
Scalable Live TV Distribution with NetInf to Android
Devices

[Demo submission]

Bengt Ahlgren
SICS

bengta@sics.se

Arndt Jonasson
SICS

arndt@sics.se

ABSTRACT
We demonstrate efficient live TV distribution over the Inter-
net to Android devices that are modified to use the NetInf
information-centric network service as transport. The adap-
tation of the standard HTTP Live Streaming format to the
NetInf transport was straightforward, but required extend-
ing NetInf with names for dynamic content. The in-network
caching and request aggregation of NetInf result in efficient
multicast transport to the client devices.

1. INTRODUCTION
Information-centric networking (ICN) [1] is an approach

for designing a future network infrastructure. Its main ab-
straction is named data objects (NDOs), on which all com-
munication is based. Clients request NDOs by name, and
publishers make NDOs available. The location of an NDO
is secondary – any node holding a copy can satisfy a request
for it, enabling ubiquitous in-network caching as part of the
normal network service.

One strong motivation for ICN is that it is very suitable
for the dominating traffic volume of large scale distribution
of media content, both playback of stored content, as well as,
distribution of live content. The in-network caching enables
the scalability needed to distribute to many clients simulta-
neously.

In this demonstration, we show live video distribution to
Android client devices. The video is distributed in the stan-
dard HTTP Live Streaming (HLS) [6] format adapted to Net-
Inf ICN transport [2, 5]. The demo is a proof-of-concept pro-
totype showing that it is straightforward to map HLS to Net-
Inf transport, with some extensions, and that NetInf is able
to fully utilise request aggregation and in-network caching
to aggregate the load from many clients in the network, off-
loading the server and reducing network utilisation.

The rest of the paper is organised as follows. We briefly
introduce the NetInf protocol and describe the mapping of
HLS to NetInf in the next two sections. Section 4 describes
the setup of the demonstrator, followed by some performance
measurements in Section 5. The paper is then concluded in
Section 6.

2. THE NETINF PROTOCOL
Network of Information (NetInf) [2] is an ICN architec-

ture mainly developed in the SAIL EU FP7 project [4]. As
part of the design of NetInf, the project defined the ‘ni’ nam-
ing scheme that has become IETF RFC 6920 [3]. The ‘ni’
naming scheme uses URI syntax and includes the message
digest, or content hash, of the NDO as part of the name, as
can be seen in the example in Figure 1. One benefit of in-
cluding the message digest in the name is that it is straight-
forward to provide name-data integrity, that is, to verify that
the data received is actually the data requested, a crucial
function in an information-centric network.

ni://example.com/sha256;B_K97zTtFuOhug27fke4_Zgc4Myz4b_lZNgsQjy6fkc

Figure 1: Example ‘ni’ name for the named data object
“Hello World!”.

Publisher

Clients

Routers

GET

GET-RESP

GET

GET-RESP

GET GET-RESP

Hop-by-hop
request/response

All nodes
can cache

Figure 2: ICN messages and communication model.

NetInf defines three major protocol functions: GET, PUBLISH
and SEARCH. Figure 2 illustrates the receiver-driven interac-
tion model for an idealised small access network with clients
at the bottom and a publisher/server at the top. GET mes-
sages are sent by the clients and forwarded hop-by-hop by
the NetInf routers towards the publisher. Any intermediate

Master index
#...
Encoding 1
#...
Encoding 2
#...
Encoding 3

Encoding 1 index
Segment n-1
#...
Segment n
#...
Segment n+1

Encoding 3 index
Segment n-1
#...
Segment n
#...
Segment n+1

Encoding 2 index
Segment n-1
#...
Segment n
#...
Segment n+1

Segment x
10 sek video

Static content
normal NetInf names

ni:///sha-256;XYZ

Dynamic content
ni:///dynamic;ABC

not cached

Static content
normal NetInf names

ni:///sha-256;XYZ

Figure 3: Live HLS video mapping to NetInf transport.

node that has a requested NDO, ultimately the publisher, re-
sponds with the corresponding GET-RESP message supply-
ing the NDO.

3. MAPPING HLS TO NETINF
HLS defines three types of data objects, or files, that the

clients retrieve in order to play the video stream. There is
a master index file, illustrated at the left in Figure 3, that
lists the available encodings of the video, including different
bitrates and thus with different network capacity needs. The
master index file can directly be named with standard ‘ni’
names, since its content does not change (not very often, at
least). The content of the master index file has to be changed
to use NetInf ‘ni’ names for specifying the encoding-specific
segment index files (in the middle of the figure).

These segment index files, however, change each time a
new video segment is created for the live content. Typically,
the three most current video segments are listed. We can
therefore not use ‘ni’ names based on content hashes, but
instead needed to define a new name type for NDOs with
dynamic content. For NDOs using these names, we need to
complement the NDO with publisher signatures in order to
be able to provide name-data integrity. This is however not
yet implemented in the demo.

The clients regularly have to re-request the segment index
file it has chosen to get the names of the video segment files.
Since the latter do not change after they are created, regu-
lar ‘ni’ names works well. Like for the master index file,
the segment index files have to be changed to list the video
segments by their ‘ni’ names. When a new video segment
appears in this index, the client can request that segment.

4. THE DEMO SETUP
The setup of the demo is illustrated in Figure 4. The live

video can be taken from two sources. One is the regular,
public, servers for TV4’s live and stored TV content. The
other is our own video camera. The TV streams from either
can be published in real time in the NetInf system on the
‘NetInf server’ in the figure.

Internet
TV4

content
server

NetInf
server

NetInf
router wifi

Live NetInf
publisher

Cache,
Request aggregation,

Route to server
Android clients

Live camera feed

cache

Figure 4: Setup of NetInf live streaming demo.

At the right hand side of the figure we have a set of An-
droid clients running a modified version of the TV4 app that
can use the NetInf network service for retrieving the HLS
video. In between there is a NetInf router that cache all
data, except for the dynamic segment index files. The router
also implements request aggregation, so that requests from
clients that are in sync with each other will only result in one
single request to the server.

The demo setup makes use of simple default routing for
directing the GET requests towards the NetInf server. In a
larger setup, there is a clear need for more advanced routing
schemes.

The Android clients run an Android NetInf implementa-
tion from Ericsson, and the NetInf server and router runs the
open source NetInf implementation in the Python language
that was developed as part of the SAIL EU project1 and that
has been extended with default forwarding, request aggrega-
tion, and rudimentary names for dynamic NDOs. The NetInf
server and router runs on regular laptops with Ubuntu Linux.

5. MEASUREMENTS
To quantify the operation of NetInf in the demo we have

carried out a few measurements on the NetInf router in the
demo setup. Figure 5 shows the intensity of the network
traffic at the NetInf router when five clients request the same
live video stream. We can clearly see that the incoming traf-
fic from the server (lower curve) is much less than the out-
going traffic to the clients (upper curve). The difference is
in the order of five times, clearly showing that the router ag-
gregates the traffic to the clients as we intended, relieving
the server and upstream network from transferring multiple
copies of the same video stream.

Figures 6 and 7 show histograms of the latency on the
router for the time taken to complete two types of NetInf re-
quests (GET/GET-RESP transaction). The x-axis is the time in
milliseconds, and the y-axis is the number of occurrences in
the measurement dataset for the respective latency interval.

The first of the figures shows the time to complete requests
for video segment files. These files are around 600-800 KB
in size and the total number in the analysed log is 19006.
1See http://www.netinf.org, and
http://sourceforge.net/projects/netinf/.

Figure 5: Network traffic at the router.

time for segment files (ms)

F
re

q
u

e
n

c
y

0 500 1000 1500 2000

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

Figure 6: Latency of requests for video segment files.

We see two peaks and a fairly long tail. The first peak at
about 180 ms most likely corresponds to files served from
the router cache. The second peak at about 340 ms most
likely corresponds to requests that were forwarded to the
server. The long tail suggests that there are quite some vari-
ability in the service time. Some of the variability comes
from the difference in size between the video segments.

The second figure shows the time to complete requests
for the segment index files. These files are small, some three
hundred bytes, and the total number in the analysed log is
21572. We only see one peak, since all these requests are
forwarded to the server. Due to the much smaller size, the
service times are also much lower with the peak at about
30 ms.

We should also point out that the CPU load of the NetInf
router is quite low during these measurements, so the latency
from processing should also be quite low.

time for index files (ms)

F
re

q
u

e
n

c
y

0 50 100 150 200

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0

Figure 7: Latency of requests for index files.

6. CONCLUSIONS
The demonstration shows the feasibility and performance

of live video distribution using the HTTP Live Streaming
format adapted for the NetInf ICN transport. The caching
and request aggregation of the NetInf transport result in ef-
ficient multicast to many clients. The caching removes the
need for synchronisation between the clients, in contrast to
the synchronous nature of IP multicast.

The adaptation of HTTP Live Streaming to use NetInf
ICN transport was straightforward. A naming scheme for
the dynamic segment index files had to be designed and im-
plemented for the demo.

7. ACKNOWLEDGEMENTS
This work has been supported by the EFRAIM project

funded by Vinnova in the challenge-driven innovation pro-

gramme, and by EIT ICT Labs. Many colleagues from EFRAIM
and ICT Labs have considerably contributed to this work,
especially Börje Ohlman and Linus Sunde at Ericsson Re-
search and Anders Lindgren at SICS.

8. REFERENCES
[1] Bengt Ahlgren, Christian Dannewitz, Claudio Imbrenda, Dirk

Kutscher, and Börje Ohlman. A survey of information-centric
networking. IEEE Communications Magazine, 50(7):26–36, July
2012.

[2] Christian Dannewitz, Dirk Kutscher, Börje Ohlman, Stephen Farrell,
Bengt Ahlgren, and Holger Karl. Network of information (NetInf) –
an information-centric networking architecture. Computer
Communications, 36(7):721–735, April 2013.

[3] S. Farrell, D. Kutscher, C. Dannewitz, B. Ohlman, A. Keranen, and
P. Hallam-Baker. Naming Things with Hashes. RFC 6920 (Proposed
Standard), April 2013.

[4] B. Kauffmann, J.-F. Peltier, et al. D.B.3 (D-3.3) final NetInf
architecture. Deliverable D-3.3, version 1.1, SAIL EU FP7 Project
257448, January 2013. FP7-ICT-2009-5-257448/D.B.3.

[5] D. Kutscher, S. Farrell, and E. Davies. The NetInf Protocol.
Internet-Draft draft-kutscher-icnrg-netinf-proto-01, Internet
Engineering Task Force, February 2013. Work in progress.

[6] R. Pantos and W. May. HTTP live streaming. Internet-Draft
draft-pantos-http-live-streaming-12, IETF Secretariat, October 2013.
Work in Progress.

