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Abstract

Some constraint programming solvers and constraint modelling languages feature the Sort(L,P ,S)

constraint, which holds if S is a nondecreasing rearrangement of the list L, the permutation being made

explicit by the optional list P . However, such sortedness constraints do not seem to be used much in

practice. We argue that reasons for this neglect are that it is impossible to require the underlying sort

to be stable, so that Sort cannot be guaranteed to be a total-function constraint, and that L cannot

contain tuples of variables, some of which form the key for the sort. To overcome these limitations,

we introduce the StableKeysort constraint, decompose it using existing constraints, and propose a

propagator. This new constraint enables a powerful modelling idiom, which we illustrate by elegant

and scalable models of two problems that are otherwise hard to encode as constraint programs.

1 Motivation

In order to motivate our work, we consider the following human resource planning problem,
which will serve as running example throughout this paper. Consider n tasks that are to be
assigned to a given set of m employees. For each task i ∈ 1..n, let attribute Ai denote the
initially unknown employee performing it, Bi its fixed beginning time, Di its fixed duration,
and Ei its fixed end time, with Ei = Bi + Di for all i ∈ 1..n. A first constraint is that tasks
assigned to the same employee should not overlap in time. A second constraint deals with the
allocation of breaks to each employee. This is done by stating a Shift constraint, which we now
describe. A shift is a maximum sequence of tasks assigned to a same employee such that the
time gap between any two consecutive tasks is shorter than a given threshold minBreak : that
is, consecutive shifts of an employee are separated by a break of minimum duration minBreak ,
and consecutive tasks of a shift are separated by a gap shorter than minBreak . The span of a
shift is the difference between the end time of its last task and the beginning time of its first
task: see Figure 1. The Shift constraint holds if and only if the span of each shift of each
employee is at most a given threshold maxSpan.
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Figure 1: Shift 2 of an employee is composed of tasks 2, 3, and 4. It is between shifts 1 and 3
of the same employee. A break of duration 4 is scheduled between task 1 of shift 1 and task 2
of shift 2, because the gap between these tasks is at least minBreak = 4. Similarly, a break of
duration 7 is scheduled after task 4 of shift 2 and task 5 of shift 3. No other breaks can be
scheduled between the tasks of shift 2 because of the minimum break duration minBreak . The
span of shift 2 is 22 and does not exceed maxSpan = 27: it is composed of tasks 2, 3, and 4, as
well as of the two gaps between these tasks.

Concisely expressing constraints like Shift is hard. We show that sortedness constraints,
possibly upon some extensions, enable elegant models of such constraints and problems.

The contributions and organisation of the rest of this paper are as follows. In Section 2, we
discuss the existing sortedness constraints and their limitations. In Section 3, we introduce the
StableKeysort constraint, which overcomes those limitations. In Section 4, we argue that
composing the new StableKeysort constraint with other constraints is a powerful modelling
idiom. We illustrate this idiom by elegant models of the motivating problem of this introduction
and another problem. We empirically evaluate our results in Section 5 and conclude in Section 6.

2 The Sort Constraints and Their Limitations

Constraint programming (CP, e.g., [23]) is a problem solving technology where relations between
variables (or: unknowns) are stated in the form of constraints, which together form a model
of a constraint problem. Each variable x has a finite domain of possible values, usually a set
of integers, whose lower and upper bounds are here respectively denoted by x and x. Each
constraint has an associated propagator, which removes domain values that cannot be part of
a solution to that constraint. Depending on the propagators used, the domain reduction for
all constraints of the model, called propagation, can be more or less effective: the notion of
consistency characterises propagator effectiveness. Some propagators only adjust the domain
bounds, achieving bounds(Z) consistency [12] for example. A propagator that only keeps domain
values that participate in a solution to its constraint is said to achieve domain consistency [23].
A solution to a constraint is obtained when the domains of all its variables are singletons: we
say that the variables are fixed. If propagation alone does not lead to a solution to the constraint
problem, that is to a solution to each of its constraints, then search is interleaved with further
propagation at every node of the search tree, with backtracking whenever some domain is shrunk
to the empty set. A constraint, especially when no propagator is available for it in the used CP
solver, can be represented by a conjunction of other constraints, called a decomposition of the
constraint.

The Sort(L,S ) constraint was introduced, without exhibiting a propagator, by Older et
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al. [17] for expressing disjunctive constraints in job-shop scheduling problems: it holds if and
only if the list S of variables is a nondecreasing rearrangement of the list L of variables. Also
motivated by the job-shop problem, Zhou [30, 31] introduced, also without exhibiting a propa-
gator, the Sort(L,P−1,S ) constraint, where the permutation P−1 of the integer interval 1..n
linking the variables of S to those of L is made explicit: we have Li = SP−1

i
for all positions i.

(Our reason for referring to the permutation as P−1 will become clear in Section 3.1.) For ex-
ample, Sort([5, 4, 4], [3, 1, 2], [4, 4, 5]) holds. Introducing the variables of P−1 and fixing them
during search is convenient for expressing a branching heuristic that selects which task is sched-
uled before or after a group of tasks, without explicitly adding precedence constraints during
search [30, 31]. A modelling use of P−1 will be given at the end of Section 3.2.

Bleuzen-Guernalec and Colmerauer [5, 6] proposed the first bounds(Z) consistency [12]
propagator for Sort(L,S ): it has a worst-case time complexity of O(n log n), where n is the
length of the lists L and S . When sorting can be achieved in linear time, an O(n) bounds(Z)
consistency propagator for Sort(L,S ) was introduced by Mehlhorn and Thiel [15], maintaining
convexity [14] of the underlying bipartite graph. It was generalised [27] for the Sort(L,P−1,S )
constraint of SICStus [11, 10], ECLiPSe [26], and Gecode [13, 19], at the expense of bounds
consistency. The latter two provide both versions, Choco [21] and or-tools [18] only provide the
two-argument version, whereas all other CP solvers we checked provide neither of them.

Even if the Sort constraint, with or without the permutation variables, is available in a few
CP solvers, as well as in the constraint modelling language MiniZinc [16], it does not seem to be
used much. Beyond the original papers, we found very few published uses of Sort, notably [2, 8],
and very few uses in public repositories of constraint models. In [7], a mathematical model using
Sort is given for a meeting scheduling problem, but the translation into MiniZinc overlooks
the Sort constraint of MiniZinc. The Sort(L,S ) constraint was mentioned in [4] as a way to
help decompose constraints. For example, the constraint NValue([v1, . . . , vn], N), which holds
if and only if there are N distinct values in the sequence [v1, . . . , vn], can be decomposed by
constraining N to be the number of strict increases between adjacent variables in the sorted
rearrangement of [v1, . . . , vn]. While this is an important observation, the use of the Sort
constraint for decomposing constraints reveals two limitations that we discuss now.

2.1 The Sort(L,P−1, S ) Constraint Is Not a Total-Function Constraint

The Sort(L,P−1,S ) constraint is not a total-function constraint [4], as a ground list L does
not uniquely determine P−1 and S . For example, Sort([5, 4, 4], [3, 1, 2], [4, 4, 5]) holds, but
Sort([5, 4, 4], [3, 2, 1], [4, 4, 5]) also holds, with a different permutation for the duplicate ele-
ments inside L and S . The problem is that the Sort(L,P−1,S ) constraint does not require
the sort to be stable, that is to use the position of a variable in L in order to break ties de-
terministically. Not uniquely determining P−1 from a list L with duplicates is problematic
for constraint decompositions involving Sort(L,P−1,S ) where the variables of P−1 are used
in other constraints whose propagation is hindered until all variables of P−1 are fixed. For
example, Sort([5, 4, 4], [P−11 ,P−12 ,P−13 ], [S1,S2,S3]) yields S1 = 4, S2 = 4, S3 = 5, P−11 = 3,
P−12 ∈ 1..2, and P−13 ∈ 1..2: the last two variables are not fixed. In Section 4.2, we present a
model where stability is crucial for effective propagation.

To overcome this difficulty, the modeller must be aware of the variables of P−1 when they
are not part of the overall problem. While this is possible, the effect is that the decomposition
cannot be used in a transparent way, as the variables of P−1 must be considered during search.
Determining when to fix the variables of P−1 during search is not straightforward: on the one
hand, fixing them too late may be inefficient since subproblems may be recognised belatedly as
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infeasible when these variables are not fixed; on the other hand, fixing them too early and in a
wrong order may lead to a lot of backtracks.

In this paper, we argue that it is preferable to make Sort(L,P−1,S ) a total-function con-
straint, based on a stable sort.

2.2 The Sort Constraints Cannot Handle Lists of Keyed Tuples

Quite often, rather than constraining a sorted list of variables, one needs to constrain a lex-
icographically sorted list of tuples of variables, where each tuple typically corresponds to the
attributes of an object, some of which form the sorting key. Without loss of generality, we
assume the first k ≥ 1 fields of a tuple form the sorting key.

For example, a task i of the motivating problem in Section 1 yields a tuple 〈Ai, Bi, Di, Ei〉
of q = 4 fields: modelling the Shift constraint is facilitated when constraining the list of task
tuples that is lexicographically sorted on the key 〈Ai, Bi〉 of their first k = 2 fields, thereby
bundling the tasks assigned to a same employee and ordering them by increasing beginning time,
so that the shifts of each employee become apparent. The full details of this decomposition will
be given in Section 4.1.

In this paper, we argue for the generalisation of Sort to a constraint on lists of keyed tuples.

3 The StableKeysort constraint

To overcome the limitations of the existing Sort constraints, as outlined in Section 2, we now
introduce the StableKeysort constraint (Section 3.1), decompose it using existing constraints
(Section 3.2), and discuss a dedicated propagator (Section 3.3).

3.1 Specification of StableKeysort

The StableKeysort(L,P ,S , k) constraint, where L and S are lists of n ≥ 0 tuples of q ≥ 1
variables per tuple, P is an optional list of n variables, and k is an integer value in 1..q , holds
if and only if the following three conditions hold:

1. All variables of P are assigned distinct values in the interval 1..n.

2. The tuples of S correspond to those of L according to the permutation P : we have Si = LPi

for all positions i. Note that we here prefer, for ease of modelling the decompositions
below, to define P as the inverse of P−1 in Sort(L,P−1,S ), where Li = SP−1

i
for all i

(see Section 2).

3. The tuples of S form a rearrangement of L that is stably sorted by nondecreasing lexico-
graphical order on the first k positions in the tuples.

If the permutation argument P is omitted, then only condition 3 needs to hold. As we will
see in Section 4, (the inverse of) P is often unnecessary for modelling purposes when one uses
StableKeysort instead of Sort, so that the main use of P may lie in expressing search
heuristics.

3.2 Decomposition of StableKeysort

We now give a decomposition of StableKeysort(L,P ,S , k) in terms of Sort, Element, and
arithmetic constraints. The idea is based on having a unique key Ki that is a linear combination
of the k first fields of tuple Li as well as position i itself, for stability: the permutation P linking
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StableKeysort([L1, . . . ,Ln], [P1, . . . ,Pn], [S1, . . . ,Sn], k)⇔ (1) ∧ (2) ∧ (3) ∧ (4)

Ki =
∑

j∈1..k

cj · Li,j + i− 1, ∀i ∈ 1..n (1)

Sort([K1, . . . ,Kn], [K ′1, . . . ,K
′
n]) (2)

Pi = (K ′i mod n) + 1, ∀i ∈ 1..n (3)

Si,j = LPi,j , ∀i ∈ 1..n, ∀j ∈ 1..q (4)

where the constant bounds `j and uj and the constant coefficients cj are determined as follows:

`j = min{Li,j | i ∈ 1..n}, ∀j ∈ 1..k

uj = max{Li,j | i ∈ 1..n}, ∀j ∈ 1..k

cj =

{
(uj+1 − `j+1 + 1) · cj+1 if 1 ≤ j < k

n if j = k

Decomposition 1: Decomposition of the StableKeysort constraint.

the list K of keys Ki to its sorted rearrangement K ′ is also the permutation linking L to S . The
decomposition computes the constants `j and uj for the smallest respectively largest domain
values in key position j, and introduces the auxiliary variables cj for the coefficients of the linear
combination, as well as the auxiliary variables Ki and K ′i as mentioned above. Decomposition 1,
where the notation Xi,j is used for field j of tuple i of list X, has drawbacks that motivate the
need for a dedicated propagator for StableKeysort (see Section 3.3):

• The coefficients cj can become quite large if the key fields have large domains, or if there
are many of them. This can lead to overflow problems.

• For (1) and (3), standard CP solvers will not even achieve bounds(Z) consistency. We
could achieve domain consistency for (1) and (3) with dynamic programming [28], but
that can be very costly, again since the coefficients can be quite large.

Using the remark on condition 2 of the specification of StableKeysort, the constraints (2)
and (3) can be reformulated without arithmetic as

Sort([K1, . . . ,Kn], [P−11 , . . . ,P−1n ], [K ′1, . . . ,K
′
n])

∧ Inverse([P1, . . . ,Pn], [P−11 , . . . ,P−1n ])

when the constraint Sort(L,P−1,S ) is available, and where the constraint Inverse(P ,P−1)
holds if Pi = j ⇔ P−1j = i, for all i, j ∈ 1..n.

3.3 Propagator for StableKeysort

We designed and implemented a propagator for StableKeysort, using the Mehlhorn and
Thiel propagator [15] (MT) as a starting point. Our propagator runs in O(nk log nk) +O(nq)
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time. It does not guarantee bounds(Z) consistency, as shown at the end of this section. Let
key(Li) denote the key part of tuple Li, consisting of the first k fields of Li extended by i. Let
key(Si) denote the key part of tuple Si, consisting of the first k fields of Si extended by Pi. The
function of each last position is twofold: it breaks ties among otherwise equal keys, ensuring
stability, and it allows P to be obtained from the sorted key parts.

The core of MT for Sort(L,S ) is the construction of a bipartite intersection graph, with
an arc from Li to Sj if Li..Li and Sj ..Sj have a nonempty intersection. Then, the propagator
computes a perfect matching, a reduced intersection graph, and its strongly connected compo-
nents (SCCs), which are used for pruning the domains of the variables of L. Throughout the
algorithm, the domains of the variables of S are kept normalised, i.e., Si ≤ Si+1 and Si ≤ Si+1

for all i. Normalisation allows MT to use a convex intersection graph, which admits a compact
representation and linear-time operations. For details, see Section 1.2 of [15].

Our propagator for StableKeysort is an adaption of MT, using exactly the same phases,
followed by one additional phase. In the following, if x is a tuple of variables, then x and x
respectively denote the tuple of lower bounds and the tuple of upper bounds of the domains of
those variables. Whenever MT uses a scalar comparison among Li, Li, Sj , and Sj , for example
when sorting L on lower and upper bounds, during normalisation, or during SCC computation,
we use a lexicographic comparison among key(Li), key(Li), key(Sj), and key(Sj). Whenever

MT adjusts a lower bound, enforcing Li ≥ c, we enforce key(Li) ≥lex c, using methods from [9],
and similarly for Sj and upper bounds. Our intersection graph contains an arc from Li to Sj if:

key(Li) ≤lex key(Sj) ∧ key(Sj) ≤lex key(Li).

Thus, as described so far, our propagator generalises MT by replacing scalar operations on the
bounds of Li and Sj by lexicographic operations on the bounds of key(Li) and key(Sj). This,
however, ignores the domains of the individual tuple fields and of the variables of P . This is
why we need an additional pruning phase, to ensure that every tuple of L can be equal to at
least one tuple of S in the same SCC, and vice versa. The additional phase removes infeasible
values in four steps, for all i ∈ 1..n and j ∈ 1..q , where i ∼ j denotes that Li and Sj belong to
the same SCC:

1. The bounds of any position j of any tuple of S must be inside the bounds of the same
position j of the tuples of L. That is, enforce:

Si,j ≤ max{Lp,j | p ∈ 1..n ∧ p ∼ i}
Si,j ≥ min{Lp,j | p ∈ 1..n ∧ p ∼ i}

2. The bounds of any position j of any tuple of L must be inside the bounds of the same
position j of the tuples of S . That is, enforce:

Li,j ≤ max{Sp,j | p ∈ 1..n ∧ i ∼ p}
Li,j ≥ min{Sp,j | p ∈ 1..n ∧ i ∼ p}

3. The bounds of any permutation variable must be inside the possible tuple positions. That
is, enforce:

Pi ≤ max{p | p ∈ 1..n ∧ p ∼ i}
Pi ≥ min{p | p ∈ 1..n ∧ p ∼ i}
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4. Any tuple position must be inside the bounds of the permutation variables. That is, check:

i ≤ max{Pp | p ∈ 1..n ∧ i ∼ p}
i ≥ min{Pp | p ∈ 1..n ∧ i ∼ p}

The phases that were generalised from MT take O(nk) time, except for sorting L, which takes
O(nk log nk) time. The additional phase takes O(nq) time, yielding a total time complexity of
O(nk log nk) +O(nq).

The fact that the matching ignores the domains of individual tuple positions and of permu-
tation variables is the main weakness of our propagator and the main reason why it sometimes
does not achieve bounds(Z) consistency. For example:

x, y, z ∈ 1..3 ∧ StableKeysort([[x, 2], [y, 3]], [[2, 3], [z, 2]], 1)

will prune the domains to x, y, z ∈ 2..3 instead of x = 3, y = 2, z = 3, which is the only solution.
Unfortunately, taking domain information into account would mean losing the convexity of the
bipartite graph, but convexity is the property that allows all phases of MT except the initial
sort to run in linear time.

Achieving domain consistency for StableKeysort is NP-hard [24], but is more interesting
than achieving bounds consistency, as fields of the key can be attributes such as an employee
identifier, for which bounds propagation is meaningless. The tractability of achieving bounds(Z)
consistency for Sort(L,P−1,S ) and StableKeysort is still open [24].

4 A Modelling Pearl with StableKeysort

Our motivation for introducing the StableKeysort constraint, with or without the permuta-
tion argument, is to maintain the relation between a given list of tuples and the corresponding
lexicographically sorted tuples on the k first positions of the given tuples, so that a constraint
on the given tuples can be expressed on the sorted tuples instead. Typically, by scanning the
sorted tuples we can directly express the required constraint. In other words, the modelling
idiom that we want to convey is:

Constraint(L)⇔ StableKeysort(L,S , k) ∧ ConstraintOnSequence(S )

where it is awkward or unknown how to express Constraint by other means, but well known
how to express ConstraintOnSequence. We now show two instances of this modelling pearl.

4.1 The Shift Constraint

We now revisit the motivating problem of Section 1 and model Shift as a decomposition
into StableKeysort and simple arithmetical and logical constraints: see Decomposition 2.
The decomposition introduces the auxiliary variables A′i, B

′
i, D

′
i, E

′
i for a sorted list of task

attribute tuples (q = 4), as well as auxiliary 0..1 variables Yi, denoting whether two consecutive
tasks i − 1 and i are performed by the same employee, and Xi, denoting whether task i is a
subsequent task of the current shift. A last set of auxiliary variables are the Ri over domain
1..maxSpan, denoting the shift length up to the end of task i. In the sortedness constraint (6),
the permutation argument P is not needed, and stability is not needed (since the tasks assigned
to a same employee are not allowed to overlap, so that their beginning times break ties), but
crucial use is made of tuples, keyed on the assigned employee identity Ai and the beginning time
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Shift([〈Ai, Bi, Di, Ei〉 | i ∈ 1..n], [〈A′i, B′i, D′i, E′i, Yi〉 | i ∈ 1..n],
minBreak ,maxSpan)⇔ (5) ∧ (6) ∧ (7) ∧ (8) ∧ (9) ∧ (10)

Ei = Bi +Di, ∀i ∈ 1..n (5)

StableKeysort([〈Ai, Bi, Di, Ei〉 | i ∈ 1..n], [〈A′i, B′i, D′i, E′i〉 | i ∈ 1..n], 2) (6)

A′i−1 < A′i ∨ E′i−1 ≤ B′i, ∀i ∈ 2..n (7)

Yi = 1⇔

{
false if i = 1

A′i = A′i−1 if i ∈ 2..n
(8)

Xi = 1⇔

{
false if i = 1

Yi ∧ B′i − E′i−1 < minBreak if i ∈ 2..n
(9)

Ri =

{
D′i if i = 1

D′i +Xi · (Ri−1 +B′i − E′i−1) if i ∈ 2..n
(10)

where
Ri ∈ 1..maxSpan, ∀i ∈ 1..n

Decomposition 2: Decomposition of the Shift constraint.

Bi of each task (k = 2). Constraint (7) prevents two consecutive tasks with the same employee
from overlapping. Constraints (9) and (10) channel between the sorted task attributes and the
Xi and Ri.

4.2 The CumulativeSmooth Constraint

The cumulative scheduling problem (CuSP) is frequently modelled using the Cumulative(T , c)
constraint [1]. A CuSP is defined on a set T of n tasks consuming the same resource, with a
fixed integer capacity, c, of the resource. Each task i ∈ 1..n is here defined by the following
attributes: its beginning time Bi, its duration Di, its end time Ei, with Ei = Bi +Di, and its
height Hi, that is the quantity of resource necessary to perform it. Tasks may overlap in time.
A solution to a CuSP is a schedule that satisfies the following constraint, requiring that the
resource capacity never be exceeded: ∑

i∈1..n:
Bi≤t<Ei

Hi ≤ c, ∀t ∈ Z

In many CuSP applications, in addition to the resource capacity, the profile of resource con-
sumption throughout the schedule is constrained: a frequent constraint is a limit on the num-
ber of large resource consumption variations between consecutive time points in this profile.
For example, teams often cannot vary at arbitrary times in personnel scheduling: the hu-
man resource profile needs to be smoothened; other examples are in [29, Section 5.2]. The
Smooth(N , [X1, X2, . . . , Xn], τ) constraint [3] holds if and only if |Xi −Xi+1| > τ is satisfied
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CumulativeSmooth([〈Bi, Di, Ei, Hi〉 | i ∈ 1..n], c,N , τ)⇔ (11) ∧ (12) ∧ (13) ∧ (14) ∧ (15)

Cumulative([〈Bi, Di, Ei, Hi〉 | i ∈ 1..n], c) (11)

StableKeysort([〈Bi, Hi〉 , 〈Ei,−Hi〉 | i ∈ 1..n], [〈Instant i,∆i〉 | i ∈ 1..2n], 1) (12)

Current i =

{
0 if i = 0 ∨ i = 2n

Current i−1 + ∆i if 1 ≤ i < 2n
(13)

Profilei =


0 if i = 0 ∨ i = 2n

Profilei+1 if 1 ≤ i < 2n ∧ Instant i = Instant i+1

Current i if 1 ≤ i < 2n ∧ Instant i < Instant i+1

(14)

Smooth(N , [Profilei | i ∈ 0..2n], τ) (15)

Decomposition 3: Decomposition of the CumulativeSmooth constraint.

N times for 1 ≤ i < n, where N is an integer variable and τ a positive integer. Unfortunately,
Cumulative usually does not provide variables representing the resource profile, although the
ECLiPSe [26] constraint Profile does, so in most CP solvers, we cannot use Smooth in a
CuSP context. In order to address this issue, we introduce the CumulativeSmooth(T , c,N , τ)
constraint, which combines a Cumulative constraint with a Smooth constraint on vari-
ables representing the profile. At time t, the profile height is the accumulated height, that
is

∑
i∈1..n:Bi≤t<Ei

Hi. Such a profile is built in three steps:

1. Construct for each task two pairs (q = 2): one with the task beginning time and height,
the other with the task end time and negated height: see the first argument of the
StableKeysort constraint (12).

2. Sort these pairs on their first item (k = 1), i.e., on the beginning and end times of the
tasks: see constraint (12).

3. Build the profile from the sorted list obtained in phase 2: see constraints (13) and (14).

The profile height variables admit the statement of a Smooth constraint on the number of big
variations between consecutive time points: see constraint (15). All this leads to a decomposi-
tion of CumulativeSmooth that uses StableKeysort: see Decomposition 3 and note how
all arithmetic constraints are elegantly stated by reasoning on the sorted lists of variable tuples.
In the sortedness constraint (12), the permutation argument P is not needed, but crucial use
is made of keyed tuples and stability: without stability, the ∆i associated to identical instants
in constraint (12) will only be fixed during search, leading to poor propagation.

Figure 2 shows an example CuSP, the variables that arise from the decomposition of its
CumulativeSmooth instance, and their values.
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Bi 0 6 3 5 1 2

Di 3 2 2 1 3 1

Ei 3 8 5 6 4 3

Hi 2 1 2 2 1 3

Instant i 0 1 2 3 3 3 4 5 5 6 6 8

∆i 2 1 3 −2 2 −3 −1 −2 2 1 −2 −1

Current i 0 2 3 6 4 6 3 2 0 2 3 1 0

Profilei 0 2 3 6 3 3 3 2 2 2 1 1 0

Figure 2: A cumulative scheduling problem and the values of the variables that arise from
the decomposition of CumulativeSmooth([〈Bi, Di, Ei, Hi〉 | i ∈ 1..6], 6, 0, 3): the cumulative
profile should never exceed c = 6 and the profile variation (shown by vertical arrows) should
never (N = 0) exceed τ = 3.

4.3 Synthesis

Both the Shift and CumulativeSmooth examples can be seen as typical instances of prob-
lems in which one needs to generate profiles represented by sorted events where side constraints,
such as work regulation rules for employees in the case of Shift, or preferences on the resource
profile in the case of CumulativeSmooth, should be added to the model before search. As
work regulation rules and preferences on the resource profile can vary a lot, depending on the
peculiarity of the application, a modelling idiom makes sense since implementing a dedicated
propagator for each variant would be very time consuming. One may observe that Decomposi-
tion 3, for instance, can easily be generalised: the Smooth constraint (15) can be replaced by
other constraints, such as a balancing constraint [25]. Note also that our modelling idiom leads
to constraint decompositions that are linear in memory with respect to the number of tasks.

5 Empirical Evaluation

For an empirical evaluation, we revisit the human resource planning problem introduced in
Section 1. The time line is split into t 15-minute time slots. The objective is to minimise
labour cost, subject to the Shift constraint as defined in Section 4.1.Let dayDuration denote
the maximum amount of time slots per day for an employee, and let costa,w denote the cost of
employee a when at work for w time slots in one day.

An elegant formulation, with the Shift constraint, of the problem is provided as Model 1.
The working time of the employees are maintained (16) in order to compute their costs (17). In
our evaluation, Shift is implemented in terms of the proposed new StableKeysort constraint
as shown in Decomposition 2.

A less elegant formulation, without the Shift constraint, of the problem is provided
as Model 2. Let variable aj,k denote the activity of employee j in slot k: a task is represented by
its index from 1 to n; a break shorter than minBreak is represented by the special value n+1; a
long break (between minBreak and maxSpan) is represented by the special value n+2; and any
other inactivity is represented by the special value n+3. Constraint (18) applies to the sequence
of aj,k for each employee j, where the Regular(X,A) constraint [20] holds if and only if the
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Minimise
n∑

j=1

Cj

subject to

Shift([〈Ai, Bi, Di, Ei〉 | i ∈ 1..n], [〈A′i, B′i, D′i, E′i, Yi〉 | i ∈ 1..n],minBreak ,maxSpan)

Wj =

{
D′j if j = 1

D′j + Yj · (Wj−1 +B′j − E′j−1) if j ∈ 2..n
(16)

Cj =

{
(1− Yj+1) · costA′j ,Wj

if j ∈ 1..n− 1

costA′j ,Wj
if j = n

(17)

where
Wj ∈ 0..dayDuration, ∀j ∈ 1..n

Model 1: Formulation of the shift problem with the Shift constraint.

word represented by the sequence X of variables is accepted by the given finite automaton A,
where double circles denote accepting states. Here, the automaton is the intersection of one
automaton encoding the break rules (depicted in the inner box of Model 2) and one automaton
Π encoding the task successor relation, which stems from the fixed beginning and end times.
Constraints (19) and (20) ensure that, for each slot, every task is performed by at most one
employee, where the GCC(X,V,O) constraint [22] holds if and only if there are Oi occurrences
of value Vi within the sequence X of variables. The non-inactivities of the employees serve to
compute their working times, via constraints (21) and (22), and their costs, with 0..1 variable
wj,k denoting whether employee j is incurring cost in time slot k.

We compare Model 2 against two implementations of Model 1, namely one where the re-
quired StableKeysort constraint is implemented by Decomposition 1, and one where it is
implemented by the propagator of Section 3.3. As stated in Section 3.2, we expect the imple-
mentation based on Decomposition 1 to produce integer overflows for problem instances where
the key fields (namely the employee and the beginning time of a task) have large domains.
Neither implementation of StableKeysort will even achieve bounds(Z) consistency, as noted
in Section 3.2 and Section 3.3, respectively, whereas domain consistency can be achieved on
Regular and GCC.

The used real-world problem instances involve up to 3,200 tasks and originate from Eurode-
cision and express a bus driver planning problem. The models above are simplified in order
to hide industrial constraints that fall within the competitive advantage of Eurodecision. The
experiments were run under Choco [21] on a Mac Pro with 8-core Intel Xeon E5 at 3 GHz under
MacOS 10.10 and Java 1.8.0 25. Each instance was run with a 30-minute limit on its own core,
each with up to 4 GB of memory. For every model, the search heuristic tries to assign the
employees one by one, in lexicographic index order, to the most suitable free task, considering
their current workload. This implies that the first solutions are the same for all models, but
alternative solutions may come in a different order.

The results are given in Table 1, where “out of memory” denotes that the Java Virtual
Machine ran out of memory and could not allocate more memory, while “integer overflow”
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Minimise
m∑
j=1

costj,Wj

subject to

Regular([aj,k | k ∈ 1..t],

sbstart

ss

st

sl

se

n+ 3

[1− n] n+ 3

n+ 3

n+ 3

[1− n]{0, 7}

n+ 1

[1
−
n] n

+
2

[1− n]

[n+ 2]{0, 7}

& Π), ∀j ∈ 1..m (18)

GCC([aj,k | j ∈ 1..m], [1, . . . , n+ 3], [O1, . . . , On+3]), ∀k ∈ 1..t (19)

Oi ≤ 1, ∀i ∈ 1..n (20)

wj,k = 1⇔ aj,k < n+ 3, ∀j ∈ 1..m, ∀k ∈ 1..t (21)

Wj =

t∑
k=1

wj,k, ∀j ∈ 1..m (22)

where
Wj ∈ 0..dayDuration, ∀j ∈ 1..m

Model 2: Formulation of the shift problem without the Shift constraint.

denotes that an integer overflow occurred during run time. We observe that:

• Model 2 without the Shift constraint reaches better solutions for some small instances,
but building it is time-consuming and needs a huge amount of memory, until it finally
becomes too large to load, mainly due to the memory requirement of (18). Even though
this model appears to be more appropriate for small instances, in terms of the quality of
the best solutions found, it is clearly unusable in practice for medium and large instances.

• Model 1 with Decomposition 2 of the Shift constraint and with Decomposition 1 of
the StableKeysort constraint takes linear building time and memory, but the domain
creation of key Ki throws an integer overflow when the instance size n becomes large;
indeed, the upper bound of Ki is approximately nk+1, with k = 2 here.

• Model 1 with Decomposition 2 of the Shift constraint and with the StableKeysort
propagator of Section 3.3 also takes linear building time and memory (and is slightly
better), and does not suffer from memory or integer overflows.
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Model 2, Model 1, with Decomposition 2 of Shift
without Decomposition 1 Propagator (Section 3.3)
Shift of StableKeysort of StableKeysort

n mem. build best mem. build best mem. build best
25 23 0.398 3144 4 0.119 3144 4 0.112 3144
50 45 0.707 4948 5 0.124 4958 5 0.120 4958

100 102 1.672 10586 8 0.155 10693 8 0.152 10693
200 246 5.999 21386 15 0.223 21386 14 0.216 21386
400 689 30.891 42772 30 0.338 42961 28 0.317 42961
800 2334 192.923 86678 64 0.472 86867 61 0.451 86867

1600 out of memory integer overflow 141 1.447 174112
3200 out of memory integer overflow 373 2.882 348224

Table 1: Empirical results on the shift problem: memory consumption (mem., in MB), time
for creating and posting all constraints (build, in seconds), and the best solution found in 30
minutes (best).

6 Conclusion

The Sort constraints, especially their StableKeysort generalisation introduced here, signif-
icantly ease the modelling of several constraints, as illustrated with our elegant decompositions
of the Shift and CumulativeSmooth constraints. However, perhaps due to the identified
limitations of the original Sort constraints, only a few CP solvers implement them. We argue
that Sort, or ideally the new StableKeysort constraint of this paper, should be provided in
every CP solver, as that will enable the widespread use of the modelling idiom we have iden-
tified. Sort is already identified as a core constraint in [4], due to its key role for constraint
reification and negation purposes. Recently, MiniZinc 2 took a step in this direction by intro-
ducing sortedness constraints with stability,1 but without keyed tuples. Our StableKeysort
constraint could be added to MiniZinc, with Decomposition 1 as default, but non-scalable,
implementation.
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