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Abstract

The focus of the present master thesis is the automation of an existing controller
design for a missile using two aerodynamic actuating systems. The motivation is
to evaluate more missile concepts in a shorter period of time.
The option used is trimming and linearization of a highly nonlinear missile at spe-
cific conditions. According to these conditions, either a two-dimensional operating
point grid defined by Mach number and height or three-dimensional operating
point grid defined by Mach number, height and angle of attack is generated for
the whole operating range of the missile. The controllers are designed at these
points using convex optimization. The convex set defines the pole placement area
which is constrained by linear matrix inequalities according to the dynamic be-
havior of the missile at the operating point conditions. These controllers describe
a validity area where the missile can be stabilized. This area consists all neigh-
boring operating points and defines therefore the grid density which can differ at
specific regions of the operating range. Controlling the missile to the target makes
it necessary to apply gain-scheduling in order to get the manipulated variable by
interpolation of adjacent operating points. During this blending of the controllers
a problem called windup can occur when an actuator is saturated. This might
lead to instability in worst case but can be counteracted by a model-recovery anti-
windup network which guarantees stability in the presence of saturation. This
anti-windup design is automated by an affine linear parameter dependency of the
grid parameters and has the same validity area like the controllers.
The whole design was successfully developed and tested in MATLAB/Simulink on
missiles using one or two aerodynamic actuating systems. The controllers have a
good performance at small and high acceleration steps and the anti-windup keeps
the missile stable even though the actuators are saturated. Stability and robust-
ness of the controllers and anti-windup networks was verified as well as an air
defense maneuver where the missile starts at the ground and intercepts a target
at high altitude was successfully simulated for different grids and missiles.
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1 Introduction

Continuously improvements in the development of warfare material all over the
world makes it necessary to counteract this constant threat. MBDA is specialized
in the development of missile systems, especially air defense missiles, to provide
safety. Such a missile has to fulfill diverse design criteria for the electrical power
supply, attitude determination and control, propulsion, structure, command and
data handling, thermal control and payload. For the design of the whole missile
system, various simulations have to be executed in advance where various designs
of the missile can be evaluated. Therefore, a simulation for missile systems with its
essential parts like radar, communication and launcher was developed. An autopi-
lot is needed in all simulations of the whole missile system. One essential module
for the guidance and hence performance is the flight control system. This system
is necessary for the automated control and navigation of missiles. This master
thesis deals with the development and improvement of flight control algorithms
in terms of an automated controller design using convex optimization in order to
evaluate more missiles in a shorter period of time.

1.1 Problem Description

For the preliminary design of the missile’s guidance, a program in MATrix LABora-
tory (MATLAB) was developed. In order to simulate the designed control system
to offer valuable clues of the performance, a simulation in Simulink connected via
S-Functions to the mentioned missile system simulation, developed in C++, exists
as well.
The implemented control method is able to use only measured values and is ap-
plicable to actuator systems like ailerons, elevators, rudders or Divert Attitude
Control System (DACS) in order to control a missile optimally over the whole
flight envelope. To evaluate different concepts in a short period of time, the design
of an autopilot should be automated by using the maximum possible number of
measurable states and providing robustness. Since the development of this control
method will be mainly formulated in a general manner, it can be also applied to
small launch vehicles. Since the varying air density in the lower and higher atmo-
sphere influence the control effectiveness, the automatically designed controllers
have to guarantee a stabilized flight behavior of missiles or small rockets over the
whole envelope.
The automated design is a challenging task since the missile is highly nonlinear.
One possibility to deal with the nonlinearity is an approach by using a Nonlinear
Dynamic Inversion (NDI) controller. Such a control method has some disadvan-
tages according to an automated design. A NDI controller needs to know the
whole state of the missile which requires the design of a state estimator/observer.
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Employing a NDI design to a tail controlled missile makes it necessary to account
for the non-minimum phase property of the system [25]. This is done by defining
a new controlled variable which is a complex task. Another possibility is the lin-
earization of the missile in various operating ranges. The advantage in the sense
of automation is that automated tools for the design of linear systems exist. Ad-
ditionally, the knowledge of the whole system state is not necessary due to the
availability of output feedback controllers. A controller has a specific validity area
in the operating range which leads to the necessity of several controllers for the
whole operating range of the missile. Using a suitable method for blending among
the controllers makes it possible to control the missile during its mission. Subse-
quent, the main problems of the thesis accounted in [3] will be briefly described:

1.1.1 Automated Adaption of the Operating Point Grid

A nonlinear system like a missile has to be linearized at specific operating points
also called trim points in order to apply for example well known controller design-
and analysis methods for linear systems to nonlinear systems. The current grid
is divided in height and Mach number which influence the control effectiveness
and will be enhanced by the possibility of linearizing additionally over the angle
of attack. If the grid is too coarse, the approximation of the nonlinear flight
dynamics will not be sufficiently precise. Degradation of the performance and
even instability might occur. Linear matrix inequalities allow for an automated
evaluation of the grid. A negative result would lead to a denser grid, avoiding
the mentioned problems. Detailed information regarding this problem are given
in section 2.2.1.

1.1.2 Controller Design

When the system is linearized at specific Operating Point (OP)s, controllers at
these points have to be designed to ensure a stable behavior of the system during
the flight. These controllers are applied to the diverse actuating systems and have
to provide different quality criteria. Convex optimization using LMIs offers the
possibility of an automated design of the controllers ensuring the controllers to
fulfill predefined requirements. This automated design is discussed in more detail
in section 2.3 and later in 3.3.

1.1.3 Design of an Anti-Windup Network

The controller of the plant should be highly dynamic but is constrained by limits
of the actuator. When the necessary manipulated variable is higher than actu-
ally physically realizable, instability can occur. A possibility to counteract such
problems is called anti-windup. An automated design of an Anti-Windup (AW)
Network (NW) can be developed in order to stabilize a system during saturation
of an actuator. We will also discuss the fact, that blending between controllers
requires windup countermeasures. A more detailed description of anti-windup will
be presented in section 2.4.
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1.1.4 Implementation and Design Aspects

Currently the implementation is constrained by a grid consisting of 2x3 grid points.
In order to simulate the whole envelope, adjacent operating points have to be de-
termined instantaneous online while retrieving the particular control algorithm.
The implementation should be independent of the dimension of the grid, hence
the user should be able to define the dimension, their variables and bounds.
The parameters should be set with respect to the current flight conditions in order
to have stable flight behavior in lower and also higher atmospheric layers. There-
fore, the ability of lateral acceleration has to be investigated.

The algorithms, controller design and anti-windup control will be developed in
MATLAB/Simulink.

1.2 Presupposed Knowledge

This master thesis presupposes a fundamental knowledge in control theory as im-
parted by the book [12] or similar books which impart basics in control. Fur-
thermore, basic knowledge in aerodynamics as well as flight mechanics are recom-
mended for understanding this thesis.

1.3 Outline

This work is organized as in the following described.
In the beginning, background theory for the control of missiles is presented. The
existing missile simulation, linearization methods as well as the prove of stability
according to Lyapunov [28] will be briefly described. Furthermore, convex opti-
mization using LMI constraints, the problem of windup and counteracting methods
as well as possibilities of controllers for the stabilization of the missile will be ad-
dressed.
Afterwards, the realization of automating the AW NW development, grid gen-
eration, controller design and their implementation in the existing program in
MATLAB/Simulink and link to the missile simulation will be shown.
Finally, the results will be presented and discussed and an overview of upcoming
work and suggestions for improvements are given.

Remark 1. Due to secrecy reasons on the part of MBDA Germany, the units of
acceleration [m/s2] · k1 = [acc], force [N] · k2 = [F] and the time [s] · k3 = [t] are
distorted by scaling factors.
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2 Background Theory for the Con-

trol of Missiles

2.1 Missile Model

The control of a technical system requires a detailed mathematical copy of it. This
can be realized by the related differential equations which describe its motion.
Therefore, all exterior forces and moments which act on the missile are needed
in order to get all equations of motion, representing the six Degrees of Freedom
(DOF) behavior of the missile. The forces and moments are caused by gravity,
aerodynamics and the missile’s thrust.
Subsequently, the equations of motion and the different actuating systems will be
presented and in more detail described according to [7], [18], [19].

2.1.1 Equations of Motion (EoM)

As mentioned above, the missile has six DOFs which will be described by three
vector equations. More specific, the translation in the kinematic system, the rota-
tional motion and the differential equations of the attitude.
The translational behavior can be expressed by

V̇ =
1

m
· (FX,t · cosα · cos β + FY,t · cos β + FZ,t · sinα · cos β) , (2.1)

α̇ =
1

V · cos β ·m
·(FZ,t · cosα− FX,t · sinα)+q−tan β·(p · cosα + r · sinα) , (2.2)

β̇ =
1

V ·m
·(FY,t · cos β − FX,t · cosα · sin β − FZ,t · sinα · sin β)+p·sinα−r·cosα,

(2.3)

where V̇ describes the time derivative of the kinematic velocity, α̇ and β̇ the time
derivatives of the kinematic angle of attack and sideslip angle. Furthermore, m is
the missile’s mass and p, q, r the roll rate, pitch rate and yaw rate respectively.
The three forces in x-,y- and z-direction (FX,t, FY,t and FZ,t) resulting from the
principle of linear momentum and describe the equilibrium of forces in the Body-
Fixed (BF) frame (see figure 2.1)

B
~F t =

∑
B
~F =

FX,tFY,t
FZ,t

 =

 FX,A + FX,p + FX,g
FY,A + FY,DACS + FY,g
FZ,A + FZ,DACS + FZ,g

 . (2.4)
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Figure 2.1: Illustration of the body-fixed frame of a missile [19]

The first column of the final matrix shown in equation (2.4) summarizes all aerody-
namic forces, the second column the forces generated by the main engine FX,p and
by the system for lateral thrusting maneuvers (Divert Attitude Control System
DACS) FY,DACS and FZ,DACS and the third column summarizes all forces caused
by gravity.
In the North-East-Down (NED) coordinate system the Earth’s acceleration due
to gravity acts always in nadir, hence in z-direction but in the Body-Fixed frame
the Earth’s acceleration acting on the missile depends on the current attitude.
Therefore, the gravity forces acting on the missile can be described with the roll
angle φ and the pitch angle Θ

B
~F g =

FX,gFY,g
FZ,g

 =

 −m · g · sin Θ
m · g · sinφ · cos Θ
m · g · cosφ · cos Θ

 . (2.5)

The aerodynamic forces can be defined by

B
~F A =

FX,AFY,A
FZ,A

 = S · q

CXCY
CZ

 (2.6)

where CX , CY and CZ are dimensionless coefficients or rather derivatives which
represent forces and moments acting on the missile. This method is quite often
used in simulations in order to simplify the complex and time consuming exact
calculation of these forces and moments under the assumption of neglecting wind.
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The reference area is defined by S and the dynamic pressure by q. The dynamic
pressure can be determined by

q =
ρ

2
·
[√

u2 + v2 + w2
]2

(2.7)

where u, v, w are the velocity components in the body-fixed frame. These can be
used to calculate the angle of attack

α = arctan
(w
u

)
(2.8)

and sideslip angle

β = arctan

(
v√

u2 + w2

)
. (2.9)

The aerodynamics of the missile are described in a so-called aeroballistic system
[27]. Therefore, the total aerodynamic angle of attack θ and total aerodynamic
roll angle ϕ will be used (see figure 2.2). They can be calculated by

θ = arccos(cos(α) cos(β)), (2.10)

ϕ = arctan

(
tan β

sinα

)
. (2.11)

The derivatives depend on many variables (e.g. the angle of attack, sideslip angle,
manipulating variables and also Mach number) and illustrate the high nonlinearity
of the missile. These derivatives from equation (2.6) can be calculated by

CX = CX00+CX40ϑ
4+CXet2 ·

(
η2 + ζ2 + 2 · ξ2

)
+CXet11 ·(αη − βζ)+∆CX , (2.12)

CY = CZPol sinϕ+ CY Pol cosϕ− Cζζ, (2.13)

CZ = CZPol cosϕ− CY Pol sinϕ− Cζη, (2.14)

where Cζ = Cη due to symmetry and the manipulating variables ξ, η, ζ depend
on the number of aerodynamic actuating systems. The equations of motion are
described exemplary for one aerodynamic actuating system at the rear of the
missile. In case of two aerodynamic actuating systems, the equations where the
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Figure 2.2: Figure 2.1 enhanced by the aerodynamic angles [19]

manipulating variables are considered have to be enhanced by an elevator, rudder
and aileron at the missile’s front. The whole derivation can be seen in [7].
Under the assumptions that the missile is rotationally symmetric and rotates about
its principle axes of inertia it can be concluded that no deviation moments occur
and Iyy = Izz. The rotational behavior of the missile can then be expressed by

~̇ω =

ṗq̇
ṙ

 =


1
Ixx
·MX,t

1
Iyy
· [MY,t + (Iyy − Ixx) · p · r]

1
Iyy
· [MZ,t + (Ixx − Iyy) · p · q]

 (2.15)

where

MX,t

MY,t

MZ,t

 =

LM
N

+

 0
MY,DACS

MZ,DACS

 . (2.16)

The moments MY,DACS and MZ,DACS would result from the lateral thrusters. The
aerodynamic moments L, M and N are defined as

B
~MA =

LM
N

 = S · q · l

CLCM
CN

 (2.17)

where the derivatives are defined as stated in [19]

CL = CL21ϑ
2 sin(4ϕ) + CLξξ + CLp

l

V
p, (2.18)
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CM = CMPol cosϕ+ CNPol sinϕ+ CMηη + CZ
xcp − xcg

l
+ CMq

l

V
q, (2.19)

CN = −CMPol sinϕ+ CNPol cosϕ+ CMηζ − Cγ
xcp − xcg

l
+ CMq

l

V
r. (2.20)

In equations (2.18) - (2.20), xcp defines the pressure point, xcg the center of gravity
and l the reference length. The other derivatives C{.} are lodged in tables and can
be interpolated by the Mach number. They are described in [7], [19].
The last equations, which are necessary to define the behavior of a missile, describe
its attitude

 φ̇Θ̇
Ψ̇

 =

1 sinφ tan Θ cosφ tan Θ
0 cosφ − sinφ
0 sinφ(cos Θ)−1 cosφ(cos Θ)−1

 ·
pq
r

 . (2.21)

As you can see in equation (2.21), the attitude of a missile is described by the
derivatives of the Euler angles where φ defines the roll angle, Θ the pitch angle
and Ψ the yaw angle.

2.1.2 Actuating Systems

For the control of missiles, the most commonly used actuating systems are aero-
dynamic control surfaces or lateral thrusters. These are the elevator, rudder and
aileron. When talking about these systems in this thesis, the dynamics are meant.
The elevator’s dynamics are described by the angle of attack α and the pitch rate
q, the rudder’s dynamics by the sideslip angle β and the yaw rate r and the aileron
is described by the roll angle φ and the roll rate p.
In reality, there is always a time lag between a command and the execution of the
command by the actuating system. This behavior can be approximated by a PT-1
element in the controller design.
Furthermore, actuating systems are restricted. Either by a specific maximum de-
flection umax of a control surface or by a maximal amount of thrust of a thrusting
system. This master thesis deals exclusively with the control of missiles by aero-
dynamic actuating systems. Especially with control surfaces at the front and back
of the missile’s structure. When the saturation limit umax is exceeded, the missile
is possibly not able to perform desired lateral accelerations and might become un-
stable. To counteract such problems, a so-called anti-windup network (AW NW)
can be employed. More information will follow in section 2.4.

2.1.3 Missile Simulation

The missile simulation was developed by MBDA Germany to analyze the behavior
of a missile system during its mission. The representation of the missile system
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or rather air defense system consists beside the missile of radars and filter. The
overall performance depends on all components of the system. Sometimes one
has to balance between the performance of the missile and the radar and filter as
well as the actuator and seeker requirements. This simulation can be used for the
development and design of flight control algorithms. It is implemented in C++
and has a modular setting in order to simulate various missiles.
This simulation is connected to Simulink via S-functions. First, initial conditions
of the missile are defined and transmitted to the missile simulation. Afterwards,
the behavior of the missile will be computed by the equations of motion, which
has been described in section 2.1.1. The output of the missile simulation are for
example the actual accelerations in all directions, the current position in the NED
frame or the current attitude.
A missile has four different phases which can be simulated. See figure 2.3 where
an ideal thrust profile is illustrated.

1. Boost Phase where the missile will be accelerated

2. Sustain Phase for second smaller but longer thrusting if desired

3. Midcourse Phase for maximization of range

4. Endgame where the missile is very close to the target and highly dynamic
maneuvers are necessary

Figure 2.3: Ideal thrust profile of boost phase 1, sustain phase 2, midcourse phase
3 and endgame 4

For all four phases, initial conditions are given to simulate the correct behavior of
the missile. In order to design appropriate controllers for all phases, the highly
dynamic missile has to be linearized since it is due to perturbations and time
dependent parameters nonlinear.
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2.2 Linearization

The equations of motion which describe the behavior of a system are in general
nonlinear due to uncertainties, perturbations or time varying parameters. Hence,
instead of the linear state-space model

ẋ(t) = Ax(t) + bu(t), x(0) = x0 (2.22)

y(t) = c′x(t) + du(t) (2.23)

or rather the linear differential equation

dny

dtn
+ an−1

dn−1y

dtn−1
+ ...+ a1ẏ + a0y(t) = bq

dqu

dtq
+ ...+ b1u̇+ b0u(t) (2.24)

the system can be described with a nonlinear state-space model of the form [12]

ẋ = f(x(t), u(t)), x(0) = x0 (2.25)

y = h(x(t), u(t)). (2.26)

In the following, all time dependencies of the signals will be neglected in the
notation due to clarity. Furthermore it should be said that state-space model
(2.23) is not always equivalent to the transfer function of (2.24). Only if the
system is fully observable and controllable, otherwise the order of the transfer
function is smaller compared to the state-space model.
In spite of the real nonlinear behavior, linear model approximations of the missile
are used for the controller design. This is because of the objective of ensuring a
stable behavior at a specific OP. The missile flies through the surrounding area at
that OP when the control loop works. Hence, it is sufficient that the model defines
the missile’s motion in the surrounding area of that OP. Therefore, the goal is
to define an approximated version of the nonlinear model described by equations
(2.25) and (2.26). This approximation should be valid in a local area that linear
design methods can be used for the controller design.

∆ẋi = Ai ·∆xi +Bi ·∆ui (2.27)

∆yi = Ci ·∆xi +Di ·∆ui (2.28)

where

Ai = System matrix at an OP ”i”
Bi = Input matrix
Ci = Output matrix
Di = Feedthrough matrix
xi = State vector (see table 2.1)
ui = Control vector (see table 2.2)
yi = Output vector
∆ = Implies the surrounding area of an OP where the model should be valid
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The deviation from the reference point (x,u and y = h(x,u)) where the missile
is linearized is defined as

∆x = x− x, (2.29)

∆u = u− u, (2.30)

∆y = y − y. (2.31)

The linearization is exemplary shown in figure 2.4. The characteristic curve of a
nonlinear static system is stated by

y(t) = n(u(t)). (2.32)

The requirement for the OP in this example is

y = n(u) (2.33)

which means that OP (u,y) is situated on the nonlinear characteristic curve.

Figure 2.4: Linearization example of a static nonlinearity [12]

It is recommended to substitute the missile into linear models at steady states since
the expected changes at these reference points are very small (ẋ ≈ 0) which leads
to an enlargement of ∆ and hence the scope of the missile. The requirement for the
reference points is that the lateral acceleration is zero, i.e. y = a = h(x,u) = 0.
To fulfill this requirement, a so-called trimming of the missile is necessary. The
trimming method and its implementation is described in section 2.2.1.

The linearization about a trim state to get the substituted models is done by a
Taylor expansion. Using equations (??) and (2.31) leads to the following deviation:

∆ẋ = ẋ− ẋ (2.34)

= f(x,u)− f(x,u) (2.35)

= f(x+ ∆x,u+ ∆u)− f(x,u) (2.36)
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Table 2.1: States of a missile
State Description Unit
V Kinematic velocity m/s
α Angle of attack in kinematic system rad
β Sideslip angle in kinematic system rad
p Roll rate in body-fixed system rad/s
q Pitch rate in body-fixed system rad/s
r Yaw rate in body-fixed system rad/s
φ Roll angle between BF and NED rad
Θ Pitch angle between BF and NED rad
Ψ Yaw angle between BF and NED rad

Table 2.2: Control parameter of a missile
Control Parameter Description Unit
ξf Deflection of front aileron rad
ηf Deflection of front elevator rad
ζf Deflection of front rudder rad
ξb Deflection of back aileron rad
ηb Deflection of back elevator rad
ζb Deflection of back rudder rad

This yields the following Taylor expansion

∆ẋ = f(x,u)+
∂f(x,u)

∂x

∣∣∣∣
x=x
u=u

·∆x+
∂f(x,u)

∂u

∣∣∣∣
x=x
u=u

·∆u+O2(x,u)−f(x,u).

(2.37)

Since the missile is highly dynamic, it can be linearized only in a small surrounding
area of the OP. Therefore, ∆x(t) and ∆u(t) are relatively small and terms of
higher order O2 can be neglected compared to terms of first rank. Equation (2.37)
can the be written as

∂f(x,u)

∂x

∣∣∣∣
x=x
u=u

·∆x+
∂f(x,u)

∂u

∣∣∣∣
x=x
u=u

·∆u. (2.38)

The two differential quotients from equation (2.38) define derivatives of the states
and control parameters and describe therefore the system matrix A (equation
(2.39)) and input matrix B (equation (2.40)) and are called Jacobi-matrices [12].

∂f(x,u)

∂x

∣∣∣∣
x=x
u=u

=


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

...
∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn


x=x
u=u

= A (2.39)
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∂f(x,u)

∂u

∣∣∣∣
x=x
u=u

=


∂f1
∂u1

∂f1
∂u2

. . . ∂f1
∂un

∂f2
∂u1

∂f2
∂u2

. . . ∂f2
∂un

...
...

...
∂fn
∂u1

∂fn
∂u2

. . . ∂fn
∂un


x=x
u=u

= B (2.40)

This yields the linear relation as already stated in equation (2.28):

∆ẋ = A ·∆x+B ·∆u (2.41)

(2.42)

The output matrix C and feedthrough matrix D can be determined with the same
procedure but using a Taylor expansion of function h(x,u).

2.2.1 Trimming

Trimming is used to determine trim variables (x,u) which define a subset of state
derivatives. This state can be determined when the derivatives of the states are
zero or approximately zero. The trim variables are a set of variables, wisely cho-
sen from the states and control parameters shown in tables 2.1 and 2.2. For the
numerical minimization of the derivatives of the states, a cost function has to be
determined for the sum of these derivatives. To find the minimal cost function for
the definition of the desired trim variables, an optimization algorithm can be used,
which is provided by MATLAB and is called fminsearch. This function uses the
gradient-based Nelder-Mead Simplex Algorithm [4].
A steady-state of a missile is for example a ”straight and level” flight where the
missile will not experience lateral acceleration steps or the height is increased or
decreased. The associated trim variables are the angle of attack α and the deflec-
tion of the elevators ηf and ηb. It is sufficient to define only the elevator at the
back as a trim variable. For a higher performance, the elevator at the front can
be called in.
These variables have to be determined in order to eliminate the derivatives of the
Euler angles, the rotation rates the angle of attack and the sideslip angle. Since the
missile will be accelerated when the booster is burning and decelerated by the aero-
dynamic drag when no thrust is present, the velocity can not be controlled. Hence,
the derivative of the velocity will not be zero but is handled as steady-state [3], [7].

Consider the previously mentioned case of straight and level flight where the trim
variables are set to α and ηb. The requirement is

y = a = 0 = h(α,ηb) (2.43)

which is fulfilled by

ẋi = f(α,ηb) = 0,∀i. (2.44)

The requirement of the lateral accelerations, states and control inputs for such an
example are summarized in table 2.3.
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Table 2.3: States and control parameters for a straight and level flight
Parameter Description Characteristic

Requirement
a Pre-defined ya = 0, za = 0

States

V Handled as steady-state V 6= 0, V̇ = 0
α Trim variable/Wanted α 6= 0, α̇ = 0

β No requirement/Arbitrary β ∈ R, β̇ = 0
p No requirement/Arbitrary p ∈ R, ṗ = 0
q No requirement/Arbitrary q ∈ R, q̇ = 0
r No requirement/Arbitrary r ∈ R, ė = 0

φ No requirement/Arbitrary φ ∈ R, φ̇ ∈ R
Θ No requirement/Arbitrary Θ ∈ R, Θ̇ ∈ R
Ψ No requirement/Arbitrary Ψ ∈ R, Ψ̇ ∈ R

Control Inputs
ξf Set to zero ξf = 0
ηf Set to zero ηf = 0
ζf Set to zero ζf = 0
ξb Set to zero ξb = 0
ηb Trim variable/Wanted ηb 6= 0
ζb Set to zero ζb = 0

2.2.2 Operating Point Grid

The missile is linearized at specific operating points, spread over the whole flight
envelope of the missile. As described in section 2.2.1, the missile can be linearized
for straight and level flights. To increase the performance one can trim also over
the angle of attack, the center of gravity or dynamic pressure. The present master
thesis deals exclusively with the linearization over the Mach number, height and
dependent on the user input, linearization over the angle of attack is possible.
The bounds of the grid are set by the operating range of the missile. Within these
bounds, the operating points are separated regular or irregular. At these points,
controllers are designed. Since the surrounding area of an OP where the linearized
model is valid is not equal at all operating points, irregular grids have the advan-
tage of a smaller number of operating points and therefore less controllers. Regular
grids adjust the distance between the points to the smallest valid surrounding area
of an OP, present in the grid.
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2.3 Convex Optimization

Convex optimization is a special class of mathematical optimization problems [22].
These have the essential characteristic that every local optimum is also a global
optimum[9]. The goal is to minimize the objective function under certain con-
straints. These constraints are stated as equalities or inequalities as exemplary
shown in the following general optimization problem (2.45)

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, ...,m (2.45)

where

x = (x1, ..., xn) = Optimization variable
f0 : Rn → R = Objective function
fi : Rn → R, i = 1, ...,m = (Inequality) constraint functions
b1, ..., bm = Limits of the constraints.

If a vector x∗ has the smallest objective value among all other vectors that satisfy
the constraints, vector x∗ is called optimal. This means that we have for any
vector z with f1(z) ≤ b1, ..., fm(z) ≤ bm, f0(z) ≥ f0(x

∗).
If the optimization problem is convex, the objective- and constraint functions are
convex [21]

fi(αx+ βy) ≤ αfi(x) + βfi(y) (2.46)

if α + β = 1, α ≥ 0, β ≥ 0.
To give a better understanding of a convex quantity, a convex and nonconvex set
are illustrated in figure 2.5. A convex set contains a line segment which is an affine
set between any two points in the set

x1, x2 ∈ C, 0 ≤ θ ≤ 1 =⇒ θx1 + (1− θ)x2 ∈ C. (2.47)

No analytical formulas but very reliable and efficient algorithms exist to solve
convex optimization problems. In practice the Interior-Point Method (IPM) works
very well and solve the problem to a specified accuracy. Furthermore, convex
optimization problems are often difficult to recognize. However, many tricks exist
for the transformation of a problem in a convex form. LMIs are one option of
convex optimization problems that arise in system and control theory [20]. The
next section is intended to explain linear matrix inequality constraints and their
computational rules used in convex optimization.
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Figure 2.5: Convex set (left) and nonconvex set (right) [21]

2.3.1 Linear Matrix Inequalities (LMIs)

Since optimization problems employing LMIs are convex, every local optimum is at
the same time a global optimum. Therefore, local search methods can be applied
to find the global optimum. In control theory convex optimization problems can
be constrained by linear matrix inequalities. Such a LMI can be stated as [9], [20]

F (x) ≡ F 0 +
m∑
i=1

xiF i � 0 (2.48)

where the symmetric matrices F i ∈ Rnxn are given and the wanted vector x ∈ Rm

contains the variables. The notation F (x) � 0 means that the matrix F (x)
is symmetric and positive definite. Hence, the following conditions have to be
fulfilled:

� x′Ax > 0 for all x ∈ Rn\{0}

� λi > 0 for all eigenvalues λi, i = 1, ..., n

� All first minors Ai apply det(Ai) > 0

The name ”Linear Matrix Inequality” has been established because of the param-
eter xi which occurs only in a linear manner when the inequality is written as a
matrix. But a LMI is only a system of linear inequalities when the matrices F i(x)
are diagonal.
The set {x|F (x) > 0} is convex since the LMI (2.48) is a convex constraint on x.
This expression of the LMI is quite general. But it gets more clearly when using
stability in the sense of Lyapunov [28]. The autonomous system ẋ = Ax is stable
when the following inequalities are fulfilled

A′R+RA ≺ 0, (2.49)

R � 0 (2.50)
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where R describes a positive definite symmetric matrix. Since LMIs have the
characteristic of being convex, they are solvable very efficiently with numerical
methods.

2.3.1.1 Multiple LMIs

Another property of LMIs is that multiple linear matrix inequalities can be sum-
marized. For example the LMIs A � 0, and B � 0 can be summarized by

C =

[
A 0
0 B

]
� 0. (2.51)

This can be proved taking a closer look on the eigenvalues. Since the matrix C is
diagonal, it has the same eigenvalues like A and B and hence the definiteness.

2.3.1.2 Uniqueness

Furthermore, LMIs are not unique, i.e. the same solution can be characterized by
different LMIs. For example if the matrix M is regular, the following two LMIs
are equivalent to each other.

A � 0 (2.52)

M ′AM � 0 (2.53)

2.3.1.3 Schur-Complement

The Schur-complement yields a set of linear matrix inequalities out of convex non-
linear matrix inequalities. The Schur-complement indicates that the inequalities

R � 0

Q− SR−1S′ � 0 (2.54)

are equivalent to the LMI

[
Q S
S′ R

]
� 0 (2.55)

where R and Q have to be symmetric.

2.3.1.4 Substitution

Sometimes a nonlinear problem exist like for example the controller design for
linear plants. It is necessary to convert it into a linear matrix inequality by a
clever substitution. For a closed control loop, the system matrix can be written as

Â = A−BK. (2.56)
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Hence, the Lyapunov inequality in the variables K and R for the controller design
is then

R � 0

(A−BK)′R+R(A−BK) ≺ 0. (2.57)

Since terms of RBK exist, equation (2.57) is no LMI in R and K. Introducing
a new regular matrix Q = R−1 as well as the variable W = KQ, equation (2.57)
becomes a LMI in Q and W

Q � 0

QA′ +AQ−BW −W ′BT ≺ 0. (2.58)

2.3.1.5 Solution Methods

Two main algorithms exist for solving LMIs. The IPM and the ellipsoid method.
Easier to understand is the ellipsoid method but more efficient is the IPM. A
detailed explanation of these algorithms can be seen in [8] and [14].
For the solution of the LMIs, two solvers will be used in this thesis.

� LMI Lab which is part of the Robust Control Toolbox of MATLAB

� SDPT3 which is a MATLAB package available free of charge for semidefinite-
quadratic-linear programming [17]

In general, both solvers can be applied to three different kinds of problems:

� Solvability or rather feasibility

� Eigenvalue problem

� Generalized Eigenvalue Problem (GEVP)

The main difference between these solvers is that the LMI Lab is numerical more
robust compared to the SDPT3 solver but the SDPT3 solver is much faster than
the LMI Lab. Both, the LMI Lab and the SDPT3 solver, have the disadvantage
of a difficult notation in MATLAB. But another MATLAB toolbox available free
of charge makes it more user-friendly. It is called YALMIP [11] and works as an
interface for the LMI Lab and the SDPT3 solver among others. By using this
interface, LMIs can be written in their original matrix notation.

2.3.2 LMIs in Control Engineering

This section is intended to present some possible applications of LMI optimiza-
tion problems in control engineering. For simplification, only Single Input Single
Output (SISO) Linear Time Invariant (LTI) systems of the following form will be
investigated

ẋ = Ax+ bu, (2.59)

y = c′x. (2.60)
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2.3.2.1 Stability of the Open Loop

For the investigation of asymptotic stability of system (2.60) in the open loop, i.e.
u = 0, one can ask for the existence of a Lyapunov function v = x′Rx for which
the following condition is fulfilled

v̇ = x′(ATR+RA)x < 0. (2.61)

Formulating this problem as a LMI one has to ask for the existence of a symmetric
matrix R which fulfills

R � 0,

A′R+RA ≺ 0. (2.62)

Multiplying these inequalities from left to right with R−1 and defining the new
variable Q = R−1 leads to the following representation which is not necessary in
this case but will be useful for the case of stability investigation of the closed loop

Q � 0,

QA′ +AQ ≺ 0. (2.63)

This example should have demonstrated the feasibility problem, mentioned in
section 2.3.1.5. All feasible solutions are of equal value since the task here is only
to find a feasible matrix R or Q which satisfies the inequality.

2.3.2.2 Stability of the Closed Loop

Now, a linear state feedback controller u = −k′x is used and the variables are
now vector k and matrix R which has to satisfy the inequalities stated in equation
(2.64)

R � 0

(A− bk)′R+R(A− bk) ≺ 0. (2.64)

Due to the product ofRbk′ one has to employ substitutions as explained in section
2.3.1.4. This method leads to the following LMI in the matrix variables Q and w

Q � 0

QA′ +AQ− bw −w′bT ≺ 0. (2.65)

The controller can then be calculated from the solution of LMI (2.65) by kT =
wTQ−1. The validation of an existing stabilizing controller verifies stability of
the system but still no optimization is present and hence no statements on the
performance can be made.
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2.3.2.3 Actuator Limitation

In general, every completely controllable LTI system can be stabilized. When
adding the constraint of for example a limitation of the actuator, linear methods
are no longer able to guaranty stability [9]. One approach is then to find a controller
which is able to stabilize a specific initial condition x0 without exceeding a defined
actuating limitation umax. The manipulated variable u(t) will be defined along an
arbitrary trajectory

max
t
|u(t)| = max

t
|k′x(t)|. (2.66)

Investigating a Lyapunov region G which contains x0, contains also the whole
trajectory which makes the time dependency obsolete

L = {x : |k′x| ≤ umax} = {x : x′kk′x ≤ u2
max}, x(0) ∈ G (2.67)

where G = {x|xTRx ≤ 1} for LTI systems. The whole derivation can be seen
in [9]. The solution for the stated problem of finding a controller which is able
to stabilize a specific initial condition x0 without exceeding a defined actuating
limitation umax is in LMI notation

[
Q w
w′ u2

max

]
� 0. (2.68)

2.3.2.4 Inclusion of an Initial Region

The limitations are satisfied locally in a Lyapunov region G. Therefore, it has to be
investigated whether this region contains the set of all possible initial conditions
X0. This is quite simple when X0 is a convex polytope (for example a rectangle)
or an ellipse. In case of a convex polytope, it is sufficient to verify whether its
vertices are part of G. This can be expressed using as many LMIs as the polytope
has vertices. They have the form like following stated

1− xT0Rx0 ≥ 0 (2.69)

⇔
[

1 xT0
x0 R−1

]
� 0 (2.70)

⇔
[

1 xT0
x0 Q

]
� 0. (2.71)

If X0 is an ellipse E(X , 1), the LMI is

R−X ≥ 0 (2.72)

⇔
[
Q I
I X

]
� 0 (2.73)

(2.74)
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where I is the identity matrix.

2.3.2.5 Output Energy

The controller design which makes use of convex optimization needs also an objec-
tive function. All possible controllers k and possible matrices Q are constrained
by equations (2.71), (2.68) and 2.65 in such a way that k is a valid controller
which stabilizes all x0 ∈ X0. In case no controller which can hold these constraints
exist this quantity is empty. Remedies are either increasing umax or decreasing
X0. If the quantity of possible controllers is not empty, one has to select the best
controller. This evaluation can be done with the help of a convex function that
the whole optimization problem stays convex.
A good measure for the control accuracy is the output energy

J =

∫ ∞
0

y2dt where y = cTx. (2.75)

The goal is to minimize the upper limit of J for all x of the Lyapunov region

G = {xTRx ≤ 1}. (2.76)

By introducing a performance parameter γ > 0 the control accuracy is

J ≤ γxT0Rx0 ≤ γ. (2.77)

The whole optimization problem can then be written as

minimize γ

subject to Q � 0

Stability and Performance:[
AQ+QAT − bwT −wbT Qc

cTQ −γ

]
≺ 0

Inclusion of Initial Region:[
1 xT0
x0 Q

]
� 0

Actuator Limitation:[
Q w
wT u2max

]
� 0

(2.78)

The whole derivation can be found again in [9].
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2.4 Anti-Windup

This section is intended to describe the basics of anti-windup problems and how
to solve them. A detailed explanation of the anti-windup method which was used
in the course of this thesis will be presented in section 3.6. The information used
to describe anti-windup are mainly taken from the doctoral theses of Dr. Klaus
Kefferpütz [9] and Dr. Andreas Ortseifen [15].
The controller of a control loop calculates a manipulated variable in order to influ-
ence a system as desired. The commanded manipulated variable will be realized
by an actuator which transposes the variable into a physical quantity. In reality,
no perfect actuator exists. The actuator has its own dynamic and is limited in
the actuating range. This was already explained for missiles in section 2.1.2. The
actuator dynamics can be taken into account in the controller design but the limits
of the manipulating variables need more attention [9].

2.4.1 General Windup Problem

The classic problem of windup is connected to controllers with an integral part
like a PID controller. Figure 2.6 illustrates a control loop with a saturation block
which defines the limits of the actuating range. The characteristic curve of the
saturation is defined by

us = sat(ua) =


ua if umin ≤ ua ≤ umax,

umin if ua < umin,

umax if ua > umax.

(2.79)

Figure 2.6: Control loop with a PID controller, a linear plant S and an actuator
with limitations in the actuating range [15]

The controller is defined by

ua(t) = Kpe(t) +Ki

∫ l

0

e(τ)dτ +Kd
d

dt
e(t) (2.80)

where e(t) = w(t) − ys(t) defines the error between reference variable w(t) and
control variable ys(t). As long as this control error remains small, the control loop
works linear, i.e. unsaturated and the commanded manipulated variable remains
small too and holds us = ua. If the deviation from the reference variable is too
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large, ua > umax or ua < umin and the saturation block, defined in equation
(2.79), delivers ua = umax or ua = umin. The behavior of the control loop is
now nonlinear, therefore the control error will not be reduced which leads to an
increase of ua, resulting from the integration of the error which is part of the
control law stated in equation (2.80). This behavior is obviously not useful since
the manipulated variable reached its limit. The integral part increases until the
manipulated variable changes sign. Therefore, the high integral part has to be
reduced. The problem of an increasing integral part defines the original windup
problem and can lead to a dramatic degradation of control accuracy and in worst
case instability.
As time goes by, the term ”windup” was generalized that all undesired behavior
of a system induced by actuating limits is referred to as windup. In particular,
windup can also occur exclusively induced by the controller where no integral part
is present. This happens when the controller dynamics are marginal stable or
unstable. In case of saturation the constant manipulating variable (us = umin or
us = umax) is applied to the plant and changes of the plant output ys will not
affect the plant input us since the controller has no feedback here. The result is
an increase of the controller states which leads to a big overshoot, oscillations and
instability.

2.4.2 Anti-Windup Methods

A frequently used approach is designing the controller without consideration of
actuator limits until a desired behavior of the unsaturated control loop occurs.
This is done by preventing the occurrence of windup by a conservative design of
controller gains. The two big resulting disadvantages are firstly oversizing of the
actuator and hence loss of performance since the complete actuating range will
not be used and secondly unexpected conditions which have not been predicted
can lead to a nonlinear saturated behavior.
In the last decades, many methods have been developed where the controller was
designed under the explicit consideration of actuating limits. The disadvantage
is that classic linear design methods can not be used any more [9]. Other widely
spread methods are called Anti-Windup methods. It is convenient here to design
the controller in a first step without the consideration of actuating limits. This
controller has a desired performance in the absence of saturation. Afterwards, the
controller will be extended by a so called AW NW. A general anti-windup network
can influence the controller states and outputs. In our case, the controller outputs
and inputs will be influenced. Such a network has the following goals:

� In the absence of saturation, the anti-windup network will not influence the
behavior of the control loop

� In case of saturation, stability should be guaranteed

� After saturation, the unlimited system behavior should be recovered as good
as possible
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For clarification see figure 2.7. Here, the differences between a system using a
simple anti-windup network, a system which uses no anti-windup and a linear
system, i.e. which has no saturation limits, is shown. The controller remains
fixed. The arbitrary asymptotic stable system was in this example limited to ±5.
The result is obviously a much smaller overshoot of the system using anti-windup
compared to the system which is not. Compared to the unlimited linear system,
the others are not that dynamic and need more time to reach the set-point value
(reference).

Figure 2.7: Comparison between a system using a simple anti-windup network
( ), a system which uses no anti-windup ( ) and an unsaturated
system ( )

A simple anti-windup network has the big disadvantage that it does not guaranty
a good performance or robustness. A specific kind of anti-windup is the so called
Model Recovery Anti-Windup (MRAW) (see figure 2.8) which will be discussed in
the next section.

2.4.2.1 Model Recovery Anti-Windup (MRAW)

Model-recovery anti-windup methods use a model of the plant to avoid windup.
They have a structure like the external anti-windup network illustrated in figure
2.8. The dynamics of such a network are mainly defined by the model of the plant
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Figure 2.8: Illustration of an external anti-windup network (MRAW) which influ-
ences the controller input and output [15]

ẋaw = Asxaw +Bs,ukaw(xaw) +Bs,uδ, (2.81)

yaw,y = −Csxaw, (2.82)

yaw,u = −Kawxaw (2.83)

where xaw ∈ Rns and ns is the order of the system which is the same as the anti-
windup’s order. Index s is now used for the plant’s matrices. Only Kaw has to
be defined in the anti-windup design. These formulations lead to the following
advantages:

� Nonlinear AW: Nonlinear anti-windup methods, which ensures a good per-
formance, can be applied due to the function Kaw

� Simple Design: The anti-windup design is reduced to a simple state space
controller design for the model of the plant

� Good Quality Criteria: The mismatch between the unlimited and limited
system behavior can be directly influenced in the anti-windup design

The network shown in equations (2.81) - (2.83) works as described subsequently

1. The AW system (equation (2.81)) influences the control loop only if a differ-
ence δ = u− sat(u) 6= 0 under the constraint of xaw(0) = 0 occurs

� u is the necessary manipulated variable

� sat(u) the actual realizable manipulated variable

2. Equation (2.82) leads to a reduction of the measure ys to avoid an uncon-
trolled integration of the controller states

3. If the plant is unstable, xaw will increase even though δ = 0 after saturation.
The feedback via Kaw (equation (2.83)) yields a fast recovery (xaw = 0),
i.e. the closed loop system (2.81) will be stabilized after the impulse δ is
dispersed



2 Background Theory for the Control of Missiles 27

The whole state space model of the overall system consisting of the plant, controller
and the anti-windup control loop is defined by

ẋs = Asxs +Bs,uus +Bs,zz, (2.84)

ẋr = Arxr +Br,uCs(xs + xaw) +Br,ww, (2.85)

ẋaw = Asxaw +Bs,uyr −Bs,uus, (2.86)

yr = Crxr +Dr,uCs(xs + xaw) +Dr,ww, (2.87)

yaw,y = −Csxaw, (2.88)

yaw,u = −Kawxaw, (2.89)

ys = Csxs (2.90)

where us = satu(yr + yaw,u), w is the reference signal, z defines a disturbance
and xr, xs and xaw are the states of the controller, plant and anti-windup system,
respectively. These states can be summarized in a single vector

x′awrk =
[
x′s x′r x′aw

]
. (2.91)

Using a coordinate transformation, the representation of the system can be simpli-
fied which allows the minimization of the mismatch between the unlimited control
loop and limited control loop with an anti-windup network. This representation
is called ”Mismatch-Representation”. For the design of the model recovery anti-
windup, i.e. the design of the anti-windup gain Kaw, one has to pay attention for
the mismatch between the limited control loop during saturation to the behavior of
the unlimited control loop. Due to the linear transformation of the state variables
by a regular matrix T , the system can be easily analyzed. This transformation
can be stated as

ξms = Txawrk =

 ξsξr
ξaw

 =

I 0 I
0 I 0
0 0 −I

 xsxr
xaw

 =

xs + xaw
xr
−xaw

 (2.92)

where ξms defines the mismatch states and T ∈ R(2ns+nr)×(2ns+nr). This equation
(2.92) transforms equations (2.84) - (2.90) to the mismatch representation (see
figure 2.9)

ξ̇s = Asξs +Bs,uyr +Bs,zz, (2.93)

ξ̇r = Arξr +Br,uCsξs +Br,ww, (2.94)

ξ̇aw = Asξaw +Bs,u(satu(yr + yaw,u)− yr), (2.95)

yr = Crξr +Dr,uCsξs +Dr,ww, (2.96)

yaw,y = Csξaw, (2.97)

yaw,u = −Kaw(−ξaw), (2.98)

ys = Cs(ξs + ξaw) = ys,ub + yaw,y. (2.99)
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Figure 2.9: Transformation of a model recovery anti-windup control loop in general
representation to the mismatch representation [15]

The advantage of this transformation or rather the mismatch representation is the
decomposition of the anti-windup network in two well arranged subsystems. The
first linear subsystem describes the unlimited control loop by equations (2.93),
(2.94) and (2.96) with the output ys,ub

L :


ξ̇s = Asξs +Bs,uyr +Bs,zz,

ξ̇r = Arξr +Br,uCsξs +Br,ww,

yr = Crξr +Dr,uCsξs +Dr,ww,

ys,ub = Csξs.

(2.100)

The second subsystem contains the nonlinearity due to saturation and contains
the anti-windup method and can be stated by equations (2.95), (2.98) and (2.97)
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which defines the mismatch to the unlimited control loop

AWNW :


ξ̇aw = Asξaw +Bs,u(satu(yr + yaw,u)− yr),
yaw,y = Csξaw,

yaw,u = −Kaw(−ξaw).

(2.101)

Since the missile is linearized at various operating points, a method called gain-
scheduling is used to compute the manipulated variable. This is done by interpo-
lation of this variable delivered by all neighboring OPs. During controller blending
of adjacent OPs, anti-windup occurs even though the system is unlimited. This is
due to the fact that only a fraction of each manipulated variable of the neighboring
OPs is applied. The problem will be described in detail in section 3.5.

2.5 Controller Possibilities

Various controllers can be employed to stabilize a missile and guide it to their
target. For the consideration of a proper controller many influences have to be
taken into account. These influences depend on the aim of the missile. For example
if the missile should be used to intercept objects in great heights, a DACS is needed
in order to ensure high agility in the upper thin atmosphere. Such systems need
a dynamic output feedback controller with a servo control [3] since the response
to setpoint changes can be influenced by the prefilter and the fault response by
the output feedback separately. When considering height in the lower atmosphere
(H ≤ 15 km), no DACS and hence no servo control is needed. Other properties
of the missile and its mission which are important for the choice of controllers are
the ability to hit static or dynamic targets, the load capacity, maximum velocities
or which states of the missile can be measured. Two different kinds of controllers
are necessary to control the three axes of the missiles which have been chosen for
the automated controller design in this thesis.

2.5.1 State Feedback

A state feedback controller (see figure 2.10) computes the manipulated variable
u by the use of a proportional controller Kx which influences the current state
vector x. The problem of state feedback controllers is that all states have to be
measured which is not always possible in reality. For simple specifications for the
controller and the states are measurable, it is a good, simple and reliable choice for
the control. Since the roll angle φ of the missile should be zero during the flight,
a state feedback controller is a good choice to counteract disturbances on the roll
axis and to reach quickly φ = 0.

When more states have to be measured and this is not possible, a dynamic output
feedback controller should be chosen [2].
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Figure 2.10: Block diagram of a state feedback controller [3]

2.5.2 Dynamic Output Feedback

A controller with a dynamic output feedback consists of a dynamic system whose
inputs are only the measurable states of the plant (see figure 2.11). The order
of the controller is the same as the plant’s order to apply a LMI based design
[10]. Due to the fact that the dynamics of the controller can be unstable, one is
more free in the design compared to other controllers e.g. state feedback controller
combined with an observer which has stable dynamics. A big advantage is that the
poles can be placed according to the agility of the system. The transfer function
of the dynamic output feedback controller is

G(s) = Cr(sI −Ar)
−1Br +Dr. (2.102)

Which can be expressed in shorthand notation as

G(s) =

(
Ar|Br

Cr|Dr

)
. (2.103)

For the stabilization of the pitch and yaw axis and also the execution of lateral
acceleration commands, dynamic output feedback controllers will be used. The
design of these controllers for the missile will be presented in section 3.3.
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Figure 2.11: Block diagram of a dynamic output feedback controller [3]
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3 Automation

This chapter is intended to present the approach to the problem of automated
controller design, the whole procedure of the automation as well as some brief
description of the algorithms which have been developed in order to achieve the
goals which has been specified in section 1.1.
The whole automated controller design using convex optimization was mainly ap-
plied to one specific missile and small areas of the operating range but the scope
of this thesis is to extend the concept to the whole flight envelope.

3.1 Procedure

In order to provide a better understanding of the automated controller design
procedure, a step by step description of the procedure is presented below. The
main tasks are also illustrated in flow chart 3.1.

1. Definition of Design Properties

� Selection of the missile

� Definition of the operating range, the grid dimension and trim variables

2. Linearization

� Calculation of trim variables

– According to the actuating systems and user input

– Minimization of a cost function which adapts the trim variables
in such a way that the derivatives, calculated by the Equations of
Motion (EoM), of the states are approximately zero

� Linearization of the missile at OPs or rather trim points

– Jacobian linearization with trim variables (see section 2.2)

– Definition of the state space matrices for the elevator, rudder and
aileron

3. Controller Design at Operating Points

� Design methods rely on a convex optimization problem (see section 2.3)

� Defining a Pole Placement Area (PPA) where the eigenvalues are placed

– Will be determined by the current flight conditions, i.e. the OPs

– Analysis of good working pole placement areas at the bounds of
the missile’s operating range have to be determined in advance

4. Verification of Neighboring Operating Points
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Figure 3.1: Flow chart of the whole automation process

� It will be tested via LMIs whether the controller at a specific OP stabi-
lizes the missile until it has the conditions at the neighboring operating
points

� The performance of the controller should not exceed a defined boundary

� When the verification at a specific point fails, the algorithm scales down
the grid along the grid parameter (e.g. height or Mach number) where
the failure occurred and starts again at point 2 linearization

5. Anti-Windup Design

� Stability and performance criteria according to a model recovery anti-
windup option presented by [13] and [15]

� Design method rely also on a convex optimization problem and will be
briefly described in section 3.6
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� The designed anti-windup gains Kaw at each OP should also work for
the neighboring operating points

– Stability will be guaranteed by including the neighboring OPs di-
rectly in the Kaw design under the assumption of an affine linear
parameter dependency among the linearized models at the grid
points

6. Simulation of the Nonlinear Model

� Definition of simulation properties like the scenario or initial conditions
of the missile

� Test of controllers and anti-windup network

� Application of a gain-scheduling method which generates the manipu-
lated variable out of the current flight condition and the related neigh-
boring operating points

� One Simulink model for the implementation should work for the differ-
ent grid dimensions, scenarios and missiles

3.2 Existing Results

This master thesis is based on the previous work of Benedikt Bartenschlager [3].
The result of his diploma thesis ”Control concept for a highly agile dual actuator
interceptor” was a controller design for missiles using a DACS and/or aerodynamic
actuating systems which was locally tested in small operating regions. The devel-
oped controller design achieved controllers with a good performance at specific
flight conditions. The main result of the previous thesis was the identification of
windup during blending and hence stability problems. The model-recovery anti-
windup network was identified for the solution of these problems. The design of
the anti-windup network and the verification whether adjacent OPs will be stabi-
lized was manually executed. Hence, the validity areas of the controllers for the
linear approximations of the missile were unknown.

This design was mainly used in this thesis and adapted to an automated controller
design for the whole flight envelope of missiles using one or two aerodynamic actu-
ating systems. Furthermore, the design of the anti-windup network was enhanced
by another method which ensures L2-Gain stability [13], [15]. The whole design
is then applied to the particular missile and via ”Gain-Scheduling” [1] stabilized
and lead to the target.
Gain-Scheduling is a method used to compute the manipulated variable over the
whole flight envelope. Since the missile has to be linearized over its operating
range (see section 2.2), many controllers have to be designed at the trim points
or rather operating points. With this method, one gets the manipulated variable
determined by adjacent OPs with respect to the current flight conditions of the
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missile. This method will be explained in more detail and with the help of exam-
ples illustrated in section 4.1.

3.2.1 Approach to the Automated Controller Design

The first step in getting the solution, stated in section 1.1, is familiarizing with
the problem of anti-windup. In the course of this approach, a simple model was
developed to demonstrate the differences between the already existing simple anti-
windup method which made only use of placing the poles and the model-recovery
anti-windup method described by [13] and [15] which considers umax in the anti-
windup network design. Afterwards, this enhanced anti-windup method was ap-
plied to the linearized z-axis of a missile, i.e. the elevator. As soon as this simula-
tion worked, it was verified whether the designed anti-windup gains work for the
”real” nonlinear missile model. For this verification, the already existing controller
design [3] was used to get good working controllers at specific operating points.

In order to develop an automated controller design, we started working on the
operating point grid generation for the guaranty of stabilizing the missile in the
area defined by four (two-dimensional grid) or eight (three-dimensional grid) OPs.
As some problems occurred which lead to a grid with an enormous number of trim
points and hence controllers, a first step for the generation of irregular grids was
developed.

Afterwards, the existing controller design method for the aileron, elevator and rud-
der was extended by an algorithm which makes it possible to design good working
controllers at the predefined grid points over the whole flight envelope.

The last step of this thesis was to simulate the nonlinear missile by using the cor-
responding controllers and anti-windup gains to ensure a stable, robust and agile
control.

In the next sections the employed design methods, algorithms and ideas for the
whole automation process will be explained in detail as well as their application
to the missile is presented.

3.3 Controller Design Using Convex Op-
timization

The controllers will be designed for the flight conditions of the various operating
points. Since the behavior of the missile differs according to the current flight
conditions, i.e. OP, the algorithm needs to adapt the design parameters. They
should lead to more dynamical controllers when the missile has either a large ve-
locity, low altitude or low angle of attack or to controllers which are less dynamical
for conditions like high altitude, large angle of attack or small Mach number. This
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section is intended to describe in detail how the controllers are designed with the
requirement of using convex optimization and which changes had to be applied in
order to automate this design.

The state space model of the plant in general can be expressed by

[
ẋ
u̇

]
=

[
A B 0
0 0 −diag(T Act)

] [
x
u

]
+

[
0

diag(T Act)

]
uc (3.1)

where T Act defines the time constants of the actuators (1/Taeroi , i = 1, ...,m).
It is necessary to define the outputs for the feedback of the lateral acceleration
controllers. The outputs are the measurable values ym = [φ, p, q, r, ξ, η, ζ]′ and the
controlled values are yr = [ay, az]

′. The measurement vector can be expressed by

y = [e eI ω u]′ (3.2)

where e = acom− a is the control error and describes the difference of commanded
and actual acceleration. Due to the added integral of the error eI , the state space
model (3.1) must be extended to

ẋu̇
ėI

 =

 A B 0 0
0 0 −diag(T Act) 0
−c′ −d′ 0 0

xu
e

+

 0
diag(T Act)

0

uc+

0
0
1

w. (3.3)

Since the axes will be separated considered, the controlled value is a scalar per
axis. Therefore, yr = a = c′x+ d′u.

3.3.1 Dynamic Output Feedback Controller

Figure 3.2 illustrates a dynamic output feedback controller where

P (s) :


ẋ = Ax+Bu+Bww

y = Cx+Dww

z = Czx+Dzww +Dzu

(3.4)

defines the plant in general form according to [5]. In this equation, w defines the
reference variable and z is used for the control accuracy and performance.
Applying the extended state space representation (3.3) exemplary to the z-axis
yields

ẋ =

 Aaq Baq 0
0 −diag(T Act) 0
−C ′aq −Daq 0

x+

 0
diag(T Act)

0

u+

0
0
1

w, (3.5)
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Figure 3.2: Block diagram of a dynamic output feedback controller [3]

z =

[
−C ′aq · p1 −Daq · p1 0

0 diag(p2 p2) 0

]
x+

[
p1
0

]
w +

[
0
0

]
u, (3.6)

y =


−Caq,1 −Caq,2 −Daq 0

0 0 0 1
0 1 0 0
0 0 I 0

x+


1
0
0
0

w (3.7)

where p1 and p2 are weighting factors for the control error and the deflection of
the elevator with respect to the H∞-norm. Good working factors are p1 = 0.02
and p2 = 3. The dimension of the values make sense since they influence the
acceleration and control surface deflection respectively. The feedback consists of
the control error e, its integration eI , the pitch rate q and the elevator at the front
ηf and back ηb.
The controller K(s) can be seen in figure 3.2 and is mathematically defined by

K(s) :

{
ẋr = Arxr +Bry

u = Crxr +Dry
(3.8)

The whole design of the dynamic output feedback controller follows [5], [2] and
[10].
The closed loop system is then obtained by equations (3.4) and (3.8)

[
ẋ
ẋr

]
=

[
A+BDrC BCr

BrC Ar

]
·
[
x
xr

]
+

[
BDrDw +Bw

BrDw

]
·w, (3.9)

z =
[
Cz +DzDrC DzCr

]
·
[
x
xr

]
+
[
Dzw +DzDrDw

]
·w. (3.10)



3 Automation 39

A shorthand notation of these equations (3.9) and (3.10) can be stated as


A+BDrC BCr

BrC Ar

∣∣∣∣BDrDw +Bw

BrDw

Cj +EjDrC EjCr

∣∣Dj +EjDrDw

 =

(
Acl|Bi

Ci|Di

)
(3.11)

where Cj = Cz, Dj = Dzw, Ej = Dz and index j defines the row of the according
matrix. The Transfer Function (TF) from the reference value wi to the performance
output zi of the closed loop system is

T wz,i(s) = Di +Ci(sI−Acl)
−1Bi. (3.12)

The H∞-norm of the transfer function (3.12) is defined by [20]

||G(s)||∞=̂sup{||G(s)|| |{Re} s > 0}. (3.13)

If the H∞-norm of the TF is minimal, the output energy is minimized, i.e. the
control error caused by disturbances and measurement noise is minimized [18].
The H∞-norm is then defined as

||T wz,i||∞ < γ (3.14)

and can be interpreted as a rejection of disturbances performance and enforces
robustness. This criteria ensures stability of the closed loop for perturbations
wp = ∆zp where the incremental gains ∆ ≤ 1

γ
[5]. The goal of the controller

design using convex optimization is to minimize γ > 0. Since the controller should
stabilize the plant, the closed loop has to admit a quadratic Lyapunov function

V (xcl) = x′clPxcl, P � 0 where xcl = [x′ x′r]
′ (3.15)

such that

A′clP + PAcl ≺ 0, P � 0. (3.16)

According to the Bounded Real Lemma [5], system Acl is stable and the H∞-norm
follows the constraint of being smaller than γ if and only if there exists a symmetric
positive definite matrix P [5] defined by the LMIs

A′clP + PAcl PBj C ′j
B′jP −γI D′j
Cj Dj −γI

 < 0, P > 0. (3.17)
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Due to Acl as stated in equation (3.11), the previous equation (3.17) defines no
LMI for which reason a transformation by the new matrices

P =

[
Y N
N ′ #

]
, P−1 =

[
X M
M ′ #

]
, PP−1 = I (3.18)

and hence new variablesX, Y ,M andN has to be executed. This transformation
has to be done in order to eliminate the nonlinearties which occur due to the
product of the wanted variables AclP [5]. Matrices denoted by # in equation
(3.18) are not relevant and are not further considered. From PP−1 = I we infer
that

PP−1 =

[
Y N
N ′ #

]
·
[
X M
M ′ #

]
=

[
I 0
0 I

]
(3.19)

and therefore the constraint on N and M

YX +NM ′ = I (3.20)

holds. Furthermore, matrices

π1 =

[
X I
M ′ 0

]
, π2 =

[
I Y
0 N ′

]
, Pπ1 = π2 (3.21)

will be defined as well as new transformed controller parameters

Â = NArM
′ +NBrCX + Y BCrM

′ + Y (A+BDrC)X, (3.22)

B̂ = NBr + Y BDr, (3.23)

Ĉ = CrM
′ +DrCX, (3.24)

D̂ = Dr. (3.25)

To eliminate the nonlinear parts of equation (3.13), the matrix inequality (3.17)
will be transformed with the help of diag(π1, I, I). Performing this transformation
and using the new controller parameters stated by equations (3.22) - (3.25) yields
the LMI problem of the H∞-norm


AX +XA′BĈ + (BĈ)′ Â

′
+ (A+BD̂C) ∗ ∗

(Â
′
+ (A+BD̂C))′ A′Y + Y A+ B̂C + (B̂C)′ ∗ ∗

(Bw +BD̂Dw)′ (Y Bj + B̂Dw)′ −γI ∗
CjX +EjĈ Cj +EjD̂C Dj +EjD̂Dw −γI

 < 0 (3.26)

where ∗ replaces blocks which are readily inferred by symmetry. The symmetric
matrix P has to be positive definite which leads to the constraint

[
X I
I Y

]
> 0 (3.27)
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which has to be fulfilled as well. The Lyapunov function (3.15) ensures that the
eigenvalues of the closed loop are in the left-half complex plane, i.e. ensures sta-
bility. As already described in section 2.5, the dynamic output feedback controller
has the big advantage that the poles of the closed loop system can be placed in a
PPA. Such an area is described by a convex set and provides the possibility of a
systematic design of the controller’s dynamical behavior. This convex set or rather
LMI region is defined by an upper and lower limit as well as by the imaginary to
real ratio and can be seen in figure 3.3.

Figure 3.3: Pole placement area in the complex left-half plane [3]

The LMI constraints can be determined by transforming

[lijP +mijA
′P +mijPA]ij < 0, P > 0 (3.28)

with diag(π1,π1,π1).
The LMI where the lower limit λ of the PPA is defined can be stated as

σ′ + σ + 2 · λ ·
[
X I
I Y

]
< 0. (3.29)

The upper limit λ is ensured by

σ′ + σ + 2 · λ ·
[
X I
I Y

]
> 0. (3.30)

The imaginary to real ratio δ = Im{λi}
Re{λi} will set the gradient of the convex set by

[
δ(σ′ + σ) σ′ − σ
−σ′ + σ δ(σ′ + σ)

]
< 0 (3.31)
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where

σ =

[
AX +BĈ A+BD̂C

Â Y A+ B̂C

]
(3.32)

holds. Now, the whole convex optimization problem can be stated as

minimize
∑
γi

subject to γi > 0 and (3.26), (3.27), (3.29), (3.30), (3.31). (3.33)

The desired parameters are γi,X,Y , Â, B̂, Ĉ, D̂. In order to derive the con-
troller parameters, one has to redo the transformation. To this end, the QR-
decomposition of

NM ′ = I−XY (3.34)

is applied and yields matrices N and M . Now, the controller matrices can be
determined by

Dr = D̂, (3.35)

Cr = (Ĉ −DrCX)M−′
, (3.36)

Br = N−1(B̂ − Y BDr), (3.37)

Ar = N−1(Â+NBrCX + Y BCrM
′ − Y (A+BDrC)X)M−′

. (3.38)

The controller

K(s) = Dr +Cr(sI−Ar)
−1Br (3.39)

places the poles in the predefined convex set which is constrained by the LMIs
(3.29), (3.30), (3.31) for λ, λ and δ respectively under the requirement of ||T wz,i||∞ <
γi.

3.3.2 State Feedback Controller

Consider again figure 2.10 for the state feedback controller. This controller is used
to control the roll angle φ to zero. Its design consists also the optimization of the
output energy. The system for the state feedback controller is defined as

ẋ = Ax+Bu (3.40)

u = Kx (3.41)
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and therefore the closed loop

ẋ = (A+BK) · x. (3.42)

The state space representation of the aileron can be written as

ẋ =

[
App Bpp

0 −diag(T Act)

]
x+

[
0

diag(T Act)

]
u+

0
0
1

w, (3.43)

y = x. (3.44)

According to the LMIs (2.49) and (2.50) presented in section 2.3.1, the statement

(A+BK)′P + P (A+BK) < 0, P > 0 (3.45)

has to hold. Since products of the desired variables P and K occur in statement
(3.45), you have to perform substitution like described in section 2.3.1.4. Then we
obtain the LMIs

QA′ +AQ+BW +W ′B′ < 0, Q > 0 (3.46)

which can be used to determine a stabilizing controller K = WQ−1. The output
energy can be minimized by means of equations (2.75) and (2.76) as described in
section 2.3.2.5. This leads to the LMIs

[
QA′ +AQ+BW +W ′B′ QCzj

C ′zjQ −γjI

]
< 0, Q > 0 (3.47)

where Czj is the j-th row of Cz and z = Czx is used for the weighting of the
output energy according to the states. A pole placement can be performed for the
state feedback controller as described in the previous section. Applying equation
(3.28) to the state feedback controller design, the design limits are enforced by

[
δ(σ′ + σ) σ′ − σ
−σ′ + σ δ(σ′σ)

]
< 0, (3.48)

σ′ + σ + 2λQ < 0, (3.49)

σ′ + σ + 2λQ > 0, (3.50)

where σ = AQ+BW . Now, the whole convex optimization problem is

minimize
∑
γj,

subject to γj > 0 and (3.47), (3.48), (3.49), (3.50) (3.51)

where the desired variables are Q, W and γj.
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3.3.3 Automation

In order to automate this controller design, the design parameters have to be
automatically adapted according to the flight conditions of the missile, i.e. the
OP, where the controller should be designed. This can be done by an interpolation
of the limits over the whole flight envelope. Consider the grid bounds stated in
table 3.1 and the according grid illustrated in figure 3.4.

Table 3.1: User defined bounds of the operating range for an air defense missile
using two aerodynamic actuating systems

Grid Parameter Minimum Maximum Dimension
Mach number [−] 0.6 5 1
Height [m] 0 10,000 2
Angle of Attack [◦] 0 20 3

Figure 3.4: Grid bounds for an air defense missile using two aerodynamic actuating
systems

One can now define the design parameters λ, λ and δ for the dynamic output
feedback controller and for the state feedback controller. This is exemplary shown
for the dynamics of a missile’s elevator in the following table 3.2.
These limits have to be determined by the user in advance. This can be done by a
cautious approach. Recommended is to perform the design grid point by grid point
and simulate the system with defined lateral accelerations to get the best behavior.
It can be quickly seen whether the limit works or not. Either errors during the
design occur or a destabilization and therefore an abort of the simulation can
occur. The probable pole placement area can be restricted in advance considering
the dynamical behavior and hence the agility of the missile at the grid bound
where the design limit should be valid. As one can clearly see in table 3.2, the
PPA and so the eigenvalues for the controller at OP (2,1,1) will be fastest from
the imaginary axis in the left-half complex plane. This is due to the fact that the
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Table 3.2: Design Limits for an air defense missile using two aerodynamic actuating
systems at its grid bounds according to figure 3.4

Operating Points Lower Limit Upper Limit
(1,1,1) ⇒ λ111 10 25
(2,1,1) ⇒ λ211 20 70
(1,2,1) ⇒ λ121 6 15
(2,2,1) ⇒ λ221 10 30
(1,1,2) ⇒ λ112 6 10
(2,1,2) ⇒ λ212 10 25
(1,2,2) ⇒ λ122 3 8
(2,2,2) ⇒ λ222 8 16

missile will have its most dynamical behavior at this point. Good working PPAs
for high agility is between 20 to 100 on the real axis and 3 to 15 for expected less
agile behavior. These areas depend mostly on the missile’s dynamical behavior.
After the determination of the design limits for the PPA at the grid bounds,
the values will be interpolated according to the OP which is situated within the
operating range. The interpolation formula is defined as

λ =

∑p
i=1 dgd · λi∑p
i=1 dgd

(3.52)

where index gd is the Grid Dimension (GD), p is the number of neighboring OPs,
i.e. 4 for two dimensions and 8 for a three-dimensional grid. The dimensionless
parameter d is defined as 0 ≤ d ≤ 1 and describes the affiliation to a specific point
and hence the weighting of a value. This parameter dgd can be calculated by

dgd = 1− OP −GBmin

GBmax −GBmin

(3.53)

where OP defines the current operating point and GB the Grid Bound (GB). It
describes for example the weighting along the Mach number of the design limit at
GB (1,1,1) for M = 2. The design parameter for a GD can be calculated by

λgd = dgdλ1 + (1− dgd)λ2. (3.54)

Now, consider an OP at M = 3, H = 4 km and AoA = 15 ◦. The upper limit will
be subsequent exemplary calculated for this point by using the limits of the grid
bounds stated in table 3.2. First, the affiliation parameters with respect to point
(1,1,1) are determined. We obtain

dM = 1− 3− 0.6

5− 0.6
= 0.45, (3.55)

dH = 1− 4 km− 0 km

10 km− 0 km
= 0.6, (3.56)

dAoA = 1− 15 ◦ − 0 ◦

20 ◦ − 0 ◦
= 0.25. (3.57)
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The upper limit of each dimension will be calculated and afterwards added to get
the overall upper limit for the OP. The order does not matter. We can start
by calculating the upper limit along the height at the different Mach and angle
of attack points. For clarification memorize again figure 3.4. The limits will be
calculated for the OP pairs shown in table 3.3.

Table 3.3: Point pairs over which the upper limit for the pole placement area will
be calculated

Case Height Point Pairs Mach Angle of Attack
1 [(1,1,1); (1,2,1)] M = 0.6 0 ◦

2 [(2,1,1); (2,2,1)] M = 5 0 ◦

3 [(1,1,2); (1,2,2)] M = 0.6 20 ◦

4 [(2,1,2); (2,2,2)] M = 5 20 ◦

The limits can the be calculated by

λ1 = dHλ111 + (1− dH)λ121 = 0.6 · 25 + (1− 0.6) · 15 = 21, (3.58)

λ2 = dHλ211 + (1− dH)λ221 = 0.6 · 70 + (1− 0.6) · 30 = 54, (3.59)

λ3 = dHλ112 + (1− dH)λ122 = 0.6 · 10 + (1− 0.6) · 8 = 9.2, (3.60)

λ4 = dHλ212 + (1− dH)λ222 = 0.6 · 25 + (1− 0.6) · 16 = 21.4. (3.61)

(3.62)

Afterwards, these limits have to be interpolated over the other dimensions Mach
number and angle of attack. First over the Mach number

λa = dMλ1 + (1− dM)λ2 = 0.45 · 21 + (1− 0.45) · 54 = 39.15, (3.63)

λb = dMλ3 + (1− dM)λ4 = 0.45 · 9.2 + (1− 0.45) · 21.4 = 15.91. (3.64)

(3.65)

And finally along the angle of attack

λ = dAoAλa + (1− dAoA)λb = 0.25 · 39.15 + (1− 0.25) · 15.91 = 21.72.
(3.66)

This is done for every OP and automatizes therefore the design of the controllers
according to their dynamical behavior over the missile’s operating range.

3.4 Operating Point Grid Generation

This section is intended to describe the properties of the operating point grid and
how the automated grid generation works in detail.
The operating point grid is essential for a stable flight of the missile during the
whole mission. Its density depends on the performance of the controllers as well
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as the behavior of the missile at specific velocities, height or angles of attack. If
we have a poor controller performance and hence a small validity area, the grid
gets denser as long as the validity area includes also all adjacent operating points.
The density of the grid is proportional to the computational time. Therefore, the
aim of the grid generation is to be as dense as necessary and as good as possible.
One option is to define regular grids (see figure 3.5) or irregular grids (see figure
3.6).

Figure 3.5: Regular grid

Figure 3.6: Irregular grid with less points than the regular grid from figure 3.5 but
the same coverage of operating range

Regular grids have the advantage of being easy to implement but the disadvantage
of much more operating points than irregular grids. Irregular grids are more
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complex to implement but can save a lot of time needed for the controller design.
In the beginning of this thesis, exclusively regular grids have been developed but
in the end more complex irregular grids have been generated in order to overcome
some problems and to reduce computing time.

3.4.1 Properties

It is necessary to define in advance an initial grid. The dimension is defined by
the Mach number and height (two-dimensional - see figure 3.7) and by the angle of
attack (three-dimensional - see figure 3.8). Since it can be very time consuming to
design controllers over three grid dimensions due to the high number of OPs, this
can be optional considered in order to get a better performance of the controllers.

Figure 3.7: Very coarse two-dimensional grid of a missile’s flight envelope

Furthermore, the operating range of the missile has to be defined in advance (see
table 3.4 where the whole operating range is defined).

Table 3.4: Exemplary operating range for an air defense missile using two aerody-
namic actuating systems

Grid Parameter Minimum Maximum
Mach number [−] 0.6 5
Height [m] 0 10,000
Angle of Attack [◦] 0 20

It is furthermore possible to define in advance iteration steps between the max-
imum and minimum values of a grid parameter. This is helpful to get faster a
working grid and a clue about the performance of the missile. Contrariwise is the
disadvantage that the grid is at the beginning denser defined than maybe actually
needed since defining a specific distance between the OPs along a grid parameter
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Figure 3.8: Very coarse three-dimensional grid of a missile’s flight envelope

is like trying a shot in the dark.
Therefore, it is recommended to define only the bounds like the example illustrated
in table 3.4.

3.4.2 Algorithm

In this section, the basic idea behind the grid generation will be explained.
In the beginning, the user input which has been explained in the previous section
3.4.1 will be processed since various options are possible due to the pretension
of generic design and the automated adaption of the grid and hence continuously
changing parameters. Afterwards, the points where the missile should be linearized
and trimmed and controllers should be designed (section 3.3) is defined. After the
controller design, their validity area will be verified (section 3.4.3) with the help
of LMIs. When a problem occurs, all further steps will be skipped and the grid
will get denser along the grid parameter where the scope of the validity area has
been tested. The procedure starts again (see figure 3.1 again).

3.4.3 Verification of Validity Area

The verification of the validity area via LMIs is a good option for an automated
design. Consider figure 3.9 for the verification algorithm.

The aim is to prove stability of the missile in the whole validity area of a controller
like shown in figure 3.10.

First, the adjacent Mach point will be tested for stability, afterwards the second
dimension, height, and the last verification step is the OP where both Mach number
and height will be changed by either increasing or decreasing the value. This is done
by checking for the existence of a positive definite matrix P when controller at (1,2)
is applied to either (2,2), (1,1) or (2,1). When this is shown, the controller stabilizes
the missile in the whole rectangle defined by these adjacent four OPs. The validity
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Figure 3.9: Verification steps for the vertex (1,2) in a two-dimensional grid

area is actually as large as illustrated in figure 3.10 for a two-dimensional grid when
the operating range is extended like illustrated in figure 3.7. Basic data of the
verification is summarized in table 3.5 to get a clue of the number of verification
cases and to understand the nomenclature of the grid points. The first dimension
of the subscripts is always the Mach number, the second one the height and the
third is the angle of attack.

Additionally, figure 3.11 illustrates the increase of grid points and hence the num-
ber of verifications according to the grid dimension and the number of grid points
along a grid parameter dimension. One can clearly see the enormous increase
of verifications of a three-dimensional grid compared to a two-dimensional grid.
Hence, the grid points along the third dimension, i.e. the angle of attack, should
be as small as possible over the whole operating range.

The verification of the ability to stabilize neighboring OPs is subsequent described
in more detail.
As previously mentioned, this is done via LMIs by the prove of an existing positive
definite matrix P . The algorithm goes through every grid point and determines
its adjacent points. Remembering figure 3.9, first adjacent points along a single
dimension, i.e. the easy case, will be verified for stability before the combined case
will be tested. The reason is that the combined case leads to a denser grid for
both dimensions not only a single one. Consider the case where OP (1,2) does
not stabilize (2,2) but (1,1). When the verification starts with step 3, i.e. (1,2) ⇒
(2,1), the grid gets denser along the Mach number and height. When it starts as
shown in figure 3.9, it gets denser only along the Mach number.



3 Automation 51

Figure 3.10: Validity area of operating point (1,2) illustrated by the green rectangle

3.4.3.1 LMI Constraints

When the neighboring OPs have been determined, the verification starts for the
elevator, rudder and aileron. Hereby is the current controller of the OP which
validity area should be verified (Ar,c, Br,c, Cr,c, Dr,c) applied to the neighboring
plant (An, Bn, Bw,n, Cn, Cz,n, Dw,n, Dz,n, Dzw,n). Index c is here defined for
”current” and index n for ”neighbor”. The closed loop system for the verification
is then according to equation (3.11) now

Acl =

[
An +BnDr,cCn BnCr,c

Br,cCn Ar,c

]
, (3.67)

Bcl =

[
BnDr,cDw,n +Bw,n

Br,cDw,n

]
, (3.68)

Ccl =
[
Cz,n +Dz,nDr,cCn Dz,nCr,c

]
, (3.69)

Dcl =
[
Dzw,n +Dz,nDr,cDw,n

]
. (3.70)

The verification can be performed by ensuring stability with the LMIs

PAcl +A′clP PBcl C ′j
B′clP −γjI D′j
Cj Dj −γjI

 , P > 0, γj > 0 (3.71)
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Table 3.5: Verification cases for 2D and 3D grids according to figures 3.7 and 3.8
respectively

Grid Points Subscripts Verifications per OP
Two-Dimensional

4 Vertices (1,1) / (1,3) / (3,3) / (3,1) 3
4 Edges (1,2) / (2,3) / (3,2) / (2,1) 5
1 Middle (2,2) 8

Total Number of Verification Cases ⇒ 40
Three-Dimensional

8 Vertices
(1,1,1) / (1,3,1) / (3,3,1) / (3,1,1)

7
(1,1,3) / (1,3,3) / (3,3,3) / (3,1,3)

12 Edges
(1,2,1) / (2,3,1) / (3,2,1) / (2,1,1)

11(1,2,3) / (2,3,3) / (3,2,3) / (2,1,3)
(1,1,2) / (1,3,2) / (3,3,2) / (3,1,2)

6 Surfaces
(1,2,2) / (2,3,2) / (3,2,2) / (2,1,2)

17
(2,2,1) / (2,2,3)

1 Middle (2,2,2) 26
Total Number of Verification Cases ⇒ 316

where index j defines the row of Ccl and Dcl. Additionally one can verify the PPA
as well via

σ′ + σ < −2λP , (3.72)

σ′ + σ > −2λP , (3.73)[
δ(σ′ + σ) σ′ − σ
−σ′ + σ δ(σ′ + σ)

]
< 0 (3.74)

where σ = PAcl. These additional constraints enhance performance but increase
the grid density. It is recommended to apply a tolerance ∆ to the limits for the
pole placement area. The upper and lower limits are then defined by

λ = λ · (1−∆), (3.75)

λ = λ · (1 + ∆), (3.76)

where 0 ≤ ∆ < 1. The current controller is now applied to all neighboring OPs.
When an error occurs due to the inability of finding a positive definite matrix P
to satisfy the Lyapunov function, i.e. stability, or a bad performance γn > ∆γc
when this controller tries to stabilize the missile in the surrounding area of the OP
by computing the control surface deflection, the grid density along the tested Grid
Parameter (GP) increases.
Even if the verification fails for a big tolerance, you should consider to omit LMIs
(3.72), (3.73), (3.74).
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Figure 3.11: Number of verification cases over the grid points per dimension for
a two-dimensional( ) and three-dimensional grid ( ). The overall
growth of the grid points is also illustrated along the two lines

3.5 Gain Scheduling

As we are using the method of linearization as already described in section 2.2, the
nonlinear missile has to be trimmed and linearized at various OPs. The controllers
which are designed afterwards at these points have to keep the missile stable in the
local area of the OP like illustrated in figure 3.10. Consider again the linearized
models of the form

δẋi = Ai · δxi +Bi · δui, (3.77)

δyi = Ci · δxi +Di · δui (3.78)

where δxi = x−xi, δui = u−ui and δyi = y−yi. There are various possibilities
to get the controllers work like a nonlinear controller. Consider figure 3.12 to
understand by which controllers the missile will be stabilized. This is exemplary
illustrated for the endgame of the missile, i.e. the last seconds until interception.

It is either possible to interpolate between the controller matrices or between
the manipulated variables to command the correct control inputs to the elevator,
rudder and aileron. Due to the fact that the nonlinearities during the controller
design of the output feedback controllers were eliminated by the transformation
(3.18), the coordinate systems differ among the controllers. The consequence is
that a linear interpolation of the controller matrices is not possible [3]. Hence, the
manipulated variable will be interpolated.
The equations for the calculation of such an interpolation over multiple dimensions
have been already introduced in section 3.3.3. These equations can be rewritten
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Figure 3.12: The green marked operating points [(7,4); (8,4); (7,5); (8,5)] stabilize
the missile (marked by the dotted red line) during the last ≈ 1 t (1
black dot per t) until strike (marked by the star in red)

to apply them to the interpolation of the manipulated variable [1]

u =

∑p
i=1 dM · ui∑p
i=1 dM

, (3.79)

dM = 1− Mc − (M1 + ∆M)

M2 −M1

, (3.80)

uM = dMu1 + (1− dM)u2. (3.81)

Consider figure 3.13 where M represents the Mach number and H the height.
The blue illustrated areas around controller one and two are defined by the ∆-
values where only this controller provides the control input. We can see a pink
area between them where the input will be interpolated by controller one and two.
The affiliation parameter dM weights then how much of the control input is pro-
vided by controller one and how much by controller 2. First, the input will be
interpolated along M by keeping H constant and afterwards the just determined
values will be interpolated along H. For clarification see figure 3.14 where a = M
and b = H.

This interpolation formulas can be implemented in Simulink for the simulation of
the missile during its mission. In order to apply always the appropriate commands,
the neighboring OPs will be determined according to the current position of the
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Figure 3.13: Example of the meaning of the validity areas of the controllers

missile in the grid, i.e. flight conditions with respect to Mach number, height and
angle of attack. Furthermore, the algorithm in Simulink detects the affiliation to
the neighboring OPs in order to weight the influences according to their distance
to the missile. Consider figure 3.15 to understand how the algorithm works. The
missile starts at M = 0.6 and a height of 500 m. Since the missile is accelerating,
you can see how the influence of the controllers changes. Until t ≈ 2 t only the
controllers at a height of 500 m [(1,2) and (2,2)] provide the control input since
∆H = 50 m is not exceeded until now and therefore dH = 1 (remember equation
(3.80)). At this time 2 t, the influence of controller (1,2) is about 55 % and hence
the influence of controller (2,2) is 45 % considering the Mach number. The same
algorithm is employed when the missile was trimmed at specific angles of attack
but of course with an extended algorithm for three dimensions.
When the missile crosses the imaginary line connecting points (2,2) and (2,3),
controllers (1,2) and (1,3) change to (3,2) and (3,3). These controllers will be
initialized, i.e. increasing controller states, while the missile is controlled only by
(2,2) and (2,3). This section can be seen in the top plot of figure 3.15 between
≈ 4.2 t and ≈ 4.45 t. Since the missile is in the beginning of this section still
controlled by [(1,2); (2,2); (1,3); (2,3)], it has to be divided by ≈ 2 which leads to
an initialization phase in this case of ≈ 125 mt for controllers (3,2) and (3,3).

When the controllers are not asymptotically stable, windup problems occur during
blending. Only the closed loops are stable and the controllers need the feedback
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Figure 3.14: Interpolation over multiple dimensions [24]

from the plant. In case of blending where 0 ≤ d ≤ 1 the command will be partially
or will not received by the plant at all. In worst case only one control loop is closed
and the other one without feedback which leads to a divergence of the controller
states and hence destabilization of the system [26]. This is the main reason why
anti-windup networks have to be implemented for our controller design method.
Figure 3.16 illustrates exemplary the anti-windup network in combination with
the blending method.
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Figure 3.15: Change of the affiliation parameters (top) of the Mach number ( )
and height ( ) during its flight through the operating point grid
(bottom)

Figure 3.16: Model recovery anti-windup network of two blended controllers
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3.6 Anti-Windup

This section is intended to present the anti-windup method according to [13] and
[15]. Since the manipulated variable will be determined by four or eight controllers
during flight, windup can occur during blending of the controllers.
This method was shortly described in section 2.4.2.1. The idea is a decoupling
architecture or rather a separation of the linear unlimited and nonlinear saturated
system by using the so-called mismatch-representation. Such an architecture al-
lows the optimization of a logical and intuitive performance criterion by means of
convex optimization using LMI constraints.

3.6.1 Model Recovery Anti-Windup

The decoupled anti-windup network introduces an anti-windup compensator which
would not replace existing controllers but extend them by an anti-windup network
without a new design. This method ensures local stability and robust control even
if the system contains poles in the open-right-half complex plane. Therefore, only
local anti-windup compensation is covered.
Consider the system shown in figure 2.8 with input saturation and anti-windup
compensation. This system is a Finite-Dimensional Linear Time Invariant (FDLTI)
plant S which is to be considered of the following form

S :

{
ẋs = Asxs +Bs,uus +Bs,zz,

ys = Csxs +Ds,uus +Ds,zz
(3.82)

where xs ∈ Rns is the plant’s state, us ∈ Rm the control input, disturbance z ∈ Rl

and output ys ∈ Rm. The FDLTI controller R has the following state-space
realization

R :

{
ẋr = Arxr +Br,uur +Br,zw,

yr = Crxr +Dr,uur +Dr,zw
(3.83)

where xr ∈ Rnr is the controller’s state, ur ∈ Rm is the measurable input for the
output signals of the plant, w ∈ Rm is the reference and yr ∈ Rm is the linear
controller output. The anti-windup network is defined by equations (2.81) - (2.83)

AWNW :


ẋaw = Asxaw +Bs,ukaw(xaw) +Bs,uδ,

yaw,y = −Csxaw,

yaw,u = −Kawxaw.

(3.84)

With the mismatch-transformation (2.92) one gets the linear and nonlinear systems
(3.85) and (3.86), respectively. The realization of the model-recovery anti-windup
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network in Simulink can be seen in figure 3.17.

L :


ξ̇s = Asξs +Bs,uyr +Bs,zz

ξ̇r = Arξr +Br,uCsξs +Br,ww

yr = Crξr +Dr,uCsξs +Dr,ww

ys,ub = Csξs

(3.85)

AWNW :


ξ̇aw = Asξaw +Bs,u(satu(yr + yaw,u)− yr)
yaw,y = Csξaw
yaw,u = Kawξaw

(3.86)

Figure 3.17: Realization of a model recovery anti-windup network in Simulink

Since the system matrix As consists of eigenvalues in the open-right-half complex
plane, global stability can not be reached. The eigenvalues of As or rather the
matrix of the elevator of a missile using two aerodynamic actuating systems Aaq
is illustrated in figure 3.18.
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Figure 3.18: Eigenvalues of a missile’s elevator open loop system which was lin-
earized at specific Mach numbers and heights

In order to guaranty local stability of the anti-windup compensator, some con-
straints in the form of linear matrix inequalities have to be defined. In a first step,
one has to pay attention of the deadzone nonlinearity of the anti-windup network.
Considering the deadzone and hence the maximum possible deflection of a control
surface u directly in the design ofKaw to achieve local stability, one has to sharpen
the sector bounds (consider figure 3.19). The maximum possible deflection of a
control surface u is here defined for the worst case by the consideration of the trim
state. Hence, the mentioned 30 ◦ in section 2.1.2 will be either way decreased by
the actuators deflection needed to ensure a horizontal flight (section 2.2.1). For
example when a missile with M = 0.6 and H = 10 km needs an elevators deflection
of η = 3 ◦ to keep the missile in horizontal flight, the maximal deflection of the
elevator which is left is u = 27 ◦.
Under the assumption that ui ≤ βiui, ∀i, where βi > 1, ∀i, one can locally see
that Dzi(ui) = ui − sat(ui), where sat(ui) is defined by equation 2.79, remains
below the gradient αi := βi−1

βi
< 1. Index i is the control variable for the number

of actuators e.g. the front and back actuation system and parameter β defines the
gradient and should not be confused with the sideslip angle of the missile.

Therefore, one can conclude that for all u � u the sharper sector Sector[0,A] is in-
herited by the deadzone. The diagonal matrix A is defined by A := diag(α1, ..., αm)
where m is set by the number of actuators, αi ∈ (0, 1) and A < I. Due to this
conclusion, tighter bounds on the small-signal L2 gain can be obtained and hence
local stability is proven.
To guaranty local stability and small-signal L2 gain, i.e. robustness, the following
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Figure 3.19: Illustration of the deadzone nonlinearity and sector bounds [13]

constraints have to be defined:

� Existence of a positive definite symmetric matrix Q

Q > 0 (3.87)

� Existence of positive definite diagonal matrix U which contains optimization
parameters computed by the LMI solver

U = diag(µ1, ..., µm) > 0 (3.88)

� Existence of a matrix L ∈ Rm×ns

� A positive real scalar performance parameter γ such that the following LMI
is satisfied

QA′s +AsQ+L′B′s +BsL BsU −L′A 0 QC ′s +L′D′s
(BsU −L′A)′ −2U A UD′s

0 A′ −γI 0
(QC ′s +L′D′s)

′ (UD′s)
′ 0 −γI

 < 0 (3.89)

If the LMIs (3.87), (3.88) and (3.105) are satisfied, a suitable anti-windup gain
which achieves ξ < γ can be obtained by:

Kaw = LQ−1 (3.90)

The mismatch parameter ξ defines the difference between nominal linear behavior
and a saturation event. By minimizing the positive performance parameter γ, the
mismatch will be minimized as well. Figure 3.20 shows the influence of gradient
αi on the performance parameter γ.
In order to enhance the performance, further LMIs can be defined. The max-
imization of the Region Of Attraction (ROA) is a good option to enhance the
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Figure 3.20: Deviation between mismatch-system and unlimited system as a func-
tion of the input signal α. A measure of the mismatch performance
is the upper bound of the small-signal L2 gain γγ of the anti-windup
system [15].

performance. Such a region can be defined by a Lyapunov function [28]. When-
ever the initial state is in the region defined by Lyapunov, stability is guaranteed.
For the design of the anti-windup gain, the following inequality defines the ROA
as an ellipsoid:

E(P ) = {ξaw ∈ Rns : ξ′awPξaw ≤ 1} (3.91)

where ξaw(0) = 0 and the positive definite matrix P defines the ROA. To hold
the assumption of ui ≤ βiui:

|k′aw,iξaw| ≤ βiui, ∀i, where Kaw =

 k
′
aw,i
...

k′aw,m

 . (3.92)

When ξaw ∈ E and using the substitution method presented in section 2.3.1.4,
P = Q−1, one gets the following LMIs:

[
Q L′

L β2
i u

2
i I

]
≥ 0,∀i (3.93)

Since the ellipse (3.91) should be maximized, the inverse matrix Q has to be
minimized [13]. Therefore, the following objective should be minimized when
solving the LMIs to get Kaw

Γ = ηγ + (1− η)det(Q) (3.94)
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where η ∈ [0, 1] is the trade of the importance between the local performance and
the minimization of the ROA and should not be confused with the deflection of
the elevator.
Additionally, the exact region of states of which the system should be captured, can
be enforced by defining a rectangle in terms of setting its vertices. These vertices
are the maximum values of the states where stability should be guaranteed. When
this predefined region too large, the problem gets infeasible. Considering the
following Lyapunov function

a2ξ′sPξs ≤ 1 (3.95)

⇔ 1

a2
− ξ′sPξs ≥ 0. (3.96)

Using substitution and setting γα = 1
a2

one gets the LMI

[
Q ξsi
ξ′si γαi

]
≥ 0,∀i (3.97)

where ξs,i is a common point of a predefined region. The aim is now to maximize
γα and hence minimize a2 which minimizes Q and maximizes the ROA E(P ). The
objective function which should be then minimized can be stated as

Γ = ηγ + (1− η)
1∑
γαi

. (3.98)

3.6.2 Affine Linear Parameter Dependency

During the flight of the missile, the current conditions like Mach number or height
vary and hence the missile moves through the operating point grid. Consider the
extraction of a two-dimensional grid illustrated in figure 3.21 and the rectangle
defined by the four operating points [(1,1); (2,1); (1,2); (2,2)].
In order to apply always the appropriate control input to the system, this value has
to be interpolated by considering all these surrounding operating points according
to the current conditions. This leads to a validity area where stability is provided
by a specific controller (e.g. at OP (1,2) in figure 3.10 or 3.21).

The control input will be interpolated either by four OPs (two-dimensional grid) or
by eight OPs (three-dimensional grid). The same applies for yaw,up computed by
the anti-windup gains Kawp where index p is a counter which denotes the current
OP by running through the grid dimensions, i.e. first rows, afterwards columns.
Hence, p = 2 denotes OP (2,1), p = 3 denotes OP (1,2) and so on.
How the control input will be interpolated and how the guaranty of stabilizing the
missile in a specific validity area of a controller is given was presented in sections
3.3 and 3.5.
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Figure 3.21: Extraction of a two-dimensional operating point grid

Ensuring that every OP stabilizes its neighboring OP, leads to an inclusion of these
adjacent OPs in the anti-windup design which is possible because the anti-windup
network relies on the design of a state feedback controller. This can be realized due
to the assumption of an affine linear parameter dependency of the linearized models
from the grid parameters. The system of the anti-windup network is assumed to
be

∆ẋ = (As + dgd∆As)∆x+ (Bs + dgd∆Bs)∆u, (3.99)

∆y = (Cs + dgd∆Cs)∆x. (3.100)

Before the verification whether this assumption can hold, the plant matrices of the
anti-windup network As, Bs, Cs and Ds will be defined as following shown

As =

[
Aaq Baq

0 −diag(T Act)

]
, (3.101)

Bs =

 0 0
T Act1 0

0 T Act2

 , (3.102)

Cs =


Caq Daq

0 1 0 0
0 0 1 0
0 0 0 1

 , (3.103)

Ds =


Daq

0 0
1 0
0 1

 , (3.104)
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where

Aaq = System matrix of the elevator axis
Baq = Input matrix of the elevator axis
Caq = Output matrix of the elevator axis
Daq = Feedthrough matrix of the elevator axis
T Act = Time constants of the actuators (1/Taeroi , i = 1, ...,m).

The linearized missile has an affine linear parameter dependency according to the
grid parameters Mach number, height and angle of attack. This can be seen in
figure 3.22 where all elements of the system matrix of the elevator of a missile
along the Mach number from M = 0.6 − 2 divided in 200 iteration steps is illus-
trated. Since no anomaly occurs in the curve characteristic, affine linear parameter
dependency is a valid assumption.

Figure 3.22: Affine linear parameter dependency of the elements of the elevator’s
system’s matrix as a function of the Mach number

For the consideration of the neighboring plants, one can extend LMI (3.105). This
constraint will be applied to all surrounding plants as subsequent stated


QA′sp +AspQ+L′B′sp +BspL BspU −L

′A 0 QC ′sp +L′D′sp
(BspU −L

′A)′ −2U A UD′sp
0 A′ −γI 0

(QC ′sp +L′D′sp)′ (UD′sp)′ 0 −γI

 < 0, p = 1, ..., nOP

(3.105)

where nOP is the number of surrounding plants. For our exemplary grid in figure
3.21 stability during saturation is now guaranteed in the gray rectangle since Kaw
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is able to stabilize the system at the four vertices simultaneously. This figure shows
only an extraction due to clarity. For a whole flight envelope, the consideration of
surrounding gridpoints in the design depends on the grid dimension or where the
point is situated in the grid (vertex, edge (,surface) or middle).

In order to provide a short overview of the influence of the design parameters
on the anti-windup network, these parameters will be varied for a missile using
two aerodynamic actuating systems. The results are summarized in table 3.6 and
illustrated in the following figures. The missile had a Mach number of M = 3.5
and a height of H = 3 km. The anti-windup gain was designed such that the
rectangular area with the following vertices

V ertices =


α
q
ηf
ηb

 =


π/9
π
π/4
π/4

 . (3.106)

are included in the ROA of the AW NW.

Table 3.6: Different parametrization of the anti-windup design parameters and its
effect on the behavior during saturation. The anti-windup gain was
designed including also the rectangular area to enhance performance.

Case Design Parameter Value Figures

1
β 1.01

3.23η 0
⇒ γ 625543.0

2
β 10

3.23η 1
⇒ γ 9559.9

3
β 4

3.23 and 3.24η 0.5
⇒ γ 5366.8

4
β 1.01

3.24η 1
⇒ γ 39.2

As we can see by comparing the results illustrated in figures 3.23 & 3.24, the third
case with mean values of β and η has the best performance during saturation. The
rise time is quite short and the amplitude of the anti-windup network is the smallest
compared to the other cases. Furthermore, the overshoot is zero. Only case four
provides almost the same behavior like case three. The amplitude of the anti-
windup states is larger but the performance parameter γ is much smaller compared
to γ of the third case (see table 3.6). Even though the performance parameter is
much smaller, case three is still better in its application. The reason gives the
definition of the parameter itself. Since this parameter decreases the mismatch
between nominal linear behavior and saturated nonlinear behavior, the activation
of the anti-windup network has to be much bigger in order to keep the mismatch
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Figure 3.23: Output signals during saturation of a missile’s elevator dynamics.
Reference signal illustrated in ( ), and the design parameters β = 4,
η = 0.5 illustrated in ( ), β = 10, η = 1 illustrated in ( ), β = 1.01,
η = 0 illustrated in ( ) and without AW illustrated in ( )

small. The performance is of course also influenced by the saturation limit. The
result is that for higher saturation cases, the anti-windup network will not be able
to guaranty good performance anymore since the states’ amplitude is too big and
a fast recovery is not possible during saturation (see figure 3.24). This can be also
explained by having a closer look to the sector bounds. Remember figure 3.19 and
the calculation of gradient α = β−1

β
. In case of β = 1.01, α = 0.99 %. Hence, the

sector[0,A] is only 0.99 % of sector[0, I], i.e. unity gradient line. The sector is too
sharp which leads to a decreased performance compared to a larger gradient when
the system is highly saturated.
Concluding, it can be said that a balance between performance and robustness
has to be achieved. Having a 50 % weighting between the minimization of the
mismatch to the maximization of the ROA and a gradient which is 75 % of the
unity gradient line sector to guarantee a good robustness is a good solution.
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Figure 3.24: Comparison for an exaggerated lateral acceleration step. Illustration
of output signals, commands and states of the missile and the anti-
windup during saturation of a missile’s elevator dynamics with differ-
ent design parameters ([η = 1, β = 1.01] top picture and [η = 0.5,
β = 4] bottom picture)
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4 Results

This chapter is intended to remind you briefly of the tasks of this master thesis,
to discuss problems which occurred during the design and afterwards the imple-
mentation of the automated controller design as well as the results of the grid
generation, the controller performance and robustness and the anti-windup per-
formance will be presented.
The task of an automated controller design using convex optimization was sepa-
rated in four main tasks. First, the operating point grid should have been automat-
ically adapted for two-dimensional or three-dimensional regular grids according to
the validity areas in order to get a grid of controllers which is able to stabilize the
missile in the whole operating range. The controllers at the OPs should have been
designed by considering the conditions of the current OP in order to get higher
dynamic controllers at high velocity, low altitude and low angle of attack and
achieve therefore a higher agility of the missile compared to small Mach number,
high altitude and large angle of attack. Afterwards a method had to be imple-
mented which counteracts the problem of windup over the whole operating range
especially during blending which is part of the last task, the implementation. A
missile should be simulated by applying the designed controllers and anti-windup
networks and by using gain-scheduling to blend the manipulated variable in order
to stabilize the missile on its way to the target. It was also required to hold spe-
cific performance criteria [3], i.e. the magnitude of the overshoot (±15 %), settling
time (where the deviation from the set value is smaller or equal 5 %) and rise time
(maximal 520 mt) according to figure 4.1. The performance and robustness of the
controllers will be presented in section 4.2.

During the controller design and automated grid adaption, problems occurred at
Mach numbers in a range of 0.6 ≤ M ≤ 2. As the EoMs have been described in
section 2.1.1, the derivatives for the representation of the missile’s moments and
forces have been presented. These derivatives differ a lot in this range which is due
to the huge differences between the subsonic and supersonic physics of the missile.
These changes are shown in figure 4.2 for some derivatives to provide an idea of
the problem. You can clearly see that the characteristic curve has large changes in
the critical region (marked in light red) compared to the remaining smooth curve.
The result of this irregular curve is a high grid density since the controllers are
not able to stabilize neighboring OPs in a local area of satisfying size. A normal
or satisfying number of grid points along the Mach number or height is maximal
10 to 15 and along the angle of attack 4 to 6. The changes of the derivatives lead
to 20 grid points only in the region between 0.6 and 1.2 Mach, hence a distance
along the Mach number of 0.032. In case of using regular grids, this interval
would lead to nearly 140 grid points only along the Mach number, about 1400
grid points when considering a two-dimensional grid and approximately 5600 grid
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Figure 4.1: Step responses of an arbitrary system [23]

points when a three-dimensional grid should be generated. The computing time
would reach exorbitant amounts. The solution to overcome this problem is the
usage of another kind of controller for the critical region. Since the air defense
missile will be accelerated to velocities aboveM = 4 very quickly, the critical region
will be crossed very fast. Therefore, it is not necessarily required that the missile
performs lateral accelerations in this short phase. Our solution to overcome this
problem is the usage of state feedback controllers to control the rotation rates of
the z- and y-axes to zero or another reference rotation rate to stabilize the missile
in this region. The result will be shown as part of a whole flight of a missile in
section 4.1.
Another additional solution to reduce the number of grid points and hence increase
performance of the automated design is a first step in generating irregular grids.
Therefore, the distance between OPs will not be decreased among all grid points
but only in the region where the validity area of the controller is not as big as in
other regions.
One can decrease the maximal bound of the critical region to M = 1.5 but due
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Figure 4.2: Derivatives as a function of Mach number. The light red marked patch
illustrated the critical region

to the discontinuities of e.g. derivatives CZ10 and CLp between 1.5 ≤ M ≤ 2.2
the grid density would exceed the satisfying number of grid points by additional
15 points as shown in figure 4.3.
This leads to over 150 additional points for a two-dimensional grid and approx-
imately 600 points for a three-dimensional grid. Remember figure 3.11 for the
number of verification cases. The computation time of the controller design would
increase a lot. To emphasize the advantage of irregular grids over regular grids
imagine the increase of the distance between adjacent grid points along the Mach
number as stated before. The smallest interval among the 15 additional points
is between points [(5,1); (6,1); (7,1)] and [(8,1); (9,1); (10,1)]. Remember figure
3.22 where the elements of the system’s matrix had been plotted. You can see this
curve enlarged in figure 4.4. This figure illustrates also the real parts of the Eigen-
values of the system’s matrix. You can clearly see that the transition from positive
unstable eigenvalues to negative stable Eigenvalues is exactly in this region which
leads to such a dense grid. The interval is in this region M = 0.011. In case of
regular grids, the overall number of grid points from M = 1.5 to M = 5 would
increase from 25 to about 310 grid points. Extrapolating this to three dimensions
would lead to about 12400 grid points for a regular grid compared to 1000 grid
points for an irregular grid.
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Figure 4.3: Grid density along the Mach number at an arbitrary height for the
last part of the critical region when designing dynamic output feedback
controllers

Figure 4.4: System matrix element Aaq(2,1) (top) and real parts of the eigenvalues
of the system’s matrix (bottom) plotted over the Mach number
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4.1 Implementation

This section is intended to present the implementation on the basis of an auto-
mated controller design of a missile using two aerodynamic actuating systems.
The missile was linearized over a two-dimensional grid, i.e. Mach number and
height. The input which was necessary to execute the automated controller design
is summarized in table 4.1.

Table 4.1: Input data for the automated controller design for the whole operating
range of a missile using two aerodynamic actuating systems

Data Value Description
Mach number [−] M = 0.6− 5 Operating range Mach number
Height [m] H = 0− 10 km Operating range height
Angle of Attack [◦] Not considered Missile was only linearized over Mach and height
Distortion 0 No distortion of the derivatives to prove robustness
Missile Missile 2 Controller design applied to missile 2
Critical Region 0.6 ≤M ≤ 2 Definition of the critical region boundaries
Trim Variables α and ηb Trim variables for the straight and level flight set to the

angle of attack and the rear elevator
AW Gain Method 2 AW gain design considers rectangular region of states

of which the system should be captured

After approximately three hours, the design of the controllers for the critical and
non-critical region as well as anti-windup networks was finished. Figure 4.5 illus-
trates the grid at the beginning of the automated controller design and the final
grid which was generated according to the criteria presented in section 3.4.3.
Afterwards, the missile had been simulated for various scenarios in Simulink. As
you might have noticed in table 4.1 you can choose between different missiles.
In the course of this thesis the design was insomuch extended that it can be
applied to other missiles. Furthermore, the generic design was also applied to the
simulation where only one Simulink model is needed to simulate missiles with one
or two aerodynamic actuating systems, missiles which have been linearized over
two or three dimensions and it is able to simulate the missile performing predefined
lateral accelerations or performing an air defense maneuver using guidance laws
to eliminate a predefined target.
The result of an exemplary air defense maneuver will be subsequently presented.
The simulation input was defined as shown in table 4.2.
The results of the simulation are shown in figures 4.6, 4.7 and 4.8. As you can
see in figure 4.6, the missile is controlled very quickly to reach the desired ac-
celerations. In the beginning, the missile starts at M = 0.6 and H = 0 km and
accelerates through the critical region until ≈ 4.3 t. Velocities below M = 0.6
are not considered since no lateral acceleration steps or guidance commands are
controlled in this initial boost phase. A pitch rate of 5 ◦/s was set to increase the
angle of attack and hence the elevation angle and therefore height until the missile
reached almost supersonic velocity. During the change from subsonic to supersonic
velocities to the end of the critical region the rotation rates are controlled to zero.
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Table 4.2: Simulation input data for an air defense maneuver with a missile
equipped with two aerodynamic actuating systems

Data Value Description
Grid point (1,1) Initial Mach number and height set to M = 0.6 and

H = 0 km
Thrustphase 1 Start of simulation with boost phase
Elevation angle 10 ◦ Angle of ignition (elevation)
Azimuth angle 40 ◦ Angle of ignition (azimuth)
Target position [6000; 1000;−10000] m Initial position of the target in NED frame
Offset [0;−200; 1000] m Step in NED frame the target makes when the missile

approached to a defined distance
Approach 3000 m When the missile reached this distance to the target,

the step is executed
Pitch rate [5 0] ◦/s Pitch rate before and after M = 0.9 until the end of

the critical region
Yaw rate [0 0] ◦/s Yaw rate before and after M = 0.9 until the end of the

critical region

Afterwards, the missile receives the commands to reach its desired path to strike
the target at the initial target position [6000; 1000;−10000] m in the NED frame.
Figure 4.8 shows the transition to the sustain phase at 9 t. The missile will be still
accelerated but much slower. Burn out begins at about 17.5 t. After about 20 t
the distance between the missile and the target is smaller or equal than 3 km. At
this point,i.e. begin of the endgame, the target makes a step in order to show the
ability of lateral acceleration. The new target position is now [6000; 800;−9000] m
in the NED frame as we can see in figure 4.7. The fast tracking of the necessary
high lateral acceleration can be seen in figure 4.6. Until this point the guidance
is executed by transmitting via ground tracking a predicted intercept point based
on radar measurements to the missile. During endgame, the seeker head adopts
the guidance and provides the more precise measurements with a higher update
frequency which leads to such acceleration steps in the end.
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Figure 4.5: Grid at the beginning (top) and final distribution of the operating
points after the automated controller design (bottom) for a missile
with two aerodynamic actuating systems
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Figure 4.6: Commanded lateral accelerations ( ) calculated by guidance laws
shown in the top and middle plots and the actual behavior of the
missile illustrated in for all three axis

Figure 4.7: Trajectory of the missile in three-dimensional space
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Figure 4.8: The path of the missile to the target through the operating point grid
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4.2 Performance and Robustness

4.2.1 Two Aerodynamic Actuating Systems

For the performance and robustness check of the designed controllers, various
settings had been applied to the nonlinear model. These are listed in the following
table 4.3. The figures can be seen in appendix section A. The performance check
was done for a missile traveling with Mach numbers between 2 ≤ M ≤ 4. These
checks are separated in simulations at low and high altitude for small and high
acceleration steps.

Table 4.3: Simulation input data for an air defense maneuver with a missile which
uses two aerodynamic actuating systems

Setting Characteristics Figures (Appendix)
Low Altitude

1. Small accelera-
tion step of za =
500 acc and ya =
500 acc

Good performance, settling time below
200 mt, no overshoot, only small AW acti-
vation

Output signals & states A.1
- Commands A.2

2. High accelera-
tion step of za =
5000 acc and ya =
2500 acc

Good performance, settling time below
400 mt, overshoot below 1 %, large AW acti-
vation at the beginning and end of the steps
but still stable

Output signals & states A.3
- Commands A.4 - Com-
mands before PT1 of eleva-
tor A.5

High Altitude
3. Small accelera-
tion step of za =
500 acc and ya =
500 acc

Good performance, settling time below
200 mt, no overshoot, only small AW acti-
vation, small bump at the end of za step

Output signals & states A.6
- Commands A.7

4. High accelera-
tion step of za =
1500 acc and ya =
1000 acc

Good performance, settling time below
200 mt, no overshoot, medium AW activa-
tion at the beginning and end of the steps

Output signals & states A.8
- Commands A.9

5. High accelera-
tion step of za =
2750 acc

Good performance, settling time below
400 mt, small overshoot, large AW activation
at the beginning of the step

Output & states of the ele-
vator A.10 - Commands be-
fore PT-1 of elevator A.11

Distorted Missile - Low Altitude
6. High accelera-
tion step of za =
5000 acc and ya =
2500 acc

Good performance, settling time below
800 mt, Overshoot of about 20 %, large AW
activation at the beginning, end and during
the steps

Output signals & states
A.12 - Commands A.13 -
Output comparison A.14

The results imply that the automatically designed controllers have a good per-
formance at low and high altitudes for small and high acceleration steps as well
as for controllers which have been designed with a distorted aerodynamic missile
model. The small activation of the anti-windup networks in settings (1.) and
(3.) arise from the calculation of δi = ui − sat(u), i...p which has been stated in
section 2.4.2.1. The manipulated variable is of course not bigger than 30 ◦ (see
figure A.2 and A.7). The difference δ 6= 0 arises from the interpolation of u during
gain-scheduling. Therefore, the single ui of the neighboring OPs differs slightly
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from sat(u) because u is a function of all currently active controllers.
The small bump in setting (3.) is due to the imaginary part of some eigenvalues
of the controllers. These are sometimes quite small and lead to no optimal perfor-
mance. This can be resolved by increasing the imaginary to real ratio δ = Im{λi}

Re{λi} .
This yields probably at another OP no optimal performance. One has to set a
good working balance.

Setting (2.) illustrates quite well the advantage of using anti-windup networks (fig-
ure A.3). The missile remains stable and reaches the desired acceleration step of
5000 acc even though the front elevator is in saturation for about 200 mt as you can
see in figure A.5. These commanded signals are taken before the actual dynam-
ics of the elevator are simulated by a PT-1 element (see for comparison figure A.4).

The good performance of the model-recovery anti-windup network by [13] and [15]
can be also seen in setting (5.). Consider figures A.10 and A.11. Still at an altitude
of about 9 km where the density of the atmosphere is only a third compared to
sea level, and a Mach number of M = 4 the missile is able to perform acceleration
steps of about 2750 acc. The front elevator remains nearly 400 mt saturated but
keeps the missile stable.

For the robustness check the aerodynamic model, i.e. derivatives, had been dis-
torted for the controller design. These distortion changes are listed in table 4.4
according to [16].

Table 4.4: Distortions for a missile using two aerodynamic actuating systems
Variables Deviation
Ixx, Iyy, Izz +5 %
m −1 %
xcg −50 mm
CZ10, CZ20, CZ21 −10 %
CM10, CM20, CM21,
CM30

−10 %

CX00, CX40, CXet2,b,
CXet2,f , CXe11,b,
CXe11,f

−10 %

CY21 −10 %
CZηb , CZηf , CMηb ,
CMηf , CLξb , CLξf

−10 %

CN21, CL21 −20 %
CLp, CMq −20 %

As setting (6.) shows by illustrations A.12, A.13 and A.14, the missile stays sta-
ble even though the aerodynamic model was distorted by the deviations listed in
table 4.4. It is still able to perform steps of 2500 acc to 5000 acc. The overshoot
is about 20 % percent which is satisfying according to such high acceleration steps
and distortions.
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For the controller design, the angle of attack can be considered for the linearization.
The design was executed for an extraction of the whole operating range. The
results are appended in section A.1.4. Figure A.15 shows the grid generation. You
can see that we need about 160 controllers only for this extraction of the operating
range (0.6 ≤ M ≤ 4.5, 2 km ≤ H ≤ 8 km, 0 ◦ ≤ α ≤ 10 ◦). Furthermore, figures
A.16, A.17, A.18 illustrate the output signals, commanded signals and trajectory
of the missile in 3D space respectively of an air defense scenario. You can see here
the good performance of controllers too and their ability to handle high lateral
acceleration steps when switching to the seeker head at about 14 t.
The performance for the execution of low lateral acceleration steps (za = 500 acc,
ya = 500 acc) at a low altitude of H = 2 km for an average velocity of M = 3
can be seen in figures A.19 and A.20. The performance is unchanged compared
to the two-dimensional grid. A reason could be the design limits which are not
optimal for the third dimension, i.e. angle of attack. Improving these limits and
the settings for the LMI solver and decreasing the tolerances for the performance
should lead to an enhanced performance compared to the controllers designed for
a two-dimensional operating point grid.

4.2.2 One Aerodynamic Actuating Systems at the Back

As already mentioned, the automated controller design was extended in order to
apply the design on other missiles. The whole design was successfully tested on a
missile using one aerodynamic actuating system at the back. It was tested at low
altitude (2 km) and a medium Mach number with an average value of M = 3.5
for low and high acceleration steps with respect to the missile’s possible agility.
The results are shown in appendix section A.2.1. Figures A.24 and A.23 illus-
trate the output signals and commanded signals for high acceleration steps of this
missile (za = 1750 acc, ya = 500 acc). We can see a good performance as well
with a settling time of about 400 mt for the elevator and much less for the rudder.
The overshoot of 10 % does not exceed the limit of ±15%. Furthermore, the non-
minimal-phase behavior of tail-controlled missiles can be seen.
When comparing the missile using two aerodynamic actuating systems to the mis-
sile using one aerodynamic actuating system at the back, it is clear that the first one
is much more agile with possible acceleration steps almost three times larger. The
second one still needs control surface deflections bigger than 30 ◦ when performing
acceleration steps of about 1750 acc. By optimizing the controller performance e.g.
by improving the pole placement area, the agility can be enhanced but will not be
as good as when using two aerodynamic actuating systems which is also a reason
of the missile’s mass and size. The mass of the one employing one aerodynamic
actuating system is three times compared to the other one and its length is about
twice as much. Therefore, the larger and heavier missile is of course much less
agile.
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5 Conclusion and Outlook

One concept for an automated controller design was worked out and together with
the background theory for the control of missiles in the course of the present master
thesis presented. Applying this design to a missile which uses aerodynamic actu-
ating systems, a good working irregular operating point grid will be determined.
Either two-dimensional of Mach number and height or three-dimensional of Mach
number, height and angle of attack. The missile will be trimmed and linearized
over a local area at the operating points. Afterwards, dynamic output feedback
controllers for the execution of lateral acceleration steps as well as state feedback
controllers to keep the roll angle zero are designed. The controllers stabilize the
missile in a validity area which is big enough to stabilize the missile at adjacent
grid points. Since the aerodynamics differ a lot between subsonic and supersonic,
controllers to keep a defined roll rate in this ”critical region” are automatically
designed as well. For the stabilization of the missile in the presence of saturation
of the actuators, a model-recovery anti-windup network was used and due to affine
linear parameter dependency among the grid parameters automatically designed
at the grid points. The whole design can then be simulated in Simulink which is
linked via S-functions to the missile simulation program to get almost real con-
ditions and feedback. The method of gain-scheduling allows the interpolation of
the manipulated variable computed by neighboring operating points to keep the
missile stable on its mission.

As you have seen in section 4, the controllers have a good working performance
but are not optimized. To reach an optimal controller performance was not part
of this master thesis but can be achieved by improving the determination of the
design limits for the pole placement area. Additionally, the weighting factors
on the control error and actuator dynamics for the output energy optimization
can be enhanced. To improve computing time you should consider recursive grid
generation and using sparse grids (see figure 5.1 [6]).
This method is much more complex but much less time consuming and allows
to design output feedback controllers in regions below M = 2. Furthermore,
the grid points and hence computing time when linearizing the missile over three
dimensions can be drastically reduced. Furthermore, the possibility of applying
the automated controller design to missiles using a divert and attitude control
system should be considered.
The developed automated controller design is able to evaluate different missiles
using aerodynamic actuating systems in the sense of flight control and can be
extended easily by additional missile concepts.
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Figure 5.1: Example of a sparse grid [6]
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A Performance and Robustness

Checks

A.1 Two Aerodynamic Actuating Sys-
tems

A.1.1 Low Altitude

Figure A.1: Output signals and anti-windup states for a missile executing small
lateral acceleration steps (za = 500 acc, ya = 500 acc) at low altitudes
(H = 2 km) for average velocities (M = 3)
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Figure A.2: Commanded signals and anti-windup states for a missile executing
small lateral acceleration steps (za = 500 acc, ya = 500 acc) at low
altitudes (H = 2 km) for average velocities (M = 3)

Figure A.3: Output signals and anti-windup states for a missile executing high lat-
eral acceleration steps (za = 5000 acc, ya = 2500 acc) at low altitudes
(H = 2 km) for average velocities (M = 3)
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Figure A.4: Commanded signals and anti-windup states for a missile executing
high lateral acceleration steps (za = 5000 acc, ya = 2500 acc) at low
altitudes (H = 2 km) for average velocities (M = 3)

Figure A.5: Commanded signals and anti-windup states of the elevator of a mis-
sile executing a high lateral acceleration step (za = 5000 acc) at low
altitude (H = 2 km) with a velocity of about M = 4. The signal is
taken before the delayed dynamics of the actuator
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A.1.2 High Altitude

Figure A.6: Output signals and anti-windup states for a missile executing small
lateral acceleration steps (za = 500 acc, ya = 500 acc) at high altitudes
(H = 9 km) for average velocities (M = 3)
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Figure A.7: Commanded signals for a missile executing small lateral acceleration
steps (za = 500 acc, ya = 500 acc) at high altitudes (H = 9 km) for
average velocities (M = 3)

Figure A.8: Output signals and anti-windup states for a missile executing high lat-
eral acceleration steps (za = 1500 acc, ya = 1000 acc) at high altitudes
(H = 9 km) for average velocities (M = 3)
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Figure A.9: Commanded signals for a missile executing high lateral acceleration
steps (za = 1500 acc, ya = 1000 acc) at high altitudes (H = 9 km) for
average velocities (M = 3)

Figure A.10: Output signal and anti-windup states for a missile executing high
lateral acceleration step of za = 2750 acc at high altitude of H = 9 km
at a velocity of about M = 4
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Figure A.11: Commanded signals for a missile executing high lateral acceleration
step of za = 2750 acc at high altitude of H = 9 km at a velocity of
about M = 4
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A.1.3 Robustness

Figure A.12: Output signal and anti-windup states for a missile which was de-
signed with a distorted aerodynamic model executing high lateral
acceleration steps (za = 5000 acc, ya = 2500 acc) at high altitude
(H = 2.5 km) for an average velocity (M = 3.5)
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Figure A.13: Commanded signals for a missile which was designed with a distorted
aerodynamic model executing high lateral acceleration steps (za =
5000 acc, ya = 2500 acc) at high altitude (H = 2.5 km) for an average
velocity (M = 3.5)

Figure A.14: Output signals for a missile which was normally designed ( ) and
which was designed with a distorted aerodynamic model ( ) execut-
ing high lateral acceleration steps (za = 5000 acc, ya = 2500 acc) at
high altitude (H = 2.5 km) for an average velocity (M = 3.5)
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A.1.4 Three-Dimensional Grid
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Figure A.15: Three-dimensional grid at the beginning of the design (top) and the
final grid (bottom) for an operating range of M = 0.6 − 4.5, H =
2− 8 km and α = 0− 10 ◦
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Figure A.16: Output signals for a missile using guidance laws to eliminate target

Figure A.17: Commanded signals for a missile using guidance laws to eliminate
target
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Figure A.18: Trajectory in 3D space for a missile using guidance laws to eliminate
the target

Figure A.19: Output signals for a missile executing low lateral acceleration steps
(za = 500 acc, ya = 500 acc) at low altitudes (H = 2 km) for average
velocities (M = 3)



100 A.1 Two Aerodynamic Actuating Systems

Figure A.20: Commanded signals for a missile executing low lateral acceleration
steps (za = 500 acc, ya = 500 acc) at low altitudes (H = 2 km) for
average velocities (M = 3)
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A.2 One Aerodynamic Actuating Sys-
tem at the Back

A.2.1 Low Altitude and Medium Mach Number

Figure A.21: Output signal for a missile executing small lateral accelerating steps
(za = 50 acc, ya = 50 acc) at high altitude (H = 2 km) for an average
velocity (M = 3.5)
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Figure A.22: Commanded signals for a missile executing small lateral accelerating
steps (za = 50 acc, ya = 50 acc) at high altitude (H = 2 km) for an
average velocity (M = 3.5)

Figure A.23: Output signal for a missile executing high lateral acceleration steps
(za = 1750 acc, ya = 500 acc) at high altitude (H = 2 km) for an
average velocity (M = 3.5)



A Performance and Robustness Checks 103

Figure A.24: Commanded signals for a missile executing high lateral acceleration
steps (za = 1750 acc, ya = 500 acc) at high altitude (H = 2 km) for
an average velocity (M = 3.5)
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