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Abstract—Wireless low-power transceivers used in sensor net-
works typically operate in unlicensed frequency bands that are
subject to external radio interference caused by devices trans-
mitting at much higher power. Communication protocols should
therefore be designed to be robust against such interference. A
critical building block of many protocols at all layers is agreement
on a piece of information among a set of nodes. At the MAC layer,
nodes may need to agree on a new time slot or frequency channel;
at the application layer nodes may need to agree on handing over
a leader role from one node to another. Message loss caused by
interference may break agreement in two different ways: none of
the nodes uses the new information (time slot, channel, leader)
and sticks with the previous assignment, or – even worse – some
nodes use the new information and some do not. This may lead
to reduced performance or failures.

In this paper, we investigate the problem of agreement under
external radio interference and point out the limitations of
traditional message-based approaches. We propose JAG, a novel
protocol that uses jamming instead of message transmissions to
make sure that two neighbouring nodes agree, and show that it
outperforms message-based approaches in terms of agreement
probability, energy consumption, and time-to-completion. We
further show that JAG can be used to obtain performance
guarantees and meet the requirements of applications with real-
time constraints.

Keywords-Acknowledgement; Agreement; Handshake; JAG;
Jamming; Radio Interference; Two Generals’ Problem; Wireless
Sensor Networks.

I. INTRODUCTION

Wireless sensor nodes often need to agree on fundamental

pieces of information that can drastically affect the perfor-

mance of the entire network. For example, sensor nodes may

need to agree on handing over a leader role from one node to

another. An agreement failure would break the leader election,

leading to a situation in which either more than one node

becomes leader, or no leader is selected, causing reduced

performance or failures in the network [1]. Similarly, at the

MAC layer, several state-of-the-art protocols use time division

multiple access (TDMA) or frequency diversity techniques to

optimize their performance, in order to maximize network

lifetime and minimize battery depletion. In such protocols,

vital information such as the TDMA schedule, the channel-

hopping sequence derived by interference-aware protocols,

or the seed used to regulate the random channel hopping,

need to be agreed upon by two or more sensor nodes in a

reliable fashion. Failure to agree on such information correctly

(e.g., nodes using inconsistent TDMA schedules) may disrupt

network connectivity or substantially degrade performance.

When sharing information using an unreliable medium

(such as wireless), no delivery guarantee can be given on the

messages that are sent. Akkoyunlu et al. [2] have shown that,

in an arbitrary distributed facility, it is impossible to provide

the so called complete status, i.e., one cannot guarantee that

two distributed parties know the ultimate fate of a transaction

and whether they are in agreement with each other.

The problem is further exacerbated in the presence of

external interference: the low-power transmissions of wire-

less sensor networks are highly vulnerable to interference

caused by radio signals generated by devices operating in

the same frequency range. Several studies have highlighted

the increasing congestion of the unregulated ISM bands used

by wireless sensor networks to communicate, especially the

2.4 GHz band [3]. Sensornets operating on such frequencies

must cope with simultaneous communications of WLAN and

Bluetooth devices, as well as with the electromagnetic noise

generated by domestic appliances such as microwave ovens,

video-capture devices, or baby monitors. As a result, wireless

sensor nodes often communicate through interfered channels

that have low chances of successfully delivering a packet.

Hence, it is important to derive reliable techniques to ensure

agreement even in the presence of interference, and make sure

that they are efficient enough to meet the limited computational

capabilities and energy resources of sensor nodes.

In this work, we design, implement, and evaluate JAG, a

simple yet efficient agreement protocol for wireless sensor

networks exposed to external interference. JAG introduces a

jamming sequence as the last step of a packet handshake

between two nodes to inform about the correct reception of

a message carrying the information to be agreed upon. The

key insight behind this approach is that detecting a jamming

sequence in the presence of external interference is more

reliable than using acknowledgement (ACK) packets to verify

whether the information was successfully shared.

In environments that experience high levels of external

interference, the probability of successfully transmitting a se-

quence of packets and completing an handshake is small, even

when using short ACK packets. Despite the minimal amount



of information they carry, acknowledgements are embedded

into IEEE 802.15.4 frames, and hence can be destroyed if

any of the bits in the header, payload, or footer is corrupted

by interference. Performance can be improved by means of

redundancy (i.e., by sending multiple ACK packets), but this

results in a significantly higher energy expenditure and latency,

which is undesirable when using resource-constrained wireless

sensor nodes.

Using JAG, instead, one can minimize the energy expen-

diture and provide agreement guarantees under weaker and

more realistic assumptions about the underlying interference

pattern compared to message-based approaches. By appropri-

ately tuning the length of the jamming sequence, one can

parametrize JAG to obtain predictable performance and to

guarantee agreement in a finite amount of time, even in the

presence of external interference: a perfect fit for applications

with timeliness requirements. We focus on the unicast case

(agreement between two neighbouring nodes) and show that

JAG outperforms traditional packet-based agreement protocols

in the presence of interference with respect to agreement

probability, energy consumption, and time-to-completion.

JAG is intended as a building block to construct protocols

at different layers of the protocol stack. It could be embedded

into a MAC protocol to agree on time slots or frequency

channels as discussed in Sect. VII, at the transport level to

agree on connection establishment or tear-down, or at the

application level to agree on handover of a leader role.

Our paper proceeds as follows. Sect. II defines the agree-

ment problem in wireless sensor networks challenged by

external radio interference. Sect. III conveys the main idea of

the paper: using jamming as a binary signal for acknowledging

the reception of packets. Thereafter, in Sect. IV, we illustrate

JAG, a protocol for reliable agreement under external radio

interference. We describe how JAG can provide the desired

quality of service (QoS) in Sect. V, and we experimen-

tally evaluate the performance of JAG under interference in

Sect. VI. After discussing the integration of JAG into existing

sensornet MAC protocols in Sect. VII, we review related work

in Sect. VIII and conclude our paper in Sect. IX.

II. PROBLEM DEFINITION

Agreeing on a given piece of information is a clas-

sical coordination problem in distributed computing. The

Two Generals’ Agreement Problem, formulated by Jim Gray

to illustrate the two-phase commit protocol in distributed

database systems [4], is often used to explain the challenges

when attempting to coordinate an action by communicating

over a faulty channel, and can be described as follows.

Two battalions are encamped near a city, ready to launch

the final attack. Because of the redoubtable fortifications, the

attack must be carried out by both battallions at the same time

in order to succeed. Hence, the generals of the two armies

need to agree on the time of the attack, and their only way

to communicate is to send messengers through the valley. The

latter is occupied by the city’s defenders, and a messenger

can be captured and its message lost, i.e., the communication

Fig. 1. n-way handshake between nodes S and R.

Fig. 2. Enhanced n-way handshake between nodes S and R using
redundancy: the last ACK message is transmitted k times.

channel is unreliable. Since each general must be aware that

the other general has agreed on the attack plan, messengers are

used also to exchange acknowledgements. However, because

the acknowledgement of a message receipt can be lost as

easily as the original message, a potentially infinite series of

messages is required to reach an agreement1.

A. Agreement in Wireless Networks

In the context of wireless communications, the problem can

be rephrased as follows. When two nodes, S and R, need

to agree on a common value V , they exchange a sequence

of n messages in an alternating manner (Fig. 1). Node S
is the initiator of the exchange. After the transmission of

V , each subsequent message acknowledges the receipt of the

previous message, i.e., a node sends message i > 1 only if

it correctly received message i−1. Each node uses a simple

rule to determine the success of the exchange: if all expected

messages are received, the exchange is deemed successful,

otherwise the exchange is deemed unsuccessful.

The scenario described above corresponds to an n-way

handshake between nodes S and R, where n is the number

of packets exchanged. The n-way handshake is a widely used

mechanism in communication networks. For example, TCP

employs a 3-way handshake (n = 3) to establish connections

over the network, whereas IEEE 802.11i (WPA2) uses a 4-way

handshake (n=4) to carry out the key exchange.

An n-way handshake can have three possible outcomes:

1) Positive Agreement. The n messages are all received

correctly, and both nodes deem the exchange as suc-

cessful, accepting V .

2) Negative Agreement. A message m with m < n, i.e.,

a message prior to the last message n, is lost. None of

the nodes receives all the expected messages, hence both

nodes deem the exchange as unsuccessful, discarding V .

3) Disagreement. The last message n is lost. One of the

two nodes receives all the expected messages, deems

the exchange as successful and accepts V ; whereas

the second node misses the last message and therefore

deems the exchange as unsuccessful, rejecting V .

1A different problem that we are not addressing in this work is how to
guarantee the identity of the sender of the message, as well as how to cope
with misbehaving parties.
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(b) Disagreement

Fig. 3. Distribution of the probabilities of positive agreement and disagree-
ment of the n-way handshake shown in Fig. 1 as a function of the probability
of successful packet transmission p and length of the handshake n.

In the original two generals’ scenario, a positive agreement

would lead to a simultaneous attack of the city by both

battalions and a consequent victory, a negative agreement

would cause both battalions to stall, while a disagreement

would trigger the attack of only one battalion and a consequent

defeat of the attacking forces.

While disagreements are potentially fatal, negative agree-

ments are often less severe. For example, if the shared value

contains the next channel to be used for communication, two

nodes are better off staying in the same lossy channel, rather

than having only one of them move to a different frequency.

The probability of negative agreements should, however, be

minimized, as it may lead to reduced performance. Hence, an

agreement protocol should strive to minimize disagreement as

a first priority, maximize positive agreements as a second (al-

most equally high) priority, and minimize negative agreements

as a third (substantially lower) priority. A metric to measure

the quality of an agreement protocol (whose value should be

minimized) is therefore the DPA ratio of the probability of

disagreements over the probability of positive agreements.

B. The importance of the last message

It is important to emphasize that, in an n-way handshake,

disagreements only occur if the last message is lost. Hence,

depending on the application, it may be desirable to devote

extra-resources to increase the successful delivery of the last

packet by means of redundant packet transmissions (i.e.,

repeating a message several times and assuming successful

transmission if at least one copy is received).

A possibility is to employ a n-way handshake in which the

last packet is repeated k times, as shown in Fig. 2. Using

this approach, the final outcome of the handshake is strongly

dependent on the link quality, on the length n of the n-way

handshake, and on the redundancy factor k. Letting p represent

the probability that a generic message is successfully received

(assuming that p remains constant over time and that it is

independent for each packet), and q = 1 − (1 − p)k the

probability of successfully receiving at least one of the k

redundant packets, we obtain:

Prob(PositiveAgreement) = pn−1q

Prob(NegativeAgreement) = 1 − pn−1

Prob(Disagreement) = pn−1(1 − q)

These equations show that in order to maximize the frequency

of positive agreements and, at the same time, minimize the

frequency of disagreements, we need to maximize the link

quality p and maximize the level of redundancy k. The

choice of a suitable n becomes a catch-22 dilemma in the

presence of unreliable links, as illustrated in Fig. 3: long n-way

handshakes minimize the probability of disagreement, but also

the probability of positive agreement, whereas short n-way

handshakes maximize the probability of positive agreement,

but also the chances of disagreement.

C. Agreement in Wireless Sensor Networks Challenged by

External Interference

In the context of wireless sensor networks, minimizing the

amount of exchanged packets is mandatory because of the

limited energy resources available, i.e., sensor nodes need to

minimize the time during which the radio is active as much as

possible. Therefore, the use of redundant packet transmissions

and long handshakes is not advisable, as it would increase the

energy consumption.

Another aspect is the channel quality affecting p. Wireless

sensor nodes operate in the unlicensed ISM radio bands, and

often use a very low transmission power, which makes them

vulnerable to external interference. Any wireless appliance

operating in the same frequency range of sensornets can po-

tentially interfere with their communications and decrease the

probability of a successful packet exchange p. In the 2.4 GHz

ISM band, for example, Wi-Fi and Bluetooth networks, as

well as domestic appliances such as microwave ovens, can

create noise levels that overwhelm the interference resistance

capabilities of DSSS radios and radically decrease the packet

reception rate [3], [5]. Hence, we need to investigate ways to

encode transmissions such that their success probability p is

maximized despite interfered channels.

D. Analysis of Common Interference Sources

In order to understand the impact of external interference on

the probability of successful transmission p in wireless sensor

networks communications, we study the interference patterns

produced by common devices operating in the 2.4 GHz ISM

band. Using Sentilla Tmote Sky nodes employing a CC2420

radio, we perform a high-speed sampling of the RSSI register

(≈ 50 kHz as in [6]). We call this operation fast RSSI sampling

over a time window tsamp. Fig. 4 shows the outcome of fast

RSSI sampling in the presence of sensornet communications

and external interference.

Absence of external interference. When neither inter-

ference nor IEEE 802.15.4 communications are present, the

fast RSSI sampling returns the so called RSSI noise floor.

The latter has typically values in the proximity of the radio

sensitivity threshold (e.g., in the range [−100,−94] dBm

for the CC2420 radio). In the presence of IEEE 802.15.4

communications, the fast RSSI sampling returns a stable value

corresponding to the strength and the length of the transmitted

packet (Fig. 4(a)). As packets have a constrained maximum

payload size of 127 bytes according to the 802.15.4 PHY

standard, a packet transmission at 250 Kbit/sec would not last

more than 4.3 ms.



-100

-80

-60

-40

-20

0

 0  1000  2000  3000  4000

R
S

S
I 
[d

B
m

]

Time [µs]

1-byte payload
782 µs

20-bytes payload
1395 µs

RSSI
Noise
Floor

(a) IEEE 802.15.4 packets

-100

-80

-60

-40

-20

0

 0  500  1000  1500  2000

R
S

S
I 
[d

B
m

]

Time [µs]

(b) Heavy Wi-Fi Interf.

-100

-80

-60

-40

-20

0

 0  2500  5000  7500

R
S

S
I 
[d

B
m

]

Time [µs]

(c) Bluetooth interf.

-100

-80

-60

-40

-20

0

 0  20000  40000  60000

R
S

S
I 
[d

B
m

]

Time [µs]

(d) Microwave oven interf.

Fig. 4. RSSI values measured using off-the-shelf wireless sensor nodes operating in the 2.4 GHz ISM band. Please notice the different scale of the x-axis.

Presence of external interference. When other devices op-

erating in the same frequency band of wireless sensor networks

are active, bursts of interference signals (busy periods) alter-

nate with instants in which the channel is clear (idle periods).

The strength of the interference signals and the duration of

idle and busy periods depend on the interfering source and

on the specific context. For example, the interference patterns

generated by Wi-Fi transmissions depend on the number of

active users and their activities, as well as on the traffic

conditions in the backbone.

Wi-Fi transmissions are typically much stronger than sen-

sornet transmissions, and can affect several IEEE 802.15.4

channels at the same time. Hauer et al. [7], [8] have shown

that with a sufficiently high sampling rate, one can identify

the short instants in which the radio medium is idle due to

the Inter-Frame Spaces (IFS) between 802.11 b/g packets.

Fig. 4(b) shows the outcome of fast RSSI sampling in the pres-

ence of heavy Wi-Fi interference (caused by a file transfer): it

is indeed possible to identify RSSI values matching the radio

sensitivity threshold between consecutive Wi-Fi transmissions.

Fig. 4(c) shows an example of interference generated by

Bluetooth. The latter uses an Adaptive Frequency Hopping

mechanism to combat interference, and hops among 1-MHz

channels around 1600 times/sec., hence it remains in a channel

for at most 625 µs. Since Bluetooth channels are more narrow

than the ones defined by the 802.15.4 standard, it may happen

that communication in multiple adjacent Bluetooth channels

affects a single 802.15.4 channel.

Fig. 4(d) shows an example of the interference pattern

caused by microwave ovens: high-power noise (≈ 60 dBm)

is emitted in the 2.4 GHz frequency band in a very perio-

dic fashion. The period mostly depends on the power grid

frequency, but can also slightly vary depending on the oven

model. Works in the literature report a power cycle of roughly

20 ms (at 50 Hz) or 16 ms (at 60 Hz) with an active period

of at most 50% of the power cycle [6], [9].

E. The Role of Idle Periods

In the presence of external interference, n-way handshakes

need to take advantage of idle periods. In principle, the longer

the idle period and the shorter the handshake, the higher

the likelihood of obtaining positive agreements. However,

the interplay between idle periods and n-way handshakes is

complex because of the particular patterns of each interfering

source. Some devices, such as microwave ovens, generate

periodic interference patterns with relatively long idle periods

(Fig. 4(d)), while others, such as Wi-Fi stations, generate inter-

ference patterns with short idle periods of a highly variable

length (Fig. 4(b)).

Having short idle periods reduces the probability of success-

fully completing a handshake, and this is especially critical

in the presence of heavy Wi-Fi interference. Fig. 5 shows

the cumulative distribution function (CDF) of idle and busy

periods measured by a Maxfor MTM-CM5000MSP node in

the presence of a laptop continuously downloading a file from

a nearby access point. A channel is defined as busy if the

RSSI is higher or equal than a configurable threshold Rthr

and idle otherwise. In such a scenario, the probability of

having an idle period longer than 2 ms is smaller than 5%.

Therefore, there is only a little chance that a message-based

handshake successfully completes within an idle period. In

order to escape interference, one would need to use short

messages and send them as close as possible to each other,

in order to increase the chances of fitting into an idle period.

Off-the-shelf IEEE 802.15.4-compliant radios such as the

CC2420 offer the ability to automatically generate and send

ACKs for data frames in hardware. The advantage of hard-

ware acknowledgements is a significant reduction of latency

compared to solutions in which the ACK is generated via

software [10]. However, hardware ACKs cannot be used to

carry out a complete n-way handshake (with n > 2), since

they cannot be used in reply to another hardware ACK.

Imagine a node S starting a handshake by sending a message

to R. The latter can reply with a hardware ACK, but S will

have to receive and extract the packet, analyse its validity, as

well as to prepare a new ACK frame, load it into the buffer,

and send it over-the-air2. This may cause long latencies that

break the agreement in the presence of short idle periods.

Furthermore, it is also highly inefficient to encode the

binary information carried by an ACK message inside an

IEEE 802.15.4 frame, especially in the presence of inter-

ference. Despite the payload contains only a single ACK bit,

the whole packet consists of synchronization preamble and

a physical header (4-bytes preamble, 1-byte Start of Frame

Delimiter (SFD), 1-byte length field), as well as a MAC header

and footer (2-bytes frame control, 1-byte sequence number, 4-

20-bytes address, 2-bytes Frame Check Sequence (FCS)). If

any of the bits in the headers and preamble is corrupted by

interference, the packet may become undecodable [11], [12].

2In case a train of k redundant software ACKs is sent, the packet can be
loaded into the buffer once and sent repeatedly.
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Fig. 5. Cumulative distribution function (CDF) of idle and busy periods
measured by a Maxfor MTM-CM5000MSP node in the presence of a laptop
continuously downloading a file from a nearby access point.

Therefore, instead of encoding the last ACK as packet

transmission, we propose to encode it by means of jamming,

where the presence of a jamming sequence signals the receipt

of the previous message. The key advantage of this approach

is that jamming, as generated by off-the-shelf wireless sensor

nodes, can be reliably detected even under interference.

III. JAMMING AS BINARY ACK SIGNAL

We propose to encode the last acknowledgement of a n-

way handshake by means of jamming (i.e., transmission of

a carrier signal), where the presence of a jamming sequence

signals the receipt of the previous message. The key advantage

of this approach is that precisely timed jamming signals can

be generated using off-the-shelf wireless sensor nodes and can

be reliably detected even under heavy interference.

A. Generating a Jamming Sequence

In a recent study, we showed that off-the-shelf radios can be

used to generate controllable and repeatable jamming signals

in specific IEEE 802.15.4 channels by transmitting a modu-

lated or unmodulated carrier signal that is stable over time [6],

[13]. This approach is superior to packet-based jamming,

as the generated signal is independent of both packet sizes

and inter-packet times. We hence generate precisely timed

jamming signals by configuring the MDMCTRL1 register, so

that the CC2420 radio outputs a continuous modulated carrier

signal. The detection of the latter is based on high-frequency

RSSI sampling, as discussed next.

B. Detecting a Jamming Sequence

Common radio chips offer the possibility to read the RSSI

in absence of packet transmissions. Several researchers have

shown that it is a useful way to assess the noise and the level

of interference in the environment [5], [8], [14]. RSSI readings

close to the sensitivity threshold of the radio indicate absence

of interference, whereas values above this threshold identify a

packet transmission, or a busy/congested medium (see Fig. 4).

Hence, we use the fast RSSI sampling mechanism men-

tioned in Sect. II-D to detect the presence or absence of

a jamming signal generated by a sensor node. A jamming

sequence generated using the method described in Sect. III-A

results in a stable RSSI value above the sensitivity threshold of

the radio, as shown in Fig. 6(a). Therefore, one can detect if a

jamming signal was transmitted by making sure that no RSSI

sample falls down to the sensitivity threshold of the radio.

-100

-80

-60

-40

-20

0

 0  5000  10000  15000

R
S

S
I 

[d
B

m
]

Time [µs]

Jamming sequence of 13 ms
(absence of interference)

(a) Absence of Interference

-100

-80

-60

-40

-20

0

 0  5000  10000  15000

R
S

S
I 

[d
B

m
]

Time [µs]

Jamming sequence of 13 ms
(presence of Wi-Fi interference)

(b) Presence of Wi-Fi Interference

Fig. 6. RSSI values measured by a Maxfor MTM-CM5000MSP node during
the transmission of a jamming sequence in absence of interference (a), and
in the presence of external Wi-Fi interference (b).

In the presence of additional external interference, the RSSI

register will return the maximum of the jamming signal and the

interference signal due to the co-channel rejection properties

of the radio [6]. Fig. 6(b) illustrates this for a jamming signal

sent in the presence of Wi-Fi interference. As we have shown

in Sect. II-D, typical interference sources – in contrast to our

jamming signal – do not produce continuous interference for

long periods of time, rather they alternate between short idle

and busy periods. That is, if the jamming signal lasts longer

than the longest busy period of the interference signal, we are

unequivocally able to detect the absence of the jamming signal

by checking if any of the RSSI samples equals the sensitivity

threshold of the radio. We exploit this property to design JAG,

a protocol for reliable agreement under external interference.

C. Identification of the Interfering Source

While a jamming signal can encode the binary acknowl-

edgement information, it cannot encode the identities of sender

and receiver as a regular packet would. When carrying out a

handshake, however, these identities are already included in

the message V to be acknowledged, and therefore are implic-

itly known to the two nodes, as long as the communication

channel remains allocated exclusively for the whole duration

of an exchange. In this way, intra-network interference is

avoided, and a jamming sequence acknowledging the reception

of V can be identified reliably by means of an RSSI threshold,

as we discuss in Sect. IV. Any protocol that embeds JAG as a

building block for agreement needs to meet this requirement.

At the MAC layer, RTS/CTS can be used to allocate the

channel in CSMA protocols, whereas in TDMA protocols the

timeslots must be long enough to complete an exchange.

IV. JAG: RELIABLE AGREEMENT UNDER INTERFERENCE

We call JAG (Jamming-based AGreement) the three-way

handshake in which the last ACK is sent in the form of a

jamming signal as shown in Fig. 7. The choice of three-way

handshakes (as opposed to two-way) is motivated by two facts.

First, a three-way handshake increases the reliability of identi-

fying the jamming signal because it provides a reference RSSI

value (this will be explained in more detail in Sect. IV-B).

Second, three-way handshakes avoid disagreements due to

asymmetric links: for instance, if S has a link with R but

the reverse link is not present, a two-way handshake would

always lead to disagreements, since R is not able to confirm

the reception of V .



Fig. 7. Illustration of JAG: the last acknowledgement of the 3-way handshake
between nodes S and R is sent in the form of a jamming signal.

A. Protocol Design

The protocol proceeds as follows. S initiates the exchange

and sends the information V towards a receiver R. If V is

successfully received, R saves the signal strength rs of the

received packet and sends an ACK message back to S. We

can send either hardware or software acknowledgements: in

the remainder of this paper we assume that hardware ACKs

are available. If S receives the acknowledgement, it transmits

a jamming signal for a period tjam. Meanwhile, R carries

out a fast RSSI sampling for a period tsamp ≤ tjam that

is synchronized in such a way that the fast RSSI sampling

is carried out while the jamming signal is on the air. The

message V is used as the synchronization signal: given that

clock drift is not too high at timescales of a few milliseconds,

it is sufficient to include a short safety margin to compensate

for drift (more details in Sect. IV-D). For simplicity, in the

rest of the paper, we assume tjam = tsamp.

If R detects the presence of the jamming signal, it deems the

exchange as successful; otherwise, V is discarded. S deems

the exchange as successful if the ACK is received within a

short timeout period, otherwise the jamming sequence is not

generated and the handshake immediately terminated.

After the reception of V , node R carries out a fast RSSI

sampling as described in Sect. III to detect the absence or

the presence of the jamming sequence transmitted by S. The

method to detect the jamming signal is simple: if a jamming

sequence is sent, all RSSI samples should be above rnoise,

with the latter being the RSSI noise floor threshold of the

radio. Hence, if during tsamp we observe at least one RSSI

sample with a value comparable to rnoise, we conclude that

the jamming sequence was not transmitted.

This process can be described as follows. Denoting

{x1, x2, . . . , xn} as the sequence of RSSI values sampled dur-

ing tsamp, we define the binary sequence {X1,X2, . . . ,Xn} as

follows: if xi ≤ rnoise, then Xi = 1, else Xi = 0. R makes

a decision about the presence of the jamming sequence as

follows: if
∑n

i=1 Xi = 0, then S was transmitting a jamming

signal and hence V is accepted; otherwise, V is discarded.

Using this algorithm, JAG would operate correctly and

would be able to recognize the presence or absence of a

jamming signal reliably. However, we can enhance its per-

formance significantly by exploiting the knowledge of the

received signal strength rs of the packet containing V .

B. The Role of rs

Under the hypothesis that the jamming signal has a rea-

sonably similar signal strength to rs (RSSI does not change

significantly between consecutive transmissions spaced by

only a few milliseconds), R can filter out any interference

source weaker (i.e., resulting in an RSSI range smaller) than

(rs − ∆r), with ∆r being a tolerance margin to compensate

for the inaccuracy of low-power radios and the instability of

the RSSI readings. This allows to shorten tjam and achieve a

higher energy-efficiency: as we can see in Fig. 5(b), the higher

Rthr, the shorter the duration of busy periods.

Hence, if (rs − ∆r) > rnoise, JAG’s algorithm is executed

as follows: if xi < (rs − ∆r), then Xi = 1, else Xi = 0.

R still makes a decision about the presence of the jamming

sequence in the following way: if
∑n

i=1 Xi = 0, then S was

jamming and hence V is accepted; otherwise, V is discarded.

Furthermore, rs also increases the reliability of fast RSSI

sampling. The maximum distance over which a packet can be

successfully received and decoded is shorter than the distance

over which a jamming signal can be captured. This may lead

to confusion in a scenario in which two nodes that cannot

communicate with each other are allocated the same time slot

in a TDMA protocol and transmit a message concurrently. By

using a threshold rs, we make sure that a receiver R is in

the communication range of S, and therefore rs cannot be

achieved by any other node transmitting simultaneously.

C. The Role of tjam

The length of the jamming sequence tjam can be tuned in

order to provide probabilistic guarantees on the fraction of

disagreements. Denoting tmax
busy as the maximum busy period

that can be encountered in the presence of interference, we

can guarantee that S and R will agree on V by setting

tjam > tmax
busy . In such a case, an idle period will surely

be encountered during tsamp, and the absence of a jamming

sequence unequivocally detected, as discussed in Sect. III-B.

Hence, the most pernicious outcomes (disagreements) are

eliminated, and only positive or negative agreements can occur.

In some scenarios, however, one may need to know the

outcome of the agreement process before tmax
busy . In these cases,

where tjam ≤ tmax
busy , disagreements may occur. For these

type of scenarios, given tjam, we derive an upper bound

for the probability of obtaining disagreements. In this way,

a user with stringent real-time constraints can assess if the

fraction of disagreements is within the limits permitted by the

QoS requirements of the application. The probabilistic model

bounding the fraction of disagreements is presented in Sect. V.

D. JAG Implementation

We implement JAG on Maxfor MTM-CM5000MSP and

Sentilla Tmote Sky nodes. Our implementation, based on

Contiki [15], uses two main building blocks: the generation of

a jamming sequence and the high-frequency RSSI sampling.

The former uses the CC2420 transmit test modes as described

in Sect. III-A. The latter is implemented as in our previous

work [6], so that we roughly obtain one RSSI sample every



-100

-80

-60

-40

-20

 0  300  600  900  1200  1500  1800

R
S

S
I 
[d

B
m

]

Time [µs]

tRST
 (≈ 128 µs)

tRST
 (≈ 128 µs)

tsamp

tε tε

tjam

rs = -56 dBm

Fig. 8. Alignment between tsamp and tjam: RSSI readings obtained during
tRST and tǫ are discarded to compensate for synchronization inaccuracies.

20 µs. Although a sampling rate of 50 kHz does not capture

the transmissions from all wireless devices operating in the

same frequency band of sensor networks (e.g., IEEE 802.11n

devices), it is still enough to identify most of the idle periods

that occur between Wi-Fi transmissions and hence to distin-

guish the jamming sequence from external interference.

For all our experiments we use NULLMAC, a MAC layer

that just forwards packets to the upper or lower protocol layer

and does not perform any duty cycling, but reports the pres-

ence of hardware acknowledgements. We chose NULLMAC in

order to obtain results that are independent of specific MAC

features and parameters. To ensure that the execution time

of the entire handshake is bounded and independent of clear

channel assessment (CCA) back-off times, we do not postpone

transmissions until the channel becomes clear. Instead, we

carry out a single clear channel assessment before sending

V : if the channel is found busy, the transmission is cancelled.

This is an optimization, as sending V despite the busy channel

would result in a negative agreement (V would be lost).

To ensure alignment between jamming tjam and sampling

tsamp, we implement a simple synchronization mechanism. S
and R synchronize their operations based on the reception of

V : the transmission or reception of the Start of Frame Delim-

iter (SFD) is used as the synchronization signal. Although at

timescales of a few milliseconds clock drift is minimal, the

beginning of tsamp may not be aligned with the beginning of

the jamming sequence because of the time required for RSSI

to settle. The RSSI of the CC2420 radio is indeed an average

of the last 8 bit symbols [6] and hence one needs to wait

for the RSSI to stabilize (this takes ≈ tRST = 128µs) before

being able to measure rs (see Fig. 8). Since RSSI readings are

not instantaneous and their duration may slightly differ among

different nodes, we introduce a safety margin tǫ during which

the RSSI readings are discarded: this allows us to compensate

for possible synchronization inaccuracies. The actual length of

tjam must therefore be increased by 2 · (tRST + tǫ) to make

sure that tsamp is correctly aligned.

V. PREDICTABLE PERFORMANCE UNDER INTERFERENCE

We mentioned in Sect. IV-C that one can use tjam to provide

probabilistic guarantees on the fraction of disagreements.

When setting tjam > tmax
busy is not possible, it is important to

precisely calibrate tjam so that a user with stringent real-time

constraints can know in advance the fraction of disagreements

Variable Description

tpkt Transmission delay of PKT containing V
tack Transmission delay of ACK
tjam Duration of jamming signal in JAG
X Random variable denoting the length of the idle period
p(x) Probability density function (pdf ) of X

TABLE I
NOTATION USED IN OUR PROBABILISTIC MODEL.

to be expected. Hence, we now derive a probabilistic model

that bounds the probabilities of positive agreements and dis-

agreements for JAG, given a certain value of tjam.

The parametrization of the probabilistic model requires the

user to run a wireless sniffer in order to capture the character-

istics of the surrounding interference. We use continuous RF

noise measurements to measure the duration of idle and busy

periods and compute their probability density function (pdf ):

a channel is defined as busy if the RSSI is higher or equal

than a configurable threshold Rthr and idle otherwise.

Preferably, this operation should be carried out before the

actual deployment, but it would also be possible to characterize

interference at runtime, for example in case the RF environ-

ment has changed significantly from the prior observation.

The user can then follow three simple steps: (i) compute the

pdf of the idle periods p(i), where i represents the length of

the idle period, (ii) compute the conditional pdf of the busy

periods following the idle periods p(b > x|i), and (iii) use the

model to obtain the value of tjam that provides the desired

QoS.

Table I shows the notation used in our analysis. Our goal is

to derive the probabilities of positive agreements and disagree-

ments for JAG given a certain value of tjam. First, we obtain

the probability of selecting an idle period of length i, then, we

derive the probabilities of obtaining positive agreements and

disagreements over all possible idle periods.

Denoting p(i) as the probability density function of the idle

periods formed by the interference pattern, the probability of

selecting an idle period of length i is given by:

s(i) =
ip(i)∑
∞

i=1 ip(i)
(1)

i.e., the more frequent and the longer the idle period, the higher

the likelihood of selecting it.

In order to derive the required probabilities, we need to

understand the interplay between the length of an idle period

i and the 3-way handshake method used by JAG (i.e., the

transmission of the PKT embedding V , the ACK, and the

JAM signal). In principle, based on the definitions presented

in Sect. II, losing an ACK should lead to negative agreements.

The practical implementation of JAG, however, takes an opti-

mistic approach that increases the likelihood of positive agree-

ments at the cost of turning some negative agreements into

disagreements. In JAG, if R sends the ACK, four outcomes

can occur: (i) a positive agreement, if the ACK is successfully

delivered to S and the JAM signal is correctly decoded by R;

(ii) a negative agreement, if the ACK is lost and R detects the

lack of JAM; (iii) another positive agreement, independently

of the fact that the ACK is received or not if, after sending



the ACK, R detects an interference signal with a strength

higher than the expected JAM signal and hence assumes a

successful transaction (this is the optimistic approach, which

assumes the JAM was buried within the stronger signal); and

(iv) a disagreement, if the ACK is lost, but, by chance, a high

interference signal lasts longer than tsamp. In this case, R
assumes, mistakenly, a successful exchange, i.e., a negative

agreement turns into a disagreement.

Based on the above description, in JAG, positive agreements

are given by the following equation:

Pjam{Pos. Agr.} =

∞∑

i>tpkt+tack

s(i)(1 −
tpkt + tack

i
) (2)

whereby the first term of the product states the probability of
obtaining an idle slot of length i, and the second term states

the probability that the selected idle slot can “contain” the

transmission of the packet followed by the ACK (tpkt + tack).

In order to obtain the fraction of disagreements, we use

a bounding probability. There are three necessary but not

sufficient conditions to obtain disagreements: (i) PKT is trans-

mitted successfully, (ii) the ACK is corrupted and (iii) the

interference signal after the ACK is longer than tjam (to

shadow the JAM signal). Hence, we define the probability of

obtaining disagreements with JAG as follows:

Pjam{Disagreement} ≤

tack∑

i=1

s(i)p(b > tjam|i)+

tpkt+tack∑

i>tack

s(i)p(b > tjam|i)(1 −
min(tpkt, i)

i
)+

∞∑

i>tpkt+tack

s(i)p(b > tjam|i)(
tack

i
)

(3)

Each of the sums on the right side of the equation has three
terms. The first term s(i) denotes the probability of obtaining

an idle slot of length i. The second term p(b > tjam|i) denotes

the probability of obtaining a busy period b longer than tjam

after an idle period of length i (the minimum requirement

to shadow the jamming signal). The third term differs for

each sum, and denotes the probability that the ACK will be

corrupted: in the first summation this probability is 1, because

the idle time is less than tack, i.e., the ACK will always be

corrupted; in the second and third summations, this probability

describes the chances that the agreement starts early enough to

allow a successful delivery of PKT, but late enough to corrupt

the ACK. Please note that, in Eq. 3, the term p(b > tjam|i)
assumes that the corrupted ACK ends exactly before the next

busy period starts. In practice, the ACK will likely have a ∆
overlap with the beginning of the busy period b, and hence, b

will need to be longer than (tjam + ∆) to lead to a disagree-

ment. Given that p(b > tjam|i) > p(b > (tjam + ∆)|i), in

practice, we can expect a lower fraction of disagreements.

For the case of disagreements, JAG allows the user to fine-

tune the duration of tjam according to the requirements of the

application (Eq. 3). In Sect. VI-E, we will observe that this

fine-tuning capability is central to provide QoS guarantees.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

We carry out our experiments in two small-scale sensornet

testbeds with USB-powered sensor nodes. The first testbed

consists of 15 MTM-CM5000MSP nodes deployed in an office

environment, whereas the second testbed uses the same type

of sensor nodes deployed in a residential building. We use our

first testbed to evaluate the performance of several agreement

protocols under different types of interference. To this end, we

use JamLab [6], a tool for controlled and realistic interference

generation in specific IEEE 802.15.4 channels. We configure

JamLab to emulate a continuous file transfer produced by

either Bluetooth or Wi-Fi devices in specific IEEE 802.15.4

channels. We further carry out experiments in the presence

of a Wi-Fi interference generated by a laptop continuously

downloading a file from a nearby access point. We validate

our first set of results using a second testbed deployed in

residential buildings surrounded by Wi-Fi stations: we run

different agreement protocols for several days and compare

their performance over time.

In our experiments, we use several pairs of nodes S and

R. Node S always initiates the handshake, and transmits a

data packet composed of a 6-byte payload containing the

information to be agreed upon V and the transmission power

used TP . For each handshake (which is initiated after a random

interval in the order of hundreds of milliseconds), we select

a random transmission power between -25 dBm and 0 dBm

in order to create different types of links. R replies to the

packet using TP , i.e., the same transmission power used by S.

Hardware ACKs are enabled by default, and nodes remain on

the same channel during the whole duration of the experiment,

in which we perform several hundred thousand handshakes.

B. Packet-based n-way handshake

We firstly analyse the performance of the packet-based n-

way handshake shown in Fig. 1 (redundancy factor k = 1)

under different interference patterns. In our implementation,

every packet from R to S is sent using the hardware ACK

support, so to minimize the latency between the reception of

the previous packet and the dispatch of the following one.

Fig. 9 shows the percentage of positive/negative agreements

and disagreements obtained under different interference pat-

terns. The values are computed as an average over all trans-

mission power values TP used in our experiments, excluding

the ones leading to asymmetric links.

Fig. 9(a) depicts the performance of the protocol under

JamLab’s emulated Bluetooth file transfer. As discussed in

Sect. II, the longer the handshake, the smaller the amount

of disagreements and positive agreements. Hence, the DPA

ratio does not decrease when increasing the length of the

handshake n. The alternating performance of the DPA ratio

is caused by the interchange between software and hardware

ACKs: the former require a higher latency to be transmitted,

and hence offer a worse performance with respect to the

latter. Fig. 9(b) and 9(c) show the performance of the n-way

handshake protocol under JamLab’s emulated Wi-Fi transfer
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Fig. 9. Performance of a packet-based n-way handshake under different types of interference.
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Fig. 10. Performance of 2-MAG (2-way handshake in which the last acknowledgement packet is sent k times) under different types of interference. The
longer tout, the lower the amount of disagreements in favour of positive agreements, at a price of an increased energy consumption.

and under Wi-Fi interference generated by a continuously

active laptop, respectively. As the interference becomes heav-

ier, the amount of positive agreements and the amount of

disagreements drastically decrease after few iterations, hence

the DPA ratio does not improve significantly. Our experiments

therefore confirm our observations in Sect. II: packet-based n-

way handshakes are not optimal under external interference.

C. 2-MAG: 2-way handshake enhanced with redundancy

To minimize the DPA ratio, we introduce redundancy of the

last ACK packet as discussed in Sect. II-B, and we analyse

the performance of a 2-way handshake in which the last ACK

packet is sent k times, as illustrated in Fig. 2. For simplicity,

in the remainder of this paper we will refer to this protocol as

2-MAG (2-way handshake Message-based AGreement).

Given the structure of JAG, a more fair comparison would

involve a 3-way handshake message-based agreement protocol

in which the last packet is sent k times. The choice of a 2-

way handshake is driven by the results obtained in Fig. 9:

a low n minimizes the probability of negative agreements,

and therefore there are higher chances that 2-MAG sustains

more positive agreements and outperforms JAG thanks to its

redundant transmissions. We make sure to carry out a fair

comparison by eliminating asymmetric links that would always

lead to disagreements when using a two-way handshake.

In our implementation, hardware ACKs are enabled, i.e.,

the first ACK packet sent from R to S has a short and fixed-

delay latency. Every other ACK packet will be generated via

software by pre-loading the ACK into the radio buffer and by

repeatedly sending its content k times. Please note that the

preparation of the software ACK is time-critical, as one need

to extract and analyse V before creating the ACK and loading

it into the radio buffer.

In order for S to consider V as successfully exchanged, it

is sufficient to receive one ACK packet within a maximum

waiting time tout. Clearly, the longer tout, the higher the

likelihood that at least one ACK packet will be correctly

decoded and the better 2-MAG will perform (at the price of

an increased energy consumption). Hence, we compute tout

as the maximum time in which node S waits for a valid ACK

packet from R.

Fig. 10 shows the percentage of positive and negative agree-

ments as well as disagreements obtained in the presence of

interference using 2-MAG as a function of tout. As expected,

the longer tout, the lower the amount of disagreements in

favour of positive agreements. As this minimizes the DPA

ratio, 2-MAG outperforms a generic n-way handshake without

redundancy in the presence of external interference.

D. JAG: Jamming-based AGreement

We now evaluate the performance of JAG and compare it

against 2-MAG. In particular, we are interested in compar-

ing how the percentage of positive/negative agreements and

disagreement change when we increase the duration of the

handshake. Intuitively, the longer tout for 2-MAG and the

longer tjam for JAG, the better the performance. However,

it is important to see their distribution to study the protocols’

energy-efficiency and their DPA ratio under interference.

Fig. 11 shows the results: JAG sustains a significantly lower

amount of disagreements compared to 2-MAG already for

small values of tjam. For example, 2-MAG requires more

than 7.5 ms to obtain less than 1% disagreement under

Bluetooth interference, whereas JAG achieves this amount

with a tjam ≤ 250µs.
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Fig. 11. Compared to the 2-way handshake in which the last acknowledgment packet is sent k times, JAG performs better independent of the interfering
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Even though 2-MAG has a high number of positive agree-

ments, it requires significantly higher values of tout to reduce

the amount of disagreements and the DPA ratio. JAG, instead,

has a very low rate of disagreements under every type of

interference even with small tjam, which enables significant

energy savings, as shown in Fig. 12. Furthermore, when

tjam is longer than the longest interference burst, we do

not have any disagreements as discussed in Section IV-C.

Obtaining this behaviour using packet-based approaches would

require a significantly higher cost: Fig. 10(b) shows that even

when sending bursts of ACKs for 100 ms, one cannot still

guarantee the absence of disagreements. Hence, compared to

packet-based approaches, JAG performs better and guarantees

agreement with less costs and with weaker and more realistic

assumptions about the underlying interference pattern.

Fig. 11(c) shows that the rate of disagreements obtained

in the presence of emulated Wi-Fi interference tends to zero

faster than the one obtained in the presence of real Wi-Fi

interference. This is because the interference generated by

JamLab contains fast transmissions with short idle and busy

periods. Therefore, JAG has high chances to detect an idle

period already when using a short tjam.

In addition to tjam, another parameter to be configured in

JAG is ∆r, which helps in compensating changes between rs

and the strength of the received jamming signal. ∆r should

be selected not too small (so to account for the inaccuracy

of the RSSI readings), but at the same time not too large, as

this would neutralize the benefits of having knowledge of rs.

Fig. 13 depicts the percentage of disagreements as a function

of ∆r: a value of 3 dBm offers a good trade-off.

Finally, we validate the goodness of JAG by running a long-

term experiment in our second testbed deployed in a residential

environment. In particular, we compare the performance of

JAG and 2-MAG over time when using tjam = 500µs for JAG

and tout = 5ms for 2-MAG (Fig. 14). We do not change the
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configuration of the two protocols throughout the duration of

the experiment. The interference in the environment changes

significantly over the day: a lot of Wi-Fi activity was present

during daytime in the weekend (May, 12-13), but it was quiet

during night and on Monday (May, 14) during the day, as

most people were not in their homes. Despite selecting a tout

10 times higher than tjam, JAG sustains a significantly lower

amount of disagreements and outperforms 2-MAG during the

whole duration of the experiment.

E. Predictability of JAG

We now evaluate the goodness of the probabilistic model

presented in Sect. V with respect to the predictability of

the performance of JAG. In order to do this, we firstly

obtain the pdf of idle and busy periods using sensor nodes

in wireless sniffer mode in the scenarios described in the

previous sections, i.e., in the presence of JamLab’s emulated

interference and real Wi-Fi interference generated by a laptop

(the pdfs in the presence of real Wi-Fi interference are shown

in Fig. 5). Then, based on equation (2) and (3), we obtain

an upper bound for the probability of obtaining disagreement

and a lower bound for the probability of obtaining positive

agreements as a function of tjam using tpkt = 1 ms, tack =

750 µs, and t = -90 dBm.
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(b) Emulated Wi-Fi
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(c) Real Wi-Fi

Fig. 15. Comparison of the rate of positive agreement and disagreement obtained running JAG on real wireless sensor nodes, and deriving the probabilities
using the analytical model shown in Sect. V. The model actually returns a lower bound for positive agreements and an upper bound for disagreements.

By running JAG on real wireless sensor nodes, we ver-

ify experimentally whether the probabilistic model is able

to predict the performance of JAG. The results illustrated

in Fig. 15 show that our probabilistic model parametrizes

correctly tjam by giving an upper bound on the amount of

disagreements and a lower bound on the amount of positive

agreements, hence predicting the performance of the protocol

correctly. Note that the probabilistic model was computed

for every possible tjam, whereas due to memory limitations

of real nodes only a finite amount of tjam were computed

experimentally. Please note that Fig. 15 shows a different

performance between emulated and real interference: whilst

JamLab is designed to attain repeatability and test algorithms

under the same conditions, real-world settings have several

variables affecting their dynamics.

Based on our results, we can conclude that our theoretical

model is indeed able to parametrize JAG and predict correctly

the maximum amount of disagreements occurring for a given

tjam. This can be useful when the latter is shorter than the

longest busy period created by interference (tmax
busy).

VII. INTEGRATION OF JAG INTO MAC PROTOCOLS

As previously discussed, JAG is intended as a building block

to construct protocols at different layers of the protocol stack.

For example, it could be embedded into a MAC protocol to

agree on the TDMA schedule or the next frequency channel.

We now discuss how JAG can be integrated in existing MAC

protocols to enhance their performance.

As many deployments gather environmental data and send

them to a number of sinks, several convergecast MAC

protocols have been proposed in sensor networks, such as

Chrysso [16] and CoReDac [17]. In these protocols, nodes

are logically organized into parent-children groups that may

operate on different channels. In Chrysso [16], individual

parent-children pairs collaboratively switch their communica-

tion channel as soon as performance degrades. In particular, a

parent node monitors the average back-off time, and as soon

as it exceeds a given threshold, it instructs all its children

to carry out a channel switch by piggybacking the “switch-

channel command” onto ACK messages, and then switches

to the next channel. This operation is carried out for each

parent-child pair individually, and can be considered a two-

way handshake between child and parent (2-MAG) in which

the information V to be agreed upon is contained in the second

message. Please note that, on a high-level basis, V does not

have to be necessarily included in the first message of the

exchange: in a n-way handshake, V is in any case only used

once the last message has been received, so it can be embedded

in any of the messages exchanged in the handshake. The only

difference with respect to 2-MAG is that, when piggybacking

an information V into an ACK message, the latter cannot be

sent as a hardware ACK as it contains extra-information.

JAG can be embedded into Chrysso by replacing the 2-way

handshake between child and parent with a 3-way handshake

in which the child sends an initial packet P , the parent answers

with a software ACK containing the new channel to be used

(V ), and the child confirms the reception of V by jamming

for a predefined amount of time tjam. The parent node deems

the exchange as successful (jamming sequence detected) or

unsuccessful (jamming sequence not detected) depending on

the results of a fast RSSI sampling, as described in Sect. IV-A.

The same principle can be used to enhance the performance

of CoReDac [17], a TDMA-based convergecast protocol in

which parent nodes split their reception slots into subslots,

and assign one slot to each child in order to build a col-

lection tree that guarantees collision-free radio traffic. As in

Chrysso, also in CoReDac the assignment information used

for synchronizing the TDMA-schedules is piggybacked onto

ACK messages, and one can introduce a three-way handshake

using JAG in the same way as described above. However, in

the current version of CoReDac, there is a single aggregated

ACK message containing the identifier of all children: this can

be easily changed to individual ACKs to each child without

affecting the overall protocol architecture.

The use of a 3-way handshake requires additional energy

compared to the traditional message-based 2-way handshake

implemented by Chrysso and CoReDac. However, this may

pay off in the presence of interference, as it would increase

the chances of agreement. As we have shown in our previous

work [18], CoReDac performs poorly in the presence of

interference, since when an ACK is lost, a sensor node needs

to keep its radio on until it hears a new one, and integrating

JAG may lead to substantial performance improvements.

VIII. RELATED WORK

Agreement is a well-known problem in distributed systems.

Pioneering work in the late 1970s highlighted the design

challenges when attempting to coordinate an action by com-

municating over a faulty channel [2], [4].



In the context of wireless sensor networks, the agreement

problem has not been widely addressed. The main focus has

been on security for the exchange of cryptographic keys [19],

and on average consensus for nodes to agree on a common

global value after some iterations [20]. Similarly to these

studies, our work aims at protocols that allow a set of nodes

to agree on a piece of information. In addition, we also

tackle agreement under interference and provide a lightweight

energy-efficient solution that fits applications with strict per-

formance requirements.

Our work is motivated by studies reporting the degrading

QoS caused by the overcrowding of the RF spectrum in

unlicensed bands [3]. Several solutions have been proposed:

Chowdhury and Akyildiz identify the type of interferer and

schedule transmissions accordingly [21]. Liang et al. increase

the resilience of packets challenged by Wi-Fi interference

using multi-headers and FEC techniques [11]. Other protocols,

such as Chrysso and ARCH, dynamically switch the communi-

cation frequency as soon as interference is detected [22], [16].

As these protocols rely on packet exchanges to coordinate

the channel switching, one can use JAG to improve their

performance, as discussed in Sect. VII.

Another set of studies propose to cope with interference by

exploiting its idle or busy periods. Noda et al. have proposed a

channel quality metric based on the availability of the channel

over time, which quantifies spectrum usage [23]. Hauer et

al. report the interference observed by a mobile body area

network in public spaces, and the study shows the intermit-

tent interference caused by Wi-Fi AP in all IEEE 802.15.4

channels [7]. Similarly, Huang et al. have shown that Wi-

Fi traffic inherently leaves “a significant amount of white

spaces” between 802.11 frames [24]. BurstProbe uses a prob-

ing mechanism to periodically measure burst error patterns of

all links used in the deployment and, whenever the interference

patterns leave predicted bounds, a warning is issued so that

one can reconfigure the deployed network [25]. Similarly to

these studies, JAG exploits idle times for data packets, but also

leverages the bursty nature of interfering sources to achieve

reliable agreements through the use of jamming signals.

IX. CONCLUSIONS

In this paper, we propose JAG, a simple and efficient agree-

ment protocol for wireless sensor networks exposed to external

interference. JAG introduces a novel technique that utilizes

jamming signals to acknowledge the reception of a packet.

Our results show that JAG outperforms traditional methods

using packet-based acknowledgements. Further, JAG provides

predictable performance in that it keeps, within a specified

energy budget and delay time, the probability of disagreements

below a pre-defined threshold even in the presence of external

interference, and in that it can be configured to always reach

agreement (positive or negative) in a finite amount of time.

A limitation of the current version of JAG is that jamming

sequences do not provide identity information, and hence may

be generated by a malicious device. JAG partially solves the

problem by using a mechanism to verify that the strength of

the jamming signal equals the one that would be produced

by the device of interest. However, security is an important

concern nowadays, and it would be important to unequivocally

guarantee the identity of the jamming node by means of

authentication. We will address this issue in future work.
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