
Virtual Resources for the Internet of Things

Andrea Azzarà
Scuola Superiore Sant’Anna, Italy

a.azzara@sssup.it

Luca Mottola
Politecnico di Milano, Italy and SICS Swedish ICT

luca.mottola@polimi.it

Abstract—We present VIRTUAL RESOURCES: a software ar-
chitecture to resolve the tension between effective development
and efficient operation of Internet of Things (IoT) applications.
Emerging IoT architectures exhibit recurring traits: resource-
limited sensors and actuators with RESTFUL interfaces at one
end; full-fledged Cloud-hosted applications at the opposite end.
The application logic resides entirely at the latter, creating
performance issues such as excessive energy consumption and
high latencies. To ameliorate these, VIRTUAL RESOURCES allows
developers to push a slice of the application logic to intermediate
IoT devices, creating a continuum between physical resources
and Cloud-hosted applications. With VIRTUAL RESOURCES, for
example, developers can push processing of sensed data to IoT
devices close to the physical sensors, reducing the data to transmit
and thus saving energy. We describe the key concepts of VIRTUAL
RESOURCES and their realization in a CoAP prototype atop
resource-constrained devices. Experimental results from cycle-
accurate emulation indicate that VIRTUAL RESOURCES enable
better performance than Cloud-centric architectures, while re-
taining the RESTFUL interaction pattern. For example, energy
consumption in representative scenarios improves up to 40% and
control loop latencies reduce up to 60%.

I. INTRODUCTION

The Internet of Things is expected to play a key role
in a range of domains, from factory automation to health-
care [1]. These applications are enabled by embedded sensors
and actuators able to exchange data with the larger Internet.
Applications and devices. Building automation is a paradig-
matic IoT scenario. The system’s goal is to intelligently control
electrical appliances such as lights and HVAC (Heating, Venti-
lation, and Air Conditioning) to reduce energy expenditures,
while retaining the user comfort. To this end, applications gather
data from sensors; for example, to measure the appliances’
generated loads, and use these data to affect the environment
by controlling the relevant actuators.

In most scenarios, sensed data are not used in raw form.
Rather, they are typically processed through multiple stages
until a higher-level information is obtained that is useful to take
intelligent decisions [2]. For example, the appliances’ generated
loads are aggregated based on their location; either public
spaces or private offices, as these demand different control
strategies. The commands sent to actuators also depend on their
characteristics. For example, some appliances are not critical
to a building’s operation, such as those providing accessory
services to the inhabitants. These may be safely dimmed or
switched off to save energy.

Adopting IoT technology for these applications can break
the isolation of systems. For example, to perform load balancing,
different buildings may be jointly controlled by matching
their energy consumption against that of their neighborhood.
Moreover, offering the ability to sense or to actuate through
standard-compliant networks enables a better re-use of the

(a) Cloud-centric IoT. The applica-
tion logic resides entirely at the
Cloud, creating performance issues.

(b) Logical view of VIRTUAL RE-
SOURCES applied to building automation.
Parts of the application logic execute in-
side the network, improving performance.

deployed devices, which may be seamlessly accessed by
multiple applications.

To lower costs and to ease installations, the devices typically
run on batteries and communicate wirelessly. As a result, they
can only feature 8- or 16-bit microcontrollers, few kB of RAM,
and low-bandwidth radios [3]. Further, because of the limited
communication range affordable with little energy, they often
form multi-hop networks to ensure overall connectivity.

These observations do not apply solely to building automa-
tion. For example, smart-city applications such as intelligent
lighting, traffic control, and structural monitoring exhibit similar
traits [1]. In this context, for example, IoT technology may allow
different public institutions to share the sensing infrastructure,
offering a multitude of advanced services.
Current practice. Despite the lack of established solutions to
architect IoT software, specific trends are distinctly emerging.
One approach is the so called “Cloud-centric IoT” [4], depicted
in Figure 1(a). Sensors and actuators expose application-
agnostic elementary functionality through RESTFUL interfaces,
whereas the application logic is entirely deployed in the Cloud.
By doing so, applications benefit from virtually-unlimited
computing resources, whereas developers enjoy the range of
development tools and integrated services made available by
Cloud providers such as Xively (xively.com), ThingSpeak
(thingspeak.com), and OpenSense (open.sen.se).

The Cloud-centric architecture, however, also comes with
disadvantages. For example, in building automation, the appli-
cation logic is unlikely interested in the individual readings
of each and every power meter. Rather, only the sum of those
readings is relevant to determine the energy consumption. Using
a Cloud-centric architecture, the application needs to probe
every sensor one by one and then compute the sum at the
Cloud. Similarly, the application may decide to dim the lights
in public areas to reduce a building’s energy consumption.
Using a Cloud-centric architecture, this requires a separate
call to every individual light controller. These functions likely
increase the traffic within the resource-constrained network. As
radio communication is energy-draining on IoT devices, this



may severely impacts their lifetime. Network latencies grow as
well, as data need to travel from the Cloud across a complex
infrastructure before reaching the IoT devices in the field.
Contribution. To remedy these issues while retaining REST-
FUL interactions, we present VIRTUAL RESOURCES: an IoT
architecture that contrasts the separation between physical
devices and Cloud-hosted applications. Using VIRTUAL RE-
SOURCES, developers can relocate slices of the application
to any intermediate IoT device, such as the message routers
inside the wireless network. This occurs through the concepts
of virtual sensor and virtual actuator, as in Figure 1(b).

Using a virtual sensor, developers can acquire data from
a set of physical sensors, process the data according to a
programmer-provided function, and export the results through
a RESTFUL interface akin—or even identical—to a physical
device. For example, developers may define a “total-energy-
public-areas” sensor built to provide the sum of the readings
of all power meters in public areas. They can then deploy the
virtual sensor on any IoT device between the physical sensors
and the Cloud. The Cloud-hosted application interacts only
with the virtual sensor to obtain the data.

Similarly, using a virtual actuator, developers can offer a
single entry point for the Cloud-hosted application to control
the lights in public areas, through a RESTFUL interface similar
to a physical actuator. Developers may define a “lights-public-
areas” actuator to drive all lights in public areas at once, and
deploy the virtual resource on any IoT device. The Cloud-
hosted application performs a single call to the virtual actuator
instead of a varying number of calls depending on how many
light controllers are deployed in public areas.

Using VIRTUAL RESOURCES thus provides key benefits:
• Network resources are better utilized. The ability to push

a slice of the application processing to intermediate IoT
devices enables, for example, a reduction in the amount
of data coming from sensors, which helps prolong the
system’s lifetime. Similarly, lower network traffic is less
likely to generate congestion within the IoT network,
improving on the application’s perceived latency.

• The Cloud-hosted application becomes simpler. For ex-
ample, driving one actuator for all lights in public areas
is easier than a varying number of individual actuators.
Notably, the set of resources representing inputs (outputs)
for a virtual sensor (actuator) is evaluated only at run-time.
Therefore, changes in such sets are dealt with transparently
w.r.t. the Cloud-hosted application.

• Developers can separate out low-level concerns and move
them to other devices, fostering a better separation of
concerns. For example, the manufacturer the IoT devices
may provide a library of virtual resources useful in
paradigmatic scenarios, used by domain-experts when
implementing the high-level application logic at the Cloud.

To make our contribution concrete, we create a prototype
based on CoAP, targeting extremely resource-constrained
devices. As the resulting performance is also a function of
what node is chosen to run a virtual resource, our prototype
includes custom heuristics to determine where to deploy a
virtual resource in a generic multi-hop wireless network.
Prior art and road-map. Although service-oriented architec-
tures are being widely applied to abstract the “things” [5], very
few approaches enable to relocate slices of the application
logic inside the IoT network. Efforts close to ours are, for

example, those of Mitton et al. [6], who present a concept of
sensor virtualization in a smart-city use case. However, they
do not provide the ability of moving parts of the application
logic inside the IoT network. Similar observations apply to
the concept of “physical mashup” [7], and to systems such as
IBM’s Node-RED (nodered.org), where sensor virtualization
components can indeed be created, which however execute on
a machine outside the IoT network. We did present a notion
of virtual sensor and virtual actuator for stand-alone wireless
embedded networks in earlier work [8]. However, we did not
tackle the problem of Internet integration while the design was
entirely customized, and thus not standard-compliant.

The remainder of the paper unfolds as follows. Section II
illustrates our design of VIRTUAL RESOURCES. Section III
describes the concrete use of VIRTUAL RESOURCES through the
programming support we provide. We illustrate the underlying
implementation in Section IV. Our quantitative evaluation,
reported in Section V, demonstrates performance improvements
in energy consumption and application latencies.

II. DESIGN

We design the concrete realization of VIRTUAL RESOURCES
in a way that manipulating its elements is accomplished using
RESTFUL interactions as well.

Our design revolves around three concepts, hierarchically
organized: i) templates, ii) instances, and iii) configuration
resources. The templates abstractly specify the services offered
by a virtual resource, fostering re-use. The instances are the
operational counterpart of templates and are derived from them,
that is, every instance is a sub-resource of the template it is
derived from. A generic instance can be configured by means
of configuration resources, located in the next level of the
hierarchy. This hierarchical organization is reflected in a virtual
resource directory, exemplified in Figure 1, whose goal is to
provide an entry point for the creation, configuration, and use
of virtual resources.

Fig. 1. Virtual resource directory
example.

Virtual resource templates.
The templates specify three as-
pects: i) the resources of in-
terest associated with the vir-
tual one, for example, what
actuators are the target output
of a virtual actuator; ii) the
operations offered by a virtual
resource’s interface and its con-
figuration sub-resources; iii) the
distributed behavior of the vir-
tual resource, for example, whether a virtual sensor pulls data
from the input resources or the latter periodically push data.

As for point i), the input/output resources concurring to
create a virtual one are defined by specifying a list of desired
attributes to be found in the resources of interest. Such a list is
taken as a Boolean constraint to be matched against application-
level attributes of other resources. For example, a virtual sensor
may be defined to consider as input all exiting resources whose
type attribute equals power_meter, and whose location
attribute matches public_areas.

The template also defines the configuration resources of
all corresponding instances, as described in point ii), which
allow to tune their behavior. For example, a configuration
resource may control the period at which a virtual sensor
offers a new reading. Every instance always features at least



one configuration resource that binds the processing function
applied to input data or to output commands. For example,
the processing function for a virtual sensor may perform a
form of aggregation over the input data. For a virtual actuator,
the processing function may perform the command translation
necessary to interact with the output resources.

As for point iii), the distributed behavior of the virtual
resource corresponds to an underlying implementation of
distributed functionality, typically carried out by a programmer
with knowledge of communication protocols. The encoding of
what interaction pattern to employ; for example, push vs. pull in
the case of a virtual sensor, is also part of this implementation.
Here again is an opportunity for better separation of concerns.
In traditional architectures, these aspects are intertwined with
the application’s processing. VIRTUAL RESOURCES cleanly
separate this from the high-level application logic, allowing
different developers to take care of distinct functionality.
From templates to instances. At run-time, the templates are
published on the virtual resource directory. This operation
makes them available to create virtual resource instances.

The virtual resource directory of Figure 1 contains three
templates, namely a periodic-sensor, a sliding-window-sensor,
and a simple-actuator. Every template must support the GET
and POST methods. The GET method returns a description
of the template itself and of the interfaces of derived in-
stances. This enables run-time discovery of the available virtual
resources. The POST method performs the actual creation
of the virtual instance, creating a new sub-resource of the
template. The operation returns the URI of the new resource.
The required configuration resources are automatically created
as sub-resources of the instance.

Every template can host an arbitrary number of instance
sub-resources. The instances offer the methods defined in
the corresponding template. The example in Figure 1 in-
cludes three instances, vs_instance1, vs_instance2,
and va_instance1, namely, two virtual sensors and one
virtual actuator. Instances of virtual sensors generally support
a GET method to return the (virtual) sensor reading, whereas
instances of virtual actuators typically support a PUT method
to update the target actuators. After the creation of an instance,
the application can further configure its behavior by updating
the configuration sub-resources, using PUT methods. Virtual
resources also support a DELETE method to destroy an instance,
which makes it disappear from the directory.

Once the instances are created and possibly configured,
the application can use their services through their RESTFUL
interfaces, exactly like if these were bound to physical devices.
In doing so, the binding between a virtual resource and its
input/output resources is evaluated dynamically, only when
a service is requested on an instance. That means that the
actual input or output set of a virtual resource may freely
change at run-time; for example, as new nodes join or some
fail because of battery depletion, and yet the main application
keeps operating transparently to these dynamics.

Although we hitherto considered that the input/output
data of virtual resources be physical devices, this is not a
requisite. A virtual resource may use another virtual resource as
input/output, creating hierarchies. This is as simple as creating
a template that matches the attributes of other virtual resources.
Moreover, virtual resources may act as RESTFUL proxies for
legacy technology or non-IP networks, masking the system’s
heterogeneity. For example, a virtual actuator may output

1 metersPublic = resource_set(Type=’power_meter’, location=’public’)
2 VsPeriodic(Input=metersPublic, name=’per_power_meter_public’)
3 lightsPublic = resource_set(Type=’light_control’, location=’public’)
4 VaSimple(Output=lightsPublic, name=’lights_control_public’)

Fig. 2. Publishing virtual resource templates onto the directory.

1 metersTempl = Resource.get(name=’per_power_meter_public’)
2 vs = metersTempl.POST(’vs’)
3 vs.fun.PUT(sumCode)
4 vs.period.PUT(’60’)
5 lightsTempl = Resource.get(name=’lights_control_public’)
6 va = lightsTempl.POST(’va’)
7 va.fun.PUT(translationCode)

Fig. 3. Example instantiation of virtual resources and configuration.

commands on an industry-strength wired bus [9] by means of
a proper translation. This would additionally offer a standard-
compliant means to integrate non-IoT networks.

III. PROGRAMMING

We use CoAP [10] at application level to enable service-
oriented interactions with resource-constrained devices. It also
supports discovery of services and resources. We implement the
virtual resource directory as a CoAP server. Virtual resources are
represented as CoAP resources. These support the RESTFUL
operations described earlier, making it possible for applications
to manipulate virtual resources through CoAP methods.

PyoT [11], an IoT programming system based on Python,
supports the execution of virtual resources. PyoT abstracts
sensors and actuators as a set of software objects qualified
by application-level attributes; for example, the type and the
location, which are instrumental to define the input/output
resources. PyoT objects can also be used interactively using a
shell, which provides a complementary means to manipulate
virtual resources, in addition to explicit CoAP calls.
Instantiating virtual resources. Figure 2 shows a PyoT
program to publish two templates onto the directory. The code
defines a set of input resources for a virtual sensor in line 1,
using a built-in resource_set() method. This takes as
input a list of key-value pairs that determine the resources of
interest. In this example, these resources include the sensors
operating as “power meters” in “public areas”.

The set of resources identified in metersPublic is
used as a parameter to VsPeriodic in line 2, which
publishes a periodic-sensor template on the directory. Our PyoT
implementation of the periodic-sensor asynchronously collects
data from the input resources. When the virtual sensor receives
a GET request, it returns the value obtained by applying the
processing function on the data of the last time period. The
code unfolds similarly in line 3 and 4 for the simple-actuator
that targets the “light controllers” in “public areas”.

Figure 3 exemplifies the instantiation. In line 1, we obtain
a reference to the template of the periodic-sensor published
earlier. This occurs by querying a generic Resource object.
Alternatively, one may query the directory to discover the
available resources dynamically. In line 2, we create the actual
instance of virtual resource, passing the name of the new object
as a parameter of the POST operation. The newly-created
instance is configured in line 3 and 4 by updating the available
configuration sub-resources: fun for the processing function,
and period for the sampling period. Similarly, in lines 5 to
7, a virtual actuator named va is instantiated and configured.
Tying things together. Figure 4 shows an example appli-
cation running on the Cloud that uses the created virtual
resources. The application uses the instances named vs and
va—corresponding to those created in Figure 3—to retrieve



1 def control_app():
2 while True:
3 meter_values = vs.GET()
4 new_output = control_fun(meter_values)
5 va.PUT(new_output)

Fig. 4. An example control application using virtual resources.

1 Input = get_input_list()
2 setpoint = get_setpoint()
3 if len(Input) > 0:
4 newSetpoint = setpoint / len(Input)
5 set_actuator(newSetpoint)

Fig. 5. Processing function example for a virtual actuator.

values from the virtual sensor and to send commands to the
virtual actuator. Figure 4 makes it apparent that the Cloud-
hosted application is extremely simplified using VIRTUAL
RESOURCES. The code only includes the high-level logic,
whereas the lower-level details are delegated to the virtual
instances and hidden from the developers.

To manipulate input and output data for virtual re-
sources, developers implement the processing functions using
a specific Python API. Figure 5 shows an example execut-
ing a command translation on the simple-actuator. Func-
tions get_actuator_list(), get_setpoint() and
set_actuator() are part of the API we provide. They
serve to retrieve the list of active output resources, to read
the command sent to the virtual actuator, and to send a
new command to the output resources, respectively. Since the
binding with input/output resources is dynamic, their number,
as returned by len() in Figure 5, may change at run-time.

IV. RUN-TIME SUPPORT

Our prototype targets WisMote devices, a platform repre-
sentative of IoT resource-constrained devices equipped with
an MSP430 microcontroller, 16 kB of RAM, and 256 kB of
program memory. The nodes run a network stack that includes
CoAP, 6LoWPAN [12], and IEEE 802.15.4. To dynamically
change the running functionality, these devices normally require
a complete replacement of the deployed binaries. We customize
T-Res [13], a system enabling in-network processing in CoAP
networks, to dynamically allocate processing functions to
arbitrary nodes in the IoT network.

Fig. 6. RPL graph and example
routing between nodes.

The performance of a
system using VIRTUAL RE-
SOURCES is mainly influ-
enced by what device ex-
ecutes the processing of a
virtual resource. This is es-
sentially due to the way the
underlying routing proto-
cols operate. The standard-
ized solution for IPv6-enabled IoT devices is RPL [14], which
superimposes a Directed Acyclic Graph (DAG) atop the multi-
hop physical topology, as shown in Figure 6. The DAG is rooted
at a single device, typically the border router that bridges to
and from the larger Internet.

When two devices communicate using RPL, messages travel
only along the links in the DAG. If source and destination
share an ancestor other than the root, this can shortcut the
path, as is the case when transmitting from A to B in Figure 6.
Otherwise, the message needs to travel up to the root before
being forwarded downwards to the destination, as is the case
when transmitting from C to D in Figure 6. RPL is indeed
optimized for scenarios where most of the traffic goes through
the root. However, this is not necessarily the case using

(a) Cloud-centric. (b) VIRTUAL RESOURCES.

Fig. 7. Application setup used throughout the evaluation.

VIRTUAL RESOURCES, which instead generate peer-to-peer
traffic among arbitrary nodes; for example, between a virtual
sensor and its input resources. If the involved devices happen
to be located like C and D in Figure 6, the potential savings
in network traffic may vanish.

We thus develop a simple heuristic to drive the placement
of virtual resource instances onto the physical devices, applied
when RPL has converged to a stable state. This does happen in
many scenarios akin to those we target [14]. We take as input
the RPL graph and the position of the physical resources. We
then determine the positioning of the virtual resources1, based
on a few rules: i) virtual sensors (actuators) are positioned on
the first common ancestor found by walking the graph from
the input (output) resources to the root; ii) if multiple such
ancestors exists, we take the one farthest from the root; iii) if
common ancestors other than the root do not exist, the virtual
resource is placed on an available node closest to the root.

Rule i) ensures that data coming from sensors is processed,
and thus reduced in size, as soon as possible on the way to the
Cloud, or viceversa that data from the Cloud and addressed to
actuators is demultiplexed as close as possible to the output
devices. Rule ii) break ties by attempting to amplify the effects
of rule i) on a higher number of hops from/to the root. Finally,
rule iii) is a fall-back solution in case the common ancestor
is indeed the root. This is however seldom usable because
the border routing functionality is often taking most of the
available resources, leaving little room for running a virtual
resource instance as well.

In Section V, we quantitatively measure the effects of
applying these rules. However, this is in fact an instance of
the well-known task allocation problem [15], where a body
of work already exists [16]. We plan to leverage the existing
literature to design a provably optimal solution.

V. EVALUATION

We aim at understanding the benefits and performance
of VIRTUAL RESOURCES over the Cloud-centric architecture.
To this end, Section V-A describes the settings enabling the
comparison, whereas Section V-B reports on the results.

A. Setting and Metrics
We realize two functionally-equivalent versions of the

building automation application. One design employs a Cloud-
centric architecture; the other uses VIRTUAL RESOURCES. We
instantiate a virtual sensor that uses a sliding-window-sensor
template to compute an average over a window of sensor values
asynchronously collected from the physical resources. We also
create a virtual actuator to collectively drive the actuators.

Besides qualitatively comparing the implementations, we
run experiments using Cooja/MSPSim [17]: a cycle-accurate

1The heuristic may also re-evaluate the positioning of existing virtual
resources in case the underlying RPL graph changes.



wireless simulator. We simulate 21 nodes, representative of
IoT installations in medium-size buildings [2]. These include a
border router at the RPL root, a variable number of physical
sensors and actuators, a variable number of intermediate nodes
as message routers, and a control node that runs the Cloud-
hosted application. The latter is written in C/Contiki [18],
which is directly supported by Cooja/MSPSim, as running the
application in an actual Cloud would require taking measures
across a hybrid system, unnecessarily complicating the setup.

We first run simulations on top of a controlled network
topology, akin to Figure 7 for either the Cloud-centric or the
VIRTUAL RESOURCES design. Physical resources are placed
at the leaves of the RPL graph, and virtual resources are
placed on a node that is both a common ancestor of, and
closest to the physical resources. This somehow represents a
favorable case for VIRTUAL RESOURCES, which is however
not that unrealistic. Indeed, it is reasonable that devices used
as input/output of virtual resources be also physically co-
located; for example, all power meters on the same floor, and
that it would be possible to place the virtual resource on a
nearby device. Nevertheless, this setting is solely instrumental
to compare the trends—not the absolute performance—of
VIRTUAL RESOURCES against the Cloud-centric architecture,
without the bias due to the physical topologies.

Next, we perform experiments with arbitrary topologies,
to understand the performance in settings that represent a
worst case for VIRTUAL RESOURCES. The underlying physical
topology is randomly generated, with the only constraint of
ensuring overall (multi-hop) connectivity, and there is initially
no control over the placement of virtual and physical resources.
This means that, for example, two sensors that may be related
at the application level, such as a power meter and the light
controllers in the same room, may be placed totally apart in
the RPL graph. We then apply the heuristic of Section IV to
reposition the virtual resources, and measure the improvements.

To assess the performance, we measure: i) the control
loop latency; ii) the inter-actuator latency; and iii) the energy
consumption. The control loop latency is the time between
the start of the control loop at the controller and the time
when a command is last received by an actuator. The inter-
actuator latency measures the time between the first and the
last command reception at the actuators, giving an indication
of how uniformly the nodes affect the environment.

CoAP messages are sent reliably, that is, packets are re-
transmitted if an acknowledgment is not received within a
timeout. This suffices to complete all 500 iterations of the
control loop we test in every setting.

B. Results
Qualitative comparison. Both implementations of the appli-
cation include a setup phase. In the Cloud-centric design, this
consists in discovering what physical sensors and actuators
are available to execute the control loop. This processing is
mandatory and must be executed periodically. Indeed, the set
of available sensors and actuators may change over time;
for example, because some devices deplete their batteries,
and the application must be made aware of these changes.
Generally, using a Cloud-centric architecture, the functionality
to maintain a catalogue of active devices is necessarily part of
the application’s processing.

Using VIRTUAL RESOURCES, the setup includes the
processing to create and to configure the virtual instances.

4 5 6 7
Hops from root

0

200

400

600

800

1000

1200

La
te

nc
y 

(m
s)

Cloud-centric x3
Cloud-centric x4
Cloud-centric x5
VirtRes x3
VirtRes x4
VirtRes x5

(a) Control loop latency.

4 5 6 7
Hops from root

0

100

200

300

400

La
te

nc
y 

(m
s)

Cloud-centric x3
Cloud-centric x4
Cloud-centric x5
VirtRes x3
VirtRes x4
VirtRes x5

(b) Inter-actuator latency.
Fig. 8. Controlled topologies with 5 seconds period and no radio duty-
cycling. Control loop and inter-actuator latencies decrease using VIRTUAL
RESOURCES, while the system scales more gracefully.

The setup may not be necessary, for example, if another
application has already defined the same virtual resources
and published them on the directory. In the worst case, this
processing is performed only once, as managing the changes
in the input/output resources is delegated to the VIRTUAL
RESOURCES run-time support. This spares developers from
including this functionality in the application processing.

Besides the observations above, interacting with two (fixed)
virtual resources turns out simpler than accessing a varying
number of physical resources. This reflects, for example, in the
code complexity, which we indicatively measure in LLOC. Us-
ing VIRTUAL RESOURCES, the application processing amounts
to 96 LLOC for the control loop, plus additional 24 LLOC
optionally required to instantiate and configure the virtual
resources. The latter serve to create resources that become part
of the directory and may be shared with other applications. In
contrast, the Cloud-centric implementation requires 167 LLOC
that only serve a single application.
Controlled topologies. We run the system with a 5 second con-
trol period. This greatly overestimates the dynamics of building
automation systems, which typically control phenomena with
slow dynamics, such as temperature. Control loop periods are
therefore in the range of minutes. We intentionally push on
this dimension to stress the systems. Nevertheless, the trends
and observations we discuss next do apply—sometimes even
with greater evidence—also when setting larger control periods.
We momentarily disable radio duty-cycle to obtain measures
of control loop latency and inter-actuator latency not affected
by the added delays of energy saving mechanisms.

Figure 8 illustrates a sample of our results to understand the
trends at stake. Figure 8(a) demonstrates that using VIRTUAL
RESOURCES significantly decreases the control loop latencies.
The improvements grow as the hop-distance between controller
and physical resources increases. As this happens, the beneficial
effect of the processing at the virtual resources progressively
amplifies. The system also shows better scalability as the
number of physical resources grows: the curves corresponding
to a different number of physical sensors, from 3 to 5 in the
chart, grow more slowly using VIRTUAL RESOURCES. Similar
observations apply to Figure 8(b), with the only difference
that inter-actuator latencies remain constant using VIRTUAL
RESOURCES, because the virtual actuator is always one hop
away from the physical ones.

In contrast, Figure 9 studies how the performance changes
in a more realistic configuration that uses radio duty-cycling
for saving energy, in a sample setting with 5 physical resources.
Figure 9(a) shows that the improvements in control loop
latency amplify in favor of VIRTUAL RESOURCES. This



4 5 6 7
Hops from root

0
500

1000
1500
2000
2500
3000
3500
4000
4500

La
te

nc
y 

(m
s)

Cloud-centric noRDC
VirtRes noRDC
Cloud-centric RDC
VirtRes RDC

(a) Control loop latency.

Sensor Actuator Router VA VS0
500

1000
1500
2000
2500
3000
3500
4000
4500

En
er

gy
 (m

J)

Cloud-centric 
VirtRes

(b) Per-round energy consumption.
Fig. 9. Controlled topologies with 5 seconds period, using 5 physical resources.
The gains in latencies amplify in favor of VIRTUAL RESOURCES, which also
saves energy at message routers and at the controller node.

3 4 5
Input/Output resources

0

500

1000

1500

2000

2500

3000

3500

La
te

nc
y 

(m
s)

Cloud-centric
VirtRes
VirtRes w/ heuristic

(a) Control loop latency.

Sensor Actuator Router VA VS
Placeholder

0

500

1000

1500

2000

2500

En
er

gy
 (m

J)

Cloud-centric
VirtRes
VirtRes w/ heuristic

(b) Energy consumption
Fig. 10. Random topologies with 5 seconds period and radio duty-cycling.
Control loop latencies are more than halved with the heuristic placement;
energy consumption reduces as well.

is essentially because the per-hop delay grows when using
radio duty-cycling; therefore, the impact of reduced traffic
becomes more significant. Figure 9(b) illustrates the gains in
energy consumption depending on the processing at a node.
Intermediate nodes operating as message routers forward fewer
messages using VIRTUAL RESOURCES, so they consume less
energy. The nodes running virtual sensors or virtual actuators,
compared in Figure 9(b) to the figure when operating as
message routers in the Cloud-centric design, also improve their
energy efficiency. Physical resources consume about the same
energy in that their processing is similar in the two settings.
Random topologies. Figure 10 summarizes the results obtained
from more than 70 different randomly-generated wireless
topologies. As already mentioned, these represent a worst-
case for VIRTUAL RESOURCES, as the placement of virtual
and physical resources is initially random.

The control loop latency, shown in Figure 10(a), improves
for VIRTUAL RESOURCES even when considering the fully
random placement. After applying the heuristic of Section IV
to re-position the virtual resources, the results further improve.
Ultimately, the control loop latency is more than halved.
Similar considerations also apply to the inter-actuator latency
in the same settings—not shown here for brevity—albeit
the improvements are not as high. In both cases, the gains
are enabled by the traffic reduction enabled by VIRTUAL
RESOURCES, while still maintaining the RESTFUL interactions.

Figure 10(b) demonstrates the energy improvements. As
before, nodes operating as message routers reduce the energy
expenditures because of the lower traffic. Different than before,
however, also the physical sensors and actuators consume less
energy when using VIRTUAL RESOURCES with the heuristic
placement. As their location is randomly decided, it may happen

that they are not placed at the leafs of the RPL graph. In these
cases, they may need to double as message routers, hence the
improvements of the latter apply to them too.

VI. CONCLUSION

We presented the VIRTUAL RESOURCES architecture, which
contrasts the traditional Cloud-centric designs by giving de-
velopers the ability to push slices of the application logic
down to the IoT network. VIRTUAL RESOURCES provide
several benefits to developers, including better utilization of
network resources that results in higher energy efficiency and
lower latencies, a simplification of the application logic at
the Cloud, and better separation of concerns throughout the
development process. We designed a RESTFUL interface to
manipulate virtual resources and a CoAP-based prototype
providing dedicated programming support. Our results indicate
that VIRTUAL RESOURCES achieves a 40% improvements in
energy consumption and a 60% improvement in control loop
latency, while retaining RESTFUL interactions.
Acknowledgements. This work was partly supported by the
Swedish Innovation Agency VINNOVA and the Technological
Cluster Projects “Zero-energy Buildings in Smart Urban
Districts” (EEB), “ICT Solutions to Support Logistics and
Transport Processes” (ITS), and “Smart Living Technologies”
(SHELL) of the Italian Ministry for University and Research.

REFERENCES

[1] L. Atzori et al., “The Internet of Things: A survey,” Computer networks,
vol. 54, no. 15, 2010.

[2] K. Whitehouse, “The rise of the intelligent building,” IQT Quarterly,
no. 3, 2013.

[3] M. Johnson et al., “A comparative review of wireless sensor network
mote technologies,” in Sensors, 2009.

[4] M. Kovatsch et al., “Moving application logic from the firmware to the
cloud: Towards the thin server architecture for the Internet of Things,”
in IMIS, 2012.

[5] T. Teixeira et al., “Service oriented middleware for the Internet of Things:
A perspective,” in Towards a Service-Based Internet. Springer, 2011.

[6] N. Mitton et al., “Combining Cloud and sensors in a smart city
environment,” Journal on Wireless Communications and Networking,
vol. 2012, no. 1, 2012.

[7] D. Guinard et al., “A resource oriented architecture for the Web of
Things,” in Internet of Things (IOT), 2010.

[8] P. Ciciriello et al., “Building virtual sensors and actuators over Logical
Neighborhoods,” in MidSens, 2006.

[9] “ISO 17458—FlexRay Communications System,” goo.gl/kZhgYY.
[10] Z. Shelby, “Embedded web services,” IEEE Wireless Communications,

vol. 17, no. 6, 2010.
[11] A. Azzarà et al., “PyoT, a macroprogramming framework for the Internet

of Things,” in SIES, 2014.
[12] Z. Shelby and C. Bormann, 6LoWPAN: the wireless embedded internet.

John Wiley & Sons, 2011, vol. 43.
[13] D. Alessandrelli et al., “T-Res: Enabling Reconfigurable In-network

Processing in IoT-based WSNs,” in DCOSS, 2013.
[14] O. Iova et al., “Stability and efficiency of RPL under realistic conditions

in wireless sensor networks,” in PIMRC, 2013.
[15] S. Salcedo-Sanz et al., “Hybrid meta-heuristics algorithms for task as-

signment in heterogeneous computing systems,” Computers & operations
research, vol. 33, no. 3, 2006.

[16] B. J. Bonfils and P. Bonnet, “Adaptive and decentralized operator
placement for in-network query processing,” in IPSN, 2003.

[17] J. Eriksson et al., “COOJA/MSPSim: Interoperability testing for wireless
sensor networks,” in SIMUTools, 2009.

[18] A. Dunkels et al., “Contiki: A lightweight and flexible operating system
for tiny networked sensors,” in LCN, 2004.


