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Abstract 

 

A main aspect of wellbore stability analysis is the selection of an appropriate rock failure 
criterion. The most commonly used criterion for brittle failure of rocks is the Mohr-Coulomb 
criterion. This criterion involves only the maximum and minimum principal stresses, σ1 and 
σ3, and therefore assumes that the intermediate stress σ2 has no influence on rock strength. 
When the Mohr-Coulomb criterion had been developed, it was justified by experimental 
evidence from conventional triaxial tests (σ1 > σ2 = σ3). Based on triaxial failure mechanics, 
the Mohr-Coulomb criterion has been extensively used to represent rock failure under the 
polyaxial stress state (σ1 > σ2 > σ3).  

In contrast to the predictions of Mohr-Coulomb criterion, much evidence has been 
accumulating to suggest that σ2 does indeed have a strengthening effect. In this research, I 
have shown that Mohr-Coulomb failure criterion only represents the triaxial stress state (σ2 = 
σ3 or σ2 = σ1), which is a special case that will only occasionally be encountered in situ. 
Accordingly, I then developed a new true-triaxial failure criterion called the Mogi-Coulomb 
criterion. This failure criterion is a linear failure envelope in the Mogi domain (τoct-σm,2 
space) which can be directly related to the Coulomb strength parameters, cohesion and 
friction angle. This linear failure criterion has been justified by experimental evidence from 
triaxial tests as well as polyaxial tests. It is a natural extension of the classical Coulomb 
criterion into three dimensions. 

As the Mohr-Coulomb criterion only represents rock failure under triaxial stress states, it is 
expected to be too conservative in predicting wellbore instability. To overcome this problem, 
I have developed a new 3D analytical model to estimate the mud pressure required to avoid 
shear failure at the wall of vertical, horizontal and deviated boreholes. This has been achieved 
by using linear elasticity theory to calculate the stresses, and the fully-polyaxial Mogi-
Coulomb criterion to predict failure. The solution is achieved in closed-form for vertical 
wellbores, for all stress regimes. For deviated or horizontal wellbores, Mathcad programs 
have been written to evaluate the solution. These solutions have been applied to several field 
cases available in the literature, and the new model in each case seems to be consistent with 
the field experience. 

Keywords: failure criteria, Mogi failure criterion, intermediate principal stress, polyaxial test 
data, wellbore stability. 
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1 Introduction 

Oil fields are usually drained from several platforms that extensively influence the 
development costs. The required number of platforms can be reduced by using non-vertical 
production wells. The deviated and horizontal wells will enlarge the drainage area from a 
single point. This will increase the productivity, and may subsequently decrease the number 
of planned platforms. In some cases, deviated boreholes are drilled to reach a substantial 
distance horizontally away from the drilling location (i.e., extended reach drilling). This is 
mainly used to access many parts of the reservoir from one location, which will also reduce 
the required number of platforms. Moreover, deviated boreholes are some times essential to 
reach locations that are not accessible through vertical boreholes. However, drilling non-
vertical boreholes brings out new problems, such as cuttings transport, casing setting and 
cementing, and drill string friction. An increased borehole angle will also increase the 
potential for borehole instability during drilling. Therefore, a substantial savings in 
expenditure can be achieved if non-vertical wells can be drilled, while avoiding instability 
problems during drilling. 

Nevertheless, drilling vertical boreholes will not guarantee the stability of the well. In all 
areas of the world, borehole instability causes substantial problems, even in vertical 
boreholes. For instance, in the Wanaea field of the Australian Northwest Shelf, the 
development plan proposed deviated and horizontal wells to minimize stability problems 
(Kingsborough et al., 1991).  

Wellbore stability is dominated by the in situ stress system. When a well is drilled, the rock 
surrounding the hole must take the load that was previously taken by the removed rock. As a 
result, the in situ stresses are significantly modified near the borehole wall. This is presented 
by a production of an increase in stress around the wall of the hole, that is, a stress 
concentration. The stress concentration can lead to rock failure of the borehole wall, 
depending up on the existing rock strength. The basic problem is to know, and to be able to 
predict, the reaction of the rock to the altered mechanical loading. This is a classical, though 
not very easy, rock mechanics problem.  

In order to avoid borehole failure, drilling engineers should adjust the stress concentration 
properly through altering the applied internal wellbore pressure (i.e., mud pressure) and the 
orientation of the borehole with respect to the in situ stresses. In general, the possible 
alteration of the borehole orientation is limited. It is therefore obvious that wellbore 
instability could be prevented by mainly adjusting the mud pressure. Traditionally, the mud 
pressure is designed to inhibit flow of the pore fluid into the well, regardless of the rock 
strength and the field stresses. In practice, the minimum safe overbalance pressure (well 
pressure − pore pressure) of typically 100-200 psi, or a mud density of 0.3 to 0.5 lb/gal over 
the formation pore pressure, is maintained (e.g., French and McLean, 1992; Awal et al., 
2001). This may represent no problem in competent rocks, but could result in mechanical 
instability in weak rocks. In general, the mud pressure required to support the borehole wall 
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is greater than that required to balance and contain fluids, due to the in situ stresses which are 
greater than the formation pressure. 

Stress-induced borehole failures can be grouped into the following three classes, as shown in 
Figure 1.1: 

• Hole enlargement or collapse due to brittle rock failure of the wall. Symptoms of this 
condition are poor cementing, difficulties with logging response and log 
interpretation, and poor directional control. Poor cementing of the casing could lead to 
problems for perforating, sand control, production and stimulation. Furthermore, 
when the hole starts to collapse, small pieces of the formation may settle around the 
drill string and pack off the annulus (i.e., hole pack-off), while medium to large pieces 
fall into the borehole and might jam the drill string (i.e., hole bridging). These may 
prevent pulling the string out of the hole (i.e., stuck pipe), and so the planned 
operations are suspended. Stuck pipe problems due to borehole collapse is illustrated 
in Figure 1.2. 

• Hole size reduction due to ductile rock failure presented by the plastic flow of rock 
into the borehole. This usually occurs in very weak shale, sandstone, salt and some 
chalk formations. Symptoms of this condition are repeated requirements of reaming 
and may result in stuck pipe. 

• Tensile splitting of the rock from excessive wellbore pressures (i.e., hydraulic 
fracturing). Severe loss of drilling fluid to the formation from fracturing often causes 
well control problems. The lost circulation will reduce the applied mud pressure and 
may result in inflow of pore fluid. The formation fluid will flow from high pressure 
zone (kick zone) to a lower pressured zone (loss zone), which is known as under 
ground blowouts 

Unplanned operations due to stress induced borehole failure resulting in loss of time and 
occasionally equipment account for at least 10% of drilling costs (Ewy et al., 1994; Santarelli 
et al., 1996; Aadnoy and Ong, 2003). For instance, Charlez and Onaisi (1998) presented two 
examples of stuck pipes due to wellbore instability in the Dunbar field (northern part of the 
North Sea). In both examples sidetracking of the well was essential and the cost was in the 
range of $2M for each case. 

1.1 Other parameters affects borehole stability 
We have highlighted that borehole instability is governed by in situ stresses, pore pressure 
and rock strength. In addition to these dominant parameters, borehole stability may directly 
or indirectly be influenced by the following parameters or effects: (a) mud chemistry, (b) 
temperature effects and (c) time-dependent effects. 

Most of the overburden consists of shaly formations. In highly reactive shale sections, mud 
chemistry is of extreme importance in addition to the mechanical aspects of instability. The 
mud composition changes as shales slough and disperse into the mud column, or by chemical 
interactions between the minerals in the formation and the mud. This indeed will alter the 
mud properties and rheology. Therefore, chemical additives are typically introduced in the 
mud according to the minerals in the formations. In highly reactive shales, oil-based mud is 
preferred as it is more inhibitive than water based mud. However, the disposal of oil-based 
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mud requires a special management to avoid the pollution of the environment, which has 
restricted its applications. 

 

                  
                                   (a)                                                             (b) 

 Figure 1.2. Stuck pipe problem due to borehole collapse. (a) Hole pack-off. (b) Hole bridge. 

 

                              Figure 1.1. Typical stability problems during drilling. 
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Temperature changes associated with mud circulation during drilling may alter the rock 
properties (Fjaer et al., 1992, p. 254). The change in rock properties may reduce or enhance 
borehole failure depending on the thermal effect. Maury and Sauzay (1987) reported that 
temperature fluctuations may also influence the stress distribution around the borehole. As 
the temperature increases, the tangential and vertical stresses will increase. However, 
temperature fluctuations will not influence the stress anisotropy around the borehole as the 
thermal effect should alter the tangential and vertical stresses by an equal amount (Zhou et 
al., 1996). 

Reactive shale instability is also time-dependent, and is governed by two intrinsic 
mechanisms: (a) consolidation and (b) creep. Consolidation is due to pore pressure gradients 
induced by fluid communication between the mud and pore fluid. Creep is described by a 
change of strain at a constant effective stress level. Both of these mechanisms will result in 
hole size reduction. In practice, it is difficult to distinguish between creep and consolidation 
effects. In general, consolidation will occur shortly after loading, while creep will govern 
later deformation (Fjaer et al., 1992, p. 253). The mud pressure and properties, and the 
temperature in the rock may vary during drilling operations, which in turn enhance borehole 
instability. All these parameters make it more difficult to directly pursue the time-dependent 
effects. The best approach is to quickly isolate the rock with a casing to minimize the 
potential borehole instability. 

1.2 Motivation for studying wellbore stability analysis 
Wellbore stability problems in exploration and production drilling cost the drilling industry 
certainly more than $100 million per year worldwide, and may approach one billion dollars 
annually. “Despite tremendous efforts pursued over the past years, wellbore stability 
problems continue to be experienced by the drilling communities. The practical consequences 
of wellbore instability are often the collapse of borehole wall” (Aadnoy and Ong, 2003). 
Borehole collapse could be predicted by adopting compressive failure analysis in conjunction 
with a constitutive model for the stresses around the borehole. The selection of a failure 
criterion for wellbore stability analysis is difficult and confusing (see, for example, McLean 
and Addis, 1990a). It is unclear to drilling engineers as which failure criterion should be used 
in the wellbore stability analysis. 

“Preferably a failure criterion should be based upon knowledge of the failure mechanism, but 
this is not always so. In fact, many failure hypotheses have been propounded as a result of 
theoretical reasoning only and could not be verified by experimental evidence” (Bieniawski, 
1967). The most commonly used failure criteria in wellbore stability analysis are Mohr-
Coulomb criterion and Drucker-Prager criterion. These failure criteria are based on quite 
different failure hypotheses. The Drucker-Prager criterion considers the influence of all three 
principal stresses on failure, while the Mohr-Coulomb criterion implicitly ignores the 
influence of the intermediate principal stress on failure. Despite this difference, both of these 
failure criteria have been verified experimentally to be good in modelling rock failure, based 
on conventional triaxial tests (σ1 > σ2 = σ3). On the other hand, in practice, the Mohr-
Coulomb criterion has been reported to be very conservative in predicting wellbore 
instability, while the Drucker-Prager criterion has been found to be overly optimistic about 
wellbore stability.  

In the field, the wellbore is normally under a polyaxial stress state (σ1 >σ2 > σ3), and the 
conventional triaxial stress state is a special case that may only occasionally be encountered 
in situ. Neither the Mohr-Coulomb criterion nor the Drucker-Prager criterion are based on 
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polyaxial failure mechanics. Actually, these failure criteria have been developed prior to the 
construction of the first apparatus that enabled true-triaxial tests. Hence, it is not surprising 
that these failure criteria are not very good in modelling borehole failure. 

This research will study the basic fundamentals of stress and rock failure mechanics. In this 
work, we will examine if the failure criteria can really be verified experimentally, based on 
polyaxial test data rather than triaxial test data, which is more appropriate to field scenarios. 
The main objectives of the research are to choose and, if necessary, develop the most suitable 
failure criterion in representing polyaxial failure mechanics. This true-triaxial failure criterion 
will be then utilized to develop a new three-dimensional stability model to prevent vertical, 
horizontal and deviated borehole failure. The subject of borehole failure is quite complex and 
confusing. For simplicity, therefore, we will only consider the mechanical instability of the 
wellbore in this research. The ultimate objective of the research is to improve borehole failure 
predictions, in order to minimize wellbore stability problems experienced by the drilling 
communities. 
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2 Basic theory of stress 

The concept of stress and its analysis in a generally loaded solid is not trivial, yet it is 
thoroughly fundamental for all work on rock mechanics. Stress inside a body will in general 
be non-uniformly distributed. It is not just a single value (i.e., a scalar), but a tensor quantity 
which has six independent components that will act and be sustained at any point inside the 
body. The evaluation of stress components is a matter of pure statics. These and other 
relevant concepts are elaborate in the following sections. 

2.1  Stress at a point 
If a body is uniformly loaded, stress can be thought of simply as force divided by the area of 
application. For instance, if a cylindrical homogenous solid having cross-sectional area A is 
compressed vertically by a uniformly distributed force F as shown in Figure 2.1(a), the 
vertical stress σ acting on and inside the cylinder is defined as  

.F
A

σ =                                                                      (2.1) 

In rock mechanics, stress is frequently measured in N/m2, that is, Pa (Pascals). Other units 
encountered include psi = 6.895 kPa, kg/cm2 = 98.1 kPa, and bar = 100 kPa. Furthermore, 
positive stresses are considered to be compressive and negative stresses are considered to be 
tensile. This is opposite to the sign convention used in other sciences involving elasticity. 

 

Figure 2.1. Definition of stress. 

The stress is always associated with a particular cutting plane. To illustrate this, consider the 
cross section A′ in Figure 2.1(b). Here the area A′ is greater than A, and the force is no longer 
normal to the cross section. The force can be decomposed into one component Fn that is 

F 

F 

A 

F

F 

A’’

A 

(b)(a) 
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normal to the cross section, and one component Fs that is parallel to the section (Figure 2.2). 
The quantity  

 n
n

F
A

σ ′=                                                                      (2.2) 

is called the normal stress, whereas the quantity 

 sF
A

τ ′=                                                                       (2.3) 

is called the shear stress.  

Therefore, the area of the cross section and its orientation relative to the force are important 
to define the state of stress. In addition, there are two types of stresses that may act along a 
surface, and the magnitude of each depends on the orientation of the surface. 

Figure 2.2. Decomposition of forces. 

In order to mathematically define the stress at a point, divide the cross sectional area A′ into 
an infinite number of subsections ΔA′, through which an infinitely small part ΔF of the total 
force F is acting (Figure 2.3). The force ΔF is decomposed into a normal component ΔFn and 
a shear component ΔFs. These forces will vary according to the orientation of ΔA′.  

ΔF

A′

ΔΑ′ΔΑ′

ΔFs

ΔFn

 

Figure 2.3. Local stress. 

At a point within ΔA′, each stress component is defined to be the limit value of the average 
force per unit area as the area ΔA′ approaches zero, that is 

F

Fn
Fs

A′
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0

lim ,n
n A

F
A

σ ′Δ ′→
=                                                            (2.4) 

 
0

lim .s

A

F
A

τ ′Δ ′→
=                                                             (2.5) 

This mathematical definition of the stress components is applied to indicate that stress is a 
point property. 

To give a complete description of stress state at a point, it is necessary to identify the stresses 
related to surfaces oriented in three orthogonal directions, that is, faces of infinitesimal cube. 
Each face of this cube has a normal stress and shear stress acting on it. Consider a surface 
normal to the x direction (i.e., x-plane). The normal stress is designated by σx, where 
subscript x shows that the normal component acts on the x-plane. The shear stress may act in 
any direction in its plane and therefore needs to be further resolved into two planar 
components, as illustrated in Figure 2.4. The shear stresses are designated by τxy and τxz 
where the first subscript denotes the plane that the stress acts on, and second subscript 
denotes the direction along which it acts.  

 

Figure 2.4. Development of shear stress components. 

Similarly, the stresses related to a surface normal to the y-axis are denoted σy, τyx and τyz, 
while stresses related to a surface normal to the z-axis are denoted σz, τzx and τzy (see Figure 
2.5). Thus, there are all together nine stress components at any point, which can be 
represented by the stress tensor: 

 .
x xy xz

yx y yz

zx zy z

σ τ τ
τ σ τ
τ τ σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

                                                           (2.6) 

Bearing in mind that the body is assumed at rest, there is equilibrium of forces and moments 
at all points throughout the body. Consider a small square of the x-y plane with stresses acting 
on it, as shown in Figure 2.6. While the forces associated with the normal stress components 
are clearly in equilibrium, no net rotational moment requires that 

 .xy yxτ τ=                                                                (2.7) 

Similarly, it may be shown that  

y

z

σ
x

τ

x

τxz

τxy
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 .and, zxxzzyyz ττττ ==                                                      (2.8) 

 

Figure 2.5. Stress components in three dimensions. 

 

Figure 2.6. Stress components in two dimensions. 

Allowing for the equality of the respective shear stress components will reduce the number of 
independent components of the stress tensor (2.6) from nine to six. These are three normal 
stresses (i.e., σx, σy and σz) and three shear stresses (i.e., τxy, τxz and τyz). Therefore, the state 
of stress at a point is completely specified by six independent components, and the stress 
tensor becomes 

 .
x xy xz

xy y yz

xz yz z

σ τ τ
τ σ τ
τ τ σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

                                                            (2.9) 

σy

σy

τyx

τyx

σx

σx

τxy

τxy

x

y

 

y

x

σx

τxz

τxy

σz

σy
τyz

τyx

τzy

τzx
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2.2  Stress analysis in two dimensions 

Consider the normal (σ) and shear (τ) stresses at an oblique plane in the infinitesimal square 
element as given in Figure 2.6. The normal of the cutting plane is oriented θ degrees from the 
x-direction, as shown in Figure 2.7. The triangle on the figure is in equilibrium, so that no net 
forces act on it. Equilibrium of forces implies that (Fjaer et al., 1992, p. 8): 

 2 2cos sin 2 sin cos ,x y xyσ σ θ σ θ τ θ θ= + +                                        (2.10) 

 1 ( )sin 2 cos 2
2 y x xyτ σ σ θ τ θ= − + .                                               (2.11) 

These equations show that if three stress components acting on two orthogonal planes are 
known, the normal and shear stress components on any given oblique plane can be 
determined.  

x

y

σy

τyx

σx

τxy

θ
τ

σ

 

Figure 2.7. Stress components on an oblique plane. 

In order to obtain the normal stress of a plane where no shear stress exists, we put τ = 0 in Eq. 
(2.11). This results in 

 
2

tan 2 ,xy

x y

τ
θ

σ σ
=

−
                                                           (2.12) 

where θ is the orientation of that plane. Eq. (2.12) will give two solutions (i.e., θ1 and θ2) 
corresponding to two directions for which the shear stress τ vanishes. These two directions 
are called the principle axes of stress and the associated planes are known as principal 
planes. The normal stresses associated with these directions, σ1 and σ2, are called the 
principal stresses, and are found by introducing θ1 and θ2, respectively, into Eq. (2.10), this 
results in (Brady and Brown, 1999, p. 29): 

 2 2
1

1 1( ) ( ) ,
2 4x y xy x yσ σ σ τ σ σ= + + + −                                          (2.13) 

 2 2
2

1 1( ) ( ) .
2 4x y xy x yσ σ σ τ σ σ= + − + −                                          (2.14) 



Adel Al-Ajmi                                                                                                          TRITA-LWR PhD Thesis 1026
 

12 

The Arabic subscript notation is used to make the convention that σ1 > σ 2. Therefore, in two-
dimensional stress analysis, the maximum normal stress (σ1) exists in the direction θ1 and the 
minimum normal stress presents in the direction θ2, where the shear stresses are zero. The 
principle axes are always orthogonal to each other. 

If the co-ordinate system is oriented so that the x-axis is parallel to the maximum principle 
stress and the y-axis to the other principle stress, then the stresses σ and τ in a general 
direction θ relative to the x-axis become: 

 1 2 1 2
1 1( ) ( ) cos 2 ,
2 2

σ σ σ σ σ θ= + + −                                              (2.15) 

 1 2
1 ( )sin 2 .
2

τ σ σ θ= − −                                                         (2.16) 

By plotting the corresponding values of σ and τ in a diagram, a circle is obtained with a 
radius of (σ1–σ2)/2 and center located on the σ-axis at (σ1+σ2)/2 (Figure 2.8a; Jaeger and 
Cook, 1979, p. 15). This circle is called Mohr’s circle. A point on the Mohr’s circle gives the 
magnitude of the normal and shear stresses for any plane oriented at an angle θ from the 
direction of the major principle stress σ1 (Figure 2.8b).  

It is seen from Figure 2.8a that the largest value for the shear stress is (σ1–σ2)/2, and occurs 
for θ = 45° and θ = 3π/4 = 135°. A special case arises if σ1= –σ2 and the centre of the Mohr’s 
circle is located at the origin of the σ−τ co-ordinate system. In this case the maximum shear 
plane is free of normal stresses and this state of stress is known as pure shear; this condition 
provides the basis for some of the failure criteria used in metal plasticity. In general, Mohr’s 
circle is a very useful tool in the analysis of conditions for the rock failure, as will be seen in 
Chapter 4. 

 

(a)                                                                             (b) 
Figure 2.8. Mohr’s circle and stress components across a plane. (a) Construction of Mohr’s circle. 
(b) The stress components acting on a plane correspond to a point on Mohr’s circle.  

2θ
σ1 σσ2

(σ1+σ2)/2

(σ1−σ2)/2

(σx,τxy)

θ
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2.3 Stress analysis in three dimensions  
The two-dimensional analysis considers the equilibrium only in two directions, say the x and 
y directions, and thus three independent stress components (i.e., σx, σy and τxy) are required to 
specify the state of stress at a point. The general analysis is three-dimensional and involves 
six independent stress components (i.e., three normal stresses and three shear stresses) in 
order to describe the state of stress at a point, as discussed previously. The actual values of 
these components depend on the orientation of the infinitesimal cube. Thus, the directions 
where the normal stress components have maximum and minimum values should be 
considered. This takes place when the shear stress components on all the faces of the cube 
vanish. These directions, therefore, are principle stress axes, and the stress tensor at the point 
will have the following simple form: 

 
1

2

3

0 0
0 0 ,
0 0

σ
σ σ

σ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

                                                        (2.17) 

where σ1 is the maximum principal stress, σ2 is the intermediate principle stress, and σ3 is the 
minimum principle stress (i.e., σ1 ≥ σ2 ≥ σ3). As a result, there are three principle stresses and 
their orientations that must be determined in order that the state of stress at a point is defined. 

In three-dimensional analysis, a direction in space is identified by the direction cosines 
(Figure 2.9): 

 x y zcos , cos , cos ,x y zλ α λ α λ α= = =                                          (2.18) 

where αx, αy and αz are the angles between the chosen direction and the x-, y- and z-axes, 
respectively. The vector λ = (λx,λy,λz) is a unit vector in the chosen direction, and so 

 2 2 2 1.x y zλ λ λ+ + =                                                          (2.19) 

The principle stresses can be found by solving the following determinant equation for σp 
(Goodman, 1989, p. 403): 

 0.
x p xy xz

xy y p yz

xz yz z p

σ σ τ τ
τ σ σ τ
τ τ σ σ

−
− =

−
                                          (2.20) 

This will give a cubic equation: 

 3 2
1 2 3 0,p p pI I Iσ σ σ− − − =                                                  (2.21) 

where 
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1

2 2 2
2

2 2 2
3

,

,

2 .

x y z

x y y z z x xy yz zx

x y z xy yz zx x yz y zx z xy

I

I

I

σ σ σ

σ σ σ σ σ σ τ τ τ

σ σ σ τ τ τ σ τ σ τ σ τ

= + +

= + + − − −

= + − − −

                               (2.22) 

 

αy

αz

αx

y

x

λ
∧

 

Figure 2.9. Direction cosines. 

The three solutions of this equation are the principal stresses σ1, σ2 and σ3 (i.e., the 
eigenvalues). The quantities I1, I2 and I3 are called stress invariants, which are uniquely 
defined regardless of the choice of the co-ordinate axes. 

The direction cosines λ1x, λ1y and λ1z identifying the principle axis corresponding to σ1 are 
found by the solution of the equations (Jaeger and Cook, 1979, p. 20): 

 
1 1 1 1

1 1 1 1

1 1 1 1

( ) 0,

( ) 0,

( ) 0.

x x y xy z xz

x xy y y z yz

x xz y yz z z

λ σ σ λ τ λ τ

λ τ λ σ σ λ τ

λ τ λ τ λ σ σ

− + + =

+ − + =

+ + − =

                                            (2.23) 

Similarly, the principle axes corresponding to σ2 and σ3 are found by the solution of the 
following equations: 

 

2 2 2 2

2 2 2 2

2 2 2 2

( ) 0,

( ) 0,

( ) 0.

x x y xy z xz

x xy y y z yz

x xz y yz z z

λ σ σ λ τ λ τ

λ τ λ σ σ λ τ

λ τ λ τ λ σ σ

− + + =

+ − + =

+ + − =

                                         (2.24) 

 

3 3 3 3

3 3 3 3

3 3 3 3

( ) 0,

( ) 0,

( ) 0.

x x y xy z xz

x xy y y z yz

x xz y yz z z

λ σ σ λ τ λ τ

λ τ λ σ σ λ τ

λ τ λ τ λ σ σ

− + + =

+ − + =

+ + − =

                                         (2.25)                        

Consequently, Eqs. (2.21-2.25) provide the principal stresses and their orientations at a point, 
which is adequate to specify the state of stress in three dimensions. If the co-ordinate system 
is oriented so that the x-axis is parallel to the first principal axis, the y-axis parallel to the 
second and the z-axis parallel to the third, the stress tensor will take the form presented in Eq. 
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(2.17). Relative to this set of co-ordinate axes, the stresses σ and τ in a general direction λ1, 
λ2 and λ3 are determined by (Fjaer et al., 1992, p. 12):  

 
2 2 2

1 1 2 2 3 3

2 2 2 2 2 2 2 2
1 1 2 2 3 3

,

.

λ σ λ σ λ σ σ

λ σ λ σ λ σ σ τ

+ + =

+ + = +
                                                 (2.26) 

Eq. (2.26) can then be utilized to construct the Mohr’s circle in three dimensions. Consider 
the plane in the cube in Figure 2.10a. For this plane λ3 = 0, and so the normal and shear 
components (σ and τ) on the plane are not affected by σ3, but by σ1 and σ2, and σ and τ are 
located on the circle spanning from σ2 to σ1 as shown in Figure 2.10b (i.e., σ1–σ2 Mohr’s 
circle). If the plane was perpendicular to σ1, that is, λ1 = 0, then the relationship between σ 
and τ can be plotted on the σ2 –σ3  Mohr’s circle. Similarly, if λ2 = 0, σ and τ are located on 
the σ1–σ3 Mohr’s circle. For all other directions, the stress conditions lie in the shaded region 
between the circles in Figure 2.10b. 

σ1

σ2

σ3

θ

σ1σ2σ3

σ

τ

 

                          (a)                                                                             (b) 

Figure 2.10. Mohr’s circle for three dimensional state of stress. 

2.3.1 Octahedral stress  

The direction for which the plane in Figure 2.10a is equally inclined to the principal axes, that 
is 

 1 2 3
1 ,
3

λ λ λ= = =                                                          (2.27) 

is called the octahedral plane, since it is parallel to a face of an octahedron with vertices on 
the principal axes. The normal and shear stresses acting on this plane are called the 
octahedral normal stress (σoct) and the octahedral shear stress (τoct). By substituting Eq. 
(2.27) in Eq. (2.26), the octahedral normal stress is found to be given by 
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 1 2 3 1
1 1( ) .
3 3oct Iσ σ σ σ= + + =                                                (2.28) 

To determine the octahedral shear stress, introduce Eq. (2.27) into (2.26) to give 

 2 2 2
1 2 2 3 3 1

1 ( ) ( ) ( ) ,
3octτ σ σ σ σ σ σ= − + − + −                                      (2.29) 

or  2 2 2
1 2 3 1 2 2 3 3 1

2 ,
3octτ σ σ σ σ σ σ σ σ σ= + + − − −                                   (2.30) 

which can be written in terms of stress invariants as 

 
1
22

1 2
2 ( 3 ) .

3oct I Iτ = −                                                      (2.31) 

2.3.2 Deviatoric stress 

The octahedral normal stress (σoct) defined in Eq. (2.28) is apparently the mean normal stress 
(σm) which remains unaltered during any change of co-ordinate axes, that is, the invariant 
I1/3. The mean normal stress is also known as the spherical or hydrostatic stress. It 
essentially causes uniform compression or dilatation. In contrast, distortion is essentially 
determined by the so-called deviatoric stress (stress deviator or stress deviation). The 
deviatoric stress (s) estimates the deviation of stress from the mean normal stress by 
subtracting σm from the normal stress components: 

 .
x xy xz x m xy xz

xy y yz xy y m yz

xz yz z xz yz z m

s s s
s s s
s s s

σ σ τ τ
τ σ σ τ
τ τ σ σ

⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

s                             (2.32) 

The principal axes of the deviatoric stress will be the same as those of stress. The deviatoric 
principle stresses (s1,s2,s3) can be established from the principle stresses and the spherical 
stress, and is given by 

 

1 1 1 2 3

2 2 2 1 3

3 3 3 1 2

(2 ) / 3,

(2 ) / 3,

(2 ) / 3,

m

m

m

s

s

s

σ σ σ σ σ

σ σ σ σ σ

σ σ σ σ σ

= − = − −

= − = − −

= − = − −

                                            (2.33) 

where s1 ≥ s2 ≥ s3.  

Many failure criteria are concerned with distortion. As these criteria must be independent of 
the choice of co-ordinate axes, the invariants of the deviatoric stress will be involved in 
failure criteria. These will be denoted by J1, J2, and J3 and are found to be (Jaeger and Cook, 
1979, p. 33) 
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1 x y z

2 2 2
2 x y y z z x xy yz zx

2 2 2
3 x y z xy yz zx x yz y zx z xy

J s s s 0,

J (s s s s s s ) s s s ,

J s s s 2s s s s s s s s s .

= + + =

= − + + + + +

= + − − −

                               (2.34) 

Using the above equations and rearranging, the octahedral shear stress can be given as 

 
1
2

2(2 / 3)oct Jτ = .                                                                  (2.35) 
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3 Stresses around boreholes 

Underground formations are subjected to a vertical compressive stress caused by the weight 
of the overlying strata, and horizontal stresses due to the confining lateral restraints. Under 
the action of these in situ stresses, prior to drilling a borehole, the rock mass is in a state of 
equilibrium that will be destroyed by the excavation. When a borehole is drilled, the load 
carried by the removed rock is then taken by the adjacent rock to re-establish equilibrium. As 
a result, a stress concentration is produced around the well, and so the in situ stresses are 
modified. If there is no support pressure introduced into the borehole, failure in the formation 
may take place. Therefore, maintaining equilibrium in the field to prevent rock failure 
requires the use of a support pressure which is usually provided by a pressurized fluid called 
“mud”. 

To assess the potential mechanical instability of a borehole, a constitutive model is needed in 
order to know the magnitude of the stresses around a borehole. The literature is rich with 
such constitutive models. Westergaard (1940) published one of the early works contributing 
to the knowledge of stress distribution around a borehole, in which an elasto-plastic model 
was developed. After that, many works using elasto-plastic models have been published (e.g., 
Gnirk, 1972; Risnes and Bratli, 1981; Mitchell et al., 1987; Anthony and Crook, 2002). On 
the other hand, there have been other efforts to develop a linear elastic constitutive model 
(e.g., Paslay and Cheatham, 1963; Fairhurst, 1965b; Bradley, 1979; Aadnoy, 1989b). Out of 
the numerous published models, linear elastic analysis may be the most common approach. 
This is due to its requirement of fewer input parameters comparing to other more intricate 
models.  

For instance, Risnes and Bratli (1981), and McLean and Addis (1990a) recommended the use 
of elasto-plastic model in wellbore stability analysis. Some of those authors, however, in 
other publications (McLean and Addis, 1990b; Svennekjaer and Bratli, 1998), applied a 
linear elastic model to carry out the stability analysis for field cases. In practice, the required 
input data for sophisticated models are rarely available (e.g., Maury and Sauzay, 1987; Fuh et 
al., 1988; Fleming et al., 1990; Woodland, 1990; Garrouch and Ebrahim, 2001).  

Consideration of anisotropic elastic behaviour will further complicate the stability analysis, 
and many more input parameters will be required. Moreover, the critical mud pressures are 
not significantly affected by elastic anisotropy for commonly encountered oilfield rocks 
(Aadnoy, 1988; Aadnoy, 1989a; Chen et al., 1996; Tan et al., 1999; Chen et al., 2002). 
Therefore, for wellbore stability analysis, we assume that rocks obey isotropic elastic 
behaviour. In this chapter, an isotropic linear elastic constitutive model is described. The 
model consists of a three dimensional analyses of stress concentration around an arbitrarily 
oriented borehole, due to anisotropic in situ stress combined with internal wellbore pressure. 
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3.1 Stresses in cylindrical co-ordinates 
A cylindrical co-ordinate system is the most convenient system for studying the state of stress 
around boreholes. Cartesian (x,y,z) and cylindrical (r,θ,z) co-ordinate systems are shown in 
Figure 3.1. The co-ordinate transformation between Cartesian and cylindrical co-ordinates is 
defined by the following equations: 

  )./arctan(,)( 2/122 xyyxr =+= θ                                          (3.1) 

and 

 .sin,cos θθ ryrx ==                                                   (3.2) 

y'

z'

x' r

z

θ

σr

σθ

σrθ

θ

y'

x'

z'

 

(a)                                                         (b) 

Figure 3.1. Transformation between Cartesian and cylindrical co-ordinates. (a) Rotation about z′-
axis. (b) Stresses in cylindrical co-ordinates. 

In the cylindrical co-ordinate system, at any point, the stress tensor becomes 

 ,
r r rz

r z

rz z z

θ

θ θ θ

θ

σ σ σ
σ σ σ
σ σ σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

                                                          (3.3) 

where σr is called the radial stress, σθ the tangential stress, and σz the axial stress. Note that 
the same designation σ is used for all the stress components. This notation will be adopted in 
this chapter and the following ones. These stresses can be related to the Cartesian co-ordinate 
stresses by the aid of stress transformation equation, that have the general form (Harrison and 
Hudson, 2000, p. 50) 

' ' ' ' ' ' ' ' ' ' '

' ' ' ' ' ' ' ' ' ' '

' ' ' ' ' ' ' ' ' ' '

,
x xy xz xx xy xz x x y x z xx xy xz

yx y yz yx yy yz y x y y z yx yy yz

zx zy z zx zy zz z x z y z zx zy zz

σ σ σ λ λ λ σ σ σ λ λ λ
σ σ σ λ λ λ σ σ σ λ λ λ
σ σ σ λ λ λ σ σ σ λ λ λ

⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

T

     (3.4) 

where the stress components on the right-hand side of this expression are assumed known, 
that is, in the (x′,y′,z′) co-ordinate system, and are required in the (x,y,z) co-ordinate system 
that is inclined with respect to the first. The transformation from (x′,y′,z′) to (x,y,z) is 



Stresses around boreholes
 

21 

 

described by the direction cosines (λxx′,λxy′,λxz′), etc. The term λxx′, for instance, is the 
direction cosine of the angle between the x-axis and x′-axis.  

The first matrix on the right-hand side of the equation is called the rotation matrix, and the 
last matrix is its transpose. The transformation from (x′,y′,z′) to (r,θ,z) can be obtained by a 
rotation θ around the z′-axis, as shown in Figure 3.1. The corresponding rotation matrix is 

 
cos sin 0
sin cos 0 .
0 0 1

θ θ
θ θ

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎝ ⎠

                                                          (3.5) 

Proceeding with the matrix multiplication on the right hand side of the stress transformation 
equation, using the above rotation matrix, and replacing the matrix on the left-hand side by 
Eq. (3.3), produces the following formulae for the stress components in cylindrical co-
ordinate: 

 

2 2
' ' ' '

2 2
' ' ' '

'

2 2
' ' ' '

' ' ' '

' ' ' '

cos sin 2 sin cos ,

sin cos 2 sin cos ,

,

( )sin cos (cos sin ),

cos sin ,

cos sin .

r x y x y

x y x y

z z

r y x x y

rz x z y z

z y z x z

θ

θ

θ

σ σ θ σ θ σ θ θ

σ σ θ σ θ σ θ θ

σ σ

σ σ σ θ θ σ θ θ

σ σ θ σ θ

σ σ θ σ θ

= + +

= + −

=

= − + −

= +

= −

                            (3.6) 

3.2 Stresses around deviated boreholes 
In this section, the stresses around a deviated borehole with anisotropic horizontal stresses are 
described. Assume that the in situ principal stresses are vertical stress σv, major horizontal 
stress σH, and minor horizontal stress σh. These stresses are associated with the co-ordinate 
system (x′,y′,z′), as illustrated in Figure 3.2a. The z′-axis is parallel to σv, x′-axis is parallel to 
σH, and y′-axis is parallel to σh.  

These virgin formation stresses should be transformed to another co-ordinate system (x,y,z), 
to conveniently determine the stress distribution around a borehole. Figure 3.2b shows the 
(x,y,z) co-ordinate system, where the z-axis is parallel to the borehole axis, the x-axis is 
parallel to the lowermost radial direction of the borehole, and the y-axis is horizontal. This 
transformation can be obtained by a rotation α around the z′-axis, and then a rotation i around 
the y′-axis (Figure 3.3).  
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                                                    (a)                                                                             (b) 

Figure 3.2. In situ stress co-ordinate system. 

 

Figure 3.3. Stress transformation system for deviated borehole. 

The direction cosines associated with the z-axis can be determined by the projection of a unit 
vector parallel to the z-axis onto the (x′y′z′) axes. This results in 

 ' ' 'cos sin , sin sin , cos .zx zy zzi i iλ α λ α λ= = =                                   (3.7) 

For the direction cosines associated with the x-axis, the result will be the same as Eq. (3.5), 
with i by ( / 2)i π+ , so that 
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x′
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x
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θ
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 ' ' 'cos cos , sin cos , sin .xx xy xzi i iλ α λ α λ= = = −                                (3.8) 

Finally, the y-axis is horizontal and makes angles α and ( / 2)α π+  with the x′ and y′-axes, 
respectively. Therefore the direction cosines associated with the y-axis are 

 ' ' 'sin , cos , 0.yx yy yzλ α λ α λ= − = =                                         (3.9) 

These nine direction cosines will form the rotation matrix 

 
cos cos sin cos sin

sin cos 0 ,
cos sin sin sin cos

i i i

i i i

α α
α α

α α

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎝ ⎠

                                       (3.10) 

and together with the known stress tensor 

 
0 0

0 0 ,
0 0

H

h

v

σ
σ

σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

                                                      (3.11) 

using the stress transformation equation, the virgin formation stresses expressed in the (x,y,z) 
co-ordinate system become: 

 

2 2 2 2

2 2

2 2 2 2

2 2

( cos sin )cos sin ,

sin cos ,

( cos sin )sin cos ,

0.5( )sin 2 cos ,

0.5( )sin 2 sin ,

0.5( cos sin )sin 2 .

o
x H h v

o
y H h

o
z H h v

o
xy h H

o
yz h H

o
xz H h v

i i

i i

i

i

i

σ σ α σ α σ

σ σ α σ α

σ σ α σ α σ

σ σ σ α

σ σ σ α

σ σ α σ α σ

= + +

= +

= + +

= −

= −

= + −

                             (3.12) 

The superscript “o” on the stresses denotes that these are the virgin formation stresses. As 
mentioned before, the excavation of a wellbore will alter the in situ stresses that are given in 
the above equation. The complete stress solutions, in cylindrical co-ordinate system, around 
an arbitrarily oriented wellbore are (Hiramatsu and Oka, 1968; Fairhurst, 1968): 
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2 4 2

2 4 2

4 2 2

4 2 2

2 4

2 4

4
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1 1 3 4 cos 2
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1 3 4 sin 2 ,
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1 3 sin 2

o o o o
x y x y

r

o
xy w

o o o o
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⎛ ⎞ ⎛ ⎞+ −⎛ ⎞ ⎛ ⎞
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⎝ ⎠
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⎛ ⎞
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⎝ ⎠
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θ

θ
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σ σ
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σ σ θ σ θ

σ σ θ σ θ

⎡ ⎤
= − − +⎢ ⎥

⎣ ⎦

⎡ ⎤⎛ ⎞− ⎛ ⎞ ⎛ ⎞
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⎛ ⎞
= − + +⎜ ⎟

⎝ ⎠

⎛
= + −

⎝
,

⎞
⎜ ⎟

⎠

 (3.13)   

where “a” is the radius of the wellbore, Pw is the internal wellbore pressure, and ν is a 
material constant called Poisson’s ratio. The angle θ is measured clockwise from the x-axis, 
as shown in Figure 3.3.  

Eq. (3.13) is derived under the assumption that there is no displacement along the z-axis, that 
is, a plain strain condition, in order to estimate σr, σθ, σz and σrθ. The longitudinal shear 
stresses, σθz and σrz, however, are determined assuming that all plane sections normal to the 
z-axis undergo the same deformations as a result of longitudinal shears. The equations for 
stresses around a circular opening were first published by Kirsch (1898), where the opening 
is assumed to be parallel to a principle stress axis (Charlez, 1991, p. 87). The stress field 
around a circular opening in any direction was first presented by Hiramatsu and Oka (1968) 
and Fairhurst (1968).    

3.3 Stresses at borehole wall in anisotropic stress field 
In a linear elastic material, the largest stress concentration occurs at the borehole wall. 
Therefore, borehole failure is expected to initiate there. For wellbore instability analysis, 
consequently, stresses at the borehole wall are the ones that should be compared against a 
failure criterion. These stresses are determined for deviated, vertical and horizontal wellbores 
in the following sections. 
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3.3.1 Deviated wellbore 
For deviated wellbore, the stresses at borehole wall are estimated by setting r = a in Eq. 
(3.13), which gives 
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3.3.2 Vertical wellbore 
In order to determine the stresses at wall of a vertical borehole, we set the inclination angle i 
= 0 in Eq. (3.12). For simplicity, we orient the horizontal axes so that the direction θ = 0 is 
parallel to σH (i.e., α = 0), as shown in Figure 3.4. Consequently, the stresses become 
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Figure 3.4. Stress transformation system for a vertical borehole. 
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3.3.3 Horizontal wellbore 

To estimate the stresses at the wall of a horizontal borehole, we put i = π/2 in Eq. (3.12), 
which gives  
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Introducing Eq. (3.16) into Eq. (3.14), the stresses at borehole wall will be 
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Figure 3.5 illustrates the stress transformation system corresponding to a horizontal wellbore. 
In this configuration, notice that the angle θ is measured anticlockwise from the x-axis. 
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Figure 3.5. Stress transformation system for a horizontal borehole. 
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For the case in which the wellbore axis lies along the maximum horizontal principal stress 
(i.e., α = 0), the stresses at borehole wall are 
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which are identical to those given by the Kirsch solution (see Obert and Duvall, 1967, p. 99; 
Charlez, 1997, p. 64, for example). 

3.4 Stress variation 

According to the equations obtained in the previous section, tangential stress (σθ) and axial 
stress (σz) are functions of the angle θ. This angle indicates the orientation of the tangential 
stress around the wellbore circumference, varies from 0 to 360 degrees. Consequently, the 
tangential and axial stresses will vary sinusoidally.  

Consider a typical wellbore in a reservoir which has wellbore pressure Pw = 5000 psi, 
Poisson’s ratio ν = 0.25, and in situ stresses of σv = 12,000 psi, σH = 10,000 psi and σh = 
9,000 psi. For a vertical wellbore, both tangential and axial stresses reach a maximum value 
(i.e., σθmax = 16,000 psi and σzmax = 12,500 psi) at θ = ±π/2, and the minimum value (i.e., 
σθmin = 12,000 psi and σzmin= 11,500 psi) at θ = 0 or π, as shown in Figures 3.4 and 3.5. These 
critical positions remain the same for any values of the in situ stresses (i.e., σv, σH  and σh). 
Furthermore, if the horizontal stresses are equal, then σθ and σz are constant and independent 
of the angle θ.  

Similarly, for a horizontal wellbore, the critical positions of σθ and σz are θ  = ±π/2 and θ = 0 
or π. The largest or smallest values of σθ (or eventually σz) will occur at either of these two 
positions, depending up on the values of the in situ stresses. If σH  > σh > σv, for instance, the 
largest and smallest σθ occur at θ = 0 or π and θ = ±π/2, respectively. For a deviated 
borehole, however, there is no particular a priori angle at which σθ and σz reach the 
maximum or minimum value. This results in complicating the borehole stability analysis for 
non-vertical boreholes, which will be discussed in subsequent chapters. 
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Figure 3.6. Tangential stress variation at the wall of a vertical borehole. 
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Figure 3.7. Axial stress variation at the wall of a vertical borehole. 
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4 Rock failure criteria 

The rock mechanics literature is rich with a number of failure criteria that have been 
developed. Among these criteria, Mohr-Coulomb criterion is much referred to and used in 
practice. This criterion involves only the maximum and minimum principal stresses, σ1 and 
σ3. It implicitly assumes that σ2 has no influence on rock strength. In general, the 
independence of rock failure on σ2 is a common assumption in failure criteria (Pan and 
Hudson, 1988; Aubertin et al., 2000; Yu et al., 2002). The situation in which σ2 = σ3 is a 
special case that may be encountered in situ (Haimson, 1978; McGarr and Gay, 1978). For a 
polyaxial stress state, in which σ2 > σ3, the intermediate principal stress has a pronounced 
effect. In contrast to the prediction of Mohr-Coulomb criterion, experimental work by 
Murrell (1963), Handin et al. (1967), Hoskins (1969), Mogi (1967; 1971b), Michelis (1985; 
1987a), Reik and Zacas (1978), Wawersik et al. (1997), Tiwari and Rao (2004), Haimson and 
Chang (2000; 2002; 2005), and others, has demonstrated that rock strength is higher when σ2 
> σ3.  

Numerous researchers have faced situations in which the Mohr-Coulomb criterion was found 
deficient. Vernik and Zoback (1992), for instance, found that the use of Mohr-Coulomb 
criterion in relating borehole breakout dimensions to the in situ stress conditions in crystalline 
rocks did not provide realistic results. Therefore, they recommended the use of a failure 
criterion that accounts for the influence of σ2 on rock strength, to represent rock conditions 
more realistically. Song and Haimson (1997) conducted laboratory tests of borehole 
breakouts in Westerly granite and Berea sandstone, and compared the observed breakouts 
with different failure criteria. They concluded that Mohr-Coulomb criterion is not applicable 
to the analysis of breakout formation, whereas criteria that include the strengthening effect of 
σ2, such as the Mogi criterion, were much more in agreement with the experimental 
observations. Single et al. (1998) pointed out that the effect of σ2 is important in underground 
excavation, and so, they suggested a modification for Mohr-Coulomb criterion. Ewy (1998; 
2001) and Kristiansen (2004) concluded that for the purpose of calculating the critical mud 
weight required to maintain wellbore stability, Mohr-Coulomb is too conservative due to the 
ignoring the strengthening effect of σ2. Yi et al. (2005) reported that the onset of sand 
production can not be properly predicted by adopting Mohr-Coulomb criterion. 

There are a number of numerical models that highlight the impact of σ2 on rock strength. For 
example, Zhou (1994) developed a numerical model to determine the borehole breakout 
dimensions based on various rock failure criteria. He found that Mohr-Coulomb criterion 
tends to predict larger breakouts than those predicted by other criteria that take into account 
the effect of σ2. Recently, Fjaer and Ruistuen (2002) developed a numerical model simulating 
rock failure tests for a granular material. Their simulations showed that σ2 has an impact on 
rock strength that is in agreement with several previously published experimental data.  

In order to consider the impact of σ2 on strength, several 3D rock failure criteria have been 
developed. For example, Wiebols and Cook (1968) introduced a theoretical model to 
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investigate the impact of σ2 on rock strength. They derived a failure criterion by calculating 
the shear strain energy associated with microcracks in the material.  The criterion requires the 
knowledge of the coefficient of sliding friction between crack surfaces, a parameter that 
cannot be determined experimentally. Therefore, numerical methods are required for practical 
use of the criterion. Desai and Salami (1987) introduced a 3D failure criterion that requires 
more than six input parameters, and Michelis (1987b) proposed another criterion in which 
four constants are involved (see Pan and Hudson, 1988; Hudson and Harrison, 1997, p. 112). 
In general, the 3D failure criteria are usually difficult in practice to apply, particularly for 
wellbore stability problems. In wellbore stability analysis, when the influence of σ2 on rock 
failure characteristics is considered, the Drucker-Prager failure criterion is often implemented 
(Marsden et al., 1989; McLean and Addis, 1990a). This failure criterion, however, has been 
reported to overestimate the intermediate principal stress effect, which may result in 
nonsensical stability predictions (McLean and Addis, 1990b; Ewy, 1999). Moreover, the 
Drucker-Prager criterion disagrees with the Mogi failure criterion, which considers the effect 
of σ2 based on true triaxial tests (i.e., polyaxial tests). The fundamental difference between 
these two criteria is elaborated upon later in this chapter.  

The usefulness of the Mogi failure criterion remains the subject of debate (Haimson and 
Chang, 2000; Colmenares and Zoback, 2002). In particular, the power-law form of the Mogi 
criterion has been criticised because its two parameters cannot be related to the standard 
parameters of the Coulomb failure law, such as the cohesion and the angle of internal friction.  

In this chapter, we first review and define a number of failure criteria that are commonly used 
in rock mechanics. We then examine published data from eight rocks, and show that a linear 
form of the Mogi criterion does a good job of representing polyaxial failure data. After that, 
the possibility of estimating Mogi strength parameters from triaxial test data is examined. In 
addition, we compare the Drucker-Prager criterion with polyaxial test data for a variety of 
lithologies, in order to assess its applicability in representing failure under polyaxial stress 
states.  

4.1 Coulomb criterion 
In 1776, Coulomb introduced the simplest and most important criterion. He suggested that 
rock failure in compression takes place when the shear stress, τ, that is developed on a 
specific plane (plane a-b in Figure 4.1(a), for example) reaches a value that is sufficient to 
overcome the natural cohesion of the rock, as well as the frictional force that opposes motion 
along the failure plane. The criterion can be written as 

 tan ,ncτ σ φ= +                                                             (4.1) 

where σn is the normal stress acting on the failure plane (plane a-b in Figure 4.1(a)), c is the 
cohesion of the material and φ is the angle of internal friction. Figure 4.1(b) shows the 
strength envelope of shear and normal stresses. As the sign of τ only affects the direction of 
sliding, Eq. (4.1) should be written in terms of  | τ |, but for simplicity we will omit the 
absolute value sign.  

As criteria (4.1) will always first be satisfied on a plane that lies in the direction of σ2, the 
value of σ2 will not influence σn or τ, and so this failure criterion implicitly assumes that σ2 
has no effect on failure. Alternatively, this criterion can be interpreted as being intended to 
apply only to situations in which σ2 = σ3. The Coulomb failure criterion, therefore, can be 
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represented by the maximum principal stress, σ1, and minimum principal stress, σ3. By 
applying Eqs. (2.10,2.11), one can obtain 

 1 3 1 3
1 1( ) ( ) cos 2 ,
2 2nσ σ σ σ σ θ= + + −                                          (4.2) 

and 

 1 3
1 ( )sin 2 ,
2

τ σ σ θ= −                                                      (4.3) 

where θ is the angle between the normal to the plane and the direction of the maximum 
principal stress (Figure 4.1(a)). From Figure 4.1(b), we find that 

 .
4 2
π φθ = +                                                                (4.4) 

Using Eqs. (4.2-4.4), Coulomb criterion given by Eq. (4.1) can be written as 
 1 0 3,C qσ σ= +                                                             (4.5) 

where q is the slope of the line relating σ1 and σ3, and is given by  

 tan (1 sin ) /(1 sin ),q ψ φ φ= = + −                                               (4.6) 

where ψ is the angle of the slope of the line relating σ1 and σ3 (Figure 4.2), and C0 is the 
uniaxial compressive strength, which can be related to the cohesion and the angle of internal 
friction by 

 0 (2 cos ) /(1 sin ).C c φ φ= −                                                    (4.7) 

 

                               (a)                                                                              (b) 

Figure 4.1. Coulomb failure criterion. (a) Shear failure on plane a-b. (b) Strength envelope in 
terms of shear and normal stresses. 
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Figure 4.2. Coulomb strength envelope in terms of principal stresses. 

From Eqs. (4.5-4.7), we find that the uniaxial tensile strength, T0, is given in terms of c and φ 
as 

 0 (2 cos ) /(1 sin ).T c φ φ= +                                                   (4.8) 

The true uniaxial tensile strength takes values, T0true, that are generally lower than those 
predicted by Eq. (4.8) (Brady and Brown, 1999). Consequently, a tensile cut-off is usually 
applied at T0true, as shown in Figure 4.3. In practical rock mechanics use, it is prudent to put 
T0true = 0 (Bradley, 1979; Brady and Brown, 1999; Zhao, 2000).  

 

Figure 4.3. Coulomb strength envelopes with a tensile cut-off. 

The Coulomb criterion can also be expressed in terms of the maximum shear stress, τmax, and 
the effective mean stress, σm,2 (Jaeger and Cook,1979, p.98): 

 max ,2cos sin ,mcτ φ φσ= +                                                     (4.9) 

where 

 max 1 3
1 ( ),
2

τ σ σ= −                                                         (4.10) 

 1 3
,2 ( ).

2m
σ σσ +

=                                                          (4.11) 

From this form of the Coulomb failure criterion, we can conclude that (a) the mean normal 
stress inhibits the creation of a failure plane is σm,2, and (b) there is predicted to be a linear 
relationship between the maximum shear stress and the effective mean stress at failure.  
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4.2 Mohr criterion 
Mohr criterion suggests that at failure the normal and shear stresses across the failure plane 
are related by 

 ( )nfτ σ= ,                                                           (4.12) 

where f is some function that assumed to be obtained experimentally. The relation (4.12) will 
be represented by a curve in the τ−σ space, such as AB in Figure 4.4. A linear form of Mohr 
criterion is equivalent to the Coulomb criterion. From the use of σ1–σ3 Mohr’s circle (Figure 
4.4), the Mohr criterion assumes that the fracture plane is striking in the σ2 direction (see 
section 2.3). Mohr’s assumption can be interpreted as justifying the extension of a two-
dimensional failure criterion into three dimensions. Consequently, a linear failure criterion 
such as (4.1) is often known as the Mohr-Coulomb criterion. 

 

Figure 4.4. Mohr failure criterion. 

4.3 Hoek-Brown criterion 
Laboratory results of triaxial tests on rocks often show a curved strength envelope (Hoek and 
Brown, 1980; Hoek, 1983). Various researchers have therefore proposed non-linear criteria, based 
on laboratory investigations (see Sheorey, 1997). The most representative and commonly used one 
is the Hoek-Brown criterion (Bieniawski, 1996; Hoek and Brown, 1997; Sheorey, 1997). This 
criterion was originally developed for estimating the strength of rock masses for application to 
excavation design. Hoek and Brown (1980) proposed that at failure the relationship between the 
maximum and minimum principal stresses is given by 

 2
1 3 0 3 0 ,mC s Cσ σ σ= + +                                                 (4.13) 

where m and s are material constants, s takes the value 1 for intact rock, and less than unity 
for disturbed rock (Hoek and Brown, 1997). The values for m are different from rock to rock, 
with a range between about 1.4 and 40.7 (Sheorey, 1997). 

4.4 Drucker-Prager criterion 
The extended von Mises or Drucker-Prager criterion was originally developed for soil 
mechanics (Drucker and Prager, 1952). It is expressed in terms of principal stresses as 

 ,oct octk mτ σ= +                                                           (4.14) 
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where τoct is the octahedral shear stress, according to Eq. (2.29), defined by 

 2 2 2
1 2 2 3 3 1

1 ( ) ( ) ( ) ,
3octτ σ σ σ σ σ σ= − + − + −                                 (4.15) 

and σoct is the octahedral normal stress, according to Eq. (2.28), defined by 

 1 2 3 ,
3oct

σ σ σσ + +
=                                                       (4.16) 

and k and m are material constants. The material parameters k and m can be estimated from 
the intercept and slope of the failure envelope plotted in the τoct-σoct space. 

4.5 Mogi criterion 
Mogi (1971b) conducted the first extensive polyaxial compressive tests in rocks. He noted 
that the intermediate principal stress does have an impact on rock strength, and the brittle 
fracture occurs along a plane striking in the σ2 direction. These results agree with later 
observations of other researchers (e.g., Spetzler et al., 1981; Takahashi and Koide, 1989; 
Haimson and Chang, 2000). Since the fracture plane strikes in the σ2 direction, Mogi 
concluded that the mean normal stress that opposes the creation of the fracture plane is σm,2, 
rather than the octahedral normal stress, σoct. (However, Mogi verified experimentally that 
rock yield, which occurs throughout the entire volume prior to total failure, is a function of 
σoct). Consequently, Mogi suggested a new failure criterion formulated by 

 ,2( ),oct mfτ σ=                                                           (4.17) 

where f is some monotonically increasing function. As the distortional strain energy is 
proportional to the octahedral shear stress (Jaeger and Cook, 1979, p. 125), this criterion is 
equivalent to asserting that failure will occur when the distortional strain energy reaches 
some critical value that increases monotonically with σm,2. The failure envelope in τoct-σm,2 
space is not in general thought of as defined by an explicit formula, but it is assumed to be 
obtained experimentally. 

4.6 Analysis of polyaxial failure data 
Under polyaxial (also called “true triaxial”) compression, rock failure will be a function of 
three variables, the three principal stresses. Hence, it is not at all obvious a priori that the 
failure process can be described by a function in a two-dimensional space, such as (τoct,σoct) 
or (τoct,σm,2). In order to try to verify that this reduction from three to two mathematical 
dimensions is possible, we have searched the literature for polyaxial failure data, and 
analysed these data in the (τoct,σoct) plane as well as in the (τoct,σm,2) plane.  

4.6.1 Drucker-Prager criterion constrained by polyaxial test data (τoct -σoct space) 
The Drucker-Prager failure criterion was developed approximately twenty years before the 
construction of the first apparatus that enabled polyaxial tests. It is based on the assumption 
that a linear failure envelope in τoct-σoct space, given by Eq. (4.14), based on triaxial test data, 
represents the failure under polyaxial stress states. In this section, we will examine how good 
a Drucker-Prager criterion, developed using triaxial test data, is in representing polyaxial test 
data. 
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Seven rock types were analysed to determine the failure envelope in τoct-σoct space. These 
rock types were Dunham dolomite, Solenhofen limestone, Mizuho trachyte, coarse grained 
dense marble, Shirahama sandstone, KTB amphibolite and Westerly granite. The polyaxial 
data of Dunham dolomite, Solenhofen limestone and Mizuho trachyte are taken from Mogi 
(1971a; 1971b), the polyaxial data of marble is from Michelis (1985; 1987a), the polyaxial 
data of Shirahama sandstone is from Takahashi and Koide (1989), the polyaxial data of 
Westerly granite is from Haimson and Chang (2000). The polyaxial data of KTB amphibolite 
is taken from the paper by Colmenares and Zoback (2002), from tests carried out by Chang 
and Haimson (2000). These sets of data are shown in Appendix A in Tables (A.1-A.7). 

In Figure 4.5, the triaxial test data, in which σ2 = σ3, is plotted in τoct-σoct space, together with 
their best fitting linear models. The triaxial test data are plotted as black circles, and the solid 
line is their best fitting linear model. Table 4.1 recording Drucker-Prager strength parameters, 
k and m, and the related correlation coefficient, r2, based on the triaxial test data for the seven 
rocks. 

  

Table 4.1. Drucker-Prager strength parameters. 

Rock Type k (MPa)    m    r2 

Dunham dolomite 73 0.67 0.985 

Solenhofen limestone 119 0.40 0.978 

Mizuho trachyte 37 0.59 0.964 

Shirahama sandstone 39 0.45 0.909 

KTB amphibolite 35  0.92 0.996 

Marble 12  0.73 0.998 

Westerly granite 32  1.00 0.998 
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    (c)                                                             (d) 
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  (e)                                                            (f) 
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Figure 4.5. The Drucker-Prager failure criterion. (a) Dunham dolomite. (b) Solenhofen
limestone. (c) Mizuho trachyte. (d) Shirahama sandstone. (e) KTB amphibolite. (f) Marble.
(g) Westerly granite.  



Rock failure criteria
 

37 

 

 
In order to check the representation of the linear models (Figure 4.5) for the polyaxial stress 
state, the polyaxial test data (empty circles) are superimposed in τoct-σoct space, as shown in 
Figure 4.6. Although the linear models have been determined with high r2 values (see Table 
4.1), it seems that these models do not represent the polyaxial stress states. The Drucker-
Prager failure criterion has generally overestimated the strength of the tested rocks. The 
criterion, however, provided a good model for the polyaxial test data of marble (see Figure 
4.6). These results are equivalent to those from field case studies, where Drucker-Prager 
criterion has been reported as a good model in some cases (e.g. Fuh et al., 1988; Fuh and 
Loose, 1989) and unrealistic one in others (e.g. Aadnoy et al., 1987; McLean and Addis, 
1990b). Accordingly, a linear failure criterion in τoct-σoct space (i.e., the Drucker-Prager 
criterion) based on triaxial test data is not necessarily representive of the polyaxial stress state 
and, in general, it overestimates the rock strength. This statement is not true if we use a linear 
failure criterion in τoct-σm,2 space, as we will see in the next section. 

4.6.2 Analysis of polyaxial failure data in τoct-σm,2 space 

The Mogi failure envelope in τoct-σm,2 space was determined for the seven rock types 
analysed in section 4.6.1, in addition to Yuubari shale. The polyaxial data of Yuubari shale is 
from Takahashi and Koide (1989) and recorded in Table A.8 in Appendix A. We have plotted 
all data points recorded in Tables (A.1-A.8) in the (τoct,σm,2) plane, and found that they could 
all be fit well with a linear function (Figure 4.7): 

 ,2oct ma bτ σ= + ,                                                        (4.18) 

where a is the intersection of the line on τoct-axis, and b is its inclination.  

In Figure 4.7, the polyaxial test data are plotted as empty circles, and the solid line is their 
best fitting linear model. The data for which σ2 =σ3, that is, the traditional triaxial test data, 
are highlighted by large black circles. This linear form provides a good fit to the data sets, 
with very high correlation coefficients, r2. Based on the polyaxial test data, the Mogi strength 
parameters, a and b, for the eight tested rocks and the corresponding correlation coefficients 
are given in Table 4.2. According to this goodness of fit, a linear model can be considered to 
be a reasonable assumption.  

Power-law and parabolic Mogi failure criteria have been also been fit to the data, with the 
results shown in Table 4.3. From the correlation coefficient values, power-law and parabolic 
failure envelopes have almost the same goodness of fit, with a slight preference usually 
observed for the power-law model. However, the comparison of linear and power-law failure 
envelopes reveals that, in general, the linear form does as good a job as the power-law form 
in fitting the data (see Tables 4.2-4.3); the variance between the best-fitting equation and the 
data is due more to experimental scatter than to any inherent difficulty in fitting the data to a 
straight line. 
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Figure 4.6. The Drucker-Prager failure criterion compared to polyaxial test data. (a) Dunham
dolomite. (b) Solenhofen limestone. (c) Mizuho trachyte. (d) Shirahama sandstone. (g) KTB
amphibolite. (h) Marble. (g) Westerly granite. 
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Figure 4.7. The linear Mogi failure criterion based on polyaxial test data. (a) Dunham
dolomite. (b) Solenhofen limestone. (c) Mizuho trachyte. (d) Shirahama sandstone. (e) KTB
amphibolite.  (f) Marble. (g) Yuubari shale.  (h) Westerly granite. 
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If the Mogi assumption is valid, the strength parameters a and b can be approximated from a 
set of triaxial tests, as this is just a special case of a polyaxial stress state. A good test of this 
assumption would be to fit the conventional triaxial data to a linear Mogi failure criterion, 
and then see whether or not the polyaxial data fall on this line. The triaxial test data are 
plotted in Figure 4.8 together with their best fitting linear model; Yuubari shale is excluded 
due to the shortage of triaxial test data for this rock. Table 4.4 records the strength parameters 
a and b that were obtained from the triaxial test data, along with their associated r2 values. 

Table 4.2. Mogi (linear model) strength parameters from polyaxial test data. 

Rock Type a (MPa)    b    r2 

Dunham dolomite 82.55 0.48 0.981 

Solenhofen limestone 86.60 0.41 0.950 

Mizuho trachyte 39.87 0.44 0.960 

Shirahama sandstone 14.87 0.53 0.979 

Yuubari shale 24.07 0.43 0.943 

KTB amphibolite 40.10 0.64 0.987 

Marble 9.16 0.64 0.979 

Westerly granite 30.19 0.71 0.994 

Table 4.3. Power-law and parabolic Mogi criteria; all stresses are in MPa. 

Rock Type   Power model     r2               Parabolic model   r2 

Dunham dolomite τoct = 4.5σm,2
0.69 0.989 τoct  = -0.0003σm,2

2 + 0.69σm,2 + 43.9 0.986

Solenhofen limestone τoct = 8.08σm,2
0.57 0.945 τoct  =  0.0003σm,2

2 + 0.24σm,2 + 111.13 0.951

Mizuho trachyte τoct = 3.39σm,2
0.69 0.984 τoct  = -0.0007σm,2

2 + 0.7σm,2 + 17.21 0.976

Shirahama sandstone τoct = 1.84σm,2
0.79 0.983 τoct  = -0.0012σm,2

2 + 0.78σm,2 + 3.56 0.984

KTB amphibolite τoct = 1.76σm,2
0.86 0.994 τoct  = -0.0001σm,2

2 + 0.75σm,2 + 20.04 0.988

Marble τoct= 1.49σm,2
0.85 0.983 τoct  = -0.0005σm,2

2 + 0.74σm,2 + 4.81 0.980

Yuubari shale τoct = 2.77σm,2
0.69 0.944 τoct  = -0.0002σm,2

2 + 0.49σm,2 + 20.22 0.943

Westerly granite τoct = 1.54σm,2
0.89 0.997 τoct  = -0.0002σm,2

2 + 0.86σm,2 + 8.16 0.996
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These models are then used to calculate the predicted value of the octahedral shear stress at 
failure, which are then compared to the values determined from the polyaxial failure data 
(i.e., the experimental τoct values). The predicted/theoretical and measured/experimental τoct 
values are shown in Tables (A.1-A.8) in Appendix A. The agreement is quite good, with 
correlation coefficients in the range 0.95-0.99, and the mean relative error (in absolute value) 
of about 4%. These results verify that a Mogi failure criterion based on triaxial test data 
correlates well with the polyaxial strength data. Therefore, failure under polyaxial stresses 
can in fact be predicted from triaxial test data using the linear Mogi criterion. 

 

4.7 Mogi-Coulomb criterion  

For conventional triaxial tests, σ2 =σ3, and so from Eq. (4.15) the octahedral shear stress 
takes the form  

 2 2 2
1 2 2 3 3 1 1 3

1 2( ) ( ) ( ) ( ).
3 3

σ σ σ σ σ σ σ σ− + − + − = −                    (4.19) 

The linear Mogi criterion, Eq. (4.18), then reduces to 

 1 3 ,2
2 ( ) .

3 ma bσ σ σ− = +                                                  (4.20) 

Multiply by (3 / 2 2)  on both sides of Eq. (4.20): 

 1 3 ,2
1 3 3( ) ( ) ( ) .
2 2 2 2 2 ma bσ σ σ− = +                                         (4.21) 

Table 4.4. Mogi (linear model) strength parameters from triaxial test data.  

Rock Type a (MPa)    b     r2 

Dunham dolomite 58.32 0.55 0.990 

Solenhofen limestone 103.95 0.35 0.983 

Mizuho trachyte 30.37 0.49 0.975 

Shirahama sandstone 32.95 0.39 0.933 

KTB amphibolite 26.30 0.69 0.998 

Marble 9.80 0.58 0.999 

Westerly granite 23.88 0.74 0.999 
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Figure 4.8. The linear Mogi failure criterion based on triaxial test data. (a) Dunham dolomite.
(b) Solenhofen limestone. (c) Mizuho trachyte. (d) Shirahama sandstone. (g) KTB
amphibolite. (h) Marble. (g) Westerly granite. 

 



Rock failure criteria
 

43 

 

Applying the definition of the maximum shear stress (i.e., Eq. (4.10)) in Eq. (4.21), the linear 
Mogi criterion becomes 

 max ,2
3 3( ) ( ) .

2 2 2 2 ma bτ σ= +                                           (4.22) 

Comparison with the form of the Coulomb law given by Eqs. (4.9-4.11) shows that for 
triaxial data, the linear Mogi criterion coincides with the Coulomb criterion if we make the 
following identification: 

 2 2 cos ,
3

a c φ=                                                      (4.23) 

 2 2 sin .
3

b φ=                                                         (4.24) 

The strength parameter b essentially represents the internal friction, while the parameter a is 
related to the cohesion and internal friction. Alternatively, using Eqs. (4.6,4.7), the 
parameters of the linear Mogi criterion can also be identified with the Coulomb failure 
parameters (q,Co) as follows: 

 02 2 ,
3 1

Ca
q

=
+

                                                        (4.25) 

 2 2 1.
3 1

qb
q

−
=

+
                                                         (4.26) 

Hence, for triaxial stress states (σ2 = σ3) the linear Mogi criterion given by Eq. (4.22) is 
exactly equivalent to the Coulomb criterion. The linear Mogi criterion can be thought of as a 
natural extension of the Coulomb criterion into three dimensions. Accordingly, this linear 
failure criterion will be called the Mogi-Coulomb criterion. Furthermore, inspection of Eqs. 
(4.19-4.22) shows that the linear Mogi criterion is also equivalent to the Coulomb criterion 
for triaxial extension stress states (σ1 = σ2).  

As another test of the equivalence between the linear Mogi criterion and the Coulomb 
criterion, we can make the following comparison (Table 4.5). First, the parameters Co and q 
are determined by fitting the triaxial test data to a Coulomb failure line. These values are then 
used to calculate the Mogi-Coulomb strength parameters, a and b, using Eqs. (4.25,4.26). If 
we compare these values of a and b with the values found directly from applying a linear 
Mogi model in τoct-σm,2 space (see Table 4.4), we find extremely close agreement. These 
results verified experimentally that a linear Mogi criterion is equivalent to the Coulomb 
criterion. 
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The octahedral shear stress can be written in terms of stress invariants as given by Eq. (2.31): 

 
1
22

1 2
2 ( 3 ) ,

3oct I Iτ = −                                                      (4.27) 

where the first and second stress invariants, I1 and I2, defined by Eq. (2.22) as 

 
1 1 2 3

2 1 2 2 3 3 1

,

.

I

I

σ σ σ

σ σ σ σ σ σ

= + +

= + +
                                                (4.28) 

Using Eqs. (4.27-4.28), Mogi-Coulomb can be formulated by 

 
1
22

1 2 1 2( 3 ) ( ),I I A B I σ− = + −                                             (4.29) 

where 

 022 cos ,
1

CA c
q

φ= =
+

                                                    (4.30) 

 1sin .
1

qB
q

φ −
= =

+
                                                        (4.31) 

Although it is possible to express σm,2 in terms of stress invariants only (e.g. Owen and 
Hinton, 1980; Lubliner, 1990; Khan and Huang, 1995), the result is unwieldy. 

The illustration of Mogi-Coulomb criterion is shown in Figure 4.9. The uniaxial compressive 
strength is obtained by substituting σ3 = 0 in Eq. (4.20), giving 

 0 ,
( 2 / 3) ( / 2)

aC
b

=
−

                                                   (4.32) 

Table 4.5. Coulomb parameters (C0 ,q), and the Mogi parameters (a,b) calculated from Eqs. 
(4.25-26). 

Rock Type C0 (MPa)  q a (MPa)   b 

Dunham dolomite 298.93 3.66 60.49 0.54 

Solenhofen limestone 351.50 2.16 104.87 0.35 

Mizuho trachyte 139.90 3.05 32.59 0.48 

Shirahama sandstone 123.59 2.31 35.16 0.37 

KTB amphibolite 220.35 6.44 27.92 0.69 

Marble 54.02 4.15 9.88 0.58 

Westerly granite 240.09 8.20 24.61 0.74 
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which is associated with the effective mean stress, ,2 0( / 2).m Cσ =  The uniaxial tensile stress 
is obtained by substituting σ1 = 0 in Eq. (4.20), giving 

 0 ,
( 2 / 3) ( / 2)

aT
b

=
+

                                                     (4.33) 

which is associated with the effective mean stress, ,2 0( / 2).m Tσ =  The estimations of C0 and 
T0 by Eqs. (4.32,4.33) are exactly the same as that determined from the Mohr-Coulomb 
criterion, using the Mogi-Coulomb strength parameters a and b rather than c and φ. If the 
Mogi-Coulomb failure envelope is extrapolated to τoct = 0, it will intersect the σm,2-axis at 
ccotφ, at which the principal stresses are equal tensile stresses. The uniaxial tensile stress 
predicted by Eq. (4.33) takes a value that is generally higher than the measured one. 
Consequently, a tensile cut-off at the value of σm,2 associated with true uniaxial tensile stress 
(i.e., σm,2 = T0true/2) should be applied, as illustrated in Figure 4.10. 

 

Figure 4.9. Mogi-Coulomb failure envelope. 

 

Figure 4.10. Mogi-Coulomb failure envelope with a tensile cut-off. 
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4.8 Extended Mogi-Coulomb criterion 
In this chapter we have made an extensive review of published experimental data on 
polyaxial failure of rocks. Our analysis of several hundred measurements taken on eight rocks 
shows the goodness of the Mogi-Coulomb criterion in representing the polyaxial stress state 
at failure. For the purpose of more accurate results, we have highlighted the possibility of 
using parabolic or power-law Mogi criteria. In order to maintain the correlation between the 
Mogi criterion and Coulomb criterion, we recommend the use of a parabolic Mogi criterion, 
if there is a need for a nonlinear failure criterion. In general, if the studied case is over a high 
range of effective mean stress (σm,2) values, the data may need a model that is slightly curved. 
In this case, a non-linear Mogi criterion may be more appropriate, which can be formulated 
as 

 2
,2 ,2 ,oct m ma b cτ σ σ= + +                                                    (4.34) 

where a, b and c are material constants. The parameters a and b represent the cohesion and 
angle of internal friction. The parameter c is a curve fitting parameter that represents the non-
linear behaviour at high effective mean stresses. Nevertheless, if we fit data to the parabolic 
law, the Mogi-Coulomb strength parameters (a,b) that we find are not the same as those 
obtained when using the linear model (see Tables 4.2, 4.3). Therefore, the relationship 
between (a,b) and (c,φ) may be not so straightforward for the parabolic form. Further study 
should be carried out to investigate these relationships, which is beyond the scope of this 
thesis. This parabolic Mogi criterion, which might be related to the Coulomb strength 
parameters, can be considered as an extension of the Mogi-Coulomb criterion. 

The requirement for nonlinear failure criterion will arise particularly for weak rocks. For 
example, Elliott and Brown (1986) suggested a theoretical yield criterion which has been 
found to be good at describing the peak strength behaviour of a variety of weak rocks 
(Marsden et al., 1989). This criterion is almost identical to a parabolic failure envelope in p-q 
space, where p = (σ1+2σ3)/3 and q = (σ1-σ3). Therefore, Wu and Hudson (1988) proposed a 
non-linear failure criterion formulated as 

 2 ,q A Bp Cp= + +                                                        (4.35) 

where A, B and C are material constants. For the sake of simplicity, and also due to the lack 
of experimental evidence, the p-q criterion given by Eq. (4.35) assumes that the peak strength 
is independent of the intermediate principal stress (Wu, 1991). 

Independently, Khan and co-workers {Khan, 1991 113 /id /d} suggested a parabolic failure 
envelope for  Berea sandstone. Their criterion has the form 

 2
2 0 1 1 2 12 ,J a a I a I= + +                                                    (4.36) 

where J2 is the second deviatoric stress invariant defined by Eq. (2.34) as 

 2 2 2
2 1 2 2 3 3 1

1 ( ) ( ) ( ) .
6

J σ σ σ σ σ σ⎡ ⎤= − + − + −⎣ ⎦                                   (4.37) 
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This parabolic failure criterion has been utilized later by a number of researchers (e.g. Wong 
et al., 1997; Klein et al., 2001). Using the relationship between J2 and τoct given by Eq. (2.35), 
that is, 

 22 / 3,oct Jτ =                                                         (4.38) 

and the definition of the octahedral normal stress as the invariant I1/3, we have rewritten the 
criterion as 

 2 ,oct oct octA B Cτ σ σ= + +                                               (4.39) 

where A, B and C are material constants. As per Eq. (4.39), therefore, this failure criterion is 
an extension of the Drucker-Prager criterion. Moreover, for triaxial stress states, when σ2 = 
σ3, the criterion is equivalent to the p-q criterion. 

The extended Drucker-Prager criterion, defined by Eq. (4.39), differs than the extended 
Mogi-Coulomb criterion, Eq. (4.34), by the use of σoct rather than σm,2 as the effective mean 
stress. In order to compare between the two criteria, three weak rock types were analysed to 
determine the failure envelopes in τoct-σoct space and τoct-σm,2 space for triaxial test data. The 
rock types investigated were Berea sandstone taken from Khan and co-workers {Khan, 1991 
113 /id /d}, Vosges sandstone obtained from Besuelle and co-workers (2000), and Indiana 
limestone given by Amadei and Robinson (1986). These sets of data are shown in Appendix 
A, in Tables (A.9-A.11) 

Figure 4.11 show the triaxial test data together with the extended Drucker-Prager and the 
extended Mogi-Coulomb failure envelopes. It can be seen that the extended Drucker-Prager 
criterion is good in describing the strength of the tested weak rocks. However, a slightly 
better fit to the test results for the proposed extended Mogi-Coulomb criterion can be noticed 
through the higher correlation coefficient values. Moreover, the strength parameters A and B 
is higher than a and b, and together with the use of σoct as the effective mean stress, the 
extended Drucker-Prager criterion predicting higher rock strength (τoct) than the extended 
Mogi-Coulomb criterion. This is consistent with the failure envelopes determined based on 
the triaxial test data of the previously analysed seven rocks (see Figures 4.5 and 4.8, and 
Tables 4.1 and 4.4). The Drucker-Prager criterion, therefore, generally overestimate the rock 
strength (τoct) relative to the Mogi-Coulomb criterion.  

Linear and parabolic yield surfaces in τoct-σoct space are actually different forms of the Mogi 
yield criterion, which formulated by 

 ( ),oct octfτ σ=                                                               (4.40) 

where f is a monotonically increasing function. As per Mogi’s hypothesis, a yield criterion 
(e.g., Eqs. (4.14,4.39)) should not be used as a fracture criterion. This could be supported by 
the fact that yield stress and peak strength rarely coincide in rock materials. In addition, there 
is a possibility that the failure envelopes determined in τoct-σoct space are not representing the 
polyaxial stress state, as we have seen earlier. In contrast, failure envelopes estimated in τoct-
σm,2 space are very good in modelling the rock strength for triaxial and polyaxial stress states. 
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Figure 4.11. The extended Mogi-Coulomb (left) and the extended Drucker-Prager failure
criteria (right), for (a) Berea sandstone, (b) Vosges sandstone, (c) Indiana limestone. 
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4.9 Summary and conclusions 

We have shown that when σ2 = σ3, the linear version of Mogi’s triaxial failure criterion 
reduces exactly to the Coulomb criterion. Hence, the linear Mogi criterion can be thought of 
as a natural extension of the Coulomb criterion into three dimensions. As Mohr’s extension 
of the Coulomb criterion into three dimensions is often referred to as the Mohr-Coulomb 
criterion, we propose that the linear version of the Mogi criterion be known as the “Mogi-
Coulomb” failure criterion. The Mohr-Coulomb failure criterion, therefore, only represents 
the triaxial stress state (σ2 = σ3), which is a special case that will only occasionally be 
encountered in situ.  

We have revealed that Mogi-Coulomb criterion is good in representing rock failure in 
polyaxial stress state. Furthermore, we found that the numerical values of the parameters that 
appear in the Mogi-Coulomb criterion can be estimated from conventional σ2 = σ3 triaxial 
test data. Therefore, this polyaxial failure criterion can be used even in the absence of true 
triaxial data. 

We have pointed out that Mogi-Coulomb strength parameters can be unambiguously related 
to the traditional parameters appearing in the Coulomb failure law. The lack of such a 
relationship for the parameters appearing in the power-law Mogi criterion has been cited by 
Colmenares and Zoback (2002) as a major drawback to the use of that model.  

We have shown that the Drucker-Prager criterion generally overestimates rock strength. This 
criterion, therefore, should not be used to model brittle fracture. On the other hand, the Mohr-
Coulomb criterion underestimates rock strength by ignoring the effect of σ2. The Mogi-
Coulomb criterion, however, seems to give a proper accounting of the strengthening effect of 
the intermediate principal stress. This criterion neither ignores the strengthening effect of σ2, 
as is done by the Mohr-Coulomb criterion nor does it predict strengths as high as does the 
Drucker-Prager criterion. Hence, we recommend the use of the Mogi-Coulomb law for 
wellbore stability analysis, as it has been experimentally verified for describing rock failure. 
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5 Vertical borehole failure analysis 

The mud pressure should be designed accurately to prevent the onset of borehole shear 
failure, manifested by the collapse of the borehole wall, and borehole tensile failure, 
represented by hydraulic fracturing. These stability problems can lead to stuck pipe, fishing, 
reaming operations, poor cementations, sidetracking and lost circulation. The precursor of 
such drilling problems can be often eliminated by a proper determination of the critical mud 
pressure required to maintain wellbore stability.  

The stability analysis predominantly requires the following input data: orientation and 
magnitude of the in situ stresses, pore pressure and the failure criterion of the rock. The 
determination of in situ stresses is probably the most important input parameter. However, 
these are usually insufficiently known. In particular the horizontal stress magnitude and 
orientation are not frequently measured. This will definitely increase the uncertainty in the 
results. The pore pressure is vital as it determines the effective stresses, which control rock 
failure.  

In order to establish the failure criterion of a rock formation, the availability of core samples 
is essential, which is often limited. It is crucial, however, to ascertain the strength parameters 
within an appropriate stress range. This again reveals the significance of estimating the in situ 
stresses. In most field cases, the confining pressure is unlikely to exceed 2000 psi (14 MPa) 
(McLean and Addis, 1990a).  

In this chapter an overview of in situ stresses assessment is presented. Furthermore, we will 
drive the equations necessary to calculate the critical mud pressures that provide sufficient 
wellbore support to neutralize the redistribution of stresses resulting from the creation of the 
wellbore. This will be achieved by implementing rock failure criteria, namely, Mohr-
Coulomb and Mogi-Coulomb, and the isotropic linear elastic constitutive model for stresses 
around a borehole described in Chapter 3. For a vertical borehole, the stresses at the borehole 
wall are determined by Eq. (3.15) and should be then compared with a failure criterion in 
order to estimate the lower and upper limit of the mud pressure to avoid borehole failure. 

5.1 In situ stresses 
The in situ principal stresses are usually anisotropic and assumed to be aligned vertically and 
horizontally (see section 3.2). For typical depths of oil reservoirs, the ratio of the minimum 
horizontal stress to the vertical stress (σh/σv) ranges from 0.3 to 1.5, and σH/σh ranges from 1 
to 2 (Herget, 1988; Tan et al., 1993; Chen et al., 2002). Anderson (1951) proposed a 
description for the in situ stress regimes based on the relative magnitude between the vertical 
and horizontal field stresses. He suggested that normal or extensional faulting (NF) stress 
regimes are associated with σv ≥ σH ≥ σh, compressional, reverse or thrust faulting (RF) stress 
regimes are associated with σH ≥ σh ≥ σv, and strike-slip (SS) stress regimes are associated 
with σH ≥ σv ≥ σh. Therefore, when σ1 is vertical, normal faulting will occur, when σ3 is 
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vertical reverse faulting will occur, and strike-slip faulting occurs when σ2 is vertical (see 
Figure 5.1). 

 

5.1.1 Vertical principal stress 
Estimation or measurement of the in situ stresses is essential, since there are no known 
natural phenomena that record current subsurface stresses with the necessary levels of 
precision (Bell, 2003). The vertical principal in situ stress, σv, is usually assumed to be 
equivalent to the weight of the overburden, that is, 

 v ghσ ρ= ,                                                               (5.1) 

where ρ is the average mass density of the overlaying rock, g is the acceleration due to 
gravity, and h is the depth (e.g., Fairhurst, 2003). If the density varies with depth, the vertical 
stress is determined by integrating the densities of the overlaying rocks. At the depths of 
interest in petroleum exploration, the vertical stress has a gradient in the range 18.1-22.6 
kPa/m (0.8-1.0 psi/ft) (Fjaer et al., 1992, p. 90).  

5.1.2 Horizontal principal stresses 
The most common in situ stress measurement technique in boreholes is hydraulic fracturing 
(Amadei and Stephansson, 1997). From this method, the horizontal in situ stresses, σh and 
σH, are often estimated (e.g., Zoback et al., 1977; Haimson, 1993; Hayashi et al., 1997). 
Hydraulic fracturing was originally developed as a technique of stimulating production in 
petroleum reservoirs, and was first used as a stress measurement method in the 1960s 
(Fairhurst, 1965a; Haimson and Fairhurst, 1967; Haimson and Fairhurst, 1969). In this 
technique, typically a meter-long sealed-off section of a borehole is pressurized by water at a 
constant flow rate until a fracture develops in the rock, that is, the breakdown pressure (Pb) is 
reached. Following the development of the fracture, the pump is shut-off and the pressure 
will decay first at a fast rate (the fracture is still open and growing), and then at slower rate, 
after the fracture has closed. The pressure at which the fracture closes, or that is required to 
hold the fracture open, is termed the shut-in pressure (Ps) (see Figure 5.2).  

Hydraulic fracturing stress measurement method is usually applied in vertical boreholes. If 
we assume that the borehole is drilled vertically along a principal stress direction, from the 

 

                                  (a)                                       (b)                                        (c) 
Figure 5.1. In situ stress regimes: (a) Normal faulting, (b) Reverse faulting, (c) Strike-slip.
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classical Kirsch equations for stress concentration around a circular elastic hole (i.e., Eq. 
(3.15)), the stresses at the borehole wall are 

 

 ( )

( )

,

2 cos 2 ,

2 cos 2 .

r w

H h H h w

z v H h

P

Pθ

σ

σ σ σ σ σ θ

σ σ ν σ σ θ

=

= + − − −

= − −

                                 (5.2) 

As has been shown in section (3.4), the tangential and axial stresses attain the smallest 
magnitudes at θ = 0 or π (i.e., cos2θ = 1). Therefore, the minimum tangential and axial 
stresses are 

 
( )

3 ,
2 .

h H w

z v H h

Pθσ σ σ

σ σ ν σ σ

= − −

= − −
                                                   (5.3) 

Theoretically, from Eq. (5.3), σθ  or σz may be tensile, and so, a hydraulic fracture can occur 
in the vertical or the horizontal plane (Ljunggren et al., 1988; Ljunggren and Amadei, 1989; 
Amadei and Stephansson, 1997, p. 156). However, if we consider the practical range of the in 
situ stresses encountered in oil fields, σz is usually compressive. For example, the minimum 
possible value of σz will occur when σH/σh and σh/σv are equal to 2 and 1.5 respectively. In 
this case, the axial stress will be 

 (1 3 )z vσ σ ν= − .                                                         (5.4)  

For the Poisson’s ratio, a value of 0.2-0.3 can be assumed (e.g., Bell, 2003). Therefore, under 
practical field conditions, the axial stress is typically a compressive stress at the borehole 
wall, and the tangential stress is the only tensile stress that leads to a vertical hydraulic 
fracture. This conclusion is consistent with most laboratory and field results in which the 
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Pr 

1st cycle 2nd cycle 

Ps 

Time  

Figure 5.2. Schematic hydraulic fracturing test. 
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initial hydraulic fracture is normally vertical (Haimson, 1968; Haimson, 1978; Cheung and 
Haimson, 1989; Haimson et al., 1996; Haimson et al., 2003).  

Hubbert and Willis (1957) stated that vertical hydraulic fractures will always propagate 
perpendicular to the orientation of the least horizontal principal stress. Hence, σh is assumed 
equal to the shut-in pressure and has a direction perpendicular to the hydraulic fracture plane. 
The direction of σH is then parallel to the hydraulic fracture strike (i.e., orthogonal to σh). At 
the breakdown pressure, w bP P= , and by implementing the maximum tensile strength 
criterion, that is, Tθσ = − , the maximum horizontal stress is given by 

 3H h bT Pσ σ= + − .                                                         (5.5) 

If we consider the application of Terzaghi’s effective stress concept, where the effective 
stress is defined as the total stress minus the pore pressure (P0), the maximum horizontal 
principal stress is then determined by  

 0 0 0( ) 3( ) ( )H h bP T P P Pσ σ− = + − − − .                                        (5.6) 

This can be simplified and rewritten as 

 03H h bT P Pσ σ= + − − .                                                     (5.7) 

For a normally pressured formation, the pore pressure gradient is typically in the range 1.03-
1.07 g/cm3 (0.447-0.465 psi/ft) (Fjaer et al., 1992, p. 100).  

Furthermore, the tensile strength (T) can only be directly measured on core samples 
(Haimson and Cornet, 2003). Alternatively, Bredehoeft and co-workers (1976) first proposed 
that the tensile strength is equal to the difference between the first breakdown pressure and 
the reopening pressure (Pr) obtained in the subsequent pressurization cycles, that is, 

 b rT P P= − .                                                                 (5.8) 

The reopening pressure is assumed to be the pressure required to reopen the existing 
hydraulic fracture, which has closed completely after each cycle of pressurization. The value 
of Pr is not necessary the breakdown pressure during the second and subsequent 
pressurization cycles, but rather is found from the point where a sudden slowdown in 
pressure increases with time (Amadei and Stephansson, 1997, p. 114; Rutqvist et al., 2000). 
The estimation of Pr is illustrated in Figure 5.2. 

It should be noted her that the estimation of the horizontal in situ principal stresses as 
described above is only valid for hydraulic fracture tests that yield vertical fractures, 
regardless of in situ stress state. In addition, it has been assumed that the borehole wall is 
impermeable and the formation is continuous, homogenous, isotropic and linearly elastic. 

In deep wells, when hydraulic fracture tests are not available, or are impossible due to drilling 
conditions, leak-off tests (LOTs) are commonly conducted (Zoback et al., 2003). LOTs are 
performed after the casing is placed and drilling a few meters below the casing shoe. In this 
open hole, the mud pressure is raised slowly and the build-up pressure will increase linearly 
with time. When the pressure reaches a value at which a small volume of the mud is believed 
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to begun to leak-off into the formation, at the leak-off point (LOP), the increase of wellbore 
pressure with time ceases to be linear. After attaining the LOP, the test is normally stopped 
abruptly. Figure 5.3 illustrates a typical leak-off test curve. The LOP is approximately equal 
to the least principal stress, which is normally taken as the minimum horizontal stress, σh. In 
the oil industry, generally leak-off tests are not performed to determine the in situ stresses, 
but to determine the upper limit of the mud pressure required to prevent fracturing (Gjonnes 
et al., 1998). This means that the maximum allowable mud pressure is usually designed to be 
approximately equal to the minimum principal in situ stress.  

 

Drilling a borehole will redistribute the field stresses and produce local stress concentration 
that may lead to the formation of a zone of yielded rock or breakout (Maloney and Kaiser, 
1989). The shape of the breakout can be used to estimate the direction of the horizontal 
stresses (Gough and Bell, 1982; Zoback et al., 1985). Rock failure at the borehole wall will 
initiate in the direction of greatest stress concentration. From Eq. (5.2), the tangential and 
axial stresses attain the largest magnitudes at θ = ±π/2 (i.e., cos2θ = −1), as illustrated in 
section (3.4). Therefore, shear failure will occur in the direction of σh, which leads to the 
breakout formation with the long axis parallel to σh (for example, see Figure 5.4).  

5.2 Principal stresses at borehole collapse and fracturing 

The tangential and radial stresses, σθ and σr, in Eq. (5.2) are functions of the mud pressure, 
Pw. Hence, any change in the mud pressure will only affect these stresses. As has been 
highlighted previously, at the borehole wall, there are mainly two stability problems during 
drilling: shear failure in the form of borehole collapse or breakout formation, and tensile 
failure represented by hydraulic fracturing. Since we are concerned about the change in σθ 
and σr with respect to Pw, there are two possible cases: either σθ ≥ σr, or σθ ≤ σr, which are 
associated with breakout or fracturing, respectively. When Pw increases (or eventually σr), σθ 
decreases towards the tensile strength. Therefore, the upper limit of the mud pressure, Pwf, is 
associated with fracturing, where σθ should be less than σr. Considering this constraint, and 
the relative magnitude of the axial stress, there are three permutations of the three principal 
stresses (σr,σθ,σz) that need to be investigated in order to determine the maximum allowable 
mud pressure: (1) σr ≥ σθ ≥ σz, (2) σr ≥ σz ≥ σθ and (3) σz ≥ σr ≥ σθ. The tensile strength of the 
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Figure 5.3. Typical leak-off test. 



Adel Al-Ajmi                                                                                                          TRITA-LWR PhD Thesis 1026
 

56 

rock will first be exceeded at θ = 0 or π, where the tangential stress will have the smallest 
value (see Eqs. (5.2) and (5.3)). This means that the hydraulic fracture will develop along the 
direction of σH, and the corresponding three principal stresses at the borehole wall are given 
by 

 , , ,r w w zP D P Eθσ σ σ= = − =                                          (5.9) 

where D and E are constants given by  

 
( )

3 ,
2 .

h H

v H h

D
E

σ σ

σ ν σ σ

= −

= − −
                                                (5.10) 

On the other hand, when Pw decreases, σθ  increases towards the compressive strength. Thus, 
the lower limit of the mud pressure, Pwb, is associated with borehole collapse, in which σθ 
should be greater than σr. Bearing in mind this constraint, there are another three 
permutations of the three principal stresses need to be investigated in order to determine the 
minimum allowable mud pressure: (1) σz ≥ σθ  ≥ σr, (2) σθ  ≥ σ z≥ σr and (3) σθ  ≥ σr ≥ σz. The 
compressive strength of the rock will first be exceeded at the position associated with the 
maximum value of σθ or σz (i.e., θ = ±π/2), and so, the corresponding principal stresses at the 
borehole wall become 

 , , ,r w w zP A P Bθσ σ σ= = − =                                            (5.11) 

where A and B are constants given by  

 
3 ,

2 ( ).
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= −
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                                                 (5.12) 

5.3 Mohr-Coulomb borehole failure criterion 
A “borehole failure criterion” refers to specifying the stress conditions under which borehole 
collapse (compressive failure) and fracturing (tensile failure) occurs. In this section, a 
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Figure 5.4. The direction of horizontal stresses with respect to breakout formation. 
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borehole failure criterion will be developed using the Mohr-Coulomb criterion, Eq. (4.5). 
(Although Mohr-Coulomb has of course been used frequently for borehole stability analysis, 
the results are usually not expressed in explicit algebraic form; hence, it is worthwhile to 
develop this model in some detail.) If we consider the conventional effective stress concept, 
the Mohr-Coulomb criterion becomes 

 1 0 0 3 0( ) ( ).P C q Pσ σ− = + −                                                    (5.13) 

Rearranging Eq. (5.13), Mohr-Coulomb criterion can be expressed as 

 1 3,C qσ σ= +                                                             (5.14) 

where C is a constant given by 

 0 0 ( 1).C C P q= − −                                                         (5.15) 

Consider the first case of borehole collapse where σz ≥ σθ ≥ σr, and for the general case of σ1 

≥ σ2 ≥ σ3, here σ1 = σz and σ3 = σr. Applying the Mohr-Coulomb failure criterion as 
expressed by Eq. (5.14), and introducing Eq. (5.11), gives 

 1,wbB C qP= +                                                           (5.16) 

where Pwb1 is the lower limit of the mud pressure, corresponding to case 1. By rearranging 
Eq. (5.16), we find 

 1 ( ) / .wbP B C q= −                                                            (5.17) 

If the well pressure falls below Pwb1 (i.e., Pw ≤ Pwb1), and the relative magnitude of the 
principal stresses are as per case 1, borehole collapse will take place. Following the same 
procedure, the minimum allowable mud pressure corresponding to the other two cases are 
determined and recorded in Table 5.1. 

As has been stated, there are three situations where borehole fracturing may occur. The upper 
limit of the mud pressure should be calculated for each case. Regarding the first case, where 
σr ≥ σθ  ≥ σz, σ1 = σr and σ3 = σz. By applying the Mohr-Coulomb failure criterion, Eq. (5.14)

Table 5.1. Mohr-Coulomb criterion for collapse pressure in vertical wellbores. 

Case σ1 ≥ σ2 ≥ σ3 
Borehole failure will occur if Pw ≤ Pwb from 
the following equations 

1 σz ≥ σθ ≥ σr 1 ( ) /wbP B C q= −  

2 σθ ≥ σz ≥ σr 2 ( ) /(1 )wbP A C q= − +  

3 σθ ≥ σr ≥ σz 3wbP A C qB= − −  
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, and introducing Eq. (5.9), the lower limit of the mud pressure corresponding to case 1 
becomes 

 1wfP C qE= + .                                                             (5.18) 

Borehole fracturing will occur if the well pressure rises above Pwf1 (i.e., Pw ≥ Pwf1), and the 
relative magnitude of the principal stresses are as per case 1. Likewise, the maximum 
allowable mud pressure corresponding to the other cases are estimated and given in Table 
5.2.

 

As the mud pressure decreases, the principal stresses will alternate from one case to another. 
Borehole collapse will only occur at the case that fulfils the Mohr-Coulomb criterion. 
Therefore, the collapse pressures Pwb1, Pwb2, Pwb3, as given in Table 5.1, should be used to 
recalculate the principal stresses σr, σθ, σz by applying Eq. (5.11) where Pw = Pwb. For each 
case, the principal stresses are then substituted into Eq. (5.14). The lower limit of the mud 
pressure is associated with the case in which the principal stresses has first satisfied Mohr-
Coulomb criterion. Similarly, for a given field conditions, one should determine which 
fracture pressure will fulfil the failure criterion. 

In the field, generally, borehole collapse corresponds to case 1 and case 2, where the radial 
stress is the minimum principal stress. It would be advantageous if the mud pressure related 
to these two common cases could be determined from one single equation. The stress state in 
these cases could be expressed as σ1 ≥ σ2 ≥ σr, where 
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                                            (5.19) 

By introducing Eqs. (5.19) and (5.11) into Eq. (5.14), the lower limit of the mud pressure 
corresponding to these cases becomes 

 2 ,
2( )wb
S RP

q q
+

=
+

                                                             (5.20) 

Table 5.2. Mohr-Coulomb criterion for fracture pressure in vertical wellbores. 

Case σ1 ≥ σ2 ≥ σ3 
Borehole failure will occur if Pw≥Pwf 
from the following equations 

1 σr ≥ σθ ≥ σz 1wfP C qE= +  

2 σr ≥ σz ≥ σθ 2 ( ) /(1 )wfP C qD q= + +  

3 σz ≥ σr ≥ σθ 3
1 ( )wfP C E D
q

= − +  
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where S and R are constants given by 

 2 2 2 2

(1 2 ) (1 ),
(1 2 ) 2 ( ) 2 (1 ) ( ) .

S Aq C q B q
R B q q AB q q BC q Aq C

= − + + +

= + + − + − + + +
                 (5.21) 

Furthermore, it is well know that Mohr-Coulomb criterion overestimates the tensile strength. 
In order to study tensile failure, therefore, the Mohr-Coulomb criterion should be used with a 
tensile cut-off (see also section 4.7). The tensile cut-off is given by 

 3 0 0P Tσ − = ,                                                              (5.22) 

where T0 is the uniaxial tensile strength (tensile is negative). In vertical boreholes, we have 
assumed that the tangential principal stress is the only tensile stress at the borehole wall. 
Therefore, Introducing Eq. (5.9) into Eq. (5.22) and rearranging, the upper limit of the mud 
pressure as per the tensile cut-off is given by 

 0 0wcutoffP D P T= − − .                                                     (5.23) 

This mud pressure should be then compared with Pwf  as calculated from the equations given 
in Table 5.2, and the lesser of these two values gives the maximum allowable mud pressure. 

5.4 Mogi-Coulomb borehole failure criterion 
The strengthen effect of the intermediate principal stress can be considered by implementing 
the Mogi-Coulomb law. Taking into account the effective stress concept, Mogi-Coulomb 
criterion given by Eq. (4.29) becomes 

 
1
22

1 2 1 2 0( 3 ) ' ' ( 2 )I I a b I Pσ− = + − − ,                                         (5.24) 

where  

 ' 2 cos , ' sina c bφ φ= = .                                               (5.25) 

We have previously pointed out that there are six permutations of the three principal stresses 
(σr,σθ,σz) that need to be investigated to develop a borehole failure criterion. Since the first 
and second stress invariants, I1 and I2, have the same form in all the cases, only the 
intermediate principal stress will vary from one case to another, as per Eq. (5.24). 
Consequently, the six permutations of the principal stresses could be represented in three 
scenarios in which σ2 could be σθ, σz, or σr. In each scenario there will be two roots of the 
mud pressure related to borehole collapse and fracturing. 

The principal stresses at the borehole wall given by Eq. (5.11) represent the highest stress 
concentration that may result in compressive failure. By introducing Eq. (5.11) into Eq. 
(4.28), the first and second stress invariants are then given by 

 2
1 2, w wI A B I AB AP P= + = + − .                                           (5.26) 

Consider the first scenario of borehole collapse, where σ2 = σθ = A-Pw, and Pw = Pwb1. 
Implementing the Mogi-Coulomb failure criterion as expressed by Eq. (5.24), and 
introducing Eq. (5.26), gives 
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1/ 22 2

1 1 1( ) 3( )wb wb wbA B AB AP P bP K⎡ ⎤+ − + − − =⎣ ⎦ ,                          (5.27) 

where 

 0' '( 2 )K a b B P= + − .                                                        (5.28) 

Solving this equation for Pwb1 will give two roots. Since we are concerned with borehole 
collapse, the smaller root is the lower limit of the mud pressure related to the first scenario, 
that is, 

 2
1 2

1 3 2 ' 12( ' )
6 2 'wbP A b K H K b AK

b
⎡ ⎤= + − + +
⎣ ⎦−

,                          (5.29) 

where 

 2 2 2 2(4 ' 3) ( )(4 ' 12)H A b B AB b= − + − − .                                    (5.30) 

Regarding the second scenario where σ2 =σz =B and Pw = Pwb2, application of the Mogi-
Coulomb criterion by introducing Eq. (5.26) into Eq. (5.24) gives 

 ( )22 2
2 2 0( ) 3( ) ' '( 2 )wb wbA B AB AP P a b A P+ − + − = + − ,                          (5.31) 

This is a second order equation that can be solved for Pwb2. The lower limit of the mud 
pressure associated with the second scenario is the smaller root, defined by 

 [ ]2 2
2 0

1 1 12 ' '( 2 ) 3( 2 )
2 6wbP A a b A P A B= − + − − − .                            (5.32) 

In the third scenario, σ2 = σr = Pw = Pwb3. Introducing Eq. (5.26) into Eq. (5.24) gives 

 
1/ 22 2

3 3 3( ) 3( )wb wb wbA B AB AP P bP G⎡ ⎤+ − + − + =⎣ ⎦ ,                          (5.33) 

where 

 'G K b A= + .                                                             (5.34) 

By solving this equation for Pwb3, the smaller root, which defines the lower limit of the mud 
pressure related to the third scenario, is expressed as 

 2
3 2

1 3 2 ' 12( ' )
6 2 'wbP A b G H G b AG

b
⎡ ⎤= − − + −
⎣ ⎦−

.                            (5.35) 

For convenience, the minimum allowable mud pressures corresponding to the three stress 
states and the related constants are summarized in Table 5.3.  
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At the borehole wall, the highest stress concentration that may result in tensile failure is 
consequent to the principal stresses defined by Eq. (5.9). By inspection of this equation and 
Eq. (5.11), the constants A and B in Eq. (5.11) have been replaced by D and E respectively in 
Eq. (5.9). Therefore, the upper limit of the mud pressure, Pwf, is the larger roots in the three 
scenarios of borehole collapse with the use of D and E as constants instead of A and B. The 
maximum allowable mud pressure at different stress state and the corresponding constants are 
estimated and given in Table 5.4. 

Table 5.3. Mogi-Coulomb criterion for collapse pressure in vertical wellbores. 

Case σ1 ≥ σ2 ≥ σ3 
Borehole failure will occur if Pw ≤ Pwb from the 
following equations 

1 σz ≥ σθ ≥ σr 
2

1 2
1 (3 2 ' ) 12( ' )

6 2 'wbP A b K H K b AK
b

⎡ ⎤= + − + +⎢ ⎥⎣ ⎦−
 

2 σθ ≥ σz ≥ σr 
2 2

2 0
1 1 12 ' '( 2 ) 3( 2 )
2 6wbP A a b A P A B= − + − − −⎡ ⎤⎣ ⎦  

3 σθ ≥ σr ≥ σz 
2

3 2
1 (3 2 ' ) 12( ' )

6 2 'wbP A b G H G b AG
b

⎡ ⎤= − − + −⎢ ⎥⎣ ⎦−
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σ σ
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For each collapse and fracture pressures, it is essential to recalculate the principal stresses, 
Eqs. (5.9) and (5.11), and then substitute the stresses into Eq. (5.24). This will allow us to 
know which stress state has occurred and, at the same time, fulfil the failure criterion. The 
critical mud pressures are then those for which the Mogi-Coulomb criterion has been 
satisfied. 

However, borehole collapse will usually be related to case 1 and case 2, as highlighted in the 
previous section. For case 1 to occur, we must have  

 0.z θσ σ− ≥                                                                (5.36) 

Introducing Eq. (5.11) into Eq. (5.36) gives 

 (3 2 ) (2 1) .v H h wPσ σ ν σ ν≥ − + − −                                          (5.37) 

Considering the practical range of Poisson’s ratio (0–0.5), and the facts that the ratio of the 
maximum horizontal stress to the minimum horizontal stress (σH /σh) ranges from 1 to 2, and 
the collapse pressure will not exceed the minimum in situ stress in Eq. (5.37), it follows that 
the vertical stress must be greater than the maximum horizontal stress for case 1 to develop. 
Therefore, case 1 is only associated with the normal faulting stress regime (i.e., σv ≥ σH ≥ σh). 
Moreover, case 2 may develop in any stress regime. In the field, consequently, case 2 (i.e., σθ 

≥ σz ≥ σr) will be the most commonly encountered stress state corresponding to borehole 
collapse for all in situ stress regimes. For instance, Woodland (1988) reported that for deep 
boreholes drilled in western Canada with low mud densities, the stress state at borehole 
collapse is as per case 2. 

Furthermore, the unixial tensile strength estimated by Mogi-Coulomb is exactly the same as 
that determined by the Mohr-Coulomb criterion, since both criteria are equivalent under 

Table 5.4. Mogi-Coulomb criterion for fracture pressure in vertical wellbores. 

Case σ1 ≥ σ2 ≥ σ3 
Borehole failure will occur if Pw≥Pwf  from the 
following equations 

1 σr ≥ σθ ≥ σz 
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1 2
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uniaxial tensile stress states (see section 4.7). Therefore, a tensile cut-off should be also 
introduced in the Mogi-Coulomb failure criterion. We have assumed that the same tensile 
cut-off which is conventionally used with Mohr-Coulomb criterion can be applied in Mogi 
domain, τoct-σm,2 space. Consequently, the upper limit of the mud pressure defined by Eq. 
(5.23) should be introduced into the borehole failure criterion. 

5.5 Example calculations of collapse pressure 
The main process in wellbore stability analysis is the selection of a rock failure criterion. In 
Chapter 4 we concluded that a linear Mohr criterion is a 2D Coulomb failure criterion, 
whereas a linear Mogi criterion is a 3D Coulomb failure criterion. By applying these failure 
criteria, we have presented two different mathematical models to estimate the critical mud 
pressure. In this section we will highlight the difference in results between the Mohr-
Coulomb and Mogi-Coulomb borehole failure criteria.  

Assume a vertical wellbore is drilled in a rock such as limestone, with a cohesion of 1400 psi 
and a friction angle of 35°. The in situ stresses and pore pressure are as follows: σv = 1.0 
psi/ft, σH = σh= 0.85 psi/ft, P0 = 0.45 psi/ft. Since the horizontal stress is isotropic, the 
Poisson’s ratio (ν) will disappear from both borehole failure criteria. At the depth of 10,000 
ft, for instance, using Mohr-Coulomb borehole failure criterion, Table 5.1 or Eq. (5.20), gives 
Pwb = Pwb2 = 5059 psi. Hence, the minimum overbalance pressure (well pressure-pore 
pressure) is 559 psi. At the same depth, the Mogi-Coulomb borehole failure criterion (Table 
5.3) gives Pwb= Pwb2 = 4622 psi, and the minimum overbalance pressure becomes 122 psi. 
The two borehole failure criteria, therefore, result in quite different collapse pressures. This is 
mainly due to the existence of an intermediate principal stress that is not equal to the 
minimum principal stress at the wellbore wall.  

At the same field conditions, if the rock has a lower cohesion of, say, 700 psi (e.g., 
sandstone), using the Mohr-Coulomb and Mogi-Coulomb criteria gives minimum 
overbalance pressures of 1132 and 804 psi, respectively. Therefore, for a weaker rock, a 
higher collapse pressure is required to maintain the stability of the wellbore. Moreover, the 
difference in results between both criteria is minimized. In both examples, however, the 
Mohr-Coulomb criterion is significantly conservative. This is illustrated in Figure 5.5, where 
the minimum overbalance pressure versus depth and borehole failure criteria is plotted. 
Figure 5.5 also shows that the collapse pressure increases with depth. 
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We have shown in Chapter 4 that the Drucker-Prager failure envelope developed using 
conventional triaxial test data may not represent rock failure under polyaxial stress states. 
Furthermore, this failure criterion gives a higher rock strength than does the Mogi-Coulomb 
criterion. Accordingly, if the Drucker-Prager criterion is introduced into wellbore stability 
analysis, it will definitely provide a lower collapse pressure than will the Mogi-Coulomb 
borehole failure criterion. For example, assume that a vertical wellbore is drilled in poorly 
cemented sand with cohesion equal to 200 psi and a friction angle of 35°. At a depth of 4,000 
ft, the in situ stresses and pore pressure, as suggested by Ewy (1999), are as follows: σv = 
0.891 psi/ft, σH = σh= 0.64 psi/ft, and P0 = 0.425 psi/ft. Based on the Drucker-Prager failure 
criterion, Ewy calculated the collapse pressure to be about 1493 psi, which is below the 
formation pressure. Applying the Mohr-Coulomb and Mogi-Coulomb criteria, the minimum 
overbalance pressures are 297 and 205 psi, respectively. As expected, Drucker-Prager 
criterion underestimated the collapse pressure, whereas the Mohr-Coulomb criterion 
predicted a conservative collapse pressure.  
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Figure 5.5. Minimum overbalance pressure as a function of depth and borehole failure criteria
for a rock with (a) c=1400 psi and φ=35°, (b) c=700 psi and φ=35°.
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5.6 Example calculations of fracture pressure 

Assume the following rock properties and stresses: c = 1400 psi, φ = 35°, σv = 0.95 psi/ft, σH 

= σh = 0.80 psi/ft, and P0 = 0.45 psi/ft. Since there are commonly existing cracks or fractures 
in the wellbore wall, the uniaxial tensile strength of the rock is taken to be zero. At a depth of 
10,000 ft, the Mohr-Coulomb borehole failure criterion gives Pwf = Pwf2 = 11,154 psi, whereas 
the Mogi-Coulomb criterion gives Pwf = Pwf2 = 11,538 psi. If we consider the tensile cut-off, 
the fracture pressure becomes Pwcutoff = 11,500 psi. As per the Mohr-Coulomb and Mogi-
Coulomb criteria, therefore, the maximum allowable mud pressures are 11,154 and 11,500 
psi, respectively. Figure 5.6 shows the fracture pressure as a function of depth and failure 
criterion. In general, the Mogi-Coulomb criterion predicted higher fracture pressures than did 
the Mohr-Coulomb criterion. This is mainly due to the strengthening effect of the 
intermediate principal stress. Furthermore, the fracture pressure increases with depth. 

The fracture pressure estimated by both borehole failure criteria is about 40% more than σh, 
which is far from what is usually applied in practice. When the well pressure is greater than 
the minimum in situ principal stress, there is a possibility of lost circulation (e.g., Hubbert 
and Willis, 1957; McLean and Addis, 1990b; Ewy et al., 1994; Ewy, 1999; Bradford et al., 
2000). Therefore, the fracture pressure is typically set equal to the minimum principal stress 
or the LOT pressure. This problem of estimating high fracture pressure in both models is not 
related to the applied failure criteria; rather, it is mainly due to the sensitivity of fracture 
pressure to the magnitude of the pore pressure. For instance, assume that wellbore wall is 
permeable, so that at the wall P0 = Pw, and assume that there is no contribution of fluid flow 
to the stresses. For the same rock properties and stresses, applying the tensile failure criterion 
given by Eq (5.22), gives a fracture pressure that is equal to σh. Thus, considering the pore 
pressure alteration has significantly changed the estimation of the fracture pressure. In order 
to avoid the possibility of lost circulation, and to map the region of mechanical stability in a 
vertical wellbore, the upper limit of the well pressure should be set equal to the minimum 
principal stress, which is usually σh.  
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Figure 5.6. Fracture pressure as a function of depth and borehole failure criteria for a rock
with c=1400 psi and φ=35°. 
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6 Non-vertical borehole failure analysis 

With recent advances in drilling technology, wells are drilled in more difficult environments 
and are becoming more complex. Despite the existing technical challenge, the drilling non-
vertical boreholes is routinely carried out in oilfields. This is mainly applied to enlarge the 
drainage area from a production platform, which may also reduce the number of platforms 
required to produce the field. There is consequently a large potential to minimize the costs of 
the production wells by developing non-vertical boreholes. However, the present of wellbore 
instability will significantly increase the already high well costs. Unplanned operations due to 
wellbore instability consume at least 10% of the average well budget. It is therefore essential 
to perform non-vertical borehole failure analysis, in order to drill cost-effective wells.  

Wellbore stability can be ensured by a proper design of the mud pressure. From the borehole 
stability analysis presented in the previous chapter, we have concluded that the upper limit of 
the mud pressure (i.e., the fracture pressure) should be set equal to the minimum in situ stress 
or the LOT pressure. Following this finding, in this chapter, we will develop an analytical 
model to estimate the mud pressure required to only avoid shear failure at the wall of 
horizontal and deviated boreholes (i.e., collapse pressure). This will be attained by employing 
a suitable failure criterion and the isotropic linear elastic constitutive model for stresses 
around a borehole, as we pursued in Chapter 5.  

We have shown that Mohr-Coulomb criterion underestimates the rock strength by ignoring 
σ2, while the Drucker-Prager criterion generally overestimates the rock strength through 
conceptually misusing the effective mean stress. These failure criteria will result in 
misleading rock strength predictions. For instance, in Figure 6.1 the failure criteria for KTB 
amphibolite are determined based on triaxial test data, where the polyaxial test data are then 
superimposed. It is obvious that Mohr-Coulomb and Drucker-Prager criteria predict the lower 
and the upper limit of the rock strength, respectively. The true rock strength can be predicted 
by applying the Mogi-Coulomb criterion; see Chapter 4 for experimental verification on other 
rock types. In this chapter, therefore, an analytical model for non-vertical borehole failure 
analysis will be developed using a true triaxial failure criterion, that is, the Mogi-Coulomb 
criterion. For comparison, another analytical model will be also developed, using the Mohr-
Coulomb criterion. These models will be then utilized to study some field cases in Chapter 7, 
in order to verify the applicability of the suggested Mogi-Coulomb criterion in field 
situations.  

6.1 Principal stresses at the collapse of horizontal borehole 
With the drilling of the wellbore, the in situ stresses are modified and stress concentration is 
generated around the wellbore. The determination of stresses around a horizontal wellbore 
depends mainly on the in situ stress magnitudes and orientations, the pore pressure, and the 
constitutive behaviour of the rock. For a rock obeying linear elastic behaviour, the largest 
stress concentration occurs at the borehole wall. Therefore, borehole failure is expected to 
initiate there. For wellbore instability analysis, consequently, stresses at the borehole wall are 
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the ones that must be compared against a failure criterion. A cylindrical (r,θ,z) co-ordinate 
system is the most convenient system for studying the state of stress around boreholes (see 
Chapter 3). For isotropic and linear elastic material, the stresses at horizontal borehole wall 
(i.e., Eq. (3.17)), are given by  
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Figure 6.1. Failure criteria based on triaxial test data (black circles) and constrained by
polyaxial test data (empty circles) for KTB amphibolite: (a) Mohr-Coulomb criterion. (b)
Drucker-Prager criterion. (c) Mogi-Coulomb criterion. 
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The tangential and axial stresses are functions of the angle θ and will vary sinusoidally. 
Borehole collapse will initiate at the value of θ where the tangential and the axial stresses, or 
eventually the principal stresses in θ-z plane, are maximum. Inspection of Eq. (6.1) reveals 
that both tangential and axial stresses will reach their maximum values at θ = ±π/2 or θ = 0 or 
π, depending mainly on the in situ stress regime. In order to simplify borehole collapse 
analysis, it is useful then to relate the critical positions of the angle θ to the in situ stress 
regimes. At θ equal to 0 and 90 degrees, the tangential stresses become  

 
2 2

0
2 2

90 .

3 sin 3 cos ,

3 sin cos
H h v w

v H h w

P

P

σ σ α σ α σ

σ σ σ α σ α

= + − −
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For the maximum tangential stress to occur at θ equal to 0 degrees, we must have 

 0 90 0σ σ− ≥ . (6.3) 

Introducing Eq. (6.2) into Eq. (6.3) gives 

 2 2sin cosv H hσ σ α σ α≤ + . (6.4) 

From Eq. (6.4), taking into account that the practical values of ratio of the maximum 
horizontal stress to the minimum horizontal stress ratio, σH/σh, range from 1 to 2, and α 
varies from 0 to 90 degrees, the vertical stress must be less than the maximum horizontal 
stress (i.e., v Hσ σ≤ ) in order for it to be possible for the maximum tangential stress to occur 
at θ = 0. Hence, the critical position θ = 0 or π is associated with RF and SS stress regimes 
only.  

On the other hand, the maximum tangential stress will develop at θ equal to 90 degrees when 

 90 0 0σ σ− ≥ . (6.5) 

Substituting Eq. (6.2) into Eq. (6.5) gives 

 2( ) cosv H h Hσ σ σ σ α≥ + − . (6.6) 

Applying the practical values of the horizontal stress and the angle α, in Eq. (6.6), reveals 
that the vertical stress must be greater than the minimum horizontal stress (i.e., v hσ σ≥ ) so 
that the maximum tangential stress could occur at this critical position. The compressive 
strength of the rock, consequently, will first be exceeded at the angle θ = ±π/2 only in NF and 
SS stress regimes. 

6.1.1 Normal faulting stress regime with anisotropic horizontal stress 

In general, there are three possible permutations of the principal stresses in (r,θ,z) co-
ordinates that need to be investigated in order to determine the collapse pressure: (1) σz ≥ σθ  

≥ σr, (2) σθ  ≥ σz ≥ σr, and (3) σθ  ≥ σr ≥ σz. However, these alternatives are not essentially 
associated with all stress regimes. For simplicity, assume that we have isotropic horizontal 
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stress. From Eq. (6.1), in NF stress regime, the principal stresses at the borehole wall where θ 
= ±π/2 become 
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In order to case 1 (σz ≥ σθ  ≥ σr) to occur, we must have 

 0.z θσ σ− ≥  (6.8) 

Substitute Eq. (6.7) into Eq. (6.8) gives 

 (3 2 ) (2 2 )v h wPν σ ν σ− ≤ − +  (6.9) 

Applying a value of 0-0.5 for the Poisson’s ratio, and bearing in mind that the collapse 
pressure will not exceed the minimum in situ stress in Eq. (6.9), it follows that the vertical 
stress must be less than the horizontal stress for case 1 to develop. In other words, case 1 is 
not associated with NF stress regimes. This conclusion also holds for anisotropic horizontal 
stresses.  

Moreover, cases 2 and 3 are not limited to a specific stress regime. Furthermore, we already 
knew that in RF stress regimes the maximum tangential stress will never occur at θ = ±π/2. 
Consequently, for NF stress regime, there are only two possible permutations of the principal 
stresses, that is, case 2 (σθ  ≥ σz ≥ σr) and case 3 (σθ  ≥ σr ≥ σz). As the radial stress is 
commonly the minimum principal stress, case 2 is perhaps the most encountered stress state 
in NF stress regimes.  

6.1.2 Reverse faulting stress regime with isotropic horizontal stress 

In RF stress regimes, borehole collapse will initiate at θ = 0 or π. If we assume isotropic 
horizontal stress, using Eq. (6.1), the principal stresses that may cause borehole failure are 
given by 
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In this situation, in order for case 1 (σz ≥ σθ  ≥ σr) to occur, the axial stress must be greater 
than the tangential stress, as presented by Eq. (6.8), whereas case 3 (σθ  ≥ σr ≥ σz) will 
develop when 

 0.r zσ σ− ≥  (6.11) 

Introducing Eq. (6.10) into Eqs. (6.8) and (6.11) gives 

 (1 2 ) (2 2 ) ,v h wPν σ ν σ− ≥ − −  (6.12) 
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and 

 (2 ) (1 2 ) ,v h wPν σ ν σ≥ + −  (6.13) 

respectively. 

Considering the practical values of the Poisson’s ratio and the mud pressure in Eqs. (6.12) 
and (6.13), it follows that the vertical stress must be greater than the horizontal stress for 
cases 1 or 3 to develop. Therefore, these two cases are only associated with NF stress 
regimes. In addition, case 2 may develop in any stress regime. However, in NF stress 
regimes, borehole collapse will never take place at θ = 0 or π, since the compressive strength 
of the rock will first be exceeded at the angle θ = ±π/2. Consequently, there is only one 
possible permutation of the principal stresses, that is, case 2 (σθ ≥σz ≥σr).  

If the horizontal stress is anisotropic, a shear stress in the θ-z plane, σθz, will exist. As a 
result, the principal stresses in that plane should be first determined before implementing any 
failure criterion. In this case, Eqs. (2.13) and (2.14) can be utilized to estimate the tangential 
and axial principal stresses. However, this will complicate the analysis, and no easy 
expression for the mud pressure can be then obtained, particularly if a 3D failure criterion 
such as Mogi-Coulomb is employed. In other words, the existence of shear stress in the θ-z 
plane will make the analytical solution cumbersome. In such a scenario, a numerical model 
may be more convenient to apply.   

6.1.3 Strike-slip stress regime 
In strike-slip stress regimes, borehole collapse could develop at both critical positions around 
the borehole (i.e., θ = ±π/2 and θ = 0 or π). The alternation between these two positions 
depends on the magnitude of the in situ stresses and the horizontal orientation of the 
borehole. This can be easily concluded by the inspection of Eqs. (6.4) and (6.6). If the 
maximum tangential stress occurs at θ = ±π/2, then the stresses around the borehole are 
similar to those exist in the NF stress regime, that is, Eq. (6.7). Unlike the NF stress regime, 
no simplification in the instability analysis can be taken in SS stress regimes, as all the three 
permutations of the principal stresses, σθ, σz and σr, could occur. When the maximum 
tangential stress occurs at θ = 0 or π, there will be shear stress in θ-z plane and, as mentioned 
previously, any analytical result is going to be unwieldy. Accordingly, for instability analysis 
of horizontal boreholes in SS stress regimes, a general solution for the collapse pressure may 
be better obtained using a numerical model rather than an incomplete or onerous analytical 
model.   

6.2 Horizontal borehole failure criteria 
From the previous section, it has been revealed that the stress state at the borehole wall 
corresponds to case 2 is normally the one that has to be considered when discussing the 
collapse pressure in horizontal boreholes. This stress state, therefore, should be used in 
conjunction with a failure criterion to determine the lower limit of the mud pressure. The 
upper limit of the mud pressure should be set equal to the minimum in situ stress (σh or σv) as 
highlighted in Chapter 5. 

In NF stress regimes with anisotropic horizontal stresses, and RF stress regimes with 
isotropic horizontal stresses, no shear stress exists in the θ-z plane (i.e., σθz = 0). In these 
situations, σθ, σz and σr are principal stresses, which can be directly implemented in the 
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failure criterion. For the general case of σ1 ≥ σ2 ≥ σ3, here σ1 = σθ, σ2 = σz and σ3 = σr. The 
principal stresses at the borehole wall given by Eq. (6.1), where θ equal to 0 or π/2 depending 
on the stress regime, represent the highest stress concentrations that may result in 
compressive failure. Applying Mohr-Coulomb failure criterion, i.e., Eq. (5.14), and 
introducing Eq. (6.1), gives 

 ( ) /(1 )w hP C qθσ= − + , (6.14) 

where σθh is given by 

 ( ) ( )2 2 2 2sin cos 2 sin cos cos 2 .h v H h v H hθσ σ σ α σ α σ σ α σ α θ= + + − − −     (6.15) 

If the well pressure falls below the collapse pressure estimated by Eq. (6.14), borehole 
collapse will occur. 

In the above analytical solution for the collapse pressure, the intermediate principal stress, σz, 
has no role in borehole failure. The effect of the intermediate principal stress on borehole 
failure can be easily regarded by employing the Mogi-Coulomb criterion. This requires first 
the identification of the stress invariants. By introducing Eq. (6.1) into Eq. (4.28), the stress 
invariants are given by 

 2
1 2,h z h z h w wI I P Pθ θ θσ σ σ σ σ= + = + − . (6.16) 

Implementing the Mogi-Coulomb failure criterion, i.e., Eq. (5.24), where σ2 = σz, and 
introducing Eq. (6.16), gives 

 
1/ 22 2

0( ) 3( ) ' '( 2 )h z h z h w w hP P a b Pθ θ θ θσ σ σ σ σ σ⎡ ⎤+ − + − = + −⎣ ⎦  (6.17) 

Solving this equation for Pw will give two roots. The larger root is associated with hydraulic 
fracturing, while the smaller root corresponds to borehole collapse. The lower limit of the 
mud pressure, therefore, is the smaller root of Pw, that is, 

 [ ]2 2
0

1 1 12 ' '( 2 ) 3( 2 )
2 6w h h h zP a b Pθ θ θσ σ σ σ= − + − − − . (6.18) 

When the intermediate principal stress, σz, is equal to the minimum or maximum principal 
stresses, σθ or σr, the collapse pressure determined using the Mogi-Coulomb criterion, Eq. 
(6.18), is exactly the same as the one estimated using the Mohr-Coulomb criterion (i.e., Eq. 
(6.14)). For instance, if σz = σr = Pw in Eq. (6.18), the collapse pressure becomes 

 0
1 1(1 ') ' '.
2 2w hP b b P aθσ= − + −  (6.19) 

Using Eqs. (4.7) and (4.31), the strength parameters a′ and b′ , defined by Eq. (5.25), can be 
expressed as 

 0' (1 sin ), ' ( 1) /( 1).a C b q qφ= − = − +  (6.20) 

Eq. (4.6), that is,  
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 (1 sin ) /(1 sin ),q φ φ= + −  (6.21) 

and Eq. (6.20) can be substituted in Eq. (6.19). After some manipulation, it is found that Eq. 
(6.19) is exactly equivalent to Eq. (6.14). Therefore, the Mogi-Coulomb borehole failure 
criterion, i.e., Eq. (6.18), will give a weight to the intermediate principal stress; otherwise the 
result is equivalent to the Mohr-Coulomb borehole failure criterion, i.e., Eq. (6.14). This is 
one of the main advantages of employing the Mogi-Coloumb criterion, as the developed 
model will naturally reduce to the Mohr-Coulomb borehole failure criterion when we have a 
2D stress state. 

In SS stress regimes, there is no shear stress in the θ-z plane when borehole collapse will take 
place at θ = ±π/2. At this critical position, borehole failure will develop only if Eq. (6.6) is 
valid. In this particular situation, the Mohr-Coulomb and Mogi-Coulomb borehole failure 
criteria, expressed by Eqs. (6.14) and (6.18) respectively, can be applied to determine the 
critical mud pressure in a horizontal borehole. 

6.2.1 Sample calculations of collapse pressure in horizontal borehole 
Assume a horizontal borehole has to be drilled in a sandstone formation with cohesion equal 
to 600 psi, a friction angle of 30° and a Poisson’s ratio of 0.3. The sandstone formation is at a 
depth of 4000 ft, where the in situ stresses and pore pressure are as recorded in Table 6.1. In 
this case study, we have a horizontal borehole in an NF stress regime with anisotropic 
horizontal stress. Therefore, the highest stress concentration around the borehole is at θ = 
±π/2. The collapse pressure can be directly calculated using Eqs. (6.14) and (6.18).  

 

The minimum overbalance pressure, consequently, has been determined at different borehole 
orientations α (i.e., azimuths) applying both the Mohr-Coulomb and Mogi-Coulomb criteria. 
This is illustrated in Figure 6.2(a), where the spread among the results is very obvious. The 
lack of involving all the three principal stresses at rock failure, by implementing Mohr-
Coulomb criterion, has produced conservative results. The difference in results depends up on 
the stress state at the borehole wall. Normally, the stress state is not a triaxial stress state with 
σ2 = σ3 or σ2 = σ1; rather, it is a polyaxial stress state in which σ2 is a true intermediate 
principal stress. 

Table 6.1. Rock properties, in situ stresses and pore pressure for Figure 6.1. 

c (psi) φ ν Depth (ft) σv (psi/ft) σH (psi/ft) σh (psi/ft) P0 (psi/ft) 

600 30.0° 0.30 4000 0.90 0.85 0.70 0.45 

805 34.6° 0.27 6000 0.90 0.85 0.80 0.45 
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Figure 6.2. Minimum overbalance pressure as a function of borehole orientation α, in a
sandstone formation with (a) c=600 psi and φ=30°, (b) c=805 psi and φ=34.6° (see Table 6.1). 
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Another example is a horizontal borehole assumed to be drilled in a sandstone formation with 
higher cohesion and friction angle, at a depth of 6000 ft. The rock properties, in situ stresses 
and pore pressure are listed in Table 6.1. In this situation, both criteria predicted quite 
different collapse pressures (see Figure 6.2(b)). Again, the Mohr-Coulomb criterion predicted 
a conservative collapse pressure. Moreover, in this case, the difference between the 
maximum and the minimum horizontal stresses is small compared to the first example (i.e., 
lesser horizontal stress anisotropy). Thus, the variation of the critical mud pressure at 
different orientations is lower than that in the first example. When the horizontal stress is 
isotropic, the collapse pressure will be constant, and so, borehole orientation has no influence 
on the collapse pressure in this situation. This means that the variation of the collapse 
pressure at different borehole orientations depends on the degree of anisotropy of the 
horizontal stress.  

In both examples, the variation of the collapse pressure at various azimuths using the Mohr-
Coulomb criterion is approximately twice that obtained using the Mogi-Coulomb criterion. 
Hence, there is an effect of horizontal stress anisotropy, but not as pronounced as predicted 
by the Mohr-Coulomb criterion. 

As a third example, assume that a horizontal borehole is drilled in sandstone formation, at a 
depth of 4000 ft, with rock prosperities and stresses as follows: c = 620 psi, φ = 31.4°, 
ν = 0.3, σv = 0.89 psi/ft, σH = σh= 0.95 psi/ft, and P0 = 0.45 psi/ft. Since we have a RF stress 
regime with isotropic horizontal stresses, Eqs. (6.14) and (6.18) can be directly applied to 
determine the collapse pressure, where θ =0°. The Mohr-Coulomb criterion estimated the 
minimum overbalance pressure to be equal to 486 psi, whereas the Mogi-Coulomb criterion 
predicted that 234 psi is just sufficient to maintain the stability of the borehole. 

The developed Mohr-Coulomb and Mogi-Coulomb borehole failure criteria can also be 
applied to the SS stress regime. This requires that the field conditions satisfy Eq. (6.6). For 
instance, in the second example, if the maximum horizontal stress is equal to 0.95 psi/ft, then 
the sandstone formation is under a SS stress regime at a depth of 6000 ft (see Table 6.1). In 
this case, Eq. (6.6) has been satisfied for borehole orientation α = 0°-54.73°, where the 
maximum tangential stress will develop at θ = ±π/2. At any other borehole orientation, 
borehole collapse will initiate at θ = 0 or π, and the collapse pressure should be then 
determined using a numerical model. Figure 6.3 shows the calculated minimum overbalance 
pressure for the two borehole failure criteria at α = 0°-50°. It is apparent that Mohr-Coulomb 
criterion is significantly conservative in this situation. 

6.3 Analytical model for deviated borehole failure analysis 
In deviated borehole, the stresses at the borehole wall can be calculated using Eq. (3.14). 
These stresses should be compared with a failure criterion, in order to determine the 
minimum mud pressure required to prevent borehole collapse. In principal, the calculations of 
the collapse pressure in deviated boreholes are similar to those in vertical and horizontal 
boreholes. However, the tangential and axial stresses are not essentially principal stresses, as 
the shear stress, σθz, may be non-zero. The tangential and axial principal stresses should be 
determined using Eqs. (2.13) and (2.14), before introducing the stresses into a suitable failure 
criterion. If the principal stresses are introduced into the Mogi-Coulomb criterion, a 4th-
degree equation needs to be solved for the collapse pressure. In this case, the collapse 
pressure can be easily determined numerically by applying iterative loops in a computer 
program, rather than dealing with burdensome analytical expression. However, if the Mohr-
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Coulomb criterion is going to be employed, a closed-form analytical solution for collapse 
pressure in deviated a borehole can be derived. 

 

There are three possible permutations of the principal stresses in the radial, tangential and 
axial directions. In general, borehole collapse corresponds to case 1 and case 2, where the 
radial stress is the minimum principal stress. The stress state in these cases could be 
expressed as σ1 ≥ σ2 ≥ σr. By introducing Eq. (3.14) into Eqs. (2.13) and (2.14), the principal 
stresses become 

 2 2
2

2 2
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2 4
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where 
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 (6.23) 

It is obvious that the maximum and intermediate principal stresses are function of the angle θ. 
This angle indicates the orientation of the principal stresses around the wellbore circumference. 
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Figure 6.3. Minimum overbalance pressure as a function of borehole orientation α, in a SS
stress regime for a sandstone formation with c=805 psi and φ=34.6°. 
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In vertical and horizontal borehole stability analysis, the angle θ corresponding to the highest 
stress concentration had been first specified. Similarly, in deviated borehole stability analysis, 
the location of the maximum stress concentration (θmax) should be estimated before 
introducing the principal stresses into a failure criterion. 

The stress concentration around the wellbore circumference is dominated by the tangential 
stress (e.g., Aadnoy, 1988; Aadnoy, 1990; Hossain et al., 2000; Kårstad and Aadnoy, 2005). 
Actually both normal stresses, the tangential and axial stresses, will reach their maximum and 
minimum values at the same points. On the other hand, the shear stresses are usually an order 
of magnitude smaller than the normal stresses, and so, the influence of the squared shear 
stress on the orientation of the maximum stress concentration is negligible. By taking the first 
derivative of σθ, σθd or σz with respect to θ, the locations of the maximum and minimum 
stress concentrations become 

 1 2 1

21 arctan , .
2 2

o
xy

o o
x y

σ πθ θ θ
σ σ

⎛ ⎞
= = +⎜ ⎟⎜ ⎟−⎝ ⎠

 (6.24) 

These two angles should be then used to calculate σθd or σz, in order to identify the one that is 
associated with the maximum stress concentration, that is, θmax = θ1 or θ2. This simplified 
analytical method for determining θmax may be more convenient than employing an iterative 
loop to carry out the estimation numerically. 

In the general case θ1 is given by (Djurhuus and Aadnoy, 2003): 

 1 2 2

1 arctan 2
2 ( )

o o o o
xy z xz yz

o o o o o
x y z yz xz

σ σ σ σ
θ

σ σ σ σ σ
⎛ ⎞−

= ⎜ ⎟⎜ ⎟− + −⎝ ⎠
. (6.25) 

The squared shear stress component in the above equation has a small magnitude which, if 
neglected, will reduce Eq. (6.25) to Eq. (6.24) (Djurhuus and Aadnoy, 2003). In other words, 
the shear stress component may only deviate the tangential stress slightly from the principal 
direction (Aadnoy, 1988). For simplicity, therefore, Eq. (6.24) will be used to determine the 
location of the maximum stress concentration. 

By introducing Eqs. (6.22) into Eq. (5.14), for θ = θmax, the collapse pressure is defined by 

 22( )w
L KP

q q
+

=
+

 (6.26) 

where L and K are given by 
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(6.27) 

The Mohr-Coulomb borehole failure criterion, therefore, could be simplified into one single 
equation. However, we should keep in mind that the criterion requires us first to evaluate 
θmax. It would be advantageous if the estimation of θmax could be simplified further.    
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If the horizontal stress is isotropic, then 0o
xyσ = , which implies that θmax is equal to 0 or π/2. 

At these points, the constant σθd is given by 
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Substituting Eq. (3.12) into Eq. (6.28) gives 
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In order to have θmax = 0°, we must have 

 0 90 0.d dσ σ− ≥  (6.30) 

Introducing Eq. (6.29) into Eq. (6.30) reveals that the vertical stress must be less than or 
equal to the horizontal stress for the maximum stress concentration to occur at θ = 0°. 
Borehole collapse, therefore, will develop at θmax = 0° only in RF stress regimes. 

Similarly, for θmax = 90°, we must have  

 90 0 0.d dσ σ− ≥  (6.31) 

By substituting Eq. (6.29) in Eq. (6.31), the vertical stress must be greater than or equal to the 
horizontal stress for the highest tangential stress to develop at θ  = 90°. Consequently, 
borehole collapse will initiate at θmax = 90° only in NF stress regime. 

As a result, when the studied field case is under isotropic horizontal stress, the borehole 
failure criterion expressed by Eq. (6.26) can be directly applied. Otherwise, the suggested 
analytical method to evaluate θmax must be carried out first. 

6.3.1 Numerical evaluation of collapse pressure 
The analytical method developed here for estimating the collapse pressure resulted in a 
manageable framework what would otherwise require a complicated numerical method. In 
the development of an oil field, the suggested analytical method can be used as a quick 
approach for assessing drilling alternatives. However, the recommended closed-form 
analytical expressions do not cover all field scenarios. This deficiency can be eliminated by 
estimating the collapse pressure numerically. For this purpose, a computer program in 
Mathcad has been written to evaluate the collapse pressure (see Appendix B).  

Mathcad is a technical calculation tool that is as versatile and powerful as a programming 
language. In Mathcad, the equations are displayed in the same fashion you would write them 
on paper, and the problems are solved much the same way people do, rather than making 
your solution process fit the program’s way of doing things (Larsen, 2001). This makes the 
worksheets easy to read and follow. In addition, Mathcad updates results and redraws graphs 
as soon as you make a change anywhere in your worksheet. This makes it easy to keep track 
of the most complex equations. As a result, it has been decided to utilize Mathcad for 
wellbore stability analysis. 
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The developed analytical model requires us first to define the following input parameters: (a) 
the depth of the studied formation, (b) the gradients of the in situ stresses and pore pressure, 
(c) the cohesion, friction angle and Poisson’s ratio, and (d) the borehole trajectory (azimuth 
and deviation). These parameters should be introduced in US units, which is the typical unit 
system used in the petroleum industry. 

After having the field stresses at the depth of interest, the in situ stresses in the vicinity of the 
borehole, expressed in the (x,y,z) co-ordinate system, are estimated using Eq.(3.12) (see 
Appendix B). Then, the location of the maximum stress concentration (θmax) is evaluated by 
utilizing Eqs. (6.23) and (6.24), as explained previously. At this critical location, the local 
field stresses is transformed from a Cartesian co-ordinate system to a cylindrical (r,θ,z) co-
ordinate system, using Eq. (3.14). The axial and shear stresses in the θ-z plane are 
independent of the applied mud pressure, and so they can be estimated directly at θ = θmax. 
The radial and tangential stresses, however, are functions of the mud pressure. In this 
situation, an iterative loop is essential to evaluate the collapse pressure for each failure 
criterion.  

To avoid under balanced drilling and the collapse pressure exceeding the fracture pressure, 
the program loop will carry out the iterative solution process for the mud pressure range from 
the pore pressure to the minimum in situ stress. Furthermore, the principal stresses in the 
axial and tangential directions must be determined before introducing the stresses into a 
failure criterion. In this case, the three principal stresses are as defined by Eq. (6.22) where θ 
= θmax, but, without prior knowledge of there actual order. After identifying the principal 
stresses, a failure function, F, is applied to determine the collapse pressure. According to the 
Mogi-Coulomb criterion, the failure function is 

 ,2 0( )m octF a b Pσ τ= + − − , (6.32) 

and failure will occur when F ≤ 0. In the case of implementing the Mohr-Coulomb criterion, 
the failure function will become 

 ,2 0 maxcos sin ( )mF c Pφ φ σ τ= + − − . (6.33) 

For instance, the failure functions vs. the mud pressure are plotted in Figure 6.4 for conditions 
as in Table 6.2. The failure functions are negative at Pw = P0 = 4500 psi and until the mud 
pressure reached the collapse pressure, which indicates an unstable borehole. It should be 
noted that applying the Mohr-Coulomb criterion has increased the unstable range of the mud 
pressure, due to its conservative nature. When the mud pressure exceeds the collapse 
pressure, the borehole is going to be stable, and this is represented by a positive failure 
function.  

In the developed program, consequently, the mud pressure increases from the pore pressure 
until the stable region is attained (i.e., F > 0), after which the program will stop immediately. 
Moreover, the evaluation of the collapse pressure is performed for a sequence of borehole 
trajectories by writing the variables as vectors in which the subscripts are the borehole 
deviation and azimuth (see Appendix B). This will assist identifying the optimum drilling 
direction with respect to the mechanical wellbore stability, if necessary.  
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6.4 Published analytical solutions for collapse pressure 
The suggested closed-form analytical expressions for collapse pressure using the Mohr-
Coulomb and the Mogi-Coulomb failure criteria are presented here for the first time. 
Although the Mohr-Coulomb criterion is a classical failure criterion, in the literature the 
evaluation of collapse pressure is usually carried out numerically due to the complexity of the 
equations involved in the analysis. Recently, Ewy (1998; 1999) introduced the only closed-
form general solution for the collapse pressure, which is applicable to all wellbore 
orientations and in situ stress states. This was achieved by modifying the Lade criterion so 
that the strengthening effect of the intermediate principal stress, together with Coulomb 
strength parameters (c and φ), are considered.  

The Lade criterion is a non-linear polyaxial criterion developed for soils that does not 
consider the effective cohesion of the materials. This failure criterion is given by 
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Figure 6.4. Failure functions vs. mud pressure for 60° deviated well (conditions as in Table
6.3). 

Table 6.2. Rock properties, in situ stresses and pore pressure for Figure 6.3. 

c (psi) φ ν Depth (ft) σv (psi/ft) σH (psi/ft) σh (psi/ft) P0 (psi/ft)

640 35.2° 0.3 10000 0.95 0.75 0.75 0.45 
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 3 '
1 3 1 1(( / ) 27)( / ) ,m

aI I I p η− =  (6.34) 

where pa is the atmospheric pressure, and m′ and η1 are material constants. By assuming m′ 
equal to zero, the criterion will predict a linear shear strength increase with increasing I1. This 
form is similar to that initially introduced by Lade and Duncan for cohesionless soils. To 
maintain a linear failure envelope and consider materials with cohesion, Ewy (1998) 
proposed that the stress axes be shifted into the tensile region by a constant with units of 
cohesion. The material constants were redefined so that the criterion is equivalent to the 
Mohr-Coulomb criterion for triaxial compression stress state (σ1 > σ2 = σ3). The “modified 
Lade” criterion developed by Ewy (1998) is given by 

 " 3 "
1 3( ) / 27 ,I I η= +  (6.35) 
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The material constants, S and η, are related to the Coulomb strength parameters by 

 2

/ tan ,
4 tan (9 7sin ) /(1 sin ).

S c φ

η φ φ φ

=

= − −
 (6.37) 

Applying the linear elastic constitutive model for stresses at an impermeable wellbore wall, in 
conjunction with the modified Lade criterion, the critical mud pressure to avoid borehole 
instability is given by (Ewy, 1998) 

 1/ 2( ) /(2 ),wP B C A= −  (6.38) 
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 (6.39) 

It should be noted that the above equations will calculate the mud pressure for a specified 
position around the wellbore circumference. The calculations should be repeated at different 
θ values, and the collapse pressure will be equal to the lowest mud pressure. Alternatively, 
the location of the maximum stress concentration (θmax) can be initially identified following 
the suggested method in section 6.3. Then, the collapse pressure can be evaluated using Eqs. 
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(6.38) and (6.39) where θ = θmax. These equations have been added to the Mathcad program 
in Appendix B for assessment, which will be carried out in the next chapter.  
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7 Applications of the borehole stability model 

We have developed a new stability model for borehole failure analysis by implementing the 
Mogi-Coulomb law. This model leads to a closed-form analytical expression for calculating 
the critical mud pressure required to maintain wellbore stability in a variety of field 
situations. Utilizing the new Mathcad program in Appendix B to study wellbore stability, we 
can evaluate the model numerically for all field scenarios. In this chapter, wellbore stability 
calculations using different failure criteria will be presented. This is mainly to highlight the 
difference in predictions of wellbore instability with respect to the failure criterion. The 
developed model will be then used to study the behaviour of the collapse pressure at different 
in situ stress regimes for arbitrarily oriented boreholes. It will be also applied to determine the 
critical mud pressure using field data from different geological environments. This indeed 
will appraise the applicability of Mogi-Coulomb criterion in field scale. Furthermore, the 
model will be utilized to evaluate the optimum drilling trajectory. 

7.1 Predictions of deviated wellbore instability and the selection of a failure criterion 
The selection of a failure criterion can make a pronounced effect on wellbore instability 
predictions. This has been confirmed for vertical and horizontal wellbore stability 
calculations in Chapter 5 and 6. In this section, for deviated wellbores, the difference in 
calculations of the collapse pressure using Mogi-Coulomb criterion, Mohr-Coulomb 
criterion, modified Lade criterion and Drucker-Prager criterion are revealed. For this purpose, 
borehole stability studies are conducted on three typical rock formations at different field 
conditions. The rock properties, in situ stresses and pore pressure are taken from Ewy (1999) 
and listed in Table 7.1.  

 

In the presented formations, the collapse pressure will be the same at any drilling direction or 
borehole azimuth (α) since the horizontal stress is isotropic. Therefore, the critical mud 
pressure required to prevent instability is only a function of borehole deviation from vertical 
and the failure criterion. The minimum overbalance pressure (collapse pressure − pore 
pressure) is calculated using the Mogi-Coulomb criterion, the Mohr-Coulomb criterion and 
the modified Lade criterion at various borehole inclinations, by utilizing the developed 

Table 7.1. Rock properties, in situ stresses and pore pressure for Figure 7.1 (after Ewy, 1999). 

Rock              
formation 

c  
(psi) 

φ 
(deg.) 

ν Depth 
(ft) 

σv 
(psi/ft) 

σH  = σh 
(psi/ft) 

P0 
(psi/ft) 

Sandstone 

Shale 

Poorly cemented sand 

640 

705 

200 

35.2° 

20.2° 

35.0° 

0.3 

0.3 

0.25 

10000 

8000 

4000 

0.95 

0.95 

0.891 

0.75 

0.75 

0.64 

0.45 

0.45 

0.425 
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program (see Appendix B). The estimated overbalance pressure using the Drucker-Prager 
criterion is reproduced from Ewy (1999). Figure 7.1 illustrates the evaluation of the 
overbalance pressure by employing different failure criteria. It should be emphasized that the 
calculations are performed so that the well pressure is not less than the pore pressure or 
greater than the minimum in situ stress, as explained in the previous chapter.  

Despite the variety of rock properties and field conditions in the three examples, it is obvious 
that the Mohr-Coulomb criterion results in a significantly conservative prediction of the 
collapse pressure. This is mainly due to its neglect of the effect of the intermediate principal 
stress, since in the field σ2 is not necessarily equal to σ1 or σ3.  

In triaxial stress states (σ2 = σ3 or σ2 = σ1), we have shown that the Mogi-Coulomb criterion 
is equivalent to the Mohr-Coulomb criterion. Nevertheless, the Mogi-Coulomb criterion 
predicts a lower collapse pressure for almost all borehole inclinations. This indicates the 
presence of a polyaxial stress state around the wellbore circumference, which is commonly 
encountered in situ. On the other hand, for vertical boreholes in sandstone and shale 
formations, Mogi-Coulomb and Mohr-Coulomb predict similar collapse pressures (see Figure 
7.1(a)-(b)). In these examples, the intermediate principal stress at the wall of the wellbore is 
very close to the maximum principal stress. This reveals that the Mogi-Coulomb criterion 
will automatically reduce to the Mohr-Coulomb failure criterion if two of the in situ principal 
stresses are nearly equal (i.e., if σ2 is close to σ1 or σ3).  

By comparison, the Drucker-Prager criterion always underestimates the mud pressure 
required to prevent instability. This is due to the (incorrect) strengthening effect that arises 
from the use of the octahedral normal stress, σoct, instead of the effective mean stress, σm,2.   

In the studied examples, the Mogi-Coulomb criterion and the modified Lade criterion give 
similar values for the collapse pressure. Both of these criteria, in general, predict a collapse 
pressure that lies between the values predicted by the Mohr-Coulomb and the Drucker-Prager 
criteria. The biggest difference in predicted collapse pressure between these criteria was for 
vertical boreholes in sandstone and shale formations. This spread among the results is 
generated from the application of different weightings of σ2. The modified Lade criterion is 
equivalent to the Mohr-Coulomb criterion only when σ2 = σ3 (Ewy, 1999), while in these 
examined cases σ2 is close to σ1. As a result, the modified Lade criterion gives collapse 
pressures which re lower than those predicted by the approximately equivalent Mogi-
Coulomb and Mohr-Coulomb criteria. Accordingly, the Mogi-Coulomb criterion gives 
predictions of the collapse pressure that are similar to those of the modified Lade criterion in 
polyaxial stress states, and similar to those of the Mohr-Coulomb criterion in triaxial stress 
states.  

7.2 Simulations for the collapse pressure in various stress regimes 
The estimation of collapse pressure depends basically on the various applied stresses around 
the borehole, in addition to the rock failure criterion. The magnitudes, directions and mutual 
relationships of the in situ stresses are of paramount importance. Drillers generally have the 
notion that vertical boreholes are more stable than deviated and horizontal boreholes. This 
concept will be examined using the developed stability model in different in situ stress 
regimes. 
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Figure 7.1. Minimum overbalance pressure as a function of borehole deviation in different
rock formations (see Table 7.1): (a) sandstone, (b) shale, (c) poorly cemented sand. 
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Simulations of collapse pressures are conducted for a rock formation with cohesion equal to 
740 psi, a friction angle of 33° and a Poisson’s ratio of 0.25, such as would be typical for 
sandstone. The formation is assumed to exist at a depth of 8000 ft, with pore pressure 
gradient of 0.45 psi/ft, in different in situ stress regimes that are listed in Table 7.2. The 
minimum overbalance pressures at different borehole inclinations (i) and directions/azimuths 
(α) are shown in Figures 7.2-7.7. The calculations have been carried out using both the Mogi-
Coulomb and the Mohr-Coulomb criteria. 

In NF stress regimes, it is apparent that a vertical borehole is more stable than a horizontal 
borehole, and almost all deviated boreholes in all directions (see Figure 7.2). However, the 
optimum drilling trajectory is not necessarily vertical. In this case, the lowest overbalance 
pressure that is required to prevent borehole instability is for a 40°-deviated borehole in a 
direction parallel to the minimum in situ stress (i.e., σh). The stability model has been also 
applied in an NF stress regime for three different formations in the previous section, where 
the horizontal stress is isotropic. In these cases the optimized trajectories are vertical and 
nearly vertical, that is, around i = 0°-10° (see Figure 7.1 for the collapse densities predicted 
by the Mogi-Coulomb criterion). 

At the boundary between normal faulting and strike-slip stress regimes (i.e., NF-SS stress 
regime), a horizontal borehole is more stable than a vertical or a deviated borehole (see 
Figure 7.3). The optimum drilling direction is still parallel to the minimum horizontal stress. 
Accordingly, when the horizontal stress is isotropic, the optimum drilling inclination is zero, 
which progressively increases towards 90° as the intermediate principal in situ stress (i.e., σH) 
gets closer to the maximum principal in situ stress (i.e., σv).  

 

 

 

Table 7.2. Different stress regimes in a sandstone formation. 

Stress 
regime 

σv 
(psi/ft) 

σH  
(psi/ft) 

σh 
(psi/ft) 

NF 1.0 0.86 0.76 

NF-SS 1.0 1.0 0.75 

SS 0.89 1.0 0.85 

SS-RF 0.90 1.1 0.90 

RF 0.89 

0.89 

1.1 

1.1 

0.98 

1.1 
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In SS stress regimes the maximum horizontal stress is greater than the vertical stress. As a 
result, horizontal boreholes are more stable than vertical and deviated boreholes in all 
directions. In this case, the optimum drilling direction is 30° from the direction of the 
maximum in situ stress (see Figure 7.4).  
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Figure 7.3. Minimum overbalance pressure as a function of borehole trajectory for sandstone
formation in NF-SS stress regime (see Table 7.2) applying (a) Mohr-Coulomb criterion, (b)
Mogi-Coulomb criterion.  
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Figure 7.2. Minimum overbalance pressure as a function of borehole trajectory for a sandstone
formation in NF stress regime (see Table 7.2) applying (a) Mohr-Coulomb criterion, (b)
Mogi-Coulomb criterion. 
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In the boundary between strike-slip and reverse faulting stress regimes (i.e., SS-RF stress 
regime), the optimum well path is for horizontal borehole drilled parallel to the maximum in 
situ stress (see Figure 7.5). Consequently, when the intermediate principal in situ stress is 
equal to the maximum principal stress (i.e., σv = σH, NF-SS stress regime) the optimum 
drilling direction is 90°, and gradually decreases to zero as the intermediate principal in situ 
stress reaches the minimum principal stress (i.e., σv = σh, SS-RF stress regime). 

In an RF stress regime with anisotropic horizontal stress, the optimum drilling inclination 
fluctuates between horizontal and vertical, depending up on the applied drilling direction (see 
Figure 7.6). In a direction close to σh, vertical boreholes are the most stable boreholes, 
whereas in the direction close to σH, horizontal boreholes are the most stable ones. In this 
situation, the optimum drilling direction is parallel to the maximum principal in situ stress 
(i.e., σH), and the lowest collapse pressure is associated with 50°-deviated borehole. 
However, if the horizontal stress is isotropic, the most stable borehole is vertical (see Figure 
7.7). 

In all the stress regimes, changing the orientation of the borehole in a plane perpendicular to 
the maximum principal in situ stress (i.e., the σ2-σ3 plane) will not significantly influence the 
collapse pressure that is predicted by Mohr-Coulomb criterion. The rate of change of the 
collapse pressure with respect to the well orientation in the σ2-σ3 plane, using the Mohr-
Coulomb criterion, is at least twice that predicted by applying the Mogi-Coulomb criterion. 
For instance, in an NF stress regime where the σ2-σ3 plane is horizontal, the collapse pressure 
varies with direction (α) when the horizontal stresses are unequal (i.e., σ2 ≠ σ3). In this case, 
the spread among the results in different directions is not as great as would be estimated by 
the Mohr-Coulomb criterion (see Figures 7.2 and 7.3). In particular, wellbore stability is not 
sensitive to the horizontal well orientation, according to Mogi-Coulomb criterion. As a result, 
the Mohr-Coulomb criterion has conservatively extrapolated the effect of horizontal stress 
anisotropy on collapse pressure. This conclusion was also reached previously in our 
horizontal borehole stability analysis (see section 6.2.1).  

Recently, Morita (2004) derived an empirical correlation using laboratory and field borehole 
stability data to numerically evaluate the influence of well orientation on borehole stability. 
He concluded that the effect of horizontal well orientation on borehole stability is trivial in 
NF stress regime, which is consistent with Mogi-Coulomb predictions. Accordingly, the 
utilization of the Mohr-Coulomb criterion in horizontal stress evaluation may result in 
misleading predictions, particularly in NF stress regimes. To further support our conclusion, a 
field case study in the UK continental shelf will be presented later in this chapter. 

We have seen that the choice of a failure criterion can make a profound difference in the 
results of wellbore stability modelling. At all borehole trajectories, the Mohr-Coulomb 
criterion predicts a required minimum overbalance pressure that is always greater than that 
which is estimated by the Mogi-Coulomb criterion (see Figures 7.2 through 7.7). Therefore, a 
borehole stability analysis carried out by implementing Mohr-Coulomb criterion will give 
conservative results in all in situ stress regimes, which can be improved by employing the 
Mogi-Coulomb criterion instead. 
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Figure 7.4. Minimum overbalance pressure as a function of borehole trajectory for sandstone
formation in SS stress regime (see Table 7.2) applying (a) Mohr-Coulomb criterion, (b) Mogi-
Coulomb criterion. 
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Figure 7.5. Minimum overbalance pressure as a function of borehole trajectory for sandstone
formation in SS-RF stress regime (see Table 7.2) applying (a) Mohr-Coulomb criterion, (b)
Mogi-Coulomb criterion. 
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Figure 7.7. Minimum overbalance pressure as a function of borehole trajectory for sandstone
formation in RF stress regime (isotropic horizontal stress, see Table 7.2). 

 
 
 

800

1000

1200

1400

1600

1800

2000

2200

0 10 20 30 40 50 60 70 80 90
Borehole inclination (degrees) 

O
ve

rb
al

an
ce

 p
re

ss
ur

e 
(p

si
)

α = 0

α = 30
α = 60
α = 90

800

1000

1200

1400

1600

1800

2000

2200

0 10 20 30 40 50 60 70 80 90
Borehole inclination (degrees) 

O
ve

rb
al

an
ce

 p
re

ss
ur

e 
(p

si
) α = 0

α = 30

α = 60

α = 90

 
                                          (a)                                                                          (b) 

Figure 7.6. Minimum overbalance pressure as a function of borehole trajectory for sandstone
formation in RF stress regime (anisotropic horizontal stress, see Table 7.2) applying (a) Mohr-
Coulomb criterion, (b) Mogi-Coulomb criterion. 
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In summary, drilling vertical boreholes will minimize the potential borehole instability only 
when the horizontal in situ stress is isotropic. Having anisotropic horizontal stress, which is 
the common case, will divert the optimum well path from the vertical direction. In this 
situation, deviated and horizontal boreholes are potentially more stable than vertical 
boreholes. Non-vertical boreholes should be drilled in the direction of σh in NF stress 
regimes, and in the direction of σH in RF stress regime, with respect to mechanical wellbore 
stability. Furthermore, horizontal boreholes are essential to optimize borehole stability in SS 
stress regimes. Generally, a direction parallel or close to the maximum in situ stress is a 
favourable drilling direction with respect to borehole stability in any stress regime. This 
drilling trajectory, however, is not necessary associated with the lowest required mud density 
to prevent instability. The divergence of the optimal drilling trajectory from the direction of 
the maximum in situ stress is mainly a result of the mutual relationships of the in situ stresses. 

7.3 Well path optimization 
In all the presented examples in this chapter, the optimal well path is almost the same 
regardless of the applied failure criterion. It seems that the failure criterion does not 
significantly influence the optimal drilling trajectory. Therefore, well path optimization is 
mainly controlled by the relative magnitude of the in situ stresses. This conclusion has been 
also reported in a number of publications (e.g., Chen et al., 1996; Zhou et al., 1996; Moos et 
al., 1998; Djurhuus and Aadnoy, 2003; Kårstad and Aadnoy, 2005). Furthermore, we have 
shown that the optimum drilling inclination progressively changes as the intermediate 
principal in situ stress increases from the minimum to maximum principal in situ stresses. 
This gives rise to the existence of a potentially explicit correlation of the optimum drilling 
inclination and the anisotropic field stresses.  

From the inspection of Figures 7.1 through 7.7, it has been found that the lowest collapse 
pressure is always associated with boreholes drilled in the σ1-σ3 plane. In each case, the 
optimal well path is deviated from the maximum principal in situ stress by a specific angle, 
say γ. It would be advantageous if the optimum well path could be directly and simply 
correlated to the principal in situ stresses (i.e., σv, σH and σh). In this section we will try to 
derive the relationship between the optimum drilling inclination γ and the field stresses. 

Shear failure of the borehole wall will take place when the stress concentration around the 
borehole exceeds the compressive strength of the rock. The maximum principal stress at the 
borehole wall is a function of the tangential and axial stresses. Both of these stresses will 
reach their maximum and minimum values at the same position around the wellbore 
circumference (see section 6.3). The position of the optimum well path can be estimated by 
searching for the lowest critical stress concentration around a borehole in σ1-σ3 plane. 

First of all, the virgin formation stresses expressed in the (x,y,z) co-ordinate system should be 
generalized by replacing σv, σH and σh by σ1, σ2 and σ3, respectively (see Figures 3.2a and 
7.8). The virgin formation stresses are then defined by 
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In this form, the angle α corresponds to the deviation of the borehole from σ2, and the angle i 
represents the deviation of the borehole from σ1. Knowing that the optimal well path is 
located on the σ1-σ3 plane (i.e., α = 90°), the virgin formation stresses become  
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Figure 7.8 Generalized stress transformation system for deviated borehole. 
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where γ is the deviation angle of the borehole from the maximum principal in situ stress in 
the σ1-σ3 plane (i.e., γ = i on the σ1-σ3 plane). By introducing Eq. (7.2) into Eq. (3.14), the 
tangential stress becomes 

 2 2 2 2
3 1 2 3 1 2cos sin 2( cos sin )cos 2 wPθσ σ γ σ γ σ σ γ σ γ σ θ= + + − + − − . (7.3) 

The lowest critical stress concentration can be obtained by differentiating the tangential stress 
with respect to θ and equating it to zero, which gives 

 2 2
3 1 2( cos sin )sin 2 0σ γ σ γ σ θ+ − = . (7.4) 

Considering 

 2 2
3 1 2( cos sin ) 0σ γ σ γ σ+ − = , (7.5) 

the optimal well path is then deviated from the maximum principal in situ stress in the σ1-σ3 
plane by 

arcsin( )nγ = ,                                                              (7.6) 

where n is anisotropic stress function defined by  

2 3

1 3

n σ σ
σ σ

−
=

−
.                                                                  (7.7) 

The stress function represents the overall anisotropic level of the field stress. It has a value of 
zero when σ2 = σ3 that increases up to 1 when σ2 = σ1. The stress function n = 0 in NF stress 
regimes with isotropic horizontal stress, and in SS-RF stress regimes. In these field stress 
systems, the optimum well path is parallel to the maximum principal in situ stress. When the 
stress function reaches a value of 1, the optimum well path will be parallel to the minimum 
principal in situ stress. This will take place in RF stress regimes with isotropic horizontal 
stress, and in NF-SS stress regimes. 

In NF stress regimes, the optimum drilling trajectory is deviated from vertical by i =γ in a 
direction parallel to the minimum horizontal stress (α = 90). In SS stress regimes, the most 
stable borehole is horizontal with a drilling direction α =γ. In RF stress regimes, the wellbore 
should be drilled in the direction of the maximum horizontal stress (α = 0) with a drilling 
inclination i = (90o - γ) to minimize borehole instability. 

The analytical solution has been used to optimize wellbore profiles for the representative 
field examples studied in section 7.2. The calculated stress function, n, and the angle of 
deviation from the maximum principal in situ stress at different stress regimes are listed in 
Table 7.3. The previous evaluation of the collapse pressure using the stability model has been 
carried out at certain incremental orientations. Even so, it is apparent that the evaluation of 
the optimal drilling trajectory using Eq. (7.6) is similar to the stability model (see Table 7.3 
and Figures 7.2 through 7.7). 

According to Eq. (6.24), the angle θ is a function of the normal and shear stresses in the x-y 
plane. In the σ1-σ3 plane there is no shear stress (i.e., 0o

xyσ = ), and so θmax = 0 or π/2. The 
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exact orientation of the maximum stress concentration, θmax, will alternate between 0 and π/2 
as the borehole orientations moves from the maximum principal stress direction to the 
minimum principal stress direction. At the optimum well path, by comparing Eq. (7.2) with 
Eq. (7.5), the normal stresses are equal (i.e., o o

x yσ σ= ), which result in no stress variation 
around the borehole. This alternation of stress state around the optimum drilling trajectory 
may cause a dramatic alteration of collapse pressure. For instance, in Figure 7.2 the rate of 
change of collapse pressure has significantly increased after the optimum drilling inclination. 
This special behaviour of collapse pressure around the optimum well path has been also 
reported by Garrouch and Ebrahim (2001).   

In these examples, borehole failure at the optimum well path occurred under polyaxial stress 
states. If the studied case is under a stress state where the intermediate principal stress is close 
to the maximum or minimum principal stress at borehole failure, γ may be slightly altered. 
This statement is only true when applying Mogi-Coulomb failure criterion (see Figure 7.1). 
At such stress states, the Mogi-Coulomb criterion is reduced from a polyaxial failure criterion 
to the Mohr-Coulomb failure criterion, which causes a variation in the weighting of σ2. 
Otherwise, the failure criterion has a trivial influence on the optimal drilling trajectory (see 
Figure 7.2 through 7.7). In general, Eq. (7.6) should be used as a quick, rough guideline to 
design the most favourable drilling trajectory with regards to wellbore stability. 

 

7.4 Field case studies 
In this section, we will apply the developed analytical model to analyze the instability 
problems for various wells worldwide.  

7.4.1 Cyrus reservoir in the UK Continental Shelf 
The first case study is conducted on a sandstone formation from the Cyrus reservoir in the 
UK Continental Shelf (McLean and Addis, 1990b). From triaxial tests, the sandstone has a 
cohesion of 860 psi, a friction angle of 43.8°, and a Poisson’s ratio of 0.2. At a depth of about 

Table 7.3 The optimum drilling trajectory using Eq. (7.6). 

Stress 
regime 

σv 
(psi/ft) 

σH 
(psi/ft) 

σh 
(psi/ft) 

Stress       
function, n 

γ 
(degrees) 

NF 1.0 0.86 0.76 0.42 40.2 

NF-SS 1.0 1.0 0.75 1.0 90 

SS 0.89 1.0 0.85 0.27 31.1 

SS-RF 0.90 1.1 0.90 0 0 

RF 0.89 

0.89 

1.1 

1.1 

0.98 

1.1 

0.43 

1.0 

40.9 

90 
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8530 ft, the vertical stress is equivalent to the overburden pressure, equal to 1 psi/ft, and the 
pore pressure is taken at 0.45 psi/ft. Since no horizontal stress measurements were available 
at this depth, McLean and Addis (1990b) arbitrarily assumed σH = σh= 0.75 psi/ft. 

In this reservoir, vertical and horizontal wells drilled successfully with an oil-based mud of 
density of 9.6 lb/gal (0.5 psi/ft). Since no instability problems were reported, it is possible 
that even lower mud densities could have been used. This mud density is actually somewhere 
between the collapse and fracture densities. Therefore, a mud density of 9.6 lb/gal can be 
taken as an upper bound for the collapse density, and a lower bound for the fracture density 
or the minimum in situ stress gradient (i.e., σh). As seen in Figure 7.9(a), the collapse 
densities predicted by the Mohr-Coulomb criterion have exceeded the actually used mud 
density for horizontal and most deviated boreholes. This may be because of an improper 
assumption regarding the in situ horizontal stress, or an inappropriate failure criterion. 
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Figure 7.9. Collapse density as a function of borehole deviation in Cyrus reservoir where (a) σh

= 0.75 psi/ft, (b) σh = 0.86 psi/ft. 
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The ratio of the minimum horizontal stress to the vertical stress (σh/σv) ranges from 0.3 to 
1.5, as mentioned in Section 5.1. In this field, the horizontal stress is hence potentially in the 
range of around 0.5-1.5 psi/ft. Simulations for collapse densities using the Mohr-Coulomb 
criterion over the practical range of the horizontal stress show that no horizontal well can be 
drilled at or below 9.6 lb/gal. Consequently, applying the Mohr-Coulomb law to predict 
borehole instability in this sandstone formation gives unrealistic results. 

The Mogi-Coulomb criterion has also predicted higher collapse densities than the one 
actually used, for horizontal and some deviated boreholes (see Figure 7.9(a)). Nevertheless, 
simulations for collapse densities using the Mogi-Coulomb criterion reveal that horizontal 
wells can be drilled in this field even below the actually used mud density, if the horizontal 
stress is assumed to be in the range of 0.86-1.07 psi/ft. For instance, Figure 7.9(b) shows the 
predicted collapse densities assuming a horizontal stress equal to 0.86 psi/ft. In this situation, 
it is apparent that the Mogi-Coulomb criterion represents field conditions more realistically 
than does the Mohr-Coulomb criterion. Furthermore, the evaluation of the horizontal stress 
can be improved by utilizing the Mogi-Coulomb law. 

7.4.2 Gas reservoir in offshore Indonesia 
The second case study is performed on a shale formation from Pagerungan Island Gas field, 
north of Bali, Indonesia (Ramos et al., 1998). From compressive strength tests, the intact 
shale has a cohesion of 1800 psi, a friction angle of 35°, and a Poisson’s ratio of 0.3. This 
hard brittle shale is located at a depth of 4800 ft to 6200 ft. In this formation, well PGA-2 has 
been drilled successfully with a mud density of 10.5 lb/gal. This mud density can be taken as 
an upper bound for the collapse density, since no instability problems reported.  

In well PGA-2, the vertical stress is estimated to be about 1 psi/ft. From leak-off tests, the 
minimum and maximum horizontal stresses are equal to 0.87 psi/ft and 1.22 psi/ft 
respectively. The direction of the maximum horizontal stress is in the region of N10E to 
N35E based on the orientations of borehole breakouts. The well is drilled at 25-degrees 
deviation in a direction of N47E. Therefore, the well has a drilling direction (α) in the range 
of around 10-40 degrees from the maximum horizontal stress.  

In this case study, the collapse densities have been calculated at a depth of 6000 ft, where 
pore pressure is assumed equal to 0.45 psi/ft. Simulations for collapse densities using the 
Mohr-Coulomb criterion predict that the well will not be stable at the actually applied mud 
density (see Figure 7.10(a)). The Mohr-Coulomb criterion predicted that the mud density 
should be greater than 11.35-11.45 lb/gal to ensure the stability of 25-degrees deviated 
borehole, that is, about 0.9 lb/gal above the actually used mud density. Otherwise, a stable 
borehole can be drilled in this formation at the applied mud density only by increasing the 
borehole inclination to 50-degrees and above. 

On the other hand, the Mogi-Coulomb criterion has predicted that the borehole will be stable 
at any inclination, and even lower collapse densities than the actual used one can be 
implemented (see Figure 7.10(b)). In this situation, the collapse density for a 25-degree 
deviated borehole is estimated to be 9.15-9.26 lb/gal, which is about 2.2 lb/gal lower than that 
estimated using the Mohr-Coulomb criterion. This significant difference in evaluation of 
collapse density is clearly pointing to the dependency of the studied field on the intermediate 
principal stress (i.e., the field is σ2-dependent). 
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Figure 7.10. Collapse density as a function of borehole deviation for shale formation in
Pagerungan Island Gas reservoir (well PGA-2) applying (a) Mohr-Coulomb criterion, (b)
Mogi-Coulomb criterion. 
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7.4.3 Wanaea oilfield in the Northwest Shelf of Australia 
The developed stability model has been applied to the Wanaea field of the Australian 
Northwest Shelf. In this field, drilling vertical boreholes required mud densities close to the 
fracture gradient, which results in a development plan that proposed deviated and horizontal 
wells (Kingsborough et al., 1991). The most stable drilling direction in Wanaea field has 
been found to be horizontal in the azimuth of the minimum horizontal stress (Zhou et al., 
1994). 

In Wanaea 3, a vertical borehole drilled through a shale formation at a depth of about 7028 ft 
where pore pressure is equal to 0.49 psi/ft. The shale has cohesion of 435 psi and a friction 
angle of 31°. The plausible in situ stresses have been determined by Kingsborough and co-
workers (1991) as follows: σv = 0.92 psi/ft, σh = 0.69-0.75 psi/ft and σH = 0.85-0.92 psi/ft. 
Evaluation of collapse densities using the stability model reveals that the maximum 
horizontal stress must be equal to or greater than the vertical stress for the horizontal borehole 
to be the most stable one (see section 7.2). Accordingly, the maximum horizontal stress is 
expected to be equal to 0.92 psi/ft. In this situation, the stress regime in Wanaea field is on 
the boundary between NF and SS, which is consistent with the conclusions drawn by Hillis 
and Williams (1993).   

The shale formation was drilled with a mud density of 11.85 lb/gal, which resulted in 
significant breakouts. Taking the minimum horizontal stress to be 0.72 psi/ft, and assuming 
that the shale has a Poisson’s ratio of 0.25, the collapse densities are estimated using the 
stability model at different borehole orientations (see Figure 7.11). It is apparent that the 
actually-used mud density is not appropriate at any borehole orientation, regardless of the 
applied failure criterion. As per the Mogi-Coulomb criterion, the minimum mud density that 
should be used to ensure borehole stability is equal to around 12 lb/gal for horizontal 
borehole drilled parallel to the azimuth of the minimum horizontal stress.  

Applying the Mohr-Coulomb criterion in this field will give significantly conservative 
collapse densities (Figure 7.11(a)). For instance, the Mohr-Coulomb criterion predicted that 
13.4 lb/gal is required to prevent breakout formation in a vertical borehole, whereas 12.4 
lb/gal is just adequate according to the Mogi-Coulomb criterion. Therefore, borehole stability 
in Wanaea oilfield is considerably dependent up on the status of the intermediate principal 
stress, which consequently should not be ignored. In addition, the Mohr-Coulomb criterion 
predicted that borehole stability is very sensitive to the horizontal borehole orientations, in 
contrast to predictions of the Mogi-Coulomb criterion. In this field, therefore, the Mohr-
Coulomb criterion has overestimated the influence of horizontal stress anisotropy on borehole 
instability. These points justify the use of the Mogi-Coulomb law instead of the classical 
Mohr-Coulomb law in borehole stability analysis. 

7.4.4 ABK field in offshore Abu-Dhabi 
In the ABK field, severe wellbore stability problems and two irremediable stuck pipes 
occurred while drilling horizontal drains in the Hamalah-Gulailah oil reservoirs (Onaisi et al., 
2000). At a depth of about 9705 ft, Onaisi et al. (2000) estimated the field stress system is at 
the frontier between strike-slip and reverse faulting, where σv = 1.0 psi/ft, σh = 1.08 psi/ft and 
σH = 1.52 psi/ft. In order to estimate the maximum horizontal stress, the uniaxial compressive 
strength and friction angle are taken to be 798 psi and 50.2° from laboratory test data. 
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Figure 7.11. Collapse density as a function of borehole deviation for shale formation in Wanaea
3 applying (a) Mohr-Coulomb criterion, (b) Mogi-Coulomb criterion. 
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The Hamalah-Gulailah formation was drilled with a mud density of 10 lb/gal, which resulted 
in significant wellbore stability problems. Since the field stress system is an RF stress regime 
with σv close to σh, the lowest collapse density can be adopted by drilling a highly deviated 
borehole in the direction of the maximum horizontal in situ stress (see sections 7.2 and 7.3). 
Using Eq. (7.6) or the stability model, the optimum drilling inclination is estimated to be 
about 66.9° (see Figure 7.12). The evaluations of collapse densities have been carried out 
assuming a pore pressure gradient equal to 0.45 psi/ft and a Poisson’s ratio of 0.3. In the 
optimal drilling trajectory, a mud density of 10.17 lb/gal is just adequate to ensure the 
stability of the borehole, according to the Mogi-Coulomb criterion. At the same well path, the 
Mohr-Coulomb criterion is very conservative, and predicts that a mud density of at least 11.3 
lb/gal must be used to avoid borehole collapse. Accordingly, the selection of a failure 
criterion has a profound effect on the wellbore stability analysis. After this critical well 
orientation, the intermediate principal stress at the wall of the wellbore is close to the 
maximum principal stress. As a result, the predictions of collapse pressure using the Mogi-
Coulomb and the Mohr-Coulomb criterion are getting closer. In this field stress system, 
therefore, a slight deviation of the borehole from horizontal could make a great impact on the 
stability of the wellbore. 

Nevertheless, a horizontal borehole has been drilled in this formation. The simulations for 
collapse densities at different horizontal borehole orientations using the stability model are 
shown in Figure 7.13. Regardless of the applied failure criterion, borehole collapse will 
certainly initiate at the actual used mud density. According to Mogi-Coulomb criterion, 
drilling a borehole at about 20° from the direction of σH will minimize the potential borehole 
instability. In this situation, the minimum mud density that should be applied is 10.3 lb/gal. In 
contrast, the Mohr-Coulomb criterion predicted that the borehole should be drilled parallel to 
σH with a minimum mud density of about 11.5 lb/gal to optimize the drilling operation. 
Although both failure criteria are equivalent in triaxial stress states, there is a significant 
difference in the evaluation of borehole instability, which cannot be neglected. Therefore, in 
this field stress system, the intermediate principal stress plays a major role in stabilizing the 
horizontal wells, as can be seen by employing the Mogi-Coulomb criterion. 

7.4.5 Offshore wells in the Arabian Gulf 
Two wells have been drilled in an offshore field in the Arabian Gulf as horizontal producers, 
and severe wellbore instability was encountered (Awal et al., 2001). In Well-A, borehole 
collapse has been reported while drilling in a shale section at a depth of 6800 ft. The well has 
been drilled at a drilling direction of 30° from the maximum horizontal in situ stress, with a 
deviation angle of 62°. The rock properties, in situ stresses and pore pressure are listed in 
Table 7.4. In the same shale section, Well-B has been drilled successfully in the direction of 
the minimum horizontal stress (i.e., α = 90°).  
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Table 7.4 Rock properties, in situ stresses and pore pressure for a shale section in an offshore 
field in Saudi Arabia. 

c  
(psi) 

φ 
(deg.) 

ν σv 
(psi/ft) 

σH  
(psi/ft) 

σh 
(psi/ft) 

P0 
(psi/ft) 

870 31.3 0.33 1.1 1.0 0.9 0.46 
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Figure 7.13. Collapse density as a function of drilling direction (α) for Hamalah-Gulailah
formation in the ABK field. 
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Figure 7.12. Collapse density as a function of drilling inclination in the direction of σH for
Hamalah-Gulailah formation in ABK field.  
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The offshore field is under an NF stress regime with anisotropic horizontal stresses. In this 
field stress system, the lowest acceptable mud densities are associated with a well drilled in a 
direction parallel to σh, that is, the Well-B direction. As the drilling direction gets closer to 
σH, such as Well-A, higher mud densities are essential to prevent borehole collapse (see 
section 7.2). Figure 7.14 illustrates the evaluation of collapse densities at different borehole 
trajectories using the stability model. It is revealed that the lowest collapse densities are 
associated with Well-B (α = 90°), where the optimum drilling inclination is 45°. The same 
solution can also be obtained using Eq. (7.6).  

As expected, the Mohr-Coulomb criterion is significantly conservative in predicting borehole 
instability in all well paths. Due to horizontal stress anisotropy, the criterion also predicted 
that wellbore stability is very sensitive to horizontal well orientation. This conservative 
nature of the wellbore stability analysis can be minimized by employing the Mogi-Coulomb 
criterion. 

The successfully applied mud density in Well-B could be considered as a lower bound of the 
collapse density (see Figure 7.14). Thus, the applied mud densities in Well-A must not be 
designed equal to or less than that used in Well-B. Using the stability model, the collapse 
density in Well-B at 62° inclination is 11.6 lb/gal, according to the Mogi-Coulomb criterion. 
At this mud density, borehole collapse will certainly take place in Well-A. To ensure the 
stability of Well-A, the minimum allowable mud density is 11.84 lb/gal. Alternatively, Well-
A should be drilled through the shale section with inclination angle lower than 49° instead of 
62° to maintain the same applied mud density in Well-B. Consequently, Well-A can be 
successfully drilled without borehole stability problems by adopting a drilling operation that 
takes into account the developed stability model. 
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Figure 7.14. Collapse density as a function of borehole trajectory for a shale formation in the
Arabian Gulf (see Table 7.4) applying (a) Mohr-Coulomb criterion, (b) Mogi-Coulomb
criterion.  
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8 Conclusions and recommendations 

Rock failure in a general stress state has been studied to understand the fundaments of shear 
failure mechanics in three dimensions. The rock mechanics literature is rich with a number of 
shear failure criteria that have been developed. In particular, we have studied the commonly 
applied failure criteria, namely, the Mohr-Coulomb criterion (σ2-independent) and the 
Drucker-Prager criterion (σ2-dependent). These conventional failure criteria, however, were 
developed before the construction of the first experimental apparatus that enabled polyaxial 
tests. They are based on the assumption that a linear failure envelope, based on triaxial test 
data, represents the failure under polyaxial stress states. The first extensive polyaxial 
compressive tests in rocks have been performed by Mogi (1971b). Thus, we have also studied 
shear failure as per Mogi’s hypothesis.  

We have pointed out that, from the use of the σ1–σ3 Mohr’s circle to estimate the failure 
envelope, that Mohr’s assumption implies that the fracture plane strikes in the σ2 direction. 
This assumption has been verified experimentally by Mogi and many other researchers, and 
can be interpreted as justifying the extension of a two-dimensional failure criterion into three 
dimensions. In addition, from the Mohr-Coulomb failure criterion, we can conclude that the 
mean normal stress that opposes the creation of the fracture plane is σm,2, which is consistent 
with Mogi’s hypothesis. Furthermore, the Mohr-Coulomb criterion assumes a linear 
relationship between the maximum shear stress and the effective mean stress (σm,2) at failure, 
where σ2 has no influence on rock strength. 

According to the linear version of Mogi’s polyaxial failure criterion, there is a linear 
relationship between the octahedral shear stress and the effective mean stress at failure. This 
form of the Mogi failure criterion differs from the linear Mohr criterion by the use of 
octahedral shear stress instead of the maximum shear stress to account for the influence of σ2 
on rock strength. We have shown that in triaxial stress states, where σ2 = σ3 or σ2 = σ1, the 
linear Mogi failure criterion reduces exactly to the classical Coulomb criterion. Hence, the 
linear Mogi criterion can be thought of as a natural extension of the Coulomb criterion into 
three dimensions. As Mohr’s extension of the Coulomb criterion into three dimensions is 
often referred to as the Mohr-Coulomb criterion, we propose that the linear version of the 
Mogi criterion be known as the “Mogi-Coulomb” failure criterion. The Mohr-Coulomb 
failure criterion, therefore, only represents the triaxial stress state, which is a special case that 
will only occasionally be encountered in situ. In other words, a linear Mohr criterion is only a 
2D Coulomb failure criterion, whereas a linear Mogi criterion is a fully 3D Coulomb failure 
criterion. Furthermore, we have pointed out that Mogi-Coulomb strength parameters can be 
explicitly related to the traditional parameters appearing in the Coulomb failure law.  

The new true-triaxial failure criterion, that is, Mogi-Coulomb criterion, is defined by 

,2oct ma bτ σ= + ,                                                              (8.1) 
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where the strength parameters a and b are given by 

2 2 2 2cos , sin .
3 3

a c bφ φ= =                                               (8.2) 

This failure criterion is also based on the assumption that a linear failure envelope, based on 
triaxial test data, represents failure under polyaxial stress states. 

8.1 Mogi-Coulomb validation in lab scale 
In order to verify the validation of Mogi-Coulomb criterion on representing the failure of 
rock specimens, polyaxial test data of eight rock types were analysed. For comparison, the 
Drucker-Prager criterion has been also examined. First of all, we have revealed that σ2 does 
have a strengthen effect as reported in the literature, and all rock types are σ2-dependent. The 
degree of influence of σ2 on rock strength depends on the applied stress state. 

From this study, we have proven that the Mogi-Coulomb criterion is good in representing 
rock failure in polyaxial stress state. Moreover, we found that the numerical values of the 
parameters that appear in the Mogi-Coulomb criterion can be estimated from conventional σ2 
= σ3 triaxial test data. This polyaxial failure criterion therefore can be used even in the 
absence of true triaxial data.  

We have shown that the Drucker-Prager criterion generally overestimates rock strength under 
polyaxial stress conditions, due to conceptually misusing the effective mean stress. This 
criterion, therefore, should not be used to model brittle fracture. On the other hand, the Mohr-
Coulomb criterion underestimates rock strength by ignoring the effect of σ2. In general, the 
Mohr-Coulomb criterion predicts only the lower limit of the rock strength, while the Drucker-
Prager criterion predicts the upper limit of the rock strength. The true rock strength can be 
inferred through modelling using the suggested Mogi-Coulomb criterion. This criterion 
neither ignores the strengthening effect of σ2, as is done by the Mohr-Coulomb criterion nor 
does it predict strengths as high as does the Drucker-Prager criterion. 

8.2 Mogi-Coulomb validation in field scale 
After we experimentally verified the validation of Mogi-Coulomb criterion in describing rock 
failure, the criterion was utilized to develop a new wellbore stability model. The stability 
model was applied in typical field conditions as well as real field cases to prove the validity 
of the Mogi-Coulomb criterion on the field scale. For this purpose, a linear elastic 
constitutive model for the stresses around the borehole was employed. For comparison, 
another analytical model was developed using the Mohr-Coulomb criterion.  

We have shown that borehole stability analysis that accounts for the effect of the intermediate 
principal stress can be carried out in a manageable analytical framework. The newly 
developed stability model realistically represents field conditions by considering stresses 
around the borehole, and by using the polyaxial Mogi-Coulomb failure criterion. In 
particular, we have introduced closed-form analytical expressions for the collapse pressure in 
vertical and horizontal boreholes.  

We have pointed out that using linear elasticity theory, where the contribution of fluid flow to 
the stresses is ignored, in conjunction with any failure criterion, will always overestimate the 
fracture pressure. In order to avoid the possibility of lost circulation and map out the region 
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of mechanical stability in a wellbore, the upper limit of the well pressure should be set equal 
to the minimum principal stress, which is usually σh. To avoid under balanced drilling, the 
lower limit of the well pressure should be designed not less than the pore pressure. Therefore, 
the applied stable mud pressure is range from the pore pressure to the minimum in situ stress. 

Using the developed stability model, the evaluations of collapse pressure in vertical, 
horizontal and deviated wellbores have been carried out. From the applications of the 
analytical model in typical field conditions, we have the following conclusions: 

(i) In polyaxial stress states, where σ2 is a true intermediate principal stress, the Mogi-
Coulomb criterion leads to evaluations of the collapse pressure that are similar to 
those obtained from Ewy’s modified Lade criterion. In triaxial stress states, where σ2 

= σ3 or σ2 = σ1, the calculations of collapse pressure using the Mogi-Coulomb 
criterion and the Mohr-Coulomb criterion coincide. This is because the Mogi-
Coulomb criterion will automatically reduce to the Mohr-Coulomb failure criterion if 
two of the in situ principal stresses are nearly equal. 

(ii) The Mohr-Coulomb criterion only represents rock failure under triaxial stress states. 
Because of this limitation, the use of the Mohr-Coulomb criterion generally decreases 
the stable range of the mud weight. Incorporating the Mogi-Coulomb criterion into 
our wellbore stability model has minimized the conservative nature of the mud 
pressure predictions. In contrast, the Drucker-Prager criterion always underestimates 
the required mud weight, due to the incorrect strengthening effect that arises from the 
use of the octahedral normal stress instead of the effective mean stress, σm,2. This 
significant difference in evaluation of borehole instability has certainly great impact 
on drilling cost and time. 

(iii) In all the stress regimes, changing the orientation of the borehole in a plane 
perpendicular to the maximum principal in situ stress (i.e., the σ2-σ3 plane) will not 
significantly influence the collapse pressure that is predicted by Mohr-Coulomb 
criterion. The rate of change of the collapse pressure with respect to the well 
orientation in the σ2-σ3 plane, using the Mohr-Coulomb criterion, is at least twice that 
predicted by applying the Mogi-Coulomb criterion. For instance, in NF stress 
regimes, the effect of horizontal well orientation on borehole stability is trivial, 
according to the Mogi-Coulomb criterion. Consequently, utilization of the Mohr-
Coulomb criterion in horizontal stress evaluation may result in misleading 
predictions, particularly in NF stress regimes. 

In addition, the stability model has been applied to five different field case studies worldwide, 
with the results in each case supporting the above conclusions. Applying the Mohr-Coulomb 
law to predict borehole instability in these fields gives unrealistic results. On the other hand, 
the Mogi-Coulomb criterion represents field conditions more realistically than does the 
Mohr-Coulomb criterion. In general, the stability analysis reveals that borehole stability is 
considerably dependent on the intermediate principal stress, which consequently should not 
be ignored in oil and gas fields. Implementation of the Mogi-Coulomb law will allow drilling 
engineers to correctly account for the actual field stress conditions. 
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8.3 Optimum well path 
Well path optimization is mainly controlled by the relative magnitude of the in situ stresses, 
and the failure criterion generally has no significant influence. During borehole stability 
analysis, we observed that drilling vertical boreholes will minimize the potential borehole 
instability only when the horizontal in situ stress is isotropic. Having anisotropic horizontal 
stresses, which is the common case, will divert the optimum well path from the vertical 
direction. In this situation, deviated and horizontal boreholes are potentially more stable than 
vertical boreholes. It has been found that the lowest collapse pressure is always associated 
with boreholes drilled in the σ1-σ3 plane. In this plane, the optimal well path is deviated from 
the maximum principal in situ stress by a specific angle γ  that is defined by 

2 3

1 3

arcsin( )σ σγ
σ σ

−
=

−
.                                                          (8.3) 

Therefore, the optimum well path is directly and simply related to the principal in situ 
stresses. This relationship, in general, should be used as a quick, rough guideline to design 
the optimum drilling trajectory with regards to wellbore stability. 

8.4 Recommendations   

If the studied case is over a high range of effective mean stress (σm,2) values, the data may 
need a model that is slightly curved. In this situation, we recommend the use of extended 
Mogi-Coulomb criterion, which formulated by 

2
,2 ,2oct m ma b cτ σ σ= + + .                                                   (8.4) 

The parameters a and b represent the cohesion and angle of internal friction. The parameter c 
is a curve fitting parameter that represents the non-linear behaviour at high effective mean 
stresses. The relationship between (a,b) and (c,φ) may be not so straightforward for the 
parabolic form. Therefore, further study is needed to investigate these relationships. 

The new true-triaxial failure criterion has been used to develop an analytical model to ensure 
the stability of wellbores during drilling. The failure criterion can also be applied in the well 
production stage. For instance, a new analytical model to predict sand production could be 
developed by implementing Mogi-Coulomb criterion. As a suggestion, one may adopt Ewy’s 
model for sand predictions (Ewy et al., 2001), so that the modified Lade criterion is replaced 
by the Mogi-Coulomb criterion. 

One of the main advantages of the stability model is its requirement of few input parameters. 
In practice, even these parameters are often unavailable and difficult to accurately acquire, 
which has precluded wellbore stability analysis from being applied in routine field 
applications. Nevertheless, there is a theoretical potential to develop more complicated 
models. The mechanical, porous, chemical and thermal phenomena could be coupled in 
stability models. Such stability models that also incorporate the Mogi-Coulomb law require 
indeed detailed studies and substantial support from the petroleum industry.   

There is scope to improve the existing stress measurement methods using the Mogi-Coulomb 
criterion, particularly in horizontal stress evaluation. For example, there are some theoretical 
limitations in hydraulic fracturing stress measurement technique (Haimson and Cornet, 
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2003). We suggest carrying out a detailed study to extend the hydraulic fracturing method to 
considering the Mogi-Coulomb law, with the following points: 

a) Include tests that yield inclined fractures in vertical borehole. 

b) Make the method applicable to deviated boreholes. 

In the rock mechanics literature, there are several models describing rock deformation aspects 
such as compaction and dilatancy. A detailed study should be carried out to correlate between 
the Mogi-Coulomb criterion and three-dimensional rock deformations. In addition, the failure 
criterion could be useful in predicting fracture orientation and breakout dimensions. 

We believe that Mogi-Coulomb law describes the brittle failure mechanics more accurately 
than does the traditional Mohr-Coulomb model. As we have shown, the Mogi-Coulomb 
criterion is always applicable, regardless of the dependency of the studied case on the 
intermediate principal stress. In all rock engineering applications, therefore, it would be 
advantageous to employ this rock failure law instead of the classical Mohr-Coulomb 
criterion.  
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Table A.16. Polyaxial test data for Dunham Dolomite. 

σ1 (MPa) σ 2 (MPa) σ 3 (MPa) σ m,2 (MPa) Experimental τoct (MPa) Theoretical τoct (MPa) 
257 0 0 129 121 128 
400 25 25 213 177 174 
474 68 25 249 202 194 
500 91 25 263 210 201 
553 135 25 289 227 216 
574 177 25 299 231 222 
594 232 25 310 235 227 
544 269 25 285 212 213 
488 45 45 267 209 204 
562 100 45 303 232 224 
586 124 45 316 239 231 
607 159 45 326 242 236 
639 183 45 342 254 245 
671 241 45 358 261 253 
670 263 45 358 259 253 
622 293 45 334 236 240 
568 65 65 316 237 231 
636 113 65 351 259 250 
642 152 65 353 254 251 
687 208 65 376 266 263 
684 259 65 374 258 263 
725 306 65 395 273 274 
700 390 65 383 259 267 
624 85 85 354 254 252 
682 126 85 384 272 268 
718 150 85 402 284 277 
743 230 85 414 282 284 
771 300 85 428 286 292 
818 371 85 451 301 304 
798 440 85 442 291 299 
679 105 105 392 271 272 
776 165 105 441 303 299 
784 202 105 445 300 301 
804 265 105 455 299 306 
822 331 105 464 299 311 
839 351 105 472 305 316 
820 411 105 463 293 311 
863 266 105 484 326 322 
724 125 125 424 282 290 
823 186 125 474 315 317 
859 241 125 492 322 327 
862 288 125 493 316 327 
893 359 125 509 322 336 
942 411 125 533 338 349 
918 458 125 522 325 343 
887 510 125 506 311 334 
892 254 145 519 329 341 
929 292 145 537 340 351 
924 319 145 535 334 350 
922 342 145 534 330 349 

1016 387 145 580 367 375 
1003 404 145 574 359 371 
953 451 145 549 333 358 
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Table A.17. Polyaxial test data for Solenhofen limestone. 

σ1 (MPa) σ2 (MPa) σ3 (MPa) σm,2 (MPa) Experimental τoct (MPa) Theoretical τoct (MPa) 
395 20 20 208 177 177 
415 52 20 217 179 180 
413 91 20 217 171 180 
455 165 20 237 181 187 
459 203 20 240 180 188 
464 231 20 242 181 189 
442 40 40 241 190 188 
455 40 40 248 196 191 
486 80 40 263 201 196 
496 113 40 268 200 198 
526 190 40 283 203 203 
542 267 40 291 205 206 
534 312 40 287 202 204 
472 60 60 266 194 197 
516 87 60 288 209 205 
535 100 60 298 215 208 
529 111 60 295 210 207 
573 162 60 316 222 215 
551 196 60 305 207 211 
556 271 60 308 203 212 
529 80 80 305 212 210 
569 125 80 324 221 217 
580 150 80 330 221 219 
641 205 80 361 241 230 
592 221 80 336 216 221 
674 280 80 377 247 236 
659 294 80 369 239 233 
648 373 80 364 232 231 
678 448 80 379 246 237 
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Table A.18. Polyaxial test data for Mizuho trachyte. 

σ1 (MPa) σ2 (MPa) σ3 (MPa) σm,2 (MPa) Experimental τoct (MPa) Theoretical τoct (MPa) 
100 0 0 50 47 55 
193 15 15 104 84 81 
253 30 30 142 105 100 
300 45 45 173 120 115 
314 55 45 180 125 118 
326 71 45 186 127 121 
333 96 45 189 126 123 
349 142 45 197 127 127 
361 214 45 203 129 130 
365 289 45 205 137 131 
351 332 45 198 140 128 
339 60 60 200 132 128 
352 91 60 206 131 131 
383 142 60 221 137 139 
396 191 60 228 138 142 
404 229 60 232 141 144 
400 271 60 230 140 143 
383 331 60 222 142 139 
365 75 75 220 137 138 
400 114 75 238 145 147 
417 153 75 246 146 151 
438 229 75 257 149 156 
439 300 75 257 150 156 
424 343 75 250 149 153 
451 391 75 263 165 159 
419 100 100 260 150 158 
460 137 100 280 162 168 
489 186 100 294 167 175 
494 274 100 297 161 176 
522 382 100 311 175 183 
513 411 100 307 176 181 
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Table A.19. Polyaxial test data for Shirahama sandstone. 

σ1 (MPa) σ2 (MPa) σ3 (MPa) σm,2 (MPa) Experimental τoct (MPa) Theoretical τoct (MPa) 
94 9 5 50 41 52 
97 15 5 51 41 53 
88 29 5 47 35 51 
109 44 5 57 43 55 
94 65 5 50 37 52 
109 12 8 59 47 56 
129 27 8 69 53 60 
132 41 8 70 53 61 
135 50 8 72 53 61 
127 79 8 67 49 59 
147 15 15 81 62 65 
157 29 15 86 64 67 
165 62 15 90 63 68 
162 82 15 89 60 68 
159 88 15 87 59 67 
168 97 15 92 63 69 
178 20 20 99 74 72 
183 30 20 102 75 73 
173 41 20 97 68 71 
185 50 20 103 72 73 
177 57 20 98 67 72 
197 68 20 109 75 76 
194 82 20 107 72 75 
193 97 20 106 71 75 
185 100 20 103 67 73 
197 30 30 114 79 78 
218 47 30 124 85 82 
224 69 30 127 84 83 
232 88 30 131 85 85 
229 109 30 130 82 84 
241 129 30 136 86 86 
227 150 30 128 81 83 
215 171 30 122 79 81 
224 40 40 132 87 85 
244 60 40 142 92 89 
252 70 40 146 93 90 
253 79 40 146 92 91 
252 100 40 146 89 90 
274 99 40 157 99 95 
265 118 40 153 93 93 
279 138 40 160 98 96 
274 159 40 157 95 95 
231 50 50 141 85 88 
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Table A.20. Polyaxial test data for KTB amphibolite 

σ1 (MPa) σ2 (MPa) σ3 (MPa) σm,2 (MPa) Experimental τoct (MPa) Theoretical τoct (MPa) 
165 0 0 83 78 84 
346 79 0 173 148 146 
291 149 0 146 119 127 
347 197 0 174 142 147 
267 229 0 134 118 119 
410 30 30 220 179 179 
479 60 30 255 205 203 
599 100 30 315 253 245 
652 200 30 341 262 263 
571 249 30 301 222 235 
637 298 30 334 248 258 
702 60 60 381 303 291 
750 88 60 405 319 307 
766 103 60 413 323 313 
745 155 60 403 303 306 
816 199 60 438 329 330 
888 249 60 474 354 355 
828 299 60 444 321 334 
887 347 60 474 343 355 
954 399 60 507 369 378 
815 449 60 438 308 330 
868 100 100 484 362 362 
959 164 100 530 391 394 

1001 199 100 551 403 408 
945 248 100 523 368 389 
892 269 100 496 341 370 

1048 300 100 574 408 425 
1058 349 100 579 406 428 
1155 442 100 628 439 462 
1118 597 100 609 416 449 
1147 150 150 649 470 476 
1065 198 150 608 420 448 
1112 199 150 631 442 464 
1176 249 150 663 462 486 
1431 298 150 791 572 575 
1326 348 150 738 514 538 
1169 399 150 660 434 484 
1284 448 150 717 480 524 
1265 498 150 708 466 517 
1262 642 150 706 455 516 
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Table A.21. Polyaxial test data for coarse grained dense marble. 

σ1 (MPa) σ2 (MPa) σ3 (MPa) σm,2 (MPa) Experimental τoct (MPa) Theoretical τoct (MPa) 
61 4 0 30 28 27 
77 10 0 38 34 32 
105 20 0 53 45 40 
103 35 0 52 43 40 
66 4 4 35 30 30 
75 5 4 39 33 33 
84 7 4 44 37 35 
94 10 4 49 41 38 
130 28 4 67 55 48 
193 69 4 98 78 67 
143 83 4 73 57 52 
84 7 7 45 36 36 
113 14 7 60 48 44 
134 28 7 71 56 51 
192 55 7 99 78 67 
188 83 7 98 74 66 
175 110 7 91 69 62 
117 14 14 65 48 48 
126 21 14 70 51 50 
147 28 14 80 60 56 
155 41 14 84 61 59 
195 57 14 105 77 70 
255 86 14 135 101 88 
277 113 14 145 108 94 
138 21 21 80 55 56 
150 28 21 86 59 59 
209 62 21 115 81 76 
260 83 21 141 101 91 
289 110 21 155 111 99 
171 28 28 99 67 67 
167 48 28 97 61 66 
222 55 28 125 86 82 
275 83 28 151 106 97 
314 110 28 171 120 109 
349 110 55 202 128 127 
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Table A.22. Polyaxial test data for Westerly granite. 

σ1 (MPa) σ2 (MPa) σ3 (MPa) σm,2 (MPa) Experimental τoct (MPa) Theoretical τoct (MPa) 
201 0 0 101 95 98 
306 40 0 153 136 137 
301 60 0 151 130 135 
317 80 0 159 135 141 
304 100 0 152 127 136 
231 2 2 117 108 110 
300 18 2 151 137 136 
328 40 2 165 146 146 
359 60 2 181 156 157 
353 80 2 178 150 155 
355 100 2 179 149 156 
430 20 20 225 193 190 
529 40 20 275 235 227 
602 60 20 311 265 254 
554 62 20 287 242 236 
553 61 20 287 242 236 
532 79 20 276 229 228 
575 100 20 298 245 244 
567 114 20 294 239 241 
601 150 20 311 249 254 
638 202 20 329 259 267 
605 38 38 322 267 262 
620 38 38 329 274 267 
700 57 38 369 308 297 
733 78 38 386 319 309 
720 103 38 379 307 304 
723 119 38 381 306 305 
731 157 38 385 303 308 
781 198 38 410 319 327 
747 60 60 404 324 323 
811 90 60 436 347 346 
821 114 60 441 347 350 
860 180 60 460 352 364 
861 249 60 461 342 365 
889 77 77 483 383 381 
954 102 77 516 408 405 
992 142 77 535 417 419 
998 214 77 538 406 422 

1005 310 77 541 394 424 
1012 100 100 556 430 435 
1103 165 100 602 458 469 
1147 167 100 624 479 485 
1155 216 100 628 472 488 
1195 259 100 648 483 503 
1129 312 100 615 444 479 
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Table A.23. Polyaxial test data for Yuubari shale. 

σ1 (MPa) σ2 (MPa) σ3 (MPa)
161 25 25 
168 25 25 
182 35 25 
187 36 25 
175 45 25 
175 56 25 
186 66 25 
200 77 25 
194 79 25 
196 85 25 
201 96 25 
194 100 25 
186 114 25 
197 124 25 
183 133 25 
228 50 50 
239 50 50 
245 50 50 
257 69 50 
261 90 50 
266 100 50 
260 110 50 
260 122 50 
285 129 50 
266 148 50 
256 159 50 

  

Table A.24. Triaxial test data for Berea sandstone. 

σ1 (MPa) σ3 (MPa) 
21 0 
27 0 
74 5 
94 6 

131 12 
171 19 
192 33 
199 34 
250 41 
253 53 
275 54 
275 60 
301 64 
298 67 
328 80 
351 94 
349 102 
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Table A.25. Triaxial test data for Vosges sandstone. 

σ1 (MPa) σ3 (MPa) 
33 0 
84 10 
85 10 

114 20 
117 20 
134 30 
137 30 
149 40 
153 40 
167 50 
173 60 
176 60 

 

Table A.26. Triaxial test data for Indian limestone. 

σ1 (MPa) σ3 (MPa) 
42 0 
49 1 
48 2 
58 2 
52 3 
54 3 
58 3 
60 4 
67 7 
76 8 
93 10 
92 14 
95 14 

103 21 
112 22 
108 24 
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Input parameters: 
 
Depth (ft), 
   h :=  
Vertical stress gradient (psi/ft), 

   σvg :=  
Maximum horizontal stress gradient (psi/ft), 

   σHg :=  
Minimum horizontal stress gradient (psi/ft), 

   σhg :=  
Pore pressure gradient (psi/ft),  
   P0g :=  
Rock properties: 
   Cohesion (psi), 
      c :=  
   Friction angle (deg.), 

      
φ

π

180
⎛⎜
⎝

⎞⎟
⎠

⋅:=  

   Poisson's ratio, 
      ν :=  
Borehole orientation: 
   The range of azimuth (10x deg.), 
      k 0 18..:=  
   The range of deviation (10x deg.), 
      i 0 9..:=  
 
Calculations of in-situ stresses and pore pressure at the depth of interest: 
 
Vertical stress, 

   σ v σ vg h⋅:=  
Maximum horizontal stress, 

   σ H σ Hg h⋅:=  
Minimum horizontal stress, 

   σ h σ hg h⋅:=  
Minimum in situ stress, 

   σmin min σv σH, σh,( ):=  
Pore pressure,  
   P0 P0g h⋅:=  
 
Determination of Mogi-Coulomb strength parameters: 
 

a
2 2⋅

3
⎛
⎜
⎝

⎞
⎟
⎠

c⋅ cos φ( )⋅:=  

b
2 2⋅

3
⎛
⎜
⎝

⎞
⎟
⎠

sin φ( )⋅:=  
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Estimation of in situ stresses in the vicinity of the borehole for each borehole
trajectory: 
 
The borehole inclination in radian, 

   
iii 10 i⋅

π

180
⎛⎜
⎝

⎞⎟
⎠

⋅:=  

The borehole azimuth in radian, 

   
αk 10 k⋅

π

180
⎛⎜
⎝

⎞⎟
⎠

⋅:=  

The in situ stresses in the co-ordinate system (x,y,z): 

   
σxi k,

σH cos αk( )2
⋅ σh sin αk( )2

⋅+⎛
⎝

⎞
⎠ cos iii( )2

⋅ σv sin iii( )2
⋅+:=  

   
σyk

σH sin αk( )2
⋅ σh cos αk( )2

⋅+:=  

   
σzzi k,

σH cos αk( )2
⋅ σh sin αk( )2

⋅+⎛
⎝

⎞
⎠ sin iii( )2

⋅ σv cos iii( )2
⋅+:=  

   
σxyi k,

0.5 σh σH−( )⋅ sin 2 αk⋅( )⋅ cos iii( )⋅:=  

   
σxzi k,

0.5 σH cos αk( )2
⋅ σh sin αk( )2

⋅+ σv−⎛
⎝

⎞
⎠⋅ sin 2 iii⋅( )⋅:=  

   
σyzi k,

0.5 σh σH−( )⋅ sin 2 αk⋅( )⋅ sin iii( )⋅:=
 

 
Specifying the location of the maximum stress concentration: 
 
The orientation of the maximum and minimum tangential stresses: 

   

θ1i k,
π

4
σxi k,

σyk
if

1
2

atan 2
σxyi k,

σxi k,
σyk

−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ otherwise

:=  

   
θ2i k, θ1i k,

π

2
+:=

 
Identifying the angle that is associated with the maximum tangential stress: 

   
σθ1di k,

σxi k,
σyk

+ 2 σxi k,
σyk

−⎛
⎝

⎞
⎠

⋅ cos 2 θ1i k,⋅( )⋅− 4 σxyi k,
⋅ sin 2 θ1i k,⋅( )⋅−:=  

   
σθ2di k,

σxi k,
σyk

+ 2 σxi k,
σyk

−⎛
⎝

⎞
⎠

⋅ cos 2 θ2i k,⋅( )⋅− 4 σxyi k,
⋅ sin 2 θ2i k,⋅( )⋅−:=  

   
σθdmaxi k,

max σθ1di k,
σθ2di k,

,⎛
⎝

⎞
⎠

:=  

The location of the maximum stress concentration, 

   

θmaxi k, θ1i k, σθdmaxi k,
σθ1di k,

if

θ2i k, otherwise

:=

 

 
The axial and shear stresses in θ-z plane at θ max: 
 
σzmaxi k,

σzzi k,
ν 2 σxi k,

σyk
−⎛

⎝
⎞
⎠

⋅ cos 2 θmaxi k,⋅( )⋅ 4 σxyi k,
⋅ sin 2 θmaxi k,⋅( )⋅+⎡

⎣
⎤
⎦

⋅−:=  

σθzmaxi k,
2 σyzi k,

cos θmaxi k,( )⋅ σxzi k,
sin θmaxi k,( )⋅−⎛

⎝
⎞
⎠

⋅:=  
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Evaluation of the critical mud pressure using Mogi-Coulomb criterion: 
 
P w_Mogii k,

P wj

j
100

←

σ θmaxj
σ θdmaxi k,

P wj
−←

σ rj
P wj

←

σ p1j

1
2

σ θmaxj
σ zmaxi k,

+⎛
⎝

⎞
⎠

⋅ σ θzmaxi k,
⎛
⎝

⎞
⎠

2 1
4

σ θmaxj
σ zmaxi k,

−⎛
⎝

⎞
⎠

2
⋅++←

σ p2j

1
2

σ θmaxj
σ zmaxi k,

+⎛
⎝

⎞
⎠

⋅ σ θzmaxi k,
⎛
⎝

⎞
⎠

2 1
4

σ θmaxj
σ zmaxi k,

−⎛
⎝

⎞
⎠

2
⋅+−←

σ 1j
max σ p1j

σ p2j
, σ rj

,⎛
⎝

⎞
⎠

←

σ 3j
min σ p1j

σ p2j
, σ rj

,⎛
⎝

⎞
⎠

←

σ 2j
σ p2j

σ p2j
σ rj

≥if

σ rj
otherwise

←

τ oct j

1
3

σ 1j
σ 2j

−⎛
⎝

⎞
⎠

2
σ 2j

σ 3j
−⎛

⎝
⎞
⎠

2
+ σ 3j

σ 1j
−⎛

⎝
⎞
⎠

2
+

⎡
⎢
⎣

⎤
⎥
⎦

⋅←

τ mogij
a b

σ 1j
σ 3j

+⎛
⎝

⎞
⎠

2
P 0−

⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅+←

break τ mogij
τ oct j

− 0≥if

j 100 P 0⋅ 100 σ min⋅..∈for

P wj

:=
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Evaluation of the critical mud pressure using Mohr-Coulomb criterion: 
 
Pw_Mohr i k,

Pwj

j
100

←

σθmaxj
σθdmaxi k,

Pwj
−←

σrj
Pwj

←

σp1j

1
2

σθmaxj
σzmaxi k,

+⎛
⎝

⎞
⎠

⋅ σθzmaxi k,
⎛
⎝

⎞
⎠

2 1
4

σθmaxj
σzmaxi k,

−⎛
⎝

⎞
⎠

2
⋅++←

σp2j

1
2

σθmaxj
σzmaxi k,

+⎛
⎝

⎞
⎠

⋅ σθzmaxi k,
⎛
⎝

⎞
⎠

2 1
4

σθmaxj
σzmaxi k,

−⎛
⎝

⎞
⎠

2
⋅+−←

σ1j
max σp1j

σp2j
, σrj

,⎛
⎝

⎞
⎠

←

σ3j
min σp1j

σp2j
, σrj

,⎛
⎝

⎞
⎠

←

τmaxj

σ1j
σ3j

−⎛
⎝

⎞
⎠

2
←

τmohr j
c cos φ( )⋅ sin φ( )

σ1j
σ3j

+⎛
⎝

⎞
⎠

2
P0−

⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅+←

break τmohr j
τmaxj

− 0≥if

j 100 P0⋅ 100 σmin⋅..∈for

Pwj

:=  

 
Determination of modified Lade strength parameters: 
 
S

c
tan φ( )

:=  

η 4 tan φ( )2
⋅

9 7 sin φ( )⋅−( )
1 sin φ( )−( )⋅:=

 
 
Evaluation of the critical mud pressure using modified Lade criterion: 
 
A'i k, σzmaxi k,

S+ P0−:=  

B'i k, A'i k, σθdmaxi k,
⋅ σθzmaxi k,

⎛
⎝

⎞
⎠

2
−:=  

D'i k,

σθdmaxi k,
σzmaxi k,

+ 3 S⋅+ 3 P0⋅−⎛
⎝

⎞
⎠

3

27 η+( )
:=  

C'i k, B'i k,( )2 4 A'i k,⋅ D'i k, S P0−( ) A'i k, σθdmaxi k,
S+ P0−⎛

⎝
⎞
⎠

⋅ σθzmaxi k,
⎛
⎝

⎞
⎠

2
−⎡⎢

⎣
⎤⎥
⎦

⋅−⎡⎢
⎣

⎤⎥
⎦

⋅−:=  

Pw_MLadei k,

B'i k, C'i k,−

2 A'i k,⋅
:=  
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