
OPTIMIZED SHUNTING

WITHMIXED-USAGE TRACKS

SICS Technical Report T2013:06

Markus Bohlin, Sara Gestrelius SICS Swedish ICT
markus.bohlin@sics.se, sara.gestrelius@sics.se

Florian Dahms RWTH Aachen University
dahms@or.rwth-aachen.de

Matúš Mihalák, Holger Flier ETH Zürich
mmihalak@inf.ethz.ch, hflier@inf.ethz.ch

2013-12-19

https://www.swedishict.se

Executive Summary
We consider the planning of railway freight classification at hump yards, where the prob-
lem involves the formation of departing freight train blocks from arriving trains subject to
scheduling and capacity constraints. The hump yard layout considered consists of arrival
tracks of sufficient length at an arrival yard, a hump, classification tracks of non-uniform
and possibly non-sufficient length at a classification yard, and departure tracks of suffi-
cient length. To increase yard capacity, freight cars arriving early can be stored temporarily
on specific mixed-usage tracks. The entire hump yard planning process is covered in this
paper, and heuristics for arrival and departure track assignment, as well as hump schedul-
ing, have been included to provide the neccessary input data. However, the central prob-
lem considered is the classification track allocation problem. This problem has previously
been modeled using direct mixed integer programming models, but this approach did not
yield lower bounds of sufficient quality to prove optimality. Later attempts focused on
a column generation approach based on branch-and-price that could solve problem in-
stances of industrial size. Building upon the column generation approach we introduce
a direct arc-based integer programming model, where the arcs are precedence relations
between blocks on the same classification track. Further, the most promising models
are adapted for rolling-horizon planning. We evaluate the methods on historical data
from the Hallsberg shunting yard in Sweden. The results show that the new arc-based
model performs as well as the column generation approach. It returns an optimal sched-
ule within the execution time limit for all instances but from one, and executes as fast
as the column generation approach. Further, the short execution times of the column
generation approach and the arc-indexed model make them suitable for rolling-horizon
planning, while the direct mixed integer program proved to be too slow for this.

Extended analysis of the results shows that mixing was only required if the maximum
number of concurrent trains on the classification yard exceeds 29 (there are 32 available
tracks), and that after this point the number of extra car roll-ins increases heavily.

https://www.swedishict.se

Arrival Yard Classification Bowl Departure YardHump Brakes

(a) A schematic layout of a hump yard.

ti tg

engine decoup.
inspections

decoupling

Arrival Yard

roll in

tb

roll out engine coup.

tdepb

departure

Classification Bowl Departure Yard

coupling
brake test

Line Line

arrival

Hump

(b) Activities performed on a single car g, from its arrival in train i at the yard, via roll-in to
the classification bowl, roll-out, and finally departure as part of the new train b.

Figure 1: Typical layout of a hump yard, and activities performed on each car passing
through the yard.

1 Introduction
In railway freight transportation, there are two distinct types of services offered, namely
full train load and car load transportation. In full train load transportation, all cars of a
train share the same origin and destination. Typical examples are trains transporting coal
or ore. In car load traffic, a freight train consists of cars with various origins and desti-
nations, often from different customers. Car load shipments are transported through a
network of railway lines and classification yards (also known as marshalling or shunting
yards) where the cars from inbound trains are arranged into new outbound trains. This
paper considers the optimization of the operational tasks at the largest class of classifica-
tion yards, so called hump yards, where cars are pushed over a hump in order to roll onto
their respective classification track by means of gravity.

Fig. 1 shows the layout of a typical hump yard (Fig. 1a) and the basic shunting activi-
ties performed there (Fig. 1b). A hump yard typically consists of an arrival yard, a hump,
a classification bowl, and a departure yard. Trains arriving to the shunting yard are parked
on an available track at the arrival yard. The arrival time of a train i is denoted ti. After
the train has been parked on its designated arrival track, the cars of the train are inspected
and decoupled before they are ready to be rolled over the hump into the classification
bowl. The time at which a car g is rolled into the classification bowl is called the roll-in
time, denoted tg.

Once a car has been rolled into the classification bowl, it is typically parked on the
classification track designated for its outbound train. Tracks that are used for compound-
ing outbound trains are called formation tracks. An outbound train is ready to be rolled
out of the classification bowl once all cars of the train have been coupled on its allocated

1

https://www.swedishict.se

www.sics.se

D B D C B A

C A C D

B E B A E A

A C C E B A C

Mixing track

Train formation tracks

1.

(a) Trains are rolled over the hump in arbitrary
sequence. The train formation tracks have been al-
located to trains A, B and C, while cars for trains
D and E have to be mixed.

www.sics.se

B B B B B

C C C C C C

A A A A A A

D D E E D E

2.

3.

(b) A and B depart, freeing up tracks for trains D
and E. The cars on the mixing track are pulled back
to the arrival yard (a pull-back).

www.sics.se

D D E E D E 4.

C C C C C C

(c) The mixed cars are rolled in a second time (a
roll-in).

www.sics.se

C C C C C C

D D

E E

D

E

(d) Final train formation of (C–E).

Figure 2: Illustration of multi-stage train formation of five trains (A–E) on four tracks
through shunting movements (1–4). Movements 3 and 4 together constitute a pull-back
operation. In real instances, freight trains arrive at and occupy arrival tracks during the
train formation process, and are rolled in as needed, typically in arrival order.

classification track, and a compulsory brake test has been performed. The time at which
a train b is rolled out from the classification bowl is called the roll-out time, and is denoted
tb. The train will then be parked on the departure yard until it is coupled to a line engine
and departs. The departure time of an outbound train b is denoted tdepb .

High traffic volumes can make it impossible to reserve a classification track for the
full time interval between the first roll-in and the roll-out time of an outbound train.
Therefore, some of the tracks, called mixing tracks, are used as a buffer area where cars
of different outbound trains may be temporarily stored. By temporarily storing cars, it is
possible to build more trains simultaneously at a given yard, which helps in forming the
overall transportation plan. Fig. 2 illustrates the mixing process. At given points in time,
the cars on the mixing tracks are coupled and pulled back to the arrival yard (a pull-back).
The cars are then once again rolled over the hump (a roll-in). Cars for which a train
formation track has been reserved are directed there, while the remaining cars are again
directed to the mixing track. The time from the start of a pull-back to the next pull-back
is called a stage. As the pull-back and roll-in operations of mixed cars require manual
effort (coupling, driving shunting engines, decoupling, etc.) and wear down switches and
tracks, a natural objective is to minimize the total number of car pull-backs for all stages.

2

https://www.swedishict.se

1.1 RelatedWork
Railway freight transportation is a classical application area of operations research; a re-
cent overview is given by Nemani and Ahuja [36]. Much of the focus has been on railway
freight in the U.S., where the infrastructure is typically owned by the operator and freight
trains are longer and heavier and the market share for rail freight is higher than in Eu-
rope. For freight operations in particular, the railroad blocking problem, which considers
the formation of a cost-minimal freight transportation plan, has been studied. In this
problem, freight yards are considered on a macroscopic level, and as operations within
the yard are not considered, solutions to this problem are not applicable for the classifica-
tion problem considered here. An early model for the blocking problem was introduced
by Bodin et al. [9], and since then various approaches have utilized dynamic program-
ming [4], a successive shortest path method [40], a linear MIP model and Lagrangean
relaxation [32], simulated annealing [29], genetic and tabu search [26], column genera-
tion [37], Lagrangean relaxation with column generation to solve the sub-problem [7]
and VLSN (very large-scale neighborhood) search [2].

Operations research approaches for freight yard planning on a micro- or mesoscopic
level, where the actual shunting operations are considered, have in comparison received
less attention. Literature reviews are given by Boysen et al. [14] and Gatto et al. [23].
Single-stage methods, where cars are pushed over the hump exactly once, and all trains
are formed directly on classification tracks without pull-back operations, are discussed by
Krell [33]. As mixing requires cars to be pushed over the hump multiple times, single-
stage methods are not applicable for the shunting problem considered in this paper.

Comparatively more research efforts have focused on multi-stage methods for arrang-
ing the cars in freight trains in a particular order. Given a sequence of n cars labeled from
1 to n, the general goal of the procedure is to form a sorted sequence of cars by roll-in
and pull-back operations, similarly to what is considered in this paper. Algorithms that
produce a desired sequence of cars without considering the inbound car order are called
sorting schemes (39; see also 17). All sorting schemes construct a classification schedule
and can be carried out without the aid of a computer, but they have different requirements
regarding the number of re-classification steps and tracks needed. More recently, it has
been studied how the order of the incoming cars could be utilized to minimize the number
of pull-back operations [19, 31], as well as variants thereof [18]. Jacob et al. [30] intro-
duced a binary encoding of sorting schedules and their requirements. This encoding was
further used by Maue and Nunkesser [35] and Jacob et al. [31] to derive optimal sorting
schedules, with regard to the number of pull-backs, on yards with a restricted number of
tracks and classification tracks of sufficient length. However, the approach by Jacob et al.
[31] is not applicable to the MSTF problem, as it violates the assumptions on sufficient
track capacity, allow temporary storage and thereby more simultaneous trains than avail-
able classification tracks, and finally has additional constraints on the timely departure of
trains.

Multi-stage train formation with mixing has been modeled, in preliminary versions of
this paper, using a MIP model [11], a pure IP model [12], and utilizing column generation
with branch-and-price [10]. This article summarizes the previous work and extends it

3

https://www.swedishict.se

with a new arc-based model, rolling-horizon planning and analysis of yard capacity.
Finally, methods that incorporate robustness, and thus allow solutions to be valid even

under disturbances such as delays and variances in car order, have also been considered.
In particular, recoverable robustness [34], in which well-defined recovery actions can be
taken to counter the effects of a disturbance, has been considered for freight shunting prob-
lems. In general, approaches for recoverable robustness have to be simplified substantially
in order to be tractable, and are therefore mostly of theoretical value. The concept was
first considered for shunting by Cicerone et al. [16] for two disruption types (a car being
in the wrong place, and a new car being introduced) and three recovery strategies (not
changing anything, changing the re-classification schedule for one car group, and chang-
ing the re-classification schedule for any number of car groups). Büsing and Maue [15]
use the same concepts and present a general algorithm for finding a classification schedule
that allows for a recovery strategy where k additional sorting steps can be inserted after
the p first steps while minimizing the total number of re-classification steps in the original
schedule.

1.2 Contributions
The contributions of the paper are summarized below.

1. A formal definition of the multi-stage train formation problem with non-uniform
track lengths, which arises in a core part of the shunting yard planning process
(Section 2). The problem models a real-world practice where tracks are reserved
in advance for either train formation or for temporary storage of cars. Activity
durations, non-uniform track lengths, timetabled arrivals and departures, as well as
procedures for temporary storage of cars and their re-classification, are taken into
account. By allowing temporary storage, the time cars spend on formation tracks
can be shortened, thus allowing the simultaneous handling of more outbound trains
than there are formation tracks on the yard. Schedules for the arrival yard, hump,
and departure yard are assumed to be determined in advance.

2. An overview of the computational complexity of several variants of the multi-stage
train formation problem with both non-uniform and uniform but sufficient track
lengths. The results build on a proof of NP-completeness (Theorem 1) for the case
where mixing capacity is either zero or unrestricted.

3. A column-based optimization model giving tight lower bounds (Section 3.1), and
a branch-and-price approach capable of solving the problem to optimality in rea-
sonable time (Sections 3.1.2 and 3.1.3).

4. A conceptually simpler arc-based optimization model (Section 3.2), with the same
LP relaxation as the column-based model (Theorem 2).

5. A thorough evaluation of the models, based on a five-month data set from the
largest hump yard in Scandinavia. The evaluation covers both the case when the

4

https://www.swedishict.se

yard is initially empty, and a rolling horizon planning approach. Using the results,
the computational performance of the methods and the capacity of the yard are
analyzed. (Section 4).

1.3 Paper Outline
The rest of the paper is structured as follows. In Section 2, the core problem considered
— the multi-stage train formation (MSTF) problem — is defined formally. In Section 3,
two optimization models for the MSTF problem are presented. Section 4 describes the
experimental setup, including the preprocessing and computation of the hump schedule,
and provides results, including a comparison between the new and previous approaches,
and an analysis of the relationship between the results and features of the input data.
Finally, Section 5 concludes the paper with possible future research.

2 Problem Definition
In this section, the multi-stage train formation (MSTF) problem is formally defined in
terms of the pairwise train schedulability. Finally, the complexity of the problem is dis-
cussed.

2.1 Problem Data
Assume sets of integers for the formation tracks A = {1, 2, . . . , |A|}, stages P =
{1, 2, . . . , |P|}, car groups G = {1, 2, . . . , |G|}, and outbound trains B = {1, 2, . . . , |B|}.
Formation tracks a ∈ A have length l(a). There is in addition a single mixing track, not
included in A, which can temporarily store cars. The mixing track has length lmix, and
all cars on the mixing track are pulled back at the end of each stage. Stage 1 starts at−∞
and ends at time t1, all other stages p start at time tp−1 and end at time tp. Further, the
stages are totally ordered, so that for p, p′ ∈ P , if p < p′ then tp < tp′ .

Car groups g ∈ G contain #g cars that are handled as a single unit with physical
length l(g), arriving to the classification bowl from the hump at time tg to be formed into
(outbound) train b(g) ∈ B. The set G contain all car groups in the classification bowl
during the planning period. Further, car groups are referred to simply as cars. A train b
is rolled out from the classification bowl at time tb. The set B contain all trains which
have at least one car in G in the classification bowl during the planning period, and no
two trains are rolled out from the bowl at the same time. Each train consists of a disjoint
set of cars G(b) ⊆ G, i.e., G(b) := {g | g ∈ G ∧ b = b(g)}. The length l(b) of a train b is
the sum of the lengths of its cars: l(b) :=

∑
g∈G(b) l(g).

2.2 Pairwise Train Scheduling and Sequences
To define the problem, a strict partial order ≺ on the set of trains B is used, denoting
which pairs of trains b ≺ b′ that can be scheduled in immediate succession on any single
track, taking necessary technical setup times and previous assignments into account. More

5

https://www.swedishict.se

formally, the relation is defined as follows.

b ≺ b′ ≡ tb ≤ tb′ − S1 ∧ ∀g ∈ G(b′) : tg < tb → ∃p ∈ P : tb < tp < tb′ − S2. (1)

Eq. (1) states that for two trains b, b to be consecutively scheduled on a track, there must
be a minimum roll-out setup time S1 between the train roll-out times, and for all cars in
b′ arriving before the roll-out of b, there must exist a pull-back between the roll-out of b
and the beginning of roll-out setup activities for b′. In S2, both the pull-back duration
and the roll-out setup time S1 is included.

The virtual train u is used as predecessor to trains which are first on any track, and
assume u ≺ b for any b ∈ B. Further, the virtual train v is used as successor for trains
which are last on any track, and assume b ≺ v for any b ∈ B. Let tu = 0, tv = ∞ and
G(u) = G(v) = ∅. Finally, assume u ≺ v in order to ensure transitivity. The relation is
asymmetric as the unique roll-out times tb define a fixed roll-out order which determines
the order trains may be scheduled on a single track, and u never follows a train, while
v never precedes one. Further, transitivity follows as the setup times are assumed to be
constant and train-independent, u ≺ v, and u ≺ b ≺ v for any b ∈ B.

Let a sequence s be a subset of trains, totally ordered by roll-out time, but also including
the virtual train u as start and v as end. Two trains b, b′ ∈ B appearing consecutively
in this order in a sequence s is denoted by (b, b′) ∈ s. For example, given a sequence
s = ⟨u, b1, b2, b3, v⟩, it holds that (b1, b2) ∈ s and (b2, b3) ∈ s, but (b1, b3) ̸∈ s. A
sequence for which the relation ≺ holds for any two trains in immediate succesion is said
to be feasible.

2.3 Pairwise Mixing
In this section, the mixing capacity usage and mixing cost of a train pair scheduled in
immediate succession, are defined. For simplicity, it is assumed in this section that t0 =
−∞. For two trains b ≺ b′ and a period p ∈ P , let Gp(b, b′) denote the set of cars in b′

which have to be mixed in p if both trains are scheduled in immediate succession on the
same track:

Gp(b, b′) =

{
{g | g ∈ G(b′) : tg < min(tb, tp)} if tp−1 < tb,

∅, otherwise.
(2)

lp(b, b
′) then denote the total length of all such cars:

lp(b, b
′) =

∑
g∈Gp(b,b′)

l(g). (3)

For the number of extra roll-ins, only the cost of decisions made in the current plan-
ning period are included. In other words, if a train b already has cars on a formation track
when the planning period begins, the track allocation for b is committed and cannot be
undone, and the fixed extra roll-ins incurred by this decision should not be included in
the cost of the current planning period. That a train is committed implies that it is also

6

https://www.swedishict.se

t1 t2 t3

q3
time

g1 g2 g3

t4 t5 t6 t7

b′

b

g4 g5

tb

tb′

{1}{1} {1,2,3} {1,2,3,4}∅ ∅ ∅
lp(b, b

′)

Gp(b, b
′)

0 1 1 3 4 0 0 10

c(b, b′)

Figure 3: Calculation example for Gp(b, b′), lp(b, b′) and c(b, b′), assuming one car in each
group, and a car length of one.

the first train on its track. So, let c(b, b′) denote the total number of extra roll-ins for two
trains b ≺ b′ scheduled in immediate succession on the same track:

c(b, b′) =

0, if b′ is committed,∑
p∈P

∑
g∈Gp(b,b′)

#g otherwise. (4)

An example illustrating the calculations above is shown in Fig. 3.

2.4 Formal Problem Definition
The MSTF problem can now be stated as follows. Partition the trains B∪{u, v} into |A|
sequences {B(a) | a ∈ A} ordered by roll-out time, corresponding to trains allocated to
tracks, such that

l(b) ≤ l(a), ∀b ∈ B(a) \ {u, v}, (5)
B(a) is a feasible sequence w.r.t. ≺, ∀a ∈ A, (6)∑

a∈A

∑
(b,b′)∈B(a)

lp(b, b
′) ≤ lmix, ∀p ∈ P , (7)

and such that ∑
a∈A

∑
(b,b′)∈B(a)

c(b, b′) (8)

is minimized. Inequality (5) states that each train must fit on its allocated track, Condi-
tion (6) states that each ordered train pair allocated to the same track must be schedulable,
and Inequality (7) states that for each stage, the length of the mixed cars must be shorter
than the mixing track length. Finally, the objective is to minimize the total number of
car roll-ins. As all cars are rolled in at least once, it is equivalent to instead minimize the
number of extra car-roll-ins due to mixing only.

An example problem instance is illustrated in Figs. 4a and 4b. In the example, four
trains are to be allocated to two formation tracks a1 and a2. All trains fit on the longest
track a2, but only the first three trains fit on the shorter track a1. The mixing capacity

7

https://www.swedishict.se

Train data c(b, ·) Cars
b l(b) tb b2 b3 b4 g tg

b1 1 5 4 1 0 g1 0
b2 1 7 1 g2 1

g3 3
b3 1 8 1 g4 4
b4 2 11 g5 6

g6 10

(a) Problem instance data for trains (length,
roll-out time and mixing) and cars (arrival
time). There are two tracks a1, a2 with length
1 and 2 respectively.

1

p1 p2 p3

320 5 764 9 108

b1

b2

b3

b4

g1

g2 g3

g4

g5 g6

time11

a1

a2

mix

(b) Illustration of the problem instance.
Downward-pointing arrows indicate car ar-
rivals.

1

p1 p2 p3

320 5 764 9 108 time11

a1

a2

mix

b1 b2

b3 b4

g1

g6

g2 g3

g4

(b4)(b2)
g5

(c) Feasible solution, with car g2 and g3 mixed in
two stages each, and g5 in one, for a total cost of
five extra car roll-ins.

1

p1 p2 p3

320 5 764 9 108

q3

time11

a1

a2

mix

b1

b2

b3

b4

g1

g2 g3 g6

g4 g5

(b4)(b3)

(d) Optimal solution, with car g4 and g5 mixed
in one stage each, for a total cost of two extra car
roll-ins.

Figure 4: Example problem illustration (4a and 4b) and two solutions (4c and 4d) for an
instance with two formation tracks a1, a2, departing trains b1 − b4, car arrivals g1 − g6,
and three stages p1 − p3. The mixing cost for consecutive train pairs is also shown.

is assumed to be infinite and pull-backs are performed at times 4, 6 and 9. Traversing
the trains in order of roll-out time, all trains can succeed all earlier trains, as defined by
≺, except train b3 which cannot follow b2 due to the lack of a stage start in between their
roll-outs. All car groups consist of one car, albeit of different lengths. Figs. 4c and 4d
show two feasible solutions in which the resulting number of extra car roll-ins are five and
two respectively.

2.5 Complexity Analysis
This section shows that the feasibility version of the MSTF problem is NP-complete and
that MSTF variants can be seen as coloring problems of intervals, where an interval mod-
els the presence of the cars of a particular train on a classification track. The following
equivalent reformulation of the MSTF problem is used. The MSTF problem is to deter-
mine, for each train b, a track and an active time interval Jb, during which the track is
reserved exclusively for the formation of that train.

8

https://www.swedishict.se

The roll-in time of the earliest car g1 in b and its bowl roll-out time form an interval
Ib = (tg1 , tb) in which all cars of b arrive at the classification bowl, which is also the
longest interval that b ispossibly active. It is required w.l.o.g. that Jb is a suffix of Ib, so
that Jb = (x, tb) where tg1 ≤ x < tb − S and S is the total duration of technical setup
activities and an allowance for necessary pull-backs. For any train b, the minimal suffix
J−
b is the shortest suffix during which b is active in any feasible solution. Further, two

intervals Jb, Jb′ must not intersect whenever b and b′ are on the same formation track.
The MSTF problem thus translates to assigning a track of sufficient length and a

suffix Jb to every outbound train b, where J−
b ⊆ Jb ⊆ Ib and no two suffixes of trains

allocated to the same track intersect. If suffixes have been decided, then the problem of
assigning tracks of sufficient length to the outbound trains can be seen as a list-coloring
problem of the intervals. In this, each train b has a list L of classification tracks that the
train fits on, each track represents a color, and every interval J should be colored with a
color from the list L such that any two overlapping intervals J , J ′ are assigned different
colors.

In general, the list-coloring problem of intervals is NP-complete. The lists in the
MSTF problem do not have an arbitrary structure, as the trains and tracks can be ordered
in increasing length. The resulting list-coloring problem is called a µ-coloring problem,
which for interval graphs unfortunately also is NP-complete [see 13]. As a consequence,
the following theorem, first appearing in Bohlin et al. [11], is obtained:

Theorem 1 Feasibility in the MSTF problem is NP-complete when either 1) there is no mixing
track, or 2) the mixing track has unlimited capacity.

Proof of Theorem 1 If no mixing track is present, no car can be mixed, and thus Ib =
J−
b = Jb. If mixing capacity is unlimited, then the problem is feasible if and only if

there exists a feasible track assignment where Jb = J−
b . In both cases, any instance of the

µ-coloring problem can be trivially translated to a corresponding MSTF instance. □

From the proof for these two special cases, it follows trivially that the general MSTF
problem is also NP complete. If however each train fits on each track and there is no
mixing track, then the problem reduces to the problem of interval graph coloring, which
is well-known to be polynomially solvable by a simple greedy algorithm [see 25]. The
optimization variant where the objective is to minimize the total number of car pull-backs
can also be solved in polynomial time, by solving an assignment problem [see 11].

The complexity results for other variants of the MSTF problem are shown in Table 1.
The variants where track length are all of the same length and can accommodate all trains
is equivalent to the case where track lengths are infinite. Worth noting is that the question
of whether the problem variant with finite mixing capacity but infinite formation track
lengths is in P or not is currently open.

3 Optimization Models
In this section, we develop three different integer programming models for the mixing
problem. The first model, D-IP, is a direct model based on the problem formulation in

9

https://www.swedishict.se

Mixing Formation Class Comment
capacity track lengths
0 non-uniform NP-Complete See Theorem 1.
∞ non-uniform NP-Complete See Theorem 1.
finite non-uniform NP-Complete Trivial from 0/non-uniform variant.
0 ∞ P Solved as an interval graph coloring problem.
∞ ∞ P Solved as an assignment problem in [11].
finite ∞ Unknown Currently open.

Table 1: Complexity results for variants of the MSTF problem.

Section 2. The second model, CG-IP, instead uses a sequence-based representation, and
is solved using column generation. The third model, AI-IP, is a reformulation of the
second model as an arc-based integer program.

3.1 Extended Formulation Solution
In this section an extended formulation first introduced in [10] is described and modified
for rescheduling in a rolling horizon setting.

3.1.1 Model.

The extended formulation is based on binary variables representing feasible sequences of
trains on a single track. A feasible solution is a train sequence for each formation track,
where all trains fit on the track and are compatible according to ≺. Further, each train
should be present on exactly one track. Formally, sequence s ∈ S is a set of totally ordered
trains, starting with the virtual train u and ending with the virual train v. Let S(a) denote
the set of feasible sequences of trains which all fit on track a. The number of mixed cars
in a sequence s can then be calculated as

c(s) =
∑

(b,b′)∈s

c(b, b′).

Similarly, the length of mixed cars in a certain stage p can be calculated as

lp(s) =
∑

(b,b′)∈s

lp(b, b
′).

The following integer program models the MSTF problem problem using variables xsa,
which encode whether sequence s is chosen for track a or not:

10

https://www.swedishict.se

min
∑
a∈A

∑
s∈S(a)

c(s) · xsa, (9)

s.t.
∑
a∈A

yba ≥ 1, b ∈ B, (10)∑
s∈S(a):
b∈s

xsa ≥ yba, b ∈ B, a ∈ A, (11)

∑
s∈S(a)

xsa ≤ 1, a ∈ A, (12)

∑
a∈A

∑
s∈S(a)

lp(s) · xsa ≤ lmix, p ∈ P , (13)

xsa, yba ∈ {0, 1}, s ∈ S, a ∈ A, b ∈ B. (14)

The objective function (9) counts the total number of extra roll-ins as the sum of
the roll-ins for the sequences selected for each track. The variable yba encodes that train
b shall be placed on track a, and is included for use in the IP solver during branching.
Inequalities (10) and (11) ensure that each train appears in at least one sequence. If a train
appears several times in an optimal solution, then, since the pairwise train cost c(b, b′) is
always non-negative, the train can be removed from all but one sequence without affecting
the cost. Inequalities (12) state that at most one sequence per track can be used, and
inequalities (13) ensure that at most the available mixing capacity is used in any stage.
Inequalities (10)–(13) are equivalent to the conditions (5)–(7), in Section 2, for feasibility
of schedules.

In the model above, there is one x variable for each combination of sequence s ∈ S(a)
and track a ∈ A. As the size of S(a) is of order O(|B|!), it is only possible to work
with a subset of the x variables. Column generation [see for example 24, 22, 20] is used
to generate new variables as needed in every node of the branch-and-bound algorithm.
Such algorithms are referred to as branch-and-price algorithms; see Barnhart et al. [8]
for a general description and Desrosiers et al. [21] for a survey of specialized branch-and-
price algorithms for routing and scheduling.

3.1.2 Pricing.

The identification of necessary new variables is called pricing and forms a combinatorial
sub-problem of its own. To identify a missing variable xsa, a corresponding dual con-
straint, violated by the current solution, needs to be found. The dual of the LP relaxation
of (10)–(14) is

11

https://www.swedishict.se

..u. b1. b2. b3. b4. v

Figure 5: Pricing graph for track a2 in the example in Fig. 4.

max
∑
b∈B

αb +
∑
a∈A

γa + lmix
∑
p∈P

δp, (15)

s.t.
∑
b∈s

βba + γa +
∑
p∈P

lp(s) · δp ≤ c(s), a ∈ A, s ∈ S(a), (16)

αb ≤ βba, b ∈ B, a ∈ A, (17)
αb, βba ≥ 0, (18)
γa, δp ≤ 0. (19)

The dual α variables correspond to primal inequalities (10), β to (11), γ to (12) and δ to
(13). For any xsa the corresponding dual constraint for the problem in (9)–(14) is∑

b∈s

βba + γa +
∑
p∈P

lp(s) · δp ≤ c(s), a ∈ A, s ∈ S(a).

The problem can be solved separately for each track a by identifying a sequence s where∑
b∈s

βba +
∑
p∈P

lp(s) · δp − c(s) > −γa,

which can be done by solving the following maximization problem:

max
s∈S(a)

∑
b∈s

βba +
∑
p∈P

lp(s) · δp − c(s). (20)

As shown in Bohlin et al. [10], this is equivalent to finding a longest path in a directed
acyclic graph. This could for example be done using the reaching algorithm [see 3, Section
4.4] in O(|B|2) time.

The directed acyclic graph G = (V,E) is constructed as follows. There is a node for
every train which fits on a plus a source u and a sink v, so that V = {b ∈ B | l(b) ≤
l(a)}∪{u, v}. For every train b there are edges (u, b), (b, v) and (u, v) as well as (b, b′) for
all other trains where b ≺ b′. Fig. 5 shows the resulting graph for track a2 for the example
in Fig. 4. Edge weights for the directed acyclic graph are chosen as follows:

wb,b′ =

{
0, if b′ = v,

βb′a +
∑

p∈P lp(b
′, b) · δp − c(b′, b), otherwise.

(21)

12

https://www.swedishict.se

..u.

yb2a2 = 0

. b1. b2. b3. b4. v ..u.

yb2a2 = 1

. b1. b2. b3. b4. v

Figure 6: Modified pricing graphs from Fig. 5 after branching on yb2a2 = 0 (left) and
yb2a2 = 1 (right). Dotted nodes and edges are removed from the pricing problem.

Any path from u to v corresponds to a feasible sequence of cars corresponding to the
visited nodes. The cost on the edges used is equal to the cost in Equation (20), so finding
a maximum (u, v)-path solves our pricing problem.

3.1.3 Branching and Rolling Horizon.

As the branching in the branch-and-price search tree is performed on the yba variables,
the branching decisions made need to be reflected in the pricing problem such that only
feasible variables are generated. Furthermore, when planning using a rolling horizon
approach (see Section 4) it is necessary to fix the track allocations for cars already on a
formation track, and hence the corresponding yba variables. Both of these constraints can
be handled via the removal of nodes and edges from the pricing graph as follows.

Case yba = 0: Remove node b from V and all edges connected to it from E, so that se-
quences containing train b cannot be generated.

Case yba = 1: For all nodes b′ and b′′ where tb′ ≺ tb ≺ tb′′ , remove (b′, b′′), (u, b′′), (b′, v)
and (u, v) from E. In addition, remove all nodes b′ for which neither b′ ≺ b nor
b ≺ b′ along with all edges connected to them. Thereby, all paths from a node
before b to one after b will include b, forcing b to be contained in every generated
sequence.

Fig. 6 illustrates the two possible modifications of the graph from Fig. 5 when branch-
ing on yb2a2 .

3.2 An Arc-Indexed Integer Programming Formulation
Although the branch-and-price algorithm in Section 3.1 can solve the problem efficiently,
it may still be possible to achieve similar performance using a compact IP model. In this
section, such a compact IP model based on an arc formulation of the extended formulation
in Section 3.1 is presented. The model was first introduced in Güçlü [27] and is easier to
implement and maintain than CG-IP. Furthermore, the LP relaxation of the new model
yields the same lower bound as the extended formulation from Section 3.1.

The model is built around threefold indexed variables xbb′a, encoding that train b′ is
scheduled immediately after train b on track a. Only variables xbb′a defining feasible train
sequences and train-to-track allocations are included in the problem, which corresponds

13

https://www.swedishict.se

directly to the edge set in the directed acyclic graph for the pricing subproblem, as defined
in Section 16. Furthermore, the source u and sink node v from the pricing graph are
included as virtual starting and final train on a track. Formally, the variable assignment
xub′a = 1 represents that b′ is the first train in the schedule on track a, and xbva = 1
represents that b is the last train on track a. Let Ba be the set of trains which fit on track
a, including virtual trains u and v. The MSTF problem can now be formulated as the
following binary program:

min
∑
a∈A

∑
b,b′∈Ba:
b≺b′

c(b, b′) · xbb′a (22)

s.t.
∑
a∈A:
b′∈Ba

∑
b∈Ba:
b≺b′

xbb′a ≥ 1, b′ ∈ B, (23)

∑
b′∈B

xub′a ≤ 1, a ∈ A, (24)∑
a∈A

∑
b,b′∈Ba:
b≺b′

lp(b, b
′) · xbb′a ≤ lmix, p ∈ P , (25)

∑
b∈Ba:
b≺b′

xbb′a =
∑
b∈Ba:
b′≺b

xb′ba, a ∈ A, b′ ∈ Ba \ {u, v}, (26)

xbb′a ∈ {0, 1}, a ∈ A, b, b′ ∈ Ba. (27)

The objective (22) is again counting the total number of extra roll-ins (cf. Section 3.1).
Inequality (23) requires every train to be scheduled in at least one sequence, i.e., it must
follow either the virtual train u or some other train on any track. Inequality (24) ensures
that at most one sequence of trains starts on any track, while inequality (25) ensures that
no more mixing length than available is used in any given stage. Finally, inequality (26)
is the flow conservation constraint that ensures that every train has the same number of
predecessors and successors on every track. For rolling horizon planning, a train b that is
already being built on a formation track a is restricted to only fit on that track, and can
only follow the virtual start train u. That is, the only allocation variable for train b is xuba

and b ∈ Ba only.
The compact model should ideally have a strong LP relaxation. The following Theo-

rem states that the compact model has the same LP relaxation as the model in Section 3.1.

Theorem 2 AI-IP and CG-IP yield the same LP relaxation.

The proof is given in Appendix A.

4 Experiments
The two optimization models were experimentally compared with two previously devel-
oped methods: a heuristic approach based on interval graph coloring, and a straightfor-

14

https://www.swedishict.se

ward integer programming model [see 12]. The experiments were run on a data set from
the Hallsberg shunting yard in Sweden, which is the largest hump yard in Scandinavia.
The yard has 8 arrival tracks, two parallel humps (of which only one is used), 32 classifica-
tion tracks, and 12 departure tracks. The lengths of the arrival tracks range from 595m to
693m, the classification tracks range from 374m to 760m, and the departure tracks from
562m to 886m. The layout of the yard is shown in Fig. 7. Apart from the tracks men-
tioned above there are also some additional tracks that are normally not used for shunting,
e.g., tracks going to repair facilities. Timing estimates for all tasks, e.g., setup times, roll-
ins, pull-backs, etc., were taken from Averstad [5]. Two of the 32 available classification
tracks were pre-allocated for mixing only, leaving 30 formation tracks.

Figure 7: Layout of Hallsberg shunting yard in Sweden. The arrival yard is on the left,
followed by the two humps, classification tracks, and finally the departure yard on the
right. The image is taken from Averstad [6] and has been scaled to aid visibility (in
reality the yard is approximately 3.5 km long and 0.25 km wide).

4.1 Preprocessing
Historical traffic data was provided by the Swedish Transport Administration (Trafikver-
ket in Swedish) and spanned a 5-month period from December 2010 to May 2011. The
data contained the arrival times of all inbound trains and departure times of all outbound
trains, as well as the cars on each train and their length.

The data exhibited ambiguity and inconsistencies in the form of missing and duplicate
train and car entries. Yard staff stated that cars often were rebooked on new freight trains,
and both the old and new entries could be present simultaneously in the data, which
contained 1.37 times as many car departures as arrivals. Furthermore, some cars would
have failed the arrival inspection and been sent to the repair facilities rather than the
classification bowl, but no indication of this existed. The arrival and departure yard track
allocations as well as the hump schedule were also not provided and had to be constructed.

The following sections contains a brief explanation of how problem instances were
generated from the available data.

4.1.1 Filtering and Matching Cars to Trains.

Each arriving car was matched to the earliest associated train departing between 140 and
2880 minutes (48 hours) after the arrival time. The lower limit was due to regulations

15

https://www.swedishict.se

of the yard, and the upper limit was chosen in cooperation with the yard staff to exclude
cars that were sent to repair facilities and therefore not present in the classification bowl.
Furthermore, trains were trimmed to the length of the longest formation track, and sur-
plus cars were removed from the problem. All in all, 32% of the car arrivals and 51% of
the car departures were removed. Green Cargo considered the resulting data set to be of
realistic size.

4.1.2 Creating a Hump Schedule.

The problem definition assumes that the hump-schedule (i.e., roll-ins and pull-backs)
and roll-out times are given as input data, as deciding roll-ins, pull-backs and roll-outs
are already part of the daily planning of the yard. However, these data were not included
in the example traffic data, and therefore sensible allocations and schedules had to be
generated. This section briefly discusses the algorithms used for deciding roll-in, pull-
back and roll-out times. For a more detailed description we refer to Appendix B.

The goal of the algorithms was to construct a hump schedule and roll-out times that
were likely to define a feasible optimization problem. This was accomplished by making
rough arrival and formation track allocations, and then constructing a pull-back schedule
that ensured that every mixed car could be moved to its allocated formation track in time.
The optimization problem defined was feasible given infinite mixing track capacity.

As both roll-ins and pull-backs occupy the hump they had to be scheduled together
such that no two hump-actions overlapped in time. Therefore the algorithms used time
intervals rather than exact time points up until the last stage, when a hump schedule
with exact roll-in and pull-back times was constructed based on the constraints imposed
by these intervals. If this final consolidation of hump actions failed, the trains served
by a pull-back that could not be scheduled were delayed, and another iteration of the
algorithms was required. Likewise, sometimes the arrival of a train had to be delayed as
the arrival yard was overloaded.

Appendix B.1 presents the algorithm used for scheduling the arrival yard and finding
feasible roll-in intervals for all arriving trains. Appendix B.2 describes the classification
bowl scheduling which returns pull-back intervals and roll-out times. Finally, Appendix
B.3 outlines how roll-ins and pull-backs were combined into a hump-schedule.

After pre-processing, the data set included 3606 arrivals, 3653 departures, and 18 366
car groups (making up 61 593 individual cars). The length of the inbound trains varied
in the range 12.8m to 929m and outbound trains in the range 12m to 759.1m. When
extracting associations between inbound and outbound trains, cars had to be discarded
from eight outbound trains in order to stay below the maximum track length of 760 meters.
When computing the hump-schedule and roll-out times, 0.9% of the inbound trains had
to be delayed for in total 84 minutes and 0.1% of the outbound trains for in total 62
minutes.

16

https://www.swedishict.se

4.1.3 Problem Instances.

At classification yards, planning is normally done on a daily basis for a few days ahead. To
evaluate the performance of the implemented methods, the problem data set was divided
into smaller instances of h days each. Two instance types where generated: independent
instances where it was assumed that no cars were present at the yard in the beginning
of the planning period, and rolling-horizon instances where cars from previous days were
already present in the yard. In this set-up, a full plan was generated by incrementally
fixing a prefix of s days out of the h days available, using the state after the prefix as
input for the next instance. The goal of the experiments on the independent instances
was to evaluate performance before implementing rolling-horizon planning for the most
promising methods. Fig. 8 is a graphical representation of how the problem instances of
the two different set-ups were distributed in time.

www.sics.se

1

3

4

h

1

2

3

4

h

s

Time

Time

2

(a) Independent instances
www.sics.se

1

3

4

h

1

2

3

4

h

s

Time

Time

2

(b) Rolling-horizon instances

Figure 8: A graphical representation of independent and rolling-horizon problem in-
stances.

The planning horizon h was varied between two and five days in one-day increments.
A step size s of one day was used in the rolling horizon approach.

Table 2: Instance data for the different planning set-ups.

Instance type Independent Rolling horizon
Horizon h (days) 2 3 4 5 2 3 4 5

No. instances 75 50 37 30 150 149 148 147
Avg. no. trains 48.7 73.0 97.7 121.7 69.4 93.9 118.4 143.0
Avg. no. groups 244.9 367.3 492.0 612.2 366.6 490.5 614.6 738.6

Data on the resulting problem instances is shown in Table 2, where the following
attributes are presented:

No. instances The total number of instances in each data set.

17

https://www.swedishict.se

Avg. no. trains The average number of outbound trains in each data set.

Avg. no. groups The average number of car groups in each data set (note that each car
group represent several physical cars).

4.2 Optimization Set-up
The column generation integer program (CG-IP) and the arc-based integer program (AI-
IP), as well as two previously developed methods, D-IP [12] and Heuristic [11], were
included in the experiments. D-IP is a binary integer program based on choosing an
allocation start time and a train formation track for each outbound train, and Heuristic
is a clique-based heuristic followed by an improvement reassignment heuristic. As these
methods did not perform satisfactory in previous experiments [see 10] they where not
adapted for rolling horizon planning.

The pre-processing, heuristics and experimental framework were implemented using
Python 2.7.2 and CPLEX 12.5.0.0 was used as the LP solver. CPLEX was configured
to use a single thread of execution. A multiple thread setting was tested for AI-IP but
this did not improve the results. Further, SCIP 3.0.1 [see 1] was used as the branch-and-
price framework for CG-IP, with the pricing sub-problem in Section 3.1.2 implemented
in C++ using GCC 4.6.2. All experiments were run on identical Linux workstations with
eight Intel Core i7-2600 quad-core CPUs running at 3.4 GHz and equipped with 16 GB
of RAM.

For the independent problem set-up a limit of 20 minutes, the time of an extended
coffee break, was set on the optimization in CPLEX and SCIP, after which the best
integer solution found was returned. Further, the solution from Heuristic was used to
hot-start the optimizations. For the rolling horizon set-up, no time limit was set, and no
hot-start provided.

4.3 Computational Results
This section presents an execution time analysis of the various solution methods on the
two sets of problem instances.

Table 3 provides results for all planning set-ups. Only the results relevant for a certain
solution method have been included. The following results are reported:

Optimal The number of instances for which an optimal solution was returned (all
methods).

Subopt avg. ∆ The average distance to optimality for suboptimal solutions (only D-IP
and Heur).

Feasible The number of feasible solutions found (only Heur).

Feas. LB > 0 The number of feasible solutions where the maximum lower bound was
positive (only D-IP).

18

https://www.swedishict.se

Table 3: Computational results for the different solution methods and planning set-ups.

Instance type Independent Rolling horizon
Horizon h (days) 2 3 4 5 2 3 4 5

H
eu

ri
st

ic

Optimal (#) 54 31 18 13 − − − −
Subopt avg. ∆ 7.6 21.0 17.9 13.7 − − − −
Feasible (#) 73 47 34 27 − − − −
No sol. found (#) 2 3 3 3 − − − −
Avg. time (s) 0.1 0.1 0.1 0.2 − − − −
Max. time (s) 0.4 0.3 0.4 0.5 − − − −

D
-I

P

Optimal (#) 75 42 29 18 − − − −
Subopt avg. ∆ − 4.8 7.6 3.8 − − − −
Opt. proven (#) 48 27 14 12 − − − −
Feas. LB > 0 (#) 6 3 5 1 − − − −
Feas. LB = 0 (#) 21 20 17 14 − − − −
No sol. found (#) 0 0 1 3 − − − −
Avg. time (s) 380.5 531.7 671.7 672.1 − − − −
Max. time (s) 1365.3 1266.9 1273.9 1259.9 − − − −

C
G

-I
P Optimal (#) 75 50 37 30 150 149 148 147

Opt. proven (#) 75 50 37 30 150 149 148 147
Avg. time (s) 2.0 18.4 76.4 202.9 7.6 31.9 117.7 317.3
Max. time (s) 16.1 134.8 686.1 1065.1 45.8 355.6 1033.6 2472.2

A
I-

IP

Optimal (#) 75 50 37 30 150 149 148 147
Opt. proven (#) 75 50 37 30 150 149 148 147
Avg. time (s) 3.1 11.5 33.2 94.2 5.4 16.1 41.7 85.9
Max. time (s) 12.1 58.4 151.2 466 21.7 93.3 284.5 338.9

Feas. LB = 0 The number of feasible solutions where the maximum lower bound was
zero (only D-IP).

Opt. proven The number of instances where optimality was proven (all methods but
from Heur).

No sol. found The number of instances where no feasible solution was found (only Heur
and D-IP).

Avg. time The average run time in wall-clock1 seconds (all methods).

1The sum of CPU time, I/O time, and delays due to communication.

19

https://www.swedishict.se

4.3.1 Independent Instance Results.

10−1 100 101 102 103
0

20

40

60

80

100

Execution time (log s)

%
o
f
in
st
a
n
ce
s

Heuristic D-IP CG-IP AI-IP

1

10−1 100 101 102 103
0

20

40

60

80

100

Execution time (log s)

%
of

in
st
an

ce
s

1

(a) 2 days

10−1 100 101 102 103
0

20

40

60

80

100

Execution time (log s)

%
of

in
st
an

ce
s

1

(b) 3 days

10−1 100 101 102 103
0

20

40

60

80

100

Execution time (log s)

%
of

in
st
an

ce
s

1

(c) 4 days

10−1 100 101 102 103
0

20

40

60

80

100

Execution time (log s)

%
of

in
st
an

ce
s

1

(d) 5 days

Figure 9: Execution time graphs for the independent problem instance set-up, in loga-
rithmic time scale.

For the independent instances, all methods were evaluated on the data set, with the
intention to determine which methods were suitable for rolling horizon implementation.
As can be seen in Table 3, for the independent instances, Heuristic returned an optimal
solution for 116 out of 192 instances in total, with an execution time below 0.5 s. How-
ever, the method failed to return even a feasible schedule for 11 instances. The average
difference in number of extra roll-ins (ER) between the heuristic suboptimal solutions
and the optimal solutions, varied between 7.6 and 21 roll-ins. As the method failed to
provide even feasible solutions, it was not further considered for rolling-horizon planning.

20

https://www.swedishict.se

D-IP returned optimal solutions in 164 out of 192 instances in total. For the subop-
timal solutions, the average difference in ER from the optimal solutions were lower than
for Heuristic for all planning horizons. For D-IP, optimality was proven in 101 of the
instances. For the remaining 91 instances, the trivial lower bound of zero was reported in
72 instances. Further, for four instances, D-IP failed to return a feasible solution within
the given time limit.

For both CG-IP and AI-IP, proven optimal schedules were always returned within the
execution time limit, and for the three problem sets with the longest planning horizons,
AI-IP did so in less time than CG-IP, on average. Altogether, this indicates that D-IP
yields a weak LP relaxation in comparison to the two newer models (CG-IP and AI-IP),
and was therefore not further considered for rolling horizon planning.

Fig. 9 plots the percentage of finished computations versus execution time. A loga-
rithmic scale is used for the execution time. The optimization methods (D-IP, CG-IP
and AI-IP) terminated either at proven optimality or at the execution time limit, while
the heuristic terminated when a schedule had been generated.

As can be seen in Fig. 9, Heuristic always executed in less than 1 s. The execution
times of D-IP are clustered around 1 s to 2 s or around 1200 s. For D-IP, either an optimal
schedule was found quickly (typically when mixing was not required and the hot-start
schedule was optimal) or else, the time limit was reached and optimality was not proven.
D-IP finished executing within 10 s in 104 instances, and 100 of these did not require
mixing.

The general trend for CG-IP and AI-IP was that the majority of the instances were
solved fairly quickly, while in particular the larger problem instances took more time to
solve. In particular, for CG-IP and the five-day instance set shown in Fig. 9d, approxi-
mately 80 % of the instances are solved in less than 400 s each, while the remaining 20
% of the instances take 400 s to 1065 s. The situation is similar for the smaller problem
instances, although the execution time is shorter.

There is also a difference between CG-IP and AI-IP for short execution times. For
example, CG-IP solves more than 38 % of instances within 1 s regardless of size, while
AI-IP have not solved a single five-day instance in the same time. By examining the log
files it became clear that the disperse execution times were caused by CPLEX taking time
to solve the relaxed root problem for AI-IP. In all instance sets, AI-IP solves at least as
many instances as CG-IP given a time budget of 30 s or more.

4.3.2 Rolling Horizon Results.

The most promising methods, CG-IP and AI-IP, were chosen for implementation in a
rolling-horizon setting. The goal of the rolling horizon experiments were to compare the
computational performance to optimality for the two methods.

As no time limit was set, an optimal schedule was always returned by both methods
and for all instances, as can be seen in Table 3. The time to optimality was always less
than 42 minutes for CG-IP and less than 6 minutes for AI-IP. Further, the mean time to
optimality for AI-IP was 31.05 s compared to 117.8 s for CG-IP. Execution time graphs
for the rolling-horizon set-up are shown in Fig. 10. The graphs from the independent

21

https://www.swedishict.se

10−1 100 101
0

20

40

60

80

100

Execution time (log s)

%
of

in
st
an

ce
s

CG-IP AI-IP

1

10−1 100 101
0

20

40

60

80

100

Execution time (log s)

%
of

in
st
an

ce
s

1

(a) 2 days

10−1 100 101 102
0

20

40

60

80

100

Execution time (log s)

%
of

in
st
an

ce
s

1

(b) 3 days

10−1 100 101 102 103
0

20

40

60

80

100

Execution time (log s)

%
of

in
st
an

ce
s

1

(c) 4 days

10−1 100 101 102 103
0

20

40

60

80

100

Execution time (log s)

%
of

in
st
an

ce
s

1

(d) 5 days

Figure 10: Execution time graphs for the rolling-horizon set up (solid lines). Data from
the independent problem instance set-up has also been included for comparison (dotted
lines). A logarithmic time scale has been used.

22

https://www.swedishict.se

Table 4: Mixing results for CG-IP and AI-IP for the all instances combined.

Instance type Independent Rolling horizon
Planning horizon h (days) 2 3 4 5 2 3 4 5

C
G

-I
P Total instance ER (#) 757 913 1019 1167 – – – –

Total Roll. H. ER (#) – – – – 1372 1374 1380 1384
Days w. mixing (#) 47 55 55 51 61 61 61 61

A
I-

IP Total instance ER (#) 757 913 1019 1167 – – – –
Total Roll. H. ER (#) – – – – 1387 1388 1379 1360
Days w. mixing (#) 48 55 55 51 61 61 61 61

problem instance set-up have been included as dotted lines for comparison. As can be
seen, AI-IP no longer performed worse than CG-IP for short execution times, which is
likely a result of the lack of hot-start solution for the rolling horizon experiments. The
long tail for the CG-IP results, corresponding to long execution times for a few instances,
is still clear in comparison to the AI-IP results.

Finally, in both problem set-ups the LP relaxation in the root node of the branch
and bound tree was tight for CG-IP and AI-IP for all real world instances. Therefore it
stands to reason that practical instances of the problem exhibited a lot of structure which
could be exploited by the two IP models and made them efficiently solvable even for
larger problems (despite the NP-hardness). This observation means that a good way to
further improve the two methods is to find new, problem specific heuristics, or enhance
the existing ones.

4.3.3 Results for the Full Data Set.

In a realistic scenario, planning for shunting yards would be done for a few days at a time.
This section, in contrast, analyzes the overall performance of CG-IP and AI-IP on the
full five-month data set. Table 4 contains results pertaining to mixing, i.e. the number of
extra-roll ins (ER), for the full data set. The following attributes are reported:

Total instance ER The total number of extra roll-ins for all independent instances in the
5-month data set.

Total Roll. H. ER The total number of extra roll-ins for the entire 5-month schedule.

Days w. mixing The number of days that required mixing in either all independent
instances, or in the rolled-out 5-month schedule.

From Table 4, it is clear that for the independent instance set-up the sum of ER from
all instances increased with the planning horizon. This can be explained by the empty

23

https://www.swedishict.se

formation tracks at the start of each planning period allowing more trains to be scheduled
without mixing, and as the planning horizon was increased the number of planning re-
starts (and emptying of the yard) decreased, and more mixing was required. In the rolling
horizon planning scenario, the yard was assumed to be empty only once, which is why
the total number of extra roll-ins was then higher and did not increase with the planning
horizon.

For the independent problem instances, AI-IP and CG-IP return the same number
of extra roll-ins (ER). However, the ER in the complete schedules differed for the rolling
horizon scenario. It was expected that the two methods might return schedules of dif-
ferent ER for the same horizon length, as there were often more than one schedule with
the optimal ER for each problem instance, and the two methods would not necessarily
return the same one. Depending on which schedule that was returned, different trains
would be fixed on tracks resulting in different problem set-ups in the next instance, and
subsequently possibly resulting in two different optimal costs as well.

For the independent instance planning, the number of days that required mixing varied
depending on the horizon length, but was the same for both solution methods for all
horizons but from the 2-day horizon when AI-IP mixed cars for one extra day. For rolling-
horizon planning, the number of days that required mixing was the same for all horizons.

As there was no clear relationship between the ER in the complete schedules returned
by the rolling-horizon planning and the horizon length, there is no clear indication as to
which planning horizon was the most suitable. However, as cars should, in practice, stay at
most one day at the yard, and in our experiments stayed at most two days, it is reasonable
to conclude that any planning period longer than a few days should be sufficiently long.
Further experimentation is however required to determine if this conclusion is valid in
practice.

4.4 Capacity Analysis
Railway operators generally want as much track capacity as possible for shunting as this
provides flexibility and robustness. On the other hand, the infrastructure providers have
to maintain and build the tracks, and should therefore prefer as few tracks as possible
being used for shunting. Being able to analyze how much capacity is required to shunt
a certain traffic pattern, and understand when the capacity is running out, is therefore
highly interesting.

The results of the experiments indicated that no mixing was required for most days
(see Table 4). In other words, a track allocation existed that allowed all cars to be rolled
straight to their allocated formation tracks, indicating that on most days, there was enough
capacity at Hallsberg. To investigate this further, an analysis of the classification bowl
capacity was performed using the optimal allocations. Results from the independent set-
up planning were chosen as the planning periods were independent in this set-up.

Fig. 11 shows the number of extra roll-ins versus the maximum number of simultane-
ous trains in the classification bowl, for all optimal solutions to the independent instances.
The maximum number of concurrent trains on the 32 classification tracks varied between
42 and 44. As can be seen, no problem instance required mixing when the maximum

24

https://www.swedishict.se

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

Max. number of concurrent trains in the classification bowl

E
R

(#
)

1

(a) 2 days

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

Max. number of concurrent trains in the classification bowl

E
R

(#
)

1

(b) 3 days

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

Max. number of concurrent trains in the classification bowl

E
R

(#
)

1

(c) 4 days

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

Max. number of concurrent trains in the classification bowl

E
R

(#
)

1

(d) 5 days

Figure 11: Scatter graph of the number of extra roll-ins versus the maximum number of
trains simultaneously present in the classification bowl for AI-IP instances, independent
problem set-up.

25

https://www.swedishict.se

number of concurrent trains in the bowl was fewer than 30. For more than 30 concurrent
trains, the number of extra roll-ins, and thereby also the work effort, increased quickly. In
other words, when the number of concurrent trains was lower than the number of avail-
able formation tracks, work effort was low. However, when the number of concurrent
trains was higher than the number of available formation tracks, the work effort required
to form all freight trains increased rapidly with the number of concurrent trains. For the
instance set considered, the same is true for all other horizon lengths, and for all solution
methods (including the sometimes sub-optimal schedules obtained from Heuristic and D-
IP). The results show that infrastructure providers may, at the cost of extra work effort, be
able to offset limitations in the number of available tracks by implementing multi-stage
train formation procedures.

5 Conclusions
In this paper, two models were developed and used to solve the multi-stage train formation
problem, which is a core problem in the classification process carried out at shunting
yards. A straightforward formulation turned out to yield weak LP relaxations on a real-
world historic data set spanning five months. The new methods, CG-IP and AI-IP, were
capable of calculating optimal solutions for real world instances of sizes considered large
enough for deployment. The problem definition and the two algorithms were modified
for rolling horizon planning, for which they also produced optimal solutions within a time
span that would allow practical application. Further analysis of the results showed that it
was possible to increase the maximum number of concurrently formed trains by 31% to
37%, by using a multi-stage train formation process. However, in the experiments, the
increase in number of simultaneously formed trains came at a steep cost: the work effort,
measured in number of extra roll-ins required, increased rapidly when simultaneously
forming more trains than the number of available tracks.

As both CG-IP and AI-IP had acceptable computation times for the instances investi-
gated, both appear suitable for solving the presented problem. However, CG-IP is harder
to implement, and AI-IP may therefore be more suitable for a real-world implementation.

Despite the work presented in this paper there are still some open ends that should be
addressed by future research.

5.1 Symmetry Reduction
As many classification tracks in reality are of the same or similar length, the problem
exhibits a large amount of symmetry: one solution can easily be turned into another one
by swapping the train schedule for two similar tracks. The performance of both CG-IP
and AI-IP might suffer from this problem. Even though this symmetry will be reduced
in the rolling horizon case, it might still be worth to address it.

We are currently working on eliminating symmetries using Halls Theorem [28]. For
a bipartite graph G = (V ⊎ V ′, E), a complete matching M is a set of |V | independent
edges from G. For any subset S ⊆ V , let Γ(S) be the vertices in V ′ connected to a vertex

26

https://www.swedishict.se

in S. More formally, Γ(S) = {j ∈ V ′ | ∃i ∈ S : (i, j) ∈ E}. Hall’s theorem can now be
stated as follows.

Theorem 3 (Hall’s Theorem) For any bipartite graph G = (V ⊎V ′, E), there is a complete
matching M from V to V ′ if and only if

|S| ≤ |Γ(S)| for each S ⊆ V.

For CG-IP, V is the set of sequences, V ′ is the set of tracks, and (s, a) ∈ E if and
only if l(s) ≤ l(a), where l(s) denotes the length of the longest train that occurs in s.
It is now possible to remove the indices a for track allocation in the sequence selection
variables xsa as well as the track selection variable yba and the constraints (10), (11) and
(12) from the model in (9)–(14), if the following two sets of inequalities are included:

∑
s∈S:b∈s

xs ≥ 1, b ∈ B, (28)∑
s∈S(a)

xs ≤ |Aa|, a ∈ A, (29)

where Aa is the subset of tracks not longer than a. The constraint (28) expresses that
each train should be present in at least one sequence (set cover constraints) and replaces
the constraints (10) and (11). Further, the constraint (29) expresses the conditions in
Hall’s Theorem. Branching in the resulting model can be (non-trivially) achieved by e.g.
Ryan-Foster Branching [see 38]. After solving the model, the track allocation can be
recovered by solving an assignment problem on the final sequences and the tracks.

5.2 Hump Scheduling and Roll-out Order
In the experiments, a heuristic hump scheduling algorithm was used to create the missing
hump schedule, including the roll-in order, stages and pull-back times. The roll-out times
and order is also assumed to be given. These input parameters indirectly determine the
outcome of classification bowl planning, and although there is little hope to find optimal
strategies for determining them, it would nonetheless be interesting to investigate how
more elaborate methods affect the outcome of classification yard planning.

5.3 Mixing Track Scheduling
In this paper, a single mixed track with constant capacity is assumed. In a real world
setting, it is however possible to use a variety of mixing tracks at different time points
over the day. It is easy to extend the models in this paper so that mixing capacity varies
between stages, and the use of multiple tracks can be modeled as long as these are pulled
out at the same time points. However, situations where the mixing track designations,
and consequently the available set of formation track, varies over time requires a substan-
tial extension of the presented models. It would be of great interest to see how such an
extension, together with a method for determining a suitable mixing track designation,
would perform.

27

https://www.swedishict.se

References
[1] Achterberg, T. 2009. SCIP: Solving constraint integer programs. Mathematical

Programming Computation 1(1) 1–41.

[2] Ahuja, R. K., K. C. Jha, J. Liu. 2007. Solving real-life railroad blocking problems.
Interfaces 37(5) 404–419.

[3] Ahuja, R.K., T.L. Magnanti, J.B. Orlin. 1993. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall.

[4] Assad, A. A. 1983. Analysis of rail classification policies. Infor 21(4) 293–314.

[5] Averstad, K.-Å. 2006. Handbok BRÖ 05-35/BA50: Trafikeringsplan Hallsberg
rangerbangård . Banverket. In Swedish.

[6] Averstad, K.-Å. 2006. Handbok BRÖH 313.00001: Anläggningsbeskrivning Halls-
bergs rangerbangård . Banverket. In Swedish.

[7] Barnhart, C., H. Jin, P. H. Vance. 2000. Railroad blocking: A network design
application. Oper. Res. 48(4) 603–614.

[8] Barnhart, C., E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, P. H. Vance.
1998. Branch-and-price: Column generation for solving huge integer programs.
Oper. Res. 316–329.

[9] Bodin, L. D., B. L. Golden, A. D. Schuster, W. Romig. 1980. A model for the
blocking of trains. Transportation Res. B 14(1) 115–120.

[10] Bohlin, M., F. Dahms, H. Flier, S. Gestrelius. 2012. Optimal Freight Train Clas-
sification using Column Generation. Proc. 12th Workshop on Algorithmic Approaches
for Transportation Modelling, Optim., and Systems (ATMOS 2012), vol. 25. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 10–22.

[11] Bohlin, M., H. Flier, J. Maue, M. Mihalák. 2010. Hump yard track allocation
with temporary car storage. Tech. Rep. T2010:09, Swedish Institute of Computer
Science.

[12] Bohlin, M., H. Flier, J. Maue, M. Mihalák. 2011. Track Allocation in Freight-Train
Classification with Mixed Tracks. Proc. 11th Workshop on Algorithmic Approaches
for Transportation Modelling, Optim., and Systems (ATMOS 2011), vol. 20. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 38–51.

[13] Bonomo, F., G. Durán, J. Marenco. 2009. Exploring the complexity boundary
between coloring and list-coloring. Ann. Oper. Res. 169(1) 3–16.

[14] Boysen, N., M. Fliedner, F. Jaehn, E. Pesch. 2012. Shunting yard operations: The-
oretical aspects and applications. Eur. J. Oper. Res. 220(1) 1–14.

28

https://www.swedishict.se

[15] Büsing, C., J. Maue. 2010. Robust algorithms for sorting railway cars. Proc. 18th An-
nual Eur. Conf. on Algorithms: Part I (ESA’10). Springer-Verlag, Berlin, Heidelberg,
350–361.

[16] Cicerone, S., G. D’Angelo, G. Di Stefano, D. Frigioni, A. Navarra. 2007. Robust
algorithms and price of robustness in shunting problems. Proc. 7th Workshop on
Algorithmic Approaches for Transportation Modeling, Optim., and Systems (ATMOS
2007). 175–190.

[17] Daganzo, C. F., R. G. Dowling, R. W. Hall. 1983. Railroad classification yard
throughput: The case of multistage triangular sorting. Transportation Res. A 17(2)
95–106.

[18] Dahlhaus, E., P. Horák, M. Miller, J. F. Ryan. 2000. The train marshalling problem.
Discrete Applied Math. 103(1–3) 41–54.

[19] Dahlhaus, E., F. Manne, M. Miller, J. F. Ryan. 2000. Algorithms for combinatorial
problems related to train marshalling. Proc. 11th Australasian Workshop on Combina-
torial Algorithms (AWOCA 2000). 7–16.

[20] Desaulniers, G., J. Desrosiers, M.M. Solomon. 2005. Column Generation. Cahiers
du GERAD, Springer.

[21] Desrosiers, J., Y. Dumas, M. M. Solomon, F. Soumis. 1995. Time constrained
routing and scheduling. Handbooks in operations research and management science 8
35–139.

[22] Desrosiers, J., M. E. Lübbecke. 2005. A primer in column generation. G. De-
saulniers, J. Desrosiers, M.M. Solomon, eds., Column Generation. Springer, Berlin,
1–32.

[23] Gatto, M., J. Maue, M. Mihalák, P. Widmayer. 2009. Shunting for dummies: An
introductory algorithmic survey. Robust and Online Large-Scale Optimization, LNCS,
vol. 5868. Springer, Berlin Heidelberg, 310–337.

[24] Gilmore, P. C., R. E. Gomory. 1965. Multistage cutting stock problems of two and
more dimensions. Operations Research 13(1) pp. 94–120.

[25] Golumbic, M.C. 2004. Algorithmic Graph Theory and Perfect Graphs: Second Edition.
Annals of Discrete Mathematics, Elsevier Science.

[26] Gorman, M. F. 1998. An application of genetic and tabu searches to the freight
railroad operating plan problem. Ann. Oper. Res. 78(0) 51–69.

[27] Güçlü, T. 2012. Ein Spaltengenerierungsansatz für die Zuordnung von Güterzü-
gen. Master’s thesis, Chair of Operations Research, RWTH Aachen University,
Germany.

29

https://www.swedishict.se

[28] Hall, P. 1935. On representatives of subsets. J. London Math. Soc 10(1) 26–30.

[29] Huntley, C. L., D. E. Brown, D. E. Sappington, B. P. Markowicz. 1995. Freight
routing and scheduling at CSX transportation. Interfaces 25(3) 58–71.

[30] Jacob, R., P. Márton, J. Maue, M. Nunkesser. 2007. Multistage methods for
freight train classification. Proc. 7th Workshop on Algorithmic Approaches for Trans-
portation Modelling, Optim., and Systems (ATMOS 2007). Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, Dagstuhl, Germany, 158–174.

[31] Jacob, R., P. Márton, J. Maue, M. Nunkesser. 2011. Multistage methods for freight
train classification. Networks 57(1) 87–105.

[32] Keaton, M. H. 1992. Designing railroad operating plans: A dual adjustment
method for implementing lagrangian relaxation. Transportation Sci. 26(4) 263–279.

[33] Krell, K. 1962. Grundgedanken des Simultanverfahrens. Rangiertechnik 22 15–23.

[34] Liebchen, Christian, Marco Lübbecke, Rolf Möhring, Sebastian Stiller. 2009. The
concept of recoverable robustness, linear programming recovery, and railway appli-
cations. Ravindra K. Ahuja, Rolf H. Möhring, Christos D. Zaroliagis, eds., Robust
and Online Large-Scale Optimization, Lecture Notes in Computer Science, vol. 5868.
Springer Berlin Heidelberg, 1–27.

[35] Maue, J., M. Nunkesser. 2009. Evaluation of computational methods for freight
train classification schedules. Tech. Rep. TR-0184, ARRIVAL Project.

[36] Nemani, A. K., R. K. Ahuja. 2011. OR models in freight railroad industry. James J.
Cochran, Louis A. Cox, Pinar Keskinocak, Jeffrey P. Kharoufeh, J. Cole Smith, eds.,
Wiley Encyclopedia of Oper. Res. and Management Sci.. John Wiley & Sons, Inc.

[37] Newton, H. N., C. Barnhart, P. H. Vance. 1998. Constructing railroad blocking
plans to minimize handling costs. Transportation Sci. 32(4) 330–345.

[38] Ryan, D.M., B.A. Foster. 1981. An integer programming approach to scheduling.
Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling
269–280.

[39] Siddiqee, M. W. 1972. Investigation of sorting and train formation schemes for
a railroad hump yard. G. F. Newell, ed., Proc. 5th Internat. Symp. on the Theory of
Traffic Flow and Transportation. Elsevier, New York, 377–387.

[40] Van Dyke, C. D. 1986. The automated blocking model: A practical approach to
freight railroad blocking plan development. Transportation Research Forum, vol. 27.
116–121.

30

https://www.swedishict.se

A Proof of Theorem 2
The theorem states that AI-IP and CG-IP yield the same LP relaxation.

Proof of Theorem 2 To establish the result sought, it is enough to show that any feasi-
ble solution to the LP relaxation of one problem can be translated into a feasible solution
of the other one, with the same objective value. First, the y variables in the CG-IP model
are solely for the purpose of facilitating branching decisions and do not carry additional
information about the solution. They could be removed by joining constraints (10) and
(11) to ∑

a∈A

∑
s∈S(a):
b∈s

xsa ≥ 1, b ∈ B. (30)

They are therefore w.l.o.g. ignored in this proof and constraint (30) considered instead.
First let x∗ be a feasible solution to the LP relaxation of CG-IP. A feasible solution x̃

to AI-IP can then be constructed as:

x̃bb′a =
∑

s∈S(a):
(b,b′)∈s

x∗
sa, ∀b ∈ B ∪ {u}, b′ ∈ B ∪ {v}, a ∈ A. (31)

Replacing xbb′a in the objective (22) with the right-hand side of (31) yields∑
a∈A

∑
b,b′∈Ba:
b≺b′

c(b, b′) · x̃bb′a =
∑
a∈A

∑
b,b′∈Ba:
b≺b′

c(b, b′) ·
∑

s∈S(a):
(b,b′)∈s

x∗
sa

=
∑
a∈A

∑
s∈S(a)

 ∑
(b,b′)∈s

c(b, b′)

 · x∗
sa

=
∑
a∈A

∑
s∈S(a)

c(s) · x∗
sa,

which is the same as Objective (9), showing that x̃ and x∗ have the same objective values.
Similarly, from the left-hand side of Inequality (25) and Equation (31) it follows that∑

a∈A

∑
b,b′∈Ba:
b≺b′

lp(b, b
′) · x̃bb′a =

∑
a∈A

∑
b,b′∈Ba:
b≺b′

lp(b, b
′) ·

∑
s∈S(a):
(b,b′)∈s

x∗
sa

=
∑
a∈A

∑
s∈S(a)

 ∑
(b,b′)∈s

lp(b, b
′)

 · x∗
sa

=
∑
a∈A

∑
s∈S(a)

lp(s) · x∗
sa,

which is the same as the left-hand side of Inequality (13).

31

https://www.swedishict.se

The left hand side of Constraint (23) in AI-IP can be rewritten as follows:∑
a∈A:
b′∈Ba

∑
b∈Ba:
b≺b′

xbb′a =
∑
a∈A:
b′∈Ba

∑
b∈Ba:
b≺b′

∑
s∈S(a):
(b,b′)∈s

xsa

=
∑
a∈A:
b′∈Ba

∑
s∈S(a):
(b,b′)∈s

xsa

=
∑
a∈A:
b′∈Ba

∑
s∈Sa):
b′∈s

xsa

=
∑
a∈A

∑
s∈Sa:
b′∈s

xsa.

As this is equivalent to the left-hand side in the fulfilled Constraint (30) in CG-IP, (23)
must also hold. Similarly, constraint (12) ensures that (24) is fulfilled. The flow conser-
vation constraints (26) are fulfilled as every column in CG-IP represents exactly one path
through the arc indexed variables and the combination of those will be a valid flow.

For the other direction we assume that x̃ is a feasible solution to the LP relaxation of
AI-IP. Constraints (26) are flow conservation constraints, therefore x̃ can be interpreted
as a flow on a network for every track a ∈ A. The nodes in this network are the trains
b ∈ Ba. The virtual trains u and v are the source and the sink node.

For each track let s1, . . . , sn ∈ S be a decomposition of this flow into distinct simple
paths and let x∗

sia
be the flow sent over path si in this decomposition. Such a decompo-

sition exists as there are no cycles in the flow (due to the partial order ≺). See e.g. [3,
Theorem 3.5, pp. 89] for a proof of this. Also note that the set of possible sequences S
is sufficient as it contains every possible path from u to v by its definition.

As the flow does not change in the decomposition, we know that the total flow en-
tering or leaving a node must stay the same i.e. for a ∈ A and b ∈ Ba \ {u, v} it holds
that ∑

s∈Sa:
b∈s

x∗
sa =

∑
b′∈Ba:
b≺b′

x̃bb′a =
∑
b′∈Ba:
b′≺b

x̃b′ba

From here it easily follows that the aforementioned constraint (30) has to hold as for any
train b ∈ B we have ∑

a∈A:
b∈Ba

∑
s∈S(a):
b∈s

x∗
sa =

∑
a∈A:
b∈Ba

∑
b′∈Ba:
b′≺b

x̃b′ba ≥ 1

Furthermore as all flow has to leave the sink and enter the source node it holds that∑
s∈Sa

x∗
s,a =

∑
b∈Ba

x̃uba =
∑
b∈Ba

x̃bva

This implies that constraint (12) holds for x∗ as constraint (24) was satisfied for x̃.

32

https://www.swedishict.se

Equality of the two objective functions is satisfied by the same argument as before.
Also constraint (13) is implied by (25), as seen in the first half of the proof. This means
that x∗ is a valid solution of CG-IP with the same objective value. Therefore CG-IP and
AI-IP have the same LP bound. □

33

https://www.swedishict.se

B Hump Scheduling and Roll-out Time Algorithms

B.1 Calculating Roll-in Intervals
This algorithm calculates roll-in intervals (Ai, Di) defining between which two times the
roll-in of a train i may be scheduled, and arrival yard track allocations k(i), denoted by
the track number from 1 to |L| where L is the set of arrival tracks, for all inbound trains
i.

1. Initiate the roll-in intervals with trivial early and late roll-in times:

(a) (Ai, Di) ←
(
ti + S , min{tdepb(g) − T | Car g in i}

)
, where S is inspection

and decoupling time, and T is the minimal yard time needed (140 minutes)

2. Let th be the time when the hump is available next:

(a) th ← 0

3. Let I be the set of all non-processed trivial intervals, and Iy the set of intervals of
inbound trains currently on yard:

(a) I ← {(Ai, Di) | all inbound trains i}
(b) Iy ← ∅

4. Find a round-robin allocation for the first |L| trains to arrive.

(a) For each n = 1...|L|:
i. i← argmini{Ai | (Ai, Di) ∈ I}

ii. k(i)← n

iii. I ← I \ {(Ai, Di)}
iv. Iy ← Iy ∪ {(Ai, Di)}

5. For each non-processed arriving train in time order, find an allocation if possible,
else delay train:

(a) While I ̸= ∅:
i. i← argmini{Ai | (Ai, Di) ∈ I}

ii. P = {(Ak, Dk) | Ak ≤ ti, (Ak, Dk) ∈ Iy}, the set of trains on the arrival
yard ready to be rolled in when i arrives

iii. Pe = {(Ak, Dk) | Dk ≤ Dl∀(Al, Dl) ∈ P, (Ak, Dk) ∈ P}, trains with
the earliest trivial late roll-in time

iv. j ← argminj{Aj | (Aj, Dj) ∈ Pe}, train with the earliest trivial early
roll-in time (also earliest arrival time)

v. if j ̸= ∅:

34

https://www.swedishict.se

A. k(i) = k(j)

B. Aj = max{th, Aj}
C. Dj = min{ti, Dj}
D. th = Aj +R, where R is the time needed for a roll-in.
E. I ← I \ {(Ai, Di)}
F. Iy ← Iy ∪ {(Ai, Di)} \ {(Aj, Dj)}

else:
A. l← argminl{Al | (Al, Dl) ∈ Iy}
B. ti = Al, arrival of train i delayed as no space on arrival yard.
C. Ai ← ti + S

D. Go to 5(a)ii.

B.2 Calculating Pull-back Intervals
Time intervals (Ap, Dp) for pull-backs are determined as follows.

1. Set the roll-out time of all trains b ∈ B to the latest possible time.

(a) tb = tdepb −Sdep, where Sdep is the time needed between roll-out and departure.

2. Assign to each train b a formation track f(b) such that the total time between con-
secutive same-track roll-outs is maximized. This is done by solving an assignment
problem.

3. For each track, form an interval graph of trains requiring mixing. For the earliest
maximal clique, let Dp ← the earliest departure time and Ap ← the latest allocation
start time. Remove trains covered by this pull-back interval (i.e. trains in the clique)
from the interval graph and repeat until the graph is empty.

B.3 Consolidating Pull-backs and Roll-ins Into a Hump Schedule
The hump schedule is fixed so that pull-backs and roll-ins do not overlap as follows.

1. For all roll-in intervals (Ai, Di) in order of increasing Ai:

(a) Schedule the roll-in as early as possible in the interval. Note that this is a fea-
sible roll-in schedule as the hump availability was considered when generating
the roll-in intervals.

2. For all pull-back intervals (Ap, Dp) in order of increasing Ap:

(a) Schedule the pull-back as early as possible in the interval. If possible, resched-
ule any roll-ins until after the pull-back.

35

https://www.swedishict.se

(b) If a pull-back cannot be scheduled in its time interval, delay the affected out-
bound trains alongside the pull-back until the hump is free. Do not schedule
the pull-back.

3. If any pull-back was delayed, restart the process from the beginning of the arrival
yard planning with the new delayed departure times. Else, return the roll-in, pull-
back and roll-out times.

36

https://www.swedishict.se

	Introduction
	Related Work
	Contributions
	Paper Outline

	Problem Definition
	Problem Data
	Pairwise Train Scheduling and Sequences
	Pairwise Mixing
	Formal Problem Definition
	Complexity Analysis

	Optimization Models
	Extended Formulation Solution
	Model.
	Pricing.
	Branching and Rolling Horizon.

	An Arc-Indexed Integer Programming Formulation

	Experiments
	Preprocessing
	Filtering and Matching Cars to Trains.
	Creating a Hump Schedule.
	Problem Instances.

	Optimization Set-up
	Computational Results
	Independent Instance Results.
	Rolling Horizon Results.
	Results for the Full Data Set.

	Capacity Analysis

	Conclusions
	Symmetry Reduction
	Hump Scheduling and Roll-out Order
	Mixing Track Scheduling

	Proof of Theorem 2
	Hump Scheduling and Roll-out Time Algorithms
	Calculating Roll-in Intervals
	Calculating Pull-back Intervals
	Consolidating Pull-backs and Roll-ins Into a Hump Schedule

