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Abstract—Range-based IEEE 802.15.4 localization systems
currently require relatively high anchor density for indoor de-
ployments. It can therefore be beneficial to use external sources of
transmission as additional anchors. We present methods for using
WiFi beacons to improve localization accuracy of a range-based
IEEE 802.15.4 localization system in cases where only two IEEE
802.15.4 anchor nodes are available. We do this by identifying
WiFi beacons from RSSI traces that we dynamically sample
online, and applying fingerprinting and range-based methods
using the RSSI values of the identified beacons. However, because
the data of the WiFi traffic is not decodable by the IEEE 802.15.4
devices, these RSSI measurements lack identifiers that can
associate them to specific WiFi Access Points (APs). Therefore,
novel methods are required for both fingerprinting and range-
based approaches to allow for these additional WiFi APs to be
used as anchors. We show by using real-world measurements that
our beacon identification method gives a false-positive rate of only
3%, and that if the range measurements to the IEEE 802.15.4
anchors are relatively accurate, with a standard deviation of 1
and 3 m, a localization accuracy improvement of 47% and 24%
can be gained, respectively.

I. INTRODUCTION

Interference can be harmful to the performance of RF based
localization systems through its influence on signal features
used for localization [1]. Nevertheless, signals from interfering
systems may also contain information that is useful for local-
ization. In this paper we present methods for identifying WiFi
beacons on IEEE 802.15.4 devices, and use the corresponding
RSSI values for localization purposes.

This is of high relevance for range-based IEEE 802.15.4
indoor localization systems. Such systems currently require
relatively high anchor density, due to the fact that at least
three anchor nodes are required to produce a unique solution,
and that IEEE 802.15.4 radios typically have a limited trans-
mission range in indoor environments. If only two anchors are
available, two possible solutions exists, as shown in Figure 1.
Moreover, extending the range by increasing the transmission
power, potentially results in a high ratio of non-Line-of-Sight
(nLoS) measurements which typically have lower accuracy
compared to Line-of-Sight (LoS) measurements. Therefore, it
can be beneficial to use external sources of transmission as
possible additional anchors.

However, WiFi signals are not decodable by IEEE 802.15.4
devices and hence the extracted RSSI values are anonymous.
That is, it is unknown to which APs they correspond. Cur-
rent range-based and fingerprinting approaches rely on this
information. Therefore, to enable the use of anonymous RSSI
measurements, new types of localization methods are required.
It is unlikely that the anonymous information is sufficient

Fig. 1: The two solutions obtained from range-based localization with
only two anchors.

to achieve localization performance comparable to traditional
localization solutions by itself. This is because multiple com-
binations of assigning measurements to anchors can result in
seemingly valid location solutions. In this paper, we show that
the anonymous measurements can be used in combination with
other non-anonymous localization measurements of the prin-
cipal localization system to improve localization in scenarios
where only two range-based anchors of the principal system
are available. To this end, we develop a range-based and a
fingerprinting method adapted for anonymous measurements,
and use them to select the most probable of the two solutions
obtained in such scenarios.

Depending on the method used, different types of prior
information about the anonymous sources is needed. We
refer to this as environmental awareness [2]. For range-based
methods the locations of the anchors must be known, and
some feature of signal must be correlated to the distance to
the source. For fingerprinting methods, the only requirement
is the existence of a signal feature that is stable over time and
that varies in space.

These requirements determine the applicability of the meth-
ods with respect to the level of environmental awareness
available in a given scenario. However, fingerprinting meth-
ods require an extensive calibration phase for learning the
fingerprints of different locations, while range-based methods
require a much simpler calibration step to estimate different
parameters for the transformation of signal features into range
estimations. For anonymous localization approaches, however,
additional information may be needed. In our case, for the
range-based method, we also need to know the channels used
by the APs. Moreover, we use a list of relevant beacon-periods
to identify the WiFi beacons. This information is provided by
the environmental awareness layer in our system, as shown in
Figure 2.

To our knowledge, this is the first work that uses anonymous
measurements for range-based and fingerprinting methods.
Even though the identification of the WiFi beacons, and the
extraction of their RSSI values is specific for our approach, the



range-based and fingerprinting methods we develop for com-
bining the anonymous and non-anonymous measurements are
generic and work with any anonymous range or fingerprinting
measurements.

We evaluate our system using simulated and real-world
measurements. In the simulated experiment, we have perfect
knowledge of the accuracy of the anonymous measurements,
and only two anonymous anchors are used which results in a
lower degree of uncertainty than in the real-world experiment.

With real-world anonymous measurements, our beacon
identification method gives a false-positive rate of only 3%.
For moderate accuracy of the non-anonymous measurements
with measurement standard deviation of 3 m, we obtain a
localization accuracy improvement of 24% compared to using
only the two non-anonymous measurements. For the simulated
experiment, the corresponding accuracy improvement exceeds
40%. For high-accuracy non-anonymous measurements with
standard deviation of 1 m, the improvement for the real-world
and simulated experiments is 47% and 60%, respectively.

The paper continues as follows. In Section II we present
related work. In Section III-A, we present our approach for ex-
tracting signal features used for localization from WiFi signals
that are sampled by IEEE 802.15.4 devices, and Section III-B
describes how RSSI measurements can be transformed into
range measurements. Sections III-C and III-D describe how
measurements from anonymous sources can be used under
the two different scenarios outlined above, namely using
a fingerprinting approach and a range-based approach. We
evaluate the system in Section IV, and finally conclude the
paper in Section V.

II. RELATED WORK

The use of anonymous measurements has previously been
proposed by Franchi et al. [3] for mutual localization in
multi robot systems. In their work they combine the output
from a robot’s odometer with anonymous bearing and range
measurements to other neighboring robots to determine their
relative configuration. Cognetti et al. [4] extend this to bearing-
only measurements in 3D to enable localization of UAVs.
A main difference to our work is that we use range-only
measurements and fingerprinting. Moreover, the anonymous
RSSI measurement have a much lower level of accuracy than
the laser measurements in [3] or the simulated bearings in [4].

The idea that devices of various technologies can be
detected by mere processing of the sampled spectrum has
already been mentioned in [5] where the authors use hidden
structures of signals such as cyclic prefix of OFDM-based
technologies to identify different devices. The detected devices
and their respective information can constitute a localization
system which was implemented in [6]. However a very high
sampling rate is needed to reveal these hidden structures. As
the transmission period of beacon packets is in the order of
milliseconds, e.g. 100 ms, and given the transmission rate, its
length is in the order tens of microseconds, we do not need a
sampling rate that is as high as the one use by Hong et al. [5].
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Fig. 2: System diagram.

A major part of our work focuses on the identification
of WiFi beacons from sampled IEEE 802.15.4 RSSI traces.
This has previously been done by both Hermans et al. [7],
and Iyer et al. [8] for the purpose of classifying interference.
Hermans et al. use patterns in corrupted IEEE 802.15.4 packets
to distinguish between four different types of interference.
However, two things make this approach unsuitable for our
purposes. Firstly, the crucial information of the RSSI from
the interfering WiFi signal is unknown. Secondly, the system
does not distinguish between beacons and other WiFi traffic.

On the other hand, the system presented by Iyer et al.,
which is the inspiring work for this paper, fulfills these two
requirements, but is, for other reasons unsuitable for our
purposes. We need, for example, higher resolution for the
durations of RSSI bursts.

We use Spray [9] to fuse the anonymous and non-
anonymous measurements. Spray is a multimodal, particle fil-
ter based localization system that separates different modalities
into different components that are isolated from each other.
Particle filters [10] is a widely used approach for highly non-
linear localization problems. We implement a new component
in Spray for dealing with anonymous range measurements.

III. SYSTEM DESCRIPTION

The system consists of three phases as shown in Figure 2:
A feature extraction phase, a feature processing phase, and a
fusion phase. The feature extraction phase is responsible for
sampling the wireless medium, and filter out RSSI bursts that
correspond to WiFi beacons. The output is the mean RSSI
value for each group of beacons believed to correspond to the
same AP.

The mean RSSI values are then processed in the feature
processing phase. The output depends on the target localiza-
tion method. In case of fingerprinting, the RSSI values are
matched against a database, and the output is a set of location
candidates. If the target is the range-based method, the RSSI
values are transformed into range estimations.

Finally, the output from the feature processing phase is fused
with the non-anonymous measurements from the principal
localization system. For this purpose, we use Spray [9], a
multimodal, particle filter based localization system we have
developed earlier. Spray separates different modalities into
separate components that are isolated from each other. Spray
works in two phases. First a particle generation phase in
which each component is allowed to generate particles in
areas suggested by their measurements, and then, a particle



evaluation phase in which each component weights all gener-
ated particles based on how well they fit their measurements.
We implement a new Spray-component for the anonymous
range measurements, that we present in Section III-C. In
Section III-E we describe the fusion phase.

The first phase is specific to our approach of using WiFi
beacons for localization. The second phase is applicable to
any RSSI measurements, regardless of the methods of acqui-
sition, and the last phase is applicable to any type of range
measurements or set of location candidates.

Depending on the used method, different types of prior
information is also needed about the anonymous sources, as
described in Section I. These are represented in the environ-
mental awareness block. The different types of information
are described throughout the succeeding subsections.

A. Feature Extraction

WiFi beacons have the following properties that make them
useful for localization: 1) WiFi APs are typically stationary
with some exceptions like mobile hotspots. 2) A given AP
typically uses a fixed transmission power. 3) Beacons usually
have a fixed length for a given SSID (each AP can have
multiple SSIDs), and 4) beacons are transmitted periodically.
The periodicity is a multiple of 1.024 µs and is typically set to
a value around 100 ms. However, periodicity may be broken
due to the back-off mechanism of CSMA. Properties 1 and 2
are necessary for the localization data to be meaningful, and
properties 2, 3 and 4 can be used to identify the WiFi beacons
even if the packets are not decodable.

1) RSSI Sampling: We use an IEEE 802.15.4 based sensor
node to sample RSSI traces. We use a threshold of -90 dBm
and treat any signal below the threshold as silence. Timestamps
are stored for each time the RSSI transits from silence to non-
silence and vice versa. The maximum RSSI of each burst, i.e.
non-silent period, is also stored.

2) Beacon Identification: Once the sampling phase is fin-
ished, the sampled data is off-loaded to a central computer. The
data can be compressed before transmission to minimize traffic
load and energy consumption. For example, applying a simple
dictionary based compression scheme to the RSSI samplings
used in Section IV-D, we achieve an average compression ratio
of 1.49 in under 100 ms on a sensor node. This is, however,
currently not implemented as part of the system.

At the central computer, the relevant information is ex-
tracted using a probabilistic approach in which each burst is
compared with all other bursts and weighted according to how
similar they are in signal strength, duration, and how well
the time interval between the bursts fits one of a given set of
relevant beacon periods. This information is represented by the
AP Periods box in Figure 2. In the evaluation of Section IV,
the relevant beacon periods are 0.1024 or 0.104448 seconds.

Equations 1, 2, and 3 show how the weights representing the
similarity between bursts i and j are computed for duration,
signal strength, and periodicity, respectively. fN (·) is the
normal distribution’s PDF function, and σdur, σrssi, and σper
are standard deviations for the different features. di, si, and

ti denote burst i’s duration, signal strength, and start time,
respectively. Q is the set of expected periods. In our case
Q = {0.1024, 0.104448}. In Equation 3, the square brackets
denote the round function.

wduri,j = fN (di − dj , σdur) (1)

wrssii,j = fN (si − sj , σrssi) (2)

wperi,j = fN

(
min
∀q∈Q

(∣∣∣∣ti − tj − [ ti − tjq

]
q

∣∣∣∣) , σper) (3)

We then compute a total weight wtoti,j as the product of
the individual weights: wtoti,j = wduri,j w

rssi
i,j wperi,j , and define

a cluster Ci as all the bursts j that with respect to burst
i have a total weight higher than a threshold h, i.e, Ci ={
j|wtoti,j > h,∀i, j

}
. For the evaluation in Section IV, we use

h = 0.9 We chose 0.9 since in our preliminary experiments
it gave a good trade-off between false-positive and false-
negatives. We remove any duplicated clusters.

Since our main goal is to extract reliable information, and
not the identification of beacons per se, it is preferable to
have false-negatives over false-positives. Therefore, we use a
strict approach that aims to only select the two clusters that
are most “useful” and most likely to correspond to beacons.
We do this by yet another weighting procedure in which high
signal strength, number of bursts in the cluster, and a high
mean weight of the bursts of the cluster is rewarded. Clusters
with high signal strength are more useful since they are more
likely to correctly correspond to the estimated distance because
there is a higher probability that the corresponding source is
in LoS.

B. RSSI-Based Ranging

We now describe the RSSI-to-Range step shown in Figure 2.
For the range based approach, once the RSSI values are
extracted from the RSSI samplings, they are transformed
into range estimations. We use the free space propagation
model [11] in Equation 4 to transform an RSSI measurement
to a range estimation d.

Pr =
PtGtGrλ

2

(4π)2d2L
(4)

In the equation, Pr and Pt are the received and transmitted
power, respectively. Gr and Gt are the receiver’s and the trans-
mitter’s antenna gains, λ is the wavelength, and L is called
the system loss factor. Instead of determining these constants
individually, we combine them into one single constant K as in
Equation 5. The value of K is determined through calibration
by collecting a number of RSSI measurements and compute
an average value for K.

Pr = K
1

d2
(5)

Because the constant K depends on the transmission power,
different values of K must be used if APs use different
transmission powers. This is represented by the AP Tx Power
box in Figure 2. Therefore, each RSSI value is transformed
into multiple range estimations, each one corresponding to a
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Fig. 3: The measured RSSI depends on distance between the receiving
and transmitting channels.

single AP. This does not imply that one needs to know from
which AP the signal originates. But the calibration constant
K must be known for each AP, and is provided by the
environmental awareness layer.

Moreover, the environmental awareness layer must also
provide information about the channel used by each AP. This
is represented by the AP Channel box in Figure 2. This
is because the RSSI sample traces contain bursts from all
WiFi channels that overlap the 802.15.4 channel used during
sampling. The RSSI values observed from an overlapping WiFi
channel decrease with the distance between the two channel
center frequencies. This constitutes a problem if the channels
used by the different APs of interest are relatively close to
each other, because a low power signal on a channel close to
the sampling channel, and a high power signal on a channel
further away can result in similar observed RSSI values on the
sampling channel.

However, if the transmission channels of the AP of interest
are known, we can compensate the observed RSSI values
based on the distance between the sampling channel and
the AP channel when constructing the range measurements
for a specific AP. That is, if s is the observed RSSI, we
can compute the RSSI value, si, it corresponds to if the
signal originated from AP i with center frequency fc,i, as
si = s − g(fc,sample − fc,i), where g(·) is the empirical
spectral mask for the used WiFi technology. Figure 3 shows
the spectral mask specified by the IEEE 802.11g standard, and
relative RSSI values measured using a IEEE 802.15.4 node on
different channels for WiFi transmissions on channel 7.

C. Using Anonymous Range Measurements

Once the RSSI values are transformed to range measure-
ments, we need to solve the following problem: Given a set
of anonymous measurements and a set of possible anchors to
which the measurements correspond, select the most probable
of the two localization solutions provided by the principal
localization system.

Figure 4(a) gives an intuition of the problem. The blue
dots and circles represent non-anonymous anchor nodes that
are part of the principal localization system, and their cor-
responding measurements, respectively. Yellow dots indicate
the location of anonymous anchors. The green and red dots
represent the correct and incorrect solutions provided by the
principal localization system. Finally, the green and red circles
around the anonymous sources represent the two anonymous
measurements. Green is used for the measurement that corre-
sponds to the source at the center of that circle. As the example

Non-anonymous anchor Anonymous anchor Incorrect location Correct location

(a) (b)

Fig. 4: A simple example of using anonymous ranging (a) and
anonymous fingerprinting (b) to resolve a case where too few non-
anonymous anchors are available.

in the figure illustrates, if measurements are perfect, the correct
location is likely to fit with a higher number of measurements.

We implement a new anonymous-range component in Spray
which we now describe. The component is used in the fusion
process described in Section III-E.

As previously mentioned, Spray works in two phases: a
particle generation phase, and a particle evaluation phase. The
particle generation phase for the anonymous-range component
is straight-forward: For each anonymous measurement, the
new component generates particles in a circular cloud with
radius corresponding to the measurement, around each of the
anonymous anchors.

The goal in the particle evaluation phase is to assign weights
to each particle in a way such that the particles near the most
likely location obtains the highest weights. This phase is more
complex and can be done in different ways.

Solving this optimally requires running the particle filter
once for each possible combination of measurement - anchor
assignments. If there are n anchors and m range measure-
ments, there are n!

(n−m)! different such combinations. It can
be seen as the number of ways to select m from n without
repetition, which is n!

m!(n−m)! , and for each such combination
find all m! permutations. Already with modest settings such
as n = 5 and m = 3, there are 60 such combinations. Hence,
this rapidly becomes prohibitively computationally expensive.

Instead, each particle is assigned a weight from the
measurement-anchor combination that agrees most with the
particle. That is:

wp = max
∀i,∀j

(f(rj − di,p), (6)

where rj is range measurement j, di,p is the distance between
particle p and the anonymous anchor i, and f(·) is the
weighting function. This is a greedy solution, and the result
can be inconsistent in the sense that anchors can be assigned
multiple measurements, and multiple anchors can be assigned
the same measurement. This approach is of the order O(mn).

As weighting function, we use the PDF, fN (µ, σa), of the
normal distributions with µ = rj − di,p. The value of σa
determines the level of importance given to the anonymous
measurements, and should, on one hand, reflect the measure-
ment standard deviation (i.e. the expected accuracy of the
measurements), but on the other hand also take into account
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Fig. 5: An illustration of a successful case for fusing two anonymous range measurement with anonymous information to select one of the
two possible solutions: (a) Particle generation for anonymous and non-anonymous measurements. (b) Particle evaluation. Two clusters are
formed, but cluster 1 (orange) is heavier because of the anonymous measurements (c) Generation for non-anonymous measurements and a
proximity component with center at cluster 1. (d) Particle evaluation. The alternative solution (cluster 2) has been completely abandoned.

the uncertainty resulting from the fact that the measurements
are anonymous. The measurement standard deviation can
easily be estimated for a given environment, by performing and
analyzing a series of measurements. The uncertainty resulting
from anonymity is, however, harder to predict. This makes it
difficult to determine an optimal value for σa. In Section IV,
we use σa = 6 which was found to give good results in our
preliminary experiments.

D. Matching Anonymous Fingerprints

We now describe the step labeled FP Matching in Figure 2.
We use the RSSI values from the feature extraction phase
as fingerprints. In traditional WiFi fingerprinting techniques,
the learning phase consists of collecting RSSI measurements
and label them with the IDs of their corresponding APs.
At run-time, more labeled RSSI values are collected, and
compared to those from the learning phase using a matching
function. Finally, the locations associated with the best match
is reported [12].

For anonymous measurements, however, the identifying
labels are not available, and each learned fingerprint consist
of a set of unlabeled RSSI values associated with a specific
location. Similarly, the run-time fingerprint for a specific
location is also a set of unlabeled RSSI values. We use a simple
method for comparison between the learned and the run-time
fingerprints. The RSSI values of both the run-time fingerprint
and the learned fingerprints are sorted and compared so that
the highest run-time RSSI value is compared to the highest
learned value, and so on. The distance di between the run-
time fingerprint r and the fingerprint li, learned at the ith
location is computed as the squared Euclidean distance given
by Equation 7, where n is the number of RSSI values output
by the beacon extraction phase.

di =

n∑
k=0

(li,k − rk)2 (7)

Then we select the two locations with the smallest Euclidean
distance di, and create proximity components in Spray with
center points according to these locations, as illustrated by
the yellow discs in Figure 4(b). The proximity component
generates particles in a disc shaped cloud around its center
point, and weights particles based on how close they are to

Anonymous

Non-anonymous

Clustering Proximity

Fig. 6: The localization process. Anonymous and non-anonymous
measurements are fused, the heaviest cluster is selected, and finally
the non-anonymous measurements are fused and higher weight is
given to the particles close to the selected cluster.

this center. If the resulting locations are accurate, the proximity
component will cause the particles at the true location to have
higher weights. These proximity components are then used in
the fusion process described in the next section.

The fingerprinting comparison approach in Equation 7 has
a drawback, because there is no guarantee that the learning
and runtime phases will detect beacons from the same APs.
However, as explained in Section III-A, the beacon identi-
fication phase is biased towards selecting clusters with high
RSSI, which increases the probability of selecting clusters
corresponding to the same APs compared to if two clusters
were to be selected at random. We show in Section IV that
even with this simple matching approach we can improve
localization accuracy.

In this approach we have not exploited the fact that different
APs in the same environment often are configured to use
different channels to minimize congestion. In such cases, the
channel can be used to de-anonymize the beacons to some
extent.

E. The Fusion Process

Here we describe the fusion phase shown in Figure 2, and
illustrated in further detail in Figure 6. This phase is identical
for the anonymous ranging and fingerprinting methods, with
the difference that the anonymous range component described
in Section III-C is used for the ranging method, while the
proximity components described in Section III-D are used
for the fingerprinting method. The box labeled Anonymous
in Figure 6 represents either one of these components, while
Non-anonymous represents Spray’s range component that is
used for the non-anonymous measurements. Spray is run
once with the anonymous and non-anonymous components.
This generates a number of particles that correspond to both
types of measurements. Figure 5(a) shows an example for
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Fig. 7: Bursts classified to different clusters compared to ground truth. The bottom figure is a zoomed version of the top figure. Blue bars
are sampled RSSI values. Colored bars represent WiFi beacons from sources indicated by letters. The red zero represents a burst incorrectly
classified as belonging to cluster 0. Green numbers represent bursts correctly classified to the cluster corresponding to the given number.

the anonymous range method. Then each particle is weighted
with respect to all components, and the particles with the
highest weights are selected. If there are only two non-
anonymous anchors available, this typically results in two
clusters of particles, which both agree equally well with the
non-anonymous measurements. This is shown in Figure 5(b).
However, the cluster that agrees more with the anonymous
measurements will have a slightly higher weight sum than
the other. We use a clustering algorithm to identify the two
clusters, and we compute the weight sum for each of them. The
cluster with the highest weight sum is selected and a proximity
component with same center as the cluster is generated.

The proximity component is then combined with the non-
anonymous component, and Spray is run a second time, as
shown in Figure 5(c). Finally, the outcome is, ideally, a single
cluster of particles, as shown in Figure 5(d). The two-step
approach is used to increase the probability that the final
estimated location is one of the two possible solutions given
by the non-anonymous measurements. Using only the first step
can easily result in that the final estimated location is different
from these two solutions, in cases where multiple anonymous
sources are available.

The level of importance given to the proximity component
in the second run is determined by a constant σp that, due
to the same reasons as for σa, also is difficult to determine
optimally. In Section IV-D, we use σp = 5 which was found
from performing preliminary experiments.

IV. EVALUATION

In Section IV-A, we present results regarding the beacon
identification phase. In Section IV-B, we evaluate the accuracy
of the range measurements formed from the RSSI values
obtained from the beacon identification phase.

In sections IV-C and IV-D, we evaluate the benefit of using
anonymous measurements to find a unique positioning solu-
tion in the case when only two non-anonymous anchors are
available. In Section IV-C, we perform a simulated experiment
to find a baseline of the improvement that can be obtained
by using anonymous ranging measurements. In Section IV-D
we perform a semi-real-world experiment in an office envi-
ronment. In this experiment, all anonymous measurements are

real, but the two non-anonymous measurements are simulated.
This approach is chosen because we want to decouple the
results from any specific deployment or technology of the non-
anonymous anchors. It turns out that the outcome depends
considerably on the location of these anchor relative to the
target device, and on the accuracy of the non-anonymous range
measurements. Using a fixed real setup would give results for
only a single instantiation of the problem.

A. WiFi Beacon Identification
We record over 100 different 802.15.4 RSSI traces in

an office environment, and use the approach described in
Section III-A to extract WiFi beacons. To get the ground
truth we sample the WiFi medium using two WiFi devices on
neighboring channels simultaneously to the 802.15.4 sampling.
We then align the two logs to get a mapping between WiFi
packets and bursts sampled by the 802.15.4 radio. Figure 7
shows an example of this. The bottom figure is a zoomed
version of the top figure. The blue lines correspond to the
bursts sampled by the sensor node and the multi-colored bars
below correspond to WiFi beacons sampled using the two WiFi
devices. Beacons of the same color (and letter) correspond to
the same AP. The numbers 0 and 1 above the blue bursts
indicate the cluster they belong to. Cluster 0 corresponds to
AP Q, and cluster 1 corresponds to R. The red “0” indicates
that the corresponding burst has been miss-classified to belong
to cluster 0.

As mentioned in Section III-A, we select the two best
clusters with respect to the weighting mechanism, to use for
localization. There are two different types of false-positives
that can occur. One type is false-positive clusters, which are
clusters in which the bursts not corresponding to any beacons
is the largest group. The other type is false-positive bursts
which are incorrectly clustered bursts. We consider a burst to
be correctly clustered if it corresponds to a WiFi beacon from
the AP that has the greatest support in that cluster. That is,
the AP to which the largest group of bursts in that cluster
corresponds. Similarly, a burst is incorrectly clustered if it
corresponds to a beacon from a different AP or to no beacon
at all.

False-positive clusters are more severe than false-positive
bursts because they will result in range measurements that
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Fig. 8: (a) CDFs for false-positive and true positive bursts in the
beacon identification step. (b) Range estimation based on sampled
WiFi beacons in LoS.

potentially do not correspond to any AP at all. For the false-
positive bursts, however, because of the clustering mechanism
used, bursts belonging to the same cluster are guaranteed to
be very similar in signal strength which is the feature used for
localization. A false-positive burst will therefore not have any
greater impact on the final localization accuracy.

Figure 8(a) shows the CDF for the false-positive burst ratio
of a given cluster. That is, the ratio of the number of incorrectly
classified bursts in a specific cluster to the total number of
bursts in that cluster. Approximately 50% of the clusters have
no false-positive bursts, and in 3% all bursts are false-positives.
The latter occurs when the bursts not corresponding to any
beacons is the largest group in a cluster, that is, for a false-
positive cluster. Hence, we have a 3% false-positive cluster
rate.

The CDF for the ratio of true-positive bursts is also shown
in the figure. This is the ratio of the correctly classified bursts
in a cluster, to the total number of bursts that correspond to
beacons from the AP with the greatest support in that cluster.
More than 60% of all the bursts in a sampling are found in
50% of the cases. In the worst case, 30% are found, and 100%
are found in 2% of the cases.

B. RSSI Based Ranging

We perform a micro benchmark in a LoS environment to
investigate the accuracy for using the sampled bursts RSSI
values as range measurements as described in Section III-B.
We collect measurements every meter up to 10 m away from a
single AP. We calibrate using a leave-one-out approach, that is,
to estimate the distance to a specific measurement location, all
other measurements are used for calibration, except the ones
corresponding to that location. Figure 8(b) shows the result.
The accuracy is higher for shorter distances. The mean error
is 0.8 m, and the standard deviation is 1.03 m. The average
value of K as given in Equation 4, is 0.00055.

C. Simulation Experiment

In this experiment, we use simulation to evaluate the im-
provement of using anonymous range measurements for select-
ing the most plausible of the two solutions obtained when only
two non-anonymous anchor nodes are available. As opposed
to the semi-real-world experiment in Section IV-D in which
the anonymous APs have fixed locations, here we also want
to evaluate how the result varies depending on the locations
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Fig. 9: (a) The evaluated anchor locations relative to the target loca-
tion, for the simulated experiment. (b) Simulation results for different
standard deviations of the anonymous (σa) and non-anonymous (σn)
measurement errors. Red “+” indicate mean values.

of these APs. In addition to the anonymous AP locations, we
also evaluate for different configurations for non-anonymous
anchor node locations, and different measurement variances
for both the anonymous and non-anonymous measurements.

Only two anonymous APs are used in the simulations.
Typically, in a real situation, as in the experiment presented in
Section IV-D, more anonymous APs are available which leads
to higher uncertainty of which measurement corresponds to
which AP. Therefore, the results from this simulated exper-
iment should be seen as upper limits for the improvement
of using the proposed anonymous ranging approach for the
evaluated configurations.

For each simulation run, we locate the two anchor nodes
at one of 8 different positions indicated by the red dots in
Figure 9(a). These are four different locations, π2 radians apart,
at two different distances from the target location: 10 and
30 m. We use the same procedure to select the anonymous
AP locations. For the non-anonymous anchors, we do not
evaluate the case when both anchors have the same angular
configuration, to avoid the degenerate case in which both
anchors have the same position. We use four different values
(1,3, 5, and 8 m) for the standard deviations σn and σa used to
simulate non-anonymous and anonymous range measurements,
respectively.

Figure 9(b) shows a standard box plot for all different
configuration of σn, and σa, with a red “+” indicating the
mean error for each setting. For high-accuracy anonymous
and non-anonymous measurements with σn = σa = 1 m, the
benefit, with respect to the mean errors, is approximately 60%
for combining non-anonymous measurements with anonymous
ranging, compared to using only the non-anonymous mea-
surements. In the figure, these are labeled range and none,
respectively. For σn = σa = 3 m and σn = σa = 5 m,
the benefit is approximately 40% and 20%, respectively. For
low-accuracy measurements with σn = σa = 8 m, the benefit
is negligible. That the benefit decreases when σn increases
is intuitive, because if the error is high for both solutions
given by the non-anonymous measurements, it matters less
which one we chose. This is also illustrated in Figure 13(b), in
which en is the mean error from using only non-anonymous
measurements, and eb, and ew are the errors if we always
select the best and the worst solutions, respectively. As can be
seen in the figure, the difference between en and eb decreases



0.6
0.7
0.8

co
rr

ec
t

ra
tio

none range anchor1 anchor2

5
10
15
20

m
ea

n
er

ro
r (

m
)

10
30
10
30

di
st

. (
m

)

0 5 10 15 20
configuration number

(non-anonymous)

1π/4
3π/4
5π/4
7π/4

di
r. 

(r
ad

)

0 5 10 15 20
configuration number

(AP)
Fig. 10: Simulation results shown for (left) the different configuration
of the non-anonymous anchors, averaged over all configurations for
the anonymous anchors, and (right) the different configuration of the
anonymous anchors, averaged over all configurations for the non-
anonymous anchors.

with increasing σn. The results in Figure 13(b) is obtained by
analytically computing the two possible solutions for a high
number of random positions for both anonymous and non-
anonymous anchors.

The accuracy of the non-anonymous measurements (σn) has
a higher impact on the estimation error than the accuracy of
the anonymous measurements (σa). The reason for this is that
the final position estimation is, in general, one of the two
solutions given by the non-anonymous measurements.

Figure 10 show the results for a measurement standard
deviation of σn = σa = 3 m, sliced in two different ways.
The left graph shows the results for each evaluated location
configuration of the two non-anonymous anchors, averaged
over all AP configurations, while graph to the right shows the
results for each anonymous AP configuration, averaged over
all non-anonymous anchor configurations.

In the left graph, the anchor location configuration is shown
in the three bottom graphs of the figure as the angle and dis-
tance from the target location. For example, for configuration
number 10, anchor 1 is located 30 m away in direction π

4
from the target position, and anchor 2 is located 10 m away
in direction 7π4 . This corresponds to anchor locations 5 and
4 in Figure 9(a). In the right graph, the three bottom graphs
shows the AP configuration in the same way.

The top graphs in the two figures show the average probabil-
ity of selecting the correct cluster for each configuration. The
dashed lines indicates the average overall ratio. We define the
correct cluster to be the one that is closest to the true target
position. In the left graph of Figure 10, there are two low-
probability regions in which the probability decreases to be-
tween 55 and 65%. This corresponds to the cases when the dif-
ference between the two anchor nodes’ angular configurations
is π radians. In these cases the target node lies on a straight
line between the anchors, and a unique solution is actually
available. The resulting particles are, however, still divided into
two clusters by the localization algorithm. Because the two
clusters are relatively close to each other, it is difficult to select
the correct one. However, because the clusters are close to each

other, there is only a limited impact on the localization error,
if the wrong one is selected. This can be seen in the second
graph from the top in which shows the estimation errors for
running the simulation with and without the use of anonymous
measurements, labeled range and none, respectively. When
anonymous range measurements are used, the estimation error
has low variance for all anchor configurations, also in the
low-probability regions. In this region, however, not using the
anonymous measurements results in a smaller error. Therefore,
detecting the cases when the two anchor nodes and the target
are positioned on a straight line, could further improve the
results. This is possible by computing the sum of the two
non-anonymous range measurements. If the sum is close, or
equal to the distance between the two anchors, then the target
must be on a straight line between the two. This has, however,
not been implemented in our system.

The results also show that, when not using anonymous
measurements, the errors depend on the anchors’ distances
to the target location when the non-anonymous anchor nodes
are not π radians apart. For the error peaks of approximately
20 m, both anchors are at a distance of 30 m from the
target, and the lowest error for a given angular configuration
is found when both anchors are at a distance of 10 m. This
is expected because the distance between the two solutions
resulting from the non-anonymous measurements increases
with the anchor-to-target distances, unless the target is on a
straight line between the anchors.

In the right graph of Figure 10, the ratio for correct cluster
selection has smaller variance than in the graph to the left.
This means that this ratio is less sensitive to the locations
of anonymous anchors than to that of the non-anonymous
anchors. The highest probabilities of selecting the correct
cluster are found when the APs are π radians apart. The lowest
errors for anonymous ranging are, as expected, found when the
two APs are π radians apart and the target-to-AP distances are
short. Naturally, if anonymous measurements are not used, the
error is not affected by the AP locations.

The small variances of the mean errors for range in Fig-
ure 10 show that the performance of anonymous ranging is
stable with respect to the positions of both anonymous and
non-anonymous anchors. This is not the case if anonymous
measurements are not used, as in the left graph. However, the
errors in the two figures are, as previously mentioned, averages
over the anonymous anchor configurations, and the non-
anonymous anchor configurations, respectively. The individual
errors have a much higher variance, as Figure 9(b) shows.

D. Semi-Real World Experiment

We perform a real world experiment in an office environ-
ment. The purpose is to evaluate the entire system described
in Section III in a real environment. Figure 11(a) shows the
evaluation points of the experiment as red dots. The points are
2 m apart. The experiment is carried out by letting a mobile
robot [13] visit the evaluation points in order and collect
measurements using an STM32W sensor node [14], equipped
with an external antenna. The sensor node samples RSSI as
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Fig. 11: (a) Evaluation points (red) and anonymous WiFi APs (blue)
for the real-world experiment. (b) Estimation error for all different
standard deviations of the non-anonymous measurements (σn) for the
real-world experiment.
described in Section III-A. The timestamps are taken using a
24 MHz clock, and the sampling frequency is approximately
1.5 MHz. The sensor node has 16 KB of RAM that is shared
with the Contiki OS [15], and can therefore only store a limited
number of bursts at the same time. The total sampling time
therefore depends on the current traffic load. The sample traces
are transferred via USB to a central computer for processing.

The robot uses information from its odometers and a Kinect
3D camera to localize itself. The ground truth is given by the
predefined evaluation points, which means that there is a built-
in error due to inaccuracies in the robot’s own localization
mechanism. This error is in our experiments in the order of
up to 1 m. At each evaluation point the medium is sampled
on three different 802.15.4 channels which overlap with the
channels of the APs of interest. The APs are shown as blue
dots in Figure 11(a). In addition to these APs, other APs
from neighboring floors are present on the sampled channels.
These APs have unknown locations and cannot be used for
localization. Due to the anonymity, however, it is impossible
to differentiate these beacons from the beacons of interest. We
also construct a second data set by repeating the procedure
at each location in between the evaluation points shown in
Figure 11(a). This data set is used as a database for the
fingerprinting method.

Rather than deploying non-anonymous anchors throughout
the evaluation area, we use simulation to generate range mea-
surements to imaginary anchor node locations. This approach
is chosen so that we can evaluate multiple settings for both
the anchors relative locations to the evaluation points, and the
accuracy of the non-anonymous range measurements. As for
the simulation experiment in the previous section, the benefit
of using the extra information obtained from the anonymous
sources largely depends on these parameters.

For each evaluation point, we use 448 different anchor-
location configurations, and evaluate this for four different
values (1, 3, 5, and 8 m) on the measurement standard
deviation σn that controls the simulated accuracy of the
evaluation-point-to-anchor measurements. In each of the 448
different anchor-location configurations, each anchor can be at
a distance of 5, 10, 20 or 30 m away from the evaluation point,
and in one of the 8 different directions π

8 , 3π8 , 5π8 , . . . ,15π8 .
As in the simulation experiment, we have excluded the case
where both anchors have the same angular configuration.
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Fig. 12: (a) Estimation error per angle, averaged over all distances
and locations for the semi-real-world experiment, and (b) per dis-
tance, averaged over all angles and locations for the semi-real-world
experiment.

Figure 11(b) shows the average error for the four different
values of σn. These are computed over all combinations of
evaluation points, distances and angular configurations for
the non-anonymous anchors. The curve labeled none repre-
sents the case where only non-anonymous measurements are
used, and the curves labeled range, fp, and both represent
the case when non-anonymous measurements are combined
with anonymous range, anonymous fingerprinting, and both,
respectively. For σn = 1 and σn = 3, the average improvement
with respect to the mean errors, for using any combination
of anonymous localization, is 47% and 24%, respectively,
compared to only using non-anonymous measurements. The
benefit is negligible for σn = 5 and σn = 8. For the latter, us-
ing anonymous fingerprinting actually decreases performance.
This is due to many high errors for the evaluation points 25
through 35 shown in Figure 11(a). This is further elaborated
on at the end of this section.

Figures 12 and 13 show the cases for which σn = 3 m. The
top graph of Figure 12(a) shows the estimation errors for a
given angular configuration for the two non-anonymous anchor
nodes, averaged over all evaluation points and evaluation-
point-to-anchor distances. The bottom graph shows the values
for the angular configurations. As in the simulated experiment
in the previous section, it is only in the special case in which
the difference of the directions of the two anchor nodes is
exactly π radians, that anonymous information impairs the
localization accuracy. This happens for angular configurations
3, 10, 16 and 21 in Figure 12(a).

Similarly, Figure 12(b) shows the estimation errors per
evaluation-point-to-anchor distances averaged over all evalua-
tion points and angular configurations. Using anonymous in-
formation improves the accuracy when both evaluation-point-
to-anchor distances are greater or equal to 10 m. The highest
benefit is obtained for long distances. When both anchors are
30 m away from the target, the absolute accuracy improvement
is approximately 10 m. This can be contrasted to the accuracy
decrease for short distances, which is approximately 0.5 m.
Moreover, cases where anchors are close to evaluation points
can easily be identified directly from the range measurements,
and in such cases, the use of anonymous range information
can be avoided.

Figure 13(a) shows the errors per evaluation point, averaged
over all distance and angular configurations. Because the sim-
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Fig. 13: (a) Estimation error per location, averaged over all angles
and distances for the semi-real-world experiment. (b) The difference
of errors when using only non-anonymous measurements (en), and
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tively

ulated non-anonymous range measurements are independent
of the actual location, the average errors for using only non-
anonymous measurements have minimal variance. By compar-
ing the evaluation point indices to those given in the map in
Figure 11(a), we see that, for all the anonymous localization
methods, the estimation errors are in general lower for evalu-
ation points with higher AP density. This is expected for the
range based method, because the accuracy of the anonymous
range measurements generally decreases with distance. For the
fingerprinting method, the reason can be that the probability
increases that the beacon extraction phase outputs two beacon
clusters corresponding to the same AP. For example, the
anonymous measurements obtained for evaluation points 25
through 35 suffer from this problem. This makes any two
locations at similar distance from the closest AP have similar
fingerprints. This also explains that the fingerprinting method,
when σn = 8, results in worse performance than using only
the non-anonymous measurements (Figure 11). Because if the
fingerprinting method, more often results in that the “wrong”
solution is selected, then the difference between the errors
of using only non-anonymous measurements and combined
with fingerprinting increases with σn. This is illustrated in
Figure 13(b) by the line labeled ew− en. Here ew is the error
resulting from always selecting the worst of the two solutions
given by the non-anonymous measurement, and en is the error
when using only the non-anonymous measurements.

V. CONCLUSION

We have proposed a method for extracting RSSI values
corresponding to WiFi beacons, from RSSI traces sampled
using IEEE 802.15.4 devices. These RSSI values lack identi-
fiers as to which source they originate from. To this end, we
have proposed new range-based and fingerprinting methods
for using such anonymous measurements to for localiza-
tion purposes. We have shown that our beacon identification
method is able to identify groups of beacons with a false-
positive of only 3%, and that the extracted beacon RSSI
values can, with relatively high accuracy, be transformed to
range measurements for distances up to, at least 10 m. We
have evaluated our localization methods under the assumption
that two non-anonymous range based anchors are present,

and we use the anonymous measurements to distinguish be-
tween the two possible solutions resulting from the two non-
anonymous measurements. We show with both simulation and
real-world experiments, that the benefit of combining anony-
mous and non-anonymous measurements largely depends on
the non-anonymous anchors’ relative location to the target
position, and on the accuracy of their corresponding range
measurements. For relatively accurate non-anonymous range
measurements with a standard deviation of 3 m, we obtain a
24% and 40% improvement in the real-world and simulated
experiments, respectively.
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