
Optimisation of simultaneous train formation and car
sorting at marshalling yards∗

Sara Gestrelius1, Florian Dahms2 and Markus Bohlin1

1SICS Swedish ICT AB
Box 1263, SE-164 29 Kista, Sweden,
{firstname.lastname}@sics.se

2RWTH Aachen, Chair of Operations Research
Kackertstrasse 7, 52072 Aachen, Germany

dahms@or.rwth-aachen.de

Abstract
Efficient and correct freight train marshalling is vital for high quality carload freight trans-
portations. During marshalling, it is desirable that cars are sorted according to their individual
drop-off locations in the outbound freight trains. Furthermore, practical limitations such
as non-uniform and limited track lengths and the arrival and departure times of trains need
to be considered. This paper presents a novel optimisation method for freight marshalling
scheduling under these circumstances. The method is based on an integer programming
formulation that is solved using column generation and branch and price. The approach
minimises the number of extra shunting operations that have to be performed, and is evaluated
on real-world data from the Hallsberg marshalling yard in Sweden.

Keywords
Shunting, Marshalling, Classification, Optimisation, Blocking, Column Generation

1 Introduction

To maximise the capacity of a carload transportation system a hub and spoke network is
often operated. The hubs are marshalling yards, where incoming cars are sorted into new
outbound trains. Outbound trains have predetermined service routes, and cars are assigned
to trains that pass through their destination. This implies that cars have to be decoupled at
intermediate stops, and to facilitate drop-off it is desirable that all the cars that are to be
decoupled at a certain location are right at the end of the train when the train reaches this
location. For this reason, cars should be sorted according to their drop-off location, into so
called blocks, during marshalling. Furthermore, practical limitations such as non-uniform
and limited track lengths, and arrival and departure times of the inbound and outbound trains,
need to be respected. This paper presents a novel method for freight classification planning
under these circumstances. It is an extension of the work in Bohlin et al. [5], where column
generation is used to find the classification schedule that minimises the number of extra car
pull-backs, but where any car order within the outbound trains is assumed to be acceptable.

∗This work was funded in part by the Swedish Transport Administration (Trafikverket) under grant TRV
210/29758.

1

The yard used as a case study is the Hallsberg marshalling yard in Sweden. The Hallsberg
yard is the largest marshalling yard in Scandinavia, and its advantageous location makes it an
important hub in the Swedish freight transportation network. Like many other marshalling
yards, the Hallsberg yard consists of three sub-yards: an arrival yard, a classification yard
(also called classification bowl) and a departure yard. Inbound trains arrive to the arrival yard
where their cars are decoupled from the line engine and undergo various inspections. The
uncoupled cars of the inbound train are then pushed over a hump and roll to various tracks
in the classification yard by means of gravity and a switching system. On the classification
yard, the cars are sorted into new outbound trains. When all cars of an outbound train have
been rolled to a classification track in the correct order the outbound train can be coupled
and then either depart from the classification track, or be pulled to the departure yard and
depart from there. In Hallsberg an operational demand is that each track in the classification
yard may only contain cars of a single outbound train. That is, there must be a bijection
between trains and tracks at any point in time. However, due to capacity limitations and
sorting requirements it is generally impossible to roll all cars straight to the tracks that have
been reserved for their outbound trains. Therefore, some of the tracks in the classification
yard are used as a buffer area where cars of different trains may be temporarily stored. These
tracks are called mixing tracks. The tracks used for building trains are called train formation
tracks. At given points in time, a pull-back operation is performed which allows any subset
of cars to be moved from the mixing tracks to the train formation tracks. During a pull-back
the cars of a mixing track are coupled, pulled back over the hump by an engine, and then
immediately pushed over the hump to once again be distributed on the classification tracks.
The later is called a roll-in operation. For a more detailed description of the operations in
Hallsberg we refer to [6].

Although sorting according to blocks is omitted in Bohlin et al.[5], it is generally
included in previous literature on classification planning. Research has been performed on
classification yard operations since the 1950s, and reviews of the area are given by Gatto et al.
[13] and more recently Boysen et al. [8]. Four basic methods for classification planning are
Sorting by trains, Sorting by block, Triangular Sorting and Geometric Sorting, all of which
include blocking. However, these methods determine the number of tracks and classification
steps by the number of outbound trains and their blocks, and do not take arriving car order
into consideration. This makes them robust against disruptions in the incoming car order,
but also leads to an excessive use of capacity or pull-backs. Gatto et al. [13] provides a
good overview of the trade-offs between the different algorithms. Dahlhaus et al. [10, 11]
introduce the train marshalling problem and presents a radix sort scheme that exploit the car
order in the arriving trains (called pre-sortedness), and show that this reduces the number of
sorting steps from logW (n) to logW (k), where W is the number of classification tracks, n
the number of arriving cars and k the number of batches. A batch is the maximal sequence of
cars that are in the correct relative order in the inbound trains. Jacob et al. [14] also develop
a methodology that takes pre-sortedness into consideration by representing the classification
schedule of each car by a binary encoding, and then using the intrinsic properties of this
representation to generate an optimal schedule. Further, they use their representation to
encode and analyse the previously mentioned basic sorting algorithms. Beygang et al. [4]
provide a lower bound on the objective, and upper and lower bounds on competitiveness for
the online version of the problem as well as give an optimal deterministic online algorithm.

The encoding in Jacob et al. [14] is also used to develop an integer programming (IP)
model for deriving optimal classification schedules in Maue and Nunkesser [15]. The IP

2

model incorporates real world constraints such as multiple humps and track capacity, and it
can be extended to take departure times into consideration. The authors model the Lausanne
Triage Shunting yard, and report that an optimal schedule was found within 3 minutes.
Further, this schedule requires one less pull-back and one less track than the planning method
currently used in Lausanne. The Hallsberg marshalling yard in Sweden has also been
modelled using first mixed integer programming (MIP) and later pure IP by Bohlin et al.
[6, 7, 5]. The three articles present more and more efficient MIP and IP formulations, and
in the latest paper [5], an optimal classification schedule for five days is found within 13
minutes for all 30 real world test cases. All models presented by Bohlin et al. [6, 7, 5] take
the additional constraints imposed by a car booking system into consideration.

The main contribution of this paper is a new model for optimised marshalling planning
that respects operational constraints and allows for cars to be sorted into blocks in the
outbound trains. Cars are simultaneously sorted by block and train, and car bookings on
specific trains are respected, i.e. cars need not depart with the next train going to their
destination, but the freight transportation company can define exactly which train they want a
certain car to depart with. As the generated schedule minimises the number of car pull-backs
while allowing for blocked outbound trains, it contributes to both efficient shunting and
efficient freight transportations.

The paper is structured as follows. In Section 2, the mixing problem with car sorting
according to blocks is formally defined, and in Section 3 the branch-and-price based column
generation approach from Bohlin et al. [5] is presented. We also show how to extend this
formulation to allow for sorting by blocks. Section 4 describes the experimental setup and
results, and includes an analysis of how sorting by blocks affects the execution time and
solution quality. Finally, Section 5 concludes the paper and outlines future research.

2 Problem Definition

We are given a set of classification tracks O, a set of periods P , a set of car units Q, and
a set of outbound trains R. We denote by B(r) ⊆ B the blocks belonging to train r, and
Q(b) ⊆ Q the set of car units that belong to block b. A car unit consists of cars that belong
to the same block and arrive with the same inbound train. For each car unit q ∈ Q, we are
given its arrival time t(q), i.e., the time when its inbound train is rolled to the classification
yard from the arrival yard, its length s(q), and its corresponding outbound train r(q) ∈ R.
Further, each car unit q ∈ Q belongs to a block b(q) ∈ B. The blocks have a natural order in
which they must appear in the outbound train based on their geographical location. However,
within a block no special ordering of cars is necessary. We denote by Q(r) ⊆ Q the set of
car units that belong to train r. Further, each train r ∈ R has a departure time t(r), i.e., the
time when it leaves the classification bowl. The length s(r) of a train r is the sum of the
lengths of its cars, s(r) :=

∑
q∈Q(r) s(q).

For each classification track o ∈ O we are given its length s(o). Thus, a train r can be
formed on track o if and only if s(r) ≤ s(o). Let R(o) denote the set of trains that can be
formed on track o. At any point in time, a classification track may only contain cars of one
outbound train, and each train is formed on exactly one classification track. We say that a
train r is active for the time interval during which its corresponding classification track is
used exclusively for the formation of r. Further, we call the block currently being built on
the classification track the active block.

We define the strict partial order≺ on the set of outbound trains R such that r ≺ r′ if and

3

only if train r ∈ R can be scheduled directly before train r′ ∈ R on the same track. Whether
r ≺ r′ holds or not depends on the departure times of trains r and r′ as well as on technical
setup times (e.g., brake inspection) and other car movements in the marshalling yard. This is
further explained in Section 2.1. Note that antisymmetry is ensured as no two trains may be
formed on one track at the same time.

As stated previously, capacity limitations and sorting requirements normally make it
impossible for all cars to be rolled straight to their train formation tracks. Therefore, we are
also given a set of mixing tracks where cars of different outbound trains can be temporarily
stored. To simplify our model, we treat these tracks as one concatenated track, called the
mixing track. This simplification is valid as long as enough time is added to pull back all cars
on all physical mixing tracks each time the cars on the concatenated mixing track is pulled
back.

The mixing track has a given length smix. A car that is stored on the mixing track is said
to be mixed. All mixed cars are pulled back to the arrival yard at certain predetermined times,
and are then immediately pushed over the hump again so that the cars can be re-distributed
on the classification tracks. All cars belonging to currently active blocks will be rolled to
their train formation tracks, while the remaining cars are rolled back to the mixing track.
We call this operation a pull-back followed by a roll-in. A pull-back operation defines the
beginning of a period p ∈ P , and all cars that are sent to the mixing track after the start time
t(p) of period p must remain mixed at least until the start of the next period at time t(p+ 1).

As an objective function, we choose to minimise the number of car pull-backs. There are
several reasons for our choice of objective function. For each period during which a car is
mixed, it will be subjected to a pull-back and roll-in operation, which takes effort and time,
and wears down switches and tracks. Note that since no car can leave the mixing track until
the next pull-back is performed, the total length of the mixed cars within a period is at its
maximum at the end of the period.

How many cars that need to be mixed in a period depends on which blocks are active,
and how long these blocks have been active for. The start time of a block b ∈ B(r′), denoted
i(b, r), can be deduced if the blocks of train r′, and the train r that precedes train r′ on the
classification track, are known (see Section 2.1).

Although the car-ordering within an inbound train is assumed to be unknown, the roll-in
order of trains, and therefore of car units from different trains, is know. This means that the
order of car units on the mixing track is known to some extent, and in some cases we can
deduce that car units belonging to different blocks are in the correct order on the mixing
track, and should therefore be rolled to the train formation track in the same pull-back to
avoid mixing cars for longer than necessary.

Let qbe be block b’s final car unit to be mixed. This implies that qbe is the final car unit to
be rolled in before block b’s active period starts. Further, assume that block b is immediately
followed by block b′ in a train. Then all cars of b′ that arrives after qbe but before i(b′, r) can
be moved to the train formation track in the same pull-back as qbe if this pull-back ends the
active period of block b. If the pull-back does not end block b’s active period more cars are
going to be rolled to block b after the pull-back, and all cars belonging to block b′ must be
mixed for at least another period. Let’s call the set of car units that fulfill these criteria Qm,
i.e. Qm is the car units that can be rolled to their train formation track in the same pull-back
as cars of the previous block. Note that the pull-back that moves a car q ∈ Q(b′) ∩Qm to
the train formation track will be the pull-back that starts off the active period of block b′,
but that there may be other mixed cars q ∈ Q(b′)\Qm that have to be mixed for yet another

4

period as they were rolled in before t(qbe). An example of this is shown in Figure 1, where
car q12 = q1e , and cars q22 , q

2
3 ∈ Qm and can be rolled to the train formation track in pull P1

while car q21 6∈ Qm and has to wait until pull P2.

r 1 2

t(q11) t(q21) t(q12) t(q22) t(q13) t(q23)
P1

P2
t(q24) t(q25)

q11

q21

q12

q23 ∈ Qm

q22 ∈ Qm

q21 6∈ Qm

t(r′)t(r)

Time

Train r′: Locomotive q13 q11q
1
2q

2
2q

2
3 q24 q25q21

Figure 1: An example of cars of different blocks being in the correct order on the mixing
track. Train r′ consists of two blocks and train r of one. The boxes represent the active
periods of the trains and blocks, and the arrival times of the cars qbi ∈ r′ are plotted above
the active period boxes. Car units are denoted qbi , where b is the block, and i an index to
separate the car units from each other. The departure times of the trains are shown by circles
underneath the boxes. Pull-backs are represented by P , and the cars that are mixed when a
pull-back is executed are printed above the pull-back in the order that they were rolled to the
mixing track (so e.g. car q11 will be the first car to be rolled into the classification yard after
pull-back P1). Also, the final car ordering of train r′ is shown in the bottom of the picture
where the cars have been plotted right underneath the times when they’re rolled to the train
formation track.

The number of extra car roll-ins needed if train r is followed by train r′ on a classification
track can now be calculated as follows:

c(r, r′) =
∑

q∈Q(r′)

c(q, r)

where
c(q, r) = |q| · |P (q, r)|

is the number of extra roll-ins needed for car unit q if its train is shunted after r, and

P (q, r) =


∅ if i(b(q), r) ≤ t(q)
{p ∈ P : t(p) > t(q) ∧ t(p− 1) ≤ i(b(q), r)} elseif q 6∈ Qm

{p ∈ P : t(p) > t(q) ∧ t(p− 1) < i(b(q), r)} else

is the set of all periods in which q will be mixed, when its train is shunted after r. |q| is

5

defined as the number of cars in car unit q. Note that if p is the first pull-back in P , t(p− 1)
is defined as the very first point in time.

Likewise, the length of cars that need mixing in each period, denoted sp(r, r′), is given
by,

sp(r, r′) =
∑

b∈b(r′)

sp(b)

where,

sp(b) =


∑

q∈Q(b):t(q)<min(i(b,r),t(p+1))

s(q), if t(p) < i(b, r)∑
q∈Q(b)\Qm:t(q)<min(i(b,r),t(p+1))

s(q), if t(p) = i(b, r)

0, otherwise.

The formulae above calculate the cost of train r′ if it’s scheduled straight after train r on
a classification track. However, in a schedule there will also be a first train on each formation
track. In Bohlin et al. [5] all cars belonging to the first train on a track will always be rolled
straight to this formation track. However, when sorting cars into blocks some of the cars
of this first train may need to be mixed. To calculate the mixing cost of the first train an
imaginary train, u, with a departure time at 0.0, is introduced. The number of pull-backs
incurred by the first train, c(u, r), can then be calculated using the formula above. Likewise,
the mixing length, sp(u, r) can be calculated using the formula above and the same imaginary
predecessor train u.

Deducing active periods of blocks
The start time of a block b ∈ B(r′) where r′ is scheduled to follow r on a formation track
o is denoted i(b, r), and the end time t(b, r). Also, let a block b be denoted by its natural
order in the outbound train, i.e. call the block that needs to be built first on the track 1, the
next one 2 etc. But from the first block, the start time of a block will always be the end
time of the previous block, i.e. i(b+ 1, r) = t(b, r). Note that all cars belonging to a block
must be rolled to the track after the start time of the active period of the block. The only
exception to this rule are cars in Qm, which may be rolled to the formation track in the
pull-back that starts the active period of their block. The start time of the first block of a train
r will be the departure time of the train preceding r on the formation track. Further, the end
time of a block’s active period is the time when its final car is rolled to the train formation
track. This may be as a result of an initial roll-in (arrival) or a mixing track pull-back and its
following roll-in. If a block b requires mixing, its end time is max(pb, lb) where lb = t(qf)
and qf ∈ Q(b) is the car with the latest roll-in time, and pb is the time of the earliest pull-back
after i(b, r), or, if all the cars of the two blocks are in the correct order on the mixing track
(i.e. every mixed car belonging to block b exists in the setQm), pb is the time of the pull-back
that ends the active period of block b − 1. In the latter case the active period of block b
may be very short, and only consist of the time it takes for its cars to be rolled-in after the
pull-back. Blocks that do not require mixing always end with a roll-in, namely t(qf). Given
these simple rules the start and end times of all the active periods of all blocks of train r′

following a train r on a formation track can be calculated as described in Algorithm 1. Note
that in the final iteration of the algorithm the end time of the final block will be calculated
and saved as the start time of a dummy block b = |B(r′)|+ 1.

6

Algorithm 1: Blocking(r, r′), calculates the start time for all blocks in a train r′ given
that its immediate predecessor is train r.

input :Two trains r, r′

output :Start times i(b, r) for all blocks b ∈ b(r′)
i(1, r)← t(r)
foreach b ∈ b(r′) in natural block order do

eb ← minqi∈Q(b) t(qi)
lb ← maxqi∈Q(b) t(qi)
Mb ← {qi|qi ∈ Q(b) : t(qi) ≤ i(b, r)}
if eb > i(b, r) then

pb ← 0
else

if |Mb| = |Mb ∩Qm| and the active period of b starts with a pull-back then
pb ← i(b, r)

else
pb ← minpi∈P :i(b,r)<t(pi) t(pi)

end
end
i(b+ 1, r)← max(pb, lb)

end

2.1 Sequences and Feasible Solutions

We define feasible solutions to our problem in terms of sequences of trains, which can be
allocated to individual tracks. A sequence g is a totally ordered subset of trains, including
the dummy train u which defines the beginning of each sequence. Let us denote the fact that
two trains r, r′ ∈ R appear consecutively in a sequence g by (r, r′) ∈ g. We call (r, r′) ∈ g
a pairing. Note that in a pair (r, r′) train r occupies the formation track before train r′. For
example, given a sequence g = 〈u, r1, r2, r3〉, it holds that (r1, r2) ∈ g and (r2, r3) ∈ g, but
note that (r1, r3) 6∈ g and (r2, r1) 6∈ g. A sequence which is ordered by ≺ is feasible. Let G
denote the set of feasible sequences. For each sequence g ∈ G and period p ∈ P , let sp(g)
be the total length of the mixed cars from g in p, i.e.,

sp(g) =
∑

(r,r′)∈g

sp(r, r′) .

Further, let c(g) be the sum of all extra roll-ins for g:

c(g) =
∑

(r,r′)∈g

c(r, r′) .

A schedule f : O → G is an injective mapping from tracks to feasible sequences. A
feasible sequence g can be scheduled on a track o if and only if all trains of the sequence fit
on the track, i.e., g ⊆ R(o). Let us denote by G(o) the set of all feasible sequences that can
be scheduled on track o. A feasible solution to our problem can now be defined as a schedule
f that

7

1. assigns a feasible sequence to each track,

∀o ∈ O : f(o) ∈ G(o) ,

2. such that each train occurs exactly once in a sequence,

∀r ∈ R : ∃o ∈ O : r ∈ f(o) ∧ ∀o′ ∈ O : o 6= o′ → r 6∈ f(o′) ,

3. and such that in each period, the capacity of the mixing track is respected,

∀p ∈ P :
∑
o∈O

sp(f(o)) ≤ smix .

Feasible Sequences
For two trains (r, r′), where r departs before r′, to be comparable by ≺ the active periods
of all blocks b ∈ B(r′) must fit within the active period of train r′. The departure time of
train r determines when the active period of r′ may start. If the departure time of r is earlier
than the arrival time of the earliest car of the first block of train r′ the two trains are trivially
comparable, else they are only comparable if there are enough pull-backs for all blocks of
train r′ to be built before its departure time. The end-time of the final block of train r′ can be
calculated using Algorithm 1, and if the end-time of the final active block is earlier than, or
at the same time as, the departure time of train r′ minus a given time for technical set-up, the
two trains are comparable by ≺ and may be used in the same sequence. An example of two
feasible and one infeasible train pairings is shown in Figure 2.

r 1 2

t(q2)
P1 P2

t(r′)t(r)

Time

t(q1)
P3 t(q2)

P4

(r, r′) feasible

r 1 2

t(q2)

t(r′)t(r)

t(q1) t(q2)

(r, r′) infeasible

r 1 2

t(q1)

t(r′)t(r)

t(q1) t(q2)

(r, r′) feasible

P1 P2 P3 P4

P1 P2 P3 P4

Figure 2: An example of two feasible pairings and one infeasible. Train r is not blocked
while train r′ has two blocks. The active periods of the trains are marked with white boxes,
and the active periods of block 1 and 2 of train r′ are marked with grey boxes of different
darkness. The departure times are shown as circles underneath the active period boxes, and
the technical set-up time as a black thick line. The roll-in times of cars belonging to train
r′ are shown above the boxes, and the arrows show when the cars are rolled to the train
formation track. The block of a car is indicated as a subscript. For the pairing to be feasible
all cars of train r′ must be rolled to the train formation track before the technical set-up
preceding its departure time t(r′).

8

3 The column generation model

In this section we introduce the column generation model from Bohlin et al. [5] and describe
the necessary adaptations to allow for sorting the cars into blocks in the outbound trains. The
essence of column generation is to reduce the problem size of a linear programming problem
(LP) by starting out with a few variables and solving this reduced problem to optimality. If
the solution satisfies all the constraints of the full dual problem the solution will be optimal
also for the full LP, but if some constraints are broken more variables need to be introduced.
In the model we use, the variables to be included are generated using a method called pricing,
where the variable that corresponds to the most violated constraint in the full dual is found.
As the shunting problem is an integer programming problem (IP) rather than an LP, we work
with the LP relaxation of the IP, and then branching is used to find an IP solution. For a more
thorough explanation of column generation, see Derosiers and Lübbecke [12].

In this paper we briefly outline the integer programming model and its dual. For further
details on the model and the branching algorithm, we refer to Bohlin et al. [5].

3.1 The IP model and its dual

We use variables xgo to encode whether a sequence g is assigned to a track o or not. Further,
variables yro are included to encode that train r is assigned to track o, as this variable is
useful during branching. This gives the IP,

min
∑
o∈O

g∈G(o)

c(g) · xgo (1)

s.t.
∑
o∈O

yro ≥ 1 r ∈ R (2)∑
g∈G(o)
r∈g

xgo ≥ yro r ∈ R, o ∈ O (3)

∑
g∈G(o)

xgo ≤ 1 o ∈ O (4)

∑
o∈O

g∈G(o)

sp(g) · xgo ≤ smix p ∈ P (5)

x, y ∈ {0, 1} (6)

(1) is the objective function, i.e. the number of car pull-backs, and to adapt the IP
formulation for sorting by blocks the formula for c(g) from Section 2 should be used.
Inequalities (2) and (3) ensure that every train is present in at least one sequence. Should a
train be present in more than one sequence in the final solution all but one instance of the
train can be removed. Inequality (4) ensures that at most one sequence is assigned to each
track. In inequality (5) the formula for sp(g) from Section 2 should be used to make sure that
the mixing track capacity is never exceeded. The dual of the problem is then the following,

9

max
∑
r∈R

αr +
∑
o∈O

γo + smix
∑
p∈P

δp (7)

s.t. αr ≤ βro r ∈ R, o ∈ O (8)∑
r∈g

βro + γo +
∑
p∈P

sp(g) · δp ≤ c(g) o ∈ O, g ∈ G(o) (9)

α, β ≥ 0 γ, δ ≤ 0 (10)

3.2 Pricing

In the pricing step we want to find the variable that violates∑
r∈g

βro +
∑
p∈P

sp(g) · δp − c(g) ≤ −γo

the most for each track o. That is the variables that maximise,

max
g∈G(o)

∑
r∈g

βro +
∑
p∈P

sp(g) · δp − c(g) . (11)

To this aim we make use of a directed graph G = (V,E), where the nodes represent
trains as well as the start and end of a sequence (special nodes u and v), V = R(o) ∪ {u, v}.
The edge set E includes an edge (u, r) and (r, v) for every train r ∈ R(o), and an edge
(r1, r2) if r1 ≺ r2. Any path from u to v in G corresponds to a feasible sequence g ∈ G(o).

Next, weights should be added to the edges. The weights represent how much cost a
certain train pairing adds to Expression (11). As pointed out previously the first train in the
sequence may incur a cost when sorting according to blocks. This potential cost is added
to the edge (u, r) for every train r ∈ R(o), where u is once again treated as a dummy train
with departure time 0.0:

• w(u,r) = βro +
∑

p∈P sp(u, r) · δp − c(u, r)

• w(r1,r2) = βr2o +
∑

p∈P sp(r1, r2) · δp − c(r1, r2)

• w(r,v) = 0

Now, for every sequence g ∈ G(o) there is one equivalent path in G which has a total
weight equal to ∑

r∈g

βro +
∑
p∈P

sp(g) · δp − c(g) ,

where sp(g) and c(g) are defined as in Section 2 and allow for sorting according to
blocks. This is the quantity that should be maximised, which is done by finding the longest
path in G from u to v. Bohlin et al. [5] points out that the partial ordering of trains makes G
cycle-free, and therefore the longest path can be calculated in O(|V |+ |E|) time (see [9]).
As the train graph could be close to complete, the complexity in our case would be O(|R|2).

10

4 Experiments

Case study
The Hallsberg classification yard, which is the main hub for car-load rail freight in Sweden,
was used as a case study. To evaluate the approach, a historic data set obtained from the
Swedish Transport Administration (Trafikverket) was used. The set included trains that
arrived to or departed from the Hallsberg yard between December 2010 and May 2011.
Further, the physical constraints of Hallsberg marshalling yard were taken from [3].

The geographical layout of the yard in Hallsberg can be seen in Figure 3. Hallsberg’s
arrival yard consists of 8 tracks, while the classification yard has 32 tracks and the departure
yard 23 tracks. The length of the arrival yard tracks range from 595 to 693 meters, and the
classification track lengths range from 374 to 760 meters. The departure yard tracks have
lengths between 562 and 886 meters. Two classification tracks, of length 704 m and 724 m,
were chosen as mixing tracks, giving a total mixing capacity of 1428 m.

Figure 3: Layout of the Hallsberg Marshalling yard, taken from [3]. The three sub-yards can
easily be identified, with the arrival yard to the left. But from the three sub-yards a number
of other tracks used for e.g. repair work are visible. These tracks were not included in the
problem set-up as they are normally not used for shunting. The image is not to scale.

Arrival and departure track scheduling was done in a pre-processing step as described in
Bohlin et al. [7]. Likewise, a hump schedule for roll-ins and pull-backs was generated using
the same pre-processing code as in Bohlin et al. [7]. However, as sorting by blocks requires
more shunting steps extra pull-backs were scheduled between two consecutive inbound train
roll-ins whenever possible. The time duration estimates used in the pre-processing, and when
adding extra pull-backs, were taken from [2].

The resulting data set consisted of 18 365 car groups. All cars in a car group arrive with
the same inbound train, and depart with the same outbound train. Note that this is different
from the car units used for generating a classification schedule that allows for sorting by
blocks, as these car units consist of cars that arrive with the same inbound train, and belong
to the same block in an outbound train. However, due to lack of better data car groups were
used as car units. Since operational planning normally is done for a few days at a time, the
resulting data set was split into separate planning problems of three days each, resulting in a
total of 50 test cases. Every three day planning problem included all car groups that arrived
to or departed from the yard during the period.

Generating block data
Unfortunately real-life block data was not available for the sampling period. However, the
Hallsberg yard staff provided us with example data for one week to use as a basis for our

11

experimental setup. We used this example data to generate the block composition of trains
randomly, based on the estimated frequency and composition of blocked trains in the example
data set. Trains that require sorting by blocks normally depart at approximately the same
time each day, and a daily departure time pattern consisting of seven times was therefore
chosen. This time pattern corresponded to times when blocked trains typically departed from
Hallsberg. A sweep algorithm was then used to identify the first trains that departed after the
times specified by the pattern and consisted of cars from more than one inbound train. The
latter requirement is a consequence of the direct translation of car groups to car units, and the
need for at least two different car units to generate blocks. Trains that had been identified by
the sweep algorithm and that consisted of cars from only two inbound trains were assumed
to have two blocks, all other trains that were identified were assumed to require two or three
blocks with equal probability. We restricted the number of blocks to at most three as the
example data set never contained more than three blocks for any train. The number of blocks
that a train required was sampled using the random module in Python 2.7 (for more details
on the random module see [1]).

After the blocked trains had been chosen, their cars had to be assigned to blocks. We call
a blocked train that can be correctly built on one train formation track within its unrestricted
active period, i.e. when its active period is determined by the roll-in times of the cars and the
departure time of the train only, a feasible train. Whether a train is feasible or not depends
on the blocks of the train, and the pull-back and roll-in schedule. Blocked trains that are not
feasible can never be built before their departure time and thereby render the entire problem
infeasible.

Let nrb = |B(r)| be the number of blocks of a train r, and let a block b be defined by
its natural order, starting with 1. Then the following lemma states a sufficient condition for
feasible trains.

Lemma 1. A train r is feasible if for all cars q there exist at least nrb − b(q) pull-backs
before t(r) but after t(q).

Although this condition is sufficient, it is not necessary. A trivial example of a feasible
blocked train that requires no pull-backs is a train whose cars are rolled in from the arrival
yard in the correct order. However, a feasible two block train that does not fulfill Lemma 1
can be treated as a non-blocked train (as all cars of the train must already be in the correct
order during roll-in). Likewise, a feasible three block train not fulfilling Lemma 1 can be
treated either as a train with no blocks (if all cars are rolled in in the correct order), or as a
two block train.

To sample a block for a car all blocks that were feasible for the car with respect to
Lemma 1 were identified. Then the random number generator of Python 2.7 was used to
sample one of the feasible blocks and the car was assigned to this block. All feasible blocks
had an equal probability of being chosen. To ensure that all blocks were represented at least
once, the set of feasible cars was identified for each block, and then one car was sampled
from each set and assigned to the respective block. This was done in the beginning of the
block-sampling, and the cars were sampled in the natural order of the blocks. Cars were
removed from the sampling as soon as they had been assigned to a block. If a train did not
have any feasible cars for a certain block it was either assumed to not require sorting by
blocks, or it was assumed to be a train of fewer blocks than originally sampled. More precise,
two block trains were always assumed to not require sorting by blocks, while three block
trains were re- marked as a two block trains and the block sampling was restarted.

12

The initial sweep algorithm identified 1054 trains to be blocked in the historic data. Out
of these, 581 two block trains and 473 three block trains were sampled. However, due to lack
of pull-backs 29 two block trains and 38 three block trains were rejected by the algorithm at
later stages. Further, 15 three block trains were re-marked as two block trains. Therefore the
final experimental data included 567 two block trains and 420 three block trains. Out of the
567 two block trains 260 were trivial, i.e. the blocks happened to be sampled such that all
cars were rolled in from the arrival yard in the correct order. Likewise, 109 of the three block
trains were trivial.

Introducing blocked outbound trains will decrease the number of feasible pairings as the
number of pull-backs needed in the active period of a train is increased (see Section 2.1). In
our case, the number of feasible pairings was reduced from 135 514 to 131 755 for the entire
sample period.

Technical details
SCIP 3.1.0 was used as the branch-and-price framework, with CPLEX 12.5.00 as the LP
solver. The pre-processing code was run using Python 2.7.2. Experiments were performed
on Linux workstations running openSUSE 12.1 with eight Intel Core i7-2600 quad-core
CPUs running at 3.4 GHz and equipped with 16 GB of RAM.

4.1 Results

Two different test cases, one with blocked outbound trains (called B-IP) and one without
(N-IP), were executed and the results are presented in Table 1. Two different measurements
of car pull-backs are presented: P-EP is the number of extra car pull-backs that the problem
set-up includes, while O-EP is the number of extra car pull-backs that would be needed to
properly sort all cars according to the generated classification schedule in an operational
setting. The difference between the two measurements is largely caused by the pull-backs
that were added between consecutive train roll-ins. These pull-backs were scheduled without
consideration of how useful they would be, and therefore they are likely to not move any
cars from the mixing track to the train formation tracks, but rather all mixed cars will just be
pulled out to the arrival yard and then immediately rolled back to the mixing track. This is
obviously an unnecessary operation, and in a real world setting the pull-back would not be
executed. O-EP include only the extra pull-backs which are strictly necessary, while P-EP
includes all extra pull-backs present in the schedule. Further, while all pull-backs of N-IP
may be considered as “extra” pull-backs enforced by capacity limitations, a certain amount
of pull-backs will be necessary for sorting the cars into blocks in B-IP. Therefore the total
number of pullbacks, as calculated by the formula in Section 3, is presented in brackets for
B-IP. The extra pull-backs have been calculated as the total number of pull-backs minus
the number of pull-backs necessary for sorting the cars into blocks given that all the trains’
active periods are unrestricted.

As can be seen in Table 1, the optimal solution is found for all test instances. Further, the
average execution times for the two test cases are comparable, indicating that generating a
schedule that allows for blocked outbound trains will not negatively affect the execution time.
As expected the total number of pull-backs is greatly increased when blocking is introduced.
However, the number of “extra” pull-backs enforced solely by capacity constraints remains
low. In fact, the average of P-EP enforced solely by capacity constraints is reduced when
sorting cars according to blocks. This is explained by the fact that some of the pull-backs that

13

are necessary for sorting the cars into blocks will also alleviate capacity problems. However,
the average O-EP is slightly higher for B-IP than for N-IP. This may be explained by the
fact that more pull-backs will be useful when sorting cars into blocks. A car that spends the
same amount of time on a mixing track in B-IP and N-IP is therefore likely to be subjected
to more pull-backs in an operational setting if the mixing track is used not only for capacity
alleviation but also for sorting cars according to blocks. The effect of this is not seen in P-EP
as all pull-backs are included whether they are useful or not.

Table 1: The experimental results for two different test cases, one with blocked outbound
trains (B-IP) and one without (N-IP). P-EP are the number of extra pull-backs as defined
by the problem set-up, while O-EP are the extra pull-backs that need to be carried out in
an operational setting to sort the cars according to the generated classification schedule.
The execution times and optimality gaps are also included. x̄ is the arithmetic mean. The
execution time is reported as clock-seconds, and includes problem set-up and post-processing.

Instance N-IP B-IP
Trains Groups P-EP O-EP Time Gap P-EP (Tot) O-EP (Tot) Time Gap

(#) (#) (#) (#) (s) (%) (#) (#) (#) (#)
1 65 257 0 0 10.2 0 0 (82) 0 (44) 8.5 0
2 107 581 68 33 124.5 0 48 (474) 34 (306) 99.9 0
3 35 148 0 0 1 0 0 (162) 0 (76) 1.2 0
4 88 340 0 0 29.9 0 0 (248) 0 (106) 44.8 0
5 14 46 0 0 0.1 0 7 (9) 7 (8) 0.1 0
6 55 170 0 0 3.3 0 0 (267) 0 (133) 3.3 0
7 44 170 0 0 2.6 0 0 (109) 0 (31) 2.8 0
8 51 155 0 0 3.8 0 0 (49) 0 (39) 2.8 0
9 70 268 0 0 12 0 0 (89) 0 (31) 11.3 0
10 44 155 0 0 2.2 0 0 (23) 0 (12) 2.6 0
11 113 575 89 38 191.2 0 61 (500) 53 (335) 154.8 0
12 57 282 0 0 4.4 0 0 (262) 0 (194) 4.7 0
13 91 485 30 28 43.4 0 17 (278) 17 (224) 38.7 0
14 80 440 4 2 25.4 0 0 (276) 0 (216) 24.8 0
15 63 259 0 0 7.6 0 0 (118) 0 (52) 6.5 0
16 73 308 0 0 9 0 0 (162) 0 (84) 8.1 0
17 53 229 0 0 4.6 0 0 (64) 0 (33) 3.6 0
18 97 485 5 3 51.8 0 3 (144) 2 (69) 61.7 0
19 66 296 0 0 5.5 0 0 (449) 0 (258) 5.1 0
20 78 440 18 16 15.7 0 9 (177) 8 (104) 14.6 0
21 75 371 0 0 12.3 0 0 (600) 0 (370) 13.9 0
22 59 251 0 0 8.8 0 0 (413) 0 (260) 8.3 0
23 106 594 64 54 70.3 0 51 (651) 51 (420) 52.4 0
24 43 200 0 0 1.5 0 0 (561) 0 (352) 1.7 0
25 108 538 3 3 93.5 0 0 (455) 0 (277) 66.8 0
26 74 327 0 0 10.9 0 0 (269) 0 (132) 9.2 0
27 82 467 4 2 14.2 0 2 (208) 2 (158) 14.1 0
28 72 413 130 24 12.1 0 130 (222) 68 (140) 5.6 0
29 62 259 0 0 8.1 0 0 (286) 0 (156) 7.2 0

14

Table 1: The experimental results (continuation from previous page).

Instance N-IP B-IP
Trains Groups P-EP O-EP Time Gap P-EP (Tot) O-EP (Tot) Time Gap

(#) (#) (#) (#) (s) (%) (#) (#) (#) (#)
30 103 572 29 20 173.5 0 21 (352) 21 (246) 169.6 0
31 50 234 0 0 3.1 0 0 (267) 0 (189) 3.1 0
32 118 715 100 81 130.4 0 64 (599) 59 (481) 156 0
33 78 420 1 1 13.1 0 0 (392) 0 (212) 16.1 0
34 88 492 49 39 36.3 0 20 (236) 16 (187) 43.7 0
35 84 503 14 9 36 0 3 (471) 3 (310) 28.6 0
36 65 288 0 0 6.8 0 0 (204) 0 (71) 7 0
37 94 546 118 78 49.4 0 85 (682) 63 (456) 41.8 0
38 51 268 0 0 4.5 0 0 (345) 0 (253) 5.6 0
39 111 640 86 76 151.4 0 67 (483) 67 (355) 148 0
40 59 269 0 0 5.1 0 0 (411) 0 (269) 4.8 0
41 95 513 158 62 47 0 145 (261) 83 (150) 54.7 0
42 86 514 29 22 21.3 0 28 (364) 25 (310) 29.4 0
43 70 319 6 4 9.9 0 6 (245) 5 (106) 14.6 0
44 84 503 14 12 37.8 0 7 (464) 6 (298) 32.4 0
45 5 9 0 0 0 0 0 (0) 0 (0) 0 0
46 91 470 19 12 24 0 4 (503) 4 (444) 33.2 0
47 71 391 0 0 6.8 0 0 (273) 0 (177) 5.3 0
48 94 533 247 118 45.2 0 235 (373) 187 (294) 62.5 0
49 74 413 4 4 13.3 0 3 (231) 3 (149) 20.2 0
50 56 244 0 0 4.4 0 0 (148) 0 (107) 4.6 0
x̄ 73.0 367.3 25.8 14.8 32.0 0 20.3 (298.2) 15.7 (193.7) 31.2 0

5 Conclusions

In this paper we introduced a novel approach for optimisation of simultaneous car sorting and
train formation for freight shunting yards. The approach builds on the integer programming
approach of Bohlin et al. [5] to enable the generation of classification schedules that allow
for cars to be sorted into blocks within outbound trains. This is accomplished by constructing
new formulae for calculating the mixing and pull-back costs, as well as adapting the pricing
algorithm. Experiments were performed on real traffic data from Hallsberg marshalling yard,
generated block data, and a planning horizon of three days. The new model found an optimal
solution within three minutes for all 50 test instances, and the results show that although
the solutions require more car pull-backs in total, the number of extra pull-backs enforced
by capacity constraints is comparable with the number of extra pull-backs that is required
when no outbound trains have blocks. In fact, if all pull-backs that were included in the
problem set-up are executed, the number of extra pull-backs enforced solely by capacity
constraints is reduced slightly when sorting the cars into blocks. This is because some of
the pull-backs that are necessary for sorting (and hence not extra) also alleviate the capacity
problem. However, if only the useful pull-backs are executed, the number of extra pull-backs

15

is slightly increased when including sorting by blocks. This is explained by the fact that more
pull-backs are useful in the blocked problem, and therefore a car that has been mixed for
capacity reasons is likely to be subjected to more pull-backs while waiting for track capacity
to become available.

5.1 Future Work

There is a number of ways in which this method could be further improved. First of all,
the heuristic used to decide the roll-in and pull-back times does not take blocking into
consideration. Changing the heuristic such that blocking is included would most likely
improve our results. Further, in this paper the mixing track modelling is simplified, and we
view the different mixing tracks as one long track. In reality there are many mixing tracks,
and they could be pulled-out at different times providing an opportunity to sort cars by blocks
on the mixing tracks, and thereby make better use of the yard capacity. For this reason, more
detailed mixing-track modelling is highly desirable. For the methods described in this paper
to be applicable in real operations, robustness and efficient ways to update the schedule and
extend the planning horizon are also important topics to address.

Acknowledgments

We are grateful to Stefan Huss and Pelle Andersson at Green Cargo AB for providing
information and data on the shunting process in Hallsberg, and to the staff at the Hallsberg
shunting yard for providing example data and for helpful and interesting discussions. Finally,
we would like to thank Hans Dahlberg at the Swedish Transport Administration for his
support.

References

[1] Python v2.7.3 documentation chapter 9.6. random –generate pseudo-random numbers.
http://docs.python.org/2/library/random.html, Jan. 2013.

[2] C. Alzén. Handbok BRÖH 313.00700: Trafikeringsplan Hallsbergs rangerbangård.
Banverket, May 2006.

[3] K.-Å. Averstad. Handbok BRÖH 313.00001: Anläggningsbeskrivning Hallsbergs
rangerbangård. Banverket, February 2006.

[4] K. Beygang, S. O. Krumke, and F. Dahms. Train marshalling problem - algorithms and
bounds -. Technical Report 132, TU Kaiserslautern, Fachbereich Mathematik, 2010.

[5] M. Bohlin, F. Dahms, H. Flier, and S. Gestrelius. Optimal Freight Train Classification
using Column Generation. In D. Delling and L. Liberti, editors, 12th Workshop on
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems,
volume 25 of OpenAccess Series in Informatics (OASIcs), pages 10–22, Dagstuhl,
Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[6] M. Bohlin, H. Flier, J. Maue, and M. Mihalák. Hump Yard Track Allocation with Tem-
porary Car Storage. In The 4th International Seminar on Railway Operations Modelling

16

and Analysis (RailRome), 2011. Available on http://soda.swedish-ict.se/
5089/.

[7] M. Bohlin, H. Flier, J. Maue, and M. Mihalák. Track Allocation in Freight-Train
Classification with Mixed Tracks. In 11th Workshop on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems, volume 20 of OpenAccess Series
in Informatics (OASIcs), pages 38–51, Dagstuhl, Germany, 2011. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik.

[8] N. Boysen, M. Fliedner, F. Jaehn, and E. Pesch. Shunting yard operations: Theoretical
aspects and applications. European Journal of Operational Research, 220(1):1 – 14,
2012.

[9] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction To Algorithms. MIT
Press, 3rd edition, 2009.

[10] E. Dahlhaus, P. Horák, M. Miller, and J. F. Ryan. The train marshalling problem.
Discrete Applied Mathematics, 103(1–3):41–54, 2000.

[11] E. Dahlhaus, F. Manne, M. Miller, and J. Ryan. Algorithms for combinatorial problems
related to train marshalling. In Proceedings of the Eleventh Australasian Workshop on
Combinatorial Algorithms (AWOCA), pages 7–16, 2000.

[12] J. Desrosiers and M. Lübbecke. A primer in column generation. In G. Desaulniers,
J. Desrosiers, and M. Solomon, editors, Column Generation, pages 1–32. Springer,
Berlin, 2005.

[13] M. Gatto, J. Maue, M. Mihalák, and P. Widmayer. Shunting for dummies: An introduc-
tory algorithmic survey. In Robust and Online Large-Scale Optimization, volume 5868
of LNCS, pages 310–337. Springer, 2009.

[14] R. Jacob, P. Márton, J. Maue, and M. Nunkesser. Multistage methods for freight train
classification. Networks, 57(1):87–105, 2011.

[15] J. Maue and M. Nunkesser. Evaluation of computational methods for freight train
classification schedules. Technical report, ARRIVAL Project, 2009.

17

