees of performance
like probability of detection, PD, probability of error, Pe, etc. Apart from the chosen
test statistic, the performance of the particular detector also depends on all or a
few of the parameters listed in the Table 5.1. In Section 5.3, we will derive the
analytical expression for probability of detection, PD, for the ED, MF, and AD
detectors as a function of parameters defined in Table 5.1.

The transmitted signal under hypothesis H1 consists of NT frames, such that

NT ≥ N i
p ∀i ∈ {1, 2, . . . , L},

where N i
p denotes the number of frames used by Detector-i in the hypothesis test.

Each frame consists of one IR-UWB pulse, and during hypothesis H0 nothing is
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transmitted (NT empty frames). Each UWB pulse is of fixed duration, T , rep-
resented by s(t), sampled at the rate, 1/Ts, and has Ns = T/Ts, samples. The
transmit signal structure is as shown in Figure 5.2. Thus, both hypotheses can be
mathematically expressed as

NT−1
∑

n=0

Ns−1
∑

i=0

s(t− nT )δ(t− nT − iTs) under H1

0 under H0

, (5.2.1)

where δ(t) denotes the Dirac delta function and the model uses NT identical frames
in each hypothesis test cycle. This is similar to the time hopped impulse radio
(TH-IR) UWB models proposed in [Sch93, WS98, WS00], except that we are not
considering time hopping, as it has no effect on the statistics collected by the
detector across multiple frames. The function s(t − nT )δ(t− nT − iTs) represents
the i-th discrete sample of the n-th frame under hypothesis H1 and is denoted by
s(n, i). The received signal is corrupted by Gaussian noise. Thus, the received signal
used in the hypothesis test under both hypotheses is given by

NT−1
∑

n=0

Ns−1
∑

i=0

x(t− nT )δ(t− nT − iTs) under H1

NT−1
∑

n=0

Ns−1
∑

i=0

w(t − nT )δ(t− nT − iTs) under H0

, (5.2.2)

where x(t) is the received pulse shape. The function, x(t − nT )δ(t − nT − iTs),
represents the i-th sample of the n-th received frame under hypothesis H1 and is
denoted by x(n, i). Similarly, w(t − nT )δ(t − nT − iTs), represents the Gaussian
noise corresponding to the i-th sample of the n-th received frame and is denoted
by w(n, i). We assume a single-path line-of-sight (LOS) channel, thus, the received
samples, x(n, i) = βs(n, i) + w(n, i), where, β, indicates the path loss.

Typically, the UWB channels are subject to multi-path propagation where a
large number of paths can be observed at the receiver [PR14]. However, if the
transceivers are in close proximity with clear line of sight, the detectors here rely on
the first arriving path or LOS; this is in contrast to traditional channel measurement
and modeling. If the UWB transceiver is operating at millimeter wave frequencies,
due to the combined effect of higher directivity gain due to the RF-beamforming
and higher absorption characteristics of the channel results in single-path LOS
channels for distances less than 100 meters. The IEEE 802.15.3c standard chan-
nel measurements for a residential LOS channel model also corroborate the same
[GQMT07,IEE09,TMR11]. For the transceiver operating in the frequency band less
than 10 GHz, due to higher reflections, refractions and scattering characteristics of
the channel, the assumption of a single-path LOS channel is valid only for extremely
short distances of order of less than 10 meters [ADH13, Cot14, Mol05, YDAH14].
These short distance high speed UWB applications include transferjet and wireless
USB (wUSB) [Tra16, All16]. Also, adopting the simple model proposed here will
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make the discussion mathematically tractable. Without loss of generality, we use
β = 1. In the signal model proposed in (5.2.1) and (5.2.2), we assume perfect syn-
chronization, otherwise there will be degradation of the individual detectors (and
fused) performance. In many systems, the synchronization can be accomplished us-
ing methods proposed in [GKS03,EGE02a]. In the next section, we will derive the
detection performance of these detectors, which will be used in later sections to
evaluate fusion performance.

5.3 Detector Performance

The performance of the MF, ED, and AD detectors is studied in [Tur60, VT04,
Urk67,Kay98] for a general deterministic signal. Energy detection based sub-Nyquist
UWB detectors are studied in [GS05, GSO06]. However, the performance analysis
of the MF, ED, and AD detection for a digital UWB signal as a function of pa-
rameters shown in Table 5.1 is not available in literature to the best knowledge of
the authors. In this Section, we will derive analytical expressions for probability
of detection, PD, as a function of parameters in Table 5.1 and use them in later
sections to assess the performance of the fusion rules.

As discussed in Section 5.2, each transmit frame constitutes a UWB pulse, s(t),
sampled at 1/Ts. We define frame energy, Epn

, as

Epn
=

Ns−1
∑

i=0

s2(n, i). (5.3.1)

We assume all the frames in the transmission are of the same pulse shape, s(t),
so (5.3.1) is independent of n, thus Ep = Epn

. As discussed in (5.2.2), the re-
ceived signal under both hypotheses, H1 and H0, is corrupted by AWGN noise
samples, w(n, i). We assume that these noise samples are independent and identi-
cally distributed (IID) with w(n, i) ∼ N

(

0, σ2/Ns

)

, where N denotes the normal
distribution, such that the total noise energy in the frame is given by

Ns−1
∑

i=0

E
[

w2(n, i)
]

= σ2. (5.3.2)

Here, E denotes the expectation operator. We define signal-to-noise ratio, SNR, as

SNR =
Ep

σ2
. (5.3.3)

Typical detector structure used in Figure 5.1 is as shown in Figure 5.3. Each
detector will construct a test statistic, Tk, such that

Tk =

Nk
p
∑

n=0

Ns−1
∑

i=0

fk(r(n, i)), (5.3.4)
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≤ γk

> γkNk
p−1
∑

n=0

Ns−1
∑

i=0
fk(r(n, i))

r(n, i) dk

Detector

Tk

Figure 5.3: Generic detector structure. The different detector types use a differ-
ent function fk(·), to construct the test statistic, Tk. Since in this chapter, we use
three distinct detector types, matched filter (MF), energy detector (ED), and am-
plitude detector (AD), we have k ∈ {MF,ED,AD}. The r(n, i) denotes the received
samples. The r(n, i) = x(n, i) and r(n, i) = w(n, i) during hypotheses H1 and H0

respectively.

from the received samples and compare it with a threshold to decide on a hypothesis.
Depending on the test statistic generation function, fk(·), we have different types
of detectors like matched filter, energy detector, amplitude detector, etc,. In this
chapter, we use MF, ED, and AD detectors, thus we have k ∈ {MF, ED, AD}.
Nk

p denote number of frames used by the detector-k, in the hypothesis testing.
The r(n, i) denotes the received samples and is equal to x(n, i) and w(n, i) during
hypotheses H1 and H0 respectively.

5.3.1 Matched Filter

For the matched filter, the test statistic generation function, fk(·), is given by

fMF(r(n, i)) = r(n, i)s(n, i). (5.3.5)

The performance in terms of probability of detection for the matched filter, P MF
D , as

a function of probability of false alarm, P MF
FA , and SNR is derived in Appendix 5.A

and it is given by

P MF
D = Q

(

Q−1(PFA)−
√

NsN MF
p SNR

)

, (5.3.6)

where Q is the tail probability of the Gaussian distribution and SNR is as defined
in (5.3.3). Equation (5.3.6) is used to evaluate the performance at various SNRs
and is shown in Figure 5.4a and receiver operating characteristics (ROC) is shown
in Figure 5.4b.

5.3.2 Energy Detector

In the energy detector, the test statistic generation function, fk(·), is given by

fED(r(n, i)) = r2(n, i). (5.3.7)
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(b) Receiver operating characteristics

Figure 5.4: Detection performance at various SNRs and ROC for a matched filter
detector. For (a) and (b) plots, N MF

p = 10 and SNR=−30 [dB] are considered.

The performance in terms of probability of detection for the energy detector, P ED
D ,

as a function of probability of false alarm, P ED
FA , and SNR is derived in Appendix 5.B

and it is given by

P ED
D = Q−1

X 2
ν (λ)

(√

2N ED
p NsQ

−1(P ED
FA ) + N ED

p Ns

)

(5.3.8)

where QX 2
ν (λ) is the tail probability of the non-central chi-square distribution with

degrees of freedom, ν = N ED
p Ns, and the centrality parameter, λ = N ED

p NsSNR.
The SNR is defined as in (5.3.3). Equation (5.3.8) is used to evaluate the perfor-
mance at various SNRs and is shown in Figure 5.5a and receiver operating char-
acteristics (ROC) is shown in Figure 5.5b. In deriving the equation (5.3.8) several
assumptions are made; later we will verify this analytical equation in simulations.

5.3.3 Amplitude Detector

In the amplitude detector, the test statistic generation function, fk(·), is given by

fAD(r(n, i)) = |r(n, i)|. (5.3.9)
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(b) Receiver operating characteristics

Figure 5.5: Detection performance at various SNRs and ROC for the energy detec-
tor. For (a) and (b) plots, N ED

p = 1000 and SNR=−25 [dB] are considered.

The performance in terms of probability of detection for the amplitude detector,
P AD

D , as a function of probability of false alarm, P AD
FA , and SNR is derived in Ap-

pendix 5.C and it is given by

P AD
D = Q

(

Q−1

(

P AD
FA

2

)

− α
√

N AD
p EpSNR

)

+ Q

(

Q−1

(

P AD
FA

2

)

+ α
√

N AD
p EpSNR

) (5.3.10)

where α is defined as

Ns−1
∑

i=0

s(i) = αEp, (5.3.11)

As shown by (5.3.11) and (5.3.10), the performance of the amplitude detector
depends on the shape of the UWB pulse used. We have considered a normalized
second order Gaussian pulse as described in [YDAH13,YDH14,MG07]. This is given



5.4. Fusion Rules for IR-UWB Signal Detection 93

by

s(t) = −4πe
−2πt2

τ2

(−τ2 + 4πt2

τ4

)

, (5.3.12)

where τ is used to control the impulse spread. Energy normalized pulse, Ep = 1,
with τ = 3.33 ns, sampled at 5 GHz will result in α = 4.49. Thus, for this pulse
shape the performance of the amplitude detector is given by

P AD
D = Q

(

Q−1

(

P AD
FA

2

)

− 4.49
√

N AD
p EpSNR

)

+ Q

(

Q−1

(

P AD
FA

2

)

+ 4.49
√

N AD
p EpSNR

)

.

(5.3.13)

Equation (5.3.13) is used to evaluate the performance at various SNRs and is shown
in Figure 5.6a and receiver operating characteristics (ROC) is shown in Figure 5.6b.

From (5.3.6), (5.3.8), and (5.3.13), the performance of the matched filter, energy
detector and amplitude detector depends on the environment (SNR) and on the
system configuration or tuning variables like number of frames considered in the
hypothesis testing, Np and probability of false alarm, PFA. In the matched filter and
energy detector, the performance is agnostic to the system specifications like pulse
shape, which are fixed for a given hardware. However, in the amplitude detector,
detection performance depends on the shape of the pulse as shown in (5.3.10) and
(5.3.11). For parameters from the Table 5.2, the probability of detection, PD, versus
SNR using the analytical expression (5.3.6), (5.3.8), and (5.3.13) is as shown in the
blue color plots of Figure 5.8.

5.4 Fusion Rules for IR-UWB Signal Detection

We consider a general counting rule, that is, deciding for H1 if the sum of the
decisions,

∑L
i=1 di, exceeds the threshold, k. If we define the decision of the i-th

detector in Figure 5.1 as di = 0 and di = 1 for hypothesis H0 and H1 respectively,
then the special cases of these include simple fusion rules such as “AND” (k = L),
“OR” (k = 1), and “Majority-Voting” (k = L/2). These fusion rules are depicted
in Figure 5.7a, Figure 5.7b and Figure 5.7c. These rules are simple to implement
and have been proved to posses robustness features with respect to performance as
shown in [CMR15,CR14].

The counting rule based fusion is biased either toward hypothesis H1 (UWB
pulse detection in our model), or toward H0. For example, fusing using the “OR”
rule will have superior detection performance, but will also have a larger false alarm
rate. Similarly, the “AND” fusion rule is conservative in UWB pulse detection, but
has a superior false alarm rate performance. These aspects are further illustrated
with numerical examples in later sections. If we define the mis-classification of the
hypothesis as an error and the objective is to minimize the probability of error, Pe,
then the decision rules discussed above are sub-optimal. This is the motivation to
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Figure 5.6: Detection performance at various SNRs and ROC for the amplitude
detector. For (a) and (b) plots, N AD

p = 100 and SNR=−30 [dB] are considered.
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Figure 5.7: Depiction of different decision fusion methods.
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design a fusion technique that is optimal in the probability of error sense. For any
prior probability for H0 and H1, the fusion rule that minimizes the probability of
error is given by the maximum a posteriori (MAP) formulation given below

Pr(H1|d)
H1

≷
H0

Pr(H0|d), (5.4.1)

where d is a L-size vector of binary values signaling the hypothesis of the decisions
made by different detectors (refer to Figure 5.1). We can write (5.4.1) as

log

(

Pr(H1|d)

Pr(H0|d)

)

H1

≷
H0

0. (5.4.2)

If we define sets I, SH1 and SH1 as

I := {1, 2, . . . , L} , (5.4.3)

SH1 := {i : di = 1} , (5.4.4)

SH0 := I \ SH1 := {i : di = 0} , (5.4.5)

where di is the binary decision of the detector-i (i ∈ I), then,

Pr(H1|d) =
P1

p(d)

∏

i∈SH1

P i
D

∏

i∈SH0

(1− P i
D). (5.4.6)

Here, we assumed that the decisions of each of the detectors are independent of
each other. P1 is the probability of hypothesis H1 and p (·) denotes the probability
density function (PDF). P i

D is the probability of detection of the detector-i in
Figure 5.1. Similarly, we can write

Pr(H0|d) =
P0

p(d)

∏

i∈SH1

P i
FA

∏

i∈SH0

(1− P i
FA). (5.4.7)

P0 is the probability of hypothesis H0. P i
FA is the false alarm of the i-th detec-

tor. In many applications such as in communication, hypothesis testing is used for
symbol decoding, where both the hypotheses are equally likely. Substituting (5.4.6)
and (5.4.7) in (5.4.2) and assuming both hypotheses are equally likely, we get the
decision rule as

log

(

Pr(H1|d)

Pr(H0|d)

)

=

∑

i∈SH1

log

(

P i
D

P i
FA

)

+
∑

i∈SH0

log

(

(1− P i
D)

(1− P i
FA)

)

H1

≷
H0

0.
(5.4.8)

Unlike the counting rule based fusion (k out of L rule), the MAP fusion rule
employed in (5.4.8) requires P i

Ds and P i
FAs at the fusion module (refer to Figure 5.1).

In practice this is not always available. This method is also briefly described in
[YDH16]. In the next section, we will evaluate the performance of the proposed
structure in Figure 5.1 in a simulation under practical setting.
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Detector Type PFA Np

Matched Filter 10−7 100

Energy Detector 10−1 1000

Amplitude Detector 10−4 100

Table 5.2: Configuration of parameters for different detectors used in the fusion.

5.4.1 Simulation Study

In deriving the energy detector performance equation (5.3.8), we assumed that
a sufficiently large number of pulses are considered. Similarly, for the amplitude
detector performance equation (5.3.13), we assumed a particular UWB pulse shape.
In this section, we will simulate the detectors and demonstrate the validity of these
approximations, for a practical UWB signal setup. We use a signal model in which
each frame is of 10 ns duration, having one normalized second order Gaussian pulse
as defined in (5.3.12) with τ = 3.33 ns, sampled at 5 GHz. We consider number
of frames, Np, and the false alarm rate, PFA, from Table 5.2 for different detector
types. The received samples are corrupted by AWGN noise with variance 1/SNR
(since pulses are normalized, that is Ep = 1). Monte-Carlo simulations are done
using 1000 independent realizations. The detector performance in simulations shown
in red, matches the analytical expressions in (5.3.6), (5.3.8) and (5.3.13), shown in
blue in Figure 5.8. This validates the derived performance expressions for a practical
UWB signal configuration.

5.5 Performance Evaluation of Fusion Methods

When the same radio is used for multiple applications, detectors in them are tuned
with different parameter values for PFA, Np, etc. For example, if the application
needs a faster response, then the Np used will be small; similarly if the application
needs robust detection, then it may require a larger Np. In general, the parameters
Np and PFA are tuned based on the applications. As a result of this, different
detectors are optimal in different SNR regions. For example, consider that operating
parameters such as PFA and Np are as shown in Table 5.2. Evaluating equations
(5.3.6), (5.3.8) and (5.3.10) with PFA and Np as defined in Table 5.2, the probability
of detection for different detectors is as shown in the blue plots of Figure 5.8. We
will consider three different types of detectors discussed earlier, i.e., matched filter,
energy detector, and amplitude detector. With this set of detectors, we have L = 3,
and for “AND”, “OR”, and “Majority-Voting”, we should have k = 3, k = 1, and
k > 2 respectively for the counting rule based fusion rule discussed in Section 5.4.

We performed Monte-Carlo simulations with similar signal configurations de-
scribed in Section 5.4.1. We generated 1000 random signals corresponding to hy-
potheses H1 and H0 as defined in (5.2.1). The probability of correct detection of
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Figure 5.8: The performance of different detectors in theory and simulation are
shown. A normalized second order Gaussian pulse of width 10 ns sampled at 5 GHz,
is used in the simulation. Thousand random realizations are used in building the
probability of detection statistics, with parameters from Table 5.2. The theoretical
expressions match the simulation result for all the detectors.

hypothesis, H1, when H1 was indeed signaled, PD, and the probability of mis-
classification of hypotheses, Pe, was evaluated using the fusion rules discussed in
Section 5.4. The PFA, and Np, for each detector type are taken from Table 5.2. Re-
sults for fused PD, and Pe, are as shown in Figure 5.9a and Figure 5.9b respectively.
Notice that for a fixed SNR, the probability of detection is high for the “OR” fusion,
however, the probability of error is also high for the “OR” fusion. This indicates a
higher probability of false alarm and probability of miss.

The performance is also evaluated using the MAP fusion rule (5.4.8), for a de-
tector set, (MF, ED, AD), yielding decision vector d (refer to Figure 5.1), with the
configuration taken from Table 5.2. The probability of detection and probability of
error are as shown in Figure 5.10a and Figure 5.10b, respectively. Notice that the
MAP fusion method (defined by (5.4.8)) is close to “OR” fusion in detection per-
formance, with superior probability of error performance as shown in Figure 5.10b.
Comparing the performance of the energy detector alone with the MAP fusion rule
for multiple detectors in Figure 5.10a and Figure 5.10b, indicates that a gain of 4 dB
in terms of signal to noise ratio (SNR) can be achieved for probability of detection
greater than 95% with low probability of error (< 5%).



98 Detection and Fusion techniques for IR-UWB transceivers

SNR [dB]
-30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10

P
D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

OR fusion
AND fusion
Majority-Voting fusion

(a) Probability of detection

SNR [dB]
-30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10

P
e

0

0.1

0.2

0.3

0.4

0.5

0.6

OR fusion
AND fusion
Majority-Voting fusion

(b) Probability of error

Figure 5.9: Probability of detection and error performance for various fusion tech-
niques using the configuration defined in Table 5.2.
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Figure 5.10: Probability of detection and error performance using the fusion rule
defined in (5.4.8) (MAP fusion), OR Fusion and ED decision alone without any
fusion using the configuration defined in Table 5.2.

5.6 Conclusion

In this chapter, we analyzed the UWB detection performance of matched filter,
energy detector and amplitude detector. We derived the analytical expression for
probability of detection, PD, for each of the detectors as a function of parameters
defined in Table 5.1. These are shown in (5.3.6), (5.3.8), and (5.3.10). We veri-
fied these expressions in simulations; this is shown in Figure 5.8. We analyzed the
performance in terms of detection probability and probability of error for differ-
ent fusion methods like “AND”, “OR”, and “Majority-Voting”. This is shown in
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Figure 5.9a and Figure 5.9b. Using Bayes rule, we derived an optimal fusion rule
(5.4.8) for UWB detection, which is optimal in the probability of error sense and
compared its performance. This is shown in Figure 5.10a and Figure 5.10b.

Results indicate that by making a suitable choice of fusion rule, a trade off be-
tween detection and false alarm can be achieved. For example, Figure 5.9a shows
that OR fusion is more biased toward detection, however, it also results in higher
errors (due to false alarms, refer to Figure 5.9b). If the error performance is critical
for the UWB application, then MAP fusion formulation gives superior performance
in terms of errors as shown in Figure 5.10b. In general, if there are multiple de-
tectors available in the UWB transceiver platform, then decision information from
these detectors can be concurrently utilized and intelligently fused based on the
application criteria to make a more informed decision on the hypothesis. In con-
trast to a standalone detector, the proposed fusion methods enable highly accurate
hypothesis testing for UWB signal, thereby improving the performance of the UWB
transceiver in applications such as communication and localization.

5.A Performance of Matched Filter

In this Section, we will derive the analytical expression for probability of detection,
P MF

D , for a matched filter. We will use N MF
p received frames in each hypothesis test

cycle, having a UWB pulse of energy Ep, as defined in (5.3.1) for H1 hypothesis and
having only noise during the H0 hypothesis. Due to the AWGN channel, the received
samples at the receiver have noise which is distributed as w(n, i) ∼ N

(

0, σ2/Ns

)

,
as discussed in Section 5.3. The total noise energy in the received frame is σ2 as
shown in (5.3.2). The ratio of frame energy, Ep, and the noise energy in the received
frame, σ2, is defined as SNR as shown in (5.3.3).

In a matched filter, the test statistic, TMF, is compared against a threshold γMF

(refer to Figure 5.3). Thus, the hypotheses test can be formulated as

TMF

H1

≷
H0

γMF, (5.A.1)

where TMF is given by

TMF =

NMF
p −1
∑

n=0

Ns−1
∑

i=0

r(n, i)s(n, i). (5.A.2)

The r(n, i) and s(n, i) are defined in Sections 5.3 and 5.2, respectively. Since
r(n, i) = s(n, i) + w(n, i) and r(n, i) = w(n, i) under H1 and H0 hypotheses, re-
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spectively, we can write

TMF =























NMF
p −1
∑

n=0

Ns−1
∑

i=0

s2(n, i) + w(n, i)s(n, i) under H1,

NMF
p −1
∑

n=0

Ns−1
∑

i=0

w(n, i)s(n, i) under H0.

(5.A.3)

Since each transmit frame carries the same energy, Ep, we can write

NMF
p −1
∑

n=0

Ns−1
∑

i=0

s2(n, i) = N MF
p Ep.

Thus, the matched filter test statistic under hypothesis H1,

T H1
MF = N MF

p Ep +

NMF
p −1
∑

n=0

Ns−1
∑

i=0

w(n, i)s(n, i). (5.A.4)

The T H1
MF is a Gaussian random variable with mean

E
[

T H1
MF

]

= N MF
p Ep, (5.A.5)

and variance

Var
[

T H1
MF

]

= Var
[

N MF
p Ep

]

+

NMF
p −1
∑

n=0

Ns−1
∑

i=0

Var [s(n, i)w(n, i)] ,

=

NMF
p −1
∑

n=0

Ns−1
∑

i=0

s2(n, i)Var [w(n, i)] ,

=
N MF

p σ2Ep

Ns
,

(5.A.6)

where Var [·] denotes the variance of the random variable. Similarly, the test statis-
tic under hypothesis H0, T H0

MF is a Gaussian random variable with mean and variance

E
[

T H0
MF

]

= E







NMF
p −1
∑

n=0

Ns−1
∑

i=0

s(n, i)w(n, i)






(5.A.7)

= 0, (5.A.8)

Var
[

T H0
MF

]

= Var







NMF
p −1
∑

n=0

Ns−1
∑

i=0

s(n, i)w(n, i)






(5.A.9)

=
N MF

p σ2Ep

Ns
. (5.A.10)
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Combining equations (5.A.5) to (5.A.10), the PDF of the matched filter test
statistic can be written as

p (TMF) =















N
(

N MF
p Ep,

NMF
p σ2Ep

Ns

)

under H1,

N
(

0,
NMF

p σ2Ep

Ns

)

under H0.
(5.A.11)

Thus, for a fixed threshold γMF, we can show that the match filter detector’s prob-
ability of false alarm, P MF

FA and probability of detection, P MF
D is given by

P MF
FA = Pr(TMF > γMF; H0) = Q









γMF
√

NMF
p σ2Ep

Ns









, (5.A.12)

P MF
D = Pr(TMF > γMF; H1) = Q









γMF −N MF
p Ep

√

NMF
p σ2Ep

Ns









(5.A.13)

where Q is the tail probability of the Gaussian distribution. By solving for γMF in
(5.A.12) for a fixed false alarm and substituting it in (5.A.13), we get the analytical
form for the probability of detection. It is given by

P MF
D = Q

(

Q−1(P MF
FA )−

√

NsN MF
p SNR

)

, (5.A.14)

where SNR is as defined in (5.3.3).

5.B Performance of Energy Detector

In this Section, we will derive the analytical expression for the probability of de-
tection, PD, for the energy detector. We proceed with the same definitions for Ep,
SNR, and σ2 as in Appendix 5.A.

In the energy detector, the test statistic, TED, is compared against a threshold,
γED (refer to Figure 5.3). Thus, the hypothesis test can be formulated as

TED

H1

≷
H0

γED, (5.B.1)

where TED is given by

TED =

NED
p −1
∑

n=0

Ns−1
∑

i=0

r2(n, i). (5.B.2)
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r(n, i) is defined in Section 5.3. Since r(n, i) = s(n, i) + w(n, i) and r(n, i) = w(n, i)
under H1 and H0 hypothesis, respectively, we can write

TED =























NED
p −1
∑

n=0

Ns−1
∑

i=0

(s(n, i) + w(n, i))2 under H1,

NED
p −1
∑

n=0

Ns−1
∑

i=0

w2(n, i) under H0.

(5.B.3)

If we define the energy detector test statistic under hypothesis H0 as T H0
ED, then

T H0
ED =

NED
p −1
∑

n=0

Ns−1
∑

i=0

w2(n, i). (5.B.4)

We can modify the random variable, T H0
ED to (T H0

EDNs)/σ2, such that

T H0
EDNs

σ2
=

NED
p −1
∑

n=0

Ns−1
∑

i=0

l2(n, i), (5.B.5)

where l(n, i) is an IID with N (0, 1). Thus, the PDF of (T H0
EDNs)/σ2 is given by,

p

(

T H0
EDNs

σ2

)

∼ X 2
NED

p Ns
(0), (5.B.6)

where X 2 denotes the chi-square distribution with degree ν = N ED
p Ns and central-

ity parameter λ = 0. In (5.B.6), the additive nature of chi-square distribution is
utilized.

Similarly, the energy detector test statistic under hypothesis H1, T H1
ED, is given

by

T H1
ED =

NED
p −1
∑

n=0

Ns−1
∑

i=0

r2(n, i). (5.B.7)

Since r(n, i) = s(n, i) + w(n, i) under H1, the received samples under hypothesis
H1 will have the distribution r(n, i) ∼ N

(

s(n, i), σ2/Ns

)

.
If X1, · · · , Xk, are k Gaussian random variables, with mean and variance, µi

and σ2
i respectively, for i ∈ [1, · · · , k], then the random variable

k
∑

i=1

(xi/σi)
2, is a

chi-square random variable with degree of freedom, k, and centrality parameter, λ,
such that

λ =

k
∑

i=1

(

µi

σi

)2

. (5.B.8)
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Therefore from (5.B.7), we can write PDF of T H1
ED, as

p

(

NsT
H1
ED

σ2

)

∼
NED

p −1
∑

n=0

X 2
Ns (λ) , (5.B.9)

∼
NED

p −1
∑

n=0

X 2

(

Ns−1
∑

i=0

Nss
2(n, i)

σ2

)

. (5.B.10)

Since all frames are of same energy, Ep, we can write

p

(

NsT
H1
ED

σ2

)

∼
NED

p −1
∑

n=0

X 2
Ns (NsSNR) , (5.B.11)

∼ X 2
NED

p Ns

(

N ED
p NsSNR

)

, (5.B.12)

where in (5.B.12), the additive nature of the non-central chi-square distribution is
exploited. Equations (5.B.12) and (5.B.6) can be compactly written as

p

(

NsTED

σ2

)

=







X 2
NsNED

p
(N ED

p NsSNR) under H1,

X 2
NsNED

p
(0) under H0.

(5.B.13)

If we define NL = N ED
p Ns, using (5.B.5), the PDF of the energy detector under H0,

T H0
ED can be approximated using central limit theorem (CLT) as

p

(

NsT
H0
ED

σ2

)

a∼N
(

NLµl, NLσ2
l

)

, (5.B.14)

where µl and σ2
l are the mean and variance, respectively of l2(n, i), since l(n, i) is

a standard normal with N (0, 1), we can write

µl = E[l2(n, i)] = 1, (5.B.15)

σ2
l = E[l4(n, i)]− (E[l2(n, i)])2 = 2. (5.B.16)

Therefore, (5.B.14) can be written as

p

(

NsT
H0
ED

σ2

)

a∼N (NL, 2NL) . (5.B.17)

Since NL = N ED
p Ns, we can write

p

(

NsT
H0
ED

σ2

)

a∼N
(

N ED
p Ns, 2N ED

p Ns

)

. (5.B.18)
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From (5.B.18), for a fixed false alarm rate of the energy detector, P ED
FA , we can

compute the threshold, γED, as

P ED
FA = Pr

(

T H0
ED > γED

)

, (5.B.19)

γED =
σ2

Ns

[√

2N ED
p NsQ

−1(P ED
FA ) + N ED

p Ns

]

. (5.B.20)

Using this threshold and from (5.B.12), the probability of detection for the energy
detector, P ED

D , is given by

P ED
D = Pr

(

T H1
ED > γED

)

(5.B.21)

= Q−1
X 2

ν (λ)

(√

2N ED
p NsQ

−1(P ED
FA ) + N ED

p Ns

)

, (5.B.22)

where QX 2
ν (λ) is the tail probability of the non-central chi-square distribution with

degrees of freedom, ν = N ED
p Ns, and centrality parameter, λ = N ED

p NsSNR.

5.C Performance of Amplitude Detector

In this Section, we will derive the analytical expression for the probability of de-
tection for the amplitude detector, P AD

D . We proceed with the same definitions for
Ep, SNR, and σ2 as in Appendix 5.A.

In the amplitude detector, the test statistic, TAD, is compared against γAD (refer
to Figure 5.3). Thus, the hypothesis test can be formulated as

TAD

H1

≷
H0

γAD, (5.C.1)

where TAD is given by

TAD =

NAD
p −1
∑

n=0

Ns−1
∑

i=0

|r(n, i)|. (5.C.2)

r(n, i) is defined in Section 5.3. Since r(n, i) = s(n, i)+w(n, i) and r(n, i) = w(n, i),
under H1 and H0, respectively, we can write

TAD =























NAD
p −1
∑

n=0

Ns−1
∑

i=0

|s(n, i) + w(n, i)| under H1

NAD
p −1
∑

n=0

Ns−1
∑

i=0

|w(n, i)| under H0.

(5.C.3)

Since noise samples w(n, i) ∼ N
(

0, σ2/Ns

)

, |w(n, i)|, has folded normal distribution
[LNN61],

|w(n, i)| ∼
{

2N
(

0, σ2/Ns

)

when w(n, i) > 0,

0 otherwise.
(5.C.4)



5.C. Performance of Amplitude Detector 105

Therefore, the amplitude detector test statistic under H0, T H0
AD =

NAD
p −1
∑

n=0

Ns−1
∑

i=0

|w(n, i)|,
has a PDF given by

p
(

T H0
AD

)

=

{

2N
(

0, N AD
p σ2

)

when T H0
AD > 0.

0 otherwise
(5.C.5)

Similarly |r(n, i)| under H1 also has a folded normal distribution with PDF of
|s(n, i) + w(n, i)| as

{

N
(

s(n, i), σ2/Ns

)

+N
(

−s(n, i), σ2/Ns

)

r(n, i) > 0,

0 otherwise.
(5.C.6)

We use same shape and energy for all the UWB frames and furthermore, we set

Ns−1
∑

i=0

s(n, i) = αEp, (5.C.7)

and thus,
NAD

p −1
∑

n=0

Ns−1
∑

i=0

s(n, i) = αN AD
p Ep. (5.C.8)

Therefore, the amplitude detector test statistic under H1, T H1
AD =

NAD
p −1
∑

n=0

Ns−1
∑

i=0

|s(n, i)+

w(n, i)|, has PDF, p
(

T H1
AD

)

, equal to

{

N
(

αN AD
p Ep, N AD

p σ2
)

+N
(

−αN AD
p Ep, N AD

p σ2
)

T H1
AD > 0,

0 otherwise.
(5.C.9)

For a fixed false alarm rate, P AD
FA , the threshold γAD can be computed as

P AD
FA = Pr

(

T H0
AD > γAD

)

. (5.C.10)

From (5.C.5), we can write,

γAD =
√

N AD
p σ2Q−1

(

P AD
FA

2

)

. (5.C.11)

The probability of detection for the amplitude detector, P AD
D = Pr

(

T H1
AD > γAD

)

,
from (5.C.9), we can write

P AD
D = Q





γAD − αN AD
p Ep

√

N AD
p σ2



+ Q





γAD + αN AD
p Ep

√

N AD
p σ2



 (5.C.12)
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Substituting (5.C.11) in (5.C.12) and simplifying, we can express P AD
D as a function

of parameters in Table 5.1 and is given by

P AD
D = Q

(

Q−1

(

P AD
FA

2

)

− α
√

N AD
p EpSNR

)

+ Q

(

Q−1

(

P AD
FA

2

)

+ α
√

N AD
p EpSNR

)

.

(5.C.13)



Chapter 6

UWB TOA Estimation using

Kalman filter

In this chapter, we propose fusion of dynamic TOA (time of arrival) from multi-
ple low complexity detectors like energy detectors operating at sub-Nyquist rate
through Kalman filtering. We show that by having a multi-channel receiver with
each channel having an energy detector, we can achieve the performance of a digital
implementation with matched filter. We derive analytical expression for number of
sub-Nyquist energy detector channels needed to achieve the performance of digital
implementation with matched filter and demonstrate in simulation the validity of
our analytical approach. Results indicate that number of energy detectors needed
will be high at low SNRs and converge to a constant number as the SNR increases.
We also study the performance of the strategy proposed using IEEE 802.15.4a CM1
multipath channel model and show in simulation that two sub-Nyquist detectors
are sufficient to match the performance of digital matched filter. We also show
that there is an order of savings in energy by using the multi-channel sub-Nyquist
receiver structure compared to its digital counterpart.

6.1 Background

Narrow impulse signals that are used in IR-UWB schemes yield very fine time
resolution and thus, can be used for accurate measurement of time of arrival
(TOA) [GTG+05, SGP11]. Accurate TOA is essential in several applications in-
cluding localization and communication. In localization, when the nodes are syn-
chronized, the TOA of the signal can be used directly to obtain the range estimate.
If nodes are not synchronized, TOA estimate is still needed for several ranging pro-
tocols to estimate the range. Localization information about the node can be derived
from its range to anchor nodes [SGP11, MVV11]. In many IR-UWB communica-
tion systems, the message information is embedded in the location of the IR-UWB
pulse. For example, pulse position modulation (PPM) and its variant modulation
schemes. To demodulate the IR-UWB symbols in these modulation schemes, TOA

107
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estimation techniques can be used [KMKK06,YDAH14,YDH14].
IR-UWB system with matched filter can provide optimal estimate of TOA for

additive white Gaussian noise (AWGN) limited channels. The TOA is estimated
by finding the peak location at which the filter attains the maximum value. The
impulse response of the matched filter should closely approximate the transmit
pulse shape. When implemented digitally, matched filter requires Nyquist-rate sam-
pling [Coo12,Tur60]. There are several digital UWB receiver architectures for which
matched filter is suitable including [OB05,BLW+03,NBC02]. Digital receiver struc-
ture offers several benefits such as flexibility in design, reconfigurability and scala-
bility [CGC10]. However, UWB signal occupy extremely large bandwidth and thus
requires high-speed analog-to-digital converters (ADCs). These speeds demand the
use of interleaved flash ADC [NBC02] or a bank of polyphase ADCs [OB05]. In ad-
dition, the ADC must support a large dynamic range to resolve the signal from the
strong narrowband interferes. These aspects makes digital UWB architecture which
operates at Nyquist-rate to be costly and power hungry [NBC02,PAW07,Nam03].

The digital matched filter based detector is the method of preference, because
of its superior performance in AWGN and multi-path channel. However, it requires
expensive implementation so we seek low-cost alternatives. There, we consider sub-
sampled energy detectors and increase the number of detector channels to com-
pensate for the loss in performance. We show analytically that under AWGN 4
detectors channels are sufficient and under multipath even less are required. We
also show that an order of gain in terms of energy efficiency can be achieved with
this structure compared to single channel digital receiver. In many practical appli-
cations, TOA is dynamic in nature, thus we propose a joint fusion and tracking of
estimated TOA from parallel detector channels through a Kalman filter. We assess
the performance of fused TOA estimate in simulation for a dynamic TOA model
from multiple energy detectors and compare it with the digital matched filter and
demonstrate the validity of the claims.

This chapter is organized as follows: In Section 6.2, we discuss the signal and
system model employed. In Section 6.3, we will discuss different types of detectors.
Here, we will study the energy collection strategy for matched filter and energy
detectors. In Section 6.4, performance analysis of these two detectors are studied
for a static TOA case. Section 6.6, discusses the Kalman filter design for joint fusing
and tracking of the energy detector estimates for a dynamic TOA model. Section
6.7, demonstrates the performance in simulation. Finally, Section 6.8 details the
conclusions from the design and results demonstrated.
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Figure 6.1: Joint fusion and tracking structure using multi-channel receiver with
low cost energy detectors in each channel operating at sub-Nyquist rate, tracking a
dynamic TOA of a moving target. A single channel digital receiver at Nyquist rate
is also shown.

6.2 Model

6.2.1 Signal Model

The signal model comprises of Nf frames each having a unit energy pulse, s(t),
given by

ωtr(t) =

Nf
∑

j=0

djs(t− jTf − cjTc), (6.2.1)

where each frame is of duration Tf and the frame index is represented by j. The
chip duration is represented by Tc and cj ∈ {0 . . . Nc} indicates the time-hopping
code. dj ∈ {±1} is the polarity code, which can be used along with time-hopping
to smooth the signal spectrum. We consider a sufficiently longer frame duration to
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avoid inter-frame interference due to the delay spread of the channel.
A wide range of pulse shapes have been explored for UWB applications from

rectangular to Gaussian. Gaussian and their derivatives, usually called monopulses,
are effective due to the ease of construction and good resolution in both time and
frequency. In many cost effective hardware designs, these shapes are generated
without any dedicated circuits [GMHK02,MG07,YDH14,YDAH14]. For analytical
and simulation analysis, we have used the 2nd order Gaussian pulse [SGI08],

s(t) = A

(

1− 4πt2

ζ2

)

exp

(−2πt2

ζ2

)

, (6.2.2)

The amplitude is adjusted through parameter, A, and pulse width is adjusted
through parameter, ζ.

The received signal is the distorted version of the transmit pulse with multipaths.
The TOA is defined as the time elapsed for the first arrival path to reach the receiver
from the transmitter. The received signal can be represented by

ωrx(t) =

Nf
∑

j=0

djr(t − jTf − cjTc) + n(t). (6.2.3)

where r(t) =
√

Eb

Nf

L
∑

l=1

αlrl(t − τl), Eb is the captured energy and
L
∑

l=0

α2
l = 1. The

gain and received UWB pulse for the l-th tap is given by αl and rl(t). The n(t)
is the AWGN process with zero mean and double-sided power spectral density of
N0/2. Without loss of generality, and for simplicity of analysis, we assume cj = 0
and dj = 1. TOA estimation problem is to estimate the first arrival path, τ1 = τtoa,
in the received signal (6.2.3).

6.2.2 System Model and Problem Formulation

We propose a multichannel receiver structure shown in Figure 6.1a. Each channel
uses a low complexity energy detector operating at sub-Nyquist rate. The energy
detectors can be implemented using low cost electronics as discussed in [ADH13].
Even though, we use multiple channels to enhance the performance, the overall cost
of the transceiver will still be less than a single channel digital UWB transceiver
operating at Nyquist rate shown in Figure 6.1b. This is due to the requirement
of extremely high speed and high dynamic range ADCs for digital UWB receivers
which are expensive. The energy detectors suffer from the noise due to the square-
law device, due to which the estimated TOA is sub-optimal in the mean-square-error
(MSE) sense. From the collected sub-optimal estimates of the multichannel receiver,
y = [τ̂1

toa, τ̂2
toa, . . . , τ̂N

toa], our objective is to arrive at a single estimate, τ̂toa, such
that MSE,

σ̂2
toa = E{(τ̂toa − τtoa)2}, (6.2.4)
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is minimum. where E denotes the expectation operator and τtoa is the true TOA.
N denotes the number of channels in the receiver structure.

For joint fusion and tracking problem discussed in Section 6.1, the sub-optimal
estimates from each channel are fused using a Kalman filter. This will filter out
the spurious range errors due to the imperfect channel, together with achieving
superior MSE performance. For dynamic TOA, we consider the following model for
analysis,

τtoa[n] = τtoa[n− 1] + vtoa[n− 1], (6.2.5)

vtoa[n] = κvtoa[n− 1] + uv[n], (6.2.6)

where the content inside square bracket indicates the time-interval, for example,
τtoa[n], indicates the τtoa at n-th time-interval. This model represents a dynamic
object moving away from the TOA receiver with a velocity vtoa. Equation (6.2.5)
assumes the resolution of the time interval to be 0.3 seconds and τ [.] is in nano-
seconds. In (6.2.6), vtoa is defined as an AR(1) process with constant κ. The dis-
tribution of the noise in the vtoa measurement, is given by uv[n] ∼ N (0, σ2

p), where
N denotes the Gaussian distribution.

We use the above defined dynamic TOA model to access the performance of the
proposed receiver structure. The noise in each channel is assumed to be independent
and identically distributed. This is due to the nature of the thermal noise generated
by the electronic components of each channel. We also assume perfect synchroniza-
tion for both single channel digital receiver and multi-channel sub-Nyquist receivers.
Even though in practical systems there will always be synchronization errors, the
effect of it will be similar in both structures. Also, this will enable us to study the
performance of the proposed multi-channel receiver structure with single channel
digital UWB receiver structure under similar background conditions.

6.3 Detectors

The two commonly employed receiver structures are as shown in the Figure 6.1.
The received signal passes through the low noise amplifier (LNA) and band pass
filter (BPF) of bandwidth B. The output signal of BPF is converted into energy
samples, x =

(

x1, x2, . . . , xNobs

)

, from which TOA is estimated. Here, Nobs, defines
the number of energy samples used in the estimation. Based on the energy collection
strategy different types of detectors exists. In this chapter, we consider the matched
filer which operates at Nyquist rate (1/Ts) and energy detectors operating at sub-
Nyquist rate (1/Tb).

6.3.1 Matched filter

In the matched filter, energy is collected by correlating the received samples with
the transmit pulse shape as shown in Figure 6.1b [VT04]. Matched filter can be
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mathematically expressed as

xn =

Np
∑

i=0

m(n + i)s(i), (6.3.1)

n̂toa = argmax
n

(x), (6.3.2)

τ̂toa = n̂toaTs, (6.3.3)

where, s(i) = s(iTs), represent the digitized transmit pulse and m(n) = ωrx(nTs),
represent the digitized received signal, sampled at interval Ts. In matched filter, the
energy samples, xn, are at Nyquist rate, 1/Ts. Energy detectors operating at the
sub-Nyquist rates are an interesting alternative to digital matched filter.

6.3.2 Energy Detector

Energy detector is an interesting alternative to matched filter based detector as they
are less complex and can operate at sub-Nyquist rate [ROD06, GS05, CRM+05].
However, these detectors suffer from the noise due to the square-law device and are
sub-optimal. Performance analysis of single channel energy detector for static TOA
estimation has been studied in [SGI08,GA03,GS05].

The structure for energy detector is as shown in Figure 6.1a. The structure is
amenable for a low-complexity analog implementation at sub-Nyquist rates [ROD06,
GS05, CRM+05]. In energy detector, the output signal from BPF is converted in
to energy samples, x =

(

x1, x2 . . . , xNobs

)

. TOA is estimated from these energy
samples using the equation below

n̂toa = f(x), (6.3.4)

τ̂toa =

(

n̂toa −
1

2

)

Tb, (6.3.5)

where, f(·), is the estimator function, which estimates the block-index/sample-
index of the first arriving path. The function, f(·), is chosen based on the channel
model. We will discuss this later. Equation (6.3.5) represents τ̂toa as the mid-point
of the corresponding estimated block and assumes that the true TOA is uniformly
distributed with in this block.

Without loss of generality, we assume, Tf to be an integer multiple of Tb and the
UWB pulse width is equal to Tb. Therefore, each frame consists of, Nobs = Tf /Tb,
blocks, each with energy, xn, n ∈ [1, . . . , Nobs], given by

xn =

Nf
∑

i=0

∫ (j−1)Tf +nTb

(j−1)Tf +(n−1)Tb

|r(t)|2dt. (6.3.6)

Typical variation of energy samples, xn, verses n is as shown in the Figure 6.2. In
energy detector, the energy samples are at sub-Nyquist rate, 1/Tb.
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Figure 6.2: Variation of energy samples, xn, verses block index, n. Parameters
Tf = 200 ns, Tb = 1 ns, SNR = 0 dB and Nobs = 200 are considered.

6.4 AWGN Channel Analysis

The best performance in terms of mean-square-error (MSE) for an unbiased esti-
mator is given by the Cramer Rao lower bound (CRLB) and for a TOA estimation
problem, this is given by [GTG+05,DCW08]:

σ2
τ ≥

1

8π2SNRβ2
, (6.4.1)

where β is the effective signal bandwidth defined by

β2 =

[
∫∞

−∞ f2|S(f)|2df
∫∞

−∞ |S(f)|2.df

]

, (6.4.2)

where S(f) is the Fourier transform of the transmit pulse, s(t).
In AWGN channel model, we consider a single-path model, with L = 1, α1 = 1

and τ1 = τtoa in (6.2.3). The probability density of xn, for matched filter and en-
ergy detector depends on whether the particular energy sample, xn, is signal+noise
sample or noise-only sample. For matched filter it can be shown that the probabil-
ity density functions under both hypotheses, H1

∼= xn is signal+noise sample, and
H0
∼= xn is noise-only sample, are given by

p(xn) ∼
{

N (Eb, σ2) under H1,

N (0, σ2) under H0,
(6.4.3)

where σ2 = N0/2 is the variance of the noise samples, and N denotes the Gaussian
distribution.

To derive the probability distribution function (PDF) of the energy samples
in energy detectors case, the function f(·) in (6.3.4) need to be defined. Under
the AWGN assumption, the received signal will have a single path, whose delay
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represents the TOA. Thus, optimal TOA estimation strategy here would be to pick
the energy sample having the maximum energy as n̂toa in (6.3.4). This selection
criteria is called maximal energy selection (MES) and is given by [SGI08]

n̂toa = arg max
n

(x), (6.4.4)

τ̂toa =

(

n̂toa −
1

2

)

Tb. (6.4.5)

The complementary cumulative distribution function (CCDF) of energy samples,
xn, for energy detector is given by [DCW08,DCW06,GSO06,SGI08]

P (xn > η) =











QM ′/2

(

Eb

σ ,
√

η

σ

)

under H1

exp
(

− ηNf
No

)M ′/2−1
∑

i=0

1
i!

(

ηNf
N0

)i

under H0

(6.4.6)

where QZ(a, b) denotes the Marcum-Q-function with parameter Z, P denotes the
probability, and M ′ ≈ Nf(2BTb +1) denotes the degrees of freedom (DOF). At high
SNRs the above equation can be approximated as [SGI08]

p(xn) ∼
{

N (µH1 , σ2
H1

) under H1,

N (µH0 , σ2
H0

) under H0,
(6.4.7)

The mean and variance of xn under both hypotheses is given by

µH1 = NfMσ2 + Eb, (6.4.8)

σ2
H1

= 2NfMσ4 + 4σ2E2
b , (6.4.9)

µH0 = NfMσ2, (6.4.10)

σ2
H0

= 2NfMσ4, (6.4.11)

where M = 2BTb + 1, is the degrees of freedom of noise and σ2 = N0/2.
If we choose the MES criteria for TOA estimation for both matched filters and

energy detectors as given in (6.3.1) - (6.3.3) and (6.4.4) - (6.4.5) respectively, then
an error can occur, if any one of the noise-only energy sample is higher than the
signal+noise energy sample. That is

xnno > xnsn , (6.4.12)

where xnsn and xnno are energies of signal+noise and noise only sample. For AWGN
channel, there will be only one signal+noise energy sample and all other samples
are noise-only. The correct selection will happen when xn < xnsn , for all the energy
samples except for the signal+noise energy sample. Thus, the probability of correct
selection, Ps, and probability of error selection, Pe, is given by [GSO06]
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Figure 6.3: Variation of MSE with SNR for a single channel energy detector and
matched filter based receivers. MSE is evaluated by averaging the estimated TOA
for 1000 random τtoa drawn from U [0, Tf = 200 ns]. Matched filter asymptotically
reaches the CRLB bound.

Ps =

∞
∫

xn=0

(

1−Q

(

xn − µH0

σH0

))Nobs−1

p(xn)dxn,

Pe = 1− Ps, (6.4.13)

where p(xn) is the density function of the energy samples for the detectors under
hypothesis H1. Q denotes the CCDF function of xn. Here µH0 , denotes the mean
values of xn for matched filter and energy detectors and is given by 0 and NfMσ2

respectively. σ2
H0

, denotes the variance of xn for matched filter and energy detectors
and is given by σ2 and 2NfMσ4 respectively.

It is not straight forward to arrive at the closed form expression for energy de-
tector’s Ps and Pe due to complex distribution functions (6.4.6). There is however
a loss of performance in energy detectors due to squaring and integration opera-
tion at sub-Nyquist rates compared to matched filter, operating at Nyquist rate.
Figure 6.3, shows the mean square error (MSE), performance for matched filter
and energy detector. MSE is evaluated by averaging the estimated TOA for 1000
random TOAs (τtoa) drawn from U [0, Tf = 200 ns]. The sampling rate (1/Ts) used
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by matched filter is 1000 GHz1 and sampling rate (1/Tb) used by energy detector
is 1/1000-th that of matched filter and is equal to 1 GHz.

At high SNRs, to achieve the performance of the matched filter using multiple
energy detectors, we need the covariance of the signal+noise energy sample (under
hypothesis H1) to be same. We can approximate the probability distribution of
energy samples for energy detectors in to a Gaussian distribution at high SNR
as shown in (6.4.7). If there are K channels each having an energy detector to
independently estimate TOA, then signal+noise block in each detector will have a
probability distribution given by

ei ∼ N
(

µH1 , σ2
H1

)

, i ∈ [1, · · · , K]. (6.4.14)

Since eis are independent and identically distributed, then the best estimate for the
signal+noise block using K energy detectors is given by [Kay93] ,

e =
1

K

K
∑

k=1

ek. (6.4.15)

The probability distribution function of e is given by2

e ∼ N
(

µH1 ,
σ2

H1

K

)

. (6.4.16)

Let σ2
MF = σ2 and σ2

ED = σ2
H1

denote the variance of the xn under H1 for matched
filter and energy detector. From (6.4.3) and (6.4.16) to achieve the performance of
the matched filter using multiple energy detectors, we need

σ2
MF =

1

NED
σ2

ED, (6.4.17)

where, NED, is the number of energy detectors needed to have the same performance
as that of matched filter. For normalized energy per bit (Eb = 1), and using the
variance for signal+noise sample from (6.4.3), (6.4.7) and (6.4.9) we get

NED = lim
SNR→∞

σ2
ED

σ2
MF

(6.4.18)

NED = lim
σ2→0

(

2Mσ4 + 4σ2
)

σ2
, (6.4.19)

= 4. (6.4.20)

1Since TOA is continuous in time, very high sampling rate is employed to demonstrate that
matched filter will indeed reach the CRLB bound without much ambiguity due to discretization
of time due to sampling.

2See [PP02] to obtain the probability distribution function of a function of Gaussian random
variable.



6.5. Multipath Channel Analysis 117

Eb/N0 [dB]
8 10 12 14 16 18 20 22 24 26 28 30

M
S
E

[n
s2
]

102

103

104

Energy detector (MES)

Matched filter

Energy detector (WMESS)

Figure 6.4: Variation of MSE with SNR for single channel energy detector (with
selection criteria MES and WMESS) and matched filter receivers. MSE is evaluated
by averaging the estimated TOA for 1000 random τtoa drawn from U [0, 100 ns].

Thus, from (6.4.20), asymptotically, with the increase of SNR (Eb/N0), the number
of energy detector channels needed to achieve the same performance as digital
matched filter is equal to 4. We will show in simulation that this phenomenon is
indeed true in the later section.

6.5 Multipath Channel Analysis

Many UWB ranging applications have a channel response with several multipath
components, i.e. the received pulse in (6.2.3) has (α1, α2 . . . αL; τ1, τ2 . . . , τL), where
L is the number of multipaths. The TOA estimation problem is to identify the
leading edge (first arriving path, τ1). In multipath UWB channels, the matched filter
performance is not optimal since the shape of the pulse is lost in the channel due to
the frequency selective fading. Also, the magnitude of the energy sample containing
first arriving path may be smaller than the peak energy sample, therefore, using
MES criteria for TOA estimation, as represented in (6.4.4) and (6.3.2) does not
always yield true TOA [MCC+04]. Figure 6.4, shows the performance in terms of
MSE for matched filter and energy detector for 802.15.4a, residential LOS channel
(CM1 model) [MCC+04]. MSE is evaluated by averaging the estimated TOA for
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Figure 6.5: Averaged channel energy profile for 802.15.4a CM1 channel model. 100
different channel realizations are averaged.

1000 random τtoa drawn from U [0, 100 ns] 3. The sampling rate (1/Ts) used by the
matched filter receiver is 8 GHz and sampling rate (1/Tb) used by single channel
energy detector based receiver is 1/8-th that of matched filter and is equal to 1 GHz.

The performance of the energy detector can be improved by considering the a
priori information such as power delay profile (PDP). To accomplish this, we can
repose the TOA estimation problem as a multiple hypothesis testing problem. The
energy samples vector, x, is a 1 ×Nobs vector, out of which, Ne blocks are having
multipath signals, NeTb, represents the excess delay of the channel. If we define Hk,
as the hypothesis that the k-th sample denotes the first path arrival, then Hk = x,
with,

3Since Tf = 200 ns, we assume that delay spread of the multi-path channel is < 100 ns, so
that there is no inter-frame interference
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Figure 6.6: Fusion of multiple detector estimates for a dynamic TOA model using
Kalman filter.
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∫ nTb

(n−1)Tb

n2(t).dt,

for n = 1, . . . , k − 1
∫ nTb

(n−1)Tb

|ωrx(t) + n(t)|2.dt,

for n = k, . . . , k + Ne − 1
∫ nTb

(n−1)Tb

n2(t).dt,

for n = k + Ne, . . . , Nobs.

(6.5.1)

Here, x(n), denotes the n-th element of x and Hntoa , is the true hypothesis [SGI08].
If the PDP for the channel is available, then we can modify the hypothesis test from
MES to weighted maximum energy sum selection (WMESS), and is given by

n̂toa = arg max
k∈[1,...,Nobs]

{x(k : k + Ne)E} , (6.5.2)

where x(k : k + Ne) is a 1 × Ne vector having the Ne elements from x starting
from k and E is the Ne×1 vector denoting the a-priori channel energy information,
which is similar to correlating received energy samples with PDP. Averaged channel
energy profile, E, for IEEE 802.15.4a residential LOS channel model is as shown
in Figure 6.5. The performance of energy detector with WMESS algorithm is as
shown in Figure 6.4. Even though, the WMESS estimation algorithm require more
computation, its performance is better than matched filter at low SNRs for IEEE
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Algorithm 6.1: Kalman filter for tracking and fusing of TOA from multiple
sub-Nyquist energy detector estimates

Input: Prior state, sinit, prior state’s covariance, Minit, and covariance of plant
noise, Q.

Output: Tracked and fused TOA estimates, τ̃toa and variance of estimate, σ̃2
toa

1 s[1]← sinit ⊲ Initial state

2 M[1]←Minit ⊲ Initial states Covariance

3 τ̃toa[1]← sinit[1] ⊲ Initial TOA estimate

4 σ̃2
toa[1]←Minit[1](1, 1) ⊲ Initial MSE estimate

5 for i← 1 to I do

6 sprd ← As[i] ⊲ Predicted state

7 Mprd ← AM[i]A′ +Q ⊲ Predicted MSE

⊲ Compute Kalman gain

8 K = (MprdHT)(C + HMprdHT)−1

⊲ Update state from observations (y[n])

9 s[i + 1] = sprd + K(y[i]−Hsprd)
10 τ̃toa[i + 1] = s[i + 1](1) ⊲ Save fused TOA (τ̃toa)

11 M[i + 1] = (I2 −KH)Mprd ⊲ Update MSE

12 σ̃2
toa[i + 1] = M[i + 1](1, 1) ⊲ Save MSE

13 return τ̃toa, σ̃2

toa

802.15.4a CM1 multipath channel model. However, at high SNR there is a loss of
performance compared to matched filter.

The performance degradation at high SNR with WMESS criteria for energy
detector can become a problem when the TOA of the estimated target is dynamic
in nature. In the next section, we will discuss a mechanism to fuse the sub-optimal
estimates from multiple energy detector channels with AWGN and multi-path chan-
nels, to achieve improved performance for a dynamic TOA system.

6.6 Multi detector Fusion Using Kalman Filter

When the estimated TOA of the target is dynamic in nature, then joint fusing and
tracking using multiple independent TOA estimations from the energy detectors
can yield better performance. The dynamic nature of the TOA is represented by
(6.2.5) and (6.2.6). We can write this in compact form as,

s[n] = As[n− 1] + u[n], (6.6.1)

where s[n], A, and u[n] is given by

s[n] =

[

τ [n]

vtoa[n]

]

, (6.6.2)
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(c) MSE verses time (SNR = Eb/N0 = 10 dB)

t [s]
0 10 20 30 40 50 60 70 80 90 100

M
S
E
[n
s]
2

0

0.002

0.004

0.006

0.008

0.01

0.012

N = 1
N = 4
N = 7
N = 10
Mached Filter at Nyquist Rate

(d) MSE verses time (SNR = Eb/N0 = 20 dB)

Figure 6.7: Variation of MSE with time for the TOA estimates of digital matched
filter and multi-channel sub-Nyquist energy detector based receiver (N indicates
number of channels).

A[n] =

[

1 1

0 κ

]

, (6.6.3)

u[n] =

[

0

uv[n]

]

, (6.6.4)

where uv[n] is the noise with variance σ2
p and κ < 1 is a constant. The plant noise

u[n] ∼ N (0,Q), where Q is given by

Q =

[

0 0

0 σ2
p

]

. (6.6.5)
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We choose (6.6.1) as the state equation of the Kalman filter. The measurement
vector, y[n] =

[

τ̂1
toa[n], τ̂2

toa[n], . . . , τ̂N
toa[n]

]

, is the independent TOA estimates from
N energy detector channels. The measurement equation of the Kalman filter is
given by

y[n] = H[n]s[n] + w[n], (6.6.6)

where

H[n] =













1 0

1 0
...

...

1 0













, (6.6.7)

w[n] ∼ N (0, diag(σ2
1 , . . . σ2

N )). N denotes the number of detectors and diag(·) indi-
cates the diagonal matrix with diagonal elements represented inside the brackets.

With the above specified state and measurement equation, The Kalman algo-
rithm for tracking is as shown in Algorithm 6.1. In each iteration (represented by
i in the algorithm), the estimates from the energy detector channels, y[n], and the
dynamic model represented by (6.6.1) is used to optimally evolve the system state.
At each iteration, the fused estimate is extracted by

τ̃toa[n] = [s[n]]1 , (6.6.8)

where, [·]i, denotes the i-th element of the vector and its variance from the MSE
matrix, M (refer Algorithm 6.1), by

σ̃2
toa[n] = [M[n]](1,1) , (6.6.9)

where [·](i,j) denotes the (i, j)-th element of the matrix.
In our analysis, we have used same kind of detectors in each channel of a multi-

channel receiver and also the reliability or importance of each of the detectors are
assumed same. By appropriately selecting the measurement matrix H and covari-
ance of the measurements, we can extend the Kalman filter design to accommodate
different types of detectors with varying characteristics. In the next section, we will
assess the performance of the proposed fusion and tracking method.

6.7 Simulation Study

6.7.1 AWGN Channel

AWGN channel is simulated with Fs = 8 GHz with Tf = 200 ns, Ns = 1 and
B = 4 GHz. We set Tb = 1 ns, thus resulting sampling rate of the energy detector
is 1/8-th the Nyquist rate. Consider a linear variation of TOA (τtoa) observed by a
set of four independent energy detector channels (refer Figure 6.1). The observed
TOA of the four detectors are as shown in Figure 6.6a at SNR = 12 dB. The tracked
TOA using the Kalman formulation is shown in the Figure 6.6b. We consider prior
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Figure 6.8: Steady state MSE verses time, for digital matched filter and multi-
channel energy detector receivers (N indicates number of channels).

state, covariance of prior state and plant noise variance equal to [20, 1], 0.01I2 and
σ2

p = 0.0001 respectively.
The mean square error (MSE) variation with time for the detection schemes

with multiple energy detectors at various SNRs (Eb/N0) are illustrated in the Fig-
ure 6.7. Notice that the steady state variance decreases with the increase in number
of energy detector channels, N . Also, from Figure 6.7, at high SNRs, only few en-
ergy detector channels (operating at 1/8-th rate of matched filter) are sufficient to
achieve same performance as digital matched filter.

Figure 6.8, shows the variation of steady state MSE with number of energy
detector channels, N . Notice that steady state MSE of fusing 4 independent energy
detector estimates reaches that of digital matched filter estimate.

Figure 6.9, shows the number of energy detector channels operating in sub-
Nyquist (Fs/8) rate needed to match the performance of matched filter operating at
Nyquist rate (Fs). At lower SNRs, more number of energy detector channels, (NED),
are required to meet the matched filter performance. The number of energy detector
channels, NED, reduces with the increase of SNR and asymptotically approaches to
4, confirming with the analytical derivation of the previous section.
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Figure 6.9: Number of sub-Nyquist energy detector channels need to match the
performance of matched filter operating at Nyquist rate.

6.7.2 Multipath Channel

IEEE 801.15.4a CM1 channel model is simulated with Fs = 8 GHz with Tf =
200 ns, Ns = 1 and B = 4 GHz. We set Tb = 1 ns, thus resulting sampling rate
of the energy detector is 1/8-th the Nyquist rate. We use WMESS algorithm dis-
cussed in the previous section to arrive at TOA estimates from the energy samples.
We employ similar fusion and tracking strategy using the Kalman filter described
in the previous section for the dynamic TOA model. The prior state information,
covariance of prior state and other initialization parameters of the Kalman filter
are kept same as in the previous section. Figure 6.10, shows the variation of MSE
with time for different number of energy detector channels at 20 dB SNR. As ex-
pected the steady state variance decrease with the increase in the number of energy
detector channels. Figure 6.11, shows the variation of steady state MSE with num-
ber of sub-Nyquist energy detectors, as discussed earlier a single energy detector
with WMESS selection criteria outperforms the matched filter at low SNRs, how-
ever, at high SNRs more energy detectors are need to match the matched filter
performance. Figure 6.11, also illustrates that fusing two energy detector channel
estimates (NED = 2) can match the matched filer performance across the SNR
region.
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Figure 6.10: Variation of MSE with time for IEEE 802.14.4a CM1 channel model for
digital matched filter and multi-channel energy detector receivers (WMESS criteria
is employed, N indicates number of channels).

6.7.3 Energy Analysis

Energy of the samples used in the TOA estimation is given by, ‖x‖2
, where the

samples are computed using (6.3.1) and (6.3.6). For a multi-channel receiver with N

channels, the total energy is given by N ‖x‖2
. Figure 6.12 shows the averaged energy

over 100 random TOA pulses for multi-channel energy detector based receiver with
AWGN and IEEE 802.15.4a CM1 multipath channel.

Energy of the multi-channel receiver increases as the sampling rate, 1/Tb, de-
creases. This is because of an increase in the degree of freedom, M = 2BTb + 1,
which will increase the mean and variance of the energy samples, xn as per (6.4.7).
Also from Figure 6.12, despite increase in the number of channels to improve the
performance, the net consumed energy for similar performance is less for multi-
channel receivers for AWGN and multipath channels.

6.8 Conclusion

Estimating TOA with good accuracy is very important for localization and several
other applications. UWB with its large bandwidth can yield high precision rang-
ing as evident from CRLB Equation (6.4.1). For AWGN channel, matched filter
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based estimation yields optimum performance at high SNRs. However, matched
filter requires Nyquist-rate sampling and is inefficient in terms of cost and power
consumption. Energy detectors operating at sub-Nyquist rate is an interesting al-
ternative as it can be designed using cost effective analog circuits and is power
efficient, however, it lacks the precision in range measurements. In this chapter, we
showed that for an AWGN channel, we can achieve the performance of a matched
filter, by using a multi-channel sub-Nyquist receiver structure. We showed that
number of energy detector channels needed to meet the matched filters perfor-
mance is high at low SNRs and reduces as SNR increases, and finally converges
to 4 as SNR increases asymptotically. This is analytically derived in (6.4.20), and
confirmed through simulations (refer Figure 6.8 and Figure 6.9). A Kalman filter
with suitable choice of state-equation and measurement equations is designed to
perform the dual task of tracking the TOA as well as fusing the multiple energy
detector outputs. Filter equations are shown in Algorithm 6.1 and performance in
terms of MSE are demonstrated in Figure 6.7 and Figure 6.8. Result indicate that
for an AWGN channel, the steady state variance drops with the increase of number
of detectors, and require 4 energy detectors to have the same performance as a
digital matched filter.

Proposed tracking and fusion strategy of energy detectors is analyzed in simula-
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Figure 6.12: Energy of the samples used in the TOA estimation for digital matched
filter and multi-channel receivers (N indicates number of channels). Averaged en-
ergy of samples, x, over 100 random TOA pulses are presented.

tion for IEEE 802.15.4a CM1 multipath channel (residential LOS model) and results
are demonstrated in Figure 6.4, Figure 6.10, and Figure 6.11. From Figure 6.4, we
showed that by utilizing the a priori information like PDP about the multi-path
channel, the performance of TOA estimation can be improved. Results also indicate
that the two sub-Nyquist sampled energy detector estimates with WMESS criteria
can outperform digital matched filter at all SNR regions.

Analysis of the energy consumed for multi-channel energy detector is studied
and results are shown in Figure 6.12. It indicates the higher energy consumption
at lower sampling rates. Despite this, we observe that total energy consumed for
multi-channel energy detector receiver is far less compared to its digital counterpart.





Chapter 7

Compressive Sampling Based

UWB TOA Estimator

In this chapter, we discuss two compressive sampling based time of arrival (TOA)
estimation algorithms using a sub-Nyquist rate receiver. We also describe a novel
compressive sampling dictionary design for the compact representation of the re-
ceived UWB signal. One of the discussed algorithm exploits the a priori informa-
tion with regard to the channel and range of the target. The performance of the
algorithms are compared against the maximum likelihood (ML) based receiver us-
ing IEEE 802.15.4a CM1 line of sight (LOS) UWB channel model. The proposed
algorithm yields performance similar to the ML TOA estimation at high SNRs.
However, the computational complexity and the sampling rate requirements are
lesser compared to the ML estimator. Simulation results show that the proposed
algorithms can match ML estimator performance with only 1/4-th the sampling
rate at 25 dB SNR. We analyze the performance of the algorithm with respect to
practical constraints like size of the holographic dictionary and sampling rates. We
also discuss a new algorithm which can exploit the a priori information regard-
ing the UWB channel and the geographical constraints on the target that may be
available at the receiver. This algorithm can substantially boost the performance
compared to the algorithm without a priori information at low SNRs.

7.1 Background

Compressive sampling (CS) technology has far reaching implications and concern
a number of varied applications such as data compression, channel coding, medi-
cal imaging, etc. New applications for this technology are emerging constantly. In
this chapter, we address a classical estimation problem concerning ultra-wideband
(UWB) time of arrival (TOA) using compressive sampling technique. The com-
pressive sampling theory suggests that from a fewer number of acquisition samples,
which is less than that advocated by the Nyquist theory, an approximate recon-
struction of the original signal is possible. This involves choosing an appropriate

129
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measurement matrix for efficiently representing the received signal in lower dimen-
sion [CW08,HNT13]. The choice of reducing the sampling rate of the overall system
is important as this enables digital designs for wideband systems like UWB.

Availability of unlicensed frequency spectrum at frequency band less than 10 GHz
created a lot of excitement for employing UWB for various applications including
TOA. However, there are several challenges in adopting UWB at these frequency
bands. The two main challenges include the stringent emission regulations by the
regulatory bodies like federal communications commission (FCC) [FCC02, XF12].
This had a direct impact on the range and rate of the system. Secondly, wide
bandwidth requirement of UWB created bottleneck in the ADC design.

Availability of the mmWave spectrum without stringent emission requirements
has benefited the evolution of UWB technology in the 30 − 50 GHz spectrum.
This has improved the range and rate problems discussed earlier. However, large
bandwidth coupled with high time and amplitude resolution requirements for ADCs
still persist and pose significant challenge in the design of the digital UWB system.

A digital UWB transceiver can offer flexibility and scalability. Moore’s law gives
us processing power for “free”, and we can make savings by using a cheaper digital
front-end. However, UWB signal occupies extremely wide bandwidth, thus requir-
ing high sampling rate. For example, TOA estimation using the proposed rake
receiver structure in [LDM02], would require sampling rates in excess of 25 GHz.
The ADC design for wideband systems face several challenges in order to support
wide bandwidth, which include among others amplitude resolution, sampling rate,
analog bandwidth, cost, etc. [NMBH13,Mur16]. High speed ADCs for UWB TOA
systems can be designed using an interleaved flash ADC or bank of poly-phase
ADCs [SVC09,GMH+09]. However, they are sensitive to timing jitter, their ampli-
tude resolution is generally poor and are expensive in terms of the cost.

In this chapter, we propose a sub-sampled UWB receiver based on compres-
sive sampling. With IEEE 802.15.4a CM1 as the channel model [MCC+04,Mol05],
and Nyquist sampled maximum likelihood based UWB TOA receiver as a starting
point, we show that the requirements on RF front-end sampling rate can be signifi-
cantly loosened by employing recent theories on compressive sampling, without any
significant loss in performance at high SNR. To accomplished this, we will represent
the received UWB signal in a compact form using the columns of a carefully chosen
dictionary leading to a sparse signal representation. We propose a TOA estima-
tion method, which can estimate the TOA from this sparse representation. We also
analyze the performance trade-off of the proposed algorithm in terms of the dictio-
nary size, sampling rate and sparsity level. To the authors knowledge, compressive
sampling has not before been applied to the considered problem, which is a main
motivation for this chapter. In addition, we also show that a priori properties of
the IEEE 802.15.4a channel model opens up for improvement of the receiver perfor-
mance by taking statistical channel properties into account. This is a contribution
that is believed to have an interest for the reader in its own right.

TOA estimation involves estimating the propagation time between transmitter
and receiver. Accurate estimation of TOA is essential in several applications includ-
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ing positioning and communication. In many communication systems, the message
information is embedded in the location of the pulse. For example, TOA estimation
methods can be used to demodulate pulse position modulated (PPM), IR-UWB
symbols [YDAH14,KMKK06]. Another application of TOA is in the estimation of
the position of mobile nodes in a wireless sensor network (WSN). Here, TOA val-
ues are used to calculate the range from the anchor nodes using which the location
information can be derived [NZSH13,RRS+11].

There are several works concerning TOA estimation. Broadly, they can be clas-
sified as frequency-domain and time-domain methods. Frequency-domain meth-
ods, typically involve estimating the frequency domain channel response by sweep-
ing the channel using a multi-carrier modulation schemes such as OFDM. Then
applying a super-resolution algorithm such as root multiple signal classification
(MUSIC) [DFM94] or total least square-estimation of signal parameter via ro-
tational invariance techniques (TLS-ESPRIT) [Saa97] on the channel frequency
response [Xin04]. Due to the large number of multi-paths in the UWB propa-
gation environment, the implementation complexity of this method is extremely
high [FDMW06].

In the time-domain TOA estimation methods, the TOA is estimated directly
from the received time-domain signal by identifying the first multipath. UWB based
positioning systems uses wide bandwidth and provides high time resolution, there-
fore TOA estimation using time-based ranging is the method of choice in these
systems. The simplest of these methods include choosing the location of the peak
in the received signal as the TOA estimate [SGI08,JV02]. The main source of error
in these TOA estimation methods is due to the strongest mutipath components
arriving later than the first path. In UWB channels this can happen because each
multipath component show delay dispersion by itself. That means a short pulse
that, for example, undergoes only a single diffraction may arrive at the receiver
with a larger support compared to the direct path due to NLOS and antenna ef-
fects [BKM+06,SGI08]. This problem is addressed using techniques such as thresh-
olding [DCW08], using channel information [GSO06], etc. When these algorithms
are implemented using digital transceivers, they require sampling rate much higher
than the Nyquist rate. Our purpose in this chapter, is to develop a method which
can operate at lower sampling rate using compressive sampling technique.

IR-UWB based TOA estimation using ML approach is described in [SGI08]. We
will discuss this in greater detail in later section and use this method to compare
the proposed schemes in this chapter. When implemented digitally, ML based TOA
estimator requires Nyquist-rate sampling. Estimating the TOA in a sparse domain
using the received IR-UWB signal is the main theme of this chapter.

Before we continue the discussion, the main discussion topics of this chapter are
summarized as follows:

• A novel compressive sampling algorithms for the IR-UWB based TOA esti-
mation.

• A new compressive sampling dictionary design, so that the received UWB
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signal can be efficiently expressed as a linear combination of the columns of
this dictionary. This results in compact representation of the received UWB
signal.

• We modify the above TOA estimation algorithm to exploit the a priori chan-
nel information that may be available.

• We provide a performance comparison of the proposed methods with ML
based TOA estimation methods.

• We analyze the performance of the methods under practical scenarios for
different dictionary parameters and sampling rates.

Consequence of the above points indicate that a cost effective digital UWB TOA
estimators can be developed for the practical UWB applications, thus leading to a
progress beyond the state-of-the-art. Besides the achievement over the state-of-the-
art, this chapter compliments the current trend in the research pertaining to UWB
domain including [WLD14,BAN14,MASL+09,MXCZ08].

Reminder of this chapter is organized as follows. In Section 7.2, we will discuss
the received multipath signal. In Section 7.3, we will discuss the maximum likeli-
hood (ML) based TOA estimation. Section 7.4, introduces the UWB channels and
discusses the challenges in estimating the TOA in multipath UWB channels. We
use IEEE 802.15.4a CM1 line of sight (LOS) channel model as a reference. In Sec-
tion 7.5, we briefly discuss the compressive sampling theory and present a method
for sparse representation of the received UWB signal. This enables us to faithfully
represent the received UWB signal at lower sampling rate. Section 7.6, discusses
two TOA estimation algorithms. Section 7.7, provides the simulation results for
TOA estimation under different practical scenarios. Finally, Section 7.8, discusses
the conclusions from the results presented.

7.2 Signal Model

We consider a single user UWB system. The signal model comprises of Nf frames
each having an unit energy pulse, s(t), given by

ωtr(t) =

Nf −1
∑

j=0

djs(t− jTf − cjTc), (7.2.1)

where each frame is of duration Tf , and the frame index is represented by j. The chip
duration is represented by Tc and cj ∈ {0 . . . Nc} indicates the time-hopping code.
The dj ∈ {±1} is the polarity code, which can be used along with time-hopping to
smooth the signal spectrum.

The received signal is the distorted version of the transmit pulse with multipaths.
The TOA is defined as the time elapsed for the first arrival path to reach the receiver
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from the transmitter. The received signal can be represented by

ωrx(t) =

Nf −1
∑

j=0

djr(t− jTf − cjTc) + n(t), (7.2.2)

where,

r(t) =

√

Eb

Nf

L
∑

ℓ=1

αℓs(t− τl). (7.2.3)

Here, Eb is the captured energy and
L
∑

ℓ=1

α2
ℓ = 1. The gain for the ℓ-th tap is given

by αℓ. The n(t) is the AWGN process with zero mean and double-sided power
spectral density of N0/2. Without loss of generality, and for simplicity of analysis,
we assume cj = 0, Nf = 1, and dj = 1. The TOA estimation problem involves
estimating the first arrival path, τ1 = τtoa, in the received signal (7.2.2). The frame
duration, Tf , is chosen sufficiently larger than the delay spread of the channel to
avoid any inter pulse interference, that is Tf ≫ Td, where Td is the delay spread of
the channel.

7.3 ML based TOA estimation

In order to be self-contained, in this section, a short review of ML based UWB
TOA estimation is given [FDMW06,SGI08,WS02]. Consider a direct sampling re-
ceiver generating the sampled output of (7.2.2), defined by a vector r, such that its
elements r(i) = ωrx(iTs). The N = Tf /Ts, is the number of samples corresponding
to a frame and r ∈ RN . The received samples can be written as

r = W(τ )α + n, (7.3.1)

where α = [α1, . . . , αL]T represents the path-gain, n ∈ RN , are the noise samples
with its elements, n(i) = n(iTs), and W(τ ) = [wd1 , wd2 , . . . , wdL

] ∈ RN×L. The
wdi

, is an N dimensional vector defined as

wdi
=
[

0T
di

, wT , 0T
N−P −di

]T
,

where, w denotes a vector of discrete samples representing the transmit pulse s(t),
with its i-th element, w(i) = s(iTs), i = 0, . . . , P − 1. The 0di

is a zero vector of
size, di = ⌊τi/Ts⌋.

The ML estimation for the unknown parameter set ν =
[

αT , τ T
]T

, can be
obtained by solving the following optimization problem

ν̂ = arg min
ν

{

1

N
‖r− r̂‖2

2

}

, (7.3.2)
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where the elements of r̂ are given by

r̂(i) =

L
∑

ℓ=1

α̂ℓs(iTs − τ̂ℓ). (7.3.3)

Solving the optimization (7.3.2) is computationally intensive as it requires a search
over entire parameter space ν. However, if the mutipaths in the channel are sepa-
rable, then the unknown parameter estimation simplifies to [FDMW06,WS02]1

τ̂ = arg max
τ

{

L
∑

i=1

(

wT
di

r
)2

}

, (7.3.4)

α̂ = W(τ̂ )T r. (7.3.5)

In this case the estimation of the TOA, τ1, is decoupled from the estimation of
the other channel parameters. The optimization of (7.3.4), can be accomplished by
maximizing each term of the sum independently. We use this method to compare
the performance of the proposed algorithms.

7.4 UWB Channels

One of the most widely used channel models for indoor propagation was pro-
posed by Saleh and Valenzuela [SV87]. This model is adopted in IEEE 802.15.4a
CM1 standard for providing stochastic channel model for LOS residential condi-
tions [MCC+04, Mol05]. As per this model, the discrete-time impulse-response of
the UWB channel has clusters arriving in the Poisson distributed way and the mul-
tipath components (MPCs) within the cluster follows a Laplacian model. A model
with C clusters having R rays (MPCs) can be expressed as

h(t) =
C
∑

i=1

R
∑

j=1

ai,jδ(t− Ti − γi,j), (7.4.1)

where Ti represents the arrival time of the i-th cluster and γi,j represents the j-th
ray in the i-th cluster. In (7.2.3), we have combined the cluster and ray arrivals,
such that

[α1, . . . , αL] = [a1,1, . . . , aC,R] ,

[τ1, . . . , τL] = [(T1 + γ1,1), . . . , (TC + γC,R)] ,

where L = CR. Note that by definition γi,1 = 0. Therefore, T1 = τ1 = τtoa,
denotes the arrival time of first ray of the first cluster and is the TOA for the LOS

1Energy of the received pulse is assumed to be one.
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Figure 7.1: The PMF and PDF of λ and τpld respectively for IEEE 802.15.4a CM1
model. The sampling frequency of 8 GHz and 100 distinct channel realization are
employed.

UWB channel. For details about the cluster and ray arrival rates, refer to the IEEE
802.15.4a CM1 model described in [IEE07].

Below, we will derive new statistical parameters for the IEEE 802.15.4.a CM1
model, which can be utilized by the TOA estimation algorithm to improve the
performance. For a multipath residential LOS channel proposed in IEEE 802.15.4a
CM1 model, if we consider all the significant paths that constitutes 80% of the total
energy, then the probability mass function (PMF) for the number of significant
paths, λ, that arrives before the strongest path is shown in the Figure 7.1(a).
Approximately 50% of the time the first arriving path is weaker than the strongest
path. If we define τpld as the peak to first path delay, that is, τpld = τpeak − τ1,
where, τpeak, is the location of the peak, then the probability density function of
the τpld is shown in Figure 7.1(b).

Channel a priori information shown in Figure 7.1(a) and Figure 7.1(b) combined
with the geographic constraint on the range can be used to improve the performance
of the proposed compressive sampling algorithms. We will discuss this in the later
section. In the next section, we will briefly introduce compressive sampling theory
and discuss the representation of the received UWB signal, r, in a sparse domain.
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Figure 7.2: Block diagram of the compressive sampling (CS) system for TOA esti-
mation. The βi(t), i = 1, . . . , M denotes the continuous time i.i.d normal processes
with zero mean and unit variance.

7.5 Sparse representation of UWB signal

Consider an N -point Nyquist sampled discrete-time representation of the received
UWB signal, r ∈ R

N obtained by sampling the received signal, r(t) using an ADC
at rate Fs. Consider the signal acquisition hardware shown in the Fig. 7.2. Here, the
signal is acquired at an effective sampling rate of Fu = Fs/U and each ADCs in the
M parrallel paths of compressive sampling front-end will operate at a rate Fu/M .
Where, U = N/M is the under-sampling ratio. A review on different compressive
sampling front-end for wideband signals can be found in [NMBH13]. The acquired
signal, y, can be viewed as a projection of r on a measurement matrix, Φ. The
elements of Φ are i.i.ds drawn from a normal distribution. That is,

y = Φr, (7.5.1)

and Φ is an M × N matrix. As shown in Figure 7.2, y ∈ RM is fed to the sparse
optimization routine, which will represent y in a compact form using the columns
of a carefully chosen dictionary leading to a sparser signal representation.

We consider a dictionary, D
T , whose dimension is N × Z, whose columns, di,

are the basis vectors in space RN , in which, r is sparse, that is

r =
S
∑

i=0

θℓi
di, (7.5.2)

where S ≪ Z is the sparsity of the received UWB signal in the dictionary domain.
The ℓi is the support of vector θ ∈ RZ , and θℓi

denotes the non-zero value at the
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support. The sparse optimization block of Figure 7.2, typically solves an optimiza-
tion problem to represent y, using a sparse vector θ̂ ∈ R

Z . For example, a basis
pursuit type of algorithm solves,

θ̂ = arg min ‖θ‖1 , (7.5.3)

subject to y = Hθ,

where H = ΦD is called holographic dictionary. From the sparse representation,
an estimate of the TOA, τ̂toa needs to be estimated.

In the reminder of this chapter, for the proposed structure in Figure 7.2, we
will discuss how to design a compressive sampling dictionary. Then we will propose
a TOA estimation algorithm, which will utilize the sparse representation of the
received UWB signal in the chosen dictionary domain to estimate the TOA. We
will modify the algorithm to utilize the a priori information regarding the channel
and the geographical constraints to improve the performance of the proposed TOA
estimation algorithm.

7.6 Method for sub-Nyquist TOA Estimation

In this section, first, in Section 7.6.1, we design the compressive sampling dictionary
for the TOA algorithms. Subsequently, two main algorithms of this chapter which
uses the above designed dictionary for TOA estimation are discussed in some detail.
In Section 7.6.2, we discuss the TOA estimation using a modified greedy search al-
gorithm, then the TOA estimation based on a priori channel information is studied
in Section 7.6.3.

7.6.1 Compressive sampling dictionary

As shown in (7.2.2), the received UWB signal is a scaled and delayed version of the
transmit pulse. The transmit pulse, s(t), is typically chosen as first or second order
Gaussian derivative pulse [YDAH14]. To construct the dictionary, we choose each
column of the dictionary, C

T (t, ∆), as shifted versions of the transmit pulse, that is

C
T (t, ∆) = [p0(t), · · · , pZ−1(t)] , (7.6.1)

where

pℓ(t) = s(t−∆ℓ), ℓ = 0, 2, · · · , Z − 1. (7.6.2)

The Z defines the number of atoms (columns) in the dictionary. The offset, ∆,
needs to be controlled to strike a compromise between the number of atoms needed
to faithfully represent the received UWB pulse and the size of the dictionary. The
∆ and Z are chosen such that Tf = Z∆. Equation (7.6.2) is expressed in terms of
continuous t and ∆. In practice, both these parameters are discretized such that t
is sampled at a particular sampling period Ts and ∆ is a multiple of Ts. We define
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D as uniform sampling of the dictionary C, and it is of the dimension Z × N as
each atom (pℓ(t)) in the dictionary is now a vector of length N . That is

D
T = [w0, . . . , wZ ] ∈ R

N×Z , (7.6.3)

where,

wℓ = [0ℓν , w, 0N−P −ℓν ]T ∈ R
N , (7.6.4)

with ℓ = [0, . . . , Z − 1] and ∆ = νTs, where ν is an integer constant, which can be
used to control the size of the dictionary.

7.6.2 TOA estimation algorithm

Consider discrete samples of the received UWB signal sampled at Fs represented
as a time-domain vector, r. Let y = Φr, denote the random projection of r on the
measurement matrix, Φ (refer to Figure 7.2), where Φ is a M × N matrix, with
its elements φi,j drawn from N (0, 1). As shown in Figure 7.1(a), for a LOS UWB
channel the first arrival path can be weaker than the strongest path. To locate
the true TOA, one has to search backward from the peak location to locate any
possible significant energy paths, which may not be strongest. To accomplish this
in sub-Nyquist domain, we propose a TOA algorithm as shown in Algorithm 7.1.

Input to the Algorithm is the vector y, Holographic dictionary, H, and the
parameter, K, which defines the number of paths to be searched. In line-7, HIk

,

denotes the matrix composed of the columns defined in the set Ik. The H
†
Ik

indi-
cates the pseudo inverse of HIk

. Also, all columns of H, are normalized, that is

‖hi‖2
2 = 1, ∀i ∈ [1, · · · , Z], where hi denotes the i-th column of the matrix H. It

can be noticed that in each iteration, the holographic dictionary, H, is searched
for the strongest delayed version of the transmitted signal, that is contained in the
residual signal, ek. After K iteration, the lowest indexed column of the holographic
dictionary, ℓ, is identified. Since each column in the dictionary is offset by ∆, the
TOA is estimated as τ̂toa = ℓ∆.

The performance of the algorithm depends on the offset, ∆, if ∆ is small, the
accuracy of the TOA estimation will be better, as the atoms of the dictionary
can resolve the TOA better. However, this will increase the dictionary size, Z as
Z = Tf /∆, thus increasing the memory requirements for the system.

If the number of paths searched, K, in the algorithm is too high then, there is a
potential problem of picking the wrong atom in the dictionary due to the noise and
if K is too small then there is a possibility of missing the atom which correspond
to the weaker first path. There exists an optimal K, at which the performance of
the estimator is maximum.

The TOA estimation performance can be improved by increasing the number
of random projections of UWB signal, since it aids better reconstruction [Don06,
CRT06]. However, this leads to higher sampling rate and increases the demands
on ADC resources, there by increasing the cost of the transceiver as discussed in
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Algorithm 7.1: TOA estimation algorithm

Input: y, H, K, ∆, e0 = y, k = 0, Ik = {∅}
Output: TOA estimate, τ̂toa.

1 repeat

2 t = arg max |〈hi, ek〉|, i = 1, · · · , Z
3 if k==0 then ℓ = t;
4 else if t<l then ℓ = t;
5 k = k + 1
6 Ik = Ik ∪ t

7 ek = y−HIk
H

†
Ik

y

8 until k ≤ K
9 return τ̂toa = ℓ∆

Section 7.1. In Section 7.7, the performance of Algorithm 7.1 is studied as well as
the rules-of-thumb is provided for its configuration.

7.6.3 TOA estimation with a priori information

If we know certain statistical properties of the channel beforehand, then we can
exploit this information to improve the performance of the TOA estimator. For
example, for IEEE 802.15.4a CM1 channel model, the probability distributions of
number of significant paths before peak-path, λ, and peak-to-first path delay, τpld,
are as shown in Figure 7.1(a) and Figure 7.1(b). From this we can notice that more
than 50% of the time the peak path is the first path, and also probability that the
first path is more than 20 ns away from the peak location is negligible. Another
important a priori information could be from the geographic constraints on the
range of the target, resulting in TOA values being τtoa < τmax

toa .
The above a priori information can be handled by modifying Algorithm 7.1,

such that, only the paths within a window interval before the peak are considered
for the TOA estimation. The modified algorithm is as shown in Algorithm. 7.2. In
the later section, we will show that the modified algorithm with a priori information
outperforms the Algorithm 7.1, which is agnostic to this information.

In the next section, we will assess the performance of the proposed algorithm
in simulations.

7.7 Simulation Study

In this section, the performance of the proposed methods are investigated by numer-
ical simulations that mimic a realistic UWB link. Residential LOS UWB channels
can vary depending on the environmental aspects such as plan of the building, type
of walls, obstacles, etc. The IEEE 802.15.4a UWB stochastic channel models, which
are developed based on actual measurements from the measurement setup described
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Algorithm 7.2: TOA estimation algorithm (with a priori information)

Input: y, H, K, ∆, e0 = y, k = 0, Ik = {∅}, τmax
toa , τmax

pld
Output: TOA estimate, τ̂toa.
// Search only in ⌊τmax

toa /∆⌋ columns of H

1 H=H(:, 1 : ⌊τmax
toa /∆⌋)

// Bound the first path in relation to peak

2 Ω = ⌊τmax
pld /∆⌋

3 repeat

4 t = arg max |〈hi, ek〉|, i = 1, · · · , ⌊τmax
toa /∆⌋

5 if k==0 then ℓ = t;
6 else if t<l and t>l+Ω then ℓ = t;
7 k = k + 1
8 Ik = Ik ∪ t

9 ek = y−HIk
H

†
Ik

y

10 until k ≤ K
11 return τ̂toa = ℓ∆
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Figure 7.3: The block diagram of the simulation bed for the performance evaluation
of TOA estimation algorithms.

in [MCC+04,Mol05] represents the practical UWB channels. Based on this channel
model, a simulation bed for a single user UWB system is developed for the evalua-
tion of the proposed TOA algorithms. The block diagram of this is as shown in the
Figure 7.3. We choose Fs = 8 GHz, Tf = 200 ns, and Nf = 1. We used a second
order Gaussian pulse of width of 1 ns as defined in [SGI08] as the transmit pulse.
Thousand distinct TOA values, drawn from a uniform distribution of [0 ns−50 ns],
is employed in the simulation. The TOA modulated pulses are received using 1000,
distinct realizations of IEEE 802.15.4a CM1 channel. We use the mean square error
(MSE), ǫ = E[(τtoa − τ̂toa)2], as the metric to assess performance. Here, τtoa, is the
true TOA and τ̂toa, is the estimated TOA. To give a full picture, we compare the
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Figure 7.4: The performance of the proposed method with number of paths
searched, K, and under-sampling ratio, U , for a fixed SNR = 24 dB. U = N/M = 4,
and K = 5, is employed in (a) and (b) respectively.

performance of the proposed algorithm with the ML estimation method described
in Section 7.3. The optimization described in (7.3.4) is evaluated, with L = 10 and
Fs = 8 GHz.

7.7.1 Choice of K and ∆

As discussed earlier, the choice of K and ∆ plays a significant role in the perfor-
mance of the algorithm. If the number of paths searched, K, in the algorithm is
high then there is a potential problem of picking the wrong atom (column) in the
dictionary due to the noise, however, if the K, is too small then we may miss the
true TOA, due to the possibility of earlier paths being weaker than the first path.
Typically K can be selected by solving the optimization problem

arg min
K

E{(τtoa − τ̂toa)2}, (7.7.1)

for a fixed, U , SNR. For a LOS UWB channel models like IEEE 802.15.4a model,
it is difficult to arrive at the closed form equation. We measure MSE, ǫ, for various
value of K as shown in Figure 7.4a, to pick optimal K. The MSE performance with
under-sampling ratio, U , is as shown in Figure 7.4b, as expected, the performance
deteriorate with the increase in U .
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Figure 7.5: The Performance of the proposed and ML based TOA estimation al-
gorithms. The second order Gaussian pulse of width of 1 ns is employed in the
simulation and ∆ = Ts is considered for the dictionary construction.

The performance of the proposed algorithm depends on the resolution, ∆, of
the dictionary. This is illustrated in the Figure 7.4b. The smaller resolution yields
better performance, however this requires larger dictionary size.

7.7.2 Performance with no a priori information

The performance of the Algorithm 7.1 is evaluated for various SNRs, under dif-
ferent practical settings such as dictionary size, sampling frequency, etc. We use
the simulation setup as discussed in the beginning of this section. Note that Algo-
rithm 7.1 does not assume any prior knowledge regarding the TOA range or the
UWB channel.

In Figure 7.5, the performance of the algorithm is evaluated for various under-
sampling ratio, U . As described above second order Gaussian pulse of width 1 ns
and ∆ = Ts are considered for the dictionary construction. As expected, the per-
formance degrades with the decrease of the sampling rate Fu = Fs/U .

In Figure 7.6, the performance of the algorithm is compared with the ML es-
timation method described in Section 7.3 for various ∆s at under-sampling ratio,
U = 4. As described in Section 7.6.1, the larger ∆, will ease the memory require-
ment of the TOA system due to the reduced dictionary size, however, this will result
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Figure 7.6: Performance of the proposed and ML based TOA estimation algorithms.
The ML algorithm with sampling frequency, Fs = 8 GHz, and proposed method
with under-sampling ratio, U = 4, i.e., Fu = Fs/U = 2 GHz, are compared with
different ∆s.

in inferior performance as shown in Figure 7.6.
The plots indicate that the proposed algorithm can yield similar performance as

ML estimation, with only fraction of the sampling rate at high SNRs. Based on the
environment, engineering trade offs between, ∆, U , and K need to be done while
employing the proposed compressive sampling TOA algorithm for TOA estimation.

7.7.3 Performance with a priori information

We use the same setup for the simulation as described in the beginning of this
section. Notice that in our simulation setup the TOA ranges are uniformly dis-
tributed between [0 ns− 50 ns]. We also know that the channel model employed is
IEEE 802.15.4a CM1 model. From Section 7.4, we notice that for this channel the
probability that τpld > 20 ns is negligible.

We evaluates the TOA estimation performance using Algorithm 7.2 with τmax
toa

set to 50 ns and τmax
pld set to 20 ns. The variation of MSE, ǫ, with SNR is given

in Figure 7.7. Notice that by exploiting the channel and geographical constraints
performance of the estimation at low SNR can be significantly improved.

To summarize, we have shown that the proposed TOA estimation algorithm,



144 Compressive Sampling Based UWB TOA Estimator

SNR [dB]

20 21 22 23 24 25 26 27 28 29 30

ǫ
[n
s2
]

100

101

102

103

Algorithm-7.1
Algorithm-7.2

Figure 7.7: Performance comparison of Algorithm 7.2 and Algorithm 7.1 in the
presence of a priori information such as τmax

pld and τmax
toa . In the Algorithm 7.2,

we exploited a priori information that τmax
toa = 50 ns and from the probability

distribution of τmax
pld for IEEE 802.15.4a channel model (refer to Figure 7.1(b)), we

set τmax
pld = 20 ns.

together with the proposed compressive sampling dictionary, can achieve perfor-
mance comparable to ML algorithm with only a fraction of the sampling frequency
at high SNRs. TOA algorithms require a reasonable range to error ratio for it to
be viable for many applications, having a slight loss of performance (<5%), com-
pared to ML estimator with a significant savings in the ADC resources make the
proposed methods pertinent for many applications. At low SNRs, the performance
of the proposed method can be improved by exploiting the a priori information.

7.8 Conclusions

A compressive sampling based TOA estimation algorithm was discussed in this
chapter. The proposed algorithm along with the proposed dictionary can yield the
same performance as the ML based TOA estimation with only 1/4-th the sampling
rate at 25 dB SNR as shown in Figure 7.6 for IEEE 802.15.4a CM1 channel model.
We also analyzed, how the performance of the algorithm varies with the choice K
and U . This is shown in Figure 7.4. From Figure 7.4a, we notice that there exists an
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optimal K, which maximizes the performance for the choice of algorithm parame-
ters. Impact of the sampling rate on the performance is shown in the Figure 7.5.
As expected, the performance of the proposed method degrades with the decrease
of the sampling rate, Fu = Fs/U .

In certain TOA estimation scenarios, where the a priori information is available
then the performance of the proposed algorithm can be improved. In many scenarios
this can originate from the geographical constraints on the range of the target which
can upper bound the TOA so that τtoa < τmax

toa , or the channel model from which
we can limit the search interval by exploiting peak-to-first path lag, τmax

pld . We
modified the Algorithm 7.1 to Algorithm 7.2 to exploit these a priori information
and demonstrated the benefits through Figure 7.7.

The results are encouraging for the UWB TOA estimators working in the high
SNR scenarios. The consumption of ADC resources can be significantly reduced
thereby reducing the cost of the transceiver. In a typical UWB residential LOS
channels, high SNRs in excess of 25 dB can be achieved by averaging over many
independent received frames. The proposed TOA estimation method is sub-optimal
as it does not take into consideration the frequency selective characteristics of the
UWB antenna. How to address these practical issues is a topic for future research.





Chapter 8

Compressive Sampling Based Joint

PPM and TOA Estimator

Impulse radio ultra wideband (IR-UWB) signals are used in various applications
which requires joint localization and communication. Due to the large bandwidth of
the UWB signal, the estimation of time of arrival (TOA) and data symbols requires
high sampling rates. This chapter describes a sub-Nyquist rate receiver, which can
jointly estimate TOA and data symbols. We first represent the received UWB signal
in a new domain in which it is sparse. Then, we design physical layer waveforms
and estimation algorithms to exploit this sparsity for joint estimation of TOA and
pulse position modulation (PPM) data symbols. The performance of the receiver
is compared against the maximum likelihood (ML) based receiver using an IEEE
802.15.4a CM1 line of sight (LOS) UWB channel model. The proposed algorithm
yields performance similar to the ML based algorithms with only a fraction of
sampling rate at high SNRs (> 25 dB).

8.1 Background

There are two main constraints which preclude wide spread adaptation of IR-UWB
technology. Firstly, the stringent emission regulations by the regulatory bodies like
federal communications commission (FCC) [FCC02], which had a direct impact on
the range and rate of the system. Secondly, wide bandwidth requirement of UWB
created bottleneck in the ADC design. Availability of the mmWave spectrum with-
out stringent emission requirements has benefited the evolution of UWB technology
in the 30− 80 GHz spectrum. This has improved the range and rate problems dis-
cussed earlier. However, large bandwidth coupled with high time and amplitude
resolution requirements for ADCs still persist and pose significant challenge in the
design of the digital UWB system.

Typical UWB transceiver applications, including the first responder systems
discussed in [RRS+11], requires both data communication and ranging. The training
template based methods suggested in [SGI08] coupled with maximum likelihood

147



148 Compressive Sampling Based Joint PPM and TOA Estimator

(ML) estimation methods can be extended to the considered problem. However,
these methods when implemented digitally require sampling rates higher than the
Nyquist rate, requiring the ADCs to support sampling rates in excess of 8 GHz. This
makes the cost of the transceiver prohibitively high. In this chapter, we introduce a
method to jointly estimate the TOA and symbol value from the modulated received
pulses, without any training pulses and also show that the requirements on RF
front-end sampling rate can be significantly loosened by employing recent theories
on compressive sampling, without significant loss in performance at high SNR.
We present two algorithms catering to the two distinct mobility (dynamics) of the
target. We compare the results with the ML estimation to demonstrate the benefits.

Reminder of this chapter is organized as follows. In Section 8.3, we briefly discuss
the compressive sampling theory and present a TOA estimation technique using
sub-Nyquist rate. In Section 8.4.2, we present a method for joint estimation of
range and pulse position modulated (PPM) symbols for short range slowly moving
(dynamic) targets. In Section, 8.4.3, we modify the signaling structure to aid joint
estimation for highly dynamic targets. In Section 8.5, we discuss the numerical
results of the methods proposed in a practical UWB scenario. Finally, we conclude
with few key observations based on the results in Section 8.6.

8.2 System Model

We consider a single user UWB system. The signal model comprises of Nf modu-
lated frames, having a unit energy pulse, p(t), for each data symbol. The received
signal is the distorted version of the transmit pulse with multipaths. The TOA is
defined as the time elapsed for the first arrival path to reach the receiver from the
transmitter. The received signal can be represented by,

ωrx(t) =

∞
∑

i=−∞

Nf −1
∑

j=0

ri(t− jTf ) + n(t), (8.2.1)

where,

ri(t) =

√

Eb

Nf

P
∑

ℓ=1

αℓp
′(t−∆si − τl). (8.2.2)

Each frame is of duration Tf , and the frame index is represented by j. The si ∈
{0, . . . , L− 1} denotes the i-th PPM symbol and L denotes the modulation order.

Here, Eb, is the captured energy and
P
∑

ℓ=1

α2
ℓ = 1. The gain for the ℓ-th tap is

given by αℓ. p′(t) is the distortion of the received pulse due to the antenna and
channel effects. We consider a sufficiently longer frame duration to avoid inter-
frame interference due to the delay spread of the channel. The n(t) is the AWGN
process with zero mean and double-sided power spectral density of N0/2 1. Without

1We have assumed a LOS multipath channel with resolvable multi-paths, as observed in IEEE
802.15.4a CM1 channel model.
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Figure 8.1: Block diagram of the compressive sampling (CS) system for TOA esti-
mation. The βi(t), i = 1, . . . , M , denotes the continuous time i.i.d normal processes
with zero mean and unit variance.

loss of generality, we consider Nf = 1 for the rest of the discussion.

8.3 Sub-Nyquist TOA Estimator

Consider an N -point Nyquist sampled discrete-time representation of the received
UWB frame for the i-th symbol, ri ∈ RN , which is obtained by sampling the re-
ceived signal, ri(t), at the Nyquist rate, Fs. Consider the signal acquisition hardware
shown in the Fig. 8.1. Here, the signal is acquired at an effective sampling rate of
Fu = Fs/U and each ADCs in the M parallel paths of compressive sampling front-
end will operate at a rate Fu/M . Where U = N/M is the under-sampling ratio.
A detailed review on wideband sampling schemes can be found in [NMBH13]. The
acquired signal, yi, can be viewed as a projection of ri on a measurement matrix,
Φ. The elements of Φ are i.i.ds drawn from a normal distribution. That is,

y = Φri, (8.3.1)

and Φ is an M × N matrix. As shown in Figure 8.1, y ∈ RM is fed to the sparse
optimization routine, which will represent y in a compact form using the columns of
a carefully chosen dictionary leading to a sparser signal representation from which
TOA, τ̂toa, and data symbol value, ŝi, are estimated.

8.4 Joint TOA and PPM Symbol Estimation

In this section, first, in Section 8.4.1, we design the compressive sampling dictionary.
Subsequently, two main topics of this chapter, which include algorithms for jointly



150 Compressive Sampling Based Joint PPM and TOA Estimator

estimating the (τ̂toa,ŝi) by utilizing the designed dictionary for varying mobility of
the target nodes are discussed.

8.4.1 Dictionary construction

As shown in (8.2.1), the received multipath UWB signal constitutes a scaled and
delayed versions of the transmit pulse. Since most practical indoor UWB channels
have resolvable multipaths, to construct the dictionary, we choose each column of
the dictionary, C

T (t, Λ), as shifted versions of the transmit pulse, that is,

C
T (t, Λ) = [p0(t), · · · , pZ−1(t)] , (8.4.1)

where

pℓ(t) = p(t− Λℓ), ℓ = 0, 1, · · · , Z − 1. (8.4.2)

The Z defines the number of atoms (columns) in the dictionary. The offset, Λ,
needs to be controlled to strike a compromise between the number of atoms needed
to faithfully represent the received UWB signal and the size of the dictionary. The
Λ and Z are chosen such that Tf = ZΛ. Equation (8.4.2) is expressed in terms of
continuous t and Λ. In practice, both these parameters are discretized such that t
is sampled at a particular sampling period Ts, and Λ is a multiple of Ts. We define
D as uniform sampling of the dictionary, C, and is of dimension Z × N as each
atom (pℓ(t)) in the dictionary is a vector of length N . That is

D
T = [w0, . . . , wZ ] ∈ R

N×Z , (8.4.3)

where

wℓ = [0ℓν , w, 0N−P −ℓν ]
T ∈ R

N , (8.4.4)

with ℓ ∈ [0, . . . , Z−1] and Λ = νTs. Here, ν is an integer constant, which can be used
to control the size of the dictionary. The w is the sampled pulse shape used in the
transmission, that is, the i-th element of the vector, w, w(i) = p(iTs), i ∈ 1, . . . , Np.
We construct the holographic dictionary using the transformation H = ΦD, which
will be used later in the first multipath detection algorithm.

8.4.2 Quasi-static scenario

Consider a semi-static target, where the TOA can be assumed to be constant for
the duration of a block of Nb symbols. We propose a method to demodulate the
block of Nb symbols together with its associated TOA, τtoa. Consider the signaling
structure shown in Fig. 8.2. We propose a TOA estimator from the PPM modulated
signal as follows:

τ̂toa =
1

Nb

Nb
∑

i=1

(

τi −
L− 1

2
∆

)

, (8.4.5)
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Figure 8.2: Transmit signal for the proposed Algorithm 8.1. The Td is the delay
spread of the channel and ∆ is the PPM modulation index (width of the PPM-
bins).

where τi is the first multipath for the i-th symbol. If we assume that the i-th
transmit frame (refer to Fig. 8.2) contains symbol si, then τi = si∆+τtoa. Therefore,

τ̂toa = τtoa −
L− 1

2
∆ +

∆

Nb

Nb
∑

i=1

si. (8.4.6)

In most communication systems, the all symbols are equally likely. Therefore, si is
uniformly distributed between [0, L− 1]. Thus,

E(si) =
L− 1

2
, (8.4.7)

Var(si) =
(L − 1)2

12
. (8.4.8)

Where E(·) and Var(·) denote the mean and variance of si respectively. Using (8.4.7)
and (8.4.8) in (8.4.6), and employing the fact that for any constant c, E(csi) =
cE(si) and Var(csi) = c2Var(si), we get,

E(τ̂toa) = τtoa, (8.4.9)

Var(τ̂toa) =
∆2(L− 1)2

12Nb
. (8.4.10)

Therefore, the estimator is unbiased. Also, from (8.4.6), and for large Nb, one
can apply central limit theorem to show that the τ̂toa is Gaussian, that is τ̂toa ∼
N
(

τtoa, ∆2(L−1)2

12Nb

)

.
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Algorithm 8.1: TOA estimation algorithm

Input: Y, H, K, Λ, Nb, ∆
Output: TOA estimate, τ̂toa, demodulated symbols, d̂.

1 for i← 1 to Nb do

2 e0 ← Y(:, i), y← Y(:, i), k ← 0, Ik ← {∅}
3 repeat

4 t← arg max
p

|〈hp, ek〉|, p = 1, · · · , Z

5 if k==0 then ℓ← t;
6 else if t<l then ℓ← t;
7 k← k + 1
8 Ik ← Ik ∪ t

9 ek ← y−HIk
H

†
Ik

y

10 until k ≤ K
11 τ (i)← ℓΛ

12 η ← η +
(

τ (i)− L−1
2

∆
)

13 τ̂toa ← η/Nb, d̂ = (τ − τ̂toa)/∆

14 return τ̂toa, d̂

For a consistent estimator the distributions of the estimates become more and
more concentrated near the true value of the parameter being estimated as the
number of data points (Nb) increases. That is,

lim
Nb→∞

τ̂toa = τtoa. (8.4.11)

This is true for the proposed estimator of (8.4.5) because the variance of the Gaus-

sian estimates,
(

τ̂toa ∼ N
(

τtoa, ∆2(L−1)2

12Nb

))

, tends to zero as Nb tends to infinity.

Symbols are demodulated by removing the TOA bias (τ̂toa), that is,

ŝi = (τi − τ̂toa)/∆. (8.4.12)

The joint demodulation and TOA estimation algorithm is as shown in Algo-
rithm 8.1. Input to the algorithm is the matrix, Y, with its i-th column Y(:, i), i ∈
[1, . . . , Nb] having a sub-Nyquist samples corresponding to the i-th frame2, Holo-
graphic dictionary, H, with its columns hp, p = 1, . . . , Z, and the parameter, K,
which defines the number of paths to be searched. The inner loop of the Algorithm
8.1 tries to identify the lowest indexed support from the set of K significant energy
columns of the holographic dictionary. The first multipaths of the received frames
are collected in, τ (refer to line 11). The estimated TOA, τ̂toa, for the block of Nb

symbols is obtained by averaging the difference between Tmid and the first mul-
tipath, τ . The demodulated symbols are computed after removing the bias (τtoa)

2Frame and symbol are interchangably used since Nf = 1 is considered. The algorithm assumes
LOS resolvable channel, as observed in 802.15.4a channel for indoor LOS environment (CM1).
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Figure 8.3: Transmit signal for the proposed Algorithm 8.2. The Td is the delay
spread of the channel, ∆ is the PPM modulation index (width of the PPM-bins)
and Nb = 1 is considered.

Algorithm 8.2: TOA estimation algorithm

Input: Y, H, K, Λ, Nb, ∆
Output: TOA estimate, τ̂toa, demodulated symbols, d̂.

1 for i← 1 to Nb + 1 do

2 e0 ← Y(:, i), y← Y(:, i), k ← 0, Ik ← {∅}
3 repeat

4 t← arg max
p

|〈hp, ek〉|, p = 1, · · · , Z

5 if k==0 then ℓ← t;
6 else if t<l then ℓ← t;
7 k← k + 1
8 Ik ← Ik ∪ t

9 ek ← y−HIk
H

†
Ik

y

10 until k ≤ K
11 τ (i)← ℓΛ

12 τ̂toa ← τ (1), d̂ = (τ (2 : end)− τ̂toa)/∆

13 return τ̂toa, d̂

as shown in line 13. The performance of the proposed algorithm is studied in Sec-
tion 8.5. The choice of K and Λ plays a significant role in the performance of the
algorithm. If the number of paths searched, K, in the algorithm is high then there
is a potential problem of picking the wrong atom (column) in the dictionary due
to the noise, however, if the K is too small then we may miss the true first multi-
path, due to the possibility of it being weaker than the estimated first path. It is
shown in [YH16] that K = 5 provides an optimal performance in terms of mean
square error (MSE) for first multipath detection schemes at high SNR scenarios
(SNR > 25 dB).
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8.4.3 Dynamic scenario

If the nodes are highly dynamic in nature then TOA values may vary rapidly and
thus, Nb need to be small for the above transmit scheme. Therefore averaging
the difference between first multipath to the middle of the frame, Tmid, with a
small Nb will not yeild the true TOA. Thus, we propose an alternate signaling
structure, where this can be controlled effectively. Here, we start the frame with
an unmodulated frame, which can be used for TOA estimation, followed by Nb

symbols. The Nb can be chosen based on the rate at which the TOA of the target
node needs to be estimated3. An illustration of this signaling with Nb = 1 is shown
in Figure 8.3. The unmodulated frame is represented by Tsf1, and the data symbol
carrying frame is represented by Tsf2. The signaling structure is similar to dirty
template structure proposed in [L. 04].

The sub-Nyquist domain estimation method for TOA and the data symbols are
shown in the Algorithm 8.2. The inner loop computes the first multipath from the
received frames. From the first unmodulated frame TOA, τ̂toa, is estimated, which
is used to demodulate the subsequent frames as given in line 12 of Algorithm 8.2.

8.5 Numerical Results

The IEEE 802.15.4a UWB stochastic channel models, which are developed based on
actual measurements from the measurement setup described in [MCC+04] represent
most practical UWB channels. In the numerical study, we employ IEEE 802.15.4a
CM1 channel model for indoor LOS channel, with the sampling rate, Fs = 8 GHz,
and a second order Gaussian pulse of width of 1 ns as the transmit pulse.

8.5.1 Quasi-static scenario

We study the performance of the Algorithm 8.1, with Tf = 200 ns, L = 4, and
∆ = 50 ns. We use the symbol error rate (SER) and MSE (ǫ = E[(τtoa − τ̂toa)2]),
to assess symbol and TOA estimation performance. The 100, 000 random symbols
are PPM modulated with 100 random TOA values, drawn from a uniform distri-
bution of [0 ns− 100 ns], with each block having Nb = 1000 symbols, as explained
in Section 8.4.2 is used in the simulation. The SER at various acquisition rates,
Fu = Fs/U , is studied. We compare the results with the ML estimator described
in [FDMW06,WS02]. Figure 8.4, shows the variation of the TOA and SER at vari-
ous SNRs for the under-sampling ratio U = 4, 8 and ML based estimation at 8 GHz.
From Figure 8.4, we notice that the performance of a compressive sampled receiver
above 25 dB is manageable for most applications, and thus provides a good trade-off
with respect to sampling frequency.

3We assume that TOA does not vary during Nb symbols.
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Figure 8.4: The performance of Algorithm 8.1 and ML method at various SNRs.
For ML estimation, sampling rate of Fs = 8 GHz is employed. For compressive
sampling algorithm sampling rates of Fu = 2 GHz, and 1 GHz are employed. The
Λ = Ts.

8.5.2 Dynamic scenario

We study the performance of the Algorithm 8.2, with Tf = 400 ns, L = 4 and
Nb = 1 (Tsf1 = 200 ns, Tsf2 = 200 ns) as described in Section 8.4.3. The 100, 000
frames each having random TOA and PPM symbols as described in Section 8.4.3
are used in the simulations. Each frame is passed through a randomly chosen IEEE
802.15.4a CM1 channel from the set of 1000 distinct channels. The symbol error rate
at various acquisition rates and dictionary constructions are shown in Figure 8.5(a)
and Figure 8.5(b).

From Figure 8.5, the performance of Algorithm 8.2 at high SNR is one to two
orders of magnitude worse than ML. From Figure 5(b), we notice that performance
at high SNRs deteriorates rapidly with the dictionary parameter ∆. The perfor-
mance benefit of Algorithm 8.2 with 1/4 of the sampling rate (U = 4) and ∆ = Ts,
provides 99% accurate symbol detection for SNRs higher than 30 dB. For many ap-
plications, this is an acceptable SER and the benefits of reduced sampling rate by a
factor of 4 outweigh the improvement in the SNR by using ML at higher sampling
rate.
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Figure 8.5: The performance of Algorithm 8.2 and ML method at various SNRs.
For ML estimation, the sampling rate of Fs = 8 GHz is employed.

8.6 Conclusions

Data communication and ranging are the two main applications of the IR-UWB
systems. In many IR-UWB transceivers this can be accomplished jointly using the
proposed signaling structure. Due to the wide bandwith of the IR-UWB signal,
ADCs employed in the UWB transceiver should support high sampling rates. This
issue can be resolved by using compressive sampling design with a careful choice
of dictionary, signaling structure and estimation algorithms. We show that a per-
formance degradation for 90% accurate symbol estimation is about 2 dB from the
ML for an undersampling ratio of U = 4, however, with the following benefits.

• Lower cost of transceiver due to the cheaper ADC as the cost of the ADC
increases with the sampling rate.

• Lower power consumption as the power increases linearly with the sampling
rate for the pipelined and sigma-delta ADCs [BKKC14].

The proposed algorithms also provide trade-off between sampling rate, memory
(dictionary size) and performance. In contrast to the proposed methods, the ML
based estimation performance monotonically improves with the SNR. However, at
high SNRs, the benifit of lower sampling rate outweighs the loss of performance.



Chapter 9

Summary and Future Research

Ultra-wideband (UWB) technology has an unprecedented opportunity to impact
future communication systems. Large bandwidth enables high precision localiza-
tion and robust communication systems. The propagation physics of UWB can
aid several applications which have harsh propagation environments such as first
responder systems, search-and-rescue, and mining. There are many GPS deficient
environments such as shopping malls, building, tunnels, etc., which require high
precision localization. UWB is an ideal technology for localization as it has unique
spectral characteristics coupled with a robust indoor propagation environment. The
possibility of efficient implementation of UWB transceivers using analog energy de-
tectors has made UWB an important contender for low-complexity, low-power and
low-cost communication and localization systems.

In this thesis we have focused on the physical layer and signal processing aspects
of UWB signals. While there are several research contributions in this area, there
are also many aspects which are still not completely understood. In the discussions
from Chapter 1 to Chapter 8, we have tried to highlight these gaps and have
provided solutions to some of them. Furthermore, there are several aspects which
are not addressed in this thesis. We have summarized them in Section 9.2. Below we
summarize the main conclusions from the results discussed in the previous chapters.

9.1 Conclusions

The main conclusion from Chapter 3, is that by designing the UWB signaling based
on the constraints of the underlying low-cost hardware, one can achieve high data
rate for short range communication. We proposed two signaling schemes which are
variant of PPM signaling for IR UWB communication. The results of the proposed
signaling methods indicate the possibility of achieving a higher bitrate in excess of
150 Mbps with low probability of error in detection, as suggested by the performance
curves using the parameters from our transceiver hardware (discussed in Chapter 1).
One of the signaling schemes called with-memory signaling required memory and
more complexity in the modulator and demodulators. However it can increase the

157
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range fourfolds compared to no-memory signaling. We also derived the theoretical
closed form expression for hard decision demodulators for the proposed signaling
schemes. We also showed that with-memory signaling can improve the detector
performance by approximately 1 dB at 10−2 SER compared to no-memory signaling.

Many communication systems require both localization and communication.
The synergy between communication and localization can benefit each other. In
Chapter 4, we discussed a methodology for utilizing the range information to arrive
at the transmission schedules for accessing the shared common channel in a fully
connected sensor network. We posed this as an optimization problem, the solution
of which is NP-hard. We proposed three sub-optimal algorithms CA, TSP and
IPA for solving them. The results indicate that throughput can be increased on
average by 3− 10 times for typical network configurations compared to traditional
methods. The complexity analysis for the proposed algorithms is also analyzed,
which indicates that the proposed methods are practically viable.

The main conclusion from Chapter 5 is the fact that when the multiple detector
outputs from a hardware platform are available, then fusing their results can yield
better performance in hypothesis testing than relying on a single detector output.
For example, comparing the performance of the energy detector alone with the
MAP fusion rule for multiple detectors indicates that a gain of 4 dB in terms of
signal to noise ratio (SNR) can be achieved for probability of detection greater than
95% with low probability of error (< 5%).

Estimating TOA with good accuracy is highly important for localization. Wide
bandwidth of UWB makes the cost of the digital transceivers prohibitively high.
Energy detectors operating at sub-Nyquist rate is an interesting alternative as it
can be designed using cost effective analog circuits and is power efficient. However,
it lacks the precision in range measurements. In Chapter 6, we propose a multi-
channel receiver with each channel having a low-cost energy detector operating at
a sub-Nyquist rate. We showed that the number of energy detector channels needed
to meet the digital matched filters performance is high at low SNRs and reduces
as SNR increases, and finally converges to 4 as SNR increases asymptotically. We
showed that a Kalman filter with suitable choice of state and measurement equa-
tions can perform the dual task of tracking the TOA as well as fusing the multiple
energy detector outputs. Another interesting result is that the net power consumed
by the multi channel receiver is lower than its digital counterpart.

Chapter 7 and Chapter 8 a compressive sampling technique to overcome the
ADC issue due to the wide bandwidth of UWB signals. In Chapter 7, a new ac-
quisition front end is proposed, using which the sampling rate of the ADC can be
significantly reduced. Two algorithms are proposed in this chapter which can op-
erate on the acquired sub-Nyquist samples to estimate the TOA. Results indicate
that the performance can match the ML based TOA estimation with only 1/4-th
the sampling rate. Also, we noticed that by using the a priori information from
channel and geography one can improve the performance at low SNRs.

Chapter 8 extended the idea of Chapter 7 towards joint estimation of TOA and
PPM symbols. Here two signaling methods based on the dynamicity of the target
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are proposed. From the results, once can notice performance degradation for 90%
accurate symbol estimation is approximately 2 dB from the ML based estimation,
however with a significant saving in ADC resources.

9.2 Future Research

In this section, we will highlight the aspects that are relevant to future research
directions. In Chapter 3, a hardware aware signaling is proposed using constraints
from the low cost in-house hardware. Extending the work towards other hardware
platforms and evaluating the realtime performance could be a topic for further
study. In Chapter 4, utilizing the range information for the all-to-all communica-
tion assumes a fully connected network. How to extend the ideas presented in this
chapter to a partially connected network is still an open problem. The impact of
the non-idealities pertaining to synchronization and timing estimation on the meth-
ods proposed in Chapter 5 and Chapter 6 are of interest. Also, in Chapter 6, the
Kalman filter performance can be further improved by using not only the dynamic
motion model, but also utilizing the maps on which the target is moving.

It is not possible to design an antenna for UWB with uniform gain across its
wide bandwidth. The effect of this renders the proposed algorithms discussed in
Chapter 7 and Chapter 8 sub-optimal. This is because the compressive sampling
dictionary design in these chapters does not take into account the effect of frequency
selective characteristics of the UWB antenna. In Chapter 7, a new acquisition front
end is proposed, using which the sampling rate of the ADC can be significantly
reduced. A circuit implementation of this front end could be an interesting problem.

In this thesis, the TOA estimation methods are designed for a LOS UWB chan-
nel. The performance of the proposed methods are evaluated using the multi-path
propagation models proposed in the IEEE 802.15.4a CM1 channel model. How-
ever, extending the methods to the NLOS scenario is a topic for further research.
Also, the performance of proposed schemes on different channel models that may
arise due to the operation in mmWave band needs further investigation. All the
algorithms and methods are evaluated in simulations. It would be of interest to
see how these algorithms perform in real environments using UWB hardware. The
ideas discussed in this thesis are applicable to the future evolution of the flexible
UWB hardware platform discussed in Chapter 1. This platform can be used for
joint ranging and communication applications. The platform has a digital process-
ing section comprising an FPGA, where the proposed techniques of this thesis can
be implemented. Even though in this thesis the applicability of the techniques are
demonstrated in simulation, the results provide an early insight into the achievable
performance.

Based on the above discussion, we foresee broadly three research directions
which hold much promise.

UWB circuit design: Accurate localization with a high refresh rate are key for
practical UWB systems. Many application scenarios can be opened provided the
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accuracy levels are within a few centimeters and refresh rates are within a few
milliseconds. This means a transceiver circuit should be able to generate pulses
of a few nanoseconds and make TOA measurements which are accurate up to a
few nanoseconds. The footprint of the circuit should be small enough to ensure
portability.

Signal Processing: Most of the UWB research in signal processing assumes that
the signal is in the 0−10 GHz band, However, availability of an unlicensed spectrum
with relaxed regulatory restrictions in mmWave band has brought renewed impetus
to UWB technology. The signal processing methods for UWB transceivers that
operate in this band are still largely unexplored.

Medium Access Control: UWB has significant potential to be one possible can-
didate for the 5G Internet-of-things (IOT). These networks are low-cost, low-power,
and they do not have a planned deployment. The problem of providing medium ac-
cess in a new type of network utilizing properties such as location, failure detection
and reconfiguration, among others, has high research potential.
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