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Abstract. Hidden Markov Models constitute an established approach
often employed for offline handwritten character recognition in digitized
documents. The current work aims at evaluating a number of procedures
frequently used to define features in the character recognition literature,
within a common Hidden Markov Model framework. By separating model
and feature structure, this should give a more clear indication of the rel-
ative advantage of different families of visual features used for character
classification. The effects of model topologies and data normalization are
also studied over two different handwritten datasets. The Hidden Markov
Model framework is then used to generate images of handwritten char-
acters, to give an accessible visual illustration of the power of different
features®.

1 Introduction

Transcription of digitized handwritten documents is an important task gaining
a lot of attention from the image processing and pattern recognition research
community. Degradation of documents over time, variation in writing styles,
and inconsistent document background based on the medium, are but a few of
the challenges encountered when working in this field, in particular for historical
handwriting. One of the methods that has been successful in this area are the
hidden Markov models (HMMs) [1]. Within natural language processing, these
models were used for speech recognition early on. They are good at handling
discrete as well as continuous sequences of data. Since text is often written along
one direction, handling text as a sequence of characters that can be explained
with a language model fits well within the HMM paradigm.

The process of training a HMM with a finite, discrete state space, depends
on computing a matrix of state transition probabilities denoted by A, a vector
of start probabilities denoted by 7, a matrix of state specific emission probabil-
ities distributions denoted by B. These are quantified using relevant training

! This project is a part of g2b, From quill to bytes, an initiative sponsored by the
Swedish Research Council ”Vetenskapsradet D.Nr 2012-5743) and Riksbankens Ju-
bileumsfond (R.Nr NHS14-2068:1) and Uppsala university.
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Fig. 1. An overview of the experimental setup with individual process blocks

examples. In the current context, we consider the Baum-Welch and Bakis algo-
rithms. The Baum-Welch algorithm is an Expectation-Maximization procedure
that tries to answer question of determining the (7, A, B) parameters for max-
imizing the HMM performance. However, there is an inherent directionality in
Latin based text, which is exploited in the left-right topology using Bakis algo-
rithm. Here the states move left to right but not the other way around. Further
details on implementing HMMs can be found in [2].

As HMMs are efficient at handling sequential information, images are often
processed using a sliding window. The sliding window approach can be used at
word or character level to identify words or characters respectively [1]. In the
current approach the content within each window is used to extract features,
which are then labeled. By concatenating labels of successive sliding windows, a
string is formed corresponding to the original image. An HMM-bank, containing
multiple disjoint HMMs is trained on the labeled training sequences. A query
image is then classified based on a scoring mechanism over all the HMMs in the
bank. All hidden Markov models in the bank are applied. The model giving the
most favorable overall likelihood is selected as the output. This setup provides
an ideal testing environment to understand the strengths of different image fea-
tures when used along with a sliding window HMM. A Support Vector Machine
(SVM) classifier is also trained on the features under study, in order to provide
a benchmark for comparison (Fig. 1(i)).

2 Architecture HMM Classifier

In order to evaluate various features we have used identical pre-processing and
classification procedures for all feature sets tested. As shown in Fig. 1 each image
is converted to a gray-scale image rescaled to 100 x 100 pixels (Fig. 1(a),(b)).
Binarization is carried out for computing specific features such as background
to foreground transitions. The image is then divided into overlapping patches
allowing for about 50% overlap over adjacent windows (can be stripes favored
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by Marti-Bunke type features or patch based Fig. 1(c),(d)). Features are then
extracted on each patch independently. The features thus accumulated over the
training data are then clustered using k-Means and a label is assigned to each
patch as per the cluster to which it belongs. The experiments are repeated with
and without whitening the feature vector to understand its behavior.

In the current context HMMs are primarily used as classifiers of labeled se-
quences. In transcription of documents in Latin based script one is likely to
encounter alphabetic letters in both upper and lower case, so an individual class
for each character in each case is defined. This architecture leads to an HMM-
bank with 52 individual HMMSs, one for each letter in upper and lower case.
Virtual beginning and end states are introduced, denoted by start and end, re-
spectively. Assuming the feature extraction step produces n segments there will
be n + 2 states in the HMMs. The classification of a query image is done by
converting it to a query string using the labels obtained from the k-Means clus-
tering. The query string is then passed to each character HMM in the bank and
a likelihood score is returned. A decision based on the maximum score returned
from HMM-bank results in the classification of the query image to a letter.

3 Feature Extraction

In the following section we provide a brief description of seven different feature
extraction methods. They have all found previous use in character recognition.
Some of these are unique to character recognition using HMMSs, while others
are widely known as generic feature extraction methods in image analysis and
computer vision.

3.1 Naive Strip features

Each image is binarized and then divided into vertical segments. Within each
segment, connected components are identified. Three maximal components are
picked based on the component length, C;. These components are then identified
as long, L if C; > n-wy, short, S if wy < C; < n-wy, or none, N if C; < wgy, where
wy is the width of the segment and n is a scale-factor. Each segment can thus
be identified with a triplet formed by £,S,N. There can be 10 combinations of
these triplets that form the class labels for this feature.

3.2 Marti-Bunke features

This is a nine-dimensional feature that is obtained for each vertical segment
of the image. This feature captures rough shape, texture and span information
of a character by computing some statistics and estimates over each segment.
The shape information is based on computing the upper and lower contour po-
sition of the character in each segment, and the gradient of the upper and lower
contours of the segment. The texture information is retained in the number of
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background-foreground transitions and by computing the number of foreground
pixels between the upper and lower contour divided by the height of the contour.
The character span is estimated by computing the mean, the center of gravity
and the second order moment of the segment [3]. For efficient computation of
these features binarized as well as gray-scale images are required. This feature
is a compact representation of the shape information, but lacks a scale estimate
that is required in differentiating the upper and lower case alphabet, for instance
in the case of z, o, ¢ etc.

3.3 Gabor features

The Gabor feature is built by dividing the gray-scale image into a grid. A complex
Gaussian kernel is created with varying sigma at different angles between the real
and imaginary part of the kernel (the argument of a complex number) [4]. The
mean of the absolute value of the convolution output is used as a threshold. The
count of instances that have exceeded this threshold in each grid at each scale
and orientation is cascaded to form the overall feature vector [5]. In the current
framework, the default settings used results in a forty-dimensional feature (5
scales x 8 orientations) per patch.

3.4 Discrete Cosine Transform features

Each patch is then subjected to a discrete cosine transform (DCT) [6]. As most of
the energy content of the image is contained in the low frequency, the coefficients
are reordered by zig-zag scan in each patch. The most significant coefficients per
patch can be picked up and cascaded to form the feature vector. In the default
settings the 10 most significant coefficients are picked for each patch.

3.5 Histogram of Oriented Gradients features

For each of the patch gradients are computed along various orientations [7],[8].
A histogram over the computed gradients in the given patch is cascade into a
feature vector. In the current setup this is a 31-dimensional vector per patch.

3.6 Pyramid Histogram Of visual Words features

A PHOW feature is a bag of dense Scale Invariant Feature Transform (SIFT)
features at various scales [9]. This is a 512-dimensional feature vector due to the
accumulation of 128-dimensional SIFT features at 4 scales.

3.7 Local Binary Patterns features

Within each selected patch the center pixel is compared against every other
pixel in a 3 x 3 neighborhood. The pixelwise comparisons are encoded into
a 8-dimensional vector of 0Os and 1s depending on the gray scale value of the
central pixel being higher or lower than the neighbor, respectively. The vector
can thus be 128-dimensional, but is quantized into 58 possible patterns, i.e. a
58-dimensional vector averaging over the patch. [10].
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4 Experiments

All the experiments were conducted using two data sets as described below.

4.1 Data-sets

UJIPenchar2 The UJIPenchar2 dataset of online handwritten characters [11]
captures the stylus co-ordinates of 60 writers when writing two instances of each
character in upper and lower case. This data-set has recorded information of 120
instances of each character as an (x,y)-coordinate trace of the pen. This on-line
pen information is converted to offline images of characters using spline interpo-
lation tracing the pen trajectory from captured coordinates. These images are
subjected to morphological erosion with a 3 x 3 cross structuring element to
create characters of varying stroke width. Then a series of affine transformations
are applied to the resulting images such as clockwise and counter-clockwise rota-
tion about the vertical axis by 10 degrees, skewing the image in horizontal and
vertical direction and adding noise along the edges of the character. In total,
there are 3600 instances of each letter, some of which are shown in Fig.2.

NIST-19 The NIST? dataset consists of handwritten forms from 2100 different
users provided with a form based handprint recognition system. About 1472
instances per lowercase character as shown in Fig.2, were extracted from these
forms using the underlying recognition system [12].

4.2 Evaluation

On each of the datasets a random sample of 1012 images is picked, of which 512
are used for training and 500 images are used for testing. The results reported

2 The authors would like to thank Alicia Fornes and Computer Vision Center at
Universitat Autonoma de Barcelona for their help in extracting the character images
from the NIST data-set.
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here are percentage of classification accuracy %accuracy = %, where T, are im-
ages correctly labeled in the test set and N total number of test images averaged
over all the letters.

The experiments can be broadly classified into two classes. First, a regressive
evaluation of classification accuracy of the HMM classifier trained on each of the
features described previously is bench-marked against SVM using a polynomial
kernel of degree three. The focus has been on not only understanding the classifi-
cation capability of the features, but also capture the parameter settings that are
well suited for each method, such as the effect of whitening, and k-Means clus-
ters, which directly influence the number of labels at each state in the HMMs.
These parameter settings are then used in the experiments where the HMMs
are used as generative models for characters in order to further understand the
ability of the features to capture the characteristics of the various handwritten
characters. The results from the generative model are useful in visually inter-
preting the performance of features and also how spatial resolution affects the
performance of HMMs.

4.3 Regression Tests

Number of k-Means clusters: In state of the art HMMs for handwriting
transcription labeling the feature vector is done through training Gaussian Mix-
ture models. The features are used to train a mixture model with 4 distributions.
This model is in turn used to initialize and train a mixture with 8 distributions
and this procedure is repeated successively to obtain a model with either 16 or
32 distributions [13]. In a similar spirit we have clustered the features using k-
Means with k=5,10,...40 and found that going beyond k=20 does not yield any
significant improvement in classification accuracy but makes the HMM training
slower due to more labels. The effect of moving from k=10 to k=20 is shown in
Fig. 3. For all subsequent experiments k=20 was used in the k-Means clustering
step. When repeating the experiments a common initial seed is provided for the
random number generator in k-Means initialization and for input sampling re-
spectively. This is to ensure consistent training and testing files and consistency
in k-Means centroids initialization, thus ensuring reproducible and comparable
results.

Topology and whitening of data: Two transition matrix topologies were
tested in these experiments, the ergodic and the bakis topologies. The classifi-
cation accuracy for these topologies are mostly similar. The results with and
without of data whitening on the two HMM topologies are shown in Table 1.
The results from the HMM classifier are compared with SVM with a polynomial
kernel of degree three, which is one of the top performing classifier on NIST
digits dataset [14], with the entire image is used as input. This result is reported
in Table 1. However, to make the comparison more fair, we also feed the SVM
with feature data, in Table 4.3.
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Ergodic Bakis .
Feature | NS T UniPennNIST| WV hitened
Naive-Strip 12.0 [26.13] 12.02 |25.49
MartiBunke | 43.36_[60.63| 43.40 [67.09]
Gabor 52.21 [70.48] 5224 | 705
DCT 50.37 |72.82] 60.89 |73.76
HOG 63.36 [77.68] 6458 |76.82
PHOW 52.04 |70.48] 48.38 |68.68
LBP 12.37 [65.82| 41.56 |65.76
Naive-Strip 12.0 [26.13] 12.92 |25.49
Marti- Bunke | 37.68 [65.47| 382 | 66.0|
Gabor 5424 [71.99] 54.23 |71.93
DCT 61.43 [74.18] 61.09 | 74.0
HOG 65.16 |79.66] 66.48 |77.32
PHOW 55.04 |72.38] 53.03 |71.86
LBD 1530 [69.22] 44.16 [67.76

[SVM poly. deg. 3] 75.75 [85.63] - [ - | - |

Table 1. Classification accuracy percentages for HMM and SVM Classifiers

Sliding windows: It is a common practice in word and character HMMs to
apply the sliding window from left to right and feed the HMM with features
from thin overlapping image stripes. In this paper, we extend this paradigm, also
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sweeping top-down and testing square shaped patches, and investigate whether
the performance of the HMMs is improved. The size and step length of the sliding
window in these cases are calculated such that length of the label sequence
generated per image in both the methods are almost identical, thus no bias
in introduced in the HMM training. Table 4.3 shows the comparison between
Marti-Bunke and DCT. As the dimensionality of these features are nine and ten
respectively, they are comparable.

' o | "~
E TalR
‘ — Feature UniPenn |NIST

EEEEE | P’ HMM + MB + Strip | 43.46 [67.09
iah. & HMM + MB + Patch | 45.90 |75.83
: i L} TER HMM + DCT + Strip| 44.77 [67.85
il REEal tudet HMM + DCT + Patch| 59.79 [76.09

- - SVM + MB + Strip | 59.56 [82.23
SVM + MB + Patch | 65.79 |85.67

i e SVM + DCT + Strip | 58.54 |84.34

| jd s — SVM + DCT + Patch| 60.32 |85.0

Fig. 4. Character instances of B,A,G Table 2. Comparison of features for
from HMMs. top row: DCT+strip, patch vs strip based sliding window ap-
middle row: DCT+patch, bottom row: proach

MB+patch

4.4 Generative Tests

In the final experiments, we use the trained HMMs as generative models instead
of classifiers. The results are synthesized instances of characters, which gives
a glimpse of what a given HMM model is able to capture. It also enables us
to make a qualitative comparison between features through the analysis of the
emission matrix B. The most probable state transitions are generated from the
transition matrix A and the label at each state is generated from the emission
matrix B. The image corresponding to the label are generated from the k-Means
cluster center of that label. This approach has two benefits. Firstly, it provides a
qualitative way to visualize the results by showing the extent of variation in the
writing of each character as captured by the features. Fig. 4 helps in comparing
the letters generated with strip and patch mode, by comparing top and middle
rows, and also features from Marti-Bunke and DCT features by comparing the
middle and bottom rows.

Secondly, the generative experiments helps to analyze the learning transfered
to HMMs through the features. By construction, for an HMM with with N
states its transition matrix A is square and diagonal dominant as we are forcing
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Fig. 5. Reduced rank of emission matrices over various character HMMs

an inherent directionality through the way the image of the character is swept.
The variation in the various handwritten characters are captured in the emission
matrix B, which is a rectangular matrix of size Ns; x N;, where N; are number of
emission labels at each state. In order to capture this variation efficiently, matrix
B has to be of full rank. By performing a low rank approximation of B, we can
determine which feature is efficient. In the current experiment N, = 25, N; =
20. For an efficient feature, the rank for the low rank approximation of B needs
to be as high as possible, i.e as close to 20 as possible. Fig. 5 shows these results
in parallel coordinates [15] representation of the rank for Marti-Bunke and DCT

features, respectively. In order to reduce the width of the graph, only the result
for HMMs trained for upper case letters is provided.

5 Conclusions

The HMM performance of the ergodic and left-right topologies are almost identi-
cal over all the features. The Marti-Bunke features performs well when increasing
the number of segments the image is split into. However, Marti-Bunke features
suffers from performance issues when the sequence length get longer. Features
that are able to encode the scaling information, such as HoG, Gabor and DCT,
are able to outperform the other features such as Marti-Bunke and local binary
patterns. This is particularly due to effectively handling the scaling that occurs
over upper and lower case characters such as c¢,k,0,p,x. The best performing fea-
ture extraction appears to be HoG. DCT has only slightly worse performance
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than HoG, but is more compact (1/3 of the dimensionality). The results indicate
that performance of character recognition HMMs could be improved, by moving
from a strip based sliding window approach to a patch based. Finally, the SVM
classifier, which processes all feature values in parallel rather than as a sequence,
consistently beats HMM. This could indicate deficiencies in the state space and
transition matrix structures, with their resulting simple one-dimensional inter-
pretation, as well as in the k-Means dimensionality reduction.
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