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ABSTRACT

While parallel computer architectures have become main-
stream, application development on them is still challenging.
There is a need for new tools, languages and programming
models. Additionally, there is a lack of knowledge about the
performance of parallel approaches of basic but important
operations, such as the QR decomposition of a matrix, on
current commercial manycore architectures.

This paper evaluates a high level dataflow language (CAL),
a source-to-source compiler (Cal2Many) and three QR de-
composition algorithms (Givens Rotations, Householder and
Gram-Schmidt). The algorithms are implemented both in
CAL and hand-optimized C languages, executed on Adapteva’s
Epiphany manycore architecture and evaluated with respect
to performance, scalability and development effort.

The performance of the CAL (generated C) implementa-
tions gets as good as 2% slower than the hand-written ver-
sions. They require an average of 25% fewer lines of source
code without significantly increasing the binary size. Devel-
opment effort is reduced and debugging is significantly sim-
plified. The implementations executed on Epiphany cores
outperform the GNU scientific library on the host ARM pro-
cessor of the Parallella board by up to 30x.

1. INTRODUCTION

Computer architectures are moving towards manycores for
reasons such as performance and energy efficiency. The re-
quired parallelism to use these architectures efficiently re-
quires new software tools, languages and programming mod-
els to abstract the differences between different architectures
away. This reduces required knowledge about the architec-
tures and their specific programming language extensions.
Even with tools, writing efficient parallel applications is chal-
lenging and there is a lack of knowledge on performance of
common applications such as QR decomposition when exe-
cuted on manycores.

QR decomposition (QRD) [8] is one of the major factor-
izations in linear algebra. It is well known to be numerically
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stable and has many useful applications such as replacing
matrix inversions to avoid precision loss and reduce the num-
ber of operations, being a part of the solution to the linear
least squares problem and being the basis of an eigenvalue
algorithm (the QR algorithm).

In this paper, we evaluate Cal2Many [6] source-to-source
compiler, which translates CAL [5] code to native code for
multiple manycore architectures. As a case study, we imple-
mented three QRD algorithms (Givens Rotations, House-
holder and Gram-Schmidt) both in CAL and in native C
for Adapteva’s Epiphany [11] architecture. All implemen-
tations use our own communications library [13]. We used
the Parallella platform to evaluate our implementations in
terms of performance, development effort and scalability.

2. BACKGROUND
2.1 CAL Actor Language

The CAL actor language is a dataflow language consist-
ing of actors and channels. Actors are stateful operators
which execute code blocks (actions), take inputs and pro-
duce outputs usually with changing the state of the actor.
The channels are used to connect the actors to each other.
Therefore, interaction among actors happens only via input
and output ports. CAL actors take a step by ‘firing’ actions
that satisfy all the required conditions. These conditions
depend on the value and the number of input tokens, and
on the actor’s internal state. The actors are instantiated
and connected to each other via Network Language (NL)
included in CAL.

2.2 Cal2Many

The Cal2Many compilation framework contains two inter-
mediate representations (IRs): Actor Machines (AM) [10]
and Action Execution IR (AEIR) [6]. Each actor is first
translated to an AM, which describes how to schedule ex-
ecution of actions. To execute AM, its constructs have to
be transformed to a different programming language con-
structs, which have different implementations in different
programming languages on different platforms. To stay lan-
guage -agnostic and get closer to a sequential action sched-
uler, AFIR is introduced.Epiphany backend generates C code
using our custom communications library and generates chan-
nels and mapping of actor instances by using the NL.

2.3 QR Decomposition

QR decomposition is decomposition of a matrix into an
upper triangular matrix R and an orthogonal matrix Q. The



equation of a QRD for a square matrix A is simply A = QR.
The matrix A does not necessarily need to be square. The
equation for an m x n matrix, where m > n, is as follows:

A=QR=Q ﬁ)l] =[Q1 Q2] ﬁ)l] = Q1R

We have implemented three QRD algorithms (Givens Ro-
tations, Householder and Gram-Schmidt) in both CAL and
native C for the Epiphany architecture.

2.4 Epiphany Architecture

Adapteva’s manycore architecture is a two-dimensional ar-
ray of cores connected by a mesh network-on-chip [11]. It
operates in a shared, flat 32-bit address space. The network-
on-chip is made of three meshes called rMesh, cMesh and
zMesh. The former is used exclusively for read requests,
while the latter two carry write transactions destined for
on-chip and off-chip, respectively. The mesh uses a static
XY routing algorithm.

Each core contains a single-precision floating-point RISC
CPU, 32KB of local memory, a two-channel DMA engine
and a mesh interface. T'wo event timers allow cycle accurate
measurements of different events.

We have used the Parallella-16 platform, which contains
a 16-core Epiphany-III running at 600 MHz in addition to a

dual-core ARM Cortex-A9 host processor running at 667 MHz.

2.5 Communication Library

We have implemented a custom communications library
for the Epiphany architecture [13], which is used in all im-
plementations. It is centered around token-based, unidi-
rectional communication channels. These channels support
blocking read, write and non-blocking peek operations and
allow checking the current number of immediately read- or
writable tokens for block-free operations.

A global table describes all channels in the system. Local
data structures and buffers are allocated at run-time by each
core. Channels are implemented as ring buffers and it is
possible to use the event timers to gauge blocking overhead.

3. RELATED WORKS

There are many approaches for QRD, however, they fo-
cus either on architectures or scheduling and use only one
algorithm. We have executed three algorithms in two pro-
gramming languages and compared them to each other.

Buttari et al. [3] present a QRD method where they run
a sequence of small tasks on square blocks of data and use a
dynamic scheduling mechanism to assign tasks to computa-
tional units. We execute small tasks in a dataflow fashion.

Hadri et al. [9] present a QRD method for shared-memory
multicore architectures and modified an existing algorithm
to perform panel factorization in parallel. They aim tall or
small square matrices whereas we aim square matrices.

Agullo et al. [2] implement a three step QRD on a multi-
core CPU which is enhanced with multiple GPU cores. They
divide the decomposition into a sequence of tasks as we have
done. Then they schedule these tasks on to individual com-
putational units. Their approach suffers if the number of
CPUs and GPUs are not the same.

While the CAL2C compiler [15] generates sequential C
code, the Open-RVC CAL Compiler (ORCC) [12] and d2c
[4] compilers generate multi-threaded C code, but require

dedicated run-time system libraries. Our compilation frame-
work generates separate C code for each actor instance to
be executed on individual cores and does not require any
run-time system support.

4. IMPLEMENTATIONS

All implementations use the same library to implement
communication between the Epiphany cores, which is used
by the Cal2Many as well. However, the communication
characteristics differ naturally between algorithms and, to
a lesser extent, between the hand-written (C) and the gen-
erated (CAL) implementations of the same algorithm.

4.1 Givens Rotations

The Givens Rotations (GR) algorithm applies a set of uni-
tary rotation GG matrices to the data matrix A. In each step,
one of the sub-diagonal values of the matrix A is turned into
zero, forming the R matrix. The multiplication of all rota-
tion matrices forms the orthogonal () matrix.

We implemented Givens Rotations (GR) with a modified
Gentleman-Kung systolic array [7] [16] using 1, 5 and 12
cores individually. In parallel versions, two cores are used
for distributing and collecting inputs and outputs, the rest
of the cores are used for computations.

The implementations consist of 4 types of units named as
cells. Boundary and inner cells perform the computation
while splitter and joiner cells distribute and collect data.
Figure 1 gives the layout of the systolic array mapped on the
4x4 core matrix of the Epiphany architecture. The inputs
are read row by row. Each row is divided into four pieces
and distributed to the first row of 4x4 Epiphany core matrix.
Token size is defined as the size of each piece and the cores
send and receive one token at a time for communication.
Apart from the input elements, ¢, s and final r values are
communicated.

Each cell calculates one r value. For 4 x4 matrix, each cell
is mapped onto an Epiphany core. However for 16 x 16 ma-
trix, 16 boundary and 120 inner cells are required. Therefore
the implementations are modified to combine a number of
cells in one single core. Each core has to store the calculated
r values which becomes a problem when large matrices are
used. For 512 x 512 input matrix, an inner core consists of
128 x 128 inner cells which results in storing a 128 x 128 r
matrix. Since r is a float, the required memory is 4 x 128
x 128 = 65536 bytes. Due to the local memory limitation,
the largest matrix size that can be decomposed with Givens
Rotations method is 256 x 256. The implementations can
scale when the number of cores increases, i.e. with 64 cores
the implementations can decompose a 1024 x 1024 matrix.

4.2 Householder Transformation

The Householder (HH) algorithm describes a reflection of
a vector across a hyperplane containing the origin [18].

In our implementation, the Epiphany cores are connected
as a one-dimensional chain of processing elements. Each
core handles an equal amount of matrix columns and runs
the same program. The communication is wave-like and
next-neighbor only.

First, the input matrix is shifted into the processing chain,
column by column, until it is fully distributed among the
cores. Then, the last core in the chain computes a reflection
vector w for each of its columns, updates them, and sends
the vector towards the beginning of the chain, forming a



Figure 1: Mapping layout of all implementations.

Givens rotations on the left, Householder and Gram-

Schmidt on the right. On left, circles are boundary cells, squares are inner cells. On right, each core executes

the same code. No shape relation across layouts.

communication wave each. All previous cores forward these
vectors and update their own columns. After these waves
have been forwarded by the penultimate core, it — after up-
dating its own columns — computes its own reflection vectors
and sends them along, forming new waves. When a core has
sent its last reflection vector, it will form a final set of waves
containing its result columns.

4.3 Gram-Schmidt

The Gram-Schmidt (GS) algorithm produces the upper-
triangular matrix R row-by-row and the orthogonal matrix
Q@ as a set of column vectors ¢ from the columns of the data
matrix A in a sequence of steps. In each step, we pick a
column a of the matrix A. The dot product of this column
with itself is calculated. Then, the square root of the result
is taken to generate an element of matrix R. This element
is later used to normalize the column a to produce a column
of matrix . Then the column of matrix A is updated by
subtracting a multiple of vector ¢ with a value from matrix
R to produce an orthogonalized vector that is then used to
compute the next columns of matrix R.

Both CAL and C implementations work as a chain of pro-
cesses that work on a certain number of columns, depending
on the number of processes and the matrix size. All pro-
cesses perform the steps required to compute a column of
matrix R. In the first step, each process stores its local
columns and pushes the remaining columns into the chain.
In the second step, the processes read and forward the pre-
vious orthogonalized vectors after they use the vectors to
produce the elements of matrix R and to update their local
columns. In the third step, the processes compute and for-
ward the local, orthogonalized vectors using their updated
local columns. In the final step, the processes forward the
elements of matrix R. The implementation can scale up
to any number of processors num, and any m x n matrix,
where n is a multiple of num,.

S. RESULTS & DISCUSSION

Our implementations are executed on the Parallella board
and tested with different number of cores and different sized
square matrices.

5.1 Performance Analysis

There are several aspects such as memory usage, input size
and number of cores which affect the performances. There-
fore we executed the implementations with different configu-
rations and Table 1 presents the number of execution cycles
while using external and internal memories to store input
and output matrices. Additionally, last two columns give
the number of cores used and the total code size in bytes.

As a reference point, we measured the execution time of
a QRD implementation, that is a part of GNU Scientific Li-
brary [1], on the ARM processor of Parallella board. The li-
brary implementation uses Householder approach with dou-
ble precision, whereas the Epiphany architecture supports
only single precision. Decomposition of a 128 x 128 ma-
trix on a single ARM core takes 90 milliseconds whereas
on the Epiphany cores it takes 6.9, 4.1 and 2.9 milliseconds
(shown in Table 1) for hand-written parallel GR, GS and
HH implementations respectively. GR implementation is the
only one that can decompose 256 x 256 matrices. While de-
composing 128 x 128 matrices, it outperforms the library
by 13x, however, with 256 x 256 matrices this number in-
creases to 23x. When the matrix sizes increase, parallel
implementations perform better due to increased computa-
tion/communication ratio as a result of communication pat-
terns used in the implementations.

We implemented a message passing mechanism for inter-
core communication as a library. If messages (or as we call
them, ‘tokens’) are passed very frequently, the overhead of
communication dominates the execution time due to library
calls and copy operations. The communication patterns we
use in our implementations keep the number of message
passes constant regardless the matrix size. If the matrix
sizes increase, instead of increasing the number of messages,
the size is increased. By keeping the number constant, we
avoid extra overhead of calling library functions. The com-
munication cost still increases due to increased size of data
that needs to be copied. However, it does not increase as
fast as the cost of computation. Hence its effect on overall
execution time decreases.

Figure 2 shows performance of each hand-written algo-
rithm decomposing a 64 x 64 input matrix that is stored
in the internal memory. We chose this matrix size because



External mem Local mem SLoC | #-cores | Footprint
GR Hand-written | 9.51 M (15.8 ms) | 4.16 M (6.9 ms) 647 12 71k
GR CAL 10.45 M (17.4 ms) | 6.11 M (10.1 ms) 400 12 72 k
HH Hand-written | 10.45 M (17.4 ms) | 1.76 M (2.9 ms) 219 16 225 k
HH CAL 10.69 M (17.8 ms) | 2.00 M (3.3 ms) 170 16 223 k
GS Hand-written | 11.17 M (18.6 ms) | 2.47 M (4.1 ms) 188 16 179 k
GS CAL 11.40 M (19 ms) 2.70 M (4.5 ms) 160 16 193 k

Table 1: Execution times (in clock cycles and milliseconds), source lines of code, number of used cores and
code size in bytes, 128 x 128 matrix. GR = Givens Rotations, HH = Householder, GS = Gram-Schmidt

it is the biggest size that is supported by all implementa-
tions with different core numbers (except for the single core
implementation of Gram-Schmidt algorithm due to memory
limitations). Gram-Schmidt implementation can decompose
64 x 64 matrix by using 2, 4, 8 and 16 cores and achieve 4x
speed-up by going from 2 core to 16 cores. Householder im-
plementation can decompose on 1, 2, 4, 8 and 16 cores and
achieve 5.2x speed-up going from single core to 16 cores.
Givens Rotations implementation decomposes the same ma-
trix on 1, 3 and 10 computational cores due to it’s structure
and achieves 3.4x speed-up while going from single core to
10 cores. When decomposing small sized matrices such as
64 x 64, communication overhead plays a significant role in
the execution time and decreases the speed-up. However,
as the matrix size increases, the effect of communication de-
creases.

16 8 4 2

6 8 4 2 1 10 3 1

Figure 2: Execution cycles for GS, HH and GR re-
spectively with different number of cores and 64x64
input matrix. X axis represent number of cores and
Y axis represents number of clock cycles.

In our previous works [17, 14] we have experienced that

the external memory access can be a bottleneck in the Epiphany

architecture due to the slow link between the memory and
the processing cores. Therefore we tested the implementa-
tions with and without using the external memory for stor-
ing the input matrix. We observed that when the input
size increases, which means increased computation, the in-
fluence of external memory decreases however, it is still a
bottleneck. Table 1 shows that using external memory to
store the input matrix slows down the execution by 56% to
83% depending on the implementation. Givens Rotations
seems to be the least influenced algorithm due to overlap

between memory reads and computation.

An interesting point is the comparison of C and CAL im-
plementations. Looking at Table 1, one can see that there is
not much difference between hand-written and CAL imple-
mentations while using external memory. Even while using
internal memory, the difference increases only for the GR
implementation due to a slightly more complicated struc-
ture compared to the other implementations such as differ-
ent communication pattern or having different number of
channels depending on the position of the core. These small
details increase the number of actions which are converted
into functions in C. Overhead of repetitive calls to these
functions increases the execution time. The main reasons
of slow down for the generated code is having a scheduler
and function calls. In the hand-written code, the actions
are combined in the main function and there is no sched-
uler. Therefore there is neither function call overheads nor
switch statements to arrange the order of these functions.

5.2 Productivity Analysis

In addition to performance, we compare the CAL and C
implementations in terms of development effort, which is dif-
ficult to measure. It should be noted that our approaches to
QRD have been implemented by three developers, who have
more knowledge and experience with C rather than CAL.
Nonetheless, the CAL implementations required about 25%
less source code, while the binary code size stays approx-
imately the same. The numbers shown in Table 1 do not
include the additional source code for the ARM host or the
communication library, since it is similar in all cases and
used by the Cal2Many code generator as well.

In each case, about half of the development time was
spent on understanding both the problem and the algorithm,
which is independent of the choice of programming language.
The actual implementation times for each algorithm var-
ied. One of the developers had no prior experience with
CAL and required approximately 20% more time for the
CAL version, while the other developers required slightly
more time for their C implementations. While this is by no
means a hard measure, it provides an idea on the complex-
ity of CAL. More importantly, the CAL implementations
are completely oblivious of the underlying hardware and are
easily portable, while the C implementations are quite re-
stricted to the Epiphany system architecture. This higher
level of abstraction also reduced the debugging effort, which
is extremely cumbersome in low-level parallel programming.



6.

CONCLUSIONS

Parallel implementations show up to 30x better perfor-
mance in terms of execution time when compared to the
library implementation. However, the Givens Rotations im-
plementation shows that with bigger matrices the speed-up
increases. Since the implementations are scalable, we believe
that with larger local memory or larger number of cores the
implementations can decompose bigger matrices and achieve
higher speed-ups.

While using the external memory, Givens Rotations is
slightly better than the other implementations, however,

Householder method outperforms the others when local mem-

ory is used. Givens Rotations has higher amount of compu-
tation and more overlap between memory reads and compu-
tation. High computation amount increases the execution
time when local memory is used. However, when external
memory is used, due to the overlap, it shows the best perfor-
mance. One should keep in mind that the number of cores
is smaller for Givens Rotations implementation. In case of
development complexity, Table 1 shows that implementing
Givens Rotation requires more coding whereas the other im-
plementations have similar code sizes.

As an average result of the three implementations, the
generated code runs 4.3% slower than the hand-written code
while using the external memory. When the internal mem-
ory is used, the slowdown is around 17% whereas the average
source lines of code that is needed for the CAL implemen-
tations is 25% smaller. When the required knowledge level
and development time and complexity is taken into account,
the slowdown seems reasonable. It is easier to develop and
debug parallel applications in CAL rather than in low level

languages provided by manycore developers.

The custom

communication library reduces the burden however, it does
not help with debugging and requires debugging itself.

In the future, Parallella board with 64 cores can be used
for gaining higher speed-ups, and in order to decrease the
effect of communication even further, direct memory access
feature of Epiphany architecture can be analyzed.
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