@ DEGREE PROJECT IN INFORMATION AND COMMUNICATION
TECHNOLOGY,

S
EZKTHY

SECOND CYCLE, 30 CREDITS
STOCKHOLM, SWEDEN 2016

VETENSKAP
28 OCH KONST 2%

S Se

A Security and Privacy Audit of
KakaoTalk’s End-to-End Encryption

DAWIN SCHMIDT

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING

KTH Royal Institute of Technology

School of Electrical Engineering

Double Degree Programme in Security and Mobile Computing ABSTRACT OF
(NordSecMob) MASTER’S THESIS

Author: Dawin Schmidt

Title:
A Security and Privacy Audit of
KakaoTalk’s End-to-End Encryption

Date: September 30, 2016 Pages: 165
TRITA: TRITA-EE 2016:131 Code: EP248X
Supervisors: Panos Papadimitratos

N. Asokan
Advisor: Ronald Deibert

End-to-end encryption is becoming a standard feature in popular mobile chat appli-
cations (apps) with millions of users. In the two years a number of leading chat apps
have added end-end encryption features including LINE, KakaoTalk, Viber, Facebook
Messenger, and WhatsApp.

However, most of these apps are closed-source and there is little to no independent ver-
ification of their end-to-end encryption system design. These implementations may be
a major concern as proprietary chat apps may make use of non-standard cryptographic
algorithms that may not follow cryptography and security best practices. In addition,
governments authorities may force chat app providers to add easily decryptable export-
grade cryptography to their products. Further, mainstream apps have a large attack
surface as they offer a variety of features. As a result, there may be software vulnera-
bilities that could be exploited by an attacker in order to compromise user’s end-to-end
privacy. Another problem is that, despite being closed-source software, providers often
market their apps as being so secure that even the provider is not able to decrypt
messages. These marketing claims may be potentially misleading as most users do not
have the technical knowledge to verify them.

In this Master’s thesis we use KakaoTalk — the most popular chat app in South Korea
— as a case study to perform a security and privacy assessment and audit of its “Secure
Chat” opt-in end-to-end encryption feature. Also, we examine KakaoTalk’s Terms of
Service policies to verify claims such as “[...] Kakao’s server is unable to decrypt the
encryption [...]” from a technical perspective.

The main goal of this work is to show how various issues in a product can add up to
the potential for serious attack vectors against end-to-end privacy despite there being
multiple layers of security. In particular, we show how a central public-key directory
server makes the end-to-end encryption system vulnerable to well-known operator-site
man-in-the-middle attacks. While this naive attack may seem obvious, we argue that
(KakaoTalk) users should know about the strength and weaknesses of a particular
design in order to make an informed decision whether to trust the security of a chat
app or not.

Keywords: Secure Messaging, End-to-end Encryption, Android Security

Language: English

Kungliga Tekniska hogskolan

Skolan for elektro- och systemteknik

Double Degree Programme in Security and Mobile Computing SAMMANDRAG AV
(NordSecMob) DIPLOMARBETET

Utfort av: Dawin Schmidt

Arbetets namn:
A Security and Privacy Audit of
KakaoTalk’s End-to-End Encryption

Datum: 30 september 2016 Sidantal: 165
TRITA: TRITA-EE 2016:131 Kod: EP248X
Overvakare: N. Asokan

Panos Papadimitratos
Handledare: Ronald Deibert

End-to-end kryptering &r en allt mer vanligt forekommande funktionalitet bland po-
puldra mobila chatttjanster (héndanefter appar) med miljontals anvéndare. Under de
tva senaste aren har manga ledande chattappar, bland annat LINE, KakaoTalk, Viber,
Facebook Messenger, och WhatsApp, borjat anvinda end-to-end kryptering.

Dock sa ar de flesta av dessa appar closed-source och det finns begrénsad, eller ingen,
fristdende granskning av systemdesignen for deras end-to-end kryptering. Dessa im-
plementationer kan innebéra en stor risk da proprietédra chattappar kan anvinda sig
av kryptografiska algoritmer som inte foljer best practice for sikerhet eller kryptogra-
fi. Vidare sa kan statliga myndigheter tvinga de som tillhandahaller chattappar att
anvinda lattdekrypterad export-grade kryptografi for sina produkter. Lagg till det att
de flesta vanliga appar har manga ytor som kan attackeras, till f6ljd av all funktio-
nalitet de erbjuder. Som ett resultat av detta finns en risk féor mjukvarubrister som
kan utnyttjas av en hackare for att inkridkta pa en anviéndares end-to-end integritet.
Ytterligare ett problem &r att trots att det dr closed-source mjukvara sa marknadsfor
ofta appleverantorerna sina appar som att vara dr sa sidkra att inte ens leverantorerna
sjalva kan dekryptera anvindarnas meddelanden. Det som hévdas i marknadsforingen
riskerar vara missledande eftersom de flesta anvandarna inte har den tekniska kunskap
som kravs for att kunna verifiera att det som hivdas dr sant.

I den hér Master-uppsatsen anvénder vi KakaoTalk — den mest populédra chattappen i
Sydkorea — som en fallstudie for att granska och bedémma séikerhetens- och integritets-
aspekterna hos deras valbara “Secure Chat” med end-to-end krypteringsfunktionalitet.
Vi granskar dven KakaoTalk’s anvindarvillkor for att kunna verifiera pastdenden som
att “[...] Kakao’s server is unable to decrypt the encryption [...]” fran ett tekniskt
perspektiv.

Det huvudsakliga syftet med denna studien &dr att belysa hur olika brister i en produkt
sammantagna kan skapa en risk for allvarliga vektorattacker mot end-to-end integriteten
dven fast det finns flera skyddslager. Mer specifikt visar vi hur en central katalogserver
for public-keys gor end-to-end krypteringssystemet sarbart mot vilkédnda operator-site
man-in-the-middle-attacker. Trots att denna naiva typ av attack kan verka uppenbar,
argumenterar vi for att (KakaoTalk) anvéindare borde veta om styrkorna och svaghe-
terna med en sérskild systemdesign for att kunna gora ett informerat val for om de ska
lita pa sikerheten hos en chattapplikation eller inte.

Nyckelord: Secure Messaging, Fnd-to-end Encryption, Android Security

Sprak: Engelska

Preface

All of the work presented in this Master’s thesis was conducted in the Citizen
Lab at the University of Toronto, Canada. Several persons have contributed
academically and practically to this study:

The Android security assessment checklist in Appendix A.1 was primarily
compiled by myself, except for Section A.1.6, which was contributed by Jef-
frey Knockel. The end-to-end encryption assessment checklist in Appendix
A.2 was authored by Jedidiah Crandall, with assistance and comments from
myself (e.g., Section A.2.8 was mainly contributed by myself). The rest of this
Master’s thesis including scripts, documents, experimental setup, and data is
my original work which is openly available on https://github.com/stulle123.

I would like to thank the staff and fellows from the Citizen Lab includ-
ing Ronald J. Deibert, Masashi Crete-Nishihata, Jakub Dalek, Christopher
Parsons, Sarah McKune, Irene Poetranto, Andrew Hilts, Jedidiah Crandall,
Antonio Espinoza and Jeffrey Knockel for their constructive comments and
feedback throughout the entire research process. Furthermore I would like to
thank Kelly Kim from Open Net Korea for her extensive feedback on Section
3 of this work.

Finally I would also express my gratitude to my two supervisors N. Asokan

and Panos Papadimitratos for their thoughtful feedback which helped me to
improve this Master thesis.

Stockholm, September 30, 2016

Dawin Schmidt

https://github.com/stulle123

Abbreviations and Acronyms

AES
API
APK
CA
CCA
E2E
EdDSA
ELF
HMAC
HTTP
HTTPS
IM

IP

IPC
ISP

IV

JS
KCSC
KPA
MITM
MSIP
NX

(O
PBKDF2
PFS
PII
PIN
RSA
SDK
SHA

Advanced Encryption Standard
Application Programming Interface
Android Application Package

Certificate Authority

Chosen Ciphertext Attack

End-to-End

Edwards-curve Digital Signature Algorithm
Executable and Linkable Format
keyed-Hash Message Authentication Code
Hypertext Transfer Protocol

HTTP over TLS

Instant Messaging

Internet Protocol

Inter-Process Communication

Internet Service Provider

Initialization Vector

JavaScript

Korea Communications Standards Commission
Known Plaintext Attack
Man-In-The-Middle

Ministry of Science, ICT and Future Planning
No-eXecute

Operating System

Password-Based Key Derivation Function 2
Perfect Forward Secrecy

Personally Identifiable Information
Personal Identification Number
Rivest-Shamir-Adleman

Software Development Kit

Secure Hash Algorithm

SIM Subscriber Identity Module

SMS Short Message Service

SOP Same-Origin Policy

TCP Transmission Control Protocol
TLS Transport Layer Security

ToS Terms of Service

UUID Universally Unique Identifier
XSS Cross-Site Scripting

Contents

Abbreviations and Acronyms

1

Introduction

1.1 Problem Statement

1.2 Evaluation Requirements and Techniques

Background

2.1 Secure Instant Messaging

2.2 Android’s Security Model
2.2.1 Android’s System Architecture
2.2.2 Android’s Security Model
2.2.3 Terminology of Attack Types

2.3 KakaoTalk Application Overview

Kakao Terms of Service Analysis

3.1 Methodologies
3.2 Political and Historical Context of Communications Censor-

ship and Surveillance in South Korea

3.2.1 Internet Censorship

3.2.2 Communications Surveillance
3.2.3 A Timeline of Surveillance Scandals in South Korea

and Their Implications on KakaoTalk

3.23.1 2014 . ..o
3.232 2015o
3233 2016o

324 Conclusion.

3.3 Analysis of Kakao’s Public Security and Privacy Statements
3.3.1 Security Promises
3.3.1.1 Encryption
3.3.1.2 Data and Identity Protection
3.3.2 Privacy Promises

3.3.2.1 Collection of User Information.

3.3.2.2 Collection of User Information from Third-
Parties.o
3.3.2.3 Sharing of User Information

3.3.2.4 User Control Over Information Collection and
Sharing
3.3.2.5 User’s Access to Their Own Information . . .
3.3.2.6 Retention of User Information
3.3.2.7 Spam Protection
3.3.3 Summary of Resulting Research Questions

4 Technical Analysis

4.1

4.2

4.3

4.4

4.5

Methodologies and Tools
4.1.1 Assessment Checklists
4.1.2 Experimental Setup
4.1.3 Automated Analysis
4.1.4 Manual Analysis
4.1.4.1 Static Analysis
4.1.4.2 Dynamic Analysis
Information Gathering
4.2.1 Application Details
4.2.2 MobileData oo
4.2.3 Messaging System Overview
4.2.3.1 The LOCO Messaging Protocol
4.2.3.2 Device Registration and Login.
4.2.3.3 The LOCO End-to-end Encryption Messag-
ing Protocol
Threat Analysis oo
4.3.1 Attack Surfaceo
4.3.2 Assets
4.3.3 Threat Agents
4.3.4 Threats
Vulnerability Analysis and Findings
4.4.1 End-to-end Encryption Protocol Analysis
4.4.2 Android Software Security Analysis
4.4.3 Information Privacy Analysis
Comparison Between Terms of Service
Claims and Technical Findings

5 Evaluation 119

5.1 Evaluation for Solution 1 119
5.2 Ewvaluation for Solution 2, 123
6 Discussion 125
6.1 Significance of Our Results 125
6.1.1 Terms of Service Claims Versus Real-World

Technical Findings 125
6.1.2 End-to-end Encryption Alone is not Sufficient 126
6.1.3 Recommendations for High-risk Users 127
6.2 Reflection on Our System Evaluation 127
6.3 Future Work 128
6.4 Responsible Disclosure and Notification 130
7 Conclusion 131
A Security Assessment Checklists 148

A.1 Checklist 1: Questions to Answer About Software Security in
Any Given Android Application 148

A.1.1 Questions Related to Insufficient Transport

Layer Protection 148

A.1.2 Questions Related to Access Control and Information
Leakage 149
A.1.3 Questions Related to Cryptography 150

A.1.4 Questions Related to Improper Authentication Proce-
dures 151
A.1.5 Questions Related to Improper Data Validation 153
A.1.6 Questions Related to Software Updates 153
A.1.7 Miscellaneous Questions 154

A.2 Checklist 2: Questions to Answer About End-to-end Encryp-
tion in any Given
Chat Application 154
A.2.1 Questions Related to Marketing Claims, ToS, and EULA155
A.2.2 Questions Related to Random Number Generation . . 155

A.2.3 Questions Related to Symmetric Cryptography 155
A.2.4 Questions Related to Asymmetric Cryptography 156
A.2.5 Questions Related to Hash Functions or MACs 157
A.2.6 Questions Related to Traffic Analysis 157
A.2.7 Questions Related to Forensics 158
A.2.8 Miscellaneous Questions 158

B Application Information
B.1 Permissions L oo
B.2 Application Details

10

Chapter 1

Introduction

End-to-end encrypted instant messaging is becoming a standard feature in
many popular mobile chat applications. In April 2016, WhatsApp, (as of
September 30, 2016 the world’s most popular messaging service), announced
to use end-to-end encryption for all messages including multimedia messages
and group chats by default [91]. Only one month later, Google released a new
messaging application called “Allo” that also supports end-to-end encryption
as an additional opt-in feature [54]. WhatsApp and Allo are using the Signal
protocol which is a well known and well tested end-to-end encryption mes-
saging protocol [53]. However, even though the protocol is open-source and
available for independent review, the two messaging applications are not. In
addition, both messengers either added end-to-end encryption retrospectively
or do not use end-to-end encryption by default. This might be an indicator
that messaging services added end-to-end encryption on top of their existing
infrastructure without redesigning their systems fro scratch. However, with-
out a system redesign an end-to-end encryption system may be vulnerable
due to weaknesses in the underlying existing messaging system. This may
be a major issue as many of these applications have large users bases and in
some cases dominate countries or regions as, for example, in South Korea.

South Korea is an interesting country to study the adoption of end-to-end
encrypted messaging services. It is one of the most connected countries [107,
128] in the world but also a highly regulated environment with a long his-
tory of strict government control. Internet users face censorship and surveil-
lance rooted in traditional social values and political tensions with North
Korea [122].

Released as South Korea’s first mobile instant messenger in March 2010,
KakaoTalk is dominating the Korean market today. The application, which
is available in 230 countries and 15 different languages, has a 200 million
user base with almost 50 million monthly active users worldwide [76, 116].

11

CHAPTER 1. INTRODUCTION 12

In South Korea, KakaoTalk is the number one messaging application with a
market penetration of 97 percent and more than 38 million monthly active
users [26].

In recent years, the South Korean government authorities especially tar-
geted KakaoTalk to eavesdrop on users’ communications [34]. Concerns over
privacy and security of KakaoTalk peaked in 2014, after president Park Geun-
Hye announced a crackdown on government criticisms which were spread
over the messaging service. As part of the investigations, a large number
of KakaoTalk messages of critics and protesters were seized and searched.
Shortly after KakaoTalk’s cooperation with government agencies came to
public, a large number of users moved to Telegram, which they perceived
as more secure. Following these events, KakaoTalk released a “Secret Chat”
end-to-end encryption feature in December 2014.

1.1 Problem Statement

End-to-end message encryption is an increasingly popular feature in mobile
chat applications which have millions of users. Many of these Instant Messag-
ing (IM) applications are closed-source and there is little to no independent
verification of their end-to-end (E2E) encryption system design. Proprietary
IM client and server software and any IM chat protocol libraries may use non-
standard cryptographic algorithms that may not follow cryptography and se-
curity best practices. As a result, there may be vulnerabilities that could be
exploited by an attacker in order to compromise user’s E2E privacy. Addi-
tionally, governments or intelligence agencies may force IM service providers
to add backdoors to their proprietary products. Despite being closed-source
software, messaging service providers often market their applications as be-
ing so secure that even the service provider is not able to decrypt messages.
These marketing claims may be potentially misleading as most users do not
have the knowledge to verify them from a technical perspective. Therefore,
high-risk or privacy-concerned users may find it hard to make an informed
decision on whether to trust a provider’s end-to-end encryption or not. Given
this problem, we ask the following research question:

When security and cryptography best practices are not followed in
end-to-end encryption of KakaoTalk, would the result be the potential for
practical attacks?

KakaoTalk serves as an interesting case study for exploring our general
research question due to a number of reasons:

CHAPTER 1. INTRODUCTION 13

e Market dominance: The application dominates the South Korean mar-
ket with a user base of 38 million monthly active users in a country
that has a population of roughly 50 million people.

o Security measures: Kakao, the company behind KakaoTalk, invests
numerous efforts into the security and privacy of its products. For
instance, the company holds a ISO/IEC 27001 security certificate and
follows secure coding guidelines [32].

e User demand: FEnd-to-end encryption was added to KakaoTalk as a
“Secret Chat” feature retrospectively upon user demand.

e Social and political context: Even though South Korea has some of the
strictest data privacy laws in Asia [56], it is also a country with a long
history of strict government authorities.

o C(losed-source software: Similar to most other end-to-end chat applica-
tions, KakaoTalk including its end-to-end messaging protocol is closed-
source.

e No independant code audit: To the best of our knowledge, previous
research that technically analyzed KakaoTalk’s “Secret Chat” feature,
does not exist.

Choosing KakaoTalk as our case study poses the following challenges:

o C(losed-source software: How do we reverse-engineer a mobile applica-
tion given that the source-code is not available?

e Finding attack vectors: Which attack vectors exist to possibly compro-
mise an end-to-end encrypted conversation?

e Threat simulation: Given a discovered vulnerability, how do we prove
that the vulnerability can be practically exploited?

This Master thesis tackles the above challenges and provides an answer
to our research question by making the following contributions:

Context and Terms of Service Analysis

e We provide a detailed survey of the political and historical context of
communications censorship and surveillance in South Korea and show
their particular implications on KakaoTalk’s Terms of Service and pri-
vacy policy (Section 3.2 on page 33).

CHAPTER 1. INTRODUCTION 14

We provide an in-depth examination of Kakao’s Terms of Service and
privacy policy. We contribute a summary of the most important claims
and divide them into several privacy and security categories (Section 3.3
on page 44). Finally, we derive a number of research questions which
we will later use to compare our technical findings against Kakao’s
marketing claims.

Technical Analysis

We explain our methods and toolchain that we used to reverse-engineer
and analyse a closed-source mobile Android application (Section 4.1 on
page 56).

We list a number of possible weaknesses of Android end-to-end chat
applications by compiling two distinct security assessment checklists
(Section 4.1.1 on page 57).

We provide a detailed description of KakaoTalk’s messaging system
architecture and end-to-end encryption protocol (Section 4.2 on page
67).

We perform a threat analysis of KakaoTalk’s messaging system by ana-
lyzing the system’s assets and attack surface, as well as multiple threat
agents and possible system threats (Section 4.3 on page 90).

We show that KakaoTalk’s end-to-end encryption system is vulnerable
to man-in-the-middle (MITM) attacks on the operator-side (Section
4.4.1 on page 100). We also outline a number of software vulnerabili-
ties in KakaoTalk 5.5.5 which may be used to compromise end-to-end
encrypted user chat (Section 4.4.2 on page 105).

Comparison of Technical Findings and Kakao’s Terms of Service
Claims

We compare our technical results against Kakao’s Terms of Service
claims to show if what KakaoTalk is doing conforms or not with what
Kakao states in its policies (Section 4.5 on page 115).

1.2 Evaluation Requirements and Techniques

As described in the previous section, our main contribution of this work
will be a security assessment and terms of service analysis of an end-to-end

CHAPTER 1. INTRODUCTION 15

encryption system. Following, we describe the requirements and techniques
that we use in Section 5 on page 119 to evaluate our work:

Goal 1: Our security assessment is “profound” or “complete” in the sense
that it includes the most important security analysis aspects.

Expected solution 1: A detailed technical security analysis of the Android
version of KakaoTalk including its end-to-end encryption protocol in
order to identify strength and weaknesses. The analysis includes the
assessment of TLS and inter-process communications, as well as of end-
to-end encrypted user chat. The security exercise uses methods includ-
ing information gathering, static and dynamic analysis, reverse engi-
neering, forensic analysis, and other techniques. Critical vulnerabilities
(if any) should allow an attacker to read users’ end-to-end encrypted
messages.

Evaluation requirements: The security analysis should identify security
goals for the target application (KakaoTalk) and make a clear statement
about how well the target application meets a particular goal. For
any goal that is not met, the analysis should clearly explain why, and
preferably include a Proof-of-Concept (PoC) exploit.

Evaluation technique: Comparative study.

Goal 2: KakaoTalk end users should know about the strength and weak-
nesses of the particular end-to-end encryption design that Kakao has
chosen. With that knowledge they should be able to make an informed
decision whether they want to trust Kakao or not.

Expected solution 2: A higher-level representation of the main outcomes
of our work, easy to understand for an ordinary KakaoTalk user. We
will come up with a scorecard, graph, website, or report that shows the
strength and weaknesses in a clear and precise format.

Evaluation requirements: After consulting our higher-level report, users
should be able to make an informed decision whether they want to trust
Kakao or not.

Evaluation techniques: User study as a controlled experiment, cognitive
walkthrough with an usability expert or qualitative feedback surveys.

Chapter 2

Background

This chapter provides some preliminary material for the reader in order to
understand the technical content that follows in Chapter 4. As we will discuss
in Chapter 3, one of Kakao’s marketing claims is that KakaoTalk enables
secure instant messaging. Section 2.1 familiarizes the reader with the term
of secure instant messaging and points out its important properties. Section
2.2 describes the fundamentals of Android’s system architecture and security
model. We conclude by briefly introducing KakaoTalk in Section 2.3. Finally,
we expect the reader to be familiar with basic cryptography concepts. For
references, please see [110] or [96].

2.1 Secure Instant Messaging

Many of the popular Instant Messaging (IM) services today such as Mi-
crosoft’s Skype rely on the Transport Layer Security (TLS) protocol to en-
crypt private user chat. This approach may be secure against passive at-
tackers, but may not protect against active man-in-the-middle attacks or
eavesdropping on the IM service provider’s side. Further TLS weaknesses
have been highlighted by recent Certificate Authority (CA) scandals [130,
85].

As the Snowden revelations have confirmed, intelligence agencies and gov-
ernments are spying on IM conversations. For instance, in 2008, the National
Security Agency (NSA) had access to up to 60,000 online sessions of Yahoo's
Web-Messenger per day [46]. In other cases, the NSA demanded access to
internal IM service providers’ networks [111] or forced companies to pro-
vide chat history records [68], e.g., by the means of national security letters.
Government agencies have also asked IM service providers to cooperate in
message interception [114] or to add backdoors to their chat products [103].

16

CHAPTER 2. BACKGROUND 17

Worse, intelligence agencies are not the only eavesdropper on IM commu-
nications. Often IM service providers themselves monitor encrypted or un-
encrypted network traffic for several purposes such as targeted advertising.
This can be achieved by applying traffic analysis techniques to learn about
who is talking to whom, from where and for how long [36]. In addition, the
IM service provider may be able to gather information about users’ actions
and the actual length or language of particular messages. For example in
the case of KakaoTalk, actions such as viewing other user’s profiles — which
could be an indicator for stalking — can be identified with 99.7 percent accu-
racy [98].

Following the Snowden leaks, there has been a rapid growth of IM chat
protocols and applications that provide secure instant messaging by using
techniques beyond Transport Layer Security. For instance, there is the Signal
protocol which has been recently integrated into Facebook’s Messenger [90]
or the Off-The-Record (OTR) protocol which has been implemented by open-
source IM applications such as Pidgin and ChatSecure.

However, most of these chat programs define their own set of secure IM
rules and implement features differently. This is due to the fact that there
is no open protocol standard for secure messaging which software developers
could follow. Another reason is that major non-profit organizations that
publish secure IM guidelines including the Electronic Frontier Foundation
(EFF) and the Free Software Foundation (FSF) have contradicting opinions
about secure IM, e.g., the FSF [49] promotes a more radical approach to
secure IM than the EFF [48]. The last reason is that the term of secure
instant messaging has yet not been defined and there is no consensus about
which security and privacy features it should incorporate. The implications of
these issues are that most secure IM solutions are either entirely proprietary
(e.g., Threema) or are open-source but incompatible to each other, e.g., a
Signal user cannot talk to a (OTR-enabled) Pidgin user.

Secure IM solutions are commonly modeled on two different communi-
cation architectures: client-to-server and client-to-client (peer-to-peer). In
the client-to-server communication model, an IM server, which is typically
hosted by an IM service provider, manages the availability of the clients and
relays messages between them (store-and-forward). For authentication, each
client shares a secret (e.g., a password) with the service provider. In addi-
tion, the IM server provides necessary information, such as the end-points’ IP
addresses, in case two clients communicate with each other in a peer-to-peer
fashion (e.g., for audio/video calls or file transfers). Most public IM solutions
use the client-to-server communication model in order to allow asynchronous
messaging, i.e., a sender and a recipient do not need to be online at the same
time to exchange messages. There are also fully decentralized peer-to-peer

CHAPTER 2. BACKGROUND 18

IM networks in which a central IM server is not necessary (e.g., BitTorrent’s
Bleep). These peer-to-peer IM networks are examples for synchronous mes-
saging systems in which a sender needs to directly connect to an intended
recipient before sending messages.

Unger et al. [126] identify three aspects of a secure instant messaging
system: Trust Establishment, Conversation Security, and Transport Privacy.
Trust establishment refers to the process where users exchange and authenti-
cate any long-term key material. After a user adds another user to its buddy
list, both parties must first go through the process of trust establishment
before they engage in a secure conversation. After trust establishment has
been achieved, a conversation security protocol ensures the security and pri-
vacy of a secret conversation. Eventually, the aspect of transport privacy
defines how well any communication metadata is protected during encrypted
message exchange.

In this work, we require a private and secure online chat to have the same
privacy level as a face-to-face or “off-the-record” [10] conversation between
two human beings!:

Confidentiality: Confidentiality guarantees that nobody else is able to
listen to Alice’s and Bob’s private conversation. Secure IM chat protocols
must encrypt the communication end-to-end in order to ensure confidential-
ity. The usage of end-to-end encryption requires that only Alice and Bob
know about the encryption keys that are used to secure the communication
channel.

Perfect Forward Secrecy: Perfect Forward Secrecy (PFS) [58] ensures
that it is impossible for someone else to find out what Alice and Bob talked
about after their conversation has happened even if Alice’s and/or Bob’s
long-term secret key material are compromised by the adversary. Typically,
this is achieved by short-term encryption/decryption keys that are generated
on-the-fly, thrown away after usage, and are impossible to derive from any
long-lived key material.

Backward or “Future” Secrecy: In a scenario where Eve obtained ac-
cess to a long-term decryption key and passively listens to Alice’s and Bob’s
encrypted conversation, this feature prevents her to read all subsequent mes-
sages that Alice and Bob will exchange in the future. However, secure IM

!These are just the fundamental security and privacy properties of a secure messaging
system, for a more detailed evaluation framework refer to the survey of Unger et al. [126].

CHAPTER 2. BACKGROUND 19

solutions with backward secrecy are still vulnerable by active attackers with
access to any long-term key material.

Authentication: Another important property of private communications
is entity and message authentication. Alice must be sure that she is really
talking to Bob and not to someone else pretending to be Bob (entity authen-
tication). For entity authentication a number of mechanisms exist, e.g., a
secure chat application may show each entity’s public key fingerprint that
could be then compared over an out-of-band channel. Typically, digital sig-
natures or message authentication codes are used for message authentication.

Offline Message Deniability: After having received an authenticated
message from Alice, offline message deniability or repudiability ensures that
Bob cannot later prove to Eve that such a particular message was indeed
send by Alice [13]. That means that Alice can deny the fact that she sent a
particular message to Bob. For example, Alice might assume that her friend
Bob is an FBI informant who secretly keeps track of all her messages [132].
Therefore, Bob should not be able to prove to a court of law that Alice sent
any particular messages. If Alice and Bob use message authentication codes
for message authenticity, both of them share the same symmetric key. Thus,
Bob could have also created a fake message in Alice’s name, making it impos-
sible for him to provide valid proof. This concept is known as “weak” offline
message deniability /repudiability [10]. “Strong” (or plausible) offline mes-
sage deniability or forgeability [10] is a related property, which assumes that
not only Bob but everyone who listens to the communication channel can
create fake messages, e.g., by using a malleable encryption scheme such as a
stream cipher. As a result, Alice can deny having sent a certain message be-
cause anyone else could have created fake messages using her name. Finally,
there is also the concept of offline participation deniability /repudiation in
which Alice can deny the fact talking to Bob at all. As pointed out by Unger
et al. the idea of online deniability /repudiation [39] will not be considered
in this work due to incompatible definitions in the academic literature.

Whether message deniability is a useful feature or not is an active topic of
discussion. For instance, there have not been any cases of deniable messaging
properties influencing legal court decisions. Also, there may be cases in which
message deniability is not useful, e.g., in situations where the mere suspicion
of sending or receiving messages is harmful to an author. However, we agree
with Unger et al. that secure IM conversations should still have the property
of deniability.

CHAPTER 2. BACKGROUND 20

Metadata protection: Metadata protection (“untraceability”) ensures
that no one except Alice and Bob knows about the fact that they engage
in a personal conversation. Anonymous instant messaging is about hiding
metadata and complicating encrypted traffic analysis techniques such as tim-
ing and statistical attacks (“unobservability”). Accessible metadata could
be otherwise easily correlated with other records to identify individuals. In
many cases metadata is sufficient to either convict [6] or even harm individu-
als, e.g., the U.S. is using metadata to justify targeted drone strikes [109, 87].
Metadata protection can, for example, be achieved by decentralized architec-
tures including peer-to-peer networks or by onion routing technologies such
as Tor. When a secure messaging system utilizes these decentralized archi-
tectures it is crucial that the application/protocol does not leak any sensitive
information that could potentially deanonymize a user. As for now, there is
no practical secure and anonymous IM system that is resistant against global
adversaries who control and monitor large network segments [126].

Apart from the protocol properties mentioned above, there are also more
general criteria that are crucial for assessing secure IM chat protocols and
applications (again, these are just the ones we consider as most important):

Open-source IM software: Proprietary IM client and server software
and any IM chat protocol libraries may use non-standard cryptographic al-
gorithms that may introduce software vulnerabilities. These vulnerabilities
may then be exploitable in order to compromise user’s privacy. Additionally,
governments or intelligence agencies may force IM service providers to add
backdoors to their proprietary products. For these reasons, secure IM soft-
ware must be open-source. If the IM client and server software and any IM
chat protocol libraries are open-source, they are available to the public that
may detect malicious behaviour.

Open documentation: Whether the secure IM chat protocol and appli-
cation is well documented, complete, and publicly available. The documen-
tation must be up-to-date and easily accessible.

Recent independent review: Whether the chat protocol design and the
application source code of a secure IM solution have been audited indepen-
dently. The full audit must be open to the public, and application/protocol
maintainers must publish which of the proposed improvements have been
integrated and which security bugs have been fixed as a result of the audit?.

2See the Electronic Frontier Foundation’s post on what makes a good security audit:
https://www.eff.org/deeplinks/2014/11/what-makes-good-security-audit

https://www.eff.org/deeplinks/2014/11/what-makes-good-security-audit

CHAPTER 2. BACKGROUND 21

2.2 Android’s Security Model

This section will cover Android’s system architecture (Section 2.2.1) and
security model (Section 2.2.2) at a higher-level in order to better understand
the security analysis of KakaoTalk in Chapter 4. The content and structure of
the following discussion is mostly based on Nikolay Elenkov’s book “Android
Security Internals” [42].

2.2.1 Android’s System Architecture

Android’s system architecture and fundamental parts can be best described
by using a layered diagram starting from the bottom up (see Figure 2.1):

Systems Apps

(e.g., Settings) User-installed Apps

Android Framework Libraries Java
android.* Runtime
Libs
System Services java.*
(e.g., Activity Manager) javax.*

Dalvik Runtime

Native Native

Daemons| |Libraries HAL

Init

Linux Kernel

Figure 2.1: Android’s system architecture. Figure adapted from [42].

Linux Kernel: The Linux kernel provides hardware drivers, network and
file system access, process management and other low-level system services.
Android’s Linux kernel is different from any “standard” Desktop-PC Linux
kernel. It supports additional features or “Androidisms” [135] that are nec-
essary for mobile devices, e.g., features such as Binder for inter-process com-
munication (IPC).

CHAPTER 2. BACKGROUND 22

Native User Space: On top of the Linux kernel is the native user space
which consists of the Init process (first process that starts all other pro-
cesses), the Hardware Abstraction Layer (HAL), as well as native libraries
and daemons.

Dalvik Virtual Machine: Apart from native libraries and daemons that
are written in C/C++, the majority of Android source code is written in
Java that needs a Java Virtual Machine (JVM) to be executed. The JVM
in Android is called Dalvik Virtual Machine (DVM) which is not capable of
executing “standard” Java bytecode (*.class files), but Dalvik Executable
bytecode (*.dex files). Dalvik Executable bytecode is either packaged inside
Java libraries (*. jar files) or inside Android applications (*. apk files). In ad-
dition, Dalvik Executable bytecode can be converted into device-dependant
Optimized Dalvik Executable bytecode (*.odex files) for performance op-
timizations. As from Android 5.5, the DVM was replaced by the Android
Runtime (ART) which remains to use Dalvik Executable bytecode due to
backward compatibility reasons.

Java Runtime Libraries: Most of the system services and applications
require Java runtime libraries to import core functionalities (java.* and
javax.* packages). Some Java runtime libraries call native C/C++ code by
using the Java Native Interface (JNI) which also allows C/C++ code to call
Java code.

System Services: System services implement an object-oriented operat-
ing system on top of the Linux kernel and provide fundamental Android
features such as telephony or touchscreen support. Typically, each system
service offers a remote interface that can be accessed by other services and
applications. In Android, Binder implements the discovery, mediation and
inter-process communication of system services.

Binder: Android uses a combination of the Binder kernel driver and the
Binder userspace library to implement IPC. Binder assures that the User 1D
and the Process ID of the calling process cannot be forged. Binder’s security
features will be more discussed in Section 2.2.2.

Android Framework Libraries: Android framework libraries include
Java libraries that are not part of the standard Java runtime, e.g., base
classes for Android application components such as Activities, Services or
Content Providers (android.app.* packages). The framework libraries also

CHAPTER 2. BACKGROUND 23

include facade classes (“managers” or “Binder IPC proxies”) through which
user-installed application access system services, e.g., the ActivityManager
is a facade class of the ActivityManagerService.

Applications or “Apps”: Android applications can be divided into sys-
tem and user-installed applications. On the one hand, system applications
have more privileges than user-installed applications and are typically pre-
installed under the /system or /system/priv-app directories to which a
user has read-only access. In addition, system applications can be replaced
by updates that are signed with the same developer signing key. On the
other hand, user-installed applications have their own read/writable private
data directory under /data/data/app-package-name and run in their own
security sandbox in order to guarantee privilege separation.

Android applications consist of a set of loosely coupled components which
typically have multiple entry points. These components and their entry
points are defined in the application’s AndroidManifest.xml manifest file.
The most important property defined in the AndroidManifest.xml is the ap-
plication package name that serves as an unique identifier in the system. In
order to prevent a malicious application to replace a legitimate application
by using the same package name, each application must be signed with a pri-
vate key that is controlled by the developer. The four different application
components are as follows:

Activities: An Activity is an application component that provides a User
Interface with which users can interact. If the activity has been declared as
exported in the AndroidManifest.xml, it can be also started by other third-
party applications.

Services: A Service is a component that has no user-interface and runs
any long-running tasks in the background. Services can implement a remote
interface to allow interaction with other components by using the Android
Interface Definition Language (AIDL).

Content Providers: Content Providers such as databases allow an An-
droid application to share data with other applications. Fine-grained data
sharing permissions allow an application to share only a subset of its data.

Broadcast Receivers: Broadcast Receivers are components that respond
to system-wide events (called broadcasts). Broadcasts such as “network in-
terface down” can originate from the system or from user applications.

CHAPTER 2. BACKGROUND 24

Now that we know about the fundamentals of Android’s system architec-
ture we can proceed with Android’s security model in the next section.

2.2.2 Android’s Security Model

In the following paragraphs we will discuss the fundamental properties of
Android’s security model including sandboxing, SELinux, permissions, IPC,
code signing, system updates, and verified boot.

Android Sandboxing: Android creates a full kernel-level sandbox by iso-
lating applications both at the process as well as at the file level. In a
traditional Linux system, a User ID is typically given to a physical user that
can log into the system. However in Android, the physical user is implicit
and each application is executed with its own User ID (application ID). This
means that each application runs in a dedicated process (process isolation).
In addition, every application has its own private read/writable data direc-
tory under /data/data/app-package-name to which no other application
has access to (file system isolation). Finally, there is the concept of a shared
user ID in which two applications share the same application ID and run
in the same sandbox. This is only possible if both applications have been
signed with the same code signing key.

SELinuz: SELinux is a Mandatory Access Control (MAC) implementa-
tion for Android. Traditionally, Android is based on a Discretionary Access
Control (DAC) model which means that once an application has access to
a particular resource, it can pass the resource to another application at its
discretion. For example, an application may set one of its private files to
world read/writable to allow other applications to access it. The delegation
of private files to other applications would not be possible in a MAC model in
which central policies define system-wide authorization rules. As of Android
version 4.4, SELinux isolates the core system daemons by enforcing multiple
SELinux policies.

Permisstons: Android follows the principle of least privilege meaning
that applications own only as many privileges as necessary. Additional priv-
ileges can be granted to applications by using the concept of Permissions.
For instance, an application can be granted Internet access by giving it the
INTERNET permission. Permissions are associated with a single Group ID
(GID) and are defined in the application’s AndroidManifest.xml. Prior An-
droid 6.0, permissions are granted at installation time and cannot be revoked

CHAPTER 2. BACKGROUND 25

after the fact. Permission checks are either performed by the Linux kernel,
the Android OS or by individual application components such as Content
Providers. As of version 6.0, Android changed its permission model to one
that is similar to Apple’s i0S: permissions are no longer assigned at applica-
tion install-time, but at runtime, and can be also revoked later®.

Inter-Process Communication (IPC): In most Desktop-PC operat-
ing systems such as Microsoft’s Windows, user-installed applications can di-
rectly interact with the OS kernel, e.g., by initiating system calls. However
in Android, applications do not have direct kernel access, but communicate
to it via the system services. All inter-process communication (IPC) be-
tween applications and system services is handled by Binder (higher-level
IPC abstractions include Intents, Messengers, and Content Providers).

Binder is implemented by two major components: a userspace library
libbinder.so and the Binder kernel driver. The userspace library is loaded
into most processes (user-installed applications and system services) and is re-
sponsible for marshalling objects into Parcels*. In addition, the library makes
the necessary ioctl() system calls with the file descriptor /dev/binder as
a parameter. The /dev/binder device itself is the interface to the Binder ker-
nel driver that handles all of the inter-process communications. The Binder
kernel driver maintains a memory chunk of every process. Each particular
chunk is read/writable for Binder, but readable-only for the process.

When a process sends a message to another process, the Binder kernel
driver copies the message and pastes it into the Binder-maintained memory
chunk of the receiving process (recipient). The Binder kernel driver then
notifies the recipient that there is new data available. When the recipient
has finished processing the data, it notifies the Binder kernel driver which
then frees its maintained memory chunk.

When a process calls a function of another process, the Binder kernel
driver automatically adds the Process ID (PID) and the Effective User 1D
(EUID) — which is composed of the Android user ID and the application 1D
— to the Binder IPC call (Binder transaction). The callee can then decide
whether to allow or drop the call by checking the PID and EUID of the
caller. This prevents privilege escalation attacks because it is impossible for
the calling process to spoof or fake its PID and EUID.

Binder objects that are passed between processes maintain an unique

3See Android’s Developer documentation for how to request permissions at runtime:
http://developer.android.com/training/permissions/requesting.html.

4A Parcel is a container for a message that can be sent through an IBinder interface,
see http://developer.android.com/reference/android/os/Parcel.html.

http://developer.android.com/training/permissions/requesting.html
http://developer.android.com/reference/android/os/Parcel.html

CHAPTER 2. BACKGROUND 26

identity which guarantees that all calls to the object will always be processed
by the same object. The Binder kernel driver maintains a record of which
handles correspond to which Binder object in a specific process. For any
userspace process it is impossible to create a fake copy of a Binder object or
to obtain a reference for it unless they have been assigned a handle through
Binder.

As a result, any Binder object is unique and unforgeable, and can act as
a security token or Binder token. These tokens in turn act as capabilities
and enable a capability-based security model in Android where a capability
references the target object or resource and encapsulates a set of access rights
to it. The mere possession of a capability/Binder token grants a process full
access to another Binder object. In order to discover and access Binder
objects, processes can query the servicemanager native daemon which is
responsible for maintaining all Binder object references.

Besides its useful features, there are also security concerns that are in-
troduced with Binder. One of the major problems is that all inter-process
communications go through Binder. As a result, sensitive data may leave
an application’s sandbox when it communicates with another process. The
main issue is that transmitted data is typically sent in plain Binder transac-
tions (Parcels) that can be easily sniffed by a man-in-the-middle attacker who
has root access to the mobile device. In 2014, Artenstein et al. [3] hooked
Binder’s userspace library at the point where it issues the ioctl() system call
to the Binder kernel driver in order to intercept IPC messages. As part of
a proof-of-concept, they were then able to get a hold of plaintext data be-
fore it was sent over a HI'TPS network connection by sniffing IPC messages
between an Android application and the Network Manager system service.

Code Signing and Platform Keys: Code signing assures that an An-
droid application cannot be replaced by a malicious update that uses the same
package name. Thus, code signing guarantees the same-origin policy concept
as well as trust relationships between applications. When a user updates an
application, the signing certificate of the already installed application is com-
pared against the certificate that is shipped with the update. User-installed
applications are typically signed with a developer-controlled key whereas sys-
tem updates are signed with device-dependant platform keys. Applications
and system services are running in the same sandbox if they are signed with
the same signing key. However, there have been a number of events where at-
tackers were able to circumvent signature checks by forging a valid signature
in order to install malicious updates [51, 50, 52, 134].

CHAPTER 2. BACKGROUND 27

System Updates: Security updates for Android® are typically installed
automatically via over-the-air (OTA) updates or manually via the Android
Debug Bridge (ADB) interface or other vendor-specific update tools.

Verified Boot: Verified boot assures that the system partition and the
kernel have not been tampered with. This is achieved by a cryptographic
hash tree: Each node in the tree is a cryptographic hash. Leaf nodes contain
the hash value of a physical data block, and parent nodes contain the hash
value of their child nodes. As a result, the root node is based on all other
hash values in the tree and therefore only the root node hash needs to be
verified with a RSA public key. This verification step is performed by the
kernel whose integrity is also being verified by a signature verification key
that is securely stored on the mobile device.

2.2.3 Terminology of Attack Types

Android applications can be attacked in many different ways. In order for
the reader to fully understand the threat analysis of KakaoTalk in Section
4.3, we hereby provide a list of the most important attack types®:

Remote code execution attacks: Remote code execution attacks are
attacks where a remote adversary is able to execute her own arbitrary code
on a victim’s mobile device without having physical access. These attacks
typically aim to gain root privileges on the target device by exploiting a soft-
ware vulnerability. For instance, some of the previous root exploits exploited
vulnerabilities such as CVE-2013-6282" or CVE-2014-3153%. The goal of a
remote code execution attack is usually to perform some of the following
actions: Disclose sensitive user information; capture screenshots; monitor
clipboard content; collect passwords from WiFi networks and other (online)
accounts; record voice and real-time phone calls using the microphone; collect
contacts from address book, SMS, MMS, emails, and chat messages; record
location; gather device information; capture pictures using the front or back
camera. In order to run a remote code execution attack, an adversary must
meet two conditions:

Shttps://groups.google.com/forum/#!forum/android-security-updates
6We leave out sophisticated attack types such as hardware side channel attacks. Some
of the attack types were taken from David Thiel’s book “IOS Application Security: The
Definitive Guide for Hackers and Developer” [123].
"https://cvemitre.org/cgi-bin/cvename.cgi?name=CVE-2013-6282
Shttps://cvemitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3153

https://groups.google.com/forum/#!forum/android-security-updates
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-6282
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3153

CHAPTER 2. BACKGROUND 28

1. There must be a software vulnerability on the mobile device that can be
exploited. Such a vulnerability could be a memory corruption bug in
KakaoTalk such as a stack or heap overflow, a use-after-free or a Java
object deserialization bug.

2. The remote code execution exploit must be delivered to and executed by
the victim. There are multiple channels for an attacker to deliver her
remote execution exploit to the user. For instance, an adversary could
trick the user to unintentionally execute malicious payload by using a
tapjacking attack® or by sending a maliciously crafted file attachment
via KakaoTalk’s user chat. Another delivery method could be the mo-
bile phone’s baseband CPU that may allow unauthorized third-party
access via the cellular network.

Web-based attacks: Many Android applications make use of WebViews
that allow an application to display web content. Using web-based attacks, an
adversary may be able to steal user data or to fully compromise a user’s device
by presenting a maliciously crafted HTML and/or JavaScript file. Upon
tricking the user to visit a maliciously crafted website, an attacker may be
able to execute injection attacks such as client-side cross-site (XSS) scripting,
SQL or XML injection, or other injection attacks. These injection attacks
may be then used to steal sensitive information from local data storages,
read and copy session cookies, or present a fake login website to steal users’
login credentials. In 2011, Phil Purviance was able to steal another Skype
contact’s address book by creating a fake user name which had malicious
JavaScript code embedded!®. When the malicious Skype user name was
displayed on another Skype client, the embedded JavaScript executed and
sent the victim’s address book to a remote server. There are also web-based
remote code execution attacks that are more powerful than just stealing a
user’s private address book. For instance, an exploit created by Hacking
Team is able to fully compromise an Android device by just tricking the user
to browse to a maliciously crafted website!!.

Network-based attacks: These types of attacks are performed by local
or remote adversaries that attack the communication channel of the (Kakao-
Talk) messaging system. There are passive and active network attacks: In a

‘https://media.blackhat.com/ad-12/Niemietz/bh-ad-12-androidmarcus
_niemietz-WP.pdf
Ohttps://superevr.com/blog/2011/xss-in-skype-for-ios/
Uhttp://archive.hack.1u/2015/HT_Android_hack_1u2015_v1.0.pdf

https://media.blackhat.com/ad-12/Niemietz/bh-ad-12-androidmarcus_niemietz-WP.pdf
https://media.blackhat.com/ad-12/Niemietz/bh-ad-12-androidmarcus_niemietz-WP.pdf
https://superevr.com/blog/2011/xss-in-skype-for-ios/
http://archive.hack.lu/2015/HT_Android_hack_lu2015_v1.0.pdf

CHAPTER 2. BACKGROUND 29

passive network attack, an adversary is passively listening to the communi-
cation channel and usually tries to obtain information that is transmitted in
cleartext. Active network attackers, on the other hand, try to actively mangle
the victim’s network traffic by performing a man-in-the-middle attack. Once
being the man-in-the-middle possible attacks include: code injection attacks
into unencrypted APK file downloads, downgrade attacks against TLS con-
nections, or replay attacks against KakaoTalk’s chat messages. Other active
network attacks include Denial of Service (DoS) attacks that flood an end-
point with a large number of messages in order to exhaust the endpoint’s
network link or computing power. This way, an endpoint might become un-
reachable for other network clients to connect. For example, a DoS attack
against a KakaoTalk server could block other KakaoTalk users from partici-
pating in the messaging system.

Inter-process-communication based attacks: These types of attacks
try to exploit vulnerabilities of the mobile application’s inter-process commu-
nication (IPC) implementation. Many Android applications do not verify the
integrity of incoming IPC messages and are therefore vulnerable to injection
attacks. IPC attacks are typically performed by third-party user-installed ap-
plication that aim to steal sensitive user data but do not have root-privileges.
By sending a specially crafted IPC message, a malicious application could
perform an SQL injection attack in order to steal user data from the target
application’s private SQLite database. Other IPC attacks include attacks
against exported Activities: If the application’s exported Activity is not pro-
tected by a restrictive permission, a malicious application could send a IPC
message to open the Activity to the foreground. It could then capture a
screenshot to steal sensitive information, for example, a private chat conver-
sation.

Physical access based attacks: There are also attacks that require brief
or permanent physical access to the user’s mobile device. In some cases a
brief physical interaction is enough to compromise a victim’s mobile device.
For instance, an exposed Bluetooth or NFC interface may allow an attacker
to deliver her exploit just by passing by. However, in many cases an adver-
sary typically tries to get a permanent hold of the victim’s mobile phone.
Having permanent physical access to the device, an attacker may be able to
access online services that require two-factor authentication. In addition, an
adversary may be able to execute a number of “offline” and “online” forensic
attacks: In an online forensic attack, an adversary may be able to extract
sensitive data from the phone’s physical memory because the device is still

CHAPTER 2. BACKGROUND 30

powered on. If the mobile phone is powered off, an attacker may be able
to examine the phone’s unencrypted block storage to extract critical private
information such as login credentials.

2.3 KakaoTalk Application Overview

Released as Korea’s first mobile instant messenger in March 2010, Kakao-
Talk is one of the global messaging service leaders today. The application,
which is available in 230 countries and 15 different languages, has a 200 mil-
lion user base with almost 50 million active users worldwide [76, 116]. In
Korea, KakaoTalk is the number one messaging application with a market
penetration of 97 percent and more than 38 million monthly active users [26].
Besides other messengers such as Facebook Messenger more than 70 percent
of Koreans use KakaoTalk everyday [41]. The reasons for KakaoTalk’s suc-
cess are several-fold: First, KakaoTalk is freely available and does not cost
money. The second reason is KakaoTalk’s efficient approach of finding and
adding new contacts to the messaging system.

KakaoTalk is based on a platform business model and is transitioning
from an IM-only service provider into a mobile social platform [59, 138].
This platform ecosystem consists of a number of additional services which
are added to KakaoTalk as part of new version releases or separate mobile
applications. These services, which include Kakao Story, Kakao Taxi, or
Kakao Game are linked to the KakaoTalk ecosystem via a central Kakao
user account. Moreover, Kakao provides a Software Development Kit (SDK)
to enable users to develop their own services by using Kakao’s APIs.

In contrast to many other mobile instant messenger (IM) services, Kakao
has been successful in monetizing KakaoTalk without requiring user fee pay-
ments. KakaoTalk’s main sources of revenue consist of advertising and e-
commerce. As for advertising, KakaoTalk’s in-app advertising takes the
forms of “Plus Friend”, “Yellow ID”, and “Brand Emoticons”. Plus Friend
and Yellow ID are paid corporate accounts whereas Brand Emoticons are
brand-specific emoticons. These types of marketing and advertising oppor-
tunities are attractive to many corporations due to KakaoTalk’s large user
community. KakaoTalk’s e-commerce business is driven by the application’s
“Item Store” service through which users can purchase items such as special
emoticons or stickers.

KakaoTalk provides a variety of features and is available on most mo-
bile and Desktop operating systems. The mobile messenger runs on mobile
operating systems including Apple’s i0S, Google’s Android and Microsoft’s
Windows Phone. PC operating systems including Windows and MAC OS

CHAPTER 2. BACKGROUND 31

are supported as well. Using a single account, a KakaoTalk user can use
both the mobile version and the PC version at the same time in order to
sync messages or files'?. However, multiple mobile devices per account are
not supported (see Section 4.2.3.2). The majority of the different KakaoTalk
versions supports the following most important features:

Multimedia messaging and calling: KakaoTalk provides three differ-
ent types of both one-on-one and group chats: Open, regular, and private.
An open chat room is a public chat room that is searchable and can be joined
by everyone. In a regular chat all messages are encrypted with a provider-
shared key whereas in a private chat messages are encrypted end-to-end.
KakaoTalk’s private “Secret Chat” feature is available on Android and iOS
only. While in a chatroom, users can share images, videos, contact informa-
tion, URLs, location information and other data. However, KakaoTalk does
not permit sharing audio or APK files. Finally, the application allows users
to participate in SRTP-based video group calls.

Friend stickers, emoticons, and emojis: KakaoTalk’s emoticons in-
clude friend stickers, animated emoticons as well as sound emoticons featur-
ing popular Korean characters or celebrities. Furthermore, users can cus-
tomize their KakaoTalk application by choosing own wallpapers, chat bub-
bles, fonts, or color schemes. Themes which bundle all these customizations
can be either created by the user or downloaded as pre-packaged APK files.
In order to prevent that a user installs a malicious third-party theme, Kakao
provides a service to scan APK files for malicious activities!3. Emoticons and
themes can be purchased through KakaoTalk’s Item Store which provides in-
app payments via the Google Play billing service or Kakao Pay'4.

12http://www.kakao.com/services/8/pc
Bhttp://www.kakao.com/services/talk/theme
Y“http://www.kakao.com/kakaopay

http://www.kakao.com/services/8/pc
http://www.kakao.com/services/talk/theme
http://www.kakao.com/kakaopay

Chapter 3

Kakao Terms of Service Analysis

We begin this chapter by describing our methodologies that we used for
our context and terms of service analysis (Section 3.1). In Section 3.2 we
describe the political situation as well as the communications surveillance
and censorship landscape of South Korea. This environment makes it inter-
esting to analyse a popular messaging application such as KakaoTalk. For
instance, on the one hand there are strict data privacy laws that protect
user’s chat from government eavesdropping. On the other hand, there are
significant surveillance and censorship mechanisms that enable communica-
tions wiretapping. It is interesting to analyse how Kakao behaves in such an
environment and how it runs a messaging service in such a contradicting situ-
ation (Section 3.2.3). In Section 3.3 we examine Kakao’s public security and
privacy statements. We collect the most important statements, categorize
them and derive a number of research questions. These research questions
are the main motivation for our technical analysis in Chapter 4 in which we
verify Kakao’s claims for correctness.

3.1 Methodologies

The main method we applied in this chapter was a rigorous review of existing
literature. We also spoke to the non-government organization Open Net
Korea which led to valuable input. Nevertheless, the main approach was
reading, collecting, and categorizing information from various online sources:

e For our analysis in Section 3.2 we gathered information from the in-
ternational and Korean press, from non-government organizations and
advocacy groups as well as from the research community.

e For KakaoTalk’s marketing claims analysis in Section 3.3 we collected

32

CHAPTER 3. KAKAO TERMS OF SERVICE ANALYSIS 33

statements from Kakao’s Terms of Service (ToS), privacy policy, oper-
ation policy, transparency report, press releases, FAQs, as well as from
news articles.

Our literature review has a number of limitations. First of all, we did
not use any “offline” material such as books or articles, but relied on online
sources only. Also, we used just one online search engine to search for relevant
material. We did not use any other search engines which may would have
provided different results. Also, because of language barriers, we mainly
gathered sources written in the English language. However, some of our
sources included primary sources written in Korean.

3.2 Political and Historical Context of Com-
munications Censorship and Surveillance
in South Korea

From 1961 to 1987, South Korea was under military dictatorship of Park
Chung-hee and Chun Doo-hwan with restrictions on freedom of speech and
widespread surveillance. Since then, South Korea has rapidly transitioned
from a controlled society into a vibrant democracy and into one of the most
connected countries in the world. Not only has South Korea the highest aver-
age Internet connection speed globally [8, 115], it also has the highest Internet
penetration rates [107, 128] with most Koreans owning more than one mobile
phone [127]. The constitution of South Korea guarantees independence of
judiciary and freedom of speech, the press, assembly, and association to all
citizens. Moreover, the country has one of the strictest data privacy laws in
Asia [56].

However, South Korea is also a country with a long history of strict
government authorities whose behaviour is rooted in political tensions with
North Korea and traditional social values. Over the years, especially since the
conservative party returned to power in 2008, the government has employed
censorship and surveillance techniques to prosecute citizens for criticing the
government or digital defamation. For instance, criticism on government
policies posted on the Internet portal “Agora” between March 2008 and
January 2009 led to lawsuits and investigations against a famous Korean
blogger!.

!See Wikipedia article on Minerva: https://en.wikipedia.org/wiki/Minerva_J%
28Internet_celebrity%29.

https://en.wikipedia.org/wiki/Minerva_%28Internet_celebrity%29
https://en.wikipedia.org/wiki/Minerva_%28Internet_celebrity%29

CHAPTER 3. KAKAO TERMS OF SERVICE ANALYSIS 34

Moreover, conservatives have used restrictions and other articles in the
South Korean constitution as ways to attack freedom of speech. For example,
Articles 17 and 18 prohibit the infringement of “privacy” and “privacy of
correspondence”, but those guarantees can be bypassed by invoking Article
37 (2), which allows to limit rights “when necessary for national security, the
maintenance of law and order or for public welfare”. In addition, restrictions
exist in that “neither speech nor the press may violate the honor or rights of
other persons nor undermine public morale or social ethics” [84].

Furthermore, laws such as the National Security Act which originates
from the military dictatorship period, have been used as tools to justify
restrictions and suppression of different aspects of digital activity. As a
result, the United Nations Human Rights Council has recommended to delete
Article 7 of the National Security Act because the article criminalizes freedom
of speech itself without requiring a criminal act [5].

Multiple human rights organizations and advocacies have been criticizing
South Korea for its censorship and surveillance practices. For example in
2012, the United Nations Human Rights Council’s Special Rapporteur on
Freedom of Expression warned that South Korea’s defamation laws are of-
ten used to punish statements “that are true and are in the public interest”
[105]. In addition, the South Korean Human Rights Organizations Network
criticized in a statement to the United Nations Human Rights Committee
that “[...] The Government of the Republic of Korea does not comply with
the Covenant and does not fulfill its commitment as a member of the Hu-
man Rights Council. [...]” [5]. Freedom House, an independent organization
dedicated to worldwide freedom and democracy, pointed out that South Ko-
rea blocks political and social content and that critical Internet bloggers and
users get arrested. As a result, Freedom House marked South Korea’s press
freedom only as “Partly-free” [65]. Finally, Amnesty International called
on South Korea’s authorities, among other claims, to select South Korea’s
National Human Rights Commision independently and transparently [69].

In the following two sections we will describe the Internet censorship (Sec-
tion 3.2.1) and communications surveillance (Section 3.2.2) issues in South
Korea.

3.2.1 Internet Censorship

In South Korea a wide range of information, from election-related discourses
to discussions about North Korea, is censored, completely blocked or deleted
[112]. Besides being the first Asian country to introduce a data privacy law, it
was supposedly also the first country worldwide that introduced an Internet-
specific censorship law (“Telecommunications Business Act”) [66]. What is

CHAPTER 3. KAKAO TERMS OF SERVICE ANALYSIS 35

also unique compared to other democratic countries is that South Korea
has a central censorship body called the “Korea Communications Standards
Commission” (KCSC) which was created in 2008 by the new conservative
government. Its nine members, who are appointed by the cabinet, can reg-
ulate content and ethical standards of broadcasting and telecommunication
activities without judicial prior review. The commission does not directly
carry out censorship, but its recommendations are almost never rejected. In-
ternet service providers face large fines if they do not comply, and message
board operators can be jailed. In 2011, the Electronic Frontier Foundation
(EFF) criticized the KCSC for recommending censorship of an Internet ac-
tivist’s blog [47].

Internet censorship in South Korea is increasing each year according to
the Korea Internet Transparency Report? published by the Korea Internet
Transparency Reporting Team and Open Net Korea. The report says that
from 2011 to 2014 the number of Internet content takedowns increased from
53,485 to 132,884 [122]. For instance, a number of Twitter accounts that
criticized the government were blocked or deleted [60, 106]. Other “offline”
content such as artistic expressions that satirizes political elites is also often
banned [104].

3.2.2 Communications Surveillance

Internet mass surveillance between 2011 and 2014 is on the rise according to
the Korea Internet Transparency Report. The report compiles data from the
South Korean government as well as from private Internet corporations on
government requests to private user information [122]. The report categorizes
four major surveillance requests or techniques that are possible in South
Korea:

Communication-Restricting Measures: These eavesdropping requests
can be performed by government agencies in order to access the content
of communications. These actions require court permission.

Communication Confirmation Data: This refers to the acquisition of
communication metadata from telecommunication companies. The re-
quests include information such as who is talking to whom, from where
and for how long. In recent events, metadata requests occurred in the
form of so-called “cell tower dumps” in order to obtain mobile phone
metadata from citizens participating in protests. The request for com-
munication confirmation data requires a court permission.

2www.transparency.kr

www.transparency.kr

CHAPTER 3. KAKAO TERMS OF SERVICE ANALYSIS 36

Communications Data: Communications Data refers to the acquisition
of a subscriber identifying information. Subscriber identifying informa-
tion such as name, identification number, address, date of subscription
and unsubscription, telephone number and other data can be requested
without a court permission [15]. Most of the subscriber information is
requested from telecommunication service providers — KT, SK Telecom,
and LG Uplus — and not from Internet companies such as Internet por-
tals [122, 83].

Search and Seizure Warrants: This is the most powerful technique in
which investigatory agencies are able to request all communication
data — message content, metadata, and subscriber information — in
accordance with the Criminal Procedure Act. The number of requests
for communications is not disclosed by the government for public re-
view. However, the two major South Korean Internet corporations,
Kakao and Naver, publish numbers on received and compiled search
and seizure warrants in their own transparency reports.

The findings of the transparency report suggest that Internet surveillance
is gaining popularity among government authorities (see Table 3.1). One
major finding of the report is that Internet communication wiretapping is
increasing (taking both datasets from government authorities as well as from
Kakao [34] and Naver [35] into account). Interceptions on KakaoTalk, which
holds more than 90 percent of instant messaging services in South Korea,
has increased from the first half of 2012 to the first half of 2014.

2011 2012 2013 2014
Docs | Accounts | Docs | Accounts | Docs | Accounts | Docs | Accounts
All comm. | 707 | 7167 447 | 6087 592 | 6032 570 | 5846
All Internet | 446 | 1815 265 1654 401 1887 372 1748
Naver n/a | n/a 30 79 72 195 56 193
Daum? n/a | n/a 53 324 68 272 47 237
Kakao n/a | n/a 41 47 81 89 78 117

Table 3.1: Status of interceptions between 2011 and 2014. Table adapted
from [122].

Another important finding of the report is that the number of requests
for communication metadata is slowly decreasing whereas the number of
requests for subscriber information is on the rise. According to [83], South
Korea’s three main Internet service providers (ISPs) have been handing over

3Daum was a Korean Internet company that was merged with Kakao in 2015.

CHAPTER 3. KAKAO TERMS OF SERVICE ANALYSIS 37

subscriber information to more than six million phone numbers in the first
half of 2014 alone. Taking different Internet companies including the ISPs
into account, nearly 13 million accounts have been seized in 2014 in a country
with just 50 million citizens. Most worryingly, data published by Kakao and
Naver reveals that the number of search and seizure warrants have increased
three times after the start of the new Park administration in 2013, i.e., from
the first half of 2012 to the first half of 2014 [34].

The results of the transparency report are limited and incomplete for
several reasons. One reason is that the Ministry of Science, ICT and Fu-
ture Planning (MSIP) only discloses the total numbers of data requests to
telecommunication and Internet companies and that those numbers are not
accurate enough to provide a detailed evaluation. Another reason is that
the statistics on search and seizure warrants entirely rely on the private In-
ternet service providers’ transparency reports because the ministry does not
disclose those numbers. Finally, only two major Internet companies — Kakao
and Naver — are publishing numbers of government requests to user data.
Other telecommunications and Internet service providers do not release any
statistics on government requests to the public directly, but through the
MSIP only.

In the next section we analyse several surveillance scandals in South Korea
from 2014 to 2016 and discuss how they impacted Kakao’s privacy policy and
terms of service.

3.2.3 A Timeline of Surveillance Scandals in South Ko-
rea and Their Implications on KakaoTalk

In this section we provide a timeline of surveillance scandals between 2014
and 2016 and analyse the different implications and changes on KakaoTalk’s
privacy policy and terms of service. We also show to what extent Kakao coop-
erated with government authorities to comply with user data and wiretapping
requests. The goal of this section is to help users understand why Kakao has
been moving towards certain directions and how the policies around it have
changed over time.

3.2.3.1 2014

2014 was the year in which Kakao’s privacy policies positively changed the
most due to a series of political and legal events in South Korea. An impor-
tant user privacy improvement occurred in August 2014, when Kakao and
other Internet businesses were legally required to stop storing users’ Resident

CHAPTER 3. KAKAO TERMS OF SERVICE ANALYSIS 38

Registrations Numbers (RRNs?) and to destroy those already collected [79].
However, mobile service providers are still allowed to require users’ RRNs to
verify their identities for service registration.

In October 2014, Kakao went through its major privacy policy changes.
All started in April 2014 with a disaster, when a ferry carrying mostly school
students capsized and more than 300 passenger and crew members died®.
The official handling and response to the ferry disaster provoked widespread
criticism towards the government of president Park Geun-Hye and led to
major demonstrations throughout the country. Worryingly, the criticism
prompted a series of legal and political consequences.

On September 16, president Park Geun-Hye told in a cabinet meeting
that “profanity towards the president had gone too far”, that “insulting the
president is equal to insulting the nation”, and that false rumours “divided
[the] society”®. As a result, Park Geun-Hye pledged to prosecute people
spreading rumours about her or the government on Twitter, social media
and instant messenger services such as KakaoTalk.

Shortly after Park’s speech, the Public Prosecutor’s Office established an
anti-defamation special investigation team which monitored and censored in-
appropriate public and private online content and also prosecuted suspects.
The investigation team especially monitored KakaoTalk to seek for viola-
tions by reading chat messages in real-time, even though Kakao denied that
it provided real-time wiretapping access. Nevertheless, Kakao showed col-
laboration by holding a closed-door meeting with prosecutors to discuss how
online rumours and criticism can be stopped [70].

Kakao’s cooperation and the active monitoring of KakaoTalk led to un-
justified indiscriminate data collection and surveillance of protesters for vio-
lations of the Assembly and Demonstration Act [137]. In October 2014, Jin
Woo Jung, a vice representative of the Labor Party, announced in a press
conference that he was accused by the government “causing public unrest”
for organizing a demonstration. Jung said that prosecutors had accessed his
private KakaoTalk conversations as well as the personal details of his 3,000
contacts over a period of 40 days. In another case, Hye In Yong, a university
student who organized a solidarity march for the victims of the ferry tragedy,
was also a subject of KakaoTalk surveillance. The search and seizure warrant
against her included personal information, message content (texts, pictures,
and videos) and metadata (e.g., KakaoTalk ID, phone number used for au-

4An RRN is a 13-digit number that is assigned to a South Korean citizen at birth and
can be used to uniquely identify a person.

"https://en.wikipedia.org/wiki/Sinking_of_MV_Sewol

SFull text of the president’s speech to the cabinet available in Korean at: http://
www.hani.co.kr/arti/politics/bluehouse/655420.html.

https://en.wikipedia.org/wiki/Sinking_of_MV_Sewol
http://www.hani.co.kr/arti/politics/bluehouse/655420.html
http://www.hani.co.kr/arti/politics/bluehouse/655420.html

CHAPTER 3. KAKAO TERMS OF SERVICE ANALYSIS 39

thentication, IP addresses, and other metadata). Among the metadata was
supposedly also her cellular modem’s MAC address that may had been used
by authorities for tracking Yong’s location [65, 122]. Similar to Jung’s case,
the surveillance of Yong led to unjustified indiscriminate data collection of
innocent people because all of her contacts’ conversations and metadata were
also seized.

The revelations of the different surveillance cases and Kakao’s partici-
pating role in them caused major concerns in the South Korean public. As
a reaction, around 400,000 KakaoTalk users and 1.5 million South Koreans
signed up for more secure non-South Korean-based chat applications within
seven days [75]. In addition, asked by a public survey conducted between
October and November 2014, more than seven out of ten South Koreans
answered that they were worried about secret government surveillance [64].

In order to regain trust, Kakao’s co-CEO Sirgoo Lee reacted with a press
conference saying “We stopped accepting prosecution warrants to monitor
our users’ private conversations from 7 October, and hereby announce that
we will continue to do so.” [94, 12]. Kakao also said that it had to comply
with the law and that it was not able to deny governments’ requests due to
search and seizure warrants [119].

As the Korea Internet Transparency Report shows, Lee’s announcement
was indeed put into practice: The report indicates that the number of pro-
cessed requests for message interception, message metadata, subscriber per-
sonal information, and search and seizure warrants decreased in the second
half of 2014 [122, 34]. Furthermore, the next day after Lee’s press conference,
Kakao announced a number of new security and privacy features which we
will now describe in the following paragraphs:

Reduced time of message storage: Kakao stores KakaoTalk messages
on a server in order to provide asynchronous messaging. As part of Kakao’s
commitments, this storage time was reduced from 3-7 to 2-3 days. The
company also announced to introduce a new “Privacy Mode” in which all
read messages are automatically deleted from Kakao’s servers. Thus, Kakao
stops storing the chat history when a sender and a recipient are online at the
same time [120].

End-to-end encrypted chat and decline invites: KakaoTalk added
one-on-one end-to-end encryption support to the Android version on 8 De-
cember [31] and to the iOS version on 17 December 2014; a group chat end-
to-end functionality was added in March 20157, It also introduced a “Decline

"https://blog.kakaocorp.com/?p=1410

https://blog.kakaocorp.com/?p=1410

CHAPTER 3. KAKAO TERMS OF SERVICE ANALYSIS 40

Invites” feature which allows users to permanently leave a chatroom.

Privacy Policy Advisory Committee: Kakao established a commit-
tee® that consists of outside security and privacy advisors and other pro-
fessionals from different fields. For instance, advisors include members of
the Korean Internet Security Agency” and one of the founders of Open Net
Koreal?. Kakao is also a member of an association that engages with non-
industry and non-government organizations on privacy and freedom of ex-
pression.

Terms of service and privacy policy: Kakao’s policies received good
results in Ranking Digital Rights’s Corporate Accountability Index [102].
Most notably, the company provides notifications for any policy changes [27].

Technical measures: As part of its efforts, Kakao introduced a number
of technical measures to protect user’s personal information'!. For instance,
the company established tighter access control mechanisms for its personal
information processing system and introduced intrusion detection systems to
monitor its internal networks. Kakao also holds a number of accrediations

from government organizations and information security certifications such
as the ISO/IEC 27001 certificate!?.

Kakao Transparency Report: In January 2015, Kakao revealed its first
transparency report on user information eavesdropping and search warrants
[19, 34]. Kakao was the first Asia-based and the first South Korean telecom-
munication company to release such a report. Regarding KakaoTalk, the
company revealed that it received 2,467 metadata requests, 147 warrants for
real-time monitoring of user chat, and 4,807 warrants to access past user
conversations [71]. In addition to government requests, the report also in-
cludes information about private requests to block or restrict content. In this
regard, the report contains more data than any other transparency report
published by other Internet companies [102].

Kakao states that requests for message content and metadata are only
provided if they have legal justification [20]. Also, Kakao restricts the amount

8http://privacy.kakaocorp.com/en/protection/commonssion
https://en.wikipedia.org/wiki/Korea_Internet_%26_Security_Agency
Ohttps://en.wikipedia.org/wiki/OpenNet_%28organization?29
"http://privacy.kakaocorp.com/en/protection/tech and http://privacy
.kakaocorp.com/en/protection/certification
2http://www.iso.org/iso/home/standards/management-standards/iso
27001.htm

http://privacy.kakaocorp.com/en/protection/commonssion
https://en.wikipedia.org/wiki/Korea_Internet_%26_Security_Agency
https://en.wikipedia.org/wiki/OpenNet_%28organization%29
http://privacy.kakaocorp.com/en/protection/tech
http://privacy.kakaocorp.com/en/protection/certification
http://privacy.kakaocorp.com/en/protection/certification
http://www.iso.org/iso/home/standards/management-standards/iso27001.htm
http://www.iso.org/iso/home/standards/management-standards/iso27001.htm

CHAPTER 3. KAKAO TERMS OF SERVICE ANALYSIS 41

of metadata it provides as defined in the Protection of Communication Se-
crets Act. As for subscriber identifying information, the company does not
accept any warrantless requests since the Seoul High Court ruled in 2012
that Internet companies are liable for providing personal information with-
out carefully reviewing investigatory agencies’ warrantless requests. However,
subscriber information can be still obtained from government authorities by
the use of a search and seizure warrant. Finally, Kakao does not process
a request if the request document misses important details or contains any
errors (e.g., document has not been officially stamped).

Kakao’s transparency report has been criticized for a number of reasons.
Firstly, it does not include statistics about which different investigative agen-
cies requested access to user information and therefore it is not clear who filed
the most data requests.

Secondly, since the report shows the data requests for Daum and Kakao
separately, a KakaoTalk user does not know which statistics to consider be-
cause KakaoTalk uses both company’s online storage systems. Since the
merger of Kakao and Daum the company has stated that “[...] Any user in-
formation, including location information, maintained by Kakao Corp. will
be securely transferred to Daum Communications Corp. to ensure service
quality. [...]” [27]. This is critical because the data request statistics for
Daum and Kakao vary significantly. For example, Daum has been seeing
substantially more search and seizure warrants in the first half of 2015 than
Kakao.

Thirdly, Kakao may not always prevent any unjustified indiscriminate
data collection by accepting request documents that also contain account
requests for the suspects’ chat partners [137].

3.2.3.2 2015

In October 2015, KakaoTalk’s privacy policy changed radically after Kakao’s
new CEO Ji Hoon Rim'® announced to start cooperating with government
agencies again [67]. This decision marked a 180-degree turnaround after
Kakao’s co-CEO Sirgoo Lee had promised one year earlier to not collaborate
with government officials (see Section 3.2.3.1). Rim’s statement prompted
other Internet businesses to move and host their services outside South Ko-
rea [74]. Through this “server exile” movement some Internet corporations
wanted to avoid the same fate as KakaoTalk in 2014 when it lost a large num-

ber of its user base to Telegram due to a surveillance scandal (see Section
3.2.3.1).

13Ji Hoon Rim was announced in August 2015, see http://www.kakaocorp.com/en
/pr/pressRelease_view?page=2&group=1&idx=8318.

http://www.kakaocorp.com/en/pr/pressRelease_view?page=2&group=1&idx=8318
http://www.kakaocorp.com/en/pr/pressRelease_view?page=2&group=1&idx=8318

CHAPTER 3. KAKAO TERMS OF SERVICE ANALYSIS 42

As Kakao’s transparency report indicates, Rim’s announcement was im-
mediately put into practice. The report states that “[...] Kakao resumed co-
operation with requests for communication-restricting measures in October
2015 [...]” which can be verified from the fact that processed interception-
requests went up from zero in the first half of 2015 to eight in the later half of
2015. As one can see from the report, Rim’s announcement may be also an
explanation for two other alarming developments. First, the number of pro-
cessed search and seizure warrants rose from 1,040 in the first half to 1,261
in the second half of 2015. Second, the amount of copyright infringement
requests went up significantly from almost 200 in the first half of 2015 to
more than 16,000 requests in the second half of 2015. What is also worth
noting is that Rim’s radical decision does not quite fit into Kakao’s privacy
philosophy which claims to “[...] proactively participate in critical discourse
on privacy protection” [29].

In November 2015, Kakao’s co-CEO Sirgoo Lee resigned from the com-
pany after allegations he did not do enough to prevent child pornography
being spread over Kakao Group [77]. According to the Youth Protection
Act, Kakao must block illegal obscene content, even though the company
argued that the law does not provide any clear guidelines on how this should
be done. Kakao said that it scans for malicious keywords and URLs and
filters them accordingly.

3.2.3.3 2016

In March 2016, the government of president Park Geun-hye passed a new
anti-terror bill that greatly increased the power and authority of the National
Intelligence Service (NIS) [44, 113]. With the new law the NIS is allowed to
eavesdrop on terror suspects’ communications, access their financial transac-
tions, and to collect their personal information. In the past, the agency had
already actively monitored the Internet and telecommunications in South
Korea. According to the Korea Internet Transparency Report, 90 percent of
all wiretapping and interception requests between 2011 and 2014 were made
by NIS. Before president Park’s election in 2012, the agency also monitored
Internet discussion boards to discredit content of opposition parties. For
these reasons, there are legitimate concerns that the spy agency could abuse
its newly gained powers for domestic surveillance under the name of counter-
terrorism. Worse, there are fears that the NIS could require information
technology companies such as Samsung to demand weak or “export-grade”
cryptography that would be breakable by the agency [136].

CHAPTER 3. KAKAO TERMS OF SERVICE ANALYSIS 43

3.2.4 Conclusion

South Korea is a heavily connected and monitored country that eavesdrops on
Korean citizens’ Internet communications on a large scale. Internet surveil-
lance from 2011 to the first half of 2014 was expanding until the practice
decreased in late 2014 due to the controversy surrounding the wiretapping
scandal of KakaoTalk. However, after a one-year surveillance decline, search
and seizure and communication interception requests rose again after Kakao’s
new CEO said to resume cooperation with government officials.

Many of the spying requests were issued because of violations of the As-
sembly and Demonstration Act (Sewol ferry protests in 2014) and of the in-
terference of business (railway union strikes in 2013 [122]). This is a serious
problem because all of these violations relate to freedom of expression re-
strictions. The Internet censorship and surveillance mechanisms do not only
have a “chilling effect” [84] on the free flow of information, but also make
Internet business growth difficult (see Sections 3.2.3.1 and 3.2.3.2). Worse,
surveillance is often conducted not only on the target, but also on numerous
innocent people who participate in conversations with the suspect [122]. This
means that simply being in the same KakaoTalk chat room, is enough to dis-
close innocent users’ private chats to the investigatory authorities. And even
though officials are required by law to notify potential suspects that they are
being monitored, many targets do not receive such a notice and thus are not
aware that private communications are being acquired [122].

From the year of 2014, Kakao improved the protection of user’s private
information substantially. These enhancements probably did not result from
users’ protests, but rather from the fact that Kakao lost a large number
of its KakaoTalk user base to its competitor Telegram within a week. The
introduction of end-to-end encrypted one-on-one and group chat was Kakao’s
major commitment to user security and privacy, and according to Ranking
Digital Rights “Kakao’s |...] disclosures related to freedom of expression and
privacy are significantly stronger than any other non-Western company [...]”
[102]. However, Kakao’s commitment towards user privacy is under recent
internal and external pressure. On the one hand, there is the new CEO Ji
Hoon Rim who made clear that he does not care about privacy as much
as his predecessors by allowing message-interception requests from October
2015. On the other hand, there is increasing legal pressure such as the new
anti-terror law that may demand Kakao to ease its surveillance restrictions.

In the next section we will analyse and structure Kakao’s main public
security and privacy statements.

CHAPTER 3. KAKAO TERMS OF SERVICE ANALYSIS 44

3.3 Analysis of Kakao’s Public Security and
Privacy Statements

Kakao makes a number of public statements about the security and privacy
of KakaoTalk. In the following sections we provide a summary of the most
important claims and categorize them similar to Ranking Digital Rights’s
“Corporate Accountability Index” [102]. We divided the statements into the
categories Security Promises (Section 3.3.1) and Privacy Promises (Section
3.3.2). Each category is then split into several subcategories.

3.3.1 Security Promises

Kakao makes numerous security statements which we divided into the secu-
rity categories “Encryption” (Section 3.3.1.1) and “Data and Identity Pro-
tection” (Section 3.3.1.2). We structured each category in the following way:

Description: A short description of the security category.
Statements: A list of the most important statements.

Resulting research questions: A list of resulting research questions that
are interesting for the technical analysis of KakaoTalk.

3.3.1.1 Encryption

Description: Does Kakao deploy encryption and security mechanisms for
KakaoTalk? Does KakaoTalk provide any information about its “Secure
Chat” feature?

Statements:

Guaranteed End-to-end Encryption:

“[...] Secret Chat ensures heightened confidentiality of user con-
versations by providing end-to-end encryption, where the decryp-
tion key for chat messages is stored in the user’s device making
the messages only readable by the users involved in the conversa-
tion. Since the decryption key is stored only in the device, other
parties cannot access conversations through any outside point —
even through servers. [...]" [31]

CHAPTER 3. KAKAO TERMS OF SERVICE ANALYSIS 45

“[...] Kakao’s server is unable to decrypt the encryption [of the
"Secret Chat’ chatroom]|” [32]

“[...] Tt also explained this new mode will fundamentally make
it impossible for the authorities to inspect conversations from the
server, with or without a warrant. [...]” [117]

Trusted Contacts:

“[...] If the public key image is identical to your friend’s, that
means your chat is secured. [...]" [21]

Miscellaneous:

“[...] Safe transfer of information is ensured [...]" [32]

“Lee said the company had “top security technology” to prevent
leaks and only stored messages for a short time” [137]

Resulting Research Questions:

e Despite Kakao’s claims, would the company be able to decrypt end-to-
end encrypted messages?

e Does KakaoTalk use encryption for all communication channels?

3.3.1.2 Data and Identity Protection

Description: Does the company protect user’s personal information and
any other critical data?

Statements:

Data protection:

“[...] We at Kakao will never neglect our obligation to protect
our user’s personal information, which is protected by law, as
well as our user’s privacy-related information from third parties.

L..]7 [29]

“Kakao makes efforts to protect users’ personal information from
being leaked with technology and policy measures” [30]

CHAPTER 3. KAKAO TERMS OF SERVICE ANALYSIS 46

“[...] Here at Kakao, we make it our utmost priority to keep

user’s personal information safe and secure [...] We undertake
all necessary measures to prevent unauthorized access to the per-
sonal information, [...]” [118]

Implications of Impersonation and Identity Theft:

Ban from the network: “[...] If the user attempts to subscribe
under a false identity or the identity of another person [...]” [33]

No refunds: “[...] Refund requests or request for the paying
individual’s personal information, in response to identity theft
or payment fraud experienced by the Subscriber, may be re-
jected if circumstances does not fall under those prescribed by
law. [...]" [33]

Resulting research questions:

e Does KakaoTalk protect against user impersonation or identity theft?

3.3.2 Privacy Promises

Compared to other technology companies, Kakao’s commitment to user pri-
vacy is quite strong [102]. The company makes a number of privacy state-
ments which we divided into seven different privacy categories. We structured
each category in the following way:

Description: A short description of the privacy category.
Statements: A list of the most important statements.

Resulting research questions: A list of resulting research questions that
are interesting for the technical analysis of KakaoTalk.
3.3.2.1 Collection of User Information

Description: Does Kakao disclose what user information it collects, how
it collects this information, and why?

CHAPTER 3. KAKAO TERMS OF SERVICE ANALYSIS

Statements:

Data minimization:

“[...] Kakao only collects personal information that is absolutely
needed to provide our services. Kakao requests the user for their
name, password and contact information (email, telephone num-
ber) once a user registers for our service. Some services may
verify the identity of the user or collect the user’s delivery, pay-
ment, location and device information. Information including 1P
address, cookie and usage records is collected while the user uses
the service [...]” [20]

“[...] Only the most necessary information is collected [...]" [32]

“[...] Limited information such as ID, password and contact
information |[...]” [28]

Data utilization:

“[...] Your personal information may be used to search, register
or notify other Service users who are in your contact list or who
may be your KAKAO friends. Furthermore, your personal infor-
mation may also be used to give any individual notifications, deal
with any inquiries or disputes arising in connection with your use
of the Services, send content for paid services, or process shipping
and payment. In addition, your personal information may be used
to perform statistical analysis for new customized services, pro-
vide event and advertising information, comply with obligations
required under applicable laws and regulations, and prevent any
improper use of your personal information that may cause harm
to you in violation of law or the Terms of Service. [...]|” [24]

“[...] Personal information is used to provide paid services, for

marketing/advertising, [...]" [28]

Targeted advertising based on the user’s current location: “|...]
an information provision service through which you can [...]| be
provided with advertisement information using your current lo-
cation [...]" [25]

Kakao extracts EXIF location data from pictures: “[...] your

location data that is recorded with your photos [...]|” [25]

CHAPTER 3. KAKAO TERMS OF SERVICE ANALYSIS 48

User consent:

“[...] Before you get started with an application or program,
KAKAO will inform you of the personal information we collect
to which you must consent in order to use the Service. [...]" [24]

“Kakao notifies the user of personal information items that are
collected, the purpose of use and the information retention period
in advance and acquires the user’s approval for the collection and
use of such information. (Details are provided in both Daum and
Kakao’s Privacy Policies.)” [20]

Resulting research questions:

Data minimization: Does KakaoTalk collect more information than it
claims?

Data utilization: Does KakaoTalk utilize user data for any other pur-
poses?

User consent: Does KakaoTalk require user consent? Are the policies the
same as the ones published on Kakao’s website?

3.3.2.2 Collection of User Information from Third-Parties

Description: Does KakaoTalk publish clear information about whether it
collects user information from third parties?

Statements: No statements found.

Resulting research questions:
e Does KakaoTalk collect any user information from third-parties (e.g.,
by using third-party advertising libraries)?
3.3.2.3 Sharing of User Information

Description: Does Kakao disclose if and how it shares user information
with third-parties?

CHAPTER 3. KAKAO TERMS OF SERVICE ANALYSIS 49

Statements:

User consent:

“[...] Information is provided [to third-parties| only after acquir-
ing user’s consent. [...]" [2§]

“As arule, a user’s personal information is not provided to a third
party without the user’s consent.” [20]

Third-parties:

1. Transcosmos Korea & Metanet MCC & DK Service, DK techin, Danal,
NICE Investors Service, LG U+, Podotree, SureM, DreamSecurity, SK-
telink, NOSTech, KT, KTH, Korea Smart Card Co. Ltd, NICE Infor-

mation & Telecommunication Inc

2. Credit card companies: Samsung, Shinhan, KB, Hana, BC, Citi, Lotte,
Hyundai, NHnonghyup

3. Business partners'4
4. Shipping companies'® [24]
5. Up to 18,000 “Connected Services” !¢

Miscellaneous:

“l...] KAKAO will never disclose your personal information to
a third party unless otherwise required by the relevant laws and
regulations or consented by you. [...]” [24]

Resulting research questions:

e Does KakaoTalk share more information with third-parties than offi-
cially claimed?

e Does KakaoTalk share user information with any other third-party not
mentioned in the privacy policy?

Yhttp://www.kakao.com/en/policy_agree

5http://www.kakao.com/delivery_partners (in Korean) and http://makers.k
akao.com/deliver (in Korean).

http://wwu.kakao.com/provide_layer?page=1794&privacySearch=&lang=
en#none

http://www.kakao.com/en/policy_agree
http://www.kakao.com/delivery_partners
http://makers.kakao.com/deliver
http://makers.kakao.com/deliver
http://www.kakao.com/provide_layer?page=1794&privacySearch=&lang=en#none
http://www.kakao.com/provide_layer?page=1794&privacySearch=&lang=en#none

CHAPTER 3. KAKAO TERMS OF SERVICE ANALYSIS 20

e Tracking: What about third-party cookies that are used by KakaoTalk?
For what are they used?

e Which data does KakaoTalk share with other Kakao services? Accord-
ing to [102], Kakao does not clearly disclose whether and how it shares
user information between different Kakao services.

3.3.2.4 User Control Over Information Collection and Sharing
Description: Does KakaoTalk provide users with options to control the

company’s collection and sharing of their information?

Statements:

“[...] If you post any content on Services, the content may be ex-
posed to Kakao services, and you will be deemed to have granted
to Kakao and its partners a worldwide and permanent license to
use, store, copy, modify, publicly transmit, display and distribute
such content within the required extent. [...]" [25]

Resulting research questions:

e What online storage system does KakaoTalk use, Daum’s or Kakao’s?
This is critical because the number of data requests for Daum and
Kakao vary significantly [34].

3.3.2.5 User’s Access to Their Own Information

Description: Are KakaoTalk users able to access information about them
that the company holds?

Statements:

Miscellaneous:

“[...] Sign In > My Information > Personal Information Usage
Status [...]" [20]

View the list of linked “Services”:

“[...] go to “Connected Apps” in the KAKAO Account menu in
your app [...|" [24]

CHAPTER 3. KAKAO TERMS OF SERVICE ANALYSIS 51

Resulting research questions:

e What kind of data is accessible by a KakaoTalk user?

3.3.2.6 Retention of User Information

Description: Does KakaoTalk disclose how long it retains user informa-
tion? Does Kakao allow users to selectively remove information collected
about them? What information is retained after a user deletes her account?

Statements:

Miscellaneous:

Depending on which personal information, Kakao deletes data
after 3 or 6 months, or after 1, 3, or 5 years (e.g., records on
service visits are deleted after 3 months) [24].

Kakao keeps user location information for at least six months:
“[...] Kakao keeps your personal location data and the informa-
tion confirming the use and provision of the location data for a
period of at least 6 months pursuant to the Act on the Protection,
Use, Etc. of Location Information. [...]" [25]

“[...] Personal information is destroyed without delay once it is
used for its intended purposes. [...]" [2§]

“All messages are saved on our servers for 2 3 days to ensure
sufficient time for the intended party to receive the message, even
if their phone is turned off for a day.” [121]

KakaoTalk’s privacy mode: “KakaoTalk will offer a new Privacy
Mode which will allow for off-the-record chatting. Activating
Privacy Mode will also delete all read messages from the server.
In addition, all read messages will be deleted automatically from
the servers and Daum Kakao plans to gradually stop storing the
chat history in cases where the sender and the recipient are both
online. KakaoTalk plans to add Privacy Mode by the end of
2014.” [120]

CHAPTER 3. KAKAO TERMS OF SERVICE ANALYSIS 52

Resulting research questions:

e What about any data that is left on the SD card after KakaoTalk was
removed from an Android device?

e KakaoTalk’s privacy mode: Does Kakao store unread KakaoTalk mes-
sages longer than three days?

3.3.2.7 Spam Protection

Description: Does KakaoTalk protect from spam, harassment or other
malicious content?

Statements:

Miscellaneous:

“[...] The administrator will hide inappropriate posts from other
users. [...]" [23]

“[...] The Operation Policies of YellowID'" and StoryChannel'®
are not stated in this Kakao Operation Policy [...]" [23]

“If Kakao determines that the content you have provided violates
relevant laws or Kakao’s policies, Kakao may remove, delete or
refuse to post such content [...]" [25]

“We are making a genuine effort, by scanning for keywords, look-
ing for malicious links, and allowing users to report objectionable
material, but requiring us to filter out even more obscene mate-
rial on a private service necessarily implies a degree of censorship
that would infringe on the privacy of users.” [77]

“[...] the Korean government enforces Juvenile Protection Policy
under the Act on Promotion of Information and Communications
Network Utilization and Information Protection [...]” [25]

“[...] We will conduct real-time monitoring if there is a public
consensus to put that responsibility on operators |[...]” [86]

1"https://yellowid.kakao.com/public/policy (in Korean)
Bhttps://ch.kakao.com/terms/rule (in Korean)

https://yellowid.kakao.com/public/policy
https://ch.kakao.com/terms/rule

CHAPTER 3. KAKAO TERMS OF SERVICE ANALYSIS 23

“The Company may remove or refuse to display content that we
believe violates our policies or the law. However, that does not
necessarily mean that the Company has an obligation to monitor
all the content. If you think somebody is violating your rights,
you can let us know through the Customer Service.” [22]

Resulting research questions:

e Does KakaoTalk or any other associated third-party monitor users’
communications to enforce its operation policy? If yes, how do they
block/filter/delete spam or other malicious content?

e Juvenile protection: How does KakaoTalk enforce Articles 41-43 of the
Promotion of Information and Communications Network Utilization
and Information Protection Act'??

3.3.3 Summary of Resulting Research Questions

Following we summarize the research questions that arose in the previous
sections 3.3.1 and 3.3.2:

End-to-end encrypted chat

e Despite Kakao’s claims, would the company be able to decrypt end-to-
end encrypted messages?

Encryption and data protection
e Does KakaoTalk use encryption for all communication channels?

e Does KakaoTalk protect against user impersonation or identity theft?

Collection of user information

Data minimization: Does KakaoTalk collect more information than it
claims?

Data utilization: Does KakaoTalk utilize user data for any other pur-
poses?

User consent: Does KakaoTalk require user consent? Are the policies the
same as the ones published on Kakao’s website?

Yhttp://elawklri.re.kr/kor_service/lawView.do?hseq=32543%1lang=ENG

http://elaw.klri.re.kr/kor_service/lawView.do?hseq=32543&lang=ENG

CHAPTER 3. KAKAO TERMS OF SERVICE ANALYSIS o4

Collection of user information from third-parties
e Does KakaoTalk collect any user information from third-parties (e.g.,
by using third-party advertising libraries)?
Sharing of user information

e Does KakaoTalk share more information with third-parties than offi-
cially claimed?

e Does KakaoTalk share user information with any other third-party not
mentioned in the privacy policy?

e Tracking: What about third-party cookies that are used by KakaoTalk?
For what are they used?

e Which data does KakaoTalk share with other Kakao services? Accord-
ing to [102], Kakao does not clearly disclose whether and how it shares
user information between different Kakao services.

User control over information collection and sharing

e What online storage system does KakaoTalk use, Daum’s or Kakao’s?
This is critical because the number of data requests for Daum and
Kakao vary significantly [34].

User’s access to their own information

e What kind of data is accessible by a KakaoTalk user?

Retention of user information

e What about any data that is left on the SD card after KakaoTalk was
removed from an Android device?

o KakaoTalk’s privacy mode: Does Kakao store KakaoTalk messages
longer than three days?

CHAPTER 3. KAKAO TERMS OF SERVICE ANALYSIS 25

Spam protection

e Does KakaoTalk or any other associated third-party monitor users’
communications to enforce its operation policy? If yes, how do they
block/filter/delete spam or other malicious content?

e Juvenile protection: How does KakaoTalk enforce Articles 41-43 of the
Promotion of Information and Communications Network Utilization
and Information Protection Act*0?

2Onhttp://elaw.klri.re.kr/kor_service/lawView.do?hseq=32543%1ang=ENG

http://elaw.klri.re.kr/kor_service/lawView.do?hseq=32543&lang=ENG

Chapter 4

Technical Analysis

In this chapter we provide a detailed technical security assessment of Kakao-
Talk’s end-to-end encryption protocol and “Secret Chat” feature. We start by
explaining our methodologies and tools that we used to examine KakaoTalk
(Section 4.1). Section 4.2 outlines KakaoTalk’s messaging system architec-
ture as well the internals of the application’s end-to-end encryption protocol.
After describing the system we proceed to analyze KakaoTalk’s attack sur-
face and propose possible system threats (Section 4.3). Section 4.4 provides
an overview of vulnerabilities of KakaoTalk’s application and messaging pro-
tocol. Finally, we conclude by comparing our technical findings with Kakao’s
public marketing claims from Section 3.3.

4.1 Methodologies and Tools

In this section we describe the methodologies and tools that we used for our
technical analysis of KakaoTalk. It is organized as follows:

First, we outline for which technical evidence and system vulnerabilities
we were looking for by providing two security assessment checklists (Section
4.1.1).

Second, we explain the automated (Section 4.1.3) and manual (Section
4.1.4) analysis methods that we applied in our technical analysis of Kakao-
Talk. For the automated and manual analysis methods we used different
static and dynamic analysis techniques and tools. Static analysis refers to
the process of analyzing KakaoTalk’s source code and any other related files
(e.g., manifest and resource files) when the application is not running. By
dynamic analysis we mean debugging KakaoTalk at runtime and to also mon-
itor logging events and any network and IPC traffic.

Third, we used reverse engineering methods to learn about KakaoTalk’s

26

CHAPTER 4. TECHNICAL ANALYSIS o7

end-to-end encryption protocol. Eventually, we applied a number of digital
forensics techniques to search for any information leakage issues.

As of June 2016 the latest version of KakaoTalk is 5.7.0. For most of
our analysis work we used KakaoTalk 5.5.5 since we started our project in
February 2016. However, we used KakaoTalk 4.7.0 for reverse-engineering
the application’s end-to-end encryption protocol since this older version was
less obfuscated and therefore faster to analyse than version 5.5.5.

4.1.1 Assessment Checklists

In this section we present two different security assessment checklists that we
used for the technical analysis of KakaoTalk (see Appendix A). The checklists
aim to provide a non-exhaustive overview of possible software security weak-
nesses in Android applications. The first checklist was compiled from many
different sources [17, 131, 93, 14, 82| and lists the most common “low-hanging
fruits” or security flaws. The second checklist tries to provide a more spe-
cialized set of weaknesses that are common for secure IM applications. This
list was mainly authored by Jedidiah Crandall [37] and was additionally in-
fluenced by Unger’s evaluation framework [126], and Green’s “Cryptographic
Engineering” blog!. Due to timing constraints and also because of ethical
reasons, we limited the scope of our checklists by intentionally leaving out
a number of attack vectors. For instance, we did not search for any server-
side weaknesses in KakaoTalk’s online backend system. In the following, we
briefly explain the main assessment categories of each checklist:

Checklist 1: Insufficient transport layer protection. The majority
of Android applications use the Transport Layer Security (TLS) protocol to
encrypt the communication channel. However, this type of encryption may
not provide confidentiality if the application’s developer does not know how
to implement TLS in a correct way. For instance, Android applications may
not validate the TLS endpoint’s certificate correctly.

Checklist 1: Access control issues and information leakage. Many
Android applications suffer from different access control flaws that often re-
sult in sensitive information disclosures. One example flaw are world readable
files inside the application’s private directory. As a result, this may allow
other user-installed applications to read from or write to files that are nor-
mally protected by the application’s sandbox. Information leakage may also

'http://blog.cryptographyengineering.com/

http://blog.cryptographyengineering.com/

CHAPTER 4. TECHNICAL ANALYSIS 28

occur due to improperly protected IPC interfaces or system-wide readable
log files.

Checklist 1: Vulnerable cryptographic implementations. Android
application developers may use their own non-standard cryptographic imple-
mentations rather than relying on well tested cryptography standards. The
possibility of finding a software vulnerability in such “hand-baked” crypto-
graphic implementations is typically high because most programmers strug-
gle to implement cryptography in a correct way. For instance, developers
may create vulnerable cryptographic functions by using broken cryptogra-
phy standards or weak encryption keys.

Checklist 1: Improper authentication procedures: Most Android
applications use server-side rather than client-side mechanisms for authenti-
cation. These online authentication procedures can be used to authenticate
the mobile phone’s user and/or the application itself. For instance, the user
may use her username and password to log into KakaoTalk’s online account
whereas KakaoTalk may use a secret token to authenticate itself against a
third-party “cloud” service such as Google Cloud Messaging. There may be
a number of weaknesses if the authentication procedures are implemented in
a flawed way. For example, server API calls may be unauthorized or the ap-
plication may use other poor authentication methods such as allowing weak
user passwords.

Checklist 1: Improper data validation. An Android application typ-
ically has three major data entry points: IPC interfaces, network interfaces,
and user interfaces. If the application fails to properly sanitize any inputs
through these entry points, a number of client-side injection attacks may be
possible, for example, cross-side scripting (XSS) or SQL injection attacks.

Checklist 2: Trust establishment. Before two KakaoTalk users engage
in an end-to-end encrypted conversation, they may authenticate each other
to make sure that they are really talking to the intended person. Using this
category, we examine the process of how two parties exchange any long-term
key material. We also analyse how users can make sure that these keys belong
to the correct entities.

Checklist 2: Conversation security. The category of conversation se-
curity includes the analysis of all cryptographic functions that are needed to

CHAPTER 4. TECHNICAL ANALYSIS 29

engage in an end-to-end encrypted conversation after trust establishment has
been achieved (i.e., message encryption and any short-term key exchanges).

Checklist 2: Transport privacy. As described in Section 2.1, we argue
that a mobile chat application must support the property of “anonymity” in
order to mimic a real-world off-the-record conversation. In this assessment
category we therefore analyse KakaoTalk in terms of its metadata protection
properties.

4.1.2 Experimental Setup

"Internet"

Proxybox

ADB
ADB

Devbox Android-x86
Box

Figure 4.1: Virtual experimental setup based on Vagrant.

As illustrated in Figure 4.1, we used a virtual experimental setup in order
to technically analyze the security of KakaoTalk. The main goal of the test

CHAPTER 4. TECHNICAL ANALYSIS 60

bed was to have a reproducible and portable experimental setup that requires
only one physical host. Another goal was also to test and debug KakaoTalk
on two different physical mobile devices as well as on an emulator. These
goals were accomplished by using Vagrant? which is a wrapper for virtual-
ization software and which can be used to easily setup a virtual development
environment®. We configured Vagrant with Virtualboz* as the virtualization
hypervisor and created a virtual network consisting of the following compo-
nents:

Devbox: This bor has all the tools installed that are required to debug
and reverse-engineer an Android application. The virtual machine (VM) is
connected to the Android-z86 box as well as to a physical mobile handset
via the Android Debug Bridge (ADB). The software repository of this box
includes the following tools: android-sdk®, android-ndk®, apktool”, dex2jar®,
enjarify?, androguard!?, drozer!!, pidcat!?, apkdiff'?, meld!*, jadx!®, jd-gui'6,
simplify'”, Codelnspect'®, Bytecode Viewer!?, frida?, Eclipse Memory Ana-
lyzer (MAT)?!, SQLite Database Browser??, and 010 Editor?3.

Android-x86 box: The main issue of the standard Android emulator is
its slow performance. For this reason, we chose Android-x86 which is an

’https://www.vagrantup.com/
3We made our Vagrant setup open-source so that other Android security analysts may
benefit from it.
‘https://www.virtualbox.org/
Shttps://developer.android.com/studio/index.html
Shttps://developer.android.com/ndk/index.html
"http://ibotpeaches.github.io/Apktool/
Shttps://github.com/pxb1988/dex2jar
https://github.com/google/enjarify
Ohttps://github.com/androguard/androguard
Hhttps://labs.mwrinfosecurity.com/tools/drozer/
2https://github.com/JakeWharton/pidcat
13https://github.com/neosilky/apkdiff
“4http://meldmerge.org/
5https://github.com/skylot/jadx
https://github.com/java-decompiler/jd-gui
"https://github.com/CalebFenton/simplify
¥https://codeinspect.sit.fraunhofer.de/
Yhttp://bytecodeviewer.com/
2Ohttp://www.frida.re/
http://wuw.eclipse.org/mat/
Zhttp://sqlitebrowser.org/
Bhttp://wuw.sweetscape.com/010editor/

https://www.vagrantup.com/
https://www.virtualbox.org/
https://developer.android.com/studio/index.html
https://developer.android.com/ndk/index.html
http://ibotpeaches.github.io/Apktool/
https://github.com/pxb1988/dex2jar
https://github.com/google/enjarify
https://github.com/androguard/androguard
https://labs.mwrinfosecurity.com/tools/drozer/
https://github.com/JakeWharton/pidcat
https://github.com/neosilky/apkdiff
http://meldmerge.org/
https://github.com/skylot/jadx
https://github.com/java-decompiler/jd-gui
https://github.com/CalebFenton/simplify
https://codeinspect.sit.fraunhofer.de/
http://bytecodeviewer.com/
http://www.frida.re/
http://www.eclipse.org/mat/
http://sqlitebrowser.org/
http://www.sweetscape.com/010editor/

CHAPTER 4. TECHNICAL ANALYSIS 61

open-source project that allows to run Android 4.4 on the x86 hardware ar-
chitecture. Android-x86 has the advantages that it executes much faster than
the Android emulator and that it is capable of running inside a virtual ma-
chine. We deployed the Android-x86 box with the following tools: Drozer?,
Xposed framework??, Xposed module JustTrustMe?®, NetGuard?”, Shark for

Root?®, and frida-server®.

Proxybox: This box serves as the default gateway for the Android-x86
VM which allowed us to capture and analyse any KakaoTalk network traffic
with Wireshark. The proxy NAT-traverses all incoming traffic from Android-
x86 to an external public network interface. However, HTTP and HTTPS
application traffic is forwarded to a software intercepting proxy in order to
edit, forward, and drop certain requests and responses made by KakaoTalk.
Custom binary network packets such as KakaoTalk’s chat messages are for-
warded to Mallory which is capable of editing and replaying such traffic flows
on the fly. The proxy also serves as a virtual WiFi access point in order to
sniff KakaoTalk network traffic of the physical mobile testing devices. We
installed the following tools on the proxy VM: Wireshark®’, mallory3!, Burp
Suite?, mitmproxy??, and create_ap3?.

Android mobile testing phones: Testing KakaoTalk also on a physical
mobile device has several advantages over debugging the application on an
Android-x86 emulator only. For example, we can sniff any network traffic
that leaves the cellular network interface which is usually not available on
an Android emulator. We used a rooted as well as non-rooted mobile phone
and deployed both with almost the same toolchain as Android-x86.

4.1.3 Automated Analysis

We used a number of automated static and dynamic analysis techniques
for the two main reasons: First, we needed to save time and reduce efforts

2https://labs.mwrinfosecurity.com/tools/drozer/
Zhttp://repo.xposed.info/
Zhttps://github.com/Fuzion24/JustTrustMe
Thttps://play.google.com/store/apps/details?id=eu.faircode.netguard
Bhttps://play.google.com/store/apps/details?id=1v.n3o0.shark
Phttp://wuw.frida.re/

3O0nhttps://www.wireshark.org/
3lhttps://github.com/intrepidusgroup/mallory
32https://portswigger.net/burp/

33https://mitmproxy.org/
34https://github.com/oblique/create_ap

https://labs.mwrinfosecurity.com/tools/drozer/
http://repo.xposed.info/
https://github.com/Fuzion24/JustTrustMe
https://play.google.com/store/apps/details?id=eu.faircode.netguard
https://play.google.com/store/apps/details?id=lv.n3o.shark
http://www.frida.re/
https://www.wireshark.org/
https://github.com/intrepidusgroup/mallory
https://portswigger.net/burp/
https://mitmproxy.org/
https://github.com/oblique/create_ap

CHAPTER 4. TECHNICAL ANALYSIS 62

in the information gathering stage due to timing constraints. By using a
manual analysis only, a security analyst may not detect all crucial information
and may spend too much time in finding relevant details. Second, we used
automated tools that scan for common Android application vulnerabilities
in order to establish a baseline.

For the information gathering stage in Section 4.2 we used various on-
line tools such as Akana®, SandDroid?¢, and Virustotal®”. In order to find
common Android security vulnerbilities we ran static analysis tools such as
mallodroid [43], Mobile Security Framework®®, Quick Android Review Kit3?,
and AndroBugs®. Moreover, we used a numerous automated tools for the
dynamic analysis of KakaoTalk. For instance, we used Droidboz*' to dynam-
ically trace function calls and Haystack [100] to analyze KakaoTalk for any
sensitive data leakage during runtime.

4.1.4 Manual Analysis

The main body of this thesis is a manual technical analysis of KakaoTalk.
While performing an automated analysis can be beneficial for several rea-
sons, a manual analysis is still crucial in order to achieve reliable results. An
automated analysis may result in a number of false positives or false nega-
tives. For instance, Reaves et al. found that the TLS vulnerability scanning
tool mallodroid creates a number of false positives [101]. For this reason,
we used manual static and dynamic methods to verify any results from the
automated analysis.

For our attempts to reverse-engineer KakaoTalk’s end-to-end encryption
protocol, we followed all sequences of callback methods*? a user can possi-
bly take from starting the application until sending an end-to-end encrypted
chat message. For this, we started at the onCreate() method of Kakao-
Talk’s launcher activity and went all the way through until KakaoTalk’s
ChatRoomActivity. This approach allowed us to identify the entry points of
the application and ensured that our findings are actual part of live code.

35http://akana.mobiseclab.org

36http://sanddroid.xjtu.edu.cn/

3Thttps://www.virustotal.com/

3¥nhttps://github.com/ajinabraham/Mobile-Security-Framework-MobSF

3nttps://github.com/linkedin/qark

40nttps://github.com/AndroBugs/AndroBugs_Framework

“https://github.com/pjlantz/droidbox

12http://developer.android.com/training/basics/activity-lifecycle/s
tarting.html

http://akana.mobiseclab.org
http://sanddroid.xjtu.edu.cn/
https://www.virustotal.com/
https://github.com/ajinabraham/Mobile-Security-Framework-MobSF
https://github.com/linkedin/qark
https://github.com/AndroBugs/AndroBugs_Framework
https://github.com/pjlantz/droidbox
http://developer.android.com/training/basics/activity-lifecycle/starting.html
http://developer.android.com/training/basics/activity-lifecycle/starting.html

CHAPTER 4. TECHNICAL ANALYSIS 63

4.1.4.1 Static Analysis

In this section we discuss the static analysis of different file types pack-
aged inside KakaoTalk’s Android Application Package (APK?*3). KakaoTalk’s
APK includes, among other files, the application’s manifest (AndroidMan-
ifest.xml), the Dalvik bytecode (classes.dex) as well as native libraries
(*.s0). Prior to the analysis, we first needed to unzip and convert these files
into human-readable formats. For this, we followed the following steps:

The first step was to use apktool to convert the binary XML manifest
file into a text-based XML format. We then examined the manifest for
KakaoTalk’s usage of permissions and application components. Especially,
we searched for any exported application components and dangerous system
permissions. These permissions may be an indicator for sensitive information
leakage, e.g., by using a permission such as WRITE EXTERNAL STORAGE an
application may store private data on the mobile phone’s SD card.

The second step was to disassemble the Dalvik bytecode into the more
human-readable data formats Smali** and Java. We first used Baksmali*®
to convert the Dalvik bytecode into the Smali assembly language. Then, we
used enjarify to convert KakaoTalk’s *.dex files into Java bytecode (*.class
files). Lastly, we ran the Java Decompiler (JD-Gui) to decompile the Java
bytecode into Java code. After the file conversions, we analysed the *.smali
and *. java files for the following most important artifacts:

e Hard-coded secret strings (e.g., static encryption keys, credentials, or
APT keys)

e Application’s intent behaviour
e API calls (e.g., REST login calls)

e Library usage
Networking libraries
Cryptography libraries (e.g., java.security or Bouncy Castle)
Advertising/Analytics libraries
Other third-party libraries

e Imported packages (e.g., UL, HTTPS, and other packages)

“3https://en.wikipedia.org/wiki/Android_application_package

44Gmali is an assembler for the DEX format and its syntax is loosely based on the
Jasmin/dedexer syntax.

45Smali/baksmali is an assembler/disassembler for the Dalvik bytecode, see https:
//github.com/JesusFreke/smali.

https://en.wikipedia.org/wiki/Android_application_package
https://github.com/JesusFreke/smali
https://github.com/JesusFreke/smali

CHAPTER 4. TECHNICAL ANALYSIS 64

e Anti-forensics (e.g., Java class loaders that are used to load external
code during runtime)

e Embedded native code

e Software development toolkits (SDKs)

The final step was to perform a high-level analysis of any native libraries
that are stored in the binary *.so file format. Due to timing constraints, we
did not disassemble these binaries by using tools such as IDA Professional.
However, we used the strings*® tool in order to search for any sensitive hard-
coded strings.

4.1.4.2 Dynamic Analysis

By dynamic analysis we mean the analysis of KakaoTalk when the applica-
tion is running. We split the dynamic analysis into four main parts: Applica-
tion debugging, digital forensics, network traffic analysis, and inter-process-
communication (IPC) analysis. These parts are now explained into more
detail:

Application debugging: Static code analysis is usually not sufficient to
fully understand the behaviour of an (Android) application. Actions such
as dynamic loading of external code or calls to native methods can be often
spotted during a dynamic code analysis only. We decided to use Codelnspect
as our main live debugging tool. Codelnspect is a reverse engineering frame-
work for Android applications and comes as an Eclipse-based Integrated De-
velopment Environment (IDE). The IDE uses Jimple [129] as an intermediate
representation (IR) to convert the Dalvik bytecode into a human-readable
format which is easier and faster to analyze. One of Jimple’s advantages
is that it is a typed language which means that it supports typed variable
names. Other representations such as the IR used by smali/baksmali are not
typed and are therefore harder to read and to understand. The main reason
why we did not consider other debuggers such as IDA PRO or JEB2 was
because they only support debugging on the Dalvik bytecode level.

In order to debug an Android application the debuggable flag in its An-
droidManifest.xml must be set to TRUE. Even though KakaoTalk had this
flag set to FALSE, we were able to circumvent this issue by debugging the ap-
plication on an emulator and on a rooted phone. The Android-x86 emulator
has the ro.debuggable property set to 1 which means that all applications are

4nttp://man7.org/linux/man-pages/manl/strings.1.html

http://man7.org/linux/man-pages/man1/strings.1.html

CHAPTER 4. TECHNICAL ANALYSIS 65

debuggable regardless of the debuggable flag’s value. On a rooted phone the
ro.debuggable property can be changed from 0 to 1. This way we were able to
attach a debugger because KakaoTalk does not perform any root, emulator,
or debugger checks. Nevertheless, KakaoTalk implements health checks such
as checking the application’s signature at runtime. The application throws
an error message and refuses to start if it detects that it has been signed
with a different developer key. However, this check could be easily bypassed
by modifying the signature verification function to always return a boolean
value of TRUE.

As stated earlier, we used KakaoTalk 4.7.0 to debug and reverse-engineer
KakaoTalk’s end-to-end encryption protocol. However, this older version is
not officially supported and does not connect to KakaoTalk’s messaging sys-
tem. We were able to circumvent this behaviour by updating the version
string in the application’s AndroidManifest.xml to the lowest supported ver-
sion which is 5.1.0. After these modifications we were able to connect and to
chat with other KakaoTalk clients that were running the latest version.

Digital forensics: Inour dynamic analysis we also examined the physical
storage and memory of the mobile device. KakaoTalk stores numerous arti-
facts on internal (private application file directory) and external (SD card)
storage. We especially searched for sensitive information stored inside SQLite
databases, SharedPreferences, cookies, system log files and crash reports. In
addition, we analyzed the filesystem for world readable/writeable files that
may be accessible by other third-party applications. Moreover, we developed
custom scripts that dump the system state of the device including system log,
open files, network sockets, and running processes. Finally, we obtained a
copy of the physical heap memory and analyzed it with Eclipse Memory An-
alyzer (MAT) using object query language (OQL) queries such as select *
from java.lang.String where toString().startsWith("https://").

Network traffic analysis: An important aspect of the dynamic analy-
sis was to examine the security of the communication channel between the
KakaoTalk application and the KakaoTalk backend data servers. In the case
of KakaoTalk, we especially looked at any HTTPS and LOCO related com-
munications. KakaoTalk uses HT'TPS mainly to secure remote REST API
calls, while LOCO is the application’s custom binary messaging protocol. We
used our Vagrant experimental setup from Section 4.1.2 in order to intercept
such encrypted data communications.

As described earlier, the setup consists of the following components: An
Android device (mobile phone and Android-x86 VM) running KakaoTalk,

CHAPTER 4. TECHNICAL ANALYSIS 66

an intercepting proxy machine, and a KakaoTalk Internet “cloud”. On the
intercepting proxy machine we installed mitmproxy and Burp for mangling
with HTTP/HTTPS application traffic. These tools are capable of perform-
ing HT'TPS man-in-the-middle attacks on the fly by automatically replacing
a domain’s TLS certificate with a custom generated one. Since Burp and
mitmproxy are only able to deal with HT'TP application traffic, we also ran
Mallory to tamper with any LOCO protocol messages. Besides actively in-
tercepting network traffic, we also passively sniffed network communications
with Wireshark.

On the Android device we installed a number of additional applications
in order to eavesdrop on the communication channel. The most important
ones to mention are tshark and NetGuard. Tshark, which is a derived version
of Wireshark for Android, was used to capture any network communications
leaving the cellular network interface. Additionally, NetGuard, which is a
network firewall manager for Android, was configured to only permit network
access for KakaoTalk. All other system and user-installed applications were
blocked to use the network in order to filter out all unrelated network traffic.

In order for our HTTPS man-in-the-middle attack to work we needed to
further configure the Android device. KakaoTalk performs numerous server
certificate checks when establishing a TLS connection:

1 It checks if the server hostname matches the certificate’s common name

(CN).

2 It verifies if the certificate has been signed by a valid certificate author-
ity (CA).

3 It verifies the certificate chain by maintaining a whitelist of public keys
that are trusted to sign certificates (“Certificate Pinning”).

For the first check, Burp automatically adjusts the CN of its fake cer-
tificate to the server endpoint’s domain name. For the second verification,
Burp allows to export a CA certificate that can be imported into the An-
droid device’s trusted CA store. Since Burp’s CA signature is trusted after
the import, any certificates signed by this authority will be accepted by
KakaoTalk. For the last check, Certificate Pinning can be defeated in several
ways. For example, one could exploit vulnerabilities in HTTPS libraries (e.g.,
CVE-2016-2402%7) or modify the Dalvik executable code to disable Certifi-
cate Pinning. We used the least time consuming approach by installing the

4Thttps://bugzilla.redhat.com/show_bug.cgi?id=1308851

https://bugzilla.redhat.com/show_bug.cgi?id=1308851

CHAPTER 4. TECHNICAL ANALYSIS 67

Xposed Framework and its Just TrustMe module on the Android device. Just-
TrustMe bypasses Certificate Pinning checks by hooking all related function
calls upon application start.

In the last step, we performed some high-level tests against KakaoTalk’s
backend data servers. We did not carry out a detailed analysis because we did
not have approved access to Kakao’s live-systems. For instance, we did not
ran any pervasive network scans in order to not possibly disturb KakaoTalk’s
operations. Nevertheless, we used a number of third-party services such as
Qualys’s?® SSL server test to scan for known TLS security weaknesses. In
addition, we made use of an open-source LOCO protocol implementation®’
to send a number of requests to KakaoTalk’s messaging backend. Finally,
we used different Google dorks such as “kakaotalk site:domaintools.com” to
enumerate server domains and IP ranges. We also used Shodan’s®® and Cen-
sys’s®! search engines to find additional data servers to map out KakaoTalk’s
network architecture.

Inter-process Commaunication (IPC) analysis: An important part
of the dynamic analysis was to investigate how KakaoTalk communicates
on the mobile platform itself. Many Android application unintentionally
share data to the system so that other third-party applications may obtain
it. For the IPC analysis we used Drozer to map out all the IPC interfaces
defined for KakaoTalk and to search for weaknesses. Drozer behaves similar
to any other user-installed Android application and does not require root
privileges. Therefore, any action that Drozer is able to perform (e.g., starting
an exported Activity) can be accomplished by any other application as well.

4.2 Information Gathering

The first phase of our security assessment focused on gathering as much infor-
mation about the KakaoTalk application as possible. Information gathering
is one of the most crucial parts in any security assessment as it maps out the
application’s attack surface. This section is organized as follows: In Section
4.2.2 we list the mobile data that KakaoTalk is storing on the client as well
on the server-side. Section 4.2.3 describes KakaoTalk’s system architecture
and messaging protocols.

“®https://www.ssllabs.com/ssltest/
Onttps://github.com/HallaZzang/pykakao
"Ohttps://www.shodan.io/
Slhttps://www.censys.io/

https://www.ssllabs.com/ssltest/
https://github.com/HallaZzang/pykakao
https://www.shodan.io/
https://www.censys.io/

CHAPTER 4. TECHNICAL ANALYSIS 68

As emphasized previously, most of our work is based on KakaoTalk 5.5.5
while the analysis of the application’s messaging protocol is based on Kakao-
Talk 4.7.0.

4.2.1 Application Details

KakaoTalk 5.5.5 is a hybrid mobile application which displays web content
in native Android WebViews. The application downloads HTML5, CSS,
JavaScript, image files and other data from online back-end servers and
caches them on the mobile phone. As shown in Figure 4.2, KakaoTalk’s
main User Interface (UI) com.kakao.talk/.activity.TaskRootActivity
is divided into four main tabs. We hereby briefly discuss each one of them:

Friends: Under the FriendSettingsActivity (Figure 4.2a) the user is able
to configure a number of privacy-related settings. For instance, the user
can disable the default option “Add Friend Automatically” which adds other
KakaoTalk users to the friends list without the user’s consent. Moreover, the
user has the chance to disable the “Recommend Friends” option which allows
Kakao to constantly search the user’s social graph®® for possible contacts
that the user might know. The user has also the possibility to manage
hidden and blocked friends as well as to sync the mobile phone’s address
book with KakaoTalk’s servers. Another Activity on the “Friends” tab is the
MiniProfileActivity on which the user is able to manage her public KakaoTalk
profile. The main privacy setting on this Activity is to disable an option that
makes users publicly searchable.

Chats: On this tab (Figure 4.2b) the user is able to create open, regu-
lar and secret chat rooms and engage in IM chats. The responsible Ul for
chatting is the ChatRoomActivity. Most notably, most of the multimedia
messaging features that are available in a regular chat room are not available
in a secret chat room.

Find: On the FindFriendsActivity (Figure 4.2¢) the user is able to add new
contacts through various channels. Contacts can be added via scanning QR
codes, sending invitation SMS or by searching the user’s phone number or
KakaoTalk ID (nickname). In addition, the mobile handset’s accelerometer
can be used to add a contact who is in close physical proximity. Using this
feature, two users need to shake their phones and hold them together closely.

®2https://en.wikipedia.org/wiki/Social_graph

https://en.wikipedia.org/wiki/Social_graph

CHAPTER 4. TECHNICAL ANALYSIS 69

& 9 ¥ U 4 L41% 10:28 0 W 8 4 2 42% 10:30
Friends 1 O

Friends or Plus Friends Search chatrooms, participants
My Profile

pete
Secret M
ricky
Friends
0 -

Find more KakaoTalk friends!

(a) “Friends” screen. (b) “Chats” screen.

i W 8 4 @& 42% 10:33 i O 8 4 Q41% 10:28

=

e}

e lllil" ™ ricky If_J

Find QR Code Shake Invite

© 4 ® ®

Emoticons Themes Plus Friend Account

el
N
&) Suggestions

You have no recommended friends.

(c) “Find” screen. (d) “More” screen.

Figure 4.2: KakaoTalk’s four main Activities.

CHAPTER 4. TECHNICAL ANALYSIS 70

More: The “More” tab (Figure 4.2d) provides the user with a number of
links to other services that aim to generate revenue for Kakao. For instance,
there are advertisements to emoticons that can be purchased in KakaoTalk’s
[tem Store or links to KakaoTalk’s “Plus Friend” corporate marketing chan-
nel. Under the “Settings” tab the user can perform a number of privacy-
related settings. For example, there is a “Do Not Disturb” setting which
allows a user to disable chat message notifications. Finally, on the PassLock-
Activity the user is further able to set a four-digit pin code which can be
used to lock the application in order prevent unauthorized misuse.

After having discussed the main Ul elements of KakaoTalk we continue by
listing various static information about the application. As most of this data
can be found online®, we hereby provide only the most important application
artifacts (see Appendix B.2):

Application permissions: As listed in Appendix B.1, KakaoTalk re-
quires a total number of 36 permissions. 15 of them are dangerous An-
droid system permissions whereas 14 belong to the normal Android sys-
tem permission group. Interesting dangerous system permissions include
BOOT_COMPLETED (KakaoTalk may execute code on bootup), RECEIVE_SMS
(KakaoTalk executes code when a SMS is received) or RESTART _PACKAGES
(KakaoTalk may close other applications and background processes). In ad-
dition, KakaoTalk declares and uses seven custom permissions. The usage of
certain permissions indicate that KakaoTalk interacts with various hardware
components including Bluetooth, GPS, telephony (phone, SMS), camera,
microphone, network interfaces, vibration sensor, fingerprint sensor and the
phone’s accelerometer.

Exported application components: KakaoTalk exports numerous ap-
plication components that are not protected by any permissions. This allows
other third-party applications on the same device to start a particular com-
ponent. The application exports 47 Activities, 31 of them do not require any
permissions (the launcher activity is included in this number). KakaoTalk
also export six Broadcast Receivers (four do not require a permission) and
two Services (both require a permission to bind to the particular Service). Tt
is worth noting that KakaoTalk does not implement a Content Provider to
share data with other applications.

®https://virustotal.com/en/file/cabe56b8eale53bad462¢2561028685fdc
0abc839f678af538a409a047e477ec/analysis/1459472054/ (KakaoTalk version
5.3.0)

https://virustotal.com/en/file/ca5e56b8ea1e53bad462e2561028685fdc0abc839f678af538a409a047e477ec/analysis/1459472054/
https://virustotal.com/en/file/ca5e56b8ea1e53bad462e2561028685fdc0abc839f678af538a409a047e477ec/analysis/1459472054/

CHAPTER 4. TECHNICAL ANALYSIS 71

Certificates and public keys: We found six different files inside Kakao-
Talk’s APK which contained certificates or public keys. Mostly, we used the
“keytool”® and “strings” commands to investigate the files. Following, we
provide a brief list of the most relevant file properties:

File name Description

CARoot.der Root certificate, self-signed, CN=GeoTrust Global
CA

cl.der Class 1 certificate from Symantec®, signer

of c2.der, certificate issued by Equifax,
CN=GeoTrust Global CA

c2.der Class 2 certificate from Symantec, CN=GeoTrust
SSL CA - G3

kakao_c X.509 certificate, could not be parsed properly

nettest_pubkey.der | Could not be parsed properly

S.bks Bouncy Castle keystore, no password protection

Table 4.1: KakaoTalk’s certificates and public keys.

External libraries: KakaoTalk uses 107 open-source and numerous pro-
prietary software libraries®®. Most of the libraries are included as standard
Java packages which load additional native C/C++ code. We found that
KakaoTalk only uses one shared system library which is the Google Maps
library. Moreover, we counted a total number of thirteen native libraries
that are loaded via the System.load or System.loadLibrary Java meth-
ods. The most interesting libraries are used for mobile payment, software
security hardening, and performant public-key cryptographic computations.
Following, we provide an overview of the most important third-party libraries:

Mobile payment: Most of KakaoTalk’s native libraries are used by Kakao
Pay which is a mobile payment service with 8.5 million users registered
in May 2016°7. In order to use Kakao Pay, a user needs to register
her credit or debit card and set a pin number. Once a user is regis-
tered, she only needs to enter the pin in order to pay. Kakao Pay uses

54Keytool comes with the Java Development Kit (JDK).
S®https://www.symantec.com/ja/jp/pki-class-cert/
*https://katalk.kakao.com/android/cs/licenses?prev=1
SThttp://www.edaily.co.kr/news/NewsRead.edy?SCD=JE41&newsid=
012890466126544964DCD=A00504&0utLnkChk=Y (in Korean)

https://www.symantec.com/ja/jp/pki-class-cert/
https://katalk.kakao.com/android/cs/licenses?prev=1
http://www.edaily.co.kr/news/NewsRead.edy?SCD=JE41&newsid=01289046612654496&DCD=A00504&OutLnkChk=Y
http://www.edaily.co.kr/news/NewsRead.edy?SCD=JE41&newsid=01289046612654496&DCD=A00504&OutLnkChk=Y

CHAPTER 4. TECHNICAL ANALYSIS 72

a payment technology from LG CNS®® which provides Korean users
to perform credit card transactions. The main Java packages include
com.cns.mpay, com.lgcns.kmpay and com.lgcns.map. The first two
packages import third-party cryptography libraries offered by Dreamse-
curity®. The third and later library comprises LG CNS’s MPay module
which serves as the back-end payment gateway to Kakao Pay. Finally,
Kakao Pay makes use of com.ahnlab.v3mobileplus®® which provides
an identity authentication service for financial transactions.

Software security hardening: KakaoTalk includes three Java packages
by NSHC®! to improve software security. The library “nSafer” provides
an additional cryptographic module whereas “Antivirus” is used as
an anti-virus software for Android. The package “nFilter” provides a
secure Android keypad which possibly prevents tapjacking attacks.

Performant public-key cryptographic computations: KakaoTalk is
making use of an open-source®® Ed25519 library for creating and veri-
fying public-key signatures. The Ed25519 public-key signature system
is used during end-to-end encrypted instant messaging.

Security measures: As already indicated by KakaoTalk’s usage of cer-
tain libraries, one can see that KakaoTalk is taking several security measures.
For instance, NSHC’s Antivirus library provides a root checking functionality
which, however, was disabled. In addition, KakaoTalk uses Proguard to ob-
fuscate source code by, for example, renaming file, class, and variable names.
Finally, KakaoTalk performs health checks such as checking the application’s
code signature at runtime.

4.2.2 Mobile Data

The KakaoTalk application generates and stores mobile data on the server
as well on the client side. We recognized that KakaoTalk stores the following
artifacts on the server-side:

*8http://www.kakaocorp.com/en/pr/pressRelease_view?page=1&group=
1&1dx=7996

"9http://www.dreamsecurity.com/

Onttps://play.google.com/store/apps/details?id=com.ahnlab.v3mobile
plus

6lhttp://www.nshc.net/wp/en/

®?https://github.com/dazoe/Android.Ed25519

http://www.kakaocorp.com/en/pr/pressRelease_view?page=1&group=1&idx=7996
http://www.kakaocorp.com/en/pr/pressRelease_view?page=1&group=1&idx=7996
http://www.dreamsecurity.com/
https://play.google.com/store/apps/details?id=com.ahnlab.v3mobileplus
https://play.google.com/store/apps/details?id=com.ahnlab.v3mobileplus
http://www.nshc.net/wp/en/
https://github.com/dazoe/Android.Ed25519

CHAPTER 4. TECHNICAL ANALYSIS 73

Identifiers: KakaoTalk nickname, KakaoTalk user ID, Android device
UUID, Google GCM ID which is linked to the KakaoTalk username and
used for push messaging, phone number, user’s email address, and other
identifiers.

Authentication tokens and cryptographic keys: OAuth refresh and
access tokens, LOCO authentication session key, signing public keys and ver-
sions, encryption public keys and versions, provider-shared symmetric AES
key, HTTPS header authorization token (concatenation of access token and
device UUID), user’s password used for Kakao account, session cookies, and
other tokens.

Message content: Unread non-end-to-end encrypted messages (readable
by Kakao), unread end-to-end encrypted messages (not readable by Kakao),
encrypted file attachments (images, videos, voice, and other file types; read-
able by Kakao if these attachments were sent in a regular non-end-to-end
encrypted chat room), user’s phone address book if the user has agreed to
share it with Kakao, and other information.

Communication metadata Friend relationships (including blocked, hid-
den, recommended, and deleted friends list), conversation relationships (e.g.,
how many friends and who participated in the same chat room), user’s ac-
tions (e.g., creating a chat room, adding a friend, posting a message, and
all other actions), total amount of messages sent per user, total message file
attachments sent per user, date of when a particular message was sent, size
of the encrypted attachment, sender’s and receiver’s IP address, sender’s and
receiver’s geolocation, and other metadata.

Miscellaneous: User avatars and friend aliases that are assigned to cer-
tain KakaoTalk usernames, unread sent and received emoticons and stickers,
number of bought emoticons and stickers, profile picture and status message,
mobile operating system name and version, Android hardware configuration,
mobile phone model, screen resolution, SIM operator, phone type, country
code, country ISO, KakaoTalk application settings, linked Kakao applications
and services, LOCO protocol version, and other data.

KakaoTalk not only stores mobile data on the server but also generates
numerous files on the user’s handset. Table 4.2 lists the most important
artifacts that we found during our forensic analysis of the mobile phone’s file
system and physical memory.

CHAPTER 4. TECHNICAL ANALYSIS

Artifact Private | External | Memory | Encrypted
data data di-
direc- rectory
tory
Session cookies | X X
OAuth tokens X X X063
LOCO authen- X
tication session
key
Chat message | X X
content
Chat message | X
metadata
Contact list X X
Call details X
ED25519 private | X
key
ED25519 public | X
key
RSA private key | X
RSA public key | X
Email address X X
Device UUID X
Credit card | X
information%*
User activity | X
tracking data
Browser history | X
WiF'i networks X
Hardware pref- | X
erences
Application X
preferences
User’s phone | X
number

Table 4.2: Mobile data stored by KakaoTalk on the mobile handset.

CHAPTER 4. TECHNICAL ANALYSIS 75

4.2.3 Messaging System Overview

— Kakao Web

- Backend
/"7 —

/ N
=)
— B &
)
S i R T
(—N\ ——)
“ — Ad c)
\ Registration = vertising CDN J/
\ User Servers — {
Profile (3 ‘
\ Servers Ve)

\\ C CDN
Kakao Messaging ~—_ A \\) — /
Cloud" I \ —— */

pﬂ T
\ Directory f / \

o A== . ! N
MSG) — >
Servers Config | y < \ / Kakao Services
v ervers/ / { / \ ‘/
S N A - — N _)

- K\ Internet! “ B \\%%7777 2 /
e \\ ,,—/"'/’/’ /
— (’//777%',¥, — T
e < N

| \ \'/ \<
/ Daum CDN x/ ,/, Google Cloud \
K\ \‘ \ Messaging ‘/

T \ \""f———/""/i / KakaoTalk \;Jﬂ'\\,,,,” //f,/,, /

Client App

Figure 4.3: KakaoTalk’s messaging system.

KakaoTalk’s messaging system is based on a classical client-server model.
All client communications are relayed through a central messaging server
which unpacks, creates, and forwards messaging packets. KakaoTalk uses a
custom binary messaging protocol called LOCO which uses the TCP ports
995, 5223, and 5228 (see Section 4.2.3.1 for a detailed analysis of the pro-
tocol). All LOCO messaging packets are encrypted with a provider-shared
symmetric AES key. The messaging server provides asynchronous messaging
by using the store-and-forward concept. In case a recipient is offline, the mes-
saging server stores unread messages and forwards them once the destination
is back online. As one can see in Figure 4.3, KakaoTalk’s messaging system
consists of various distributed components and networks. The most impor-
tant entities are Kakao’s messaging “cloud” and Kakao’s Web API backend.
As we will discuss in Section 4.2.3.2, Kakao’s messaging “cloud” network
consists of a LOCO configuration server, a LOCO messaging server and a

63Not all of the OAuth tokens were encrypted.
64We did not find actual data, but only an empty SQLite table that may store the
information.

CHAPTER 4. TECHNICAL ANALYSIS 76

public-key directory database. The other important entity of the messaging
network is Kakao’s Web API backend. The KakaoTalk application primarily
operates through Web API calls in order to register and sign-up for a new
user account, manage friends lists, adjust settings, or download resources.
Most of these calls, which are sent to kakao.com domains, consist of HTTPS
POST requests that include JSON objects to transmit data in attribute-
value pairs. However, we found that all of these calls also work over HTTP
which may is used due to fallback reasons. All remaining components of the
messaging system will be now explained briefly:

Google Cloud Messaging: Google Cloud Messaging (GCM) is a service
provided by Google to enable push notifications. In order to publish a mo-
bile messaging application on the Play Store, Google requires developers to
include GCM. KakaoTalk is communicating to GCM via TCP port 5228.

Daum CDN: During our analysis we found that KakaoTalk downloads
web resources from Daum’s Content Delivery Network (CDN). Notably, most
content is downloaded in plaintext over unauthenticated channels.

Kakao’s messaging “cloud”: The architecture of Kakao’s Messaging
“cloud” will be discussed in Section 4.2.3.2.

Kakao’s Web API backend: The most important parts of the Web API
backend are an user profile server, a registration server, as well as a resource
and advertising CDN. The user profile server handles the KakaoTalk user
account, for example, by regularly refreshing the user’s OAuth access token.
The server also stores the client application’s configuration settings which are
regularly synced and updated on the server-side. In addition, the server stores
the user’s friend lists and various account-related settings. The registration
server manages the registration process when a new user is signing up with
the messaging service. The server validates the user’s phone number, handles
the SMS user authentication, and generates session and OAuth tokens (see
Section 4.2.3.2). The Web API backend also holds an advertising CDN which
is used for user-tracking. Finally, Kakao’s resource CDN serves a variety of
emoticons, stickers, and other assets.

Kakao services: Kakao services include all services that are linked to
KakaoTalk in order to establish Kakao’s mobile platform ecosystem. Ser-

CHAPTER 4. TECHNICAL ANALYSIS 77

vices such as Plus Friend® or Kakao Story® can be reached through Kakao-
Talk and help to monetize the messaging application. We found evidence
that KakaoTalk may automatically log into up to fourteen different Kakao
services.

4.2.3.1 The LOCO Messaging Protocol

The LOCO messaging protocol builds the foundation of the KakaoTalk mes-
saging system. LOCO is a proprietary request-response BSON®" protocol
based on TCP and mainly operates through the usage of sending custom
commands. Each participant in the messaging system can send a LOCO com-
mand which is tied to a specific action. For example, the SWRITE command
writes an end-to-end encrypted message to a chatroom and the LOGINLIST
command is used to authenticate a KakaoTalk client against a LOCO mes-
saging server. Most of the LOCO protocol reverse engineering work has been
already done by Brian Pak in 2012 [97]. During our analysis we found that the
LOCO protocol has not changed significantly since then. We detected only
a small set of modification, e.g., a slightly different LOCO packet structure.
Also, older open-source LOCO implementations such as pykakao®® continue
to work as we were able to use pykakao to send non-end-to-end encrypted
chat messages to another Android KakaoTalk 5.5.5 client. As for complete-
ness, the LOCO messaging protocol encompasses the following three different
packets:

Status Type Body Length Body Length Payload

ID (4 bytes) (1 byte) Command (11 bytes) 1 byte) (4 bytes) (4 bytes) (N bytes)

Figure 4.4: The LOCO “plaintext” packet.

LOCO “plaintext” packet: The LOCO “plaintext” packet (Figure 4.4)
is a packet that is transmitted unencrypted. However, most LOCO “plain-
text” packets are encapsulated into a LOCO “encrypted” packet and are
therefore secured against passive network attacks. The most important data
field of the packet is the 11 bytes “command” section as well as the “body
payload” section. The “body payload” section is encoded in Binary JSON

65http://mkakao.com/plusfriend/en
6http://www.kakao.com/story
6Thttp://bsonspec.org/spec.html
%®https://github.com/hallazzang/pykakao

http://m.kakao.com/plusfriend/en
http://www.kakao.com/story
http://bsonspec.org/spec.html
https://github.com/hallazzang/pykakao

CHAPTER 4. TECHNICAL ANALYSIS 78

(BSON) and its length is dependant on the specific command. Note, that
the “body length” packet section occurs twice.

LOCO “encrypted” packet: The payload of the LOCO “encrypted”
packet (Figure 4.5) is an AES encrypted LOCO “plaintext” packet. In case
the used block cipher mode requires a padding, the plaintext payload is first
PKCS7 encoded and then encrypted with a symmetric key that is shared
between the KakaoTalk client and the messaging server.

LOCO plaintext packet (N bytes)

CTR

Length (4 bytes) (1 byte)
yte

AES encrypted payload (N bytes)

Figure 4.5: The LOCO “encrypted” packet.

LOCO “handshake” packet: The “handshake” packet (Figure 4.6) is
sent by a KakaoTalk client during the session establishment with a LOCO
messaging server. Starting at the fifth byte of the packet, the first four bytes
indicate the type of asymmetric encryption used for encrypting the provider-
shared symmetric AES 128-bit key (e.g., a type of 0x4 refers to RSA with
Optimal Asymmetric Encryption Padding). The next four bytes store the
type of block cipher mode that is used for AES encryption. A value of 0x1
refers to Cipher Block Chaining (CBC) with PKCS7 padding, a value of 0x2
to Cipher Feedback (CFB), and a value of 0x3 to Output Feedback (OFB).
The next 256 bytes of the packet are used for storing the 128-bit AES key as
well as the 128-bit Initialization Vector (IV). Both values are encrypted with
the LOCO messaging server’s static 1024-bit public RSA key. The payload
of the packet comprises a LOCO “encrypted” packet which in turn contains
the LOGINLIST command.

LOCO encrypted packet (N bytes)

Y Y
Handshake type Length of enc. AES key (RSA encrypted) Payload
(4 bytes) block (4 bytes) (256 bytes) (N bytes)

Length (4 bytes)

Figure 4.6: The LOCO “handshake” packet.

CHAPTER 4. TECHNICAL ANALYSIS 79

4.2.3.2 Device Registration and Login

All users need to first register and sign-up with the KakaoTalk messaging
service before they are allowed to participate in the chat system. One goal
of the registration process is to provide a phone-based user authentication
model via SMS. Another goal is to compute a number of shared secret tokens
which are later used to authenticate the user against the Web API as well
as the LOCO messaging back end. As depicted in Figure 4.7, the Kakao-
Talk application starts the registration process by initiating the following six
HTTPS protected Web API calls:

1 During the first request the KakaoTalk application posts the user’s phone
number, device UUID and other data to a server. The server verifies
whether the number is reachable and whether the user’s mobile handset
supports interactive voice response, voice calls, and SMS. In addition,
the server maps the user’s phone number to her device UUID. If the
number is reachable the server responds with the message “We will send
you an SMS with a 4-digit verification code to the number above”. This
message is returned as a JSON object and displayed in a WebView.

2 Once the user accepts the dialog, the KakaoTalk application sends a second
HTTPS POST request. Similar to the previous HTTPS POST, this
request contains the user’s phone number, the phone’s device UUID,
and other data. The server then generates a new four digit PIN code
and sends it in a SMS to the user’s phone number. If the SMS could
be delivered successfully, the server replies with a nonce which is later
used by the client in the fifth POST request.

3 In the third and fourth requests, the KakaoTalk application issues two
GET requests to fetch a HTML login form, a session cookie, a HTML5
cache manifest file, and other data. The HTML5 cache manifest file
contains links to client-side JavaScript libraries (“kakao_accounts_libs”
and “oauth-kakao-accounts-mobile”) which the application downloads
in later requests. KakaoTalk also downloads JavaScript libraries from
third-parties, e.g. from cdn.ravenjs.com®.

4 In the meantime, the user received the four digit PIN number that was
sent by the server. Once the user submits the PIN number, the Kakao-
Talk application sends a fiftth HTTPS POST request. This requests
contains the PIN number, the device UUID, and the server nonce that
was received in the second response. In case an existing KakaoTalk user

https://github.com/getsentry/raven-js

https://github.com/getsentry/raven-js

CHAPTER 4. TECHNICAL ANALYSIS

kakaotalk-client ac-talk.kakao.com auth.kakao.com

POST:/android/account /validate-

phone-number.json -
verify number O

|
|
|
|
.

200: Dialog msg

POST:/android/account /request-

sms.json > generate pin code,
send sms

200: Token-1

v

GET:/fa/main.html

200: Login form

v

@ GET:/app-caches/kakao-accounts.apgcache
200: Client-side JS libraries

POST:/android/account/verify-

authentication.json - validate sms pin code,
= generate new token

200: Token-2

POST:/andrmd/aCCO\lnt/51g1111p.Js(;n Compnte (alkes el oy,

validate user login credentials

200: session key, OAuth tokens

b |

Figure 4.7: The KakaoTalk registration process.

80

CHAPTER 4. TECHNICAL ANALYSIS 81

has to re-authenticate, the application also posts the old OAuth access
token that has been used by a previous KakaoTalk installation. In this
particular case, the KakaoTalk server revokes and deletes the old asso-
ciation of the device UUID and access token. The server also verifies
if the phone number is currently active on another mobile phone. In
this case, the server responds with a warning message saying that the
phone number is currently active on another device and that KakaoTalk
only supports one phone number on one device. If the user continues
and accepts this warning dialog, the server disconnects the other cur-
rently active mobile device from the messaging system. As a result,
the system establishes an one-to-one mapping between the user and
the mobile device, multi-device support is not supported even though
KakaoTalk PC™ allows to sync messages between the user’s PC and
mobile device. If the user enters the PIN code incorrectly for too many
times, the KakaoTalk application sends a crash report over an unau-
thenticated channel to http://groupl.magpie.daum.net/magpie/put/. If
the PIN code was entered correctly the server responds with a new
nonce which is used in sixth and last HTTPS POST request.

5 Now the login form, which was downloaded in the third request, is pre-
sented to the user. The user can choose to log in with her Kakao
account, which consists of an e-mail address and password, or skip the
login by creating a new chat account. Also, the user has the chance to
allow or deny KakaoTalk to upload the user’s mobile phone’s address
book. In case the user grants permission, the server would scan the
address book and automatically add friends that own a KakaoTalk ac-
count. Once the user proceeds, the application sends another HT'TPS
POST message containing the previously received server nonce, the
KakaoTalk nickname, and the old OAuth access token (in case the user
has to re-authenticate). Among other data, the server further replies
with a KakaoTalk user ID, a bearer OAuth access and refresh token,
an OAuth token expiration date, as well as a “LOCO session key”. A
String concatenation of the OAuth access token and the device UUID
is from now on used in the HTTPS Authentication header to authen-
ticate all further Web API calls. The KakaoTalk application uses the
“LOCO session key” to authenticate the chat client against the LOCO
messaging backend.

In summary, the process of how a KakaoTalk client obtains an OAuth
access token works as follows:

http://www.kakao.com/services/8/pc

http://group1.magpie.daum.net/magpie/put/
http://www.kakao.com/services/8/pc

CHAPTER 4. TECHNICAL ANALYSIS 82

1 The client sends a HTTPS POST request to https://ac-talk.kakao.com/
android/account/request_sms.json and receives a nonce.

2 The client sends the server nonce to https://ac-talk.kakao.com/android/
account/verify_authentication.json in order to obtain a new nonce

3 The client sends the server nonce to https://ac-talk.kakao.com/android/
account/signup.json to obtain the OAuth key material.

Since the key generation algorithm is implemented on the server-side we
do not know how the access tokens are generated. We did not try to feed the
key generator with different input (e.g., a different device UUID or phone
number) or otherwise investigate any further. However, by performing a
simple String comparison of different access tokens we found potential evi-
dence that the access tokens may lack randomness. From our basic analysis
it seems that an access token may be a concatenation of random and static
Strings. As illustrated in Figure 4.8, we assume that an access token may
be a concatenation of a random 32 character String (red color), a static six
digit sequence of zeros (blue color), a thirteen digit timestamp in millisec-
onds (olive color), a static four digit sequence of zeros (black color), and a
random sequence of ten Base64 encoded characters (orange color).

b6a6abefa91d45b8bb91df86673da24c00000014589403796850000
ddee7c13b3fd41bea37bd1ef1856452400000014580886920360000
c4461ab6c06a4bcaal3dd2455c8942c1d00000014592860337270000
b2£f0742ca6e2489182e74a73bd302a7£00000014617841824550000

Figure 4.8: Similar patterns in KakaoTalk’s OAuth access tokens.

AES key agreement during LOCO handshake After the registration
process with the Web API backend has finished, the KakaoTalk application
uses the device UUID as well as the freshly obtained “LOCO session key” for
authenticating itself against a LOCO messaging server. During the session
establishment the application exchanges a locally computed 128-bit AES key
and Initialization Vector (IV) with the server. As shown in Figure 4.9, the
KakaoTalk application first establishes a HTTPS connection with a config-
uration server. For this, the application sends a LOCO “encrypted” packet
containing the CHECKIN command. The configuration server replies with a
number of LOCO messaging server IPv4 and IPv6 addresses as well as port
numbers. After receiving the response, the KakaoTalk application establishes
a connection with a server IP and port number provided by the configura-
tion server. For this step, the application sends a LOCO “handshake” packet

https://ac-talk.kakao.com/android/account/request_sms.json
https://ac-talk.kakao.com/android/account/request_sms.json
https://ac-talk.kakao.com/android/account/verify_authentication.json
https://ac-talk.kakao.com/android/account/verify_authentication.json
https://ac-talk.kakao.com/android/account/signup.json
https://ac-talk.kakao.com/android/account/signup.json

CHAPTER 4. TECHNICAL ANALYSIS 83

containing the AES encrypted payload as well as the AES key and the Ini-
tialization Vector (IV) which are both encrypted with the server’s public
RSA key. The encrypted payload contains the LOGINLIST command, the
“LOCO session key”, the device UUID, the KakaoTalk user ID as well as
other data. If the login was successful, the LOCO messaging server replies
with a LOCO “encrypted” packet which contains a status code of 0x0, oth-
erwise the server closes the TCP connection. After that, the server sends a
BLSYNC packet which the KakaoTalk application replies with a SET_PK LOCO
packet. Before sending the SET_PK packet, the KakaoTalk application com-
putes an Ed25519 [9] signature key pair as well as a RSA key pair that is
used for signing and encrypting. The private as well as the public key val-
ues of both key pairs are then stored in the application’s shared preference
file TalkKeyStore.preferences.xml. After that, the SET_PK packet is sent.
It contains the sender’s public Ed25519 and public RSA key as well as the
RSA (SHA256) and Ed25519 signature of the phone’s device UUID. If the
signature verification was successful the server acknowledges the packet with
a status code of 0x0. After the handshake procedure the KakaoTalk client is
allowed to fully participate in the messaging system (i.e., creating chatrooms,
writing messages, and other actions). The KakaoTalk client and messaging
server have now exchanged a shared secret that is used for non-end-to-end
client-server chat communications. The AES key is newly generated each
time when the KakaoTalk application is establishing a connection with a
messaging server.

4.2.3.3 The LOCO End-to-end Encryption Messaging Protocol

The LOCO end-to-end (E2E) encryption messaging protocol is based on the
LOCO messaging protocol. The E2E “Secret Chat” feature was officially
announced on the 8th of October 2014 [120] and was released roughly two
month later on the 9th December of 20147, As at the time of writing, only
the Android and iOS KakaoTalk version support the “Secret Chat” feature.
The E2E protocol introduced a number of new commands for the symmetric
key exchange as well as for secure messaging. The most important new
LOCO commands are as follows:

Public key exchange: The GET PK, GET_LPK, and SET_PK are getter and
setter commands for exchanging public Ed25519 and RSA key material.

Private key exchange: The GET_SK and SET_SK commands are used to
exchange a shared secret that is known by the two KakaoTalk clients
only. The messaging server does not have access to this secret.

"https://blog.kakaocorp.com/?p=943

https://blog.kakaocorp.com/?p=943

CHAPTER 4. TECHNICAL ANALYSIS

client | loco-msg-server | loco-config-server |

| |
| |
|

| CHECKIN

I
I
I
' >
I
I
I
I
I o s ip-
€ - - pm-m------ msg server ip-config
I I
I I
I I
LOGINLIST o :
Ll
I
I
I
I
€ - - oo Status 0 :
I I
I I
I I
P BLSYNC! '
< I I
I I
I I
I I
--------------------- > | I
I I
I I
I I
I I
SET'PK a | I
> I
I
I
I
I
€ - - Status 0 |
I I
I I
I I
™ I I
I I

Figure 4.9: The KakaoTalk handshake process.

84

CHAPTER 4. TECHNICAL ANALYSIS 85

E2F messaging: The SCREATE command is sent by the sender when a
new secure chat room is created. If the user selects an already created
chat room the KakaoTalk application sends a modified version of the
CHATONROOM command. The SWRITE command was introduced to send
E2E encrypted messages. A modified version of the MSG command is
used to receive E2E encrypted messages.

Protocol Overview The message communication flow of the LOCO E2E
encryption messaging protocol is illustrated in Figure 4.10. For a sender it
takes the following three requests from creating a new secret chat room until
sending an E2E encrypted message:

1 The sender sends a SCREATE LOCO command to the messaging server in
order to create the secret chat room on the server-side as well as to
retrieve the recipient’s public key.

2 In the second request, the sender sends a SET_SK LOCO message to the
server. The packet includes the (RSA encrypted) shared secret value
and the Ed25519 signature of the plaintext value’s MAC. The server
further accepts the message with a status code of 0x0.

3 During the third request, the sender sends a SWRITE LOCO message to
the server. This message includes the E2E encrypted chat message, a
Ed25519 signature of the plaintext message’s MAC, and a nonce for
computing the symmetric MAC key. The server accepts the SWRITE
message with a status code of 0x0, transforms the SWRITE packet into
a MSG packet and relays it to the recipient.

If the recipient does not obtain the shared secret in order to decrypt the
message, she sends a GET_SK request to the server. In addition, the recipient
sends a GET_PK request in case she does not possess the sender’s public keys.
After having obtained the key material, the recipient can decrypt and verify
the authenticity of the message.

Trust Establishment and Key Exchange KakaoTalk uses an authority-
based trust model in combination with optional manual key-fingerprint veri-
fication. By an authority-based trust model we mean that KakaoTalk holds
a key-directory server that maps the user’s mobile phone’s device UUID to
their Ed25519 and RSA and public keys. The KakaoTalk public-key direc-
tory service verifies the ownership of public keys through SMS verification
which occurs during the registration process (see Section 4.2.3.2).

CHAPTER 4. TECHNICAL ANALYSIS

sender |

|
|
|
| SCREATE

server receiver |

Return PK

B
»

»

Status 0

|
|

>
MSG >
L
< GET'SK
)l
Retuwrn SK_____________ >
< GET'PK
)l
Retwn PK_____________ >
< SWRITE
al
MSG

F

'F
|
|
|
|

86

Figure 4.10: Sending and receiving an end-to-end encrypted chat message.

CHAPTER 4. TECHNICAL ANALYSIS 87

As already discussed in the previous section, the KakaoTalk application
uploads its public Ed25519 and RSA key by using the SET_PK command. The
SET_PK LOCO packet is typically sent after the user has established a session
with a LOCO messaging server. The packet also contains a Ed25519 as well
as a RSA signature of the mobile handset’s device UUID.

There are multiple LOCO commands that allow the client to retrieve
the recipient’s public keys. For instance, the KakaoTalk client can use the
GET_PK, GET_LPK, SCREATE, and CHATONROOM commands to receive the other
party’s RSA and Ed25519 public keys.

The GET_SK and SET_SK LOCO commands are used to exchange a random
256-bit shared secret value that is used for creating a symmetric AES and
MAC key. After generating the shared secret the sender encrypts it with the
recipient’s public RSA key. The sender also creates a HMAC (SHA256) of the
plaintext shared secret value. This HMAC is further signed with the sender’s
private Ed25519 signing key. The SET_SK LOCO packet finally comprises the
RSA encrypted shared secret, the Ed25519 signature of the plaintext shared
secret’s HMAC, and a nonce. The receiver obtains the shared secret by
sending a GET_SK LOCO packet to the messaging server. The recipient can
then decrypt the shared secret, verify the Ed25519 signature of the sender,
and finally compare the HMAC. In the paragraph after next, we describe how
the recipient is able to compute the same MAC and verify the authenticity
of the message.

In addition to the authority-based trust model, users can manually verify
each other’s public key fingerprint. This manual verification process guaran-
tees that a user is talking to the intended person and that the contact is not
pretending to be someone else. On the EncryptionKeysInformationActivity
the user is able to compare an eight times eight grid image of the public key
whereas on the EncryptionKeysInformationDetailActivity the user has the
chance to verify the other party’s fingerprint. The fingerprint is composed
of the 16 most significant bytes of a SHA1 hash of the user’s public key. If
a participant’s key-material has changed, the other party receives a warning
message mentioning that the secret chat room is no longer available. How-
ever, we recognized that in some cases one party is still able to send E2E
messages while the other party is no longer able to write messages as the
message input field disappears from the chatroom.

Message Authenticity For every message, the KakaoTalk application
creates a new symmetric MAC key and computes a new HMAC of the mes-
sage with that key. The MAC key generator function is feeded with a random
nonce. This nonce is computed by using the shared secret as well as the mes-

CHAPTER 4. TECHNICAL ANALYSIS 88

sage ID as input parameters. The KakaoTalk application obtains the message
ID from the current time in milliseconds. By using another custom function,
the application further reduces the number of digits of the message 1D from
a 13 to a 10 digit number. This 10 digit message ID is then included into
the E2E message, so that the receiver is able compute the same nonce and
hence the same symmetric MAC key to verify the integrity of the message.
We can express the message authentication mechanism more formally:

Definition 1. The KakaoTalk message authentication process.

Let HM AC) denote a message authentication function with a symmetric
key k. Further, let kdf denote a key derivation function which takes a pass-
word and an optional salt value as inputs to compute a cryptographically
strong random key. Then the computation of a HMAC of an E2E encrypted
chat message can be described in the following three steps:

1. Computation of random nonce n: n = kdf (shared_secret, message_id)

2. Generation of HMAC key k: k = kdf(n)
3. Computation of HMAC mac over message m: mac = HMACy(m)

—

1D Status |SWRITE| Type | Length | Length | Nonce Message MAC
'
:(- =+ Sender PK
\ 4 Y
ID | Status |SWRITE| Type | Length | Length | Nonce Message Sign.
'
1
I Salt }-)' PBKDF2 }-)' AES 256-bit key } ------------------------------). AES-CTR encryption
1
Y Y
1D Status |SWRITE| Type | Length | Length | Nonce AES enc. Sign.
message
AES 128-bit key [r== === === === === W AES-CFB encryption
A
Length AES-CFB encrypted payload with provider-shared key

Figure 4.11: The KakaoTalk E2E encryption mechanism.

Message Encryption Upon creating a new secret chat room, the Kakao-
Talk application sends a SCREATE LOCO command to the messaging server.
The reply of this command contains the recipient’s RSA public key. The

CHAPTER 4. TECHNICAL ANALYSIS 89

chat application continues to create a new random 256-bit shared secret value
that is used to compute the symmetric AES and MAC keys. After sending
the (RSA encrypted) shared secret via the SET_SK command to the server,
the KakaoTalk application then computes the AES and MAC keys. The
AES encryption key is generated by using a Password-Based Key Derivation
Function (PBKDF2) which applies a SHA-1 hash function to the shared
secret along with a static 34 character String salt value. PBKDF2 repeats
this process 2048 times to produce a 512 bit random value. The first left-
most 256 bits of this value result in the final AES symmetric key that is used
for E2E message encryption. The recipient is able to compute the same AES
key as she possesses the same shared secret as well as the static salt value.

For the random MAC key, the sender first generates a new random nonce
which is also being used as the IV during AES encryption. Next, the Kakao-
Talk application computes a new HMAC (SHA256) of the plaintext message
and signs this MAC with the sender’s private Ed25519 key. Then it encrypts
the chat message using AES in Counter mode (CTR) along with the 256-
bit symmetric key as well as the IV. Finally, the application composes the
SWRITE LOCO packet by including the encrypted message, the Ed25519 sig-
nature of the plaintext message’s HMAC as well as the nonce. The overall
message encryption process is shown in Figure 4.11 and formally summarized
in Definition 2.

Definition 2. The KakaoTalk E2E message encryption process.

1. Computation of HMAC mac over message m:

mac = HMACy(m)
2. Computation of signature s over input mac:

s = Ed255195ignsender—pk(mac)
3. AES 256-bit key generation of k:
k= PBKDF2(SHA — 1, shared_secret, salt, 2048, 512)
4. AES-CTR encryption of message m:
ccrr = ex(m)

5. AES-CFB encryption of LOCO “plaintext” packet with provider-shared
key k:

ccrp = ex(ID||Status|| ... ||Nonce||corrl|s)

CHAPTER 4. TECHNICAL ANALYSIS 90

Message Decryption The message decryption process performs the re-
verse actions of the message encryption process. The E2E encrypted mes-
sage, the Ed25519 signature of the plaintext message’s HMAC, as well as the
nonce for computing the MAC key are received in a MSG LOCO packet. If the
KakaoTalk application does not possess the shared secret for computing the
AES and MAC keys, it sends a GET_SK packet. The KakaoTalk application
also sends a GET_PK LOCO packet in case it does not obtain the sender’s
public keys. After receiving the key material, it decrypts the shared secret
with its private RSA key.

After decryption, the application verifies the integrity of the E2E message
by first verifying the Ed25519 signature with the recipient’s public Ed25519
signature key. Further, the application computes a new MAC key using the
shared secret and the nonce as inputs. Finally, the chat client computes a
HMAC (SHA256) of the plaintext message and verifies whether the locally
computed MAC matches the MAC send by the sender.

4.3 Threat Analysis

In this section we perform a high-level threat analysis of KakaoTalk’s instant
messaging system. We do not use a systematic threat model approach such
as Microsoft’s STRIDE model [61], but instead follow Tuomas Aura’s lecture
material of the CSE-C3400 course at Aalto University’?. In addition, we
exclude topics such as risk assessment, threat prioritization, or countermea-
sure specification. This section is organized as follows: First, we analyse the
attack surface (Section 4.3.1) and highlight the valuable assets that require
protection (Section 4.3.2). Section 4.3.3 deals with the analysis of potential
threat actors and their particular motivations. Finally, we conclude with a
non-exclusive list of possible threats (Section 4.3.4).

4.3.1 Attack Surface

After we have described KakaoTalk’s messaging system architecture in Sec-
tion 4.2 we can proceed to analyze the system’s attack surface. The goal of
defining the attack surface is to break the application into a high-level set of
distinct system components and to analyze corresponding attack vectors for
each of them. As described in the previous section, the main components of
KakaoTalk’s messaging system include the KakaoTalk client application, the
KakaoTalk messaging and Web API backend, as well as the communication

"2The lecture slides on threat analysis are available at https://mycourses.aalto.f
i/course/view.php?7id=4617.

https://mycourses.aalto.fi/course/view.php?id=4617
https://mycourses.aalto.fi/course/view.php?id=4617

CHAPTER 4. TECHNICAL ANALYSIS 91

channel which connects the two entities. However, due to ethical reasons and
timing constraints we only focused on the KakaoTalk client application and
excluded the KakaoTalk messaging and Web API backend from our attack
surface analysis. Furthermore, we excluded several other system components
and made a number of security assumptions:

First, we excluded the KakaoTalk user who may be a potential target for
social-engineering attacks. We also assumed that the user is using KakaoTalk
in a good faith and does not seek to cause any harm. Second, we assumed
that the mobile platform (hardware and software), on which the KakaoTalk
application is running, is trusted even though most threat models of secure in-
stant messaging applications treat the mobile platform typically as untrusted.
Third, we did not analyse the attack surface of KakaoTalk’s server backend
because we did not have permitted access to Kakao’s systems. Fourth, we
assumed that the communication link between the KakaoTalk client and the
KakaoTalk IT backend is untrusted. Finally, we excluded any third-party en-
tities such as Google Cloud Messaging, KakaoTalk services and advertising
networks from our attack surface analysis.

As described above, we excluded the user, the mobile phone’s hardware
platform and the Android operating system and any other third-party soft-
ware from our attack surface analysis. Instead, we concentrated on the
KakaoTalk application which we broke into the following main high-level
components:

e Registration and sign-up: This component includes the user registra-
tion process, user authentication, and sign-up.

o User authentication after registration: This component includes all au-
thentication processes after a user has successfully registered with the
messaging system.

o End-to-end encrypted messaging: This is the major system compo-
nent that we focused on in this work. End-to-end encrypted messaging
includes actions including symmetric key-exchanges and message en-
cryption/decryption processes.

e [n-app purchases: This component mainly comprises KakaoTalk’s Item
Store and Kakao Pay which handles credit card transactions for Korean
users.

After we broke the KakaoTalk application into several distinct system
components we defined the attack surface by analyzing each component’s
remote and local data entry and exit points:

CHAPTER 4. TECHNICAL ANALYSIS 92

IP network sockets: HTTP/HTTPS Web API calls and LOCO protocol
messages are sent and received through IP network sockets either via the
WiFi or cellular network interface.

Telephony: KakaoTalk receives data through inbound SMS messages and
incoming phone calls. Data is leaving the telephony hardware by placing
phone calls or sending SMS messages.

Hardware interfaces: KakaoTalk interacts with various hardware com-
ponents including Bluetooth, GPS, camera (e.g., data entry point through
scanning QR codes), microphone, vibration sensor, fingerprint sensor and the
phone’s accelerometer.

Multimedia file parsers: Multimedia file parsers process sent and re-
ceived media files such as videos or images that are transmitted as file at-
tachments. Android’s multimedia parser component Stagefright was known
to be exploitable when processing malformed MP4 files™.

Local file system: KakaoTalk reads and writes files from and to the ap-
plication’s private and external data directories (e.g., the application caches
web content on the phone’s SD card).

User Interface: Through KakaoTalk’s Ul users may be able to inject ar-
bitrary code that may be executed by the application if the input is validated
improperly.

Inter-process communication interfaces: KakaoTalk shares and re-
ceives data from other applications and on-device services (e.g., GCM broad-
cast receiver). A malformed IPC message may inject arbitrary code into the
KakaoTalk application.

Third-party themes: The application allows users to install third-party
themes that can be installed as separate APKs. Since KakaoTalk has been
already targeted by trojanized applications in the past™, customized themes
may be a new attack vector to spread malware.

https://en.wikipedia.org/wiki/Stagefright_(bug)
"http://blog.trendmicro.com/trendlabs-security-intelligence/kakaot
alk-targeted-by-fake-and-trojanized-apps/

https://en.wikipedia.org/wiki/Stagefright_(bug)
http://blog.trendmicro.com/trendlabs-security-intelligence/kakaotalk-targeted-by-fake-and-trojanized-apps/
http://blog.trendmicro.com/trendlabs-security-intelligence/kakaotalk-targeted-by-fake-and-trojanized-apps/

CHAPTER 4. TECHNICAL ANALYSIS 93

External software dependencies: KakaoTalk uses over one hundred™
open-source and numerous closed-source native libraries. In addition, there
are various external Kakao services™® which can be connected to KakaoTalk
by a central Kakao user account. According to Kakao”, there are up to
18,000 of such “Connected Services”. All these external services and software
dependencies increase KakaoTalk’s attack surface by adding additional data
entry and exit points.

4.3.2 Assets

In this section we deal with the question of which assets of the KakaoTalk
messaging system do we want to protect against a potential threat. We
answer this question by providing the following non-exhaustive list of assets
that we believe are the most important:

1. User’s privacy

1.1. Right to have control over Personally Identifiable Information
(PII)

1.1.1. Identifiers, contact and location information (login creden-
tials, Kakao-ID, name, phone number, email address, device
ID, and other identifiers)

1.1.2. Private message content (text, voice, video, image, file, chat
history, and other message content)

1.1.3. Message and communication metadata (IP addresses, amount
of sent /received messages, user’s social graph, and other meta-
data)

1.1. Right to be left alone

1.1.1. User’s right to chat at any time
1.1.2. User’s right to not be discriminated by other users

1.1.3. Freedom of speech (user’s right to not be censored by any
third-parties)

2. User’s money

2.1. Money spent on in-app purchases

"https://katalk.kakao.com/android/cs/licenses?prev=1

"http://www.kakaocorp.com/en/about/service

"Thttp://wwu.kakao.com/provide_layer?page=1794&privacySearch=¢lang=
en#none

https://katalk.kakao.com/android/cs/licenses?prev=1
http://www.kakaocorp.com/en/about/service
http://www.kakao.com/provide_layer?page=1794&privacySearch=&lang=en#none
http://www.kakao.com/provide_layer?page=1794&privacySearch=&lang=en#none

CHAPTER 4. TECHNICAL ANALYSIS 94

3. Kakao’s reputation

4. Secondary assets (parts of the technical system): KakaoTalk/third-
party back-end IT system, application source code, the user’s mobile
phone, and other secondary system assets.

4.3.3 Threat Agents

In this section we provide an overview of potential threat agents and their
motivation of attacking the KakaoTalk messaging system. Similar to [126],
we assume that all threat agents are part of KakaoTalk’s chat community.
Therefore, they can perform the same actions as regular chat users, e.g.,
adding and searching contacts or sending and receiving messages. In the
following we list various possible attackers:

Malicious/nosy KakaoTalk users or script kiddies: Want to save
money, do not want to pay for in-app purchases. Want to commit random
harm and annoy other KakaoTalk users. Want to track or stalk other users,
want other users’ personally identifiable information.

Insiders: Insiders such as rogue Kakao employees. Want to make money
or get other benefits. Want to harm the company’s reputation.

Kakao Corp: Wants to make money (e.g., wants the KakaoTalk user
to sign up and pay for other Kakao services). Wants to collect personally
identifiable information for analytic purposes. Wants to comply with national
and international (surveillance) laws.

Kakao Corp. competitor: Wants to increase market share. Wants to
get access to KakaoTalk’s source code. Wants to harm Kakao’s reputation.

Cooperating advertising companies: Want KakaoTalk users’ person-
ally identifiable information for targeted advertising.

Local area network attackers (active/passive): Want KakaoTalk
users’ personally identifiable information. Want to exploit an KakaoTalk
application bug to compromise the user’s mobile device.

CHAPTER 4. TECHNICAL ANALYSIS 95

Global network attackers (active/passive): Attackers such as pow-
erful government agencies or compromised Internet service providers. Want
to gather evidence such as users’ personally identifiable information. Want
to exploit an KakaoTalk application bug to compromise the user’s mobile
device.

Internet service provider: Wants to make money. Wants KakaoTalk
users’ transport communication metadata to comply with (surveillance) laws.

Mobile phone manufacturer: Wants to make money. Wants KakaoTalk
users’ “hardware-burned” personnel identifies for tracking purposes.

Google: Wants to make money. Wants KakaoTalk users’ personally iden-
tifiable information for tracking and advertising purposes.

Criminals/organized crime: Want to make money. Want KakaoTalk
users’ personally identifiable information. Want to exploit an KakaoTalk
application bug to compromise the user’s mobile device.

A random attacker with physical access to the mobile phone:
Wants to make money. Wants to steal users’ personally identifiable infor-
mation. Wants to bypass two-factor authentication methods.

4.3.4 Threats

Instant messaging systems such as KakaoTalk face a number of specific secu-
rity threats [62, 89, 88]. In this section we provide a high-level list of security
and privacy threats against the KakaoTalk messaging system. We summa-
rize different threats in terms of what each potential attacker may achieve.
Before we continue we make various security assumptions:

1 The user obtains an authentic copy of KakaoTalk.
2 The user’s mobile phone is not compromised by malware.

3 The security assumptions of Ed25519, HMAC-SHA256, AES, and other
cryptographic standards are valid.

CHAPTER 4. TECHNICAL ANALYSIS 96

All attackers:

1

10

11

Account sharing (not allowed according to Kakao’s Terms of Service)
Spoofing/impersonation /identity theft
Sending malicious chat messages or files (e.g., spam)

Uninformed gathering of personally identifiable information (e.g., re-
taining other users’ messages)

Uninformed disclosure or publication of personally identifiable infor-
mation (e.g., sharing contact’s private messages with third-parties)

False representation of personally identifiable information
Spreading harmful false information about an user
Social-Engineering attacks

Provide evidence to a third-party that a message came from a specific
user (Non-Repudiation)

Learn about that a user has blocked another user

Learn about a user’s social data that the user has chosen to make
available

By Kakao Corp or a compromised KakaoTalk server:

1

6
7

Persistent tracking, learning user identity and route (e.g., storing cook-
ies without user consent)

Deletion of user chat history that is stored on the server
Tampering of KakaoTalk messages (edit, replay, drop)
Blocking a user from participating in the messaging system

Authoritarian measures (e.g., “In order to use KakaoTalk you must
agree to our privacy policy.”)

Plaintext access to non end-to-end encrypted user chat

Changing the client applications’ configuration settings remotely

CHAPTER 4. TECHNICAL ANALYSIS 97

10
11
12
13
14
15
16
17

18
19

Adding backdoors upon government requests (e.g., end-to-end encryp-
tion backdoor in KakaoTalk)

Attacks against key exchanges of KakaoTalk’s end-to-end encryption

feature

Kakao Corp.
Kakao Corp.
Kakao Corp.
Kakao Corp.
Kakao Corp.
Kakao Corp.
Kakao Corp.

Kakao Corp.

knows about the social graph of an user

can learn when a user is online (presence status)

can learn who sends messages

can learn when a user sends/receives messages

can learn how many messages a user sends and receives
can learn about the size of any transferred files

can learn about the file upload/download time

can spam a user with invalid messages for which it has

the decryption keys

Kakao Corp.

Kakao Corp.

By insiders:

can drop or corrupt any uploaded files

can learn about users’ actions

1 Can do everything what Kakao Corp. is able to do as well

2 Damaging Kakao Corp. reputation

By Kakao Corp. competitor:

1 Industrial espionage (e.g., reverse engineering of application source

code)

2 Blocking a user from participating in the messaging system (e.g., DoS
attack against a KakaoTalk server)

By cooperating advertising companies:

1 Persistent tracking, learning user identity and route (e.g., setting per-
sistent third-party cookies)

2 Sending malicious advertisements (malvertising)

CHAPTER 4. TECHNICAL ANALYSIS 98

By mobile phone manufacturer:

1 Persistent tracking, learning user identity and route (e.g., by unique
identifiers “burned” into the mobile phone’s hardware)

2 Adding backdoors upon government requests (e.g., baseband back-
doors)

By Google:

1 Persistent tracking, learning user identity and route (e.g., through in-
app purchases via Google Play or through Google Cloud Messaging)

2 Authoritarian measures (e.g., “If you want to publish your chat applica-
tion on the Play Store you have to support Google Cloud Messaging.”)

3 Adding backdoors upon government requests (e.g., backdoor in Google
Cloud Messaging)

By local network attackers (active/passive):
1 Learning about users’ actions (e.g., by performing traffic analysis)
2 Observing when a user is using KakaoTalk

Observing when a user is using KakaoTalk’s secret chat feature

_~ W

Tampering of KakaoTalk messages (edit, replay, drop)

5 Blocking a user from participating in the messaging system (e.g., DoS
attack against the KakaoTalk client or server)

6 Attacks against key exchanges of KakaoTalk’s end-to-end encryption
feature

7 Network-based remote code execution attacks

By global network attackers (active/passive):
1 Can do everything what a local network attacker is able to do as well

2 Authoritarian measures (e.g., “In order to use KakaoTalk you must go
through proxy X”)

3 Learning about who is using KakaoTalk and who is taking part in the
same conversation

CHAPTER 4. TECHNICAL ANALYSIS 99

4 Learning about when messages are sent and when they are received

5 Observing metadata of file attachment uploads/downloads

By a random person with physical access to the mobile phone:

1 Obtaining users’ encrypted messages stored in SQLite database if the
device is offline and the block storage is not encrypted

2 Obtaining users’ secret keys and access tokens from memory if the
device is online and the lock screen can be bypassed

4 Privilege escalation attacks by using the phone in two-factor authenti-
cation procedures

By criminals/organized crime/malware developers:

1 Can do everything what an insider, a local network attacker and a
person with physical access to the phone is able to do as well

2 Targeted malware attacks in order to achieve a mobile handset com-
promise

3 Plaintext access to non end-to-end encrypted user chat
4 Plaintext access to end-to-end encrypted user chat

5 Remote backdoor access to the mobile phone

6 Use KakaoTalk to spread malware to other contacts

7 Deletion of user chat history

4.4 Vulnerability Analysis and Findings

In this section we list the results from our automated and manual security
analysis of the KakaoTalk chat application. We start by discussing Kakao-
Talk’s end-to-end encryption protocol (Section 4.4.1) and proceed by analyz-
ing the application’s specific software vulnerabilities in Section 4.4.2. Finally,
we conclude our vulnerability analysis by presenting KakaoTalk’s information
privacy issues in Section 4.4.3.

CHAPTER 4. TECHNICAL ANALYSIS 100

4.4.1 End-to-end Encryption Protocol Analysis

If the reader recalls the goals of a secure instant messaging system from Sec-
tion 2.1 we argue that it is fair to say that KakaoTalk including its “Secret
Chat” feature is not a secure instant messenger. We speculate that the main
reason for this fact is Kakao’s rush of implementing an E2E encryption pro-
tocol within two months in order to not possibly lose more users to other
competing messengers such as Telegram (see Section 3.2.3.1). Also, Kakao
built the E2E encryption feature on top of their existing messaging infras-
tructure and did not implement an entirely new protocol from scratch. This
approach let to a system design which is prone to multiple attacks that may
lead to the decryption of end-to-end encrypted messages. In the following
we list a number of flaws that we have discovered in KakaoTalk’s end-to-end
encryption messaging system:

System architecture: The probably most obvious design flaw is that
Kakao uses a central public-key directory server which makes the E2E en-
cryption messaging system prone to MITM attacks on the operator-site. This
attack may remain undetected if users do not compare their public key fin-
gerprints. In addition, MITM attacks can be also performed after two clients
have agreed on a shared secret key since Kakao has the ability to delete E2E
encrypted chat rooms on the server-side. In this case the user would need to
create a new chat room and the attacker would be then able to substitute
a user’s public key during the initial secret key exchange (see Figure 4.12).
Most of the secure messaging systems that exist today operate a public-key
directory server, e.g., WhatsApp, Signal, or iMessage’®.

As discussed in Section 4.2.3, all IM communications are relayed through
the LOCO messaging backend which decrypts packets, creates new ones,
and forwards them re-encrypted to the destination. Due to the interception
and transformation of messaging packets there is no integrity verification
implemented on the client-side. Otherwise, clients would constantly throw
an exception that messages have been tampered during network transmis-
sion. The only piece of information that is protected by a MAC is the actual
chat message (see Section 4.2.3.3). However, KakaoTalk uses the concept of
MAC-then-encrypt which means that the ciphertext integrity remains unpro-
tected. Worse, all other data fields in KakaoTalk’s E2E encryption protocol
do not have any integrity protection mechanisms (see Sections 4.2.3.1 and
4.2.3.3). The lack of integrity protection means that any local or global

®http://blog.cryptographyengineering.com/2013/06/can-apple-read-yo
ur-imessages.html

http://blog.cryptographyengineering.com/2013/06/can-apple-read-your-imessages.html
http://blog.cryptographyengineering.com/2013/06/can-apple-read-your-imessages.html

CHAPTER 4. TECHNICAL ANALYSIS 101

sender | mitm | receiver |

|
|
| SCREATE

»

S R Return MITM PK

€ -------------__Status0

SWRITE

|
|
|
|
|
A |
SET'SK » u __Decrypt secret O
|
|
|
|
|
o

»
|

Decrypt message o

Re-encrypt secret | ¢ GET SK
with receiver’s PK N

(Retwmn SK ______________ >
< GETPK
<
|
|
I
|
, I
(Return MITMPK__________ >

Decrypt message o < SWRITE

< MSG

Figure 4.12: MITM attack on the operator-side.

CHAPTER 4. TECHNICAL ANALYSIS 102

network MITM attacker could manipulate the ciphertext without being de-
tected. And since KakaoTalk’s LOCO “encrypted” packet uses malleable [40]
block cipher modes (e.g., AES-CBC or AES-CFB), “bit-flipping” attacks™
such as flipping a status code bit to change message flow behaviour, may be
possible.

Another major design flaw of KakaoTalk’s messaging system is that there
is no server authentication of the LOCO messaging backend. While Kakao’s
Web API backend utilizes the HT'TPS protocol to guarantee server authen-
tication, the LOCO messaging backend uses the LOCO protocol which does
not support such a security concept. Since there is no need for server au-
thentication, the KakaoTalk client would blindly trust the malicious end-
point. Moreover, a malicious server could send legitimate LOCO commands
to the KakaoTalk client application to possibly retrieve sensitive information
or change the communication flow.

Furthermore, a number of other weaknesses in KakaoTalk’s messaging
architecture exist. One flaw is that Kakao uses SMS to verify a user’s phone
number to authenticate users even though SMS has been long known to
be insecure. Another weakness is that Kakao’s Web API backend allows
unauthenticated calls over HT'TP. Even though we were not able to force
KakaoTalk to use HTTP instead of HT'TPS connections, it does not mean
that KakaoTalk may not fallback to use HT'TP under certain circumstances
that we have not tested (e.g., older Android or KakaoTalk versions). In addi-
tion, we recognized that KakaoTalk sometimes transmits the LOCO CHECKIN
packet (see Section 4.2.3.2) in plaintext. A MITM attacker may be able to
modify the server reply of this packet in order to point the KakaoTalk client
to a malicious IM server. However, we must admit that we were not able to
reproduce this behaviour.

Static values: During our source code analysis we recognized a number of
static values that are used for message encryption and user authentication.
For instance, we found that KakaoTalk uses the hard-coded Initialization
Vectors “locoforever” or “KaKAOtalkForever” if the application chooses to
use AES-CBC for message encryption (see LOCO handshake packet in Sec-
tion 4.2.3.1). This means that the ciphertext is not randomized and that
an attacker may spot plaintexts that result in identical ciphertexts. An-
other issue that we found was that KakaoTalk uses the static String value
“e2dc694aee2540c2de6b4a8be2d7718846a0dfh9” in case it cannot determine
the mobile handset’s device UUID. This might be an issue since the de-
vice UUID is used in the HTTPS authorization header (alongside with an

™https://en.wikipedia.org/wiki/Bit-flipping_attack

https://en.wikipedia.org/wiki/Bit-flipping_attack

CHAPTER 4. TECHNICAL ANALYSIS 103

access token) as well as for mapping the user’s public keys to an user iden-
tity. Finally, we found that KakaoTalk uses the static hard-coded salt value
“53656372657443686174526f616d4b6579” that is used together with a random
shared secret value to compute the E2E encryption key. Since this value can
be easily obtained by decompiling the application, an attacker may be able
brute-force an E2E encryption key more easily.

Known plaintexrts: The LOCO messaging protocol leaks various known
plaintexts which makes it vulnerable to known plaintext attacks (KPA). As
explained in Section 4.2.3.1, most of the data fields of the LOCO messag-
ing protocol contain known and static plaintext entries (e.g., packet length,
LOCO command, ID, and other entries). As a result, the LOCO messaging
protocol may be vulnerable to a number of plaintext recovery attacks which
do not require access to the encryption key [57].

Moreover, by observing encrypted messaging traffic we found that the
first 15 bytes of the first ciphertext block of an encrypted LOCO packet are
always static if KakaoTalk is using AES in Cipher Feedback mode. Only the
16th byte of the block is randomized each time a new packet is sent. The
fact that the first plaintext block is static and the way how Cipher Feedback
mode encryption works®’, means that KakaoTalk most probably increments
the Initialization Vector (IV) for each message (see Figure 4.13).

00 00 00 CE E8 Fb5 6F EF AE 55 A4 38 9 65 A8 10 77 48 F2 BE
00 00 00 CE E8 Fb5 6F EF AE 55 A4 38 9 65 A8 10 77 48 F2 54

Figure 4.13: The first 15 most significant bytes of an encrypted LOCO packet
remain static (highlighted in red color). The packet structure starting from
the most significant byte is as follows: Length (4 bytes) + ID (4 bytes) +
Status (1 byte) + Command (11 bytes).

Missing security goals: As already mentioned, KakaoTalk is missing im-
portant security goals that are crucial for a secure instant messaging system.
We found that KakaoTalk lacks the following secure IM properties:

Forward Secrecy: After a certain amount of time, KakaoTalk refreshes the
“E2E encryption key” and presents a warning message to the user men-
tioning that the chatroom is no longer available as the user’s “encryp-
tion information has expired”. However, the RSA key-pair, which is

80https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Ci
pher_Feedback_.28CFB.29

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_Feedback_.28CFB.29
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_Feedback_.28CFB.29

CHAPTER 4. TECHNICAL ANALYSIS 104

used to exchange a new secret value that in turn is used to generate
a new message encryption key, is long-lived and is not replaced auto-
matically. An attacker who has obtained access to the user’s private
RSA key and to the provider-shared AES key may be therefore able to
decrypt previously collected end-to-end encrypted messages. For this
reason, KakaoTalk does not support Forward Secrecy.

Backward/Future Secrecy: Similarly, KakaoTalk does not provide Back-
ward/Future Secrecy since the user’s RSA key-pair remains static.

Offline Message Deniability: Messages are signed with the user’s long-lived
private signature key. This means that each message can be clearly
linked to the message’s sender. The sender could not later deny having
sent a particular message.

Metadata protection: KakaoTalk does not protect the communication meta-
data, but instead possibly makes use of it by creating complex social
graphs®. However it is worth to note that all of the mobile secure
messengers that exist today do not provide metadata protection.

E2F messaging by default: Instead of encrypting all messages end-to-end
by default, KakaoTalk’s “Secret Chat” feature is opt-in only and users
need to explicitly choose to chat in an end-to-end encrypted manner.

Open-source, open documentation, independant security audit: KakaoTalk’s
end-to-end encryption protocol is closed-source and does not provide
an open protocol specification. Also, to the best of our knowledge,
the application and protocol have not been audited by an independent

party.

Missing freshness: While we had not the time to test this in depth,
we found evidence that the protocol may not provide freshness to prevent
replay attacks (e.g., by adding a random nonce to each message). In a MITM
scenario we were able to perform a simple replay attack against KakaoTalk’s
E2E encryption protocol. We were successful in replaying and reordering
packets, as well as replacing ciphertext blocks. The latter chosen ciphertext
attack (CCA) worked even though the LOCO messaging server or client auto-
corrects this misbehaviour by resending the original message. However, we
did not try to mirror or withhold particular messages. A more serious issue
may be the possibility that an attacker who stole a KakaoTalk’s user mobile

8lhttps://en.wikipedia.org/wiki/Social_graph

https://en.wikipedia.org/wiki/Social_graph

CHAPTER 4. TECHNICAL ANALYSIS 105

handset, may be able to replay previously captured encrypted packets to the
device in order to obtain the plaintext.

4.4.2 Android Software Security Analysis

In this section we present our findings that we discovered in addition to
examining the security of KakaoTalk’s E2E encryption protocol. KakaoTalk’s
main software vulnerabilities are as follows:

Insufficient transport layer protection: KakaoTalk utilizes the Hy-
perText Transfer Protocol Secure (HTTPS) protocol for most network con-
nections in order to prevent passive eavesdropping of the communication link.
The application takes a number of important steps to validate the server’s
X.509 certificate: First, it checks whether the certificate’s Common Name
(CN) matches the domain’s name. If they do not, KakaoTalk throws a Cer-
tificateEzception and rejects establishing a TLS connection to the server.
Second, KakaoTalk verifies whether the server’s certificate has been signed
by a trusted Certificate Authority (CA). For this, the application checks if
the signing CA certificate has been signed by a trusted Root CA certificate
which is located in Android’s trusted CA store. At this point, an attacker
may be still able to compromise a TLS session by luring the user to copy his
own malicious CA certificate into the victim’s trusted CA store. For this rea-
son, KakaoTalk also verifies the certificate chain by maintaining a whitelist
of public keys that are trusted to sign certificates. This list is consulted when
KakaoTalk validates the certificate chain, and if it does not include at least
one of the pinned keys, certificate validation fails. This security concept is
called “public key pinning” or “certificate pinning” and was proposed in RFC
7469%2 by Google in 2015.

Despite of implementing all of these certificate validation techniques,
KakaoTalk mostly accepts self-signed MITM certificates and only shows a
certificate validation error message that a user might not understand. The
pop-up message says that “There are problems with the security certificate
for this site” and allows the user to either accept the error or to go “Back”.
After accepting the dialog, KakaoTalk continues working and silently accepts
invalid TLS certificates in the background. Even though there are warning
messages, it is well known that users often ignore security errors [11] mostly
because of habituation [78].

We could reproduce the improper certificate validation for the domains
auth.kakao.com, auth.kakaocdn.net and katalk.kakao.com. For other do-

82https://tools.ietf.org/html/rfc7469

https://tools.ietf.org/html/rfc7469

CHAPTER 4. TECHNICAL ANALYSIS 106

mains KakaoTalk rejects establishing a TLS connection. For instance, for
item.kakao.com that is used by the Item Store, KakaoTalk does not present
a warning dialog, but instead shows a blank WebView with a message saying
“Unstable network connection”. In the following, we describe the particular
certificate validation issues that we found during our assessment:

Improper certificate validation during user registration: As already
mentioned in Section 4.2.3.2, KakaoTalk issues several HTTPS POST
requests during the user registration process. In particular, the ap-
plication establishes a TLS connection to a registration server (ac-
talk.kakao.com) and to an authentication server (auth.kakao.com). Al-
though KakaoTalk uses public key pinning for ac-talk.kakao.com, it
does not do so for auth.kakao.com. Also, it does not verify the Common
Name of the latter server since KakaoTalk accepts a MITM certificate
that is self-signed.

WebViews ignore certificate validation warning messages: The app
stops employing public key pinning when establishing a TLS connec-
tion to the Web API backend after the registration process. Instead, it
validates the certificate chain of a server without consulting the list of
whitelisted public keys. If KakaoTalk detects that the server’s certifi-
cate chain is invalid, it writes a java.security.cert. CertPath Validator-
FException warning message to the system log and notifies the user
with a simple dialog. In addition, we found that some WebViews ac-
cept a certificate even though it contains a CN that does not match
the server’s hostname. One example is KakaoTalk’s privacy policy and
terms of service which are displayed in a WebView that loads the HTML
from https://1.201.0.61/android/account/privacy.html?locale=en_de
and https://1.201.0.61/android/account/terms.html?locale=en_de.
Even though the server cannot prove that it is “1.201.0.61” as its cer-
tificate is from “*.kakao.com”, the WebView does not notify the user
about this misbehaviour.

In addition to the certificate validation issues described above, we found
that some TLS endpoints of KakaoTalk’s Web API backend are misconfig-
ured. For this analysis, we used Qualys TLS Server Test®® in order to scan
the backend for common TLS configuration flaws. We tested the domains
ac-talk.kakao.com, auth.kakao.com, katalk.kakao.com, and auth.kakaocdn.net
and retrieved the following scanning results:

auth.kakao.com

83https://www.ssllabs.com/ssltest/

ac-talk.kakao.com
auth.kakao.com
https://1.201.0.61/android/account/privacy.html?locale=en_de
https://1.201.0.61/android/account/terms.html?locale=en_de
ac-talk.kakao.com
auth.kakao.com
katalk.kakao.com
auth.kakaocdn.net
https://www.ssllabs.com/ssltest/

CHAPTER 4. TECHNICAL ANALYSIS 107

e The server is vulnerable to the POODLE attack [95]

e The server is vulnerable to the DROWN attack [4]

OpenSSL padding oracle vulnerability in AES-NI CBC MAC check
(CVE-2016-2107)

Weak certificate signature algorithm (SHA1withRSA)

The server supports weak cipher suites
(e.g., TLS_.RSA_ WITH RC4_128_MD5)

e The server does not support Forward Secrecy

ac-talk.kakao.com and auth.kakao.com

e The servers are vulnerable to the DROWN attack [4]

OpenSSL padding oracle vulnerability in AES-NI CBC MAC check
(CVE-2016-2107)8

Weak certificate signature algorithm (SHA1withRSA)

The servers support weak cipher suites
(e.g., TLS_RSA_WITH_RC4_128_MD5)

e The servers do not support Forward Secrecy

auth.kakaocdn.net

OpenSSL padding oracle vulnerability in AES-NI CBC MAC check
(CVE-2016-2107)

The server supports weak Diffie-Hellman (DH) key exchange parame-
ters

Weak certificate signature algorithm (SHA1withRSA)

e The server does not support Forward Secrecy

84https://www.openssl.org/news/secadv/20160503.txt

https://www.openssl.org/news/secadv/20160503.txt

CHAPTER 4. TECHNICAL ANALYSIS 108

Finally, we detected that KakaoTalk does not use TLS for all network
connections. For instance, the application does not use HT'TPS to secure the
communication channel on older versions of Android. On a mobile handset
that ran Android 4.1.2 we found that all communications to KakaoTalk’s
Web API backend are handled by the HT'TP protocol only. Moreover, while
running KakaoTalk on a more recent Android version, we recognized that
some web content is still being served via HTTP. For instance, KakaoTalk
downloads unauthenticated HTML (http://1.201.0.61/android/help?lang=
engcountry_iso=DE&a=android%2F5.5.5%2Fen) and JavaScript (http://adl-ka
nt.kakao.com/track_jquery3.js) when the user opens the com.kakao.talk.a
ctivity.setting.HelpActivity and com.kakao.talk/.activity.setting.N
oticeActivity. We also noticed that several resources including images and
zip archives are being downloaded unencrypted. This would allow a MITM
attacker to inject arbitrary code that may be then executed on the user’s
mobile phone (see “Improper WebKit WebView implementation” below).

Improper WebKit WebView implementation: As a hybrid mobile
application, KakaoTalk makes heavily use of WebKit which is an open source
web browser engine. KakaoTalk uses the framework’s core view class Web-
View® to display web concent that the application downloads from backend
servers. We discovered a number of possible vulnerabilities due to the way
how KakaoTalk has implemented its WebViews: On the one hand, the appli-
cation uses various methods of the android.webkit.WebSettings class to
configure its WebViews. We found that for almost all WebViews KakaoTalk
is calling the following methods:

e setJavaScriptEnabled(): This method allows to execute JavaScript
within a WebView.

e setAllowFileAccess(): This method allows the application to read
cached web content from the file system. This feature is enabled by
default if the developer has not explicitly disabled it.

e setPluginState(): In the InAppBrowserActivity this method is
called to enable plugin support (e.g., to display Adobe Flash content).

On the other hand, KakaoTalk uses the addJavascriptInterface()
public method of the WebView class. The method implements a Java to
JavaScript bridge — which KakaoTalk declares either as “kakaotalk”, “kakao-
Talk”, or “Kakao” — that can be used to allow JavaScript code to control

85https://developer.android.com/reference/android/webkit/WebView.ht
ml

http://1.201.0.61/android/help?lang=en&country_iso=DE&a=android%2F5.5.5%2Fen
http://1.201.0.61/android/help?lang=en&country_iso=DE&a=android%2F5.5.5%2Fen
http://ad1-kant.kakao.com/track_jquery3.js
http://ad1-kant.kakao.com/track_jquery3.js
https://developer.android.com/reference/android/webkit/WebView.html
https://developer.android.com/reference/android/webkit/WebView.html

CHAPTER 4. TECHNICAL ANALYSIS 109

the native application. This feature makes KakaoTalk vulnerable to possible
remote code execution attacks if an attacker uses the bridge to access the
getClass () method which is inherited from the Object class®® (see CVE-
2012-6636%7 and CVE-2013-4710%). The attack works on devices running
Android versions older than 4.2 while later versions may be also vulnerable
since KakaoTalk adds the @JavascriptInterface® annotation to some pub-
lic methods. This annotation is for example used in the CommonWebLayout
and PlusFriendListWebActivity classes. Worryingly, not only a MITM
attacker but also any third-party brand or pop artist that advertises its
products through KakaoTalk’s “Plus Friend” marketing channel is able to
access the JavaScript bridge. This means that any third-party may be able
to execute arbitrary code if Kakao does not verify the integrity of web scripts
prior publishing them on “Plus Friend”.

As a result of these WebView misconfigurations, an attacker may be able
to inject arbitrary JavaScript (JS) code since KakaoTalk makes use of unau-
thenticated channels and also accepts invalid TLS certificates. Moreover,
JS may be injected through various other channels such as BlueTooth, SMS
messages or malformed multimedia files [73]. In a quick test, we injected
simple JS statements such as alert(document.cookie); which were then
executed in the context of the WebView. Also, we injected a false login
page that may be used to phish user credentials and were able to retrieve a
list of available HTMLS5 file objects (window.File, window.FileReader, and
window.FileList). These objects may allow to read files from the file sys-
tem even though we were not successful most probably due to same-origin
policy (SOP) restrictions. That being said, exploitation might not always
be possible as the level of compromise depends on which mobile platform
KakaoTalk is running and on the context in which the particular WebView
is used. However, concepts such as SOP were successfully bypassed in the
past?.

Possible Remote Code Execution using arbitrary file writes: First
and foremost we have to admit that we were not able to turn this vulnerability
into a remote code execution attack due to timing constraints. However,
an attacker with more resources may manage to exploit this vulnerability
successfully. In the following paragraphs we describe the vulnerability in

86http://d3adend.org/blog/?p=314

8"https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-6636

88https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4710

89http://stanford.edu/~pcm2d/blog/jsbridge.html

Ohttp://www.rafayhackingarticles.net/2014/08/android-browser-same
-origin-policy.html

http://d3adend.org/blog/?p=314
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-6636
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4710
http://stanford.edu/~pcm2d/blog/jsbridge.html
http://www.rafayhackingarticles.net/2014/08/android-browser-same-origin-policy.html
http://www.rafayhackingarticles.net/2014/08/android-browser-same-origin-policy.html

CHAPTER 4. TECHNICAL ANALYSIS 110

more detail:

As discussed, KakaoTalk constantly downloads various resource files via
unencrypted channels or through TLS connections that can be compromised
by an attacker. The application typically first fetches a JSON file which
includes file attributes such as file names and file sizes of resources that are
further being downloaded from either https://http://item.kakao.com/ or ht
tp://item-kr.talk.kakao.co.kr. Some of these resources include ZIP archives
which package multiple files into one file. To the best of our knowledge,
KakaoTalk does not perform any additional integrity checks of these ZIP
archives. The lack of integrity verification means that a MITM attacker
may inject arbitrary files into a ZIP archive. In addition, an attacker may
control the path of where the injected file will be extracted on the device by
naming a file ../../../../../../../../data/data/com.kakao.talk/malicious—f
ile. This way, an attacker may be able to achieve an arbitrarily file write
into KakaoTalk’s private data directory since KakaoTalk does not prevent
from this kind of directory traversal attacks’'. As a result, an attacker may
be able to replace existing configuration files or executable binaries. Ryan
Welton has been successful in turning this flaw into a remote code execution
attack by replacing a DEX file that was located in the application’s “/files/”
directory”?. However, in the case of KakaoTalk there is no additional DEX
file that could be patched using this way. Instead, we propose two ideas on
how a remote code execution attack may be successfully achieved:

Native library patching: Android stores KakaoTalk’s native libraries in
/data/app-1lib/com.kakao.talk-1/ and creates the symbolic link /da
ta/data/com.kakao.talk/1ib that points to this directory. KakaoTalk
loads most native libraries implicitly by using the System.load() or
System.loadLibrary() methods which load a native library from a
path stored in the LD_LIBRARY PATH environment variable. Since an
attacker is not able to modify the LD_LIBRARY_PATH variable and does
not have write permission to the /data/app-1ib/ directory, there is no
chance to overwrite or patch a native library to achieve code execution.
However, we found that KakaoTalk loads the 1ibNSaferJNI.so and
the 1iba3030. so libaries explicitly by providing a full path to the ap-
plication’s private library directory /data/data/com.kakao.talk/1lib/
which would be writable by KakaoTalk. The two shared libraries

91Gee http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2412 for
an example directory traversal attack.

2https://www.nowsecure.com/blog/2015/06/15/a-pattern-for-remote-c
ode-execution-using-arbitrary-file-writes-and-multidex-application

s/

https://http://item.kakao.com/
http://item-kr.talk.kakao.co.kr
http://item-kr.talk.kakao.co.kr
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2412
https://www.nowsecure.com/blog/2015/06/15/a-pattern-for-remote-code-execution-using-arbitrary-file-writes-and-multidex-applications/
https://www.nowsecure.com/blog/2015/06/15/a-pattern-for-remote-code-execution-using-arbitrary-file-writes-and-multidex-applications/
https://www.nowsecure.com/blog/2015/06/15/a-pattern-for-remote-code-execution-using-arbitrary-file-writes-and-multidex-applications/

CHAPTER 4. TECHNICAL ANALYSIS 111

are loaded by the com.nshc.NSaferJNI and com.ahnlab.a3030.a3030
classes which are used by Kakao Pay. Now that we found a library that
could possibly be patched and side-loaded®, an attacker may over-
write the symbolic “lib” link with a folder which has the same name
and which an attacker may inject into the intercepted ZIP archive.
This “lib” folder would contain a specially crafted version of either
1ibNSaferJNI.so or 1iba3030.so which would be explicitly loaded if
the user opens the Kakao Pay Activity. By performing some simple
tests, we detected that Android does not verify the integrity of the
loaded library, but only compares the file size of the original library
shipped with the APK with the one placed in /data/data/com.kakao
.talk/1ib/. If the file sizes do not match, Android replaces our modi-
fied library with the original version. However, if the file sizes match,
Android loads the malformed library successfully. In order to keep the
original file size, we propose two options: First, replacing the entire
library with a malicious one. However, this approach would possibly
break the execution flow of Kakao Pay. Second, patching the ELF
binary object of the library to load an additional dependency library
which is under the attacker’s control. The advantage of patching the
ELF object is that is does not change the file size of the native li-
brary. As explained in [92], an attacker may modify the .dynamic sec-
tion of the ELF binary by modifying two parameters: First, changing
the optional library dependency flag from “SONAME” to “NEEDED”.
Second, changing the path of the optional dependency library from
“optional-dependency.so” to /data/data/com.kakao.talk/malicious
-lib.so. The “malicious-lib.so” library may contain a JNI_Onload()
function which would execute malicious code when the library is loaded
into the KakaoTalk process. However, despite that we were successful of
loading our malicious dependency library, we were not able to execute
the JNI Onload () method because it is only called on the library that
was loaded by the System.load() or System.loadLibrary() function
call.

The drawback of the library side-loading attack would be that a user
needs to explicitly open the Kakao Pay Activity to load the malicious
library. Another disadvantage would be that this method does not sur-
vive a reboot of the mobile handset as KakaoTalk’s /1ib/ directory
would be replaced by the original symlink upon system boot. Yet,
there is another challenge when specifying the explicit directory path
of our malicious library inside the ELF binary object: We only have

9https://cvemitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0854

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0854

CHAPTER 4. TECHNICAL ANALYSIS 112

a limited amount of space to control and specify the path of the li-
brary. We cannot solve this problem by using relative paths because the
System.load() and System.loadLibrary() methods do not support
them. Furthermore, we cannot place and load our malicious library to
and from the SD card as it has the NX bit set.

Patching the “lowell” binary: KakaoTalk creates a world-readable and
executable traceroute binary named “lowell” under the /files/ direc-
tory when a user executes a network test located under “Settings” —
“Network Test” — “Start Test”. We recognized that KakaoTalk does
not overwrite the binary each time a user starts the network test from
the beginning. This may mean that an attacker may be able to obtain
remote code execution by reverse engineering and patching the binary.

Results of our forensic analysis: While examining the mobile hand-
set’s file system and physical memory, we found numerous artifacts that may
allow an attacker who is able to get a hold of the device, to obtain sensitive
information or impersonate a KakaoTalk user. We found that KakaoTalk
uses a shared preference file which stores various configuration settings. For
instance, the file stores a session identifier which is used to authenticate
the KakaoTalk application. In addition, KakaoTalk stores private and public
RSA and Ed25519 keys in the TalkKeyStore.preferences.xml file in plain-
text. With these key-pairs an attacker may be able to decrypt the shared
secret value that is being used to compute the E2E encryption key. Moreover,
an attacker may be able to forge valid Ed25519 signatures to impersonate
a KakaoTalk user. If the mobile phone’s file system is not encrypted and
has adb debugging enabled, an attacker may be able to obtain a copy of
KakaoTalk’s files even from a non-rooted device. We also recognized that
KakaoTalk uses the file.delete() method to delete files from the file sys-
tem. However, it is well known that this may be an insecure way of deleting
files [125]. Furthermore, we were able to extract the user’s email address,
device UUID and several OAuth tokens from the handset’s physical memory.
This is also possible on a non-rooted device by using the Memory Monitor
which is part of Android Studio. With these artifacts found on the user’s
mobile phone, an attacker may be able to perform the following actions:

e Web API and LOCO messaging server login using the user’s identity.
e Sending chat messages on a user’s behalf.
e Access encrypted chat history.

e Update and change server-side stored KakaoTalk configuration settings.

CHAPTER 4. TECHNICAL ANALYSIS 113

Miscellaneous issues: In addition to the previously discussed vulnera-
bilities, we found a number of additional issues:

o KakaoTalk exports 31 activities and four broadcast receivers with no
permissions. These application components may be invoked by other
applications to obtain sensitive data or to inject malicious code.

o KakaoTalk’s OAuth access token may lack randomness (see Section
4.2.3.2).

e Other than using ProGuard for code obfuscation, KakaoTalk does not
employ anti-reversing techniques. There is no root detection, emulator
detection, or a mechanism for detecting an attached debugger.

e Even though KakaoTalk encrypts some database entries, it does en-
crypt its SQLite database as a whole (e.g., by using SQLCipher).

e A four-digit pin that can be used to protect a KakaoTalk installation
can be easily brute forced or guessed®.

e Prior Android 4.1 any application that declares the READ_LOGS per-
mission is able to read the log files of any other application. Since
KakaoTalk logs a number of events, this may be abused by an attacker
to obtain sensitive information.

e KakaoTalk creates a world-readable and executable traceroute binary
file within its private data directory if the user starts a network test.

4.4.3 Information Privacy Analysis

We are finishing our technical analysis chapter by providing a list of system
weaknesses that may violate user’s privacy. The particular privacy violations
that we found are as follows:

Information leakage: We discovered that KakaoTalk leaks data through
unauthenticated channels. First, KakaoTalk sends crash reports to a re-
mote server in case there are issues such as a bad JNI memory access, a
Java null pointer exception, or other errors. These reports are sent to the
http://groupl.magpie.daum.net/magpie/put/ URL unencrypted over HTTP
and include sensitive information such as the detailed software and hardware

9nttp://www.datagenetics.com/blog/september32012

http://group1.magpie.daum.net/magpie/put/
http://www.datagenetics.com/blog/september32012

CHAPTER 4. TECHNICAL ANALYSIS 114

configuration of the user’s device as well the error cause, user ID, environ-
ment variables and other data. Another source of information leakage is
KakaoTalk’s network test. This test also sends a report over an unauthenti-
cated channel to a PHP script located at http://nettest.kakao.com/up.php.
The network test report includes the user ID, mobile OS and KakaoTalk
version as well as the mobile country code. Finally, KakaoTalk may uninten-
tionally leak sensitive information through its usage of various permissions.
For instance, the ACCESS_WIFI_STATE permission may leak data that may be
abused to track individuals [1]. Regarding KakaoTalk’s permission usage, we
found that KakaoTalk constantly tries to access the user’s private phone ad-
dress book even if the user has disabled the application’s feature to sync the
address book with the Web API backend. We discovered that KakaoTalk
accesses the address book in cases where it does not seem necessary, e.g.,
while browsing through the application’s main Ul tabs. Summing up, our
found information disclosures may not seem critical, however we argue that
even mild privacy leaks may uniquely identify a KakaoTalk user when they
are combined together.

User tracking: First of all, KakaoTalk does not provide anonymous mes-
saging. The application requires the user’s phone number in order to sign-up
for the service and a private e-mail address in case a user wishes to use
additional services. Also, Kakao links the randomly generated device UUID
against the user’s phone number. In addition, we found evidence that Kakao-
Talk is tracking the way how a user is using the application. For instance, it
tracks the time a user has spent on certain Activities in a database. Moreover,
it runs a web cookie database which stores up to six different cookies that are
linked to different domains including tiara.daum.net and tiara.kakao.com. To
the detriment of the user’s privacy, there is no mechanism to control these
cookies as KakaoTalk does not provide a configuration setting to change
cookie tracking policies (i.e., configuration options that would allow to accept
all cookies, block third-party cookies, or disable all cookies). KakaoTalk also
downloads external JavaScript that is most probably used for tracking. For
example, scripts including http://m2.daumcdn.net/tiara/js/td.min.js and
http://adl-kant.kakao.com/track_jquery3.js are being downloaded onto the
device to log actions such as which news entries the user has tapped on within
the NoticeActivity.

Social graph: As listed in Section 4.2.2, Kakao has access to a large
amount of user data (e.g., friends lists or chat metadata). This data set

http://nettest.kakao.com/up.php
tiara.daum.net
tiara.kakao.com
http://m2.daumcdn.net/tiara/js/td.min.js
http://ad1-kant.kakao.com/track_jquery3.js

CHAPTER 4. TECHNICAL ANALYSIS 115

allows Kakao to build a user’s social graph® which means that the service
knows about the user’s social relationships. There is evidence that Kakao-
Talk is building a user’s social graph as the application recommends potential
friends that the user may know, e.g., by recommending a person who shares
the same common friend.

Spam: In most messengers a new contact needs to be explicitly authorized
by the user before the contact is allowed to add the user to her friend list.
This feature prevents random persons from adding arbitrary contacts in order
to send spam messages. KakaoTalk does not enable this feature by default
which means that strangers may be able to add random contacts without
requiring their explicit consent. This may allow a chat bot to automatically
add contacts to spread spam messages.

4.5 Comparison Between Terms of Service
Claims and Technical Findings

In this section we compare our technical findings from Section 4.4 with
Kakao’s public marketing claims from Section 3.3. For each question we
raised in Section 3.3.3, we try to provide a detailed answer. However, we
cannot answer all questions since we were facing timing constraints.

End-to-end encrypted chat
e Despite Kakao’s claims, would the company be able to decrypt end-to-
end encrypted messages?

Answer: Our answer would be a simple “Yes” (see Section 4.4.1).

Encryption and data protection

e Does KakaoTalk use encryption for all communication channels?

Answer: KakaoTalk does not always use encryption. Sensitive
data leakage occurs due to unencrypted (HTTP) or improperly secured
network channels (vulnerable HTTPS connections).

e Does KakaoTalk protect against user impersonation or identity theft?

Answer: If an attacker gets a hold of the user’s mobile handset
or otherwise is able to obtain authentication tokens from the device’s

9%https://developers.facebook.com/docs/graph-api

https://developers.facebook.com/docs/graph-api

CHAPTER 4. TECHNICAL ANALYSIS 116

physical memory /storage, an adversary may be able to impersonate a
user successfully. Users who suspect a KakaoTalk account compromise
may be able to deactivate their stolen account by contacting Kakao’s
IT support?.

Collection of user information

Data minimization: Does KakaoTalk collect more information than it
claims?

Answer: In our opinion, KakaoTalk stores more data than abso-
lutely necessary (see Section 4.2.2).

Data utilization: Does KakaoTalk utilize user data for any other pur-
poses?

Answer: No evidences found.

User consent: Does KakaoTalk require user consent? Are the policies the
same as the ones published on Kakao’s website?

Answer: KakaoTalk requires user’s consent upon user registra-
tion. However, we did not find an option that KakaoTalk informs the
user about privacy policy or terms of service changes. In addition, in
some cases KakaoTalk transmits data without the user’s explicit con-
sent (e.g., when sending crash reports that contain detailed hardware
and software information about the user’s handset).

Collection of user information from third-parties

e Does KakaoTalk collect any user information from third-parties (e.g.,
by using third-party advertising libraries)?

Answer: We did not find evidence that KakaoTalk is collecting
user information from third-parties. KakaoTalk 5.5.5 does not make
use of third-party advertising libraries.

Sharing of user information
e Does KakaoTalk share more information with third-parties than offi-
cially claimed?

Answer: We did not find evidence that KakaoTalk is sharing more
information with third-parties than officially claimed.

9%http://www.kakao.com/account_theft_requests?locale=en.

http://www.kakao.com/account_theft_requests?locale=en

CHAPTER 4. TECHNICAL ANALYSIS 117

e Does KakaoTalk share user information with any other third-party not
mentioned in the privacy policy?

Answer: We did not find evidence that KakaoTalk is sharing user
information with any third-party not mentioned in the privacy policy.
e Tracking: What about third-party cookies that are used by KakaoTalk?
For what are they used?
Answer: KakaoTalk does not use third-party tracking cookies.
e Which data does KakaoTalk share with other Kakao services? Accord-

ing to [102], Kakao does not clearly disclose whether and how it shares
user information between different Kakao services.

Answer: Kakao clearly discloses which third-parties are provided

with the user’s personal information®7.

User control over information collection and sharing

e What online storage system does KakaoTalk use, Daum’s or Kakao’s?
This is critical because the number of data requests for Daum and
Kakao vary significantly [34].

Answer: KakaoTalk uses both online storage systems (Kakao and
Daum).

User’s access to their own information

e What kind of data is accessible by a KakaoTalk user?

Answer: The user has access to the number of “Connected Ser-
vices” that are linked to a particular KakaoTalk user account.

Retention of user information

e What about any data that is left on the SD card after KakaoTalk was
removed from an Android device?

Answer: After removal, KakaoTalk leaves an encrypted cookie as
well as some non-critical web contents on the SD card. If the user has
created a message backup, the backup file would remain on the SD card
as well.

9http://www.kakao.com/provide_layer?lang=en

http://www.kakao.com/provide_layer?lang=en

CHAPTER 4. TECHNICAL ANALYSIS 118

e KakaoTalk’s privacy mode: Does Kakao store KakaoTalk messages
longer than three days?

Answer: We did not have the time to verify if Kakao stores unread
messages longer than three days.

Spam protection

e Does KakaoTalk or any other associated third-party monitor users’
communications to enforce its operation policy? If yes, how do they
block/filter/delete spam or other malicious content?

Answer: While we did not have the resources to test KakaoTalk’s
spam protection feature, we found evidence that the application may
block certain top-level domain (TLD) on the client-side. We found a
Java class that contained a number of hard-coded TLDs. However, we
did not verify if the code is used by the application to block domains.

e Juvenile protection: How does KakaoTalk enforce Articles 41-43 of the
Promotion of Information and Communications Network Utilization
and Information Protection Act®®?

Answer: While we believe that there must be a form of server-side
or client-side keyword blocking mechanism to filter malicious messages,
we did have the time to investigate this further. Kakao has publicly
said that the company scans for malicious keywords and URLs and
filters them accordingly.

%®http://elaw.klri.re.kr/kor_service/lawView.do?hseq=32543%1ang=ENG

http://elaw.klri.re.kr/kor_service/lawView.do?hseq=32543&lang=ENG

Chapter 5

Evaluation

First and foremost, we must admit that we were not able to perform an in-
depth evaluation of our own work. The main reason was that we did not have
the time and resources to undertake the best possible evaluation. However,
what we will do in this chapter is to describe how an ideal evaluation could
look like. Also, we list various other reasons that explain why we were not
able to evaluate our work and outline what we did instead.

As discussed in Section 1.2, we identified two main solutions (or out-
comes) of this Master thesis and formulated a corresponding goal that each
solution should accomplish. Furthermore, we outlined our own evaluation
requirements and techniques that we would use to assess our two solutions.
In the next sections, we will try to perform a fair evaluation with respect to
our own defined requirements even though we were facing timing constraints.

5.1 Evaluation for Solution 1

The evaluation requirement of our security assessment was that it should
identify the security goals of KakaoTalk and make a clear statement about
how well KakaoTalk met a particular goal. Moreover, we stated that for
any goal that is not met, our assessment should clearly explain why, and
preferably include a Proof of Concept (PoC) exploit.

In Section 4.3.2 we claimed that KakaoTalk’s main security goal is to
protect its valuable assets from potential threats such as data theft. In our
security assessment we mainly focused on the most important asset, which we
believe is the user’s Personally Identifiable Information (PII). In particular,
we focused on user’s private end-to-end encrypted messages as well as on
user’s private information (i.e., identifiers, contact or location information,
and other data). Our security analysis showed that KakaoTalk may not

119

CHAPTER 5. EVALUATION 120

necessarily protect these assets to the full extend:

End-to-end encrypted messages: We showed that KakaoTalk’s end-
to-end encryption feature is theoretically vulnerable to MITM attacks on
the operator-side (Section 4.4.1). Unfortunately, we could not come up with
a PoC exploit to demonstrate this weakness in practice due to timing con-
straints. However, one may be able to easily set up an experiment to simulate
the operator-side MITM attack that we described in Section 4.4.1:

The controlled experiment would consist of two modified KakaoTalk 5.5.5
clients and a MITM proxy application. The two clients would need to be
modified in such a way that they would successfully establish a LOCO session
with the MITM proxy application (see Section 4.2.3.2). For this, one would
need to modify the client’s source code in order to replace Kakao’s hard-
coded RSA public key with a RSA key that belongs to the proxy. The main
component of the experiment would be the MITM proxy application which
would mimic a legitimate LOCO messaging server in order to intercept any
LOCO messaging traffic. The proxy would be connected to a legitimate
LOCO messaging server in order to relay any intercepted LOCO messaging
traffic to a destination. After describing the components of the experiment,
a MITM attack on end-to-end encrypted messaging could work as follows:

1 First, the modified clients would need to be forced to negotiate a LOCO
handshake with the MITM proxy application. This could be easily
achieved by applying well known MITM attacks such as DNS cache
poisoning attacks. The clients would establish a LOCO session with the
proxy as they do not verify the authenticity of the connection endpoint.

2 During the LOCO handshake, the modified clients would generate a sym-
metric AES key that would be encrypted with the proxy’s RSA public
key. As a result, the proxy would be then able to decrypt the LOCO
“handshake” packet (see Section 4.2.3.1) and all further LOCO pack-
ets sent by the clients. In a next step, the proxy would re-encrypt all
LOCO packets with its own symmetric AES key in order to forward
them to Kakao’s legitimate LOCO messaging backend.

3 Being the MITM, the proxy could then attack end-to-end encrypted chats
by replacing each participants public keys (see Section 4.4.1).

In addition to an operator-side MITM attack on KakaoTalk’s “Secret
Chat” feature, we also found a code injection vulnerability which may be
exploited to compromise an end-to-end encrypted chat conversation (see Sec-
tion 4.4.2). While we explained how a possible JavaScript injection attack

CHAPTER 5. EVALUATION 121

could work in theory, we did not have the resources to develop a PoC that
would show the attack in practice. Nevertheless, one may build a JavaScript
exploit that could be simply injected into a KakaoTalk WebView that has
a JavaScript to Java bridge added to it. A potential PoC exploit may be
able to access the bridge to start a remote shell on the user’s mobile handset.
After connecting to the shell, one may drop a root exploit onto the device
to escalate privileges. In a final step, one may then be able to steal end-to-
end encryption keys from the handset’s data storage and/or physical device
memory. The code injection attack may be performed by any local or re-
mote network attacker as KakaoTalk downloads web content via improperly
secured network channels.

One weakness of our security assessment is that our end-to-end (E2E)
encryption protocol analysis suffers a major limitation. As stated in Sec-
tion 4.1, we reverse-engineered the protocol by analysing an older version
of KakaoTalk (4.7.0) as the source code of version 5.5.5 was obfuscated by
ProGuard. Even though we were able to establish an E2E encrypted chat
between KakaoTalk 4.7.0 and KakaoTalk 5.5.5, we cannot eliminate the fact
that two clients running on version 5.5.5 may use a different version of the
protocol. In our test, KakaoTalk 5.5.5 may just used an older protocol ver-
sion in order to guarantee backwards compatibility with KakaoTalk 4.7.0.
For this reason, it might be the case that our detected security flaws do
not apply if only KakaoTalk 5.5.5 clients participate in an E2E encrypted
chat. For a rigorous protocol security assessment one would need to test
several KakaoTalk versions on different mobile operating systems (Android

and i08).

User’s private information: We argue that another major security goal
of KakaoTalk is to protect user’s private information from unauthorized ac-
cess. While we described numerous application exit points that leak user’s
private information, we did not have the time to come up with a dedicated
PoC program. Furthermore, we cannot eliminate the fact that KakaoTalk
may leak user’s private information through other channels that we have not
investigated due to limitations of our study. For instance, while we completed
a rigorous network traffic analysis, we did not perform a detailed analysis of
KakaoTalk’s inter-process communications (IPC). Although we showed that
KakaoTalk does not secure a number of its IPC interfaces, we did not have
the resources to identify further possible IPC weaknesses that may lead to
information leakage. However, one may detect user’s private information
leakage through IPC by fuzzing. For example, one could fuzz KakaoTalk

CHAPTER 5. EVALUATION 122

IPC interfaces by using Drozer’s Android Intent Fuzzing module!.

Other assets: For all remaining assets including user’s message and com-
munication metadata, user’s money, Kakao’s reputation and other assets, we
did not have the time to investigate whether KakaoTalk is protecting them
in an appropriate manner or not. There are a number of other reasons why
we left out certain assets:

Our two assessment checklists (see Appendix A) do not include all possible
vulnerabilities that may exist in Android chat applications. This is
mostly due to the fact that there are no agreed best-practices or other
sources that list all possible security weaknesses.

Our threat analysis faces limitations in that we intentionally excluded top-
ics such as risk assessment, threat prioritization, or countermeasure
specification. In addition, we made a number of security assumptions
which further shrank the number of possible attack vectors (see Section
4.3.1).

Other than scanning Kakao’s servers for TLS weaknesses, we did not scan
or fuzz the company’s backend for vulnerabilities or check for other
weak server-side controls in order to not possibly disturb the company’s
services.

Even though we identified KakaoTalk’s components and software libraries
that deal with the user’s money (i.e., Kakao Pay), we did not have the
time to search for any possible flaws.

Regarding user’s message and communication metadata we only listed a
subset of data that is stored by KakaoTalk (see Section 4.2.2). A more
profound analysis may detect more such metadata that the application
generates and possibly stores.

After describing the main pros and cons of our security assessment, we
suggest how a comparative study could be used to identify further strengths
and weaknesses of our chosen approach. The main method of a comparative
study would be a rigorous review of existing literature and to compare related
work on Android application security assessments with our study. From
what we know from our literature review concerning Chapter 2, we argue
that existing related work may be divided into two categories. First, there is
related work that explicitly focuses on end-to-end encryption capable mobile

https://github.com/mwrlabs/drozer-modules/tree/master/intents

https://github.com/mwrlabs/drozer-modules/tree/master/intents

CHAPTER 5. EVALUATION 123

chat applications. In this category, related work either concentrates on the
assessment of messaging protocols (e.g., the iMessage protocol [55], the Signal
protocol [53], the OTR protocol [38], or the MTProto protocol [72]) or on the
digital forensics analysis of mobile chat applications (e.g., WhatsApp [2] or
Telegram [108]). The other main related work category that we discovered is
existing literature that focuses on the security assessment of general Android
applications in order to identify a certain vulnerability type. For instance,
[43] concentrates on TLS issues in Android applications, whereas [16] shows
common OAuth weaknesses in Android applications. Reaves et al. [101]
analyzed several mobile Android banking applications and used a similar
methodology approach as our work.

Given these two related work categories, a profound comparative study
would then compare our work to these different security assessments with
respect to used methodologies and tools, chosen mobile risks, identified vul-
nerabilities, or published PoC exploits.

In summary, this was what we could and could not achieve for solution
number 1:

1. We identified several security goals for KakaoTalk (Section 4.3).

2. We analyzed to what extend KakaoTalk met the security goals (Section
4.4), although with some caveats as we described above.

3. We performed a brief informal comparison of our analysis with other
work (above in this section) but a more complete comparison is feasible,
given enough time and resources.

5.2 Evaluation for Solution 2

For solution number two we planned to create a higher-level report that
would represent our main findings in a clear format. The goal of this report
would have been to provide an easy-understandable way for users to inform
themselves about the strengths and weaknesses of KakaoTalk’s end-to-end
encryption system. With that knowledge users would be able to make an
informed decision whether they want to trust the system or not. Again
due to timing constraints, we were unfortunately not able to compile such
a report. However, we will publish a press release of our main findings in
a concise format on https://citizenlab.org/ in August 2016. Since this
will be after the submission of this Master thesis, we will not be able to
verify whether the press release would make an impact on user’s behaviour
or not. However, in the following we propose a user study that may be used

https://citizenlab.org/

CHAPTER 5. EVALUATION 124

to validate whether the press release would help users to make an informed
decision about KakaoTalk’s end-to-end encryption feature or not.

The user study would be set up as a controlled experiment in which we
would invite KakaoTalk users who regularly use its “Secret Chat” opt-in
feature. We would then divide participants into two groups: Omne group
would be given the press release prior the experiments whereas the other
group would not receive the report in advance. After the experiments, which
would consists of a number of specific user tasks (e.g., chatting, comparing
public key fingerprints, reactions to security warnings, and other tasks), we
would analyse and compare the different behaviour of these two groups. If
we cannot get enough participants to set up a controlled study, we would
use other forms of usability evaluation such as cognitive walkthrough with
an usability expert or qualitative feedback surveys.

In summary, this was what we could and could not achieve for solution
number 2:

1. We will publish a partial report on https://citizenlab.org/ in August
2016 to make our technical findings available to a wider non-technical
audience.

2. We did not perform a usability evaluation of the partial report, but
again a user study is feasible, given enough time and resources (as
described above).

https://citizenlab.org/

Chapter 6

Discussion

In this chapter, we briefly discuss the impact of our results (Section 6.1) and
reflect on our evaluation techniques (Section 6.2). We conclude by suggesting
interesting projects for future work in Section 6.3.

6.1 Significance of Our Results

In this section we discuss the broader message of our technical findings.
First, we speculate whether Kakao really intents to protect user’s privacy and
security or if the company’s numerous public statements suit for marketing
purposes only (Section 6.1.1). Second, we explain what our findings in respect
to end-to-end encrypted messaging mean in general (Section 6.1.2). Lastly,
we try to come up with a number of recommendations to give high-risk users
a chance to use KakaoTalk’s “Secret Chat” feature most securely (Section
6.1.3).

6.1.1 Terms of Service Claims Versus Real-World
Technical Findings

What our comparison from Section 4.5 shows are two interesting facts: On
the one hand, Kakao invested enormous efforts in improving user’s security
and privacy. On the other hand, KakaoTalk suffers a number of software
vulnerabilities that affect user’s security and privacy in a negative way. This
may raise the question whether Kakao is really serious about user’s security
and privacy despite making these claims. Especially, if one looks at Kakao-
Talk’s business model which is still mainly based on advertising: To show
the best possible advertising to a user, KakaoTalk may track user behaviour
by using up to six different cookies. What is more, since Kakao has a new

125

CHAPTER 6. DISCUSSION 126

CEOQO, there may be concerns that the company may abandon some of its
strict security and privacy guidelines (see Section 3.2.3.2). So yes, Kakao
is concerned about user’s security and privacy, but there is also proof that
Kakao fails to keep some of its promises. What our comparison findings mean
for the user is that a company’s public security and privacy claims should
not be trusted as long its software is closed-source and has not been verified
independently.

6.1.2 End-to-end Encryption Alone is not Sufficient

KakaoTalk’s “Secret Chat” feature serves as an example that violations of
security and cryptography best practices result in practical attacks against
end-to-end encryption in mobile chat applications. Since messaging appli-
cations have a tremendous attack surface, there is much potential of what
can possibly go wrong. This means, that end-to-end encryption does not
help much if the overall system security of the messaging application is vul-
nerable. What we have also seen in this work is how important the aspect
of usable security really is. Users are often the weakest link in a software
system. If KakaoTalk users do not understand security warning messages
or do not know how to compare each other’s public key fingerprint, end-to-
end encryption does not provide security at all. Finally, sometimes the mere
suspicion of sending or receiving an end-to-end encrypted message can be
harmful to an user. Therefore, even though the message content may not be
decryptable by an attacker, the metadata of a particular conversation can be
enough to identify individuals. All of the popular secure instant messaging
systems that exist today do not protect user’s metadata. However, some of
them can be used over anonymization networks such as Tor to provide some
level of metadata protection.

Another observation is that KakaoTalk uses many different techniques
for the same functionality (Section 4.2.3). For instance, the application uses
different encryption modes (Cipher Feedback and Counter Mode) in different
situations. However, KakaoTalk fails to use authenticated encryption modes
such as Galois/Counter Mode (GCM) in places where it would have made
perfect sense. KakaoTalk’s design also seems to have other artifacts that
suggest that the application design choices were made over a long period of
time, possibly by multiple designers. While this is hard to avoid in large,
long-lived software projects, it also suggest a lack of a coherent security
architecture done by one or a small group of security architects.

CHAPTER 6. DISCUSSION 127

6.1.3 Recommendations for High-risk Users

In this section we try to come up with a list of user recommendations on how
to use KakaoTalk most securely. Given a high-risk user who has no chance
to use a different more secure messenger such as Signal, these are general
guidelines on how to have a rather secure end-to-end encrypted conversation
(we use a language that is targeted to the user):

e Try to use KakaoTalk via the Tor network (e.g., via the Orbot Android
application).

e Do not accept security warnings. If KakaoTalk shows a warning mes-
sage — no matter which — stop using it. Try to switch your commu-
nications to another secure (out-of-band) channel. Verify whether you
receive the same warning message when using a different WiFi or cel-
lular network.

e Create a new “Secret Chat” chat room each time you start a new end-
to-end encrypted conversation. Do not reuse previously created “Secret
Chat*“ chat rooms.

e Always compare the other party’s public key fingerprint over a secure
out-of-band channel.

e Do not use KakaoTalk for any other reason except for “Secret Chat”.
Do not use the regular or open chat rooms.
Do not use “Plus Friend” or the “Item Store”.

Do not tap on the “Help Center” and the “News feed”.

6.2 Reflection on Our System Evaluation

Evaluating our work proved to be difficult for several reasons. First, it was
hard to come up with an evaluation technique for a subject that is not tangi-
ble. We were not proposing a real technical solution or implementation that
could be easily evaluated. But instead, we “just” performed a security as-
sessment and terms of service analysis of an end-to-end encryption protocol
and chat application.

Second, evaluation was hard due to the strict timing constraints of our
project. Reflecting on our time management, we spent too many hours on
topics that may have required less detailed work and as such less time. For
instance, we investigated enormous resources in researching South Korea’s

CHAPTER 6. DISCUSSION 128

political and historical context. Also, we might spent too much time on re-
viewing Kakao’s terms of services, privacy policies, and various other sources
in order to find public statements with regards to security and privacy. In ret-
rospect, this let to the fact that we did not have enough timing resources for
our technical analysis as we had planned initially. Regarding our technical
analysis, the most time consuming factor was to identify common vulner-
abilities in Android applications and to set up our development and tool
chain. Since there are various existing tools on Android application secu-
rity as well numerous common weaknesses in Android applications, finding
out what tools and vulnerabilities are the most important, took the most ef-
forts. However, once we had agreed on a common set of Android weaknesses
and had compiled our assessment checklists, the actual vulnerability analysis
of KakaoTalk took less time as expected. The most difficult challenges dur-
ing our reverse-engineering assessment of KakaoTalk’s end-to-end encryption
protocol were code obfuscation and code recovery failures.

For these reasons, we were not able to evaluate our work to the full extend.
However, what we did was to describe how an ideal evaluation of our work
could look like (see Section 5).

6.3 Future Work

The fact that we had a limited time budget and that KakaoTalk provides a
vast amount of possible attack vectors leads to a number of interesting future
work projects:

Server-side key generator: In Section 4.2.3.2 we showed that Kakao may
generate OAuth access tokens with weak randomness. If one receives
Kakao’s permission, one could try to feed https://ac-talk.kakao.com/
android/account/signup.json with different input to find out more
about how the blackbox key-generator works.

Group E2F encrypted chat: In this thesis we only looked at Kakao-
Talk’s one-on-one E2E encryption feature. A future work project could
examine how KakaoTalk uses the protocol for group E2E encrypted
chat rooms.

IPC analysis: This work mainly focused on IP network communications
rather than on KakaoTalk’s on-device inter-process communications
(IPC). It would be interesting to see whether a third-party application
with user-permissions is able to interact with KakaoTalk in such a
way that it could sniff or spoof IPC messages. “On-device attacks”

https://ac-talk.kakao.com/android/account/signup.json
https://ac-talk.kakao.com/android/account/signup.json

CHAPTER 6. DISCUSSION 129

are plausible since KakaoTalk allows to install customized themes as
separate APK files. These APKs may be malicious and may exploit
improperly secured IPC interfaces.

Kakao Pay: Kakao Pay would be an interesting component to take a look
at since it uses a number of custom cryptography libraries with many of
them not being obfuscated by ProGuard. We found that some of Kakao
Pay’s third-party libraries may have an update service included and
may have the permissions to install APKs. In addition, one could try to
improve or continue to work on our suggested library injection attack
(see Section 4.4.2). The native 1ibNSaferJNI.so and 1iba3030.so
would be suitable candidates as these libraries are loaded by Kakao
Pay via an explicit path argument at runtime.

Enumeration attacks: Kim et al. proposed an enumeration attack in
2015 [80]. Omne could verify if the attack is still possible by developing
a simple curl script that tries to crawl user data via sending POST re-
quests to URLs such as https://auth.kakao.com/kakao_accounts/find_
account_by_phone.json or https://katalk.kakao.com/android/friends
/add_by_phonenumber.json.

Replay attacks: As explained in Section 4.4.2, we did not have the time to
perform a detailed replay attack analysis on KakaoTalk’s chat protocol.
A future work project may try to replay, drop, mangle, mirror, or
reorder messaging packets in order to find out whether KakaoTalk’s
client /server components handle tampered message flows correctly.

Push notifications: A future work project could work on the security of
KakaoTalk’s push notifications. This may be another attack vector to
possibly obtain the plaintext of an end-to-end encrypted chat message.

JavaScript exploits: We outlined in Section 4.4.2 that we did not come
up with a PoC exploit that shows our identified code injection vulner-
abilities in practice. There would be a need for a JavaScript exploit
that tries to read a file from KakaoTalk’s private data directory by
bypassing a WebView’s same origin policy. Another exploit could try
to access the JavaScript to Java bridge to open up a remote accessible
shell on older Android versions < 4.2.

Testing: In order to further verify the impact of our detected weaknesses,
one would need to perform more testing. Profound testing would in-
clude testing our vulnerabilities on the latest version of KakaoTalk

https://auth.kakao.com/kakao_accounts/find_account_by_phone.json
https://auth.kakao.com/kakao_accounts/find_account_by_phone.json
https://katalk.kakao.com/android/friends/add_by_phonenumber.json
https://katalk.kakao.com/android/friends/add_by_phonenumber.json

CHAPTER 6. DISCUSSION 130

(4.7.1 as of 04.07.2016), on different Android version, as well as on
other mobile operating systems such as iOS.

6.4 Responsible Disclosure and Notification

In August 2016 we delivered a summary of the issues identified in this Master
thesis to Kakao, and indicated that we would like to publish our findings no
sooner than 45 days after having sent the notification. This process is in line
with international standards on vulnerability disclosure!.

After the 45-day deadline we will announce our findings in a partial re-
port on https://citizenlab.org/. The report will also contain any corre-
spondence with Kakao related to the responsible disclosure process.

'https://www.cert.org/vulnerability-analysis/vul-disclosure.cfm

https://citizenlab.org/
https://www.cert.org/vulnerability-analysis/vul-disclosure.cfm

Chapter 7

Conclusion

This Master thesis performed a detailed terms of service and technical analy-
sis of KakaoTalk which is a mobile messaging application from South Korea.
We explained how a company’s (Kakao) terms of service policy has changed
over time and showed how political and social changes in a country may
affect a corporation’s policies. To the best of our knowledge, this type of
context analysis for a mobile end-to-end (E2E) encryption application has
not been done before. However, this is crucial as political or social changes
may affect the user’s security and privacy in a positive or negative way.
In terms of KakaoTalk, political events have improved user’s security and
privacy. Moreover, in our terms of service analysis we listed several state-
ment that were made by Kakao with regard to security and privacy. We
grouped Kakao’s statements into security and privacy categories and derived
a number of research questions from them. These question were driving our
technical analysis of the KakaoTalk application. The analysis consisted of
an in-depth security assessment in which we first identified common Android
and end-to-end encryption vulnerabilities by compiling two distinct security
assessment checklists. Further, we described and reverse-engineered parts
of KakaoTalk’s messaging system including but not limited to KakaoTalk’s
end-to-end encryption protocol. After describing the system we performed
a threat analysis in order to map out Kakao’s security goals, possible threat
agents, as well as the system’s attack surface. We continued with the main
part of our technical analysis, which was to identify vulnerabilities in Kakao-
Talk’s end-to-end encryption protocol as well as to find weaknesses in Kakao-
Talk’s Android version. Following we list the main findings of our end-to-end
encryption protocol assessment:

1 Within two months, Kakao developed an E2E encryption protocol which
is built on top of the company’s existing non-E2E chat protocol. All

131

CHAPTER 7. CONCLUSION 132

communications are relayed through a messaging server which unpacks
the packets, creates new ones, and forwards them to the destination.
The server also stores packets in case the recipient is offline.

2 Kakao uses a central public-key directory server which makes the end-to-
end messaging system prone to man-in-the-middle (MITM) attacks on
the operator-site. If users do not compare their public key fingerprints,
this attack may remain undetected. Since Kakao has the ability to
delete E2E encrypted chat rooms on the server-side, those MITM at-
tacks can also be performed after two clients have agreed on a shared
secret key. The user would just need to create a new chat room and the
attacker would be then able to substitute a user’s key during the initial
secret key exchange. Most of the secure messaging systems that are
used today run a public-key directory server, e.g., WhatsApp, Signal,
or iMessage [55]. While this naive attack may seem obvious, Kakao-
Talk end users should know about the strength and weaknesses of the
particular design that Kakao has chosen. With that knowledge they
can make an informed decision whether they want to trust Kakao or
not.

3 The actual chat message is the only data field in the protocol that is pro-
tected by a Message Authentication Code (MAC). However, KakaoTalk
uses the concept of MAC-then-encrypt which means that the cipher-
text remains unprotected. All other data fields in the packet do not
have integrity protection.

4 There is no messaging-server authentication. A rough or malicious server
or a local /global network MITM attacker may tamper with the messag-
ing packets at will. In addition, the KakaoTalk application responds to
a number of commands sent by the messaging server. A MITM could
to do the same without being detected by the client.

5 Replay/reflection attacks are possible even though we have not tested this
much. We were able to replay packets and change the order of packets,
but in some cases, which we could not reproduce because of timing
constraints, the client or server auto-corrects this misbehaviour.

In addition to our protocol analysis, we also found a number of application
vulnerabilities in KakaoTalk’s Android version:

1 For some domains KakaoTalk accepts self-signed MITM certificates. While
throwing CertPathValidatorException messages in the background,

CHAPTER 7. CONCLUSION 133

the user is presented with just a simple warning dialog mentioning
“There are problems with the security certificate for this site”. If the
user accepts the dialog the application continues working and a MITM
can read the traffic. In addition, some of KakaoTalk’s TLS endpoints
are vulnerable to POODLE, DROWN, and padding oracle attacks.

2 KakaoTalk is a hybrid application which means that it makes heavily us-
age of the WebView class to display web content that is being down-
loaded through HTTPS and sometimes even through HTTP connec-
tions. Most of the WebViews have JavaScript (JS) enabled and allow
file system access as KakaoTalk is caching web content on disk. Since
web content is downloaded through unauthenticated channels and TLS
connections that can be compromised with a self-signed certificate, a
MITM may be able to inject and executable arbitrary JS code. We
did not have time to test this in depth, but we could inject a simple
alert(document.cookie) ; statement that was executed on the client-
side. Also, if an attacker manages to bypass a WebView’s same-origin
policy she might be able to steal the application’s RSA and ED25519
key pairs that are stored in the TalkKeyStore.preferences.xml. file
within the application’s private data directory.

3 For some WebViews KakaoTalk uses the addJavascriptInterface() pub-
lic method which implements a Java to JavaScript bridge. This means
that JavaScript code is able to interact with the native application
by calling Java methods. This “feature” can possibly be turned into
a remote code execution attack if an attacker uses the bridge to ac-
cess the getClass() method that is inherited from the Object class.
The attack works on Android versions older than 4.2 out of the box.
Newer versions are typically not affected, but Java methods can be still
called if they have the @JavascriptInterface annotation. Neverthe-
less, 10.8 percent of all Android devices still run versions older than
4.2, Again, because of KakaoTalk’s TLS certificate validation issues
this might be exploitable by a MITM. What might be worse is that
KakaoTalk provides a marketing channel called “Plus Friend” which
can be used by brands and artists for advertising their products. Basi-
cally, brands set up their own web site that the user can access through
the “PlusFriendListWebActivity”. These websites also have access to
KakaoTalk’s JavaScript bridge. If Kakao does not verify the integrity of
these sites before they are published on “Plus Friend”, any third-party
may be able to execute arbitrary code on Android versions ‘4.2.

'https://developer.android.com/about/dashboards/index.html

https://developer.android.com/about/dashboards/index.html

CHAPTER 7. CONCLUSION 134

4 Finally, there are a number of other minor security and privacy issues that
we listed in this thesis, e.g., user tracking, information leakage, access
control issues, and various other minor problems.

Summarizing, our findings indicate that KakaoTalk is violating some of
Kakao’s statements made in the company’s terms of service and privacy
policies. This way, we could accomplish the main goal of this Master thesis
which was to verify whether some of Kakao’s marketing claims with respect
to user’s security and privacy are true or false. We think that it is fair to say
that one of Kakao’s most important claim “[...] Kakao’s server is unable to
decrypt the encryption [of KakaoTalk’s Secret Chat mode] [...]” is — when
looking at our findings — actually a false statement. So yes there is end-to-end
encryption, but Kakao’s public key server infrastructure is not trustworthy.
Kakao can decrypt end-to-end encrypted messages if they want or are ordered
to by the local government. All in all, our findings show that various issues
in a product can add up to the potential for serious attack vectors despite
there being multiple layers of security.

Bibliography

Jagdish Prasad Achara, Mathieu Cunche, Vincent Roca, and Aurélien
Francillon. WifiLeaks: Underestimated Privacy Implications of the
ACCESS_-WIFI.STATE Android Permission. Research Report RR-
8539. A short version has been accepted for publication in: 7th ACM
Conference on Security and Privacy in Wireless and Mobile Networks
(WISEC’14) Oxford, United Kingdom, July 23rd — 25th 2014. Inria,
May 2014, p. 21. URL: https://hal.inria.fr/hal-00994926 (cit. on
p. 114).

Cosimo Anglano. “Forensic analysis of WhatsApp Messenger on An-
droid smartphones”. In: Digital Investigation 11.3 (2014), pp. 201-213
(cit. on p. 123).

Nitay Artenstein and Idan Revivo. “Man in the binder: He who con-
trols ipc, controls the droid”. In: Europe BlackHat Conf. 2014 (cit. on
p. 26).

Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia
Heninger, Maik Dankel, Jens Steube, Luke Valenta, David Adrian,
J Alex Halderman, Viktor Dukhovni, et al. “DROWN: Breaking TLS
using SSLv2”. In: () (cit. on p. 107).

Gayoon Baek and Youngsoug Chan. NGO Oral Statement to the UN
Human Rights Committee. http://www.peoplepower2l.org/English/
1369110. Accessed: 2016-04-24. Oct. 2015 (cit. on p. 34).

Matthew Barakat. Jeffrey Sterling, ex-CIA officer, convicted of leaking
secrets to reporter. http://www.washingtontimes . com/news/2015/
jan/26/deliberation-to-reach-third-day-in-cia-leak-case/.

Accessed: 2015-03-11. Jan. 2015 (cit. on p. 20).

Mihir Bellare and Phillip Rogaway. “Optimal asymmetric encryp-
tion”. In: Workshop on the Theory and Application of of Crypto-
graphic Techniques. Springer. 1994, pp. 92-111 (cit. on p. 156).

135

https://hal.inria.fr/hal-00994926
http://www.peoplepower21.org/English/1369110
http://www.peoplepower21.org/English/1369110
http://www.washingtontimes.com/news/2015/jan/26/deliberation-to-reach-third-day-in-cia-leak-case/
http://www.washingtontimes.com/news/2015/jan/26/deliberation-to-reach-third-day-in-cia-leak-case/

BIBLIOGRAPHY 136

8]

[11]

[12]

[13]

[14]

[15]

[16]

David Belson. “Akamai state of the Internet report, q3 2015”. In: 8.3
(Dec. 2015) (cit. on p. 33).

Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-
Yin Yang. “High-speed high-security signatures”. In: Journal of Cryp-
tographic Engineering 2.2 (2012), pp. 77-89 (cit. on p. 83).

Nikita Borisov, Ian Goldberg, and Eric Brewer. “Off-the-record com-
munication, or, why not to use PGP”. In: Proceedings of the 200
ACM workshop on Privacy in the electronic society. ACM. 2004,
pp. 77-84 (cit. on pp. 18, 19).

Cristian Bravo-Lillo, Saranga Komanduri, Lorrie Faith Cranor,
Robert W Reeder, Manya Sleeper, Julie Downs, and Stuart Schechter.
“Your attention please: designing security-decision Uls to make gen-
uine risks harder to ignore”. In: Proceedings of the Ninth Symposium
on Usable Privacy and Security. ACM. 2013, p. 6 (cit. on p. 105).

BusinessKorea. KakaoTalk Confirms Noncompliance with Wiretap-
ping Warrants to Protect Personal Information. http : / / www .
businesskorea . co . kr / english /news /politics /6846 - business -
law-kakaotalk - confirms -noncompliance - wiretapping - warrants -

protect. Accessed: 2016-04-24. Oct. 2014 (cit. on p. 39).

Rein Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky.
“Deniable encryption”. In: Advances in Cryptology—CRYPTO’97.
Springer, 1997, pp. 90-104 (cit. on p. 19).

Jonathan Carter and Milan Singh Thakur. OWASP Mobile Security
Project. https://www.owasp.org/index.php/0WASP_Mobile_Security_
Project. Accessed: 2016-06-25. May 2016 (cit. on pp. 57, 148).

PSPD Law Center and Open Net Korea. Submission to the UN Human
Rights Commuttee 115th Session, 19 October 2015 — 6 November 2015
Republic of Korea. http://opennetkorea.org/en/wp/wp-content/
uploads/2016/03/warrantless-mass-surveillance.pdf. Accessed:

2016-04-28. Oct. 2015 (cit. on p. 36).

Eric Y Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher,
and Patrick Tague. “Oauth demystified for mobile application de-
velopers”. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM. 2014, pp. 892-903
(cit. on p. 123).

http://www.businesskorea.co.kr/english/news/politics/6846-business-law-kakaotalk-confirms-noncompliance-wiretapping-warrants-protect
http://www.businesskorea.co.kr/english/news/politics/6846-business-law-kakaotalk-confirms-noncompliance-wiretapping-warrants-protect
http://www.businesskorea.co.kr/english/news/politics/6846-business-law-kakaotalk-confirms-noncompliance-wiretapping-warrants-protect
http://www.businesskorea.co.kr/english/news/politics/6846-business-law-kakaotalk-confirms-noncompliance-wiretapping-warrants-protect
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
http://opennetkorea.org/en/wp/wp-content/uploads/2016/03/warrantless-mass-surveillance.pdf
http://opennetkorea.org/en/wp/wp-content/uploads/2016/03/warrantless-mass-surveillance.pdf

BIBLIOGRAPHY 137

[17]

[21]

[22]

[23]
[24]
[25]

[26]

[27]

[28]

Hewlett Packard Enterprise Development Company. HPE Secu-
rity Fortify Taxonomy: Software Security FErrors. http : / / www .
hpenterprisesecurity . com/vulncat/en/vulncat/index . html. Ac-

cessed: 2016-06-25. 2016 (cit. on pp. 57, 148).

Jonathan Corbet. Random numbers for embedded devices. https://
lwn.net/Articles/507115/. Accessed: 2016-07-02. July 2012 (cit. on
p. 155).

Kakao Corp. Daum Kakao Releases Transparency Report. http://
www . kakaocorp.com/en/pr/pressRelease_view?page=3&group=1&idx=

8145. Accessed: 2016-04-24. Jan. 2015 (cit. on p. 40).

Kakao Corp. Frequently Asked Questions. http : / / privacy .
kakaocorp.com/en/faq/protect/pagel. Accessed: 2016-04-28. 2016
(cit. on pp. 40, 47-50).

Kakao Corp. Help. http://wuw.kakao.com/helps?locale=en&service=
8. Accessed: 2016-07-07. 2016 (cit. on p. 45).

Kakao Corp. Kakao Comprehensive Terms and Conditions. http://
www . kakao . com/policy/terms. Accessed: 2016-06-22. Mar. 2016 (cit.
on p. 53).

Kakao Corp. Kakao Operation Policy. http://www.kakao.com/policy/
oppolicy. Accessed: 2016-07-07. 2016 (cit. on p. 52).

Kakao Corp. KAKAO Privacy Policy[1]. http : //www . kakao . com/
policy/privacy. Accessed: 2016-04-28. Mar. 2016 (cit. on pp. 47-51).

Kakao Corp. Kakao Terms of Service. http://www.kakao.com/policy/
terms. Accessed: 2016-06-22. Mar. 2016 (cit. on pp. 47, 50-52).

Kakao Corp. KakaoTalk Ranks No. 1 in App Sessions Worldwide!
http://www . kakaocorp.com/en/pr/pressRelease_view?page=2&
group=1&idx=8255. Accessed: 2016-06-27. May 2015 (cit. on pp. 12,
30).

Kakao Corp. Notice. http://www.kakao.com/notices. Accessed: 2016-
06-22 (cit. on pp. 40, 41).

Kakao Corp. Personal Information Lifecycle. http : / / privacy .
kakaocorp . com/en/transparence/lifeCycle. Accessed: 2016-07-07.
2016 (cit. on pp. 47, 49, 51).

Kakao Corp. Privacy Philosophy. http://privacy . kakaocorp.com/
en/philosophy/kakao. Accessed: 2016-06-22 (cit. on pp. 42, 45).

http://www.hpenterprisesecurity.com/vulncat/en/vulncat/index.html
http://www.hpenterprisesecurity.com/vulncat/en/vulncat/index.html
https://lwn.net/Articles/507115/
https://lwn.net/Articles/507115/
http://www.kakaocorp.com/en/pr/pressRelease_view?page=3&group=1&idx=8145
http://www.kakaocorp.com/en/pr/pressRelease_view?page=3&group=1&idx=8145
http://www.kakaocorp.com/en/pr/pressRelease_view?page=3&group=1&idx=8145
http://privacy.kakaocorp.com/en/faq/protect/page1
http://privacy.kakaocorp.com/en/faq/protect/page1
http://www.kakao.com/helps?locale=en&service=8
http://www.kakao.com/helps?locale=en&service=8
http://www.kakao.com/policy/terms
http://www.kakao.com/policy/terms
http://www.kakao.com/policy/oppolicy
http://www.kakao.com/policy/oppolicy
http://www.kakao.com/policy/privacy
http://www.kakao.com/policy/privacy
http://www.kakao.com/policy/terms
http://www.kakao.com/policy/terms
http://www.kakaocorp.com/en/pr/pressRelease_view?page=2&group=1&idx=8255
http://www.kakaocorp.com/en/pr/pressRelease_view?page=2&group=1&idx=8255
http://www.kakao.com/notices
http://privacy.kakaocorp.com/en/transparence/lifeCycle
http://privacy.kakaocorp.com/en/transparence/lifeCycle
http://privacy.kakaocorp.com/en/philosophy/kakao
http://privacy.kakaocorp.com/en/philosophy/kakao

BIBLIOGRAPHY 138

[30]

[31]

[35]

[36]

[37]

[38]

[40]

Kakao Corp. Protection of Users’ Rights. http://privacy.kakaocorp.
com/en/transparence/report/present. Accessed: 2016-07-07. 2016
(cit. on p. 45).

Kakao Corp. Secret Chat Mode and Decline Invites Feature Now Avail-
able on KakaoTalk. http://www.kakaocorp.com/en/pr/pressRelease_
view?page=1&group=1&idx=8103. Accessed: 2016-04-28. Dec. 2014
(cit. on pp. 39, 44).

Kakao Corp. Technical Measures. http://privacy . kakaocorp.com/
en/protection/tech. Accessed: 2016-07-07. 2016 (cit. on pp. 13, 45,
47).

Kakao Corp. Terms and Conditions of Location-Based Services. http:
//www .kakao.com/policy/location. Accessed: 2016-07-07. Mar. 2016
(cit. on p. 46).

Kakao Corp. Transparency Report. Tech. rep. http: / / privacy .

kakaocorp.com/en/transparence/report/request. Kakao Corp., Aug.
2015 (cit. on pp. 12, 36, 37, 39, 40, 50, 54, 117).

NAVER Corp. NAVER Privacy Report. Tech. rep. https://nid.
naver . com/inc/user/pdf /NAVER_PrivacyReport_2015.pdf. NAVER
Corp., 2015 (cit. on p. 36).

Scott E Coull and Kevin P Dyer. “Traffic Analysis of Encrypted
Messaging Services: Apple iMessage and Beyond”. In: ACM SIG-
COMM Computer Communication Review 44.5 (2014), pp. 5-11 («cit.
on p. 17).

Jedidiah Crandall. Personal Communication. July 6, 2016 (cit. on
pp. 57, 154).

Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. “Secure
off-the-record messaging”. In: Proceedings of the 2005 ACM workshop
on Privacy in the electronic society. ACM. 2005, pp. 81-89 (cit. on
p. 123).

Yevgeniy Dodis, Jonathan Katz, Adam Smith, and Shabsi Walfish.
“Composability and on-line deniability of authentication”. In: The-
ory of Cryptography Conference. Springer. 2009, pp. 146-162 (cit. on
p. 19).

Danny Dolev, Cynthia Dwork, and Moni Naor. “Nonmalleable cryp-
tography”. In: STAM review 45.4 (2003), pp. 727784 (cit. on p. 102).

http://privacy.kakaocorp.com/en/transparence/report/present
http://privacy.kakaocorp.com/en/transparence/report/present
http://www.kakaocorp.com/en/pr/pressRelease_view?page=1&group=1&idx=8103
http://www.kakaocorp.com/en/pr/pressRelease_view?page=1&group=1&idx=8103
http://privacy.kakaocorp.com/en/protection/tech
http://privacy.kakaocorp.com/en/protection/tech
http://www.kakao.com/policy/location
http://www.kakao.com/policy/location
http://privacy.kakaocorp.com/en/transparence/report/request
http://privacy.kakaocorp.com/en/transparence/report/request
https://nid.naver.com/inc/user/pdf/NAVER_PrivacyReport_2015.pdf
https://nid.naver.com/inc/user/pdf/NAVER_PrivacyReport_2015.pdf

BIBLIOGRAPHY 139

[41]

[42]

[43]

[45]

[46]

[47]

The Korea Economic. Sixz Out of Ten Korean Internet Users Use IM
Services Everyday. http://english.hankyung.com/news/apps/newvs.
view?popup=0&nid=0&cl=&newscate=1&nkey=201510071123391. Ac-
cessed: 2016-06-27. Oct. 2015 (cit. on p. 30).

Nikolay Elenkov. Android Security Internals: An In-Depth Guide to
Android’s Security Architecture. No Starch Press, 2014 (cit. on p. 21).

Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgartner,
Bernd Freisleben, and Matthew Smith. “Why Eve and Mallory love
Android: An analysis of Android SSL (in) security”. In: Proceedings of
the 2012 ACM conference on Computer and communications security.
ACM. 2012, pp. 5061 (cit. on pp. 62, 123).

Geoffrey Fattig. South Korea’s Anti-Terror Law Part of a Worrisome
Trend. http://thediplomat . com/ 2016/ 03/ south - koreas - anti -
terror - law- part - of - a-worrisome - trend/. Accessed: 2016-06-22.
Mar. 2016 (cit. on p. 42).

Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography
engineering: design principles and practical applications. John Wiley
& Somns, 2011 (cit. on pp. 155-158).

Electronic Frontier Foundation. 20131014- Wapo-Content Acquisition
Optimization2. https://wuw.eff .org/document/2013-10-14-wapo-
content - acquisition - optimization2. Accessed: 2016-04-06. 2013
(cit. on p. 16).

Electronic Frontier Foundation. In South Korea, the Only Thing
Worse Than Online Censorship is Secret Online Censorship. https:
//www.eff.org/deeplinks/2011/08/south-korea-only-thing-worse-
online-censorship. Accessed: 2016-06-22. Sept. 2011 (cit. on p. 35).

Electronic Frontier Foundation. Secure Messaging Scorecard. https:

//www.eff.org/secure-messaging-scorecard. Accessed: 2016-04-07.
Apr. 2016 (cit. on p. 17).

Free Software Foundation. GNU/consensus/Secure Messaging Score-
board. https://libreplanet . org/wiki /GNU/ consensus / Secure _
Messaging _ Scoreboard. Accessed: 2016-04-07. Oct. 2015 (cit. on
p. 17).

Jay Freeman. Android Bug Superior to Master Key. http://www.
saurik.com/id/18. Accessed: 2016-04-11 (cit. on p. 26).

Jay Freeman. FEzxploit (64 Fiz) Android “Master Key”. http://www.
saurik.com/id/17. Accessed: 2016-04-11 (cit. on p. 26).

http://english.hankyung.com/news/apps/news.view?popup=0&nid=0&c1=&newscate=1&nkey=201510071123391
http://english.hankyung.com/news/apps/news.view?popup=0&nid=0&c1=&newscate=1&nkey=201510071123391
http://thediplomat.com/2016/03/south-koreas-anti-terror-law-part-of-a-worrisome-trend/
http://thediplomat.com/2016/03/south-koreas-anti-terror-law-part-of-a-worrisome-trend/
https://www.eff.org/document/2013-10-14-wapo-content-acquisition-optimization2
https://www.eff.org/document/2013-10-14-wapo-content-acquisition-optimization2
https://www.eff.org/deeplinks/2011/08/south-korea-only-thing-worse-online-censorship
https://www.eff.org/deeplinks/2011/08/south-korea-only-thing-worse-online-censorship
https://www.eff.org/deeplinks/2011/08/south-korea-only-thing-worse-online-censorship
https://www.eff.org/secure-messaging-scorecard
https://www.eff.org/secure-messaging-scorecard
https://libreplanet.org/wiki/GNU/consensus/Secure_Messaging_Scoreboard
https://libreplanet.org/wiki/GNU/consensus/Secure_Messaging_Scoreboard
http://www.saurik.com/id/18
http://www.saurik.com/id/18
http://www.saurik.com/id/17
http://www.saurik.com/id/17

BIBLIOGRAPHY 140

[52]

[53]

[54]

[60]

[61]

[62]

Jay Freeman. Yet Another Android Master Key Bug. http://www.
saurik.com/id/19. Accessed: 2016-04-11 (cit. on p. 26).

Tilman Frosch, Christian Mainka, Christoph Bader, Florian Bergsma,
Thorsten Holz, et al. “How Secure is TextSecure?” In: 2016 IEEFE Eu-
ropean Symposium on Security and Privacy (EuroSé&P). IEEE. 2016,
pp. 457-472 (cit. on pp. 11, 123).

Amit Fulay and Yariv Adan. Saying hello to Allo and Duo: new
apps for smart messaging and video calling. https://googleblog .

blogspot . com/2016/05/allo-duo-apps-messaging-video.html. Ac-
cessed: 2016-07-07. May 2016 (cit. on p. 11).

Christina Garman, Matthew Green, Gabriel Kaptchuk, Ian Miers, and
Michael Rushanan. “Dancing on the Lip of the Volcano: Chosen Ci-
phertext Attacks on Apple iMessage”. In: () (cit. on pp. 123, 132).

Graham Greenleaf and Whon-il Park. “Korea’s new Act: Asia’s tough-
est data privacy law”. In: Privacy Laws & Business International Re-
port 117 (2012), pp. 1-6 (cit. on pp. 13, 33).

Oscar M Guillen, Dawin Schmidt, and Georg Sigl. “Practical evalu-
ation of code injection in encrypted firmware updates”. In: 2016 De-
sign, Automation & Test in Europe Conference € Exhibition (DATE).
IEEE. 2016, pp. 325-330 (cit. on p. 103).

Christoph G Giinther. “An identity-based key-exchange protocol”. In:
Advances in Cryptology—Eurocrypt’89. Springer. 1990, pp. 29-37 (cit.
on p. 18).

Junghee Han and Okjoo Cho. “Platform business Eco-model evolu-
tion: case study on KakaoTalk in Korea”. In: Journal of Open Inno-
vation: Technology, Market, and Complezity 1.1 (2015), pp. 1-14 (cit.
on p. 30).

Chico Harlan. In S. Korea, a shrinking space for speech. https://www.
washingtonpost.com/world/asia_pacific/in-s-korea-a-shrinking-
space-for-speech/2011/12/21/gIQAmAHgBP _story.html. Accessed:
2016-04-24. Dec. 2011 (cit. on p. 35).

Shawn Hernan, Scott Lambert, Tomasz Ostwald, and Adam Shostack.
“Threat modeling-uncover security design flaws using the stride ap-
proach”. In: MSDN Magazine-Louisville (2006), pp. 68-75 (cit. on
p. 90).

Neal Hindocha and Eric Chien. “Malicious threats and vulnerabilities
in instant messaging”. In: Virus Bulletin Conference, vb2005. 2003
(cit. on p. 95).

http://www.saurik.com/id/19
http://www.saurik.com/id/19
https://googleblog.blogspot.com/2016/05/allo-duo-apps-messaging-video.html
https://googleblog.blogspot.com/2016/05/allo-duo-apps-messaging-video.html
https://www.washingtonpost.com/world/asia_pacific/in-s-korea-a-shrinking-space-for-speech/2011/12/21/gIQAmAHgBP_story.html
https://www.washingtonpost.com/world/asia_pacific/in-s-korea-a-shrinking-space-for-speech/2011/12/21/gIQAmAHgBP_story.html
https://www.washingtonpost.com/world/asia_pacific/in-s-korea-a-shrinking-space-for-speech/2011/12/21/gIQAmAHgBP_story.html

BIBLIOGRAPHY 141

[63]

[68]

[69]

[70]

Taylor Hornby. Telegram’s Cryptanalysis Contest. http : / / www .

cryptofails . com/ post / 70546720222 / telegrams - cryptanalysis -
contest. Accessed: 2016-07-02. Dec. 2013 (cit. on p. 157).

Freedom House. South Korea — Country report — Freedom in the
World — 2015. https://freedomhouse.org/report/freedom-world/
2015/south-korea. Accessed: 2016-04-24. 2016 (cit. on p. 39).

Freedom House. South Korea — Country report — Freedom on the
Net — 2015. https://freedomhouse.org/report/freedom-net/2015/
south-korea. Accessed: 2016-04-24. 2016 (cit. on pp. 34, 39).

Peng Hwa Ang. How Countries Are Regulating Internet Content.
http://www.isoc.org/INET97 /proceedings/B1/B1_3.HTM#s9. Ac-
cessed: 2016-04-24 (cit. on p. 34).

Philip Iglauer. Kakao data handover ends year-long privacy dispute
with South Korean government. http://www .zdnet . com/article/
kakao - data-handover - ends - year - long - privacy - dispute-with-
south-korean-government/. Accessed: 2016-04-28. Oct. 2015 (cit. on
p. 41).

Google Inc. Transparency Report. https : / / www . google . com /
transparencyreport/userdatarequests/. Accessed: 2016-04-06. 2014
(cit. on p. 16).

Amnesty International. “South Korea: Amnesty International’s Sub-
mission to the UN Human Rights Committee, 115th Session (19 Oc-
tober — 6 November 2015)”. In: (Oct. 2015) (cit. on p. 34).

Kim Jae-seob. “KakaoTalk managers present at prosecutors’ meeting
on countering defamation of the president” (in Korean). http://www.
hani.co.kr/arti/economy/it /657974 .html. Accessed: 2016-04-24.
Oct. 2014 (cit. on p. 38).

Kim Jae-seok. Kakao worried about government agencies response af-
ter info release. http://english.hani.co.kr/arti/english_edition/
e_national/659194.html. Accessed: 2016-06-22. Oct. 2014 (cit. on
p. 40).

Jakob Jakobsen and Claudio Orlandi. “A practical cryptanalysis of

the Telegram messaging protocol”. PhD thesis. Master Thesis, Aarhus
University (Available on request), 2015 (cit. on p. 123).

Xing Jin, Tongbo Luo, Derek G Tsui, and Wenliang Du. “Code in-
jection attacks on HTML5-based mobile apps”. In: arXiv preprint
arXiw:1410.7756 (2014) (cit. on p. 109).

http://www.cryptofails.com/post/70546720222/telegrams-cryptanalysis-contest
http://www.cryptofails.com/post/70546720222/telegrams-cryptanalysis-contest
http://www.cryptofails.com/post/70546720222/telegrams-cryptanalysis-contest
https://freedomhouse.org/report/freedom-world/2015/south-korea
https://freedomhouse.org/report/freedom-world/2015/south-korea
https://freedomhouse.org/report/freedom-net/2015/south-korea
https://freedomhouse.org/report/freedom-net/2015/south-korea
http://www.isoc.org/INET97/proceedings/B1/B1_3.HTM#s9
http://www.zdnet.com/article/kakao-data-handover-ends-year-long-privacy-dispute-with-south-korean-government/
http://www.zdnet.com/article/kakao-data-handover-ends-year-long-privacy-dispute-with-south-korean-government/
http://www.zdnet.com/article/kakao-data-handover-ends-year-long-privacy-dispute-with-south-korean-government/
https://www.google.com/transparencyreport/userdatarequests/
https://www.google.com/transparencyreport/userdatarequests/
http://www.hani.co.kr/arti/economy/it/657974.html
http://www.hani.co.kr/arti/economy/it/657974.html
http://english.hani.co.kr/arti/english_edition/e_national/659194.html
http://english.hani.co.kr/arti/english_edition/e_national/659194.html

BIBLIOGRAPHY 142

[74]

[79]

[30]

Kim Jin-cheol. To avoid government snooping, companies going into
“server exile”. http://english.hani.co.kr/arti/english_edition/
e_national/719205.html. Accessed: 2016-06-22. Nov. 2015 (cit. on
p. 41).

Sam Judah and Thom Poole. Why South Koreans are fleeing the
country’s biggest social network. http://www.bbc.com/news/blogs-
trending-29555331. Accessed: 2016-04-24. Oct. 2014 (cit. on p. 39).

KakaoTalk. We recently hit 200 million users! Thanks to all our awe-
some users, we love you! https://twitter.com/kakaotalk/status/
672327098971742208. Accessed: 2016-06-27. Dec. 2015 (cit. on pp. 11,
30).

KakaoTalk chat app boss quits after child porn row. http://www.bbc.
co.uk/news/technology-34791020. Accessed: 2016-04-28. Nov. 2015
(cit. on pp. 42, 52).

Michael J Kalsher and Kevin J Williams. “Behavioral compliance:
Theory, methodology, and results”. In: Handbook of warnings (2006),
pp. 313-329 (cit. on p. 105).

Yun-ji Kang. “Hide your RRN away! Ban on online collection of user
RRNs” (in Korean). http://reporter .korea.kr/newsView.do?nid=
148755878. Accessed: 2016-04-24. Feb. 2013 (cit. on p. 38).

Eunhyun Kim, Kyungwon Park, Hyoungshick Kim, and Jaeseung
Song. “Design and analysis of enumeration attacks on finding friends
with phone numbers: A case study with KakaoTalk”. In: computers
¢ security (2015) (cit. on p. 129).

Alex Klyubin. Some SecureRandom Thoughts. http : / / android -

developers . blogspot . ca/2013/08/ some - securerandom - thoughts .
html. Accessed: 2016-07-02. Aug. 2013 (cit. on p. 155).

Jeffrey Knockel. Personal Communication. July 7, 2016 (cit. on pp. 57,
148).

Se-Woong Koo. South Korea’s Invasion of Privacy. http: //www .
nytimes . com/2015/04 /03 /opinion/ south-koreas- invasion - of -

privacy.html. Accessed: 2016-04-24. Apr. 2015 (cit. on p. 36).

Frank La Rue. Full text of the press statement delivered by the UN Spe-
cial Rapporteur on the promotion and protection of the right to free-
dom of opinion and expression, Mr. Frank La Rue, after the conclusion
of his wvisit to the Republic of Korea. Tech. rep. http://www2.ohchr.
org/english/issues/opinion/docs/ROK-Pressstatement17052010 .

http://english.hani.co.kr/arti/english_edition/e_national/719205.html
http://english.hani.co.kr/arti/english_edition/e_national/719205.html
http://www.bbc.com/news/blogs-trending-29555331
http://www.bbc.com/news/blogs-trending-29555331
https://twitter.com/kakaotalk/status/672327098971742208
https://twitter.com/kakaotalk/status/672327098971742208
http://www.bbc.co.uk/news/technology-34791020
http://www.bbc.co.uk/news/technology-34791020
http://reporter.korea.kr/newsView.do?nid=148755878
http://reporter.korea.kr/newsView.do?nid=148755878
http://android-developers.blogspot.ca/2013/08/some-securerandom-thoughts.html
http://android-developers.blogspot.ca/2013/08/some-securerandom-thoughts.html
http://android-developers.blogspot.ca/2013/08/some-securerandom-thoughts.html
http://www.nytimes.com/2015/04/03/opinion/south-koreas-invasion-of-privacy.html
http://www.nytimes.com/2015/04/03/opinion/south-koreas-invasion-of-privacy.html
http://www.nytimes.com/2015/04/03/opinion/south-koreas-invasion-of-privacy.html
http://www2.ohchr.org/english/issues/opinion/docs/ROK-Pressstatement17052010.pdf
http://www2.ohchr.org/english/issues/opinion/docs/ROK-Pressstatement17052010.pdf

BIBLIOGRAPHY 143

[85]

[38]

[89]

[90]

[91]

[92]

[93]

pdf. UN Special Rapporteur on the promotion, protection of the right
to freedom of opinion, and expression, May 2010 (cit. on pp. 34, 43).

Adam Langley. Enhancing digital certificate security. https : / /
security . googleblog . com / 2013 / 01 / enhancing - digital -
certificate-security.htmll. Accessed: 2016-04-08. Jan. 2013 (cit.
on p. 16).

Se Young Lee and Sohee Kim. South Korea tries to ease cyber surveil-
lance fears. http://www . reuters . com/article /us - southkorea-
cybersecurity - idUSKCNOI514A20141016. Accessed: 2016-07-07. Oct.
2014 (cit. on p. 52).

Matthew Keys Live. Former NSA boss: “We kill people based on meta-
data”. https://www.youtube .com/watch?v=UdQizOVavmc. Accessed:
2016-07-24. YouTube, May 2014 (cit. on p. 20).

Mohammad Mannan and Paul C van Oorschot. “On instant messaging

worms, analysis and countermeasures”. In: Proceedings of the 2005
ACM workshop on Rapid malcode. ACM. 2005, pp. 2-11 (cit. on p. 95).

Mohammad Mannan and Paul C van Oorschot. “Secure public instant

messaging: A survey”. In: Proceedings of Privacy, Security and Trust
(2004) (cit. on p. 95).

Moxie Marlinspike. Facebook Messenger deploys Signal Protocol for
end to end encryption. https://whispersystems.org/blog/facebook-
messenger/. Accessed: 2016-07-24. July 2016 (cit. on p. 17).

Moxie Marlinspike. WhatsApp’s Signal Protocol integration is now

complete. https://whispersystems.org/blog/whatsapp-complete/.
Accessed: 2016-07-07. Apr. 2016 (cit. on p. 11).

mayhem. The Cerberus ELF Interface. http://phrack.org/issues/
61/8.html. Accessed: 2016-06-25. Aug. 2013 (cit. on p. 111).

Daniel Medianero. Open Android Security Assessment Methodology.
http://oasam.org/en. Accessed: 2016-06-25. 2016 (cit. on pp. 57,
148).

Peter Micek. South Korean IM app takes bold stand against police
abuses. https://www.accessnow.org/south-korean-im-app-takes-
bold - stand - against - police - abuses/. Accessed: 2016-04-24. Oct.
2014 (cit. on p. 39).

Bodo Moller, Thai Duong, and Krzysztof Kotowicz. “This POODLE
Bites: Exploiting The SSL 3.0 Fallback”. In: (2014) (cit. on p. 107).

http://www2.ohchr.org/english/issues/opinion/docs/ROK-Pressstatement17052010.pdf
http://www2.ohchr.org/english/issues/opinion/docs/ROK-Pressstatement17052010.pdf
https://security.googleblog.com/2013/01/enhancing-digital-certificate-security.htmll
https://security.googleblog.com/2013/01/enhancing-digital-certificate-security.htmll
https://security.googleblog.com/2013/01/enhancing-digital-certificate-security.htmll
http://www.reuters.com/article/us-southkorea-cybersecurity-idUSKCN0I514A20141016
http://www.reuters.com/article/us-southkorea-cybersecurity-idUSKCN0I514A20141016
https://www.youtube.com/watch?v=UdQiz0Vavmc
https://whispersystems.org/blog/facebook-messenger/
https://whispersystems.org/blog/facebook-messenger/
https://whispersystems.org/blog/whatsapp-complete/
http://phrack.org/issues/61/8.html
http://phrack.org/issues/61/8.html
http://oasam.org/en
https://www.accessnow.org/south-korean-im-app-takes-bold-stand-against-police-abuses/
https://www.accessnow.org/south-korean-im-app-takes-bold-stand-against-police-abuses/

BIBLIOGRAPHY 144

[96]

[101]

[102]

[103]

[104]

Christof Paar and Jan Pelzl. Understanding cryptography: a textbook
for students and practitioners. Springer Science & Business Media,
2009 (cit. on p. 16).

Brian Pak. [KakaoTalk+] LOCO UNICODE (1) (in Korean). https:
/ /wuw . bpak . org/blog /2012 /12 /kakaotalk-loco-%ED%94%84%EBY
A1%9C%ED%86%A0%ECY%BD%9C-%EB%B6%84%EC%84%9D-1/. Accessed:
2016-06-16. Dec. 2012 (cit. on p. 77).

Kyungwon Park and Hyoungshick Kim. “Encryption Is Not Enough:
Inferring user activities on KakaoTalk with traffic analysis”. In: ()
(cit. on p. 17).

Siegfried Rasthofer, Steven Arzt, Robert Hahn, Max Kolhagen, and
Eric Bodden. “(In)Security of Backend-as-a-Service”. In: Black Hat
FEurope. 2015 (cit. on p. 158).

Abbas Razaghpanah, Narseo Vallina-Rodriguez, Srikanth Sundaresan,
Christian Kreibich, Phillipa Gill, Mark Allman, and Vern Paxson.
“Haystack: A Multi-Purpose Mobile Vantage Point in User Space”.
In: () (cit. on p. 62).

Bradley Reaves, Nolen Scaife, Adam Bates, Patrick Traynor, and
Kevin RB Butler. “Mo (bile) money, mo (bile) problems: analysis
of branchless banking applications in the developing world”. In: 24th
USENIX Security Symposium (USENIX Security 15). 2015, pp. 17-32
(cit. on pp. 62, 123).

Ranking Digital Rights. Corporate Accountability Index 2015. Tech.
rep. https://rankingdigitalrights.org/index2015/download/. New
America Foundation, Nov. 2015 (cit. on pp. 40, 43, 44, 46, 50, 54,
117).

James Risen and Nick Wingfield. Web’s Reach Binds N.S.A. and
Silicon Valley Leaders. http : / / www . nytimes . com / 2013 / 06 /
20 / technology / silicon - valley - and - spy - agency - bound - by -
strengthening-web.html. Accessed: 2016-04-06. June 2013 (cit. on
p. 16).

Choe Sang-Hun. An Artist Is Rebuked for Casting South Korea’s
Leader in an Unflattering Light. http://www .nytimes . com/ 2014/
08/31/world/asia/an-artist-is-rebuked-for-casting-south-

koreas-leader-in-an-unflattering-light.html?_r=0. Accessed:
2016-04-24. Aug. 2014 (cit. on p. 35).

https://www.bpak.org/blog/2012/12/kakaotalk-loco-%ED%94%84%EB%A1%9C%ED%86%A0%EC%BD%9C-%EB%B6%84%EC%84%9D-1/
https://www.bpak.org/blog/2012/12/kakaotalk-loco-%ED%94%84%EB%A1%9C%ED%86%A0%EC%BD%9C-%EB%B6%84%EC%84%9D-1/
https://www.bpak.org/blog/2012/12/kakaotalk-loco-%ED%94%84%EB%A1%9C%ED%86%A0%EC%BD%9C-%EB%B6%84%EC%84%9D-1/
https://rankingdigitalrights.org/index2015/download/
http://www.nytimes.com/2013/06/20/technology/silicon-valley-and-spy-agency-bound-by-strengthening-web.html
http://www.nytimes.com/2013/06/20/technology/silicon-valley-and-spy-agency-bound-by-strengthening-web.html
http://www.nytimes.com/2013/06/20/technology/silicon-valley-and-spy-agency-bound-by-strengthening-web.html
http://www.nytimes.com/2014/08/31/world/asia/an-artist-is-rebuked-for-casting-south-koreas-leader-in-an-unflattering-light.html?_r=0
http://www.nytimes.com/2014/08/31/world/asia/an-artist-is-rebuked-for-casting-south-koreas-leader-in-an-unflattering-light.html?_r=0
http://www.nytimes.com/2014/08/31/world/asia/an-artist-is-rebuked-for-casting-south-koreas-leader-in-an-unflattering-light.html?_r=0

BIBLIOGRAPHY 145

[105]

[106]

[107]

108

[109]

[110]

[111]

[112]

[113]

[114]

[115]

Choe Sang-Hun. Korea Policing the Net. Twist? It’s South Korea.
http://www.nytimes.com/2012/08/13/world/asia/critics-see-
south-korea-internet-curbs-as-censorship.html. Accessed: 2016-

06-22. Aug. 2012 (cit. on p. 34).

Choe Sang-Hun and Shreeya Sinha. How to Get Censored in South
Korea. https://storify.com/nytimesworld/censorship-in-south-
korea. Accessed: 2016-04-24. 2013 (cit. on p. 35).

Brahima Sanou. “The World in 2015: ICT facts and figures”. In: In-
ternational Telecommunications Union (May 2015) (cit. on pp. 11,
33).

Gandeva Bayu Satrya, Philip Tobianto Daely, and Muhammad Arief
Nugroho. “Digital Forensic Analysis of Telegram Messenger on An-
droid Devices”. In: () (cit. on p. 123).

Jeremy Scahill and Glenn Greenwald. The NSA’s Secret Role in the
U.S. Assassination Program. https://firstlook.org/theintercept/
2014/02/10/the-nsas-secret-role/. Accessed: 2016-07-06. Feb. 2014
(cit. on p. 20).

Bruce Schneier. Applied cryptography: protocols, algorithms, and
source code in C. john wiley & sons, 2007 (cit. on p. 16).

Bruce Schneier. New Details on Skype FEavesdropping. https://www.
schneier . com/blog/archives/2013/06/new_details_on.html. Ac-
cessed: 2016-04-06. 2013 (cit. on p. 16).

S.C.S. Why South Korea is really an internet dinosaur. http://wuw.
economist . com/blogs /economist - explains /2014 / 02/ economist -

explains-3. Accessed: 2016-04-24. Feb. 2014 (cit. on p. 34).

Lim Ji-seon. In S. Korea, the NIS has a virtual monopoly on wire-
tapping. http://english . hani . co.kr/arti/english_edition/
e_national/719031.html. Accessed: 2016-06-22. Nov. 2015 (cit. on
p. 42).

Kadhim Shubber. BlackBerry gives Indian government ability to in-
tercept messages. http://www.wired . co.uk/news/archive/2013-
07/11/blackberry-india. Accessed: 2016-04-06. 2013 (cit. on p. 16).

Statista. Countries with the highest average internet connection speed
as of 4th quarter 2015 (in Mbps). http : / /www . statista . com/
statistics / 204952 / average - internet - connection - speed - by -

country. Accessed: 2016-04-28. Mar. 2016 (cit. on p. 33).

http://www.nytimes.com/2012/08/13/world/asia/critics-see-south-korea-internet-curbs-as-censorship.html
http://www.nytimes.com/2012/08/13/world/asia/critics-see-south-korea-internet-curbs-as-censorship.html
https://storify.com/nytimesworld/censorship-in-south-korea
https://storify.com/nytimesworld/censorship-in-south-korea
https://firstlook.org/theintercept/2014/02/10/the-nsas-secret-role/
https://firstlook.org/theintercept/2014/02/10/the-nsas-secret-role/
https://www.schneier.com/blog/archives/2013/06/new_details_on.html
https://www.schneier.com/blog/archives/2013/06/new_details_on.html
http://www.economist.com/blogs/economist-explains/2014/02/economist-explains-3
http://www.economist.com/blogs/economist-explains/2014/02/economist-explains-3
http://www.economist.com/blogs/economist-explains/2014/02/economist-explains-3
http://english.hani.co.kr/arti/english_edition/e_national/719031.html
http://english.hani.co.kr/arti/english_edition/e_national/719031.html
http://www.wired.co.uk/news/archive/2013-07/11/blackberry-india
http://www.wired.co.uk/news/archive/2013-07/11/blackberry-india
http://www.statista.com/statistics/204952/average-internet-connection-speed-by-country
http://www.statista.com/statistics/204952/average-internet-connection-speed-by-country
http://www.statista.com/statistics/204952/average-internet-connection-speed-by-country

BIBLIOGRAPHY 146

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]
[124]

[125]

[126]

Statista. Number of monthly active Kakaotalk users from 1st quar-
ter 2013 to 1st quarter 2016 (in millions)). http://www .statista.

com/statistics /278846 /kakaotalk-monthly - active - users - mau/.
Accessed: 2016-06-27. 2016 (cit. on pp. 11, 30).

Yoon Sung-won. Kakao to offer ‘privacy mode’ amid gov’t monitoring
fears. http://www . koreatimesus . com/kakao-to-offer-privacy-
mode-amid-govt-monitoring-fears/. Accessed: 2016-04-28. Oct. 2014
(cit. on p. 45).

Hong Eun Taek. Chief Privacy Officer. http://privacy.kakaocorp.
com/en/philosophy/responsible. Accessed: 2016-07-07 (cit. on p. 46).

Daniel Tay. KakaoTalk submitted chat logs to government, pledges to
stop after users protest. https://www.techinasia.com/daum-kakao-
snooped - stopped - after - protest. Accessed: 2016-06-22. Oct. 2014
(cit. on p. 39).

Kakao Team. New Security Features and Improvements Coming to
KakaoTalk. https://blog.kakaocorp.com/?p=643. Accessed: 2016-06-
22. Oct. 2014 (cit. on pp. 39, 51, 83).

Kakao Team. Secret Chat and Decline Invites Now Awvailable on
KakaoTalk. https://blog.kakaocorp.com/?p=943. Accessed: 2016-
07-07. Dec. 2014 (cit. on p. 51).

Korea Internet Transparency Reporting Team. Korea Internet Trans-
parency Report 2015. Tech. rep. http : / / transparency . kr / wp -
content /uploads/2015/10/Korea- Internet - Transparency-Report -
2015 . pdf. Korea University Law School, Clinical Legal Education
Center, Oct. 2015 (cit. on pp. 11, 35, 36, 39, 43).

David Thiel. I0S Application Security: The Definitive Guide for Hack-
ers and Developers. No Starch Press, 2016 (cit. on p. 27).

Steve Thomas. DecryptoCat. https://tobtu.com/decryptocat . php.
Accessed: 2016-07-02. 2015 (cit. on p. 155).

UNDERSTAND SECURE DELETION OF DATA. https://www.

nowsecure . com/ resources / secure - mobile - development / coding -
practices/understand-secure-deletion-of-data/. Accessed: 2016-
07-30. NowSecure, Nov. 2014 (cit. on p. 112).

Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning
Perl, Ian Goldberg, and Matthew Smith. “SoK: Secure Messaging”. In:
Security and Privacy (SP), 2015 IEEE Symposium on. IEEE. 2015,
pp. 232-249 (cit. on pp. 18, 20, 57, 94, 154, 156).

http://www.statista.com/statistics/278846/kakaotalk-monthly-active-users-mau/
http://www.statista.com/statistics/278846/kakaotalk-monthly-active-users-mau/
http://www.koreatimesus.com/kakao-to-offer-privacy-mode-amid-govt-monitoring-fears/
http://www.koreatimesus.com/kakao-to-offer-privacy-mode-amid-govt-monitoring-fears/
http://privacy.kakaocorp.com/en/philosophy/responsible
http://privacy.kakaocorp.com/en/philosophy/responsible
https://www.techinasia.com/daum-kakao-snooped-stopped-after-protest
https://www.techinasia.com/daum-kakao-snooped-stopped-after-protest
https://blog.kakaocorp.com/?p=643
https://blog.kakaocorp.com/?p=943
http://transparency.kr/wp-content/uploads/2015/10/Korea-Internet-Transparency-Report-2015.pdf
http://transparency.kr/wp-content/uploads/2015/10/Korea-Internet-Transparency-Report-2015.pdf
http://transparency.kr/wp-content/uploads/2015/10/Korea-Internet-Transparency-Report-2015.pdf
https://tobtu.com/decryptocat.php
https://www.nowsecure.com/resources/secure-mobile-development/coding-practices/understand-secure-deletion-of-data/
https://www.nowsecure.com/resources/secure-mobile-development/coding-practices/understand-secure-deletion-of-data/
https://www.nowsecure.com/resources/secure-mobile-development/coding-practices/understand-secure-deletion-of-data/

BIBLIOGRAPHY 147

[127)
[128]
[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

International Telecommunications Union. “Mobile-cellular telephone
subscriptions 2000-2014". In: (2015) (cit. on p. 33).

International Telecommunications Union. “Percentage of Individuals
using the Internet 2000-2014”. In: (2015) (cit. on pp. 11, 33).

Raja Vallee-Rai and Laurie J Hendren. “Jimple: Simplifying Java
bytecode for analyses and transformations”. In: (1998) (cit. on p. 64).

VASCO. DigiNotar reports security incident. https://www . vasco .

com/about-vasco/press/2011/news_diginotar_reports_security_
incident.html. Accessed: 2016-04-08. Aug. 2011 (cit. on p. 16).

Barbara White. Android Secure Coding Standard. https : / / www .
securecoding . cert . org/ confluence / display / android / Android +
Secure+Coding+Standard. Accessed: 2016-06-25. May 2015 (cit. on
pp. 57, 148).

Wikipedia. Hector Monsegur. https : //en . wikipedia . org/wiki /
Hector_Monsegur. Accessed: 2016-04-07. Apr. 2016 (cit. on p. 19).

Derek Williams. “The Tiny Encryption Algorithm (TEA)”. In: Net-
work Security (2008), pp. 1-14 (cit. on p. 157).

Claud Xiao and Jin Chen. New OS X Ransomware KeRanger Infected
Transmission BitTorrent Client Installer. http://researchcenter .
paloaltonetworks . com/2016/03/new-os-x-ransomware - keranger -
infected-transmission-bittorrent-client-installer/. Accessed:

2016-04-11. Mar. 2016 (cit. on p. 26).

Karim Yaghmour. Embedded Android: Porting, Fxtending, and Cus-
tomizing. 7 O’Reilly Media, Inc.”, 2013 (cit. on p. 21).

Kim Yoo-chul. Anti-terrorism bill threatens IT ecosystem in Korea.
http://www.koreatimes . co.kr/www/news/opinon/2016/03/264_
199811.html. Accessed: 2016-04-28. Mar. 2016 (cit. on p. 42).

Lee Youkyung. S. Korea rumor crackdown jolts so-
cial media wusers. http : / / bigstory . ap . org / article /
97c92b056482488abd990db9a4acb388 / s - korea - rumor - crackdown —
jolts-social-media-users. Accessed: 2016-04-28. Oct. 2014 (cit. on
pp. 38, 41, 45).

Chang-hoon Yun, Byung-woo Kang, Hyun-seung Lee, Da-woon
Chung, Hyun-cheol Jung, and Derik Cho. PORTFOLIO SE-
CURITY ANALYSIS In-depth Analysis of KAKAO. http : / /
advancedmanagement . net / sites/default /files/SNUCombined . pdf.
Accessed: 2016-06-27. Oct. 2015 (cit. on p. 30).

https://www.vasco.com/about-vasco/press/2011/news_diginotar_reports_security_incident.html
https://www.vasco.com/about-vasco/press/2011/news_diginotar_reports_security_incident.html
https://www.vasco.com/about-vasco/press/2011/news_diginotar_reports_security_incident.html
https://www.securecoding.cert.org/confluence/display/android/Android+Secure+Coding+Standard
https://www.securecoding.cert.org/confluence/display/android/Android+Secure+Coding+Standard
https://www.securecoding.cert.org/confluence/display/android/Android+Secure+Coding+Standard
https://en.wikipedia.org/wiki/Hector_Monsegur
https://en.wikipedia.org/wiki/Hector_Monsegur
http://researchcenter.paloaltonetworks.com/2016/03/new-os-x-ransomware-keranger-infected-transmission-bittorrent-client-installer/
http://researchcenter.paloaltonetworks.com/2016/03/new-os-x-ransomware-keranger-infected-transmission-bittorrent-client-installer/
http://researchcenter.paloaltonetworks.com/2016/03/new-os-x-ransomware-keranger-infected-transmission-bittorrent-client-installer/
http://www.koreatimes.co.kr/www/news/opinon/2016/03/264_199811.html
http://www.koreatimes.co.kr/www/news/opinon/2016/03/264_199811.html
http://bigstory.ap.org/article/97c92b056482488abd990db9a4acb388/s-korea-rumor-crackdown-jolts-social-media-users
http://bigstory.ap.org/article/97c92b056482488abd990db9a4acb388/s-korea-rumor-crackdown-jolts-social-media-users
http://bigstory.ap.org/article/97c92b056482488abd990db9a4acb388/s-korea-rumor-crackdown-jolts-social-media-users
http://advancedmanagement.net/sites/default/files/SNUCombined.pdf
http://advancedmanagement.net/sites/default/files/SNUCombined.pdf

Appendix A

Security Assessment Checklists

In Section A.1 and Section A.2 we present two security assessment checklists
that we used during our security and privacy audit of KakaoTalk.

A.1 Checklist 1: Questions to Answer About
Software Security in Any Given Android
Application

This checklist outlines the most common “low-hanging fruits” or security

flaws in Android apps. It was compiled from various different sources [17,
131, 93, 14] as well as from comments from Jeffrey Knockel [82].

A.1.1 Questions Related to Insufficient Transport
Layer Protection

1. What connections are and are not protected by encryption (e.g., user
authentication to the server, client-to-client communications, connec-
tions to third-parties, etc.)?

(a) If the app’s backend API also allows connections over HTTP: Is
there a way to force the app to use HT'TP instead of HT'TPS?

(b) Is sensitive information inside a TLS connection secured by an
extra layer of encryption?

2. How is the server’s certificate checked (e.g., certificate pinning, man-
aged by the OS, etc.)?

(a) Are all TLS certificates in date?

148

APPENDIX A. SECURITY ASSESSMENT CHECKLISTS 149

(b) Does the app verify the TLS server’s hostname?

(c) Does the app include any code that was used for testing (e.g.,
org.apache.http.conn.ssl.Al1lowAllHostnameVerifier or SSLSo
cketFactory.ALLOW_ALL_HOSTNAME_VERIFIER)?

(d) Does the app accept self-signed certificates?
(e) Does the app accept third-party certificates as authorities?

(f) Does the app use classes that extend from SSLSocketFactory?
Do such classes properly implement the checkServerTrusted()
method?

(g) Does the app’s Ul detect invalid certificates and show an error to
the user?

(h) Does the app validate the certificate chain correctly?
3. Are there any certificate pinning issues (e.g., CVE-2016-2402)7

(a) Does the app use any ineffective certificate pinning techniques
(e.g., by using checkServerTrusted() incorrectly)?

4. Does the app negotiate a weak TLS cipher suite?

5. Is the TLS endpoint misconfigured (e.g., offering weak cipher suites,
vulnerable to POODLE, DROWN attack, etc.)?

6. Is the app vulnerable to SSL stripping attacks?

A.1.2 Questions Related to Access Control and Infor-
mation Leakage

1. Does the app leak sensitive information through files that have world
readable or writable permission?

(a) Does the app open files with world readable file permissions?
b) Does the app create world readable databases?
(

(c¢) Does the app make use of world writable sharedPreferences?

2. Does the app leak sensitive information through files that are included
in the app’s APK?

(a) Are there files that leak metadata (e.g., EXIF data in images)?

APPENDIX A. SECURITY ASSESSMENT CHECKLISTS 150

Does the app store information outside the app’s sandbox (e.g., on the
SD card by using the getExternalFilesDir() method)?

Does the app store data on improper protected “cloud” services?

Does the app write sensitive information to the system log?

. Is there any data leakage outside the app’s scope (e.g., URL caching,

HTML5 data storage, analytics data sent to third parties, etc.)?
Does the app leak any data through error messages or crash dumps?

Does the app properly assign permissions to its components (Content
Providers, Activities, Services, and Broadcast Receivers)?

Is the app vulnerable to unauthorized implicit intent sniffing and in-
terception?
(a) Does the app protect its implicit intents with a permission (e.g.,
type Signature or SignatureOrSystem)?
(b) Is the app vulnerable to broadcast theft?
(c) Is the app vulnerable to activity hijacking?
(d)
)

(e) Is the app vulnerable to the interception of pending intents?

Is the app vulnerable to service hijacking?

A.1.3 Questions Related to Cryptography

1.

Does the app make use of non-standard cryptography such as custom
encryption protocols?

Does the app make use of deprecated cryptographic algorithms (e.g.,
RC2, RC4, MD4, MD5, SHA1, DES, etc.)?

How does the app manage keys? Are their any hard-coded or easy-
accessible encryption keys?

Does the app use any insecure default settings of cryptographic security
provider APIs (e.g., Cipher.getInstance())?

How are keys and initialization vectors generated?

Does the app use flawed random number generators
(e.g., Random.random)?

APPENDIX A. SECURITY ASSESSMENT CHECKLISTS 151

10.
11.

12.

13.

Does the app seed its random number generators correctly?
Does the app use insecure block cipher modes (e.g., ECB)?

Does the app use insecure padding schemes

(e.g., RSA/ECB/NoPadding)?
Does the app verify the integrity of ciphertexts?

Does the app make use of any outdated third-party cryptographic li-
braries?

Does the app use different cryptography depending on the Android OS
version, language or country?

Does the app make use of weak hash functions?

A.1.4 Questions Related to Improper Authentication

Procedures

Which authentication methods does the app use?

1.
2.

Does the app locally authenticate the user on the client-side?
Does the app always authenticate the user via an online backend?
Does the app use device-specific tokens for authentication?

(a) Does the app securely generate, maintain, and destroy tokens over
the life-cycle of a session?

(b) Does the app use easily guessable or spoofable authentication to-
kens?

(c¢) Does the app store tokens in URLs?

. Does the app load data from the backend onto the mobile device already

before user authentication?
Does the app lockout the user after a number of failed login attempts?

Does the app use Single Sign-On or authentication APIs (e.g., Google
Apps, Facebook, OAuth, etc.)?

Does the app consume information from push notifications?

APPENDIX A. SECURITY ASSESSMENT CHECKLISTS 152

10.

11.

12.

13.

14.

Does the app implement functionality that permits inbound connec-
tions from other devices (i.e., WiFi Direct, Android Beam, etc.)?

Does the app support two-factor authentication?

What is the app’s password policy? Are 4-digit PIN numbers allowed?

How does the session management work?

Is the app vulnerable to session fixation attacks?

Are all session invalidation events executed both on the client and
the server side? Are sessions properly destroyed?

Are any session cookies properly reset after authentication state
changes (e.g., switching from an anonymous user to a logged in
user)?

How does the app authenticate the user when the user’s mobile
phone is offline?

How does the app implement persistent authentication?
How big is the session timeout window?

Is there any sensitive information in memory after session expira-
tion?

Does the app support a logout functionality?

Does the app remember login credentials? Where does it store them?

Does the app provide a functionality to revoke any authentication to-
kens remotely in case the user’s mobile phone was stolen?

Does the app allow for intent spoofing against exported app compo-
nents?

(a)

(b)
(c)
(d)

Is the app vulnerable to intent spoofing attacks on broadcast re-
ceivers?

Is the app vulnerable to arbitrary launch of activities?
Is the app vulnerable to arbitrary launch of services?

Does the app insecurely control pending intents?

APPENDIX A. SECURITY ASSESSMENT CHECKLISTS 153

A.1.5 Questions Related to Improper Data Validation

1. Does the app properly validate input from IPC, the UI, the network,
and the local filesystem?

(a) Is the app vulnerable XSS/HTML/XML/CSS injection attacks?

(b) Is the app vulnerable to local filesystem injection attacks (e.g.,
web content that is cached on the SD card)?

(c) Is the app vulnerable to SQL injection attacks?

i. Does the app make use of raw SQL queries?
2. Is the app vulnerable to intent injection attacks through the Ul or IPC?

(a) Does the app properly check for NULL values in intent fields?
(b) Does the app generate files using improperly validated input?

(c) Is the app vulnerable to log injection attacks?
3. Does the app properly secure its WebViews?

a) Is browser plugin support disabled?

(
(b

)

) Is local file access disabled?
(c) Is Javascript disabled?
)

)

(d) Is content URL access disabled?

(e) Does any WebView load unauthenticated content?

4. Does the app have memory corruption bugs in native code?

A.1.6 Questions Related to Software Updates
1. Does the app check for updates itself, independently of an app store?

2. Does the app update itself using the ACTION_VIEW intent and down-
loaded APK’s?

3. Does the app verify the digital signature of a downloaded APK before
prompting the user? Is the APK also verified to be a newer version of
the app being updated?

4. Does the app silently update itself (e.g., via a DexClassLoader or native
library)?

APPENDIX A. SECURITY ASSESSMENT CHECKLISTS 154

A.1.7 Miscellaneous Questions

1.

10.
11.
12.

Does the app load external code at runtime (e.g., via DexClassLoader’s
or native libraries)?

Does the app interact with any other apps, third-party services or data?

Does the app make use of any APIs (e.g., payment gateways, SMS
messaging, social networks, cloud file storage, advertising networks,
etc.)?

Does the app make use of more permissions than it actually requires?
Does the app make use of any outdated (third-party) libraries?

Can parts of the source-code be found online (e.g., on GitHub)?

. Is the “debuggable” flag in the AndroidManifest set?

Does the app detect a rooted mobile handset?

Does the app detect an attached debugger?

Does the app detect a virtual machine environment?
Does the app perform runtime code integrity checks?

Does the app encrypt its SQLite databases?

A.2 Checklist 2: Questions to Answer About

End-to-end Encryption in any Given
Chat Application

This checklist tries to provide a more specialized set of weaknesses that are
common for secure mobile chat apps. It was mainly authored by Jedidiah
Crandall [37] and was additionally influenced by Unger’s evaluation frame-
work [126], and Green’s “Cryptographic Engineering” blog!.

http://blog.cryptographyengineering.com/

http://blog.cryptographyengineering.com/

APPENDIX A. SECURITY ASSESSMENT CHECKLISTS 155

A.2.1 Questions Related to Marketing Claims, ToS,
and EULA

1. What marketing claims (e.g., in blog posts) does the company make
that may be relevant to encryption or security properties?

2. If they claim end-to-end encryption, is it truly end-to-end or just client-
to-server?

3. Is there anything in the End User License Agreement (EULA) or Terms
of Service (TOS) that prohibits reverse engineering?

4. What is the contact information for reporting vulnerabilities?

5. Does the local government enforce crypto bans or mandated designs?

A.2.2 Questions Related to Random Number Genera-
tion

1. Where do random numbers come from (e.g., the operating system
through /dev/urandom, or somewhere else) [45]?

2. What are random numbers used for (e.g., key material, initialization
vectors, nonces, session keys)?

3. Is entropy destroyed because of bad type casting (e.g., as in Crypto-
cat) [124]7

4. Are there potential device or source issues with entropy (e.g., the en-

tropy pool is not properly seeded with high entropy events) [18, 81]7

A.2.3 Questions Related to Symmetric Cryptography

What symmetric cryptography algorithm(s) is/are used? For each instance
of symmetric cryptography:

1. Where does the Initialization Vector come from [45]7
2. Where does the shared secret key come from?
3. What is the key size?

4. Is it a block or stream cipher?

APPENDIX A. SECURITY ASSESSMENT CHECKLISTS 156

5.

6.

If block encryption, is it done in ECB mode, CBC mode, or something
else [45]7

If stream cipher, is key material ever reused?

A.2.4 Questions Related to Asymmetric Cryptogra-

10.

11.
12.
13.
14.
15.

16.

phy

. What algorithm is used for key exchange?
. What parameters are used for key exchange (e.g., which elliptic curve)?

. If not a well-known set of parameters, does it have issues with, e.g.,

group sizes [45]?

. What is the key size?

. Where does the public key come from?

How does public key discovery work, e.g., does the service provider use
a directory service for storing and exchanging the keys?

. Where does the private key come from?

. Is the private key encrypted with the user’s password (which is also

used to authenticate with the service provider)?
Does the service provider have cleartext access to the user’s password?

How is authentication performed (e.g., not at all, Trust on First Use —
or TOFU, visual or auditory verification of keys by users, etc.) [126]?

What is the security of the discovery transport?

Where is the discovered public key stored?

Are there any possible birthday or meet-in-the-middle attacks [45]7
Are there any possible replay attacks [45]7

Is there a way for users to know when a MiTM attack has occurred,
such as transparency logs [126]?

Is the algorithm semantically secure (i.e., does it use OAEP or some-
thing like that if they are using an algorithm that is not already proven
to have semantic security [7])7?

APPENDIX A. SECURITY ASSESSMENT CHECKLISTS 157

17.

18.
19.

20.

Is there any form of key management? l.e., are asymmetric keys ever
revoked or expired? What happens when the user loses his/her phone
(and his/her private key) and he/she needs to issue a new public key?

Does the algorithm for key exchange preserve forward secrecy [45]7

Is large integer arithmetic performed using a standard library or custom
code? Is wooping used? [45]

Public key availability: Once you validated a public key the validation
needs to be available on all possible end devices as well. How is that
handled?

A.2.5 Questions Related to Hash Functions or MACs

1.

2.

3.

What hash function and Message Authentication Code (MAC) algo-
rithms are used?

What exactly is each used for?

Are any of the above algorithms known to be susceptible to preimage
attacks (e.g., CRC32 or something based on TEA) or collision attacks
(e.g., MD5 or SHA1) [133]?

Do they MAC and then encrypt (insecure) or encrypt and then MAC
(secure)? E.g., do they include a hash of the plaintext in the ciphertext
as does Telegram [63]?

A.2.6 Questions Related to Traffic Analysis

1.

Are communications direct from user to user or do they go through a
central server (or something else)?

. If a central server is involved, can the plaintext or ciphertext between

two users be pattern matched or is it re-encrypted by the server?

. Is there anything that is sent plaintext, like stickers?

. What metadata is transmitted alongside encrypted messages? Any-

thing unusual or potentially compromising?

. If a central server is not involved, can a passive eavesdropper learn

about user’s actions based on the characteristics of the encrypted traf-
fic?

APPENDIX A. SECURITY ASSESSMENT CHECKLISTS 158

A.2.7 Questions Related to Forensics

1.

What compromising information can be found with physical access to
the phone, especially the filesystem?

. If user passwords are stored, is hashing, salting, and/or stretching ap-

plied [45]7

. Is it possible to dump any session keys from memory? Can an attacker

intercept and read messages before they get encrypted? Where and
how are the private and session key(s) stored on the device?

A.2.8 Miscellaneous Questions

1.

Are the crypto algorithms used self-rolled or standard, well-known al-
gorithms?

. Are there any custom modifications to any crypto?

. Is there anything else that increases or decreases the trust of the crypto

implementation? E.g.:
(a) automatic background updates that replace your implementation
with a malicious one
(b) use of subliminal channels to exfiltrate keys

(c) a maintained list of minor vulnerabilities in the communication
protocol (e.g., uninitialized memory to scan key material)

. Is it possible to register a shadow device to an existing user account?

Does the company implement some sort of key escrow (e.g., encrypt
the session key with a third-party public key and send it in an extra
field along the encrypted message)?

Does E2E work between different mobile operating systems or versions
(e.g., between i0S and Android)?

Does encryption work on all network interfaces? Do they use E2E over
3G, for example?

Does the crypto implementation use any insecure Baa$S solutions [99]7

Data availability: Is the secret chat history stored in the cloud so that
it is available on all end devices? Or does the app implement some
other sort of secure synchronization protocol instead?

APPENDIX A. SECURITY ASSESSMENT CHECKLISTS 159

10. Does the app support the following privacy-related configuration set-
tings?
(a) Adding a new contact requires permission from that contact
(b) Automatic file downloads/transfers can be disabled

¢) The app detects malicious file extensions

(
(d
(e
(

)

)

) Application and notifications can be locked with a passphrase

) Application allows to auto-lock itself after a specified time interval
f) Messages and the chat history can be deleted
g) Old messages can be automatically deleted
h)

)

)

)

)

)

(i) Presence information can be restricted

The app allows to create encrypted backups of messages

(
(
(j) Notifications can be disabled or muted
(k) Contacts can be blocked

(1) Contacts can be verified

(m) The app blocks other apps to take screenshots

Appendix B

Application Information

In this appendix we list KakaoTalk’s permissions (Section B.1) as well as
several application details (Section B.2).

B.1 Permissions

1. android.permission.CALL_PHONE

(a) Directly call phone numbers (this may cost money)

(b) Allows the app to call phone numbers without the user’s inter-
vention. This may result in unexpected charges or calls. Note
that this does not allow the app to call emergency numbers. Ma-
licious apps may cost money by making calls without the user’s
confirmation.

2. android.permission.READ_PHONE_STATE

(a) Read phone status and identity

(b) Allows the app to access the phone features of the device. This
permission allows the app to determine the phone number and de-
vice IDs, whether a call is active and the remote number connected
by a call.

3. android.permission.SEND_SMS

(a) Send SMS messages

(b) Allows the app to send SMS messages. This may result in unex-
pected charges. Malicious apps may cost you money by sending
messages without your confirmation.

160

APPENDIX B. APPLICATION INFORMATION 161

4. android.permission.RECEIVE_SMS

(a) Receive text messages (SMS)

(b) Allows the app to receive and process SMS messages. This means
that the app could monitor or delete messages sent to the user’s
device without showing them to him/her.

5. android.permission.CAMERA

(a) Take pictures and videos
(b) This permission allows the app to use the camera at any time
without the user’s confirmation.

6. android.permission.RECORD_AUDIO

(a) Record audio
(b) This permission allows the app to record audio at any time without

the user’s permission.

7. android.permission.ACCESS_COARSE_LOCATION and android.perm-—
ission.ACCESS_FINE_LOCATION

(a) Approximate location (network-based), precise location (GPS and
network-based)

(b) Apps may use this (GPS, mobile towers, and WiFi) to determine
where the user is, and may consume additional battery power.

8. android.permission.READ_CONTACTS

(a) Read user’s contacts

(b) Allows the app to read data about the user’s contacts stored on
his/her phone, including the frequency with which the user has
been called, emailed or communicated in other ways with specific
individuals. This permission allows apps to save user’s contact
data, and malicious apps may share contact data without user’s
knowledge.

9. android.permission.READ _EXTERNAL_STORAGE and
android.permission.WRITE_EXTERNAL_STORAGE

(a) Modify or delete the contents of the user’s SD card
(b) Read the contents of the user’s SD card

APPENDIX B. APPLICATION INFORMATION 162

10. android.permission.GET_ACCOUNTS

11.

12.

13.

14.

15.

16.

(a)
(b)

Find accounts on the device

Allows the app to get the list of accounts known by the phone.
This may include any accounts created by applications that the
user has installed.

android.permission.CHANGE_NETWORK_STATE

(a)
(b)

Change network connectivity

Allows the app to change the state of network connectivity

android.permission.CHANGE _WIFI_STATE

(a)
(b)

Connect and disconnect from WiFi

Allows the app to connect to and disconnect from WiFi access
points and to make changes to device configuration for WiFi net-
works.

android.permission. INTERNET

(a)
(b)

Full network access

Allows the app to create network sockets and use custom network
protocols. The browser and other applications provide means to
send data to the Internet, so this permission is not required to
send data to the Internet.

.android.vending.BILLING

Google Play billing service

Allows the user to buy items through Google Play from within
the app.

.google.android.c2dm.permission.RECEIVE

Receive data from Internet

Allows the app to accept cloud-to-device messages sent by the
app’s service. Using this service will incur data usage. Malicious
apps could cause excess data usage.

android.permission.ACCESS_NETWORK_STATE

(a)

View network connections

APPENDIX B. APPLICATION INFORMATION 163

17.

18.

19.

20.

21.

22.

(b) Allows the app to view information about network connections
such as which networks exists and are connected.

android.permission.ACCESS_WIFI_STATE

(a) View WiFi connections
(b) Allows the app to view information about WiFi networking, such
as whether WiF1i is enabled and name of connected WiFi devices.

android.permission.BLUETOOTH

(a) Pair with Bluetooth devices
(b) Allows the app to view the configuration of the Bluetooth on the
phone and to make and accept connections with paired devices.

android.permission.RESTART_PACKAGES

(a) Close other apps
(b) Allows the app to end background processes of other apps. This
may cause other apps to stop running.

android.permission.GET_TASKS

(a) Retrieve running apps

(b) Allows the app to retrieve information about currently and re-
cently running tasks. This may allow the app to discover infor-
mation about which apps are used on the device.

android.permission.RECEIVE_BOOT_COMPLETED

(a) Run at startup

(b) Allows the app to have itself started as soon as the system has fin-
ished booting. This can make it take longer to start the phone and
allow the app to slow down the overall phone by always running.

android.permission.SYSTEM_ALERT _WINDOW

(a) Draw over other apps

(b) Allows the app to draw on top of other apps or parts of the user
interface. They may interfere with the user’s use of the interface
in any apps, or change what the user thinks he/she is seeing in
other apps.

APPENDIX B. APPLICATION INFORMATION 164

23. android.permission.VIBRATE

24.

25.

26.

27.

(a) Control vibration (affects battery)

android.permission.WAKE_LOCK

(a) Prevent phone from sleeping

android.permission.MODIFY_AUDIO_SETTINGS

Change your audio settings

Allows

the app to modify global audio settings such as volume

and which speaker is used for output.

Install
Allows

.android.launcher.permission. INSTALL_SHORTCUT

shortcuts

the app to add homescreen shortcuts without user inter-

vention.

android.permission.BROADCAST_STICKY

(a) Send sticky broadcast

(b) Allows the app to send sticky broadcasts, which remain after the
broadcast ends. Excessive use may make the phone slow or un-
stable by causing it to use too much memory.

In addition, KakaoTalk defines the following custom permissions:

com.

com.

com.

com.

com.

com.

com

kakao.

kakao.

kakao.

kakao.

kakao.

kakao.

.kakao.

talk.permission.C2D_MESSAGE
talk.permission.RECEIVE_NOTIFICATION
talk.permission.FRIENDS_PICKER
talk.permission.START_CHAT
talk.permission.ADD_FRIEND_AND_START_CHAT
home.permission.SNOOZE

talk.permission.INTERNAL

B.2 Application Details

APPENDIX B. APPLICATION INFORMATION

Description | Value

SHA256 cabebbb8ealeb3dbad462e2561028685fdc0abe839f67
8af538a409a047ed77ec

SHA512 ebea2ab5f361505cef6ab81d4150123300£f36ce21766d
bd8597¢867a0031c4fe0dad50372ac70fab53bdf9c0d6
a86428e634a668336306b3104c39¢3feb4750£5

Application | KakaoTalk

label

Package com.kakao.talk

name

Package ver- | 5.5.5

sion name

Package ver- | 1400223

sion code

Minimum 14

SDK version

Target SDK | 22

version

Launcher Ac-
tivity

com.kakao.talk/.activity.SplashActivity

Main Activi-
ties

com.kakao.talk/.activity.main.MainTabFragme
ntActivity
com.kakao.talk/.activity.TaskRootActivity

APK path /data/app/com.kakao.talk-1.apk
Private data | /data/data/com.kakao.talk/
directory

External /sdcard/KakaoTalk/

data directo-
ries

/sdcard/Android/data/com.kakao.talk/

Table B.1: KakaoTalk Application Details.

165

TRITA TRITA-EE 2016:131

