
Self-Management for Large-Scale Distributed Systems

AHMAD AL-SHISHTAWY

PhD Thesis
Stockholm, Sweden 2012

TRITA-ICT/ECS AVH 12:04
ISSN 1653-6363
ISRN KTH/ICT/ECS/AVH-12/04-SE
ISBN 978-91-7501-437-1

KTH School of Information and
Communication Technology

SE-164 40 Kista
SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till offentlig granskning för avläggande av teknologie doktorsexamen i elektronik
och datorsystem onsdagen den 26 september 2012 klockan 14.00 i sal E i Forum
IT-Universitetet, Kungl Tekniska högskolan, Isajordsgatan 39, Kista.

Swedish Institute of Computer Science
SICS Dissertation Series 57
ISRN SICS-D–57–SE
ISSN 1101-1335.

© Ahmad Al-Shishtawy, September 2012

Tryck: Universitetsservice US AB

iii

Abstract

Autonomic computing aims at making computing systems self-managing
by using autonomic managers in order to reduce obstacles caused by manage-
ment complexity. This thesis presents results of research on self-management
for large-scale distributed systems. This research was motivated by the in-
creasing complexity of computing systems and their management.

In the first part, we present our platform, called Niche, for program-
ming self-managing component-based distributed applications. In our work
on Niche, we have faced and addressed the following four challenges in achiev-
ing self-management in a dynamic environment characterized by volatile re-
sources and high churn: resource discovery, robust and efficient sensing and
actuation, management bottleneck, and scale. We present results of our re-
search on addressing the above challenges. Niche implements the autonomic
computing architecture, proposed by IBM, in a fully decentralized way. Niche
supports a network-transparent view of the system architecture simplifying
the design of distributed self-management. Niche provides a concise and ex-
pressive API for self-management. The implementation of the platform relies
on the scalability and robustness of structured overlay networks. We proceed
by presenting a methodology for designing the management part of a dis-
tributed self-managing application. We define design steps that include par-
titioning of management functions and orchestration of multiple autonomic
managers.

In the second part, we discuss robustness of management and data con-
sistency, which are necessary in a distributed system. Dealing with the effect
of churn on management increases the complexity of the management logic
and thus makes its development time consuming and error prone. We pro-
pose the abstraction of Robust Management Elements, which are able to heal
themselves under continuous churn. Our approach is based on replicating a
management element using finite state machine replication with a reconfig-
urable replica set. Our algorithm automates the reconfiguration (migration)
of the replica set in order to tolerate continuous churn. For data consistency,
we propose a majority-based distributed key-value store supporting multiple
consistency levels that is based on a peer-to-peer network. The store enables
the tradeoff between high availability and data consistency. Using majority
allows avoiding potential drawbacks of a master-based consistency control,
namely, a single-point of failure and a potential performance bottleneck.

In the third part, we investigate self-management for Cloud-based storage
systems with the focus on elasticity control using elements of control theory
and machine learning. We have conducted research on a number of different
designs of an elasticity controller, including a State-Space feedback controller
and a controller that combines feedback and feedforward control. We describe
our experience in designing an elasticity controller for a Cloud-based key-value
store using state-space model that enables to trade-off performance for cost.
We describe the steps in designing an elasticity controller. We continue by
presenting the design and evaluation of ElastMan, an elasticity controller for
Cloud-based elastic key-value stores that combines feedforward and feedback
control.

To my family

vii

Acknowledgements

This thesis would not have been possible without the help and support of many
people around me, only a proportion of which I have space to acknowledge here.

I would like to start by expressing my deep gratitude to my supervisor Associate
Professor Vladimir Vlassov for his vision, ideas, and useful critiques of this research
work. With his insightful advice and unsurpassed knowledge that challenged and
enriched my thoughts, together with the freedom given to me to pursue independent
work, I was smoothly introduced to academia and research and kept focused on
my goals. I would like as well to take a chance to thank him for the continuous
support, patience and encouragements that have been invaluable on both academic
and personal levels.

I feel privileged to have the opportunity to work under the co-supervision of
Professor Seif Haridi. His deep knowledge in the divers fields of computer science,
fruitful discussions, and enthusiasm have been a tremendous source of inspiration.
I am also grateful to Dr. Per Brand for sharing his knowledge and experience with
me during my research and for his contributions and feedback to my work.

I acknowledge the help and support given to me by the director of doctoral
studies Associate Professor Robert Rönngren and the head of Software and Com-
puter Systems unit Thomas Sjöland. I would like to thank Dr. Sverker Janson,
the director of Computer Systems Laboratory at SICS, for his precious advices and
guidance to improve my research quality and orient me to the right direction.

I am truly indebted and thankful to my colleagues and dear friends Tallat
Shafaat, Cosmin Arad, Amir Payberah, and Fatemeh Rahimian for their daily
support and inspiration through the ups and downs of the years of this work. I
am indebted to all my colleagues at KTH and SICS, specially to Dr. Sarunas
Girdzijauskas, Dr. Jim Dowling, Dr. Ali Ghodsi, Roberto Roverso, and Niklas
Ekström for making the environment at the lab both constructive and fun. I also
acknowledge Muhammad Asif Fayyaz, Amir Moulavi, Tareq Jamal Khan, and Lin
Bao for the work we did together. I take this opportunity to thank the Grid4All
project team, especially Konstantin Popov, Joel Höglund, Dr. Nikos Parlavantzas,
and Professor Noel de Palma for being a constant source of help.

This research has been partially funded by the Grid4All FP6 European project;
the Complex Service Systems focus project, a part of the ICT-TNG Strategic Re-
search Areas initiative at the KTH; the End-to-End Clouds project funded by the
Swedish Foundation for Strategic Research; the RMAC project funded by EIT ICT
Labs.

Finally, I owe my deepest gratitude to my wife Marwa and to my daughters
Yara and Awan for their love and support at all times. I am most grateful to my
parents for helping me to be where I am now.

Contents

Contents ix

List of Figures xiii

List of Tables xvii

List of Algorithms xix

I Thesis Overview 1

1 Introduction 3
1.1 Summary of Research Objectives . 5
1.2 Main Contributions . 6
1.3 Thesis Organization . 7

2 Background 9
2.1 Autonomic Computing . 10
2.2 The Fractal Component Model . 13
2.3 Structured Peer-to-Peer Overlay Networks 14
2.4 Web 2.0 Applications . 16
2.5 State of the Art and Related Work in Self-Management for Large

Scale Distributed Systems . 19

3 Self-Management for Large-Scale Distributed Systems 25
3.1 Enabling and Achieving Self-Management for Large-Scale Distributed

Systems . 26
3.2 Robust Self-Management and Data Consistency in Large-Scale Dis-

tributed Systems . 30
3.3 Self-Management for Cloud-Based Storage Systems: Automation of

Elasticity . 32

4 Thesis Contributions 35

ix

x CONTENTS

4.1 List of Publications . 36
4.2 Contributions . 37

5 Conclusions and Future Work 45
5.1 The Niche Platform . 45
5.2 Robust Self-Management and Data Consistency in Large-Scale Dis-

tributed Systems . 47
5.3 Self-Management for Cloud-Based Storage Systems 47
5.4 Discussion and Future Work . 48

II Enabling and Achieving Self-Management for Large-Scale
Distributed Systems 53

6 Enabling Self-Management of Component Based Distributed Ap-
plications 55
6.1 Introduction . 57
6.2 The Management Framework . 58
6.3 Implementation and evaluation . 61
6.4 Related Work . 64
6.5 Future Work . 66
6.6 Conclusions . 67

7 Niche: A Platform for Self-Managing Distributed Application 69
7.1 Introduction . 71
7.2 Background . 73
7.3 Related Work . 75
7.4 Our Approach . 76
7.5 Challenges . 77
7.6 Niche: A Platform for Self-Managing Distributed Applications . . . 79
7.7 Development of Self-Managing Applications 92
7.8 Design Methodology . 107
7.9 Demonstrator Applications . 110
7.10 Policy Based Management . 120
7.11 Conclusion . 123
7.12 Future Work . 124
7.13 Acknowledgments . 125

8 A Design Methodology for Self-Management in Distributed En-
vironments 127
8.1 Introduction . 129
8.2 The Distributed Component Management System 130
8.3 Steps in Designing Distributed Management 132
8.4 Orchestrating Autonomic Managers 133

CONTENTS xi

8.5 Case Study: A Distributed Storage Service 135
8.6 Related Work . 141
8.7 Conclusions and Future Work . 142

IIIRobust Self-Management and Data Consistency in Large-
Scale Distributed Systems 145

9 Achieving Robust Self-Management for Large-Scale Distributed
Applications 147
9.1 Introduction . 149
9.2 Background . 151
9.3 Automatic Reconfiguration of Replica Sets 153
9.4 Robust Management Elements in Niche 162
9.5 Prototype and Evaluation . 162
9.6 Related Work . 171
9.7 Conclusions and Future Work . 172

10 Robust Fault-Tolerant Majority-Based Key-Value Store Support-
ing Multiple Consistency Levels 173
10.1 Introduction . 175
10.2 Related Work . 177
10.3 P2P Majority-Based Object Store . 180
10.4 Discussion . 186
10.5 Evaluation . 188
10.6 Conclusions and Future Work . 192

IVSelf-Management for Cloud-Based Storage Systems: Au-
tomation of Elasticity 195

11 State-Space Feedback Control for Elastic Distributed Storage in
a Cloud Environment 197
11.1 Introduction . 199
11.2 Problem Definition and System Description 201
11.3 Approaches to System Identification 202
11.4 State-Space Model of the Elastic Key-Value Store 203
11.5 Controller Design . 206
11.6 Summary of Steps of Controller Design 209
11.7 EStoreSim: Elastic Key-Value Store Simulator 211
11.8 Experiments . 213
11.9 Related Work . 221
11.10Conclusion and Future Work . 221

xii CONTENTS

12 ElastMan: Autonomic Elasticity Manager 223
12.1 Introduction . 225
12.2 Background . 227
12.3 Target System . 229
12.4 Elasticity Controller . 230
12.5 Evaluation . 237
12.6 Related Work . 242
12.7 Future Work . 245
12.8 Conclusions . 245

V Bibliography 247

Bibliography 249

List of Figures

2.1 A simple autonomic computing architecture with one autonomic manager. 11
2.2 Multi-Tier Web 2.0 Application with Elasticity Controller Deployed in

a Cloud Environment . 18

6.1 Application Architecture. 59
6.2 Ids and Handlers. 59
6.3 Structure of MEs. 60
6.4 Composition of MEs. 60
6.5 YASS Functional Part . 61
6.6 YASS Non-Functional Part . 62
6.7 Parts of the YASS application deployed on the management infrastructure. 63

7.1 Abstract (left) and concrete (right) view of a configuration. Boxes rep-
resent nodes or virtual machines, circles represent components. 74

7.2 Abstract configuration of a self-managing application 82
7.3 Niche architecture . 84
7.4 Steps of method invocation in Niche . 88
7.5 A composite Fractal component HelloWorld with two sub-components

client and server . 93
7.6 Hierarchy of management elements in a Niche application 95
7.7 HelloGroup application . 100
7.8 Events and actions in the self-healing loop of the HelloGroup application 103
7.9 Interaction patterns . 109
7.10 YASS functional design . 112
7.11 Self-healing control loop for restoring file replicas. 114
7.12 Self-configuration control loop for adding storage 115
7.13 Hierarchical management used to implement the self-optimization con-

trol loop for file availability . 116
7.14 Sharing of management elements used to implement the self-optimization

control loop for load balancing . 117
7.15 Architecture of YACS (yet another computing service) 119
7.16 . 122

xiii

xiv List of Figures

8.1 The stigmergy effect. 134
8.2 Hierarchical management. 134
8.3 Direct interaction. 135
8.4 Shared Management Elements. 135
8.5 YASS Functional Part . 137
8.6 Self-healing control loop. 138
8.7 Self-configuration control loop. 138
8.8 Hierarchical management. 140
8.9 Sharing of Management Elements. 141

9.1 Replica Placement Example . 155
9.2 State Machine Architecture . 157
9.3 Request latency for a single client . 163
9.4 Leader failures vs. replication degree . 163
9.5 Messages/minute vs. replication degree 164
9.6 Request latency vs. replication degree 165
9.7 Messages per minute vs. failure threshold 166
9.8 Request latency vs. overlay size . 167
9.9 Discovery delay vs. replication degree 168
9.10 Recovery messages vs. replication degree 169
9.11 Leader election overhead . 170

10.1 Architecture of a peer shown as layers 180
10.2 The effect of churn on operations (lower mean lifetime = higher level of

churn) . 189
10.3 The effect of operation rate operations (lower inter-arrival time = higher

op rate) . 190
10.4 The effect of network size on operations 191
10.5 The effect of replication degree on operations 193

11.1 Architecture of the Elastic Storage with feedback control of elasticity . . 201
11.2 Controllers Architecture . 209
11.3 Overall Architecture of the EStoreSim Simulation Framework 212
11.4 Cloud Instance Component Architecture 212
11.5 Cloud Provider Component Architecture 213
11.6 Elasticity Controller Component Architecture 213
11.7 SLO Experiment Workload . 215
11.8 SLO Experiment - Average CPU Load 217
11.9 SLO Experiment - Average Response Time 217
11.10SLO Experiment - Interval Total Cost 218
11.11SLO Experiment - Average Bandwidth per download (B/s) 219
11.12SLO Experiment - Number of Nodes . 219
11.13Cost Experiment workload . 220

List of Figures xv

12.1 Multi-Tier Web 2.0 Application with Elasticity Controller Deployed in
a Cloud Environment . 229

12.2 Block Diagram of the Feedback controller used in ElastMan 233
12.3 Block Diagram of the Feedforward controller used in ElastMan 233
12.4 Binary Classifier . 234
12.5 labelInTOC . 236
12.6 99th percentile of read operations latency versus time under relatively

similar workload . 238
12.7 99th percentile of read operations latency versus average throughput per

server . 239
12.8 labelInTOC . 239
12.9 labelInTOC . 240
12.10labelInTOC . 241
12.11ElastMan controller performance under gradual (diurnal) workload . . . 242
12.12ElastMan controller performance with rapid changes (spikes) in workload243
12.13Voldemont performance with fixed number of servers (18 virtual servers) 244

List of Tables

10.1 Analytical comparison of the cost of each operation 188

11.1 SLO Violations . 216
11.2 Total Cost for each SLO experiment . 218
11.3 Total Cost for Cost experiment . 220

12.1 Parameters for the workload used in the scalability test. 238

xvii

List of Algorithms

9.1 Helper Procedures . 156
9.2 Replicated State Machine API . 158
9.3 Execution . 160
9.4 Churn Handling . 161
9.5 SM maintenance (handled by the container) 161
10.1 Replica Location and Data Access 182
10.2 ReadAny . 183
10.3 ReadCritical . 183
10.4 ReadLatest . 184
10.5 Write . 185
10.6 Test-and-Set-Write . 186

xix

Part I

Thesis Overview

1

Chapter 1

Introduction

Distributed systems such as Peer-to-Peer (P2P) [1], Grid [2], and Cloud [3] systems
provide pooling and coordinated use of distributed resources and services. Dis-
tributed systems provide platforms to provision large scale distributed applications
such as P2P file sharing, multi-tier Web 2.0 applications (e.g., social networks and
wikis), and scientific applications (e.g., weather prediction and climate modeling).
The increasing popularity and demand for large scale distributed applications came
with an increase in the complexity and the management overhead of these appli-
cations that posed a challenge obstructing further development [4]. Autonomic
computing [5] is an attractive paradigm to tackle the problem of growing soft-
ware complexity by making software systems and applications self-managing. Self-
management, namely self-configuration, self-optimization, self-healing, and self-

3

4 CHAPTER 1. INTRODUCTION

protection, can be achieved by using autonomic managers [6]. An autonomic man-
ager continuously monitors software and its execution environment and acts to meet
its management objectives such as failure recovery or performance optimization.
Managing applications in dynamic environments with dynamic resources and/or
load (like community Grids, peer-to-peer systems, and Clouds) is especially chal-
lenging due to large scale, complexity, high resource churn (e.g., in P2P systems)
and lack of clear management responsibility.

Most distributed systems and applications are built of components using a dis-
tributed component models such as the Fractal Component Model [7] and the Kom-
pics Component Framework [8]; therefore we believe that self-management should
be enabled on the level of components in order to support distributed component
models for development of large scale dynamic distributed systems and applications.
These distributed applications need to manage themselves by having some self-*
properties (i.e., self-configuration, self-healing, self-protection, self-optimization) in
order to survive in a highly dynamic distributed environment and to provide re-
quired functionality at an acceptable performance level. Self-* properties can be
provided using feedback control loops, known as MAPE-K loops (Monitor, Ana-
lyze, Plan , Execute – Knowledge) that come from the field of Autonomic Com-
puting. The first step towards self-management in large-scale distributed systems
is to provide distributed sensing and actuating services that are self-managing by
themselves. Another important step is to provide a robust management abstraction
which can be used to construct MAPE-K loops. These services and abstractions
should provide strong guarantees in the quality of service under churn and system
evolution.

The core of our approach to self-management for distributed systems is based
on leveraging the self-organizing properties of structured overlay networks, for pro-
viding basic services and runtime support, together with component models, for
reconfiguration and introspection. The end result is an autonomic computing plat-
form suitable for large-scale dynamic distributed environments. Structured overlay
networks are designed to work in the highly dynamic distributed environment we
are targeting. They have certain self-* properties and can tolerate churn. There-
fore structured overlay networks can be used as a base to support self-management
in a distributed system, e.g., as a communication medium (for message passing,
broadcast, and routing), lookup (distributed hashtables and name-based communi-
cation), and a publish/subscribe service.

To better deal with dynamic environments; to improve scalability, robustness,
and performance by avoiding management bottlenecks and a single-point-of-failure;
we advocate for distribution of management functions among several cooperative
managers that coordinate their activities in order to achieve management objec-
tives. Several issues appear when trying to enable self-management for large scale
complex distributed systems that do not appear in centralized and cluster based
systems. These issues include long network delays and the difficulty of maintain-
ing global knowledge of the system. These problems affect the observability and
controllability of the control system and may prevent us from directly applying

1.1. SUMMARY OF RESEARCH OBJECTIVES 5

classical control theory to build control loops. Another important issue is the coor-
dination between multiple autonomic managers to avoid conflicts and oscillations.
Autonomic managers must also be replicated in dynamic environments to tolerate
failures.

The growing popularity of Web 2.0 applications, such as wikis, social networks,
and blogs, has posed new challenges on the underlying provisioning infrastructure.
Many large-scale Web 2.0 applications leverage elastic services, such as elastic key-
value stores, that can scale horizontally by adding/removing servers. Voldemort [9],
Cassandra [10], and Dynamo [11] are few examples of elastic storage services. Cloud
computing [3], with its pay-as-you-go pricing model, provides an attractive envi-
ronment to provision elastic services as the running cost of such services becomes
proportional to the amount of resources needed to handle the current workload.

Managing the resources for Web 2.0 applications, in order to guarantee accept-
able performance, is challenging because it is difficult to predict the workload par-
ticularly for new applications that can become popular within few days [12, 13].
Furthermore, the performance requirements is usually expressed in terms of upper
percentiles which is more difficult to maintain that average performance [11,14].

The pay-as-you-go pricing model, elasticity, and dynamic workload altogether
call for the need for an elasticity controller that automates the provisioning of Cloud
resources. The elasticity controller adds more resources under high load in order
to meet required service level objectives (SLOs) and releases some resources under
low load in order to reduce cost.

1.1 Summary of Research Objectives

Research reported in this thesis aims at enabling and achieving self-management
for large-scale distributed systems. In this research, we start by addressing the
challenges of enabling self-management for large-scale and/or dynamic distributed
systems in order to hide the system complexity and to automate its management,
i.e., organization, tuning, healing and protection. We achieve this by implementing
the Autonomic Computing Architecture proposed by IBM [6] in a fully decen-
tralized way to match the requirements of large scale distributed systems. The
autonomic Computing Architecture consists mainly of touchpoints (sensors and
actuators) and autonomic managers that communicate with the managed system
(via touchpoints) and with each other to achieve management objectives. We define
and present the interaction patterns of multiple autonomic managers and proposing
steps for designing self-management in large scale distributed systems. We continue
our research by addressing the problems of the robustness of management and data
consistency that are unavoidable in a distributed system. We have developed a
decentralized algorithm that guarantees the robustness of autonomic managers en-
abling them to tolerate continuous churn. Our approach is based on replicating
the autonomic manager using finite state machine replication with a reconfigurable
replica set. Our algorithm automates the reconfiguration (migration) of the replica

6 CHAPTER 1. INTRODUCTION

set in order to tolerate continuous churn. For data consistency, we propose a design
and algorithms for a robust fault-tolerant majority-based key-value store support-
ing multiple consistency levels that is based on a peer-to-peer network. The store
provides an Application Programming Interface (API) consisting of different read
and write operations with various data consistency guarantees from which a wide
range of applications would be able to choose the operations according to their data
consistency, performance and availability requirements. The store uses a majority-
based quorum technique to provide strong data consistency guarantees. In the final
part of our research we focus on using elements of control theory and machine learn-
ing in the management logic of autonomic managers for distributed systems. As
a use case, we study the automation of elasticity control for Cloud-based services
focusing on Cloud-based stores. We define steps for building elasticity controllers
for an elastic Cloud-based service, including system identification and controller de-
sign. An elasticity controller automatically resizes an elastic service, in response to
changes in workload, in order to meet Service Level Objectives (SLOs) at a reduced
cost.

1.2 Main Contributions

As presented in previous section, the main objectives of research presented in
this thesis include ways, methods, and mechanisms of enabling and achieving
self-management for large-scale distributed systems; robust self-management and
data consistency in large-scale distributed systems; and automation of elasticity for
Cloud-based storage systems. Along this research objectives the main contributions
of the thesis are as follows.

1. A platform called Niche that enables the development, deployment, and ex-
ecution of large scale component based distributed applications in dynamic
environments. We have also developed a distributed file storage service, called
YASS, to illustrate and evaluate Niche;

2. A design methodology that supports the design of distributed management
and defines different interaction patterns between managers. We define design
steps, that includes partitioning of management functions and orchestration
of multiple autonomic managers;

3. A novel approach and corresponding distributed algorithms to achieve the
robustness of management that uses replicated state machines and relies on
our proposed algorithms to automate replicated state machine migration in
order to tolerate continuous churn. Our approach uses symmetric replication,
which is a replica placement scheme used in Structured Overlay Networks
(SONs), to decide on the placement of replicas and uses SON to monitor
them. The replicated state machine is extended, beyond its main purpose
of providing the service, to process monitoring information and to decide on
when to migrate.

1.3. THESIS ORGANIZATION 7

4. A design and corresponding distributed algorithm for a majority-based key-
value store with multiple consistency levels that is intended to be deployed in
a large-scale dynamic P2P environment. Our store provides a number of read-
/write operations with multiple consistency levels and with semantics similar
to Yahoo!’s PNUTS [15]. The store uses the majority-based quorum tech-
nique to maintain consistency of replicated data. Our majority-based store
provides stronger consistency guarantees than guarantees provided in a classi-
cal Distributed Hash Table (DHT) [16] but less expensive than guarantees of
Paxos-based replication. Using majority allows avoiding potential drawbacks
of a master-based consistency control, namely, a single-point of failure and a
potential performance bottleneck. Furthermore, using a majority rather than
a single master allows the system to achieve robustness and withstand churn
in a dynamic environment. Our mechanism is decentralized and thus allows
improving load balancing and scalability.

5. Design steps for building an elasticity controller for a key-value store in a
Cloud environment using state-space model. State-space enables us to trade-
off performance for cost. We describe the steps in designing the elasticity
controller including system identification and controller design. The con-
troller allows the system to automatically scale the amount of resources while
meeting performance SLO, in order to reduce SLO violations and the total
cost for the provided service.

6. A novel approach to automation of elasticity of Cloud-based services by com-
bining feedforward and feedback control; A design and evaluation of an elas-
ticity controller, called ElastMan, using the proposed approach. ElastMan, an
Elasticity Manager for Cloud-based key-value stores, combines and leverages
the advantages of both feedback and feedforward control. The feedforward
control is used to quickly respond to rapid changes in workload. This enables
us to smooth the noisy signal of the 99th percentile of read operation latency
and thus use feedback control. The feedback controller is used to handle di-
urnal workload and to correct errors in the feedforward control due to the
noise that is caused mainly by the variable performance of Cloud VMs. The
feedback controller uses a scale-independent design by indirectly controlling
the number of VMs by controlling the average workload per VM. This enables
the controller, given the near-linear scalability of key-value stores, to control
stores of various scales.

1.3 Thesis Organization

The thesis is organized into five parts as follows. Part I, which consists of five
chapters, presents an overview of the thesis. After the introduction in Chapter 1
that presents motivation, research objectives, and main contributions of the the-
sis, we lay out the necessary background in Chapter 2 followed by a more detailed

8 CHAPTER 1. INTRODUCTION

overview of the thesis in Chapter 3. The thesis contributions in Chapter 4. Fi-
nally, conclusions and discussion of future work are presented in Chapter 5. Part II
deals with the problem of self-management for dynamic large-scale distributed sys-
tems, We present the Niche Platform in Chapter 6 and Chapter 7 followed by
our design methodology for self-management in Chapter 8. Part III discusses ro-
bustness of management and data consistency in large-scale distributed systems.
Algorithms for providing strong consistency and robustness of management is pre-
sented in Chapter 9. Algorithms for multiple data consistency levels suitable for
distributed key-value object stores is presented in Chapter 10. Part IV discusses
self-management for Cloud-based storage systems. Chapter 11 discusses and de-
scribes the steps in building a controller based on state-space model. Chapter 12
presents ElastMan, an elasticity manager for Cloud-based key-value stores based
on combining feedforward and feedback control. Finally, Part V includes the bibli-
ography used throughout the thesis.

Chapter 2

Background

This chapter lays out the necessary background for the thesis. In our research work
on enabling and achieving self-management of large scale distributed systems we
leverage the self-organizing properties of structured overlay networks, for providing
basic services and runtime support, together with component models, for reconfig-
uration and introspection. The result of this research is an autonomic computing
platform suitable for large-scale dynamic distributed environments. In this work,
for the management logic we use policy-based management. Our research involves
various decentralized algorithms that are necessary in large scale distributed envi-
ronments in order to avoid hot spots and a single point of failure. An example is
our decentralized algorithm for achieving the robustness of management. In our re-
search on self-management for Cloud-based services, in particular key-value stores,

9

10 CHAPTER 2. BACKGROUND

we apply the control theoretic approach to automate elasticity. For the manage-
ment logic we use elements of control theory, and machine learning techniques. we
study their feasibility and performance in controlling the elasticity of Cloud-based
key-value stores. Key-value stores play a vital role in many large-scale Web 2.0
applications. These key concepts are described in the rest of this chapter.

2.1 Autonomic Computing

In 2001, Paul Horn from IBM coined the term autonomic computing to mark the
start of a new paradigm of computing [5]. Autonomic computing focuses on tackling
the problem of growing software complexity. This problem poses a great challenge
for both science and industry because the increasing complexity of computing sys-
tems makes it more difficult for the IT staff to deploy, manage and maintain such
systems. This dramatically increases the cost of management. Furthermore, if not
properly and timely managed, the performance of the system may drop or the sys-
tem may even fail. Another drawback of increasing complexity is that it forces
us to focus more on handling management issues instead of improving the system
itself and moving forward towards new innovative applications.

Autonomic computing was inspired from the autonomic nervous system that
continuously regulates and protect our bodies subconsciously [17] leaving us free to
focus on other work. Similarly, an autonomic system should be aware of its environ-
ment and continuously monitor itself and adapt accordingly with minimal human
involvement. Human managers should only specify higher level policies that define
the general behaviour of the system. This will reduce the cost of management,
improve performance, and enable the development of new innovative applications.
The purpose of autonomic computing is not to replace human administrators en-
tirely but rather to enable systems to adjust and adapt themselves automatically
to reflect evolving policies defined by humans.

Properties of Self-Managing Systems

IBM proposed main properties that any self-managing system should have [4] to be
an autonomic system. These properties are usually referred to as self-* properties.
The four main properties are:

• Self-configuration: An autonomic system should be able to configure itself
based on the current environment and available resources. The system should
also be able to continuously reconfigure itself and adapt to changes.

• Self-optimization: The system should continuously monitor itself and try
to tune itself and keep performance (and/or other operational metrics such
as energy consumption and cost) at optimal levels.

• Self-healing: Failures should be detected by the system. After detection,
the system should be able to recover from the failure and fix itself.

2.1. AUTONOMIC COMPUTING 11

• Self-protection: The system should be able to protect itself from malicious
use. This includes for example protection against viruses and intrusion at-
tempts.

Monitor

Analyze Plan

Execute

Touch Point

Autonomic Manager

Managed Resource

Knowledge

Managed Resource

Touch Point

Manager
Interface

Figure 2.1: A simple autonomic computing architecture with one autonomic man-
ager.

The Autonomic Computing Architecture

The autonomic computing reference architecture proposed by IBM [6] consists of
the following five building blocks (see Figure 2.1).

• Touchpoint consists of a set of sensors and effectors (actuators) used by
autonomic managers to interact with managed resources (get status and per-
form operations). Touchpoints are components in the system that implement
a uniform management interface that hides the heterogeneity of the managed
resources. A managed resource must be exposed through touchpoints to be

12 CHAPTER 2. BACKGROUND

manageable. Sensors provide information about the state of the resource.
Effectors provide a set of operations that can be used to modify the state of
resources.

• Autonomic Manager is the key building block in the architecture. Auto-
nomic managers are used to implement the self-management behaviour of the
system. This is achieved through a control loop that consists of four main
stages: monitor, analyze, plan, and execute. The control loop interacts with
the managed resource through the exposed touchpoints.

• Knowledge Source is used to share knowledge (e.g., architecture informa-
tion, monitoring history, policies, and management data such as change plans)
between autonomic managers.

• Enterprise Service Bus provides connectivity of components in the system.

• Manager Interface provides an interface for administrators to interact with
the system. This includes the ability to monitor/change the status of the
system and to control autonomic managers through policies.

In our work we propose a design and an implementation of the autonomic com-
puting reference architecture for large-scale distributed systems.

Approaches to Autonomic Computing

Recent research in both academia and industry have adopted different approaches to
achieve autonomic behaviour in computing systems. The most popular approaches
are described below.

• Architectural Approach: This approach advocates for composing auto-
nomic systems out of components. It is closely related to service oriented ar-
chitectures. Properties of components including required interfaces, expected
behaviours, interaction establishment, and design patterns [18]. Autonomic
behaviour of computing systems are achieved through dynamically modify-
ing the structure (compositional adaptation) and thus the behaviour of the
system [19, 20] in response to changes in the environment or user behaviour.
Management in this approach is done at the level of components and interac-
tions between them.

• Control Theoretic Approach: Classical control theory have been success-
fully applied to solve control problems in computing systems [21] such as load
balancing, throughput regulation, and power management. Control theory
concepts and techniques are being used to guide the development of auto-
nomic managers for modern self-managing systems [22]. Challenges beyond
classical control theory have also been addressed [23] such as use of proactive
control (model predictive control) to cope with network delays and uncertain

2.2. THE FRACTAL COMPONENT MODEL 13

operating environments and also multivariable optimization in the discrete
domain.

• Emergence-based Approach: This approach is inspired from nature where
complex structures or behaviours emerge from relatively simple interactions.
Examples range from the forming of sand dunes to swarming that is found
in many animals. In computing systems, the overall autonomic behaviour
of the system at the macro-level is not directly programmed but emerges
from the, relatively simple, behavior of various sub systems at the micro-
level [24–26]. This approach is highly decentralized. Subsystems make deci-
sions autonomously based on their local knowledge and view of the system.
Communication is usually simple, asynchronous, and used to exchanging data
between subsystems.

• Agent-based Approach: Unlike traditional management approaches, that
are usually centralized or hierarchical, agent-based approach for management
is decentralized. This is suitable for large-scale computing systems that are
distributed with many complex interactions. Agents in a multi-agent system
collaborate, coordinate, and negotiate with each other forming a society or
an organization to solve a problem of a distributed nature [27,28].

• Legacy Systems: Research in this branch tries to add self-managing be-
haviours to already existing (legacy) systems. Research includes techniques
for monitoring and actuating legacy systems as well as defining requirements
for systems to be controllable [29–32].

In our work on Niche (a distributed component management system), we fol-
lowed mainly the architectural approach to autonomic computing. We use and ex-
tend the Fractal component model (presented in the next section) to dynamically
modifying the structure and thus the behaviour of the system. However, there is no
clear line dividing these different approaches and they may be combined together
in one system. Later, in our research on automation of elasticity for Cloud-based
services we used the control theoretic approach to self-management.

2.2 The Fractal Component Model

The Fractal component model [7,33] is a modular and extensible component model
used to design, implement, deploy and reconfigure various systems and applica-
tions. Fractal is programming language and execution model independent. The
main goal of the Fractal component model is to reduce the development, deploy-
ment and maintenance costs of complex software systems. This is achieved mainly
through separation of concerns that appears at different levels namely: separation
of interface and implementation, component oriented programming, and inversion
of control. The separation of interface and implementation separates design from
implementation. The component oriented programming divides the implementation

14 CHAPTER 2. BACKGROUND

into smaller separated concerns that are assigned to components. The inversion of
control separate the functional and management concerns.

A component in Fractal consists of two parts: the membrane and the content.
The membrane is responsible for the non functional properties of the component
while the content is responsible for the functional properties. A Fractal component
can be accessed through interfaces. There are three types of interfaces: client,
server, and control interfaces. Client and server interfaces can be linked together
through bindings while the control interfaces are used to control and introspect the
component. A Fractal component can be a basic of composite component. In the
case of a basic component, the content is the direct implementation of its functional
properties. The content in a composite component is composed from a finite set of
other components. Thus a Fractal application consists of a set of component that
interact through composition and bindings.

Fractal enables the management of complex applications by making the software
architecture explicit. This is mainly due to the reflexivity of the Fractal compo-
nent model which means that components have full introspection and intercession
capabilities (through control interfaces). The main controllers defined by Fractal
are attribute control, binding control, content control, and life cycle control.

The model also includes the Fractal architecture description language (Fractal
ADL) that is an XML document used to describe the Fractal architecture of appli-
cations including component description (interfaces, implementation, membrane,
etc.) and relation between components (composition and bindings). The Fractal
ADL can also be used to deploy a Fractal application where an ADL parser parses
the application’s ADL file and instantiate the corresponding components and bind-
ings.

In our work on Niche, we use the Fractal component model to introspect and
reconfigure components of a distributed application. We extend the Fractal com-
ponent model in various ways such as network transparent bindings that enables
component mobility and also with component groups and with one-to-any and one-
to-all bindings.

2.3 Structured Peer-to-Peer Overlay Networks

Peer-to-peer (P2P) refers to a class of distributed network architectures which are
formed of participants (usually called peers or nodes) that reside on the edge of
the Internet. P2P is becoming more popular as edge devices are becoming more
powerful in terms of network connectivity, storage, and processing power. A com-
mon feature to all P2P networks is that the participants form a community of peers
where a peer in the community shares some resource (e.g., storage, bandwidth, or
processing power) with others and in return it can use the resources shared by
others [1]. Put in other words, each peer plays the role of both client and server.
Thus, a P2P network usually does not need a central server and operates in a

2.3. STRUCTURED PEER-TO-PEER OVERLAY NETWORKS 15

decentralised way. Another important feature is that peers also play the role of
routers and participate in routing messages between peers in the overlay.

P2P networks are scalable and robust. The fact that each peer plays the role of
both client and server has a major effect in allowing P2P networks to scale to large
number of peers. This is because, unlike traditional client-server model, adding
more peers increases the capacity of the system (e.g., adding more storage and
bandwidth). Another important factor that helps P2P to scale is that peers act as
a router. Thus each peer needs only to know about a subset of other peers. The
decentralised nature of P2P networks improve their robustness. There is no single
point of failure and P2P networks are designed to tolerate peers joining, leaving
and failing at any time they will.

Peers in a P2P network usually form an overlay network on top of the physical
network topology. An overlay consists of virtual links that are established between
peers in a certain way according to the P2P network type (topology). A virtual
link between any two peers in the overlay may be implemented by several links in
the physical network. The overlay is usually used for communication, indexing, and
peer discovery. The way links in the overlay are formed divides P2P networks into
two main classes: unstructured and structured networks. Overlay links between
peers in an unstructured P2P network are formed randomly without any algorithm
to organize the structure. On the other hand, overlay links between peers in a struc-
tured P2P network follow a fixed structure, which is continuously maintained by
an algorithm. The remainder of this section will focus on structured P2P networks.

A structured P2P network such as Chord [34], CAN [35], and Pastry [36] main-
tains a structure of overlay links. Using this structure allows to implement a Dis-
tributed Hash Table (DHT). A DHT provides a lookup service similar to hash
tables that stores key-value pairs. Given a key, any peer can efficiently retrieve the
associated value by routing a request to the responsible peer. The responsibility of
maintaining the mapping between key-value pairs and the routing information is
distributed among the peers in such a way that peer join/leave/failure cause mini-
mal disruption to the lookup service. This maintenance is automatic and does not
require human involvement. This feature is known as self-organization.

A more complex service can be built on top of DHTs. Such services include
name-based communication, efficient multicast/broadcast, publish/subscribe ser-
vices, and distributed file systems.

In our work on Niche, we used structured overlay networks and services built on
top of it as a communication medium between different components in the system
(functional components and management elements). We leverage the scalability
and self-organizing properties (e.g., automatic correction of routing tables in order
to tolerate joins, leaves, and failures of peers, automatic maintenance of responsi-
bility for DHT buckets) of structured P2P network for providing basic services and
runtime support. We used an indexing service to implement network transparent
name-based communication and component groups. We used efficient multicas-
t/broadcast for communication and discovery. We used a publish/subscribe service
to implement event based communication between management elements.

16 CHAPTER 2. BACKGROUND

2.4 Web 2.0 Applications

The growing popularity of Web 2.0 applications, such as wikis, social networks,
and blogs, has posed new challenges on the underlying provisioning infrastructure.
Web 2.0 applications are data-centric with frequent data access [37]. This poses new
challenges on the data-layer of n-tier application servers because the performance
of the data-layer is typically governed by strict Service Level Objectives (SLOs) [14]
in order to satisfy costumer expectations.

Key-Value Stores

With the rapid increase of Web 2.0 users, the poor scalability of a typical data-layer
with ACID [38] properties limited the scalability of Web 2.0 applications. This has
led to the development of new data-stores with relaxed consistency guarantees and
simpler operations such as Voldemort [9], Cassandra [10], and Dynamo [11]. These
storage systems typically provide a simple key-value store with eventual consistency
guarantees. The simplified data and consistency models of key-value stores enable
them to efficiently scale horizontally by adding more servers and thus serve more
clients.

Another problem facing Web 2.0 applications is that a certain service, feature, or
topic might suddenly become popular resulting in a spike in the workload [12, 13].
The fact that storage is a stateful service complicates the problem since only a
particular subset of servers hosts the data related to the popular item. The subset
becomes overloaded while other servers can be underloaded.

These challenges have led to the need for an automated approach, to manage
the data-tier, that is capable of quickly and efficiently responding to changes in the
workload in order to meet the required SLOs of the storage service.

Cloud Computing and Elastic Services

Cloud computing [3], with its pay-as-you-go pricing model, provides an attractive
solution to host the ever-growing number of Web 2.0 applications as the running
cost of such services becomes proportional to the amount of resources needed to
handle the current workload. This model is attractive, specially for startups, be-
cause it is difficult to predict the future load that is going to be imposed on the
application and thus the amount of resources (e.g., servers) needed to serve that
load. Another reason is the initial investment, in the form of buying the servers,
that is avoided with the Cloud pay-as-you-go pricing model. The independence
of peak loads for different applications enables Cloud providers to efficiently share
the resources among the applications. However, sharing the physical resources
among Virtual Machines (VMs) running different applications makes it challenging
to model and predict the performance of the VMs [39,40].

To leverage the Cloud pricing model and to efficiently handle the dynamic Web
2.0 workload, Cloud services (such as a key-value store in the data-tier of a Cloud-

2.4. WEB 2.0 APPLICATIONS 17

based multi-tier application) are designed to be elastic. An elastic service is de-
signed to be able to scale horizontally at runtime without disrupting the running
service. An elastic service can be scaled up (e.g., by the system administrator) in
the case of increasing workload by adding more resources in order to meet SLOs. In
the case of decreasing load, an elastic service can be scaled down by removing extra
resource and thus reducing the cost without violating the SLOs. For stateful ser-
vices, scaling is usually combined with a rebalancing step necessary to redistribute
the data among the new set of servers.

Managing the resources for Web 2.0 applications, in order to guarantee ac-
ceptable performance, is challenging because of the gradual (diurnal) and sudden
(spikes) variations in the workload [41]. It is difficult to predict the workload par-
ticularly for new applications that can become popular within a few days [12, 13].
Furthermore, the performance requirement is usually expressed in terms of upper
percentiles (e.g., “99% of reads are performed in less than 10ms within one minute”)
which is more difficult to maintain than the average performance [11,14].

Feedback vs. Feedforward Control

The pay-as-you-go pricing model, elasticity, and dynamic workload of Web 2.0 ap-
plications altogether call for the need for an elasticity controller that automates the
provisioning of Cloud resources. The elasticity controller leverages the horizontal
scalability of elastic services by provisioning more resources under high workloads
in order to meet required service level objectives (SLOs). The pay-as-you-go pricing
model provides an incentive for the elasticity controller to release extra resources
when they are not needed once the workload decreases.

In computing systems, a controller [21] or an autonomic manager [5] is a soft-
ware component that regulates the nonfunctional properties (performance metrics)
of a target system. Nonfunctional properties are properties of the system such as
the response time or CPU utilization. From the controller perspective these per-
formance metrics are the system output. The regulation is achieved by monitoring
the target system through a monitoring interface and adapting the system’s con-
figurations, such as the number of servers, accordingly through a control interface
(control input). Controllers can be classified into feedback or feedforward con-
trollers depending on whether or not a controller uses feedback to control a system.
Feedback control requires monitoring of the system output whereas the feedforward
control does not monitor the system output because it does not use the output to
control.

In feedback control, the system’s output (e.g., response time) is being moni-
tored. The controller calculates the control error by comparing the current sys-
tem’s output with a desired value set by the system administrators. Depending
on the amount and sign of the control error, the controller changes the control
input (e.g., number of servers to add or remove) in order to reduce the control
error. The main advantage of feedback control is that the controller can adapt to
disturbance such as changes in the behaviour of the system or its operating envi-

18 CHAPTER 2. BACKGROUND

Figure 2.2: Multi-Tier Web 2.0 Application with Elasticity Controller Deployed in
a Cloud Environment

ronment. Disadvantages include oscillation, overshoot, and possible instability if
the controller is not properly designed. Due to the nonlinearity of most systems,
feedback controllers are approximated around linear regions called the operating
region. Feedback controllers work properly only around the operating region they
were designed for.

In feedforward control, the system’s output is not being monitored. Instead the
feedforward controller relies on a model of the system that is used to calculate the
systems output based on the current system state. For example, given the current
request rate and the number of servers, the system model is used to calculate
the corresponding response time and act accordingly to meet the desired response
time. The major disadvantage of feedforward control is that it is very sensitive
to unexpected disturbances that are not accounted for in the system model. This
usually results in a relatively complex system model compared to feedback control.
The main advantages of feedforward control include being faster than feedback
control and avoiding oscillations and overshoot.

Target System

As a part of research presented in this thesis, in our work on self-management for
Cloud-based services, we are targeting multi-tier Web 2.0 applications as depicted
in the left side of Figure 2.2. We are focusing on managing the data-tier because
of its major effect on the performance of Web 2.0 applications, which are mostly
data centric [37]. Furthermore, the fact that storage is a stateful service makes it
harder to manage as each request can be handled only by a subset of the servers
that store replicas of the particular data item in the request.

For the data-tier, we assume horizontally scalable key-value stores due to their

2.5. STATE OF THE ART AND RELATED WORK 19

popularity in many large scale Web 2.0 applications such as Facebook and LinkedIn.
A typical key-value store provides a simple put/get interface. This simplicity en-
ables key-value stores to efficiently partition the data among multiple servers and
thus to scale well to a large number of servers.

The three minimum requirements to manage a key-value store using our ap-
proach (described in Section 12.4) are as follows. First, the store must provide
a monitoring interface that enables the monitoring of both the workload and the
latency of put/get operations. Second, the store must also provide an actuation
interface that enables the horizontal scalability by adding or removing service in-
stances.

Third, actuation (adding or removing service instances) must be combined with
a rebalance operation, because storage is a stateful service. The rebalance operation
redistributes the data among the new set of servers in order to balance the load
among them. Many key-value stores, such as Voldemort [9] and Cassandra [10],
provide tools to rebalance the data among the service instances. In this work,
we focus on the control problem and rely on the built-in capabilities of the storage
service to rebalance the load. If the storage does not provide such service, techniques
such as rebalancing using fine grained workload statistics proposed by Trushkowsky
et al. [14], the Aqueduct online data migration proposed by Lu et al. [42], or the
data rebalance controller proposed by Lim et al. [43] can be used.

In this work, we target Web 2.0 applications running in Cloud environments
such as Amazon’s EC2 [44] or private Clouds. The target environment is depicted
on the right side of Figure 2.2. We assume that each service instance runs on its
own VM; Each physical server hosts multiple VMs. The Cloud environment hosts
multiple such applications (not shown in the figure). Such environment complicates
the control problem. This is mainly due to the fact that VMs compete for the shared
resources. This high environmental noise makes it difficult to model and predict
the performance of VMs [39,40].

2.5 State of the Art and Related Work in Self-Management
for Large Scale Distributed Systems

There is the need to reduce the cost of software ownership, i.e., the cost of the
administration, management, maintenance, and optimization of software systems
and also networked environments such as Grids, Clouds, and P2P systems. This
need is caused by the inevitable increase in complexity and scale of software systems
and networked environments, which are becoming too complicated to be directly
managed by humans. For many such systems manual management is difficult,
costly, inefficient and error-prone.

A large-scale system may consists of thousands of elements to be monitored
and controlled, and have a large number of parameters to be tuned in order to
optimize system performance and power, to improve resource utilization and to
handle faults while providing services according to SLAs. The best way to handle

20 CHAPTER 2. BACKGROUND

the increases in system complexity, administration and operation costs is to design
autonomic systems that are able to manage themselves like the autonomic nervous
system regulates and protects the human body [4,17]. System self-management al-
lows reducing management costs and improving management efficiency by removing
human administrators from most of (low-level) system management mechanisms,
so that the main duty of humans is to define policies for autonomic management
rather than to manage the mechanisms that implement the policies.

The increasing complexity of software systems and networked environments mo-
tivates autonomic system research in both, academia and industry, e.g., [4,5,17,45].
Major computer and software vendors have launched R&D initiatives in the field
of autonomic computing.

The main goal of autonomic system research is to automate most of system
management functions that include configuration management, fault management,
performance management, power management, security management, cost man-
agement, and SLA management. Self-management objectives are typically classi-
fied into four categories: self-configuration, self-healing, self-optimization, and self-
protection [4]. Major self-management objectives in large-scale systems, such as
Clouds, include repairing on failures, improving resources utilization, performance
optimization, power optimization, change (upgrade) management. Autonomic SLA
management is also included in the list of self-management tasks. Currently, it is
very important to make self-management power-aware, i.e., to minimize energy
consumption while meeting service level objectives [46].

The major approach to self-management is to use one or multiple feedback con-
trol loops [17, 21], a.k.a. autonomic managers [4], to control different properties
of the system based on functional decomposition of management tasks and assign-
ing the tasks to multiple cooperative managers [47–49]. Each manager has a spe-
cific management objective (e.g., power optimization or performance optimization),
which can be of one or a combination of three kinds: regulatory control (e.g., main-
tain server utilization at a certain level), optimization (e.g., power and performance
optimizations), disturbance rejection (e.g., provide operation while upgrading the
system) [21]. A manager control loop consists of four stages, known as MAPE:
Monitoring, Analyzing, Planning, and Execution [4] (Section 2.1).

Authors of [21] apply the control theoretic approach to design computing sys-
tems with feedback loops. The architectural approach to autonomic computing [18]
suggests specifying interfaces, behavioral requirements, and interaction patterns for
architectural elements, e.g., components. The approach has been shown to be useful
for e.g., autonomous repair management [50]. The analyzing and planning stages of
a control loop can be implemented using utility functions to make management de-
cisions, e.g., to achieve efficient resource allocation [51]. Authors of [49] and [48] use
multi-criteria utility functions for power-aware performance management. Authors
of [52, 53] use a model-predictive control technique, namely a limited look-ahead
control (LLC), combined with a rule-based managers, to optimize the system per-
formance based on its forecast behavior over a look-ahead horizon.

Authors of [54] propose a generic gossip protocol for dynamic resource allocation

2.5. STATE OF THE ART AND RELATED WORK 21

in a large-scale Cloud environment, which can be instantiated for specific objectives,
under CPU and memory constraints. The authors illustrate an instance of the
generic protocol that aims at minimizing the power consumption through server
consolidation, while satisfying a changing load pattern. The protocol minimizes the
power consumption through server consolidation when the system is in underload
and uses fair resource allocation in case of overload. The authors advocate for
the use of a gossip protocol to efficiently compute a configuration matrix, that
determines how Cloud resources are allocated, for large-scale Clouds.

Authors of [55] address the problem of automating the horizontal elasticity of a
Cloud-based service in order to meet varying demands on the service while enforcing
SLAs. The authors use queuing theory to model a Cloud service. The model is
used to build two adaptive proactive controllers that estimate the future load on
the service. The authors propose the use of a hybrid controller consisting of the
proactive controller for scaling down coupled with a reactive controller for scaling
up.

Authors of [56] address the self-management challenges for multi-Cloud archi-
tectures. The authors focus on three complementary challenges, namely, predictive
elasticity, admission control, and placement (or scheduling) of virtual machines.
The authors propose a unified approach for tuning the policies that governs the
tools that address each of the aforementioned challenges in order to optimize the
overall system behavior.

Policy-based self-management [57–62] allows high-level specification of manage-
ment objectives in the form of policies that drive autonomic management and can
be changed at run-time. Policy-based management can be combined with “hard-
coded” management.

There are many research projects focused on or using self-management for soft-
ware systems and networked environments, including projects performed at the
NSF Center for Autonomic Computing [63] and a number of FP6 and FP7 projects
funded by European Commission.

For example, the FP7 EU-project RESERVOIR (Resources and Services Virtu-
alization without Barriers) [64, 65] aims at enabling massive scale deployment and
management of complex IT services across different administrative domains. In
particular, the project develops a technology for distributed management of virtual
infrastructures across sites supporting private, public and hybrid Cloud architec-
tures. The PF7 EU-project VISION Cloud [66] aims at improving storage in the
Cloud by making it better, easier and more secure. The project addresses several
self-management aspects of Cloud-based storage by proposing various solutions such
as the computational storage that provides a solution for bringing computation to
the storage. Computational storage enables a secure execution of computational
tasks near the required data as well as autonomous data derivation and transfor-
mation.

Several completed research projects, in particular, AutoMate [67], Unity [68],
and SELFMAN [17, 69], and also the Grid4All [47, 70, 71] project we participated
in, propose frameworks to augment component programming systems with man-

22 CHAPTER 2. BACKGROUND

agement elements. The FP6 projects SELFMAN and Grid4All have taken similar
approaches to self-management: both project combine structured overlay networks
with component models for the development of an integrated architecture for large-
scale self-managing systems. SELFMAN has developed a number of technologies
that enable and facilitate development of self-managing systems. Grid4All has de-
veloped, in particular, a platform for development, deployment and execution of
self-managing applications and services in dynamic environments such as domestic
Grids.

There are several industrial solutions (tools, techniques and software suites)
for enabling and achieving self-management of enterprise IT systems, e.g., IBM’s
Tivoli and HP’s OpenView, which include different autonomic tools and managers
to simplify management, monitoring and automation of complex enterprise-scale
IT systems. These solutions are based on functional decomposition of management
performed by multiple cooperative managers with different management objectives
(e.g., performance manager, power manager, storage manager, etc.). These tools
are specially developed and optimized to be used in IT infrastructure of enterprises
and datacenters.

Self-management can be centralized, decentralized, or hybrid (hierarchical).
Most of the approaches to self-management are either based on centralized con-
trol or assume high availability of macro-scale, precise and up-to-date information
about the managed system and its execution environment. The latter assumption
is unrealistic for multi-owner highly-dynamic large-scale distributed systems, e.g.,
P2P systems, community Grids and Clouds. Typically, self-management in an en-
terprise information system, a single-provider Content Delivery Network (CDN) or
a datacenter Cloud is centralized because most of management decisions are made
based on the system global (macro-scale) state in order to achieve close to opti-
mal system operation. However, the centralized management it is not scalable and
might be not robust.

There are many projects that use techniques such as control theory, machine
learning, empirical modeling, or a combination of them to achieve SLOs at various
levels of a multi-tier Web 2.0 application.

For example, Lim et al. [43] proposed the use of two controllers to automate
elasticity of a storage. An integral feedback controller is used to keep the average
response time at a desired level. A cost-based optimization is used to control the
impact of the rebalancing operation, needed to resize the elastic storage, on the
response time. The authors also propose the use of proportional thresholding, a
technique necessary to avoid oscillations when dealing with discrete systems. The
design of the feedback controller relies on the high correlation between CPU uti-
lization and the average response time. Thus, the control problem is transformed
into controlling the CPU utilization to indirectly control the average response time.
Relying on such strong correlation might not be valid in Cloud environments with
variable VM performance nor for controlling using 99th percentile instead of aver-
age.

To our best knowledge, Trushkowsky et al. [14] were the first to propose a con-

2.5. STATE OF THE ART AND RELATED WORK 23

trol framework for controlling upper percentiles of latency in a stateful distributed
system. The authors propose the use of a feedforward model predictive controller
to control the upper percentile of latency. The major motivation for using feedfor-
ward control is to avoid measuring the noisy upper percentile signal necessary for
feedback control. Smoothing the upper percentile signal, in order to use feedback
control, may filter out spikes or delay the response to them. The major drawback
of using only feedforward is that it is very sensitive to noise such as the variable
performance of VMs in the Cloud. The authors relies on replication to reduce the
effect of variable VM performance, but in our opinion, this might not be guaranteed
to work in all cases. The authors [14] also propose the use of fine grained monitoring
to reduce the amount of data transfer during rebalancing. This significantly reduces
the disturbance resulting from the rebalance operation. Fine grain monitoring can
be integrated with our approach to further improve the performance.

Malkowski et al. [72] focus on controlling all tiers on a multi-tier application due
to the dependencies between the tiers. The authors propose the use of an empirical
model of the application constructed using detailed measurements of a running
application. The controller uses the model to find the best known configuration
of the multi-tier application to handle the current load. If no such configuration
exists, the controller falls back to another technique such as a feedback controller.
Although the empirical model will generally generate better results, it is more
difficult to construct.

The area of autonomic computing is still evolving. There are many open research
issues such as development environments to facilitate development of self-managing
applications, efficient monitoring, scalable actuation, and robust management. Our
work contributes to state of the art in autonomic computing, in particular, self-
management of large-scale and/or dynamic distributed systems. We address sev-
eral problems such as automation of elasticity control, robustness of management,
distribution of management functionality among cooperative autonomic managers,
and the programming of self-managing applications. We provide solutions for these
problems in form of distributed algorithms, methodologies, tools, and a platform
for self-management in large scale distributed environments.

Chapter 3

Self-Management for Large-Scale
Distributed Systems

Autonomic computing aims at making computing systems self-managing by using
autonomic managers in order to reduce obstacles caused by management complex-
ity. This chapter summarizes the results of our research on self-management for
large-scale distributed systems.

25

26
CHAPTER 3. SELF-MANAGEMENT FOR LARGE-SCALE DISTRIBUTED

SYSTEMS

3.1 Enabling and Achieving Self-Management for
Large-Scale Distributed Systems

Niche is a proof of concept prototype of a distributed component management
platform that we used in order to evaluate our concepts and approach to self-
management that are based on leveraging the self-organizing properties of Struc-
tured Overlay Networks (SONs), for providing basic services and runtime support,
together with component models, for reconfiguration and introspection. The end
result is an autonomic computing platform suitable for large-scale dynamic dis-
tributed environments. Niche uses name-based routing and DHT functionality
of SONs. Self-organizing properties of SONs, which Niche relies on, include au-
tomatic handling of join/leave/failure events by automatic correction of routing
tables and maintenance of responsibilities for DHT buckets. We have designed,
developed, and implemented Niche which is a platform for self-management. Niche
has been used in this work as an environment to validate and evaluate different
aspects of self-management such as monitoring, autonomic managers interactions,
and policy-based management, as well as to demonstrate our approach by using
Niche to develop use cases.

This section presents the Niche platform [73] (http://niche.sics.se), as sys-
tem for the development, deployment and execution of self-managing distributed
systems, applications and services. Niche has been developed by a joint group
of researchers and developers at the KTH Royal Institute of Technology; Swedish
Institute of Computer Science (SICS), Stockholm, Sweden; and INRIA, France.

Niche implements (in Java) the autonomic computing architecture defined in
the IBM autonomic computing initiative, i.e., it allows building MAPE (Moni-
tor, Analyse, Plan and Execute) control loops. Niche includes a component-based
programming model (Fractal), API, and an execution environment. Niche, as a
programming environment, separates programming of functional and management
parts of a self-managing distributed application. The functional part is developed
using Fractal components and component groups, which are controllable (e.g., can
be looked up, moved, rebound, started, stopped, etc.) and can be monitored by
the management part of the application. The management part is programmed
using Management Element (ME) abstractions: watchers, aggregators, managers,
executors. The sensing and actuation API of Niche connects the functional and
management part. MEs monitor and communicate with events, in a publish/-
subscribe manner. There are built-in events (e.g., component failure event) and
application-dependent events (e.g., component load change event). MEs control
functional components via the actuation API.

Niche also provides ability to program policy-based management using a policy
language, a corresponding API and a policy engine [62]. Current implementation
of Niche includes a generic policy-based framework for policy-based management
using SPL (Simplified Policy Language) or XACML (eXtensible Access Control
Markup Language). The framework includes abstractions (and API) of policies,

3.1. ENABLING AND ACHIEVING SELF-MANAGEMENT FOR
LARGE-SCALE DISTRIBUTED SYSTEMS 27

policy-managers and policy-manager groups. Policy-based management enables
self-management under guidelines defined by humans in the form of management
policies, expressed in a policy language, that can be changed at run-time. With
policy-based management it is easier to administrate and maintain management
policies. It facilitates development by separating of policy definition and main-
tenance from application logic. However, our performance evaluation shows that
hard-coded management performs better (faster) than the policy-based manage-
ment using the policy engine. We recommend using policy-based management with
a policy engine for high-level policies that require the flexibility of rapidly being
changed and manipulated by administrators (easily understood by humans, can be
changed on the fly, separate form development code for easier management, etc.).
On the other hand low-level relatively static policies and management logic should
be hard-coded for performance. It is also important to keep in mind that even when
using policy-based management we still have to implement management actuation
and monitoring.

Although programming in Niche is on the level of Java, it is both possible and
desirable to program management at a higher level (e.g., declaratively). The lan-
guage support includes the declarative ADL (Architecture Description Language)
that is used for describing initial configurations in high-level which is interpreted
by Niche at runtime (initial deployment).

Niche has been developed assuming that its run-time environment and appli-
cations with Niche might execute in a highly dynamic environment with volatile
resources, where resources (computers, VMs) can unpredictably join, leave, or fail.
In order to deal with such dynamicity, Niche leverages certain properties of the
underlying structured P2P overlay network, including name-based routing (when a
direct binding is broken), the DHT functionality (for metadata), and self-organizing
properties such as automatic correction of routing tables. Niche provides trans-
parent replication of management elements for robustness. For efficiency, Niche
directly supports a component group abstraction with group bindings (one-to-all
and one-to-any).

The Niche run-time system allows initial deployment of a service or an appli-
cation on the network of Niche nodes (containers). Niche relies on the underlying
overlay services to discover and to allocate resources needed for deployment, and
to deploy the application. After deployment, the management part of the applica-
tion can monitor and react on changes in availability of resources by subscribing
to resource events fired by Niche containers. All elements of a Niche application
– components, bindings, groups, management elements – are identified by unique
identifiers (names) that enable location transparency. Niche uses the DHT func-
tionality of the underlying structured overlay network for its lookup service. This
is especially important in dynamic environments where components need to be
migrated frequently as machines leave and join frequently. Furthermore, each con-
tainer maintains a cache of name-to-location mappings. Once a name of an element
is resolved to its location, the element (its hosting container) is accessed directly
rather than by routing messages though the overlay network. If the element moves

28
CHAPTER 3. SELF-MANAGEMENT FOR LARGE-SCALE DISTRIBUTED

SYSTEMS

to a new location, the element name is transparently resolved to the new location.

More details about our work on Niche can be found in Chapter 6 and Chapter 7.

We have defined a design methodology for designing the management part of
a distributed self-managing application in a distributed manner [47]. Design steps
in developing the management part of a self-managing application include spatial
and functional partitioning of management, assignment of management tasks to
autonomic managers, and co-ordination of multiple autonomic managers. The de-
sign space for multiple management components is large; indirect stigmergy-based
interactions, hierarchical management, direct interactions. Co-ordination could use
shared management elements. The design methodology is presented in more details
in Chapter 8.

Demonstrators

In order to demonstrate Niche and our design methodology, we developed two
self-managing services (1) YASS: Yet Another Storage Service; and (2) YACS:
Yet Another Computing Service. The services can be deployed and provided on
computers donated by users of the service or by a service provider. The services
can operate even if computers join, leave or fail at any time. Each of the services
has self-healing and self-configuration capabilities and can execute on a dynamic
overlay network. Self-managing capabilities of services allows the users to minimize
the human resources required for the service management. Each service implements
relatively simple self-management algorithms, which can be changed to be more
sophisticated, while reusing existing monitoring and actuation code of the services.

YASS (Yet Another Storage Service) is a robust storage service that allows a
client to store, read and delete files on a set of computers. The service transparently
replicates files in order to achieve high availability of files and to improve access
time. The current version of YASS maintains the specified number of file replicas
despite of nodes leaving or failing, and it can scale (i.e., increase available storage
space) when the total free storage is below a specified threshold. Management tasks
include maintenance of file replication degree; maintenance of total storage space
and total free space; increasing availability of popular files; releasing extra allocate
storage; and balancing the stored files among available resources.

YACS (Yet Another Computing Service) is a robust distributed computing ser-
vice that allows a client to submit and execute jobs, which are bags of independent
tasks, on a network of nodes (computers). YACS guarantees execution of jobs
despite of nodes leaving or failing. Furthermore, YACS scales, i.e., changes the
number of execution components, when the number of jobs/tasks changes. YACS
supports checkpointing that allows restarting execution from the last checkpoint
when a worker component fails or leaves.

3.1. ENABLING AND ACHIEVING SELF-MANAGEMENT FOR
LARGE-SCALE DISTRIBUTED SYSTEMS 29

Lessons Learned

A middleware, such as Niche, clearly reduces burden from an application devel-
oper, because it enables and supports self-management by leveraging self-organizing
properties (such as automatic correction of routing tables and maintenance of re-
sponsibility for DHT buckets) of structured P2P overlays and by providing useful
overlay services such as deployment, DHT (can be used for different indexes) and
name-based communication. However, it comes at a cost of self-management over-
head, in particular, the cost of monitoring and replication of management; though
this cost is necessary for a community Grid (or Cloud) that operates on a dynamic
environment and requires self-management.

There are four major issues to be addressed when developing a platform such as
Niche for self-management of large scale distributed systems: (1) Efficient resource
discovery; (2) robust and efficient monitoring and actuation; (3) distribution of
management to avoid bottleneck and single-point-of-failure; (4) scale of both the
events that happen in the system and the dynamicity of the system (resources and
load).

To address these issues when developing Niche we used and applied different
solutions and techniques. In particular we leveraged the scalability, robustness,
and self-management properties of structured overlay networks as follows.

Resource discovery was the easiest to address, since all resources are members
of the Niche overlay, we used efficient broadcast/rangecast to discover resources.
This can be further improved using more complex queries that can be implemented
on top of SONs.

For monitoring and actuation we used events that are disseminated using a pub-
lish/subscribe system. This supports resource mobility because sensors/actuators
can move with resources and still be able to publish/receive events. Also the Pub-
lish/subscribe system can be implemented in an efficient and robust way on top of
SONs

In order to better deal with dynamic environments, and also to avoid manage-
ment bottlenecks and single-point-of-failure, we advocate for a decentralized ap-
proach to management. The management functions should be distributed among
several cooperative autonomic managers that coordinate their activities (as loosely-
coupled as possible) to achieve management objectives. Multiple managers are
needed for scalability, robustness, and performance and they are also useful for re-
flecting separation of concerns. Autonomic managers can interact and coordinate
their operation in the following four ways: indirect interactions via the managed
system (stigmergy); hierarchical interaction (through touch points); direct interac-
tion (via direct bindings); sharing of management elements.

In dynamic systems the rate of changes (joins, leaves, failures of resources,
change of component load etc.) is high and therefore it was important to re-
duce the need for action/communication in the system. This may be open-ended
task, but Niche contained many features that directly impact communication. The
sensing/actuation infrastructure only delivers events to management elements that

30
CHAPTER 3. SELF-MANAGEMENT FOR LARGE-SCALE DISTRIBUTED

SYSTEMS

directly have subscribed to the event (i.e., avoiding the overhead of keeping manage-
ment elements up-to-date as to component location). Decentralizing management
makes for better scalability. We support component groups and bindings to such
groups, to be able to map this useful abstraction to the most (known) efficient
communication infrastructure.

3.2 Robust Self-Management and Data Consistency in
Large-Scale Distributed Systems

Failures in a large scale distributed system is the norm not the exception. Thus the
robustness of management and the data consistency are two unavoidable problems
that need to be addressed in any autonomic distributed system.

Robust Self-Management

Large-scale distributed systems are typically dynamic with resources that may fail,
join, or leave the system at any time (resource churn). Constructing autonomic
managers in environments with high resource churn is challenging because Man-
agement Elements (MEs) need to be restored with minimal disruption to the sys-
tem, whenever the resource (where an ME executes) leaves or fails. This challenge
increases if the MEs are stateful because the state needs to be maintained in the
presence of churn.

Dealing with the effect of churn on management increases the complexity of
the management logic and thus makes its development time consuming and error
prone. We propose the abstraction of robust management elements (RMEs), which
are able to heal themselves under continuous churn. Using RMEs allows the de-
veloper to separate the issue of dealing with the effect of churn on management
from the management logic. This facilitates the development of robust manage-
ment by making the developer focus on managing the application while relying on
the platform to provide the robustness of management.

An RME 1) is replicated to ensure fault-tolerance; 2) tolerates continuous churn
by automatically restoring failed replicas on other nodes; 3) maintains its state
consistent among replicas; 4) provides its service with minimal disruption in spite
of resource churn (high availability), and 5) is location transparent, i.e., RME clients
communicate with it regardless of current location of its replicas. Because we target
large-scale distributed environments with no central control, all algorithms of the
RME abstraction should be decentralized.

RMEs can be implemented as fault-tolerant long-living services. In Chapter 9
we present a generic approach and an associated algorithm to achieve fault-tolerant
long-living services. Our approach is based on replicating a service using finite
state machine replication [74] combined with automatic reconfiguration of replica
set. A replicated state machine guarantees the consistency among replicas as long
as a majority of replicas are alive. However, replication by itself is insufficient to

3.2. ROBUST SELF-MANAGEMENT AND DATA CONSISTENCY IN
LARGE-SCALE DISTRIBUTED SYSTEMS 31

guarantee long-term fault-tolerance under continuous churn, as the number of failed
nodes hosting ME replicas, and hence the number of failed replicas, will increase
over time, and eventually RME will stop. Therefore, we use service migration [75]
to enable the reconfiguration of the set of nodes hosting ME replicas (replica set).
Using service migration, new nodes can be introduced to replace the failed ones.
We propose a decentralized algorithm [76] that will use migration to automatically
reconfigure the replica set. This will guarantee that RME will tolerate continuous
churn. our algorithm uses P2P replica placement schemes to place replicas and
uses the P2P overlay to monitor them. The replicated state machine is extended
to analyze monitoring data in order to decide on when and where to migrate. We
describe how to use our approach to achieve robust management elements. We have
done a simulation-based evaluation of our approach. Evaluation results show the
feasibility of our approach.

Data Consistency

The emergence of Web 2.0 opened the door to new applications by allowing users
to do more than just retrieving of information. Web 2.0 applications facilitate
information sharing, and collaboration between users. The wide spread of Web 2.0
applications, such as, wikis, social networks, and media sharing, resulted in a huge
amount of user generated data that places great demands and new challenges on
storage services. An Internet-scale Web 2.0 application serves a large number of
users. This number tends to grow as popularity of the application increases. A
system running such application requires a scalable data engine that enables the
system to accommodate the growing number of users while maintaining a reasonable
performance. Low (acceptable) response time is another important requirement of
Web 2.0 applications that needs to be fulfilled despite of uneven load on application
servers and geographical distribution of users. Furthermore, the system should
be highly available as most of the user requests must be handled even when the
system experiences partial failures or has a large number of concurrent requests.
As traditional database solutions could not keep up with the increasing scale, new
solutions, which can scale horizontally, were proposed, such as, PNUTS [15] and
Dynamo [77].

However there is a trade-off between availability and performance on one hand
and data consistency on the other. As proved in the CAP theorem [78], for dis-
tributed systems only two properties out of the three – Consistency, Availability
and Partition-tolerance – can be guaranteed at any given time. For large scale
systems, that are geographically distributed, network partition is unavoidable [79];
therefore only one of the two properties, either data consistency or availability, can
be guaranteed in such systems. Many Web 2.0 applications deal with one record
at a time, and employ only key based data access. Complex querying, data man-
agement and ACID transactions of relational data model are not required in such
systems. Therefore for such applications a NoSQL key-value store would suffice.

32
CHAPTER 3. SELF-MANAGEMENT FOR LARGE-SCALE DISTRIBUTED

SYSTEMS

Also Web 2.0 applications can cope with relaxed consistency as, for example, it is
acceptable if one’s blog entry is not immediately visible for some of the readers.

Another important aspect associated with Web 2.0 applications is the privacy
of user data. Several issues lead to increasing concerns of users, such as, where the
data is stored, who owns the storage, and how stored data can be used (e.g., for
data mining). Typically a Web 2.0 application provider owns datacenters where
user data are stored. User data are governed by a privacy policy. However, the
provider may change the policy from time to time, and users are forced to accept
this if they want to continue using the application. This resulted in many lawsuits
during the past few years and a long debate about how to protect user privacy.

Peer-to-Peer (P2P) networks [1] offers an attractive solution to Web 2.0 stor-
age systems. First, because they are scalable, self-organized, and fault-tolerant;
second, because they are typically owned by the community, rather than a single
organization, thus allow to solve the issue of privacy.

We propose a P2P-based object store with a flexible read/write API [80] allowing
the developer of a Web 2.0 application to trade data consistency for availability in
order to meet requirements of the application. Our design uses quorum-based voting
as a replica control method [81]. Our proposed replication method provides better
consistency guarantees than those provided in a classical DHT [16] but yet not as
expensive as consistency guarantees of Paxos based replication [82]

Our key-value store is built on top of a DHT using Chord algorithms [83]. Our
store benefits from the inherent scalability, fault-tolerance and self-management
properties of a DHT. However, classical DHTs lack support for strong data consis-
tency required in many applications. Therefore a majority-based quorum technique
is employed in our system to provide strong data consistency guarantees. As men-
tioned in [84], this technique, when used in P2P systems, is probabilistic and may
lead to inconsistencies. Nevertheless, as proved in [84], the probability of getting
consistent data using this technique is very high (more than 99%). This guarantee
is enough for many Web 2.0 applications that can tolerate relaxed consistency.

To evaluate our approach, we have implemented a prototype of our key-value
store and measured its performance by simulating the network using real traces of
Internet latencies.

This work is presented in more details in Chapter 10.

3.3 Self-Management for Cloud-Based Storage Systems:
Automation of Elasticity

Many large-scale Web 2.0 applications leverage elastic services, such as elastic key-
value stores, that can scale horizontally by adding/removing servers. Voldemort [9],
Cassandra [10], and Dynamo [11] are few examples of elastic storage services.

Cloud computing [3], with its pay-as-you-go pricing model, provides an attrac-
tive environment to provision elastic services as the running cost of such services
becomes proportional to the amount of resources needed to handle the current work-

3.3. SELF-MANAGEMENT FOR CLOUD-BASED STORAGE SYSTEMS:
AUTOMATION OF ELASTICITY 33

load. The independent peak load for different applications enables Cloud providers
to efficiently share the resources among them. However, sharing the physical re-
sources among Virtual Machines (VMs) running different applications makes it
challenging to model and predict the performance of the VMs [39, 40] in order to
control and optimize the performance of Cloud-based services and applications.

Managing the resources for Web 2.0 applications, in order to guarantee accept-
able performance, is challenging because of the diurnal and sudden (spikes) vari-
ations in the workload [41]. It is difficult to predict the workload particularly for
new applications that can become popular within few days [12, 13]. Furthermore,
the performance requirements are usually expressed in terms of upper percentiles
which is more difficult to maintain than average performance [11,14].

The pay-as-you-go pricing model, elasticity, and dynamic workload of Web 2.0
applications altogether call for the need for an elasticity controller that automate the
provisioning of Cloud resources. The elasticity controller leverages the horizontal
scalability of elastic services by provisioning more resources under high workloads
in order to meet required SLOs. The pay-as-you-go pricing model provides an
incentive for the elasticity controller to release extra resources when they are not
needed once the workload decreases.

In our work on self-management for Cloud-based storage systems, presented in
Part IV, we focus on the automation of elasticity. To design elasticity controllers we
have taken a control theoretic approach (feedback and feedforward control combined
with machine learning) which, we believe, is promising for elasticity control. Using
this approach to building an elasticity controller requires system identification for
feedback control and/or building of a model of a system for feedforward control.
In this work, we have conducted research on a number of different designs of the
elasticity controller, including a feedback PID controller, a State-Space feedback
controller [85], and a controller that combines feedback and feedforward control
(Chapter 12). In the last case we have used machine learning to build a model of
the system for the feedforward control.

We start by reporting our experience in designing an elasticity controller based
on State-Space feedback control for a key-value storage service deployed in a Cloud
environment. Automation of elasticity is achieved by providing a feedback controller
that continuously monitors the system and automatically changes (increases or
decreases) the number of nodes in order to meet Service Level Objectives (SLOs)
under high load and to reduce costs under low load. We believe that this approach
to automate elasticity has a considerable potential for practical use in many Cloud-
based services and Web 2.0 applications including services for social networks, data
stores, online storage, live streaming services. Another contribution presented in
this work is an open-source simulation framework called EStoreSim (Elastic key-
value Store Simulator) that allows developers to simulate an elastic key-value store
in a Cloud environment and be able to experiment with different controllers. More
details about this work is presented in Chapter 11.

We continue by proposing the design of ElastMan, an Elasticity Manager for
elastic key-value stores running in Cloud VMs. ElastMan addresses the challenges

34
CHAPTER 3. SELF-MANAGEMENT FOR LARGE-SCALE DISTRIBUTED

SYSTEMS

of the variable performance of Cloud VMs and stringent performance requirements
expressed in terms of upper percentiles by combining both feedforward and feed-
back control. The feedforward controller monitors the workload and uses a simple
model of the service to predict whether the current workload will violate the work-
load or not and acts accordingly. The feedforward is used to quickly respond to
sudden changes (spikes) in workload. The feedback controller monitors the perfor-
mance of the service and reacts based on the amount of deviation from the desired
performance specified in the SLO. The feedback controller is used to correct errors
in the model used by the feedforward controller and to handle diurnal workload.
Due to the nonlinearities in Cloud services, resulting from the diminishing reward
of adding a service instance (VM) with increasing the scale, we propose a scale-
independent model used to design feedback controller. Our design leverages the
near-linear scalability of elastic service. The feedback controller controls the elas-
ticity (the number of servers running the key-value store) indirectly by controlling
the average workload per server. This enables our feedback controller to operate at
various scales of the service. Chapter 12 presents more details on ElastMan. The
major contributions of our work are as follows.

• We leverage the advantages of both feedforward and feedback control to build
an elasticity controller for elastic key-value stores running in Cloud environ-
ments.

• We propose a scale-independent feedback controller suitable for horizontally
scaling services running at various scales.

• We describe the complete design of ElastMan including various techniques
necessary for elastic Cloud-based services.

• We evaluate effectiveness of the core components of ElastMan using the Volde-
mort [9] key-value store running in a Cloud environment against both diurnal
and sudden variations in workload.

Chapter 4

Thesis Contributions

In this chapter, we present a summary of the thesis contributions. We start by
listing the publications that where produced during the thesis work. Next, we
discuss in more details the author’s contributions.

35

36 CHAPTER 4. THESIS CONTRIBUTIONS

4.1 List of Publications

List of publications included in this thesis (in the order of
appearance)

1. A. Al-Shishtawy, J. Höglund, K. Popov, N. Parlavantzas, V. Vlassov, and
P. Brand, “Enabling self-management of component based distributed ap-
plications,” in From Grids to Service and Pervasive Computing (T. Priol
and M. Vanneschi, eds.), pp. 163–174, Springer US, July 2008. Available:
http://dx.doi.org/10.1007/978-0-387-09455-7_12

2. A. Al-Shishtawy, V. Vlassov, P. Brand, and S. Haridi, “A design methodology
for self-management in distributed environments,” in Computational Science
and Engineering, 2009. CSE ’09. IEEE International Conference on, vol. 1,
(Vancouver, BC, Canada), pp. 430–436, IEEE Computer Society, August
2009. Available: http://dx.doi.org/10.1109/CSE.2009.301

3. Vladimir Vlassov, Ahmad Al-Shishtawy, Per Brand, and Nikos Parlavantzas,
“Self-Management with Niche, a Platform for Self-Managing Distributed Ap-
plications,” In Formal and Practical Aspects of Autonomic Computing and
Networking: Specification, Development and Verification (editor: Phan Cong-
Vinh), IGI Global, Dec. 2011 (book chapter). Available:
http://dx.doi.org/10.4018/978-1-60960-845-3

4. Ahmad Al-Shishtawy, Muhammad Asif Fayyaz, Konstantin Popov, and
Vladimir Vlassov, “Achieving Robust Self-Management for Large-Scale Dis-
tributed Applications,” The Fourth IEEE International Conference on Self-
Adaptive and Self-Organizing Systems (SASO 2010), Budapest, Hungary,
2010. Available: http://dx.doi.org/10.1109/SASO.2010.42

5. Ahmad Al-Shishtawy, Tareq Jamal Khan, Vladimir Vlassov, "Robust Fault-
Tolerant Majority-Based Key-Value Store Supporting Multiple Consistency
Levels," IEEE 17th International Conference on Parallel and Distributed Sys-
tems (ICPADS), pp.589-596, 7-9 Dec. 2011. Available:
http://dx.doi.org/10.1109/ICPADS.2011.110

6. M. Amir Moulavi, Ahmad Al-Shishtawy, and Vladimir Vlassov, "State-Space
Feedback Control for Elastic Distributed Storage in a Cloud Environment,"
The 8th International Conference on Autonomic and Autonomous Systems
(ICAS 2012), St. Maarten, Netherlands Antilles, March 25-30, 2012.
Best Paper Award. Available:
http://www.thinkmind.org/download.php?articleid=icas_2012_1_40_20127

7. Ahmad Al-Shishtawy and Vladimir Vlassov, “ElastMan: Autonomic Elastic-
ity Manager for Cloud-Based Key-Value Stores”, Technical Report TRITA-
ICT/ECS R 12:01, KTH Royal Institute of Technology, August, 2012. (Sub-
mitted to a conference).

4.2. CONTRIBUTIONS 37

List of publications by the thesis author that are related to this
thesis (in reverse chronological order)

1. L. Bao, A. Al-Shishtawy, and V. Vlassov, “Policy based self-management in
distributed environments,” in Third IEEE International Conference on Self-
Adaptive and Self-Organizing Systems Workshops (SASOW 2010), Budapest,
Hungary, September 27-October 1, 2010. Available:
http://dx.doi.org/10.1109/SASOW.2010.72

2. A. Al-Shishtawy, J. Höglund, K. Popov, N. Parlavantzas, V. Vlassov, and
P. Brand, “Distributed control loop patterns for managing distributed ap-
plications,” in Second IEEE International Conference on Self-Adaptive and
Self-Organizing Systems Workshops (SASOW 2008), (Venice, Italy), pp. 260–
265, Oct. 2008. Available: http://dx.doi.org/10.1109/SASOW.2008.57

3. N. de Palma, K. Popov, V. Vlassov, J. Höglund, A. Al-Shishtawy, and N. Parla-
vantzas, “A self-management framework for overlay-based applications,” in
International Workshop on Collaborative Peer-to-Peer Information Systems
(WETICE COPS 2008), (Rome, Italy), June 2008.

4. K. Popov, J. Höglund, A. Al-Shishtawy, N. Parlavantzas, P. Brand, and
V. Vlassov, “Design of a self-* application using P2P-based management in-
frastructure,” in Proceedings of the CoreGRID Integration Workshop 2008.
CGIW’08. (S. Gorlatch, P. Fragopoulou, and T. Priol, eds.), COREGrid,
(Crete, GR), pp. 467–479, Crete University Press, April 2008.

5. P. Brand, J. Höglund, K. Popov, N. de Palma, F. Boyer, N. Parlavantzas,
V. Vlassov, and A. Al-Shishtawy, “The role of overlay services in a self-
managing framework for dynamic virtual organizations,” in Making Grids
Work (M. Danelutto, P. Fragopoulou, and V. Getov, eds.), pp. 153–164,
Springer US, 2007. Available:
http://dx.doi.org/10.1007/978-0-387-78448-9_12

4.2 Contributions

In this section, we report the major contributions of the publications presented in
this thesis including the author’s contribution to each of them.

Niche: A Platform for Self-Managing Distributed Application

Our work on building the Niche platform was published as book chapter [73], two
conference papers [71, 86], two workshop papers [62, 87], and a poster [88]. The
paper [71] appears as Chapter 6 in this thesis and the book chapter [73] appears as
Chapter 7 in this thesis.

The increasing complexity of computing systems, as discussed in Section 2.1,
requires a high degree of autonomic management to improve system efficiency and

38 CHAPTER 4. THESIS CONTRIBUTIONS

reduce cost of deployment, management, and maintenance. The first step towards
achieving autonomic computing systems is to enable self-management, in particu-
lar, enable autonomous runtime reconfiguration of systems and applications. By
enabling self-management we mean to provide a platform that supports the pro-
gramming and runtime execution of self managing computing systems.

We combined three concepts, autonomic computing, component-based architec-
tures, and structured overlay networks, to develop a platform that enables self-
management of large scale distributed applications. The platform, called Niche,
implements the autonomic computing architecture described in Section 2.1.

Niche follows the architectural approach to autonomic computing. Niche uses
the Fractal component model [33]. We extended the Fractal component model by
introducing the concept of component groups and bindings to groups. The group
membership can change dynamically (e.g., because of churn) affecting neither the
source component nor other components of the destination group.

Niche leverages the self-organization properties of structured overlay networks
and services built on top them. Self-organization (such as automatic handling
of join/leave/failure events) of such networks and services make them attractive
for large scale systems and applications. Other properties include decentralization,
scalability and fault tolerance. Niche is built on top of the robust and churn tolerant
services that are provided by or implemented using a SON similar to Chord [34].
These services include among others lookup service, DHT, efficient broadcast/-
multicast, and publish subscribe service. Niche uses these services to provide a
network-transparent view of system architecture, which facilitate reasoning about
and designing application’s management code. In particular, it facilitates migration
of components and management elements caused by resource churn. These features
make Niche suitable to manage large scale distributed applications deployed in dy-
namic environments.

Our approach to develop self-managing applications separates application’s func-
tional and management parts. In Niche, we provide a programming model and a
corresponding API for developing application-specific management behaviours. Au-
tonomic managers are organized as a network of management elements interacting
through events using the underlying publish/subscribe service. We also provide
support for sensors and actuators. Niche leverages the introspection and dynamic
reconfiguration features of the Fractal component model in order to provide sen-
sors and actuators. Sensors can inform autonomic managers about changes in the
application and its environment by generating events. Similarly, autonomic man-
agers can modify the application by triggering events to actuators. Niche has been
evaluated by implementing a number of self-managing demonstrator applications.

Thesis Author Contribution

This was a joint work between researchers from the KTH Royal Institute of Tech-
nology, the Swedish Institute of Computer Science (SICS), and INRIA. While the
initial idea of combining autonomic computing, component-based architectures, and

4.2. CONTRIBUTIONS 39

structured overlay networks is not of the thesis author, he played a major role in
realizing this idea. In particular the author is a major contributor to:

• Identifying the basic overlay services required by a platform such as Niche to
enable self-management. These services include name-based communication
for network transparency, distributed hash table (DHT), a publish/subscribe
mechanism for event dissemination, and resource discovery.

• Identifying the required higher level abstractions to facilitate programming of
self-managing applications such as name-based component bindings, dynamic
groups, and the set of network references (SNRs) abstraction that is used to
implement them.

• Extending the Fractal component model with component groups and group
bindings.

• Identifying the required higher level abstractions to program the management
part such as management elements and sensor/actuators abstractions and
that communicate through events to construct autonomic managers.

• The design and development the Niche API and platform.

• The design and development of the YASS demonstrator application.

A Design Methodology for Self-Management in Distributed
Environments

Our work on control loop interaction patterns and design methodology for self-
management was published as a conference paper [47] and a workshop paper [89].
The paper [47] appears as Chapter 8 in this thesis.

To better deal with dynamic environments; to improve scalability, robustness,
and performance; we advocate for distribution of management functions among
several cooperative managers that coordinate their activities in order to achieve
management objectives. Multiple managers are needed for scalability, robustness,
and performance and also useful for reflecting separation of concerns. Engineering of
self-managing distributed applications executed in a dynamic environment requires
a methodology for building robust cooperative autonomic managers.

We define a methodology for designing the management part of a distributed
self-managing application in a distributed manner. The methodology includes de-
sign space and guidelines for different design steps including management decompo-
sition, assignment of management tasks to autonomic managers, and orchestration.
For example, management can be decomposed into a number of managers each
responsible for a specific self-* property or alternatively application subsystems.
These managers are not independent but need to cooperate and coordinate their
actions in order to achieve overall management objectives. We identified four pat-
terns for autonomic managers to interact and coordinate their operation. The four

40 CHAPTER 4. THESIS CONTRIBUTIONS

patterns are stigmergy, hierarchical management, direct interaction, and sharing of
management elements.

We illustrated the proposed design methodology by applying it to design and
develop an improved version of the YASS distributed storage service prototype. We
applied the four interaction patterns while developing the self-management part of
YASS to coordinate the actions of different autonomic managers involved.

Thesis Author Contribution

The author was the main contributor in developing the design methodology. In
particular, the interaction patterns between managers that are used to orchestrate
and coordinate their activities. The author did the main bulk of the work including
writing most of the paper. The author also played a major role in applying the
methodology to improve the YASS demonstrator and contributed to the implemen-
tation of the improved version of YASS.

Achieving Robust Self-Management for Large-Scale Distributed
Applications

Our work on replication of management elements was published as a conference
paper [90]. The paper appears as Chapter 9 in the thesis.

To simplify the development of autonomic managers, and thus large scale dis-
tributed systems, it is useful to separate the maintenance of Management Elements
from the development of autonomic managers. It is possible to automate the main-
tenance process and making it a feature of the Niche platform. This can be achieved
by providing Robust Management Elements (RMEs) abstraction that developers
can use if they need their MEs to be robust. By robust MEs we mean that an
ME should: 1) provide transparent mobility against resource join/leave (i.e., be
location independent); 2) survive resource failures by being automatically restored
on another resource; 3) maintain its state consistent; 4) provide its service with
minimal disruption in spite of resource join/leave/fail (high availability).

We propose an approach to implement RMEs that is based on state machine
replication [74] combined with automatic reconfiguration of replica set. We have
developed a decentralized algorithm that automatically reconfigures the set of nodes
hosting ME replicas using service migration [75]. Our approach guarantees that
RME will tolerate continuous churn as long as a majority of replicas is alive. The
contributions of this work are as follows.

• The use of Structured Overlay Networks (SONs) [1] to monitor the nodes
hosting replicas in order to detect changes that may require reconfiguration.
SONs are also used to determine replica location using replica placement
schemes such as symmetric replication [91].

4.2. CONTRIBUTIONS 41

• The replicated state machine, beside replicating a service, receives monitoring
information and uses it to construct a new configuration and to decide when
to migrate.

• A decentralized algorithm that automates the reconfiguration of the replica
set in order to tolerate continuous resource churn.

Thesis Author Contribution

The author played a major role in the initial discussions and studies of several pos-
sible approaches to solve the problem of replicating stateful management elements.
The author was also a main contributor in the development of the proposed ap-
proach and algorithms presented in this chapter including writing most of the paper.
The author also contributed to the implementation and the simulation experiments.

Robust Fault-Tolerant Majority-Based Key-Value Store
Supporting Multiple Consistency Levels

Our work on the majority-based key-value stores was published as a conference
paper [80]. The paper appears as Chapter 10 in the thesis.

The huge amount of user generated data on the Web places great demands and
challenges on storage services. A storage service should be highly available and
scalable in order to accommodate the growing number of users while maintaining
an acceptable performance and consistency of data despite of uneven load and
geographical distribution of users. As traditional database solutions could not keep
up with the increasing scale, new solutions, which can scale horizontally, were
proposed, such as, PNUTS [15] and Dynamo [77].

According to the CAP theorem [78], only two properties out of the three –
consistency, availability and partition-tolerance – can be guaranteed at any given
time. As for large systems the network partitioning is unavoidable [79], we propose
a P2P-based object store with a flexible read/write API allowing the developer of
a Web 2.0 application to trade data consistency for availability in order to meet
requirements of the application. Our design uses quorum-based voting as a replica
control method [81].

Our key-value store is implemented as a DHT using Chord algorithms [83]. Our
store benefits from the inherent scalability, fault-tolerance and self-management
properties of a DHT. However, classical DHTs lack support for strong data consis-
tency required in many applications. Therefore a majority-based quorum technique
is employed in our system to provide strong data consistency guarantees.

Our proposed replication method provides better consistency guarantees than
those provided in a classical DHT [16] but yet not as expensive as consistency
guarantees of Paxos based replication [82]

42 CHAPTER 4. THESIS CONTRIBUTIONS

Thesis Author Contribution

The author was the main contributor in proposing the idea and developing associ-
ated algorithms. The author proposed porting the PNUTS [15] API to P2P overlay
networks in order to improve data consistency guarantees as well as proposing the
use quorum-based voting as a replica control method. The author participated and
supervised the development of the simulator and evaluation experiments.

State-Space Feedback Control for Elastic Distributed Storage in
a Cloud Environment

Our work on State-Space feedback control was published as a conference paper [85].
The paper appears as Chapter 11 in the thesis.

Many large-scale Web 2.0 applications leverage elastic services, such as elastic
key-value stores, that can scale horizontally by adding/removing servers. Volde-
mort [9], Cassandra [10], and Dynamo [11] are few examples of elastic storage
services. Efforts are being made to automate elasticity in order to improve system
performance under dynamic workloads

We present our experience in designing an elasticity controller based of State-
Space feedback control for a key-value storage service deployed in a Cloud envi-
ronment. Automation of elasticity is achieved by providing a feedback controller
that continuously monitors the system and automatically changes (increases or de-
creases) the number of nodes in order to meet Service Level Objectives (SLOs)
under high load and to reduce costs under low load. We believe that this approach
to automate elasticity has a considerable potential for practical use in many Cloud-
based services and Web 2.0 applications including services for social networks, data
stores, online storage, live streaming services.

Another contribution presented in this work is an open-source simulation frame-
work called EStoreSim (Elastic key-value Store Simulator) that allows developers
to simulate an elastic key-value store in a Cloud environment and be able to exper-
iment with different controllers.

Thesis Author Contribution

The author played a major role in the discussions and studies of several possible
approaches to control elastic services deployed in the Cloud. The author was also
a main contributor in the development of the proposed approach of using state-
space to control Cloud-based services including system identification and controller
design. The author played a major role in writing the paper.

ElastMan: Autonomic Elasticity Manage for Cloud-Based
Key-Value Stores

Our most recent work on ElastMan elasticity manager was submitted to a confer-
ence and is under evaluation. The paper appears as Chapter 12 in the thesis.

4.2. CONTRIBUTIONS 43

Cloud computing [3], with its pay-as-you-go pricing model, provides an attrac-
tive environment to provision elastic services as the running cost of such services
becomes proportional to the amount of resources needed to handle the current
workload.

Managing the resources for Web 2.0 applications, in order to guarantee accept-
able performance, is challenging because of the highly dynamic workload that is
composed of both diurnal and sudden (spikes) variations [41].

The pay-as-you-go pricing model, elasticity, and dynamic workload of Web 2.0
applications altogether call for the need for an elasticity controller that automate the
provisioning of Cloud resources. The elasticity controller leverages the horizontal
scalability of elastic services by provisioning more resources under high workloads
in order to meet required service level objectives (SLOs). The pay-as-you-go pricing
model provides an incentive for the elasticity controller to release extra resources
when they are not needed once the workload decreases.

We present the design and evaluation of ElastMan, an Elasticity Manager for
elastic key-value stores running in Cloud VMs. ElastMan addresses the challenges
of the variable performance of Cloud VMs and stringent performance requirements
expressed in terms of upper percentiles by combining feedforward control and feed-
back control. The feedforward controller monitors the workload and uses a simple
model of the service to predict whether the current workload will violate the work-
load or not and acts accordingly. The feedforward is used to quickly respond to
sudden changes (spikes) in workload. The feedback controller monitors the perfor-
mance of the service and reacts based on the amount of deviation from the desired
performance specified in the SLO. The feedback controller is used to correct errors
in the model used by the feedforward controller and to handle diurnal changes in
workload. The major contributions of our work are the following.

• We leverage the advantages of both feedforward and feedback control to build
an elasticity controller for elastic key-value stores running in Cloud environ-
ments.

• We propose a scale-independent feedback controller suitable for horizontally
scaling services running at various scales.

• We describe the complete design of ElastMan including various techniques
necessary for elastic Cloud-based services.

• We evaluate effectiveness of the core components of ElastMan using the Volde-
mort [9] key-value store running in a Cloud environment against both diurnal
and sudden variations in workload.

Thesis Author Contribution

The author was the main contributor in the development of this work. The author’s
contribution includes:

44 CHAPTER 4. THESIS CONTRIBUTIONS

• Proposed the use of both feedforward control and feedback control in order
to efficiently deal with the challenges of controlling elastic key-value stores
running in Cloud VMs under strict performance requirements;

• Proposed a scale-independent design of the feedback controller that enables
it to work at various scales of the store;

• Full implementation of ElastMan for controlling the elasticity of the Volde-
mort [9] key-value store.

• Creating a testbed based on Open-Stack [92] and then deploying and evalu-
ating ElastMan;

• The author was the main contributor in writing the paper.

Chapter 5

Conclusions and Future Work

In this chapter we present and discuss our conclusions for the main topics addressed
through this thesis. At the end, we discuss possible future work that can built upon
and extend research presented in this thesis.

5.1 The Niche Platform

A large scale distributed application deployed in dynamic environments requires ag-
gressive support for self-management. The proposed distributed component man-
agement system, Niche, enables the development of distributed component based
applications with self-management behaviours. Niche simplifies the development

45

46 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

of self-managing application by separating functional and management parts of an
application and thus making it possible to develop management code separately
from application’s functional code. This allows the same application to run in dif-
ferent environment by changing management and also allows management code to
be reused in different applications.

Niche leverages the self-organizing properties of the structured overlay network
which it is built upon. Niche provides a small set of abstractions that facilitate
application management. Name-based binding, component groups, sensors, actua-
tors, and management elements, among others, are useful abstractions that enable
the development of network transparent autonomic systems and applications. Net-
work transparency, in particular, is very important in dynamic environments with
high level of churn. It enables the migration of components without disturbing
existing bindings and groups it also enables the migration of management elements
without changing the subscriptions for events. This facilitates the reasoning and
development of self-managing applications.

In order to verify and evaluate our approach we used Niche to design a self-
managing application, called YASS, to be used in dynamic Grid environments.
Our implementation shows the feasibility of the Niche platform.

We have defined the methodology of developing the management part of a self-
managing distributed application in distributed dynamic environment. We advo-
cate for multiple managers rather than a single centralized manager that can induce
a single point of failure and a potential performance bottleneck in a distributed
environment. The proposed methodology includes four major design steps: decom-
position, assignment, orchestration, and mapping (distribution). The management
part is constructed as a number of cooperative autonomic managers each responsible
either for a specific management function (according to functional decomposition
of management) or for a part of the application (according to a spatial decompo-
sition). Distribution of autonomic managers allows distributing the management
overhead and increased management performance due to concurrency and better
locality. Multiple managers are needed for scalability, robustness, and performance
and also useful for reflecting separation of concerns.

We have defined and described different patterns of manager interactions, in-
cluding indirect interaction by stigmergy, direct interaction, sharing of management
elements, and manager hierarchy. In order to illustrate the design steps, we have de-
veloped and presented a self-managing distributed storage service with self-healing,
self-configuration and self-optimizing properties provided by corresponding auto-
nomic managers, developed using the distributed component management system
Niche. We have shown how the autonomic managers can coordinate their actions,
by the four described orchestration paradigms, in order to achieve the overall man-
agement objectives.

5.2. ROBUST SELF-MANAGEMENT AND DATA CONSISTENCY IN
LARGE-SCALE DISTRIBUTED SYSTEMS 47

5.2 Robust Self-Management and Data Consistency in
Large-Scale Distributed Systems

We have proposed the concept of Robust Management Elements (RMEs) which are
able to heal themselves under continuous churn. Using RMEs allows the developer
to separate the issue of robustness of management from the actual management
mechanisms. This will simplify the construction of robust autonomic managers.
We have presented an approach to achieve RMEs which uses replicated state ma-
chines and relies on our proposed algorithms to automate replicated state machine
migration in order to tolerate churn. Our approach uses symmetric replication,
which is a replica placement scheme used in Structured Overlay Networks (SONs)
to decide on the placement of replicas and uses SON to monitor them. The repli-
cated state machine is extended, beyond its main purpose of providing the service,
to process monitoring information and to decide when to migrate. Although in this
thesis we discussed the use of our approach to achieve RMEs, we believe that this
approach is generic and can be used to replicate other services.

In order to validate and evaluate our approach, we have developed a prototype
of RMEs and conducted various simulation experiments, which have shown the
validity and feasibility of our approach. Evaluation has shown that the performance
(latency and number of messages) of our approach mostly depends on the replication
degree rather than on the overlay size.

For the data consistency, we have presented a majority-based key-value store
(architecture, algorithms, and evaluation) intended to be deployed in a large-scale
dynamic P2P environment. The reason for us to choose such unreliable environment
over datacenters is mainly to reduce costs and improve data privacy. Our store
provides a number of read/write operations with multiple consistency levels and
with semantics similar to PNUTS [15].

The store uses the majority-based quorum technique to maintain consistency of
replicated data. Our majority-based store provides stronger consistency guarantees
than guarantees provided in a classical DHT but less expensive than guarantees of
Paxos-based replication. Using majority allows avoiding potential drawbacks of a
master-based consistency control, namely, a single-point of failure and a potential
performance bottleneck. Furthermore, using a majority rather than a single master
allows the system to achieve robustness and withstand churn in a dynamic environ-
ment. Our mechanism is decentralized and thus allows improving load balancing
and scalability.

Evaluation by simulation has shown that the system performs rather well in
terms of latency and operation success ratio in the presence of churn.

5.3 Self-Management for Cloud-Based Storage Systems

Elasticity in Cloud computing is an ability of a system to scale up and down (request
and release resources) in response to changes in its environment and workload.

48 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Elasticity provides an opportunity to scale up under high workload and to scale
down under low workload to reduce the total cost for the system while meeting
SLOs. We have presented our experience in designing an elasticity controller for
a key-value store in a Cloud environment and described the steps in designing it
including system identification and controller design. The controller allows the
system to automatically scale the amount of resources while meeting performance
SLO, in order to reduce SLO violations and the total cost for the provided service.
We also introduced our open source simulation framework (EStoreSim) for Cloud
systems that allows to experiment with different controllers and workloads. We have
conducted two series of experiments using EStoreSim. Experiments have shown the
feasibility of our approach to automate elasticity control of a key-value store in a
Cloud using state-space feedback control. We believe that this approach can be
used to automate elasticity of other Cloud-based services.

The strict performance requirements posed on the data-tier in a multi-tier Web
2.0 application together with the variable performance of Cloud virtual machines
makes it challenging to automate the elasticity control. We presented the design
and evaluation of ElastMan, an Elasticity Manager for Cloud-based key-value stores
that address these challenges.

ElastMan combines and leverages the advantages of both feedback and feedfor-
ward control. The feedforward control is used to quickly respond to rapid changes
in workload. This enables us to smooth the noisy signal of the 99th percentile of
read operation latency and thus use feedback control. The feedback controller is
used to handle diurnal workload and to correct errors in the feedforward control
due to the noise that is caused mainly by the variable performance of Cloud VMs.
The feedback controller uses a scale-independent design by indirectly controlling
the number of VMs by controlling the average workload per VM. This enables the
controller, given the near-linear scalability of key-value stores, to operate at various
scales of the store.

We have implemented and evaluated ElastMan using the Voldemort key-value
store running in a Cloud environment based on OpenStack. The results shows that
ElastMan can handle both diurnal workload and quickly respond to rapid changes
in the workload.

Our evaluation of using control theoretic approach to automation of elasticity,
that we have done by simulation as well as by implementing elasticity controllers
for the Voldemort [9] key-value store, shows effectiveness and feasibility of using
elements of control theory combined with machine learning for automation on elas-
ticity of Cloud-based services.

5.4 Discussion and Future Work

Autonomic computing initiative was started by IBM [5] in 2001 to overcome the
problem of growing complexity related to computing systems management that
hinders further developments of complex systems and services. The goal was to

5.4. DISCUSSION AND FUTURE WORK 49

make computer systems self-managing in order to reduce obstacles caused by man-
agement complexity.

Many solutions have been proposed to achieve this goal. However, most of the
proposed solutions aim at reducing management costs in a centralised or clustered
environments rather than enabling complex large scale systems and services. Con-
trol theory [21] is a theory that inspired autonomic computing. Closed control
loop is an important concept in this theory. A closed loop continuously monitors a
systems and acts accordingly to keep the system in the desired state range.

Several problems appear when trying to enable and achieve self-management
for large-scale and/or dynamic complex distributed systems that do not appear
in centralised and cluster based systems. These problems include the absence of
global knowledge of the system and network delays. These problems affect the
observability/controllability of the control system and may prevent us from directly
applying classical control theory.

Another important problem is scalability of management. One challenge is that
management may become a bottleneck and cause hot spots. Therefore we advocate
for distribution of management functions among several cooperative managers that
coordinate their activities in order to achieve management objectives. This leads
to the next challenge that is the coordination of multiple autonomic managers to
avoid conflicts and oscillations. Multiple autonomic managers are needed in large
scale distributed systems to improve scalability and robustness. Another problem
is the failure of autonomic managers caused by resource churn. The challenge is
to develop an efficient replication algorithm with sufficient guarantees to replicate
autonomic managers in order to tolerate failures.

This is an important problem because the characteristics of large scale dis-
tributed environments (e.g., dynamicity, unpredictability, unreliable communica-
tion) requires continuous and substantial management of applications. However
the same characteristics prevent the direct application of classical control theory
and thus making it difficult to develop autonomic applications for such environ-
ments. The subsequence of this is that most of the applications for large scale
distributed environments are simple, specialized, and/or developed in the context
of specific use cases such as file sharing, storage services, communication, content
distribution, distributed search engines, etc.

Networked Control System (NCS) [93] and Model Predictive Control (MPC) [94]
are two method of process control that has been in use in industry (e.g., NCS is used
to control large factories, MPC is used in process industries such as oil refineries).
NCSs faces similar problems related to network delays as distributed computing
systems. MPC has been in use in the process industries to depict the behaviour of
complex dynamical systems. We believe that MPC is very promising for automation
of certain functions that require fast reaction (e.g., handling peak loads).

Our future work includes investigating the developing distributed algorithms
based on NCS and MPC to increase observability and controllability of applications
deployed in large scale distributed environments.

50 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

We also plan to further develop our design methodology for self management
focusing on coordinating multiple managers. This will facilitate the development
of complex autonomic applications for such environments.

A major concern that arises is ease of programming of management logic. Re-
search should hence focus on high-level programming abstractions, language sup-
port and tools that facilitate development of self-managing applications. We have
already started to address this aspect.

There is the issue of coupled control loops, which we did not study. In our
scenario multiple managers are directly or indirectly (via stigmergy) interacting
with each other and it is not always clear how to avoid undesirable behavior such
as rapid or large oscillations which not only can cause the system to behave non-
optimally but also increase management overhead. We found that it is desirable
to decentralize management as much as possible, but this probably aggravates the
problems with coupled control loops. Every application (or service) programmer
should not need to handle coordination of multiple managers (where each manager
may be responsible for a specific behavior). Future work should address design of
coordination protocols that could be directly used or specialized.

Although some overhead of monitoring for self-management is unavoidable,
there are opportunities for research on efficient monitoring and information gather-
ing/aggregating infrastructures to reduce this overhead. While performance is not
perhaps always the dominant concern, we believe that this should be a focus point
since monitoring infrastructure itself executes on volatile resources.

Replication of management elements is a general way to achieve robustness
of self-management. In fact, developers tend to ignore failure and assume that
management programs will be robust. They rely mostly on naïve solutions such
as standby servers to protect against the failure of management. However, these
naïve solutions are not suitable for large-scale dynamic environments. Even though
we have developed and validated a solution (including distributed algorithms) for
replication of management elements in Niche, it is reasonable to continue research
on efficient management replication mechanisms.

A Web 2.0 application is a complex system consisting of multiple components.
Controlling the entire system typically involves multiple controllers, with different
management objectives, that interact directly or indirectly [47]. In our future work,
we plan to investigate the controllers needed to control all tiers of a Web 2.0 ap-
plication an the orchestration needed between the controllers in order to correctly
achieve their goals.

We also plan to complete our implementation and evaluation of ElastMan to
include the proportional thresholding technique as proposed by Lim et al. [43] in
order to avoid possible oscillations in the feedback control. We also plan to build
the feedforward controller for the store in the rebalance mode. We expect that this
will enable the system to adapt to changes in workload that might happen during
the rebalance operation. Although our work focused on elastic storage services
running in Cloud environments, we beleive that it can be applied to other elastic
services in the Cloud which is in our future work.

5.4. DISCUSSION AND FUTURE WORK 51

Since ElastMan runs in the Cloud, it is necessary in real implementation to use
replication in order to guarantee fault tolerance. One possible way is to use Robust
Management Elements [90], that is based on replicated state machines, to replicate
ElastMan and guarantee fault tolerance.

Part II

Enabling and Achieving
Self-Management for Large-Scale

Distributed Systems

53

Chapter 6

Enabling Self-Management of
Component Based Distributed
Applications

Ahmad Al-Shishtawy, Joel Höglund, Konstantin Popov,
Nikos Parlavantzas, Vladimir Vlassov, and Per Brand

In From Grids to Service and Pervasive Computing (T. Priol and M. Vanneschi,
eds.), pp. 163–174, Springer US, July 2008.

Enabling Self-Management of Component Based
Distributed Applications

Ahmad Al-Shishtawy,1 Joel Höglund,2 Konstantin Popov,2 Nikos Parlavantzas,3
Vladimir Vlassov,1 and Per Brand2

1 KTH Royal Institute of Technology, Stockholm, Sweden
{ahmadas, vladv}@kth.se

2 Swedish Institute of Computer Science (SICS), Stockholm, Sweden
{kost, joel, perbrand}@sics.se

3 INRIA, Grenoble, France
nikolaos.parlavantzas@inria.fr

Abstract

Deploying and managing distributed applications in dynamic Grid envi-
ronments requires a high degree of autonomous management. Programming
autonomous management in turn requires programming environment sup-
port and higher level abstractions to become feasible. We present a frame-
work for programming self-managing component-based distributed applica-
tions. The framework enables the separation of application’s functional and
non-functional (self-*) parts. The framework extends the Fractal compo-
nent model by the component group abstraction and one-to-any and one-
to-all bindings between components and groups. The framework supports a
network-transparent view of system architecture simplifying designing appli-
cation self-* code. The framework provides a concise and expressive API for
self-* code. The implementation of the framework relies on scalability and ro-
bustness of the Niche structured P2P overlay network. We have also developed
a distributed file storage service to illustrate and evaluate our framework.

6.1 Introduction

Deployment and run-time management of applications constitute a large part of
software’s total cost of ownership. These costs increase dramatically for distributed
applications that are deployed in dynamic environments such as unreliable networks
aggregating heterogeneous, poorly managed resources.

The autonomic computing initiative [5] advocates self-configuring, self-healing,
self-optimizing and self-protecting (self-* thereafter) systems as a way to reduce the
management costs of such applications. Architecture-based self-* management [18]
of component-based applications [33] have been shown useful for self-repair of ap-
plications running on clusters [50].

We present a design of a component management platform supporting self-* ap-
plications for community-based Grids, and illustrate it with an application. Community-
based Grids are envisioned to fill the gap between high-quality Grid environments

57

58 CHAPTER 6. ENABLING SELF-MANAGEMENT

deployed for large-scale scientific and business applications, and existing peer-to-
peer systems which are limited to a single application. Our application, a storage
service, is intentionally simple from the functional point of view, but it can self-heal,
self-configure and self-optimize itself.

Our framework separates application functional and self-* code. We provide a
programming model and a matching API for developing application-specific self-*
behaviours. The self-* code is organized as a network of management elements
(MEs) interacting through events. The self-* code senses changes in the environ-
ment by means of events generated by the management platform or by application
specific sensors. The MEs can actuate changes in the architecture – add, remove
and reconfigure components and bindings between them. Applications using our
framework rely on external resource management providing discovery and allocation
services.

Our framework supports an extension of the Fractal component model [33]. We
introduce the concept of component groups and bindings to groups. This results
in “one-to-all” and “one-to-any” communication patterns, which support scalable,
fault-tolerant and self-healing applications [95]. For functional code, a group of
components acts as a single entity. Group membership management is provided
by the self-* code and is transparent to the functional code. With a one-to-any
binding, a component can communicate with a component randomly chosen at
run-time from a certain group. With a one-to-all binding, it will communicate
with all elements of the group. In either case, the content of the group can change
dynamically (e.g., because of churn) affecting neither the source component nor
other elements of the destination’s group.

The management platform is self-organizing and self-healing upon churn. It is
implemented on the Niche overlay network [95] providing for reliable communication
and lookup, and for sensing behaviours provided to self-* code.

Our first contribution is a simple yet expressive self-* management framework.
The framework supports a network-transparent view of system architecture, which
simplifies reasoning about and designing application self-* code. In particular, it
facilitates migration of components and management elements caused by resource
churn. Our second contribution is the implementation model for our churn-tolerant
management platform that leverages the self-* properties of a structured overlay
network.

We do not aim at a general model for ensuring coherency and convergence of
distributed self-* management. We believe, however, that our framework is gen-
eral enough for arbitrary self-management control loops. Our example application
demonstrates also that these properties are attainable in practice.

6.2 The Management Framework

An application in the framework consists of a component-based implementation
of the application’s functional specification (the lower part of Figure 6.1), and an

6.2. THE MANAGEMENT FRAMEWORK 59

Figure 6.1: Application Architec-
ture.

Figure 6.2: Ids and Handlers.

implementation of the application’s self-* behaviors (the upper part). The man-
agement platform provides for component deployment and communication, and
supports sensing of component status.

Self-* code in our management framework consists of management elements
(MEs), which we subdivide into watchers (W1, W2 .. on Figure 6.1), aggregators
(Aggr1) and managers (Mgr1), depending on their roles in the self-* code. MEs
are stateful entities that subscribe to and receive events from sensors and other
MEs. Sensors are either component-specific and developed by the programmer, or
provided by the management framework itself such as component failure sensors.
MEs can manipulate the architecture using the management actuation API [50]
implemented by the framework. The API provides in particular functions to deploy
and interconnect components.

Elements of the architecture – components, bindings, MEs, subscriptions, etc. –
are identified by unique identifiers (IDs). Information about an architecture element
is kept in a handle that is unique for the given ID, see Figure 6.2. The actuation
API is defined in terms of IDs. IDs are introduced by DCMS API calls that deploy
components, construct bindings between components and subscriptions between
MEs. IDs are specified when operations are to be performed on architecture ele-
ments, like deallocating a component. Handles are destroyed (become invalid) as
a side effect of destruction operation of their architecture elements. Handles to ar-
chitecture elements are implemented by sets of network references described below.
Within a ME, handles are represented by an object that can cache information from
the handle. On Figure 6.2, handle object for id:3 used by the deploy actuation
API call caches the location of id:3.

An ME consists of an application-specific component and an instance of the
generic proxy component, see Figure 6.3. ME proxies provide for communication
between MEs, see Figure 6.4, and enable the programmer to control the manage-
ment architecture transparently to individual MEs. Sensors have a similar two-part
structure.

60 CHAPTER 6. ENABLING SELF-MANAGEMENT

Figure 6.3: Structure of MEs. Figure 6.4: Composition of MEs.

The management framework enables the developer of self-* code to control loca-
tion of MEs. For every management element the developer can specify a container
where that element should reside. A container is a first-class entity which sole
purpose is to ensure that entities in the container reside on the same physical
node. This eliminates network communication latencies between co-located MEs.
The container’s location can be explicitly defined by a location of a resource that
is used to host elements of the architecture, thus eliminating the communication
latency and overhead between architecture elements and managers handling them.

A Set of Network References, SNR [95], is a primitive data abstraction that is
used to associate a name with a set of references. SNRs are stored under their names
on the structured overlay network. SNR references are used to access elements in
the system and can be either direct or indirect. Direct references contain the
location of an entity, and indirect references refer to other SNRs by names and
need to be resolved before use. SNRs can be cached by clients improving access
time. The framework recognizes out-of-date references and refreshes cache contents
when needed.

Groups are implemented using SNRs containing multiple references. A “one-
to-any” or “one-to-all” binding to a group means that when a message is sent
through the binding, the group name is resolved to its SNR, and one or more of
the group references are used to send the message depending on the type of the
binding. SNRs also enable mobility of elements pointed to by the references. MEs
can move components between resources, and by updating their references other
elements can still find the components by name. A group can grow or shrink
transparently from group user point of view. Finally SNRs are used to support
sensing through associating watchers with SNRs. Adding a watcher to an SNR
will result in sensors being deployed for each element associated with the SNR.
Changing the references of an SNR will transparently deploy/undeploy sensors for
the corresponding elements.

SNRs can be replicated providing for reliable storage of application architecture.
The SRN replication provides eventual consistency of SNR replicas, but transient
inconsistencies are allowed. Similarly to handling of SNR caching, the framework
recognizes out-of-date SNR references and repeats SNR access whenever necessary.

6.3. IMPLEMENTATION AND EVALUATION 61

VO

W
rit

e R
eq

uest

one-t
o-an

y binding

to th
e s

torag
e g

roup

Read Requestone-to-any bindingto a file group

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

Front-end

Component

Ax,Bx,Cx = file groups, x is

replica number in the group.

Ovals = resources.

Rectangles = Components.

Dashed line = YASS storage

components group.

Figure 6.5: YASS Functional Part

6.3 Implementation and evaluation

We have designed and developed YASS – “yet another storage service” – as a way
to refine the requirements of the management framework, to evaluate it and to
illustrate its functionality. Our application stores, reads and deletes files on a set
of distributed resources. The service replicates files for the sake of robustness and
scalability. We target the service for dynamic Grid environments, where resources
can join, gracefully leave or fail at any time. YASS automatically maintains the file
replication factor upon resource churn, and scales itself based on the load on the
service.

Application functional design

A YASS instance consists out of front-end components which are deployed on user
machines and storage components Figure 6.5. Storage components are composed
of file components representing files. The ovals in Figure 6.5 represent resources
contributed to a Virtual Organization (VO). Some of the resources are used to
deploy storage components, shown as rectangles.

A user store request is sent to an arbitrary storage component (one-to-any bind-
ing) that will find some r different storage components, where r is the file’s replica-
tion degree, with enough free space to store a file replica. These replicas together
will form a file group containing the r dynamically created new file components.
The user will then use a one-to-all binding to send the file in parallel to the r repli-
cas in the file group. Read requests can be sent to any of the r file components in
the group using the one-to-any binding between the front-end and the file group.

62 CHAPTER 6. ENABLING SELF-MANAGEMENT

Component

Load Change

Watcher

Storage

Aggregator

Configuration

Manager
File

Replica

Aggregator

File

Replica

Manager

Actuation APIL L L L F FF F F C CC C C

Application wide MEs.

One of each per YASS instance

File related MEs.

One of each per file group

LActuation API
Leave Sensors Failure Sensors Load Change Sensors

M
an

ag
em

en
t

E
le

m
en

ts
S

en
si

n
g
 a

n
d

A
ct

u
at

io
n

Create

Group

Manager

G G G GG

Group Sensors

Figure 6.6: YASS Non-Functional Part

Application non-functional design

Configuration of application self-management. The Figure 6.6 shows the
architecture of the watchers, aggregators and managers used by the application.

Associated with the group of storage components is a system-wide Storage-
aggregator created at service deployment time, which is subscribed to leave- and
failure-events which involve any of the storage components. It is also subscribed
to a Load-watcher which triggers events in case of high system load. The Storage-
aggregator can trigger StorageAvailabilityChange-events, which the Configuration-
manager is subscribed to.

When new file-groups are formed by the functional part of the application, the
management infrastructure propagates group-creation events to the CreateGroup-
manager which initiates a FileReplica-aggregator and a FileReplica-manager for the
new group. The new FileReplica-aggregator is subscribed to resource leave- and
resource fail-events of the resources associated with the new file group.

Test-cases and initial evaluation

The infrastructure has been initially tested by deploying a YASS instance on a set of
nodes. Using one front-end a number of files are stored and replicated. Thereafter
a node is stopped, generating one fail-event which is propagated to the Storage-
aggregator and to the FileReplica-aggregators of all files present on the stopped
node. Below is explained in detail how the self-management acts on these events
to restore desired system state.

Figure 6.7 shows the management elements associated with the group of storage
components. The black circles represent physical nodes in the P2P overlay Id space.
Architectural entities (e.g., SNR and MEs) are mapped to ids. Each physical node
is responsible for Ids between its predecessor and itself including itself. As there
is always a physical node responsible for an id, each entity will be mapped to one
of the nodes in the system. For instance the Configuration Manager is mapped

6.3. IMPLEMENTATION AND EVALUATION 63

0 1

2

3

4

5

6

7

8

9

10

11

12

13

14
1516

17
18

19

20

21

22

23

24

25

26

27

28

29

30

31

SComp1

SComp2

SComp3

SComp4

SComp5

L C

L C

L C

L C

L C

F

F

F

F

F

A3

A1 A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

Configuration

Manager

Storage

Aggregator

Component

Load Change

Watcher

SComp1
SComp2
SComp3
SComp4
SComp5

Component

Load Change

Watcher

YASS SNR

Figure 6.7: Parts of the YASS application deployed on the management infrastruc-
ture.

to id 13, which is the responsibility of the node with id 14 which means it will be
executed there.

Application Self-healing. Self-healing is concerned with maintaining the desired
replica degree for each stored item. This is achieved as follows for resource leaves
and failures:

Resource leave. An infrastructure sensor signals that a resource is about to leave.
For each file stored at the leaving resource, the associated FileReplica-aggregator
is notified and issues a replicaChange-event which is forwarded to the FileReplica-
manager. The FileReplica-manager uses the one-to-any binding of the file-group to
issue a FindNewReplica-event to any of the components in the group.

Resource failure. On a resource failure, the FileGroup-aggregator will check
if the failed resource previously signaled a ResourceLeave (but did not wait long
enough to let the restore replica operation finish). In that case the aggregator will
do nothing, since it has already issued a replicaChange event. Otherwise a failure
is handled the same way as a leave.

Application Self-configuration. With self-configuration we mean the ability to
adapt the system in the face of dynamism, thereby maintaining its capability to
meet functional requirements. This is achieved by monitoring the total amount of
allocated storage. The Storage-aggregator is initialized with the amount of avail-
able resources at deployment time and updates the state in case of resource leaves
or failures. If the total amount of allocated resources drops below given require-
ments, the Storage-aggregator issues a storageAvailabilityChange-event which is
processed by the Configuration-manager. The Configuration-manager will try to
find an unused resource (via the external resource management service) to deploy
a new storage component, which is added to the group of components. Parts of

64 CHAPTER 6. ENABLING SELF-MANAGEMENT

Listing 6.1: Pseudocode for parts of the Storage-aggregator
upon event ResourceFa i lure (re source_id) do

amount_to_subtract = a l l o c a t e d _ r e s o u r c e s (resource_id)
t o t a l _ s t o r a g e = total_amount − amount_to_subtract
current_load = update (current_load , t o t a l _ s t o r a g e)
i f total_amount < i n i t i a l _ r e q u i r e m e n t or current_load > high_l imit

then
t r i g g e r (ava i l ab i l i tyChangeEvent (tota l_storage , current_load))

end

the Storage-aggregator and Configuration-manager pseudocode is shown in List-
ing 6.1, demonstrating how the stateful information is kept by the aggregator and
updated through sensing events, while the actuation commands are initiated by the
manager.

Application Self-optimization. In addition to the two above described test-cases
we have also designed but not fully tested application self-optimization. With self-
optimization we mean the ability to adapt the system so that it, besides meeting
functional requirements, also meets additional non-functional requirements such
as efficiency. This is achieved by using the ComponentLoad-watcher to gather
information on the total system load, in terms of used storage. The storage com-
ponents report their load changes, using application specific load sensors. These
load-change events are delivered to the Storage-aggregator. The aggregator will
be able to determine when the total utilization is critically high, in which case a
StorageAvailabilityChange-event is generated and processed by the Configuration-
manager in the same way as described in the self-configuration section. If utilization
drops below a given threshold, and the amount of allocated resources is above ini-
tial requirements, a storageAvailabilityChange-event is generated. In this case the
event indicates that the availability is higher than needed, which will cause the
Configuration-manager to query the ComponentLoad-watcher for the least loaded
storage component, and instruct it to deallocate itself, thereby freeing the resource.
Parts of the Configuration-manager pseudocode is shown in Listing 6.2, demon-
strating how the number of storage components can be adjusted upon need.

6.4 Related Work

Our work builds on the technical work on the Jade component-management sys-
tem [50]. Jade utilizes the Java RMI, and is limited to cluster environments as it
relies on small and bounded communication latencies between nodes.

As the work here suggests a particular implementation model for distributed
component based programming, relevant related work can be found in research
dealing specifically with autonomic computing in general and in research about
component and programming models for distributed systems.

6.4. RELATED WORK 65

Listing 6.2: Pseudocode for parts of the Configuration-manager
upon event ava i l ab i l i tyChangeEvent (tota l_storage , new_load) do

i f t o t a l _ s t o r a g e < i n i t i a l _ r e q u i r e m e n t or new_load > high_l imit then
new_resource =

re source_d i s cove r (component_requirements , compare_cr i te r ia)
new_resource = a l l o c a t e (new_resource , p r e f e r e n c e s)
new_component =

deploy (storage_component_description , new_resource)
add_to_group (new_component , component_group)

e l s e i f t o t a l _ s t o r a g e > i n i t i a l _ r e q u i r e m e n t and new_load < low_limit
then
least_loaded_component = component_load_watcher . get_least_loaded ()
l eas t_loaded_resource = least_loaded_component . get_resource ()
t r i g g e r (resourceLeaveEvent (l eas t_loaded_resource))

end

Autonomic Management. The vision of autonomic management as presented
in [5] has given rise to a number of proposed solutions to aspects of the problem.
Many solutions adds self-management support through the actions of a central-
ized self-manager. One suggested system which tries to add some support for the
self-management of the management system itself is Unity [68]. Following the
model proposed by Unity, self-healing and self-configuration are enabled by build-
ing applications where each system component is a autonomic element, responsible
for its own self-management. Unity assumes cluster-like environments where the
application nodes might fail, but the project only partly addresses the issue of
self-management of the management infrastructure itself.

Relevant complementary work include work on checkpointing in distributed en-
vironments. Here recent work on Cliques [96] can be mentioned, where worker
nodes help store checkpoints in a distributed fashion to reduce load on managers
which then only deal with group management. Such methods could be introduced
in our framework to support stateful applications.

Component Models. Among the proposed component models which target build-
ing distributed systems, the traditional ones, such as the Corba Component Model
or the standard Enterprise JavaBeans were designed for client-server relationships
assuming highly available resources. They provide very limited support for dy-
namic reconfiguration. Other component models, such as OpenCOM [97], allow
dynamic flexibility, but their associated infrastructure lacks support for operation
in dynamic environments.

The Grid Component Model, GCM [98], is a recent component model that
specifically targets grid programming. GCM is defined as an extension of Fractal
and its features include many-to-many communications with various semantics and
autonomic components.

GCM defines simple "autonomic managers" that embody autonomic behaviours
and expose generic operations to execute autonomic operations, accept QoS con-

66 CHAPTER 6. ENABLING SELF-MANAGEMENT

tracts, and to signal QoS violations. However, GCM does not prescribe a particular
implementation model and mechanisms to ensure the efficient operation of self-*
code in large-scale environments. Thus, GCM can be seen as largely complementary
to our work and thanks to the common ancestor, we believe that our results can be
exploited within a future GCM implementation. Behavioural skeletons [99] aim to
model recurring patterns of component assemblies equipped with correct and effec-
tive self-management schemes. Behavioural skeletons are being implemented using
GCM, but the concept of reusable, domain-specific, self-management structures can
be equally applied using our component framework.

GCM also defines collective communications by introducing new kinds of car-
dinalities for component interfaces: multicast, and gathercast [100]. This enables
one-to-n and n-to-one communication. However GCM does not define groups as
a first class entities, but only implicitly through bindings, so groups can not be
shared and reused. GCM also does not mention how to handle failures and dy-
namism (churn) and who is responsible to maintain the group. Our one-to-all
binding can utilise the multicast service, provided by the underlying P2P overlay,
to provide more scalable and efficient implementation in case of large groups. Also
our model supports mobility so members of the group can change their location
without affecting the group.

A component model designed specifically for structured overlay networks and
wide scale deployment is p2pCM [101], which extends the DERMI [102] object mid-
dleware platform. The model provides replication of component instances, compo-
nent lifecycle management and group communication, including anycall functional-
ity to communicate with the closest instance of a component. The model does not
offer higher level abstractions such as watchers and event handlers, and the support
for self-healing and issues of consistency are only partially addressed.

6.5 Future Work

Currently we are working on the management element wrapper abstraction. This
abstraction adds fault-tolerance to the self-* code by enabling ME replication. The
goal of the management element wrapper is to provide consistency between the
replicated ME in a transparent way and to restore the replication degree if one of
the replicas fails. Without this support from the framework, the user can still have
self-* fault-tolerance by explicitly implementing it as a part of the application’s
non-functional code. The basic idea is that the management element wrapper adds
a consistency layer between the replicated ME from one side and the sensors/actu-
ators from the other side. This layer provides a uniform view of the events/actions
for both sides.

Currently the we use a simple architecture description language (ADL) only
covering application functional behaviours. We hope to extend this to also cover
non-functional aspects.

We are also evaluating different aspects of our framework such as the overhead

6.6. CONCLUSIONS 67

of our management framework in terms of network traffic and the time need execute
self-* code. Another important aspect is to analyse the effect of churn on the self-*
code.

Finally we would like to evaluate our framework using applications with more
complex self-* behaviours.

6.6 Conclusions

The proposed management framework enables development of distributed compo-
nent based applications with self-* behaviours which are independent from appli-
cation’s functional code, yet can interact with it when necessary. The framework
provides a small set of abstractions that facilitate fault-tolerant application man-
agement. The framework leverages the self-* properties of the structured overlay
network which it is built upon. We used our component management framework to
design a self-managing application to be used in dynamic Grid environments. Our
implementation shows the feasibility of the framework.

Chapter 7

Niche: A Platform for
Self-Managing Distributed
Application

Vladimir Vlassov, Ahmad Al-Shishtawy,
Per Brand, and Nikos Parlavantzas
In Formal and Practical Aspects of Autonomic Computing and Networking: Speci-
fication, Development, and Verification (P. Cong-Vinh, ed.), ch. 10, pp. 241–293,
IGI Global, 2012. ISBN13: 9781609608453.
Reproduced by permission of IGI Global.

Niche: A Platform for Self-Managing Distributed
Application

Vladimir Vlassov,1 Ahmad Al-Shishtawy,1 Per Brand,2 and Nikos Parlavantzas3

1 KTH Royal Institute of Technology, Stockholm, Sweden
{vladv, ahmadas}@kth.se

2 Swedish Institute of Computer Science (SICS), Stockholm, Sweden
perbrand@sics.se

3Université Européenne de Bretagne, France
nikolaos.parlavantzas@inria.fr

Abstract

We present Niche, a general-purpose, distributed component management
system used to develop, deploy, and execute self-managing distributed appli-
cations. Niche consists of both a component-based programming model as
well as a distributed runtime environment. It is especially designed for com-
plex distributed applications that run and manage themselves in dynamic and
volatile environments.

Self-management in dynamic environments is challenging due to the high
rate of system or environmental changes and the corresponding need to fre-
quently reconfigure, heal, and tune the application. The challenges are met
partly by making use of an underlying overlay in the platform to provide an
efficient, location-independent, and robust sensing and actuation infrastruc-
ture, and partly by allowing for maximum decentralization of management.

We describe the overlay services, the execution environment, showing how
the challenges in dynamic environments are met. We also describe the pro-
gramming model and a high-level design methodology for developing decen-
tralized management, illustrated by two application case studies.

7.1 Introduction

Autonomic computing [5] is an attractive paradigm to tackle the problem of grow-
ing software complexity by making software systems and applications self-managing.
Self-management, namely self-configuration, self-optimization, self-healing, and self-
protection, can be achieved by using autonomic managers [6]. An autonomic man-
ager continuously monitors software and its execution environment and acts to meet
its management objectives. Managing applications in dynamic environments with
dynamic resources and/or load (like community Grids, peer-to-peer systems, and
Clouds) is especially challenging due to large scale, complexity, high resource churn
(e.g., in P2P systems) and lack of clear management responsibility.

71

72 CHAPTER 7. NICHE PLATFORM

This chapter presents the Niche platform [103] for self-managing distributed
applications; we share our practical experience, challenges and issues, and lessons
learned when building the Niche platform and developing self-managing demon-
strator applications using Niche. We also present a high-level design methodology
(including design space and steps) for developing self-managing applications.

Niche is a general-purpose, distributed component management system used to
develop, deploy, and execute self-managing distributed applications or services in
different kinds of environments, including very dynamic ones with volatile resources.
Niche is both a component-based programming model that includes management
aspects as well as a distributed runtime environment.

Niche provides a programming environment that is especially designed to en-
able application developers to design and develop complex distributed applications
that will run and manage themselves in dynamic and volatile environments. The
volatility may be due to the resources (e.g., low-end edge resources), the varying
load, or the action of other applications running on the same infrastructure. The
vision is that once the infrastructure-wide Niche runtime environment has been
installed, applications that have been developed using Niche, can be installed, and
run with virtually no effort. Policies cover such issues as which applications to scale
down or stop upon resource contention. After deployment the application manages
itself, completely without human intervention, excepting, of course, policy changes.
During the application lifetime the application is transparently recovering from fail-
ure, and tuning and reconfiguring itself on environmental changes such as resource
availability or load. This cannot be done today in volatile environments, i.e., it is
beyond the state-of-the-art, except for single machine applications and the most
trivial of distributed applications, e.g., client/server.

The rest of this chapter is organized as follows. The next section lays out the
necessary background for this work. Then, we discuss challenges for enabling and
achieving self-management in a dynamic environment characterized by volatile re-
sources and high resource churn (leaves, failures and joins of computers). Next,
we present Niche. We provide some insight into the Niche design ideas and its
architecture, programming model and execution environment, followed by a pre-
sentation of programming concepts and some insight into the programming of self-
managing distributed applications using Niche illustrated with a simple example of
a self-healing distributed group service. Next, we present our design methodology
(including design space and design steps) for developing a management part of a
self-managing distributed application in a decentralized manner, i.e., with multiple
interactive autonomic managers. We illustrate our methodology with two demon-
strator applications, which are self-managing distributed services developed using
Niche. Next, we discuss combining a policy-based management (using a policy lan-
guage and a policy engine) with hard-coded management logic. Finally, we present
some conclusions and our future work.

7.2. BACKGROUND 73

7.2 Background

The benefits of self-managing applications apply in all kinds of environments, and
not only in dynamic ones. The alternative to self-management is management by
humans, which is costly, error-prone, and slow. In the well-known IBM Autonomic
Computing Initiative [5] the axes of self-management were self-configuration, self-
healing, self-tuning and self-protection. Today, there is a considerable body of work
in the area, most of it geared to clusters.

However, the more dynamic and volatile the environment, the more often appro-
priate management actions to heal/tune/reconfigure the application will be needed.
In very dynamic environments self-management is not a question of cost but feasi-
bility, as management by humans (even if one could assemble enough of them) will
be too slow, and the system will degrade faster than humans can repair it. Any
non-trivial distributed application running in such an environment must be self-
managing. There are a few distributed applications that are self-managing and can
run in dynamic environments, like peer-to-peer file-sharing systems, but they are
handcrafted and special-purpose, offering no guidance to designing self-managing
distributed applications in general.

Application management in a distributed setting consists of two parts. First,
there is the initial deployment and configuration, where individual components are
shipped, deployed, and initialized at suitable nodes (or virtual machine instances),
then the components are bound to each other as dictated by the application archi-
tecture, and the application can start working. Second, there is dynamic reconfig-
uration when a running application needs to be reconfigured. This is usually due
to environmental changes, such as change of load, the state of other applications
sharing the same infrastructure, node failure, node leave (either owner rescinding
the sharing of his resource, or controlled shutdown), but might also be due to
software errors or policy changes. All the tasks in the initial configuration may
also be present in dynamic reconfiguration. For instance, increasing the number of
nodes in a given tier will involve discovering suitable resources, deploying and ini-
tializing components on those resources and binding them appropriately. However,
dynamic reconfiguration generally involves more, because firstly, the application is
running and disruption must be kept to a minimum, and secondly, management
must be able to manipulate running components and existing bindings. In gen-
eral, in dynamic reconfiguration, there are more constraints on the order in which
configuration change actions are taken, compared to initial configuration when the
configuration can be built first and components are only activated after this has
been completed.

A configuration may be seen as a graph, where the nodes are components and
the links are bindings. Components need suitable resources to host them, and
we can complete the picture by adding the mapping of components onto physical
resources. This is illustrated in Figure 7.1. On the left we show the graph only, the
abstract configuration, while on the right the concrete configuration is shown. The
bindings that cross resource boundaries will upon use involve remote invocations,

74 CHAPTER 7. NICHE PLATFORM

while those that do not can be invoked locally. Reconfiguration may involve a
change in the concrete configuration only or in both the abstract and concrete
configurations. Note, that we show the more interesting and challenging aspects of
reconfiguration; there are also reconfigurations that leave the graph unchanged but
only change the way in which components work by changing component attributes.

Figure 7.1: Abstract (left) and concrete (right) view of a configuration. Boxes
represent nodes or virtual machines, circles represent components.

We now proceed with some examples of dynamic reconfiguration. In these dy-
namic environments, a resource may announce that it is leaving and a new resource
will need to be located and the components currently residing on the resource
moved to the new resource. In this case only the concrete configuration is changed.
Alternatively, when there is an increase in the number of service components in a
service tier this will change the abstract (and concrete) configuration by adding a
new node and the appropriate bindings. Another example is when a resource fails.
If we disregard the transient broken configuration, where the failed component is
no longer present in the configuration and the bindings that existed to it are bro-
ken, an identical abstract configuration will eventually be created, differing only
in the resource mapping. In general, an application architecture consists of a set
of suitable abstract configurations with associated information as to the resource
requirements of components. The actual environment will determine which one is
best to deploy or to reconfigure towards.

Note that in Figure 7.1 only the top-level components are shown. At a finer
level of detail there are many more components, but for our management we can
ignore components that are always co-located and bound exclusively to co-located
components. Note, that we ignore only those that are always co-located (in all
configurations). There are components that might be co-located in some concrete
configurations (when a sufficient capable resource is available) but not in others.
In Figure 7.1, on the right, a configuration is shown with one machine hosting 3
components; in another concrete configuration they might be mapped to different
machines.

We use an architectural approach to self-management, with particular focus

7.3. RELATED WORK 75

on achieving self-management for dynamic environments, enabling the usage of
multiple distributed cooperative autonomic managers for scalability and avoiding
a single-point-of failure or contention.

7.3 Related Work

The increasing complexity of software systems and networked environments moti-
vates autonomic system research in both, academia and industry, e.g., [4,5,17,45].
Major computer and software vendors have launched R&D initiatives in the field
of autonomic computing.

The main goal of autonomic system research is to automate most system man-
agement functions, including configuration management, fault management, perfor-
mance management, power management, security management, cost management,
SLA management, and SLO management.

There is vast research on building autonomic computing systems using differ-
ent approaches [45], including control theoretic approach; architectural approach;
multi-agent systems; policy-based management; management using utility-functions.
For example, authors of [21] apply the control theoretic approach to design com-
puting systems with feedback loops. The architectural approach to autonomic
computing [18] suggests specifying interfaces, behavioral requirements, and inter-
action patterns for architectural elements, e.g., components. The approach has been
shown to be useful for autonomous repair management [50]. A reference architec-
ture for autonomic computing is presented in [104]. The authors present patterns
for applying their proposed architecture to solve specific problems common to self-
managing applications. The analyzing and planning stages of a control loop can be
implemented using utility functions to make management decisions, e.g., to achieve
efficient resource allocation [51]. Authors of [49] and [48] use multi-objective utility
functions for power-aware performance management. Authors of [52] use a model-
predictive control technique, namely a limited look-ahead control (LLC), combined
with a rule-based managers, to optimize the system performance based on its fore-
cast behavior over a look-ahead horizon. Policy-based self-management [57–59,61]
allows high-level specification of management objectives in the form of policies that
drive autonomic management and can be changed at run time.

Some research is focused on interaction and coordination between multiple auto-
nomic managers. An attempt to analyze and understand how multiple interacting
loops can manage a single system has been done in [17] by studying and analyzing
existing systems such as biological and software systems. By this study the au-
thors try to understand the rules of a good control loop design. A study of how
to compose multiple loops and ensure that they are consistent and complementary
is presented in [105]. The authors presented an architecture that supports such
compositions.

There are many research projects focused on or using self-management for soft-
ware systems and networked environments, including projects performed at the

76 CHAPTER 7. NICHE PLATFORM

NSF Center for Autonomic Computing [63] and a number of European projects
funded by European Commission such as RESERVOIR, SELFMAN, Grid4All and
others.

There are several industrial solutions (tools, techniques and software suites)
for enabling and achieving self-management of enterprise IT systems, e.g., IBM
Tivoli and HP’s OpenView, which include different autonomic tools and managers
to simplify management, monitoring and automation of complex enterprise-scale
IT systems. These solutions are based on functional decomposition of management
performed by multiple cooperative managers with different management objectives
(e.g., performance manager, power manager, storage manager, etc.). These tools
are specially developed and optimized to be used in IT infrastructure of enterprises
and datacenters.

The area of autonomic computing is still evolving. Still there are many open
research issues such as development environments to facilitate development of self-
managing applications, efficient monitoring, scalable actuation, and robust man-
agement.

In our work we focus on enabling and achieving self-management for large-scale
distributed systems in dynamic environments (dynamic resources and load) using
an architectural approach to self-management with multiple distributed cooperative
autonomic managers.

7.4 Our Approach

We, like many others, use the feedback control loop approach to achieve self-
management. Referring back to Figure 7.1 we can identify the constituent parts of
what is needed at runtime.

• Container: Each available machine has a container (the boxes in the fig-
ure). The container hosts running components and directs actuation (con-
trol) commands addressed to a particular component. The container can be
told by management to install a new component. Ideally the container can
completely isolate and protect components from one another (particularly im-
portant when components belonging to different applications are hosted in the
same container). This can be achieved by using Virtual Machine technology
(currently the containers in Niche do not guarantee this).

• Sensing: Management needs to sense or be informed about changes in the
application state. Some events are independent of the application type. For
example, the failure of a machine (or container) necessarily entails failure of
the hosted components, as does the leave of a machine. Other events are
application-specific, with a component programmed to report certain events
to management (via the management interface of the component). There is a
choice with application-independent events (failure and leaves) if the reporting
to management is on the level of the container/machine (in which case the

7.5. CHALLENGES 77

management must make the appropriate mapping to components), or on the
level of the individual components.

• Resource Discovery: Management needs to sense or be informed about
changes in available resources, or alternatively management needs to be able,
upon need, to discover free (or underutilized) resources. This could be seen
as part of sensing, but note that in general more than a single application
is running on the same infrastructure and resource discovery/allocation is an
infrastructure-wide service, in contrast to sensing as described above which
is directly linked to components in a given application.

• Actuation: Management needs to be able to control applications and the
components that they are composed of.

• Management Hosting: Management needs to be hosted as well. In general
the management of a single application is divided into one or more manage-
ment elements. These management elements are programs that are triggered
by some event, perform some planning, and thereafter send the appropriate
actuation commands to perform the required reconfiguration.

In a static and constrained environment, these elements of the runtime support
may be straightforward or even trivial. For instance, if management is centralized,
then the management should know exactly where each application component is
hosted, and it is straightforward to send the appropriate command message to a
component at its known host. If management is decentralized, it is possible that a
component has been moved as a result of the action of another management element
without the first management element having been made aware of this. If manage-
ment never moves, then it is straightforward to find it, and deliver sensing messages
to it. If all resources are known statically, then management will always know what
resources are potentially available. However, as explained in the next section, to
handle dynamic environments we cannot make such simplifying assumptions and
the five described elements of the runtime are non-trivial.

The runtime support for management is, of course, only part of the story. De-
veloping the management for a distributed application is a programming task, and
a programming model is needed. This will be covered later in the section about the
Niche platform.

7.5 Challenges

Achieving self-management in a dynamic environment characterized by volatile
resources and high churn (leaves, failures and joins of machines) is challenging.
State-of-the-art techniques for self-management in clusters are not suitable. The
challenges are:

• Resource discovery: Discovering and utilizing free resources;

78 CHAPTER 7. NICHE PLATFORM

• Robust and efficient sensing and actuation: Churn-tolerant, efficient
and robust sensing and actuation infrastructure;

• Management bottleneck: Avoiding management bottleneck and single-
point-of-failure;

• Scale.

In our driving scenarios resources are extremely volatile. This volatility is partly
related to churn. There are many scenarios where high churn is expected. In
community Grids and other collaborations across the Internet machines may be at
any time removed when the owner needs the machine for other purposes. At the
edge both the machines and the networks are less reliable.

There are other aspects of volatility. Demanding applications may require more
resources than are available in the current infrastructure and additional resources
then need to be obtained quickly from an external provider (e.g., Cloud). These
new resources need to be integrated with existing resources to allow applications
to run over the aggregated resources. Furthermore we do not assume over provi-
sioning within the infrastructure - it may be working close to available capacity so
that even smaller changes of load in one application may trigger a reconfiguration
as other applications need to be ramped up or down depending on the relative pri-
orities of the applications (according to policy). We see the need for a system-wide
infrastructure where volatile resources can efficiently be discovered and utilized.
This infrastructure (i.e., the resource discovery service) itself also needs to be self-
managing.

The sensing and actuation infrastructure needs to be efficient. The demand
for efficiency rules out, at least as the main mechanism, a probing monitoring
approach. Instead, the publish/subscribe paradigm needs to be used. The sensing
and actuation infrastructure must be robust and churn-tolerant. Sensing events
must be delivered (at least once) to subscribing management elements, irrespective
of failure events, and irrespective of whether or not the management element has
moved. In a dynamic environment it is quite normal for a management element to
move from machine to machine during the lifetime of the application as resources
leave and join.

It is important that management does not become the bottleneck. For the mo-
ment, let us disregard the question of failure of management nodes. The overall
management load for a single application depends on both the size of the system
(i.e., number of nodes in the configuration graph) and the volatility of the envi-
ronment. It may well be that a dynamic environment of a few hundred nodes
could generate as many events per time unit as a large data centre. The standard
mechanism of a single management node will introduce a bottleneck (both in terms
of management processing, but also in terms of bandwidth). Decentralization of
management is, we believe, the key to solving this problem. Of course, decentraliza-
tion of management introduces design and synchronization issues. There are issues
on how to design management that requires minimal synchronization between the

7.6. NICHE: A PLATFORM FOR SELF-MANAGING DISTRIBUTED
APPLICATIONS 79

manager nodes and how to achieve that necessary synchronization. These issues
will be discussed later in the section about design methodology.

The issue of failure of management nodes in centralized and decentralized so-
lutions is, on the other hand, not that different. (Of course, with a decentralized
approach, only parts of the management fail). If management elements are state-
less, fault-recovery is relatively easy. If they are stateful, some form of replication
can be used for fault-tolerance, e.g., hot standby in a cluster or state machine
replication [90].

Finally, there are many aspects of scale to consider. We have touched upon
some of them in the preceding paragraphs, pointing out that we have to take into
account the sheer number of environmental sensing events. Clearly the system-
wide resource discovery infrastructure needs to scale. But there are other issues to
consider regarding scale and efficiency. We have used two approaches in dealing with
these issues. The first, keeping in mind our decentralized model of management,
is to couple as loosely as possible. In contrast to cluster management systems,
not only do we avoid maintaining a centralized system map reflecting the “current
state” of the application configuration, we strive for the loosest coupling possible. In
particular, management elements only receive event notifications for exactly those
events that have been subscribed to. Secondly, we have tried to identify common
management patterns, to see if they can be optimized (in terms of number of
messages/events or hops) by supporting them directly in the platform as primitives,
rather than as programmed abstractions when and if this makes for a difference in
messaging or other overhead.

7.6 Niche: A Platform for Self-Managing Distributed
Applications

In this section, we present Niche, which is a platform for development, deployment,
and execution of component-based self-managing applications. Niche includes a dis-
tributed component programming model, APIs, and a runtime system (including a
deployment service) that operates on an internal structured overlay network. Niche
supports sensing changes in the state of components and an execution environment,
and it allows individual components to be found and appropriately manipulated. It
deploys both functional and management components and sets up the appropriate
sensor and actuation support infrastructure.

Niche has been developed assuming that its runtime environment and applica-
tions might execute in a highly dynamic environment with volatile resources, where
resources (computers, virtual machines) can unpredictably fail or leave. In order
to deal with such dynamicity, Niche leverages self-organizing properties of the un-
derlying structured overlay network, including name-based routing and the DHT
functionality. Niche provides transparent replication of management elements for
robustness. For efficiency, Niche directly supports a component group abstraction
with group bindings (one-to-all and one-to-any).

80 CHAPTER 7. NICHE PLATFORM

There are aspects of Niche that are fairly common in autonomic computing.
Firstly, Niche supports the feedback control loop paradigm where management
logic in a continuous feedback loop senses changes in the environment and com-
ponent status, reasons about those changes, and then, when needed, actuates, i.e.,
manipulates components and their bindings. A self-managing application can be
divided into a functional part and a management part tied together by sensing
and actuation. Secondly, the Niche programming model is based on a component
model, called Fractal component model [33], in which components can be moni-
tored and managed. In Fractal, components are bound and interact functionally
with each other using two kinds of interfaces: (1) server interfaces offered by the
components; (2) and client interfaces used by the components. Components are in-
terconnected by bindings: a client interface of one component is bound to a server
interface of another component. Fractal allows nesting of components in composite
components and sharing of components. Components have control (management)
membranes, with introspection and intercession capabilities. It is through this con-
trol membrane that components are started, stopped, configured. It is through this
membrane that the components are passivated (as a prelude to component migra-
tion), and through which the component can report application-specific events to
management (e.g., load). Fractal can be seen as defining a set of capabilities for
functional components. It does not force application components to comply, but
clearly the capabilities of the programmed components must match the needs of
management. For instance, if the component is both stateful and not capable of
passivation (or checkpointing) then management will not be able to transparently
move the component.

The major novel feature of Niche is that, in order to enable and achieve self-
management for large-scale dynamic distributed systems, it combines a suitable
component model (Fractal) with a Chord-like structured overlay network to provide
a number of robust overlay services. Niche leverages the self-organizing properties
of the structured overlay network, e.g., automatic correction of routing tables on
node leaves, joins and failures. The Fractal model supports components that can
be monitored and managed through component introspection and control inter-
faces (called controllers in Fractal), e.g., lifecycle, attribute, binding and content
controllers. The Niche execution environment provides a number of overlay ser-
vices, notably, name-based communication, the key-value store (DHT) for lookup
services, a controlled broadcast for resource discovery, a publish/subscribe mecha-
nism for event dissemination, and node failure detection. These services are used by
Niche to provide higher level abstractions such as name-based bindings to support
component mobility; dynamic component groups; one-to-any and one-to-all group
bindings, and event based interaction. Note that the application programmer does
not need to know about the underlying overlay services, this is under the hood, and
his/her interaction is through the Niche API.

An important feature of Niche is that all architectural elements such as com-
ponent interfaces, singleton components, components groups, and management el-
ements, have system-wide unique identifiers. This enables location transparency,

7.6. NICHE: A PLATFORM FOR SELF-MANAGING DISTRIBUTED
APPLICATIONS 81

transparent migration and reconfiguration (rebinding) of components and manage-
ment elements at run time. In Niche, components can be found, monitored and
controlled – deployed, created, stopped, rebound, started, etc. Niche uses the DHT
functionality of the underlying structured overlay network for its lookup service.
This is especially important in dynamic environments where components need to
be migrated frequently as machines leave and join frequently. Furthermore, each
container maintains a cache of name-to-location mappings. Once a name of an
element is resolve to its location, the element (its hosting container) is accessed di-
rectly rather than by routing messages though the overlay network. If the element
moves to a new location, the element name is transparently resolved to the new
location.

We now proceed to describe both the Niche runtime and, to a lesser extent, the
Niche programming model. The Niche programming model will be presented in
more detail in the following section interleaved with examples.

Building Management with Niche

Niche implements (in the Java programming language) the autonomic comput-
ing reference architecture proposed by IBM in [6], i.e., it allows building MAPE-K
(Monitor, Analyze, Plan and Execute; with Knowledge) control loops. An Auto-
nomic Manager in Niche can be organized as a network of Management Elements
(MEs) that interact through events, monitor via sensors and act via actuators (e.g.,
using the actuation API). The ability to distribute MEs among Niche containers
enables the construction of decentralized feedback control loops for robustness and
performance.

A self-managing application in Niche consists of functional and management
parts. Functional components communicate via component bindings, which bind
client interfaces to server interfaces; whereas management elements communicate
mostly via a publish/subscribe event notification mechanism. The functional part
is developed using Fractal components and component groups, which are control-
lable (e.g., can be looked up, moved, rebound, started, stopped, etc.) and can be
monitored by the management part of the application. The management part of an
application can be constructed as a set of interactive or independent control loops
each of which monitors some part of the application and reacts on predefined events
such as node failures, leaves or joins, component failures, and group membership
events; and application-specific events such as component load change events, and
low storage capacity events.

In Figure 7.2, we show what an abstract configuration might look like when all
management elements are passive in the sense that they are all waiting for some
triggering events to take place. The double-headed arrows in the functional part are
bindings between components (as the concrete configuration is not shown the bind-
ings may or may not be between different machines). The management elements
have references to functional components by name (e.g., component id) or are con-
nected to actuators. The management and functional parts are also “connected”

82 CHAPTER 7. NICHE PLATFORM

Figure 7.2: Abstract configuration of a self-managing application

by sensors (this is also actually by name, because management, as well as func-
tional components can migrate) In the picture there are sensors from the A group
of functional components (A1, A2 and A3) to two management elements (sensors
connected to the other management elements are not shown). The management
architecture in Figure 7.2 is flat, and later we show how management can be struc-
tured hierarchically (see section Development of Self-Managing Applications Using
Niche), which is important for larger more complex applications.

The form of a management element is show below, together with a high level
description of the features available in the Niche actuation API.

loop
wait SensorEvent

change internal state // e.g., for monitoring and aggregation
analyze/plan
actuate

Actuation is a sequence of invocations (actions) that are listed below (in no
specific order). Note that all of the following actions are provided in the Niche
actuation API. The list is extensible with user-defined actions.

reconfigure existing components // functional components
//changing concrete configuration only

passivate/move existing components
discover resources // functional components / changing configuration.
allocate and deploy new components on a given resource
kill/remove existing components
remove/create bindings
add subscriptions/sensors // may cause sensors to be installed
remove subscriptions

7.6. NICHE: A PLATFORM FOR SELF-MANAGING DISTRIBUTED
APPLICATIONS 83

discover resources // management components
allocate resources and deploy new management elements
trigger events // for management coordination

For implementing the touchpoints (sensors and actuators), Niche leverages the
introspection and dynamic reconfiguration features of the Fractal component model
in order to provide sensing and actuation API abstractions. Sensors and actuators
are special components that can be attached to the application’s functional compo-
nents. There are also built-in sensors in Niche that sense changes in the environment
such as resource and component failures, joins, and leaves, as well as modifications
in application architecture such as creation of a group.

The application programmer also needs to install/deploy management elements
(components). To a large degree this is done in an analogous manner to dealing with
functional components. There are two important differences, however. One con-
cerns allocating resources to host management components, and the other concerns
connections between management elements. In Niche the application programmer
usually lets the Niche runtime find a suitable resource and deploy a management
component in one step. Niche reserves a slice of each machine for management ac-
tivity so that management elements can be placed anywhere (ideally, optimally so
as to minimize latency between the management element and its sensors and refer-
ences). Note that this assumes that the analyze/plan step in management logic are
computationally inexpensive. Secondly there are other ways to explicitly share in-
formation between management elements, and they are rarely bound to one another
(unless they are always co-located). In Figure 7.2, there are no connections between
management elements whatsoever, therefore the only coordination that is possible
between managers is via stigmergy. Knowledge (as in MAPE-K) in Niche can be
shared between MEs using two mechanisms: first, the publish/subscribe mechanism
provided by Niche; second, the Niche DHT to store/retrieve information such as
references to component group members, name-to-location mappings. In section A
Design Methodology for Self-Management in Distributed Environments, we discuss
management coordination in more detail in conjunction with design issues involved
in the decentralization of management.

Although programming in Niche is on the level of Java, it is both possible and
desirable to program management at a higher level (e.g., declaratively). Currently
in Niche such high-level language support includes a declarative ADL (Architecture
Description Language) that is used for describing initial configurations at a high-
level which is interpreted by Niche at runtime for initial deployment. Policies
(supported with a policy language and a corresponding policy engine) can also
be used to raise the level of abstraction on management (see section Policy-Based
Management).

Execution Environment

The Niche execution environment (see Figure 7.3) is a set of distributed containers
(hosting components, groups and management elements) connected via the struc-

84 CHAPTER 7. NICHE PLATFORM

tured overlay network, and a number of overlay services including name-based com-
munication, resource discovery, deployment, a lookup service, component group
support, the publish/subscribe service for event dissemination including predefined
event notification (e.g., component failures). The services allow an application (its
management part) to discover and to allocate resources, to deploy the application
and reconfigure it at runtime, to monitor and react on changes in the applica-
tion and in its execution environment, and to locate elements of the application
(e.g., components, groups, managers). In this section, we will describe the execu-
tion environment. We begin with the aspects of the execution environment that
the application programmer needs to be aware of. Thereafter we will describe the
mechanisms used to realize the execution environment, and particularly the overlay
services. Although the application programmer does not need to understand the
underlying mechanisms they are reflected in the performance/fault model. Finally
in this section, we describe the performance/fault model and discuss how Niche
meets the four challenges discussed in section Challenges.

Figure 7.3: Niche architecture

7.6. NICHE: A PLATFORM FOR SELF-MANAGING DISTRIBUTED
APPLICATIONS 85

Programmer View

Containers. The Niche runtime environment is a set of distributed containers,
called Jade nodes, connected via the Niche structured P2P overlay network. Con-
tainers host functional components and management elements of distributed appli-
cations executed in Niche. There are two container configurations in the current
Niche prototype: (1) the JadeBoot container that bootstraps the system and inter-
prets given ADL (*.fractal) files describing initial configuration of an application
on deployment; (2) the JadeNode container, which does not include the ADL in-
terpreter but supports a deployment API to deploy components programmatically.

We use a Webcache PHP application (deployed on an Apache server) to maintain
a list of nodes used as access points to join the overlay network. The URL of the
Webcache is a part of the configuration information to be provided when installing
and configuring the Niche platform. When started, a new Jade node sends an
HTTP request to the Webcache to get an address of any of the Jade nodes that
can be contacted to join the overlay.

Niche allows a programmer to control the distribution of functional compo-
nents and management elements among Niche containers, i.e., for every component
or/and ME, the programmer can specify the container (by a resource id) where that
element should reside (e.g., to co-locate components for efficiency). If a location is
not specified, the deployment service of the Niche runtime environment will deploy
(or move on failure) an ME on any container selected randomly or in a round-robin
manner. Collocation of an ME with a controlled component in the same container
allows improving performance of management by monitoring and/or controlling the
component locally rather than remotely over the network.

Group Support. Niche provides support for component groups and group
bindings. Components can be bound to groups via one-to-any (where a member
of the group is chosen at random) or one-to-all bindings. The use of component
groups is a fairly common programming pattern. For instance, a tier in a multi-tier
application might be modeled as a component group. The application programmer
needs to be aware of the fact that component groups are supported directly in
the runtime for efficiency reasons (the alternative would be to program a group
abstraction).

Resource Discovery and Deployment Service. Niche is an infrastructure
that loosely connects available physical resources/containers (computers), and pro-
vides for resource discovery. The Niche execution environment is a set of containers
(hosting components and managers), which upon joining and leaving the overlay,
inform the Niche runtime environment and its applications in a manner completely
analogous to peer-to-peer systems (e.g., Chord).

For initial deployment and runtime reconfiguration Niche provides a deploy-
ment service (including resource discovery) that can be performed either by the
ADL interpreter given an ADL (possibly incomplete) description of architecture
of an application to be deployed; or programmatically using a deployment Niche
API. ADL-driven deployment of an application does not necessary deploy the entire

86 CHAPTER 7. NICHE PLATFORM

application but rather some primary components that in their turn can complete
deployment programmatically by executing deployment process logic. A deploy-
ment process includes resource discovery, placement and creation of components
and component groups, binding component and groups, placement and creation
of management elements, subscription to predefined or application-specific events.
The deployment service (API) uses the Niche resource discovery service to find
resources (Niche containers) with specified properties to deploy components.

All planned removal of resources, like controlled shutdown, should be done by
performing a leave action a short time before the resource is removed. It is generally
easier for management to perform the necessary reconfiguration on leaves than on
failures. Hopefully, management has had the necessary time to successfully move
(or kill) the components hosted by the resource by the time the resource is actually
removed from the infrastructure (e.g., shut down).

Management Support. In addition to resource discovery and deployment
services described above, runtime system support for self-management includes a
publish/subscribe service used for monitoring and event-driven management; and
a number of server interfaces to manipulate components, groups, and management
elements, and to access overlay services (discovery, deployment, and pub/sub).

The publish/subscribe service is used by management elements for publishing
and delivering of monitoring and actuation events. The service is accessed though
NicheActuatorInterface and TriggerInterface runtime system interfaces described
below. The service provides built-in sensors to monitor component and node fail-
ures/leaves and group membership changes. The sensors issue corresponding prede-
fined events (e.g., ComponentFailEvent, CreateGroupEvent, MemberAddedEvent,
ResourceJoinEvent, ResourceLeaveEvent, ResourceStateChangeEvent), to which
MEs can subscribe. A corresponding pub/sub API allows the programmer also to
define application-specific sensors and events. The Niche runtime system guaran-
tees event delivery.

The runtime system provides a number of interfaces (available in each container)
used by MEs to control the functional part of an application and to access the
overlay services (discovery, deployment, pub/sub). The interfaces are automatically
bound by the runtime system to corresponding client interfaces of an ME when the
management element is deployed and initialized. The set of runtime interfaces
includes the following interfaces [103]:

• NicheActuatorInterface (named “actuator”) provides methods to access over-
lay services, to (un)bind functional components, to manipulate groups, to get
access to components in order to monitor and control them (i.e., to register
components and MEs with names and to lookup by names). Methods of this
interface include, but are not limited to, discover, allocate, deallocate, deploy,
redeploy, subscribe, unsubscribe, register, lookup, bind, unbind, create group,
remove group, add to group;

• TriggerInterface (named “trigger”) used to trigger events;

7.6. NICHE: A PLATFORM FOR SELF-MANAGING DISTRIBUTED
APPLICATIONS 87

• NicheIdRegistry (named “nicheIdRegistry”) is an auxiliary low-level interface
used to lookup components by system-wide names;

• OverlayAccess (named “overlayAccess”) is an auxiliary low-level interface
used to obtain access to the runtime system and the NicheActuatorInterface
interface.

When developing a management part of an application, the developer should
mostly use the first two interfaces. Note that in addition to the above interfaces,
the programmer also uses a component and group APIs (Fractal API) to manipu-
late component and groups for the sake of self-management. Architectural elements
(components, groups, MEs) can be located in different Niche containers; therefore
invocations of methods of the NicheActuatorInterface interface as well as group and
component interfaces can be remote, i.e., cross container boundaries. All architec-
tural elements (components, groups, management elements) of an application are
uniquely identified by system-wide IDs assigned on deployment. An element can
be registered at the Niche runtime system with a given name to be looked up (and
bound with) by its name.

Execution Environment: Internals

Resource Discovery. Niche applications can discover and allocate resources using
an overlay-based resource discovery mechanism provided by Niche. Currently the
Niche prototype uses a full broadcast (i.e., sends an inquiry to all nodes in the over-
lay) which scales poorly. However, there are approaches to make broadcast-based
discovery more efficient and scalable, such as an incremental controlled broadcast
e.g., [106].

Mobility and Location Transparency. The DHT-based lookup (registry)
service built into Niche is used to keep information (metadata) on all identifiable
architectural elements of an application executed in the Niche environment, such
as components, component groups, bindings, management elements, subscriptions.
Each architectural element is assigned a system-wide unique identifier (ID) that
is used to identify the element in the actuation API. The ID is assigned to the
element when the element is created. The ID is used as a key to lookup information
about the element in the DHT of the Niche overlay. For most of the element
types, the DHT-based lookup service contains location information, e.g., an end-
point of a container hosting a given component, or end-points of containers hosting
members of a given component group. Being resolved, the location information is
cached in the element’s handle. If the cached location information is invalid (the
element has moved to another container), it will be automatically and transparently
updated by the component binding stub via lookup in the DHT. This enables
location transparency, transparent migration of component, members of component
groups, and management elements at runtime. In order to prevent losing of data
on failures of DHT nodes, we use a standard DHT replication mechanism.

88 CHAPTER 7. NICHE PLATFORM

Figure 7.4: Steps of method invocation in Niche

For example, Figure 7.4 depicts steps in executing a (remote) method invoca-
tion on a component located in a remote container. Assume a client interface of
component A in node 0 is bound to a server interface of component B in node 1;
whereas the information about the binding of A to B (i.e., the end-point of B) is
stored at node 2. When A makes its first call to B (Step 1), the method call is
invoked on the binding stub of B at node 0 (Step 2). The stub performs lookup,
using the binding ID as a key, for current location of component B (Step 3). The
lookup result, i.e., the end-point reference of B, is cached at node 0 for further
calls. When the reference to B is resolved, the stub makes a remote call to the
component B using the reference. All further calls to B from node 0 will use the
cached end-point reference. If, for any reason, B migrates to another container
(not shown in Figure 7.4), the location of B will be updated in the DHT, and the
stub of B in node 0 can lookup the new location in the next call to component B.
If a node hosting component B fails, a component failure event will be sent to all
subscribers, including a manager (if any) responsible for restoring component B in
another container. In this case, component A, which is bound to B, does not need
to be informed; rebinding of A to the new instance of B is done transparently to A.

7.6. NICHE: A PLATFORM FOR SELF-MANAGING DISTRIBUTED
APPLICATIONS 89

Location information is stored in the Niche DHT in the form of a data structure
called Set of Network References, SNR, which represents a set of references to iden-
tifiable Niche elements (e.g., components, component groups). A component SNR
contains one reference, whereas an SNR of a component group contains references
to members of the corresponding group. SNRs are stored under their names (used
as keys) in the Niche DHT-based key-value store. SNRs are used to find Niche
elements by names and can contain either direct or indirect references. A direct
reference contains the location of an element; whereas an indirect reference refers to
another SNR identified by its name. The indirect reference must be resolved before
use. An SNR can be cached by a client in order to improve access time to the
referenced element(s). Niche transparently detects out-of-date (invalid) references
and refreshes cache contents when needed. Niche supports transparent sensing of
elements referenced in an SNR. When a management element is created to con-
trol (sense and actuate) functional components referenced by the SNR, the Niche
runtime system transparently deploys sensors and actuators for each component.
Whenever the references in the SNR are changed, the runtime system transpar-
ently (un)deploys sensors and actuators for the corresponding components. For
robustness, SNRs are replicated using a DHT replication mechanism. The SRN
replication provides eventual consistency of SNR replicas, but transient inconsis-
tencies are allowed. Similarly to handling of SNR caching, the framework recognizes
out-of-date SNR references and retries SNR access whenever necessary.

Groups are implemented using SNRs containing multiple references. Since a
group SNR represents a group, a component bound to the group is actually bound
to the group SNR. An invocation through “one-to-any” or “one-to-all” group bind-
ing is performed as follows. First, the target group name (the name of the group
binding) is resolved to its SNR that contains references to all members of the group.
Next, in the case of the one-to-any binding, one of the references is (randomly) se-
lected and the invocation request is sent to the corresponding member of the group.
In the case of the one-to-all binding, the invocation request is sent to all members
of the group, i.e., to all references in the group SNR. Use of SNRs allows changing
the group membership (i.e., growing or shrinking the group) transparently to com-
ponents bound to the group. Niche supports monitoring of group membership and
subscribing to group events issued by group sensors when new members are added
or removed from the monitored groups.

Meeting the Challenges

In this section, we discuss how Niche meets the four challenges (see Section Chal-
lenges) for self-management in dynamic and volatile environments. The challenges
are chiefly concerned with the non-functional properties of the execution environ-
ment, so we shall also present the performance/fault model associated with the
basic operations of Niche. For most operations the performance model is in terms
of network hops, ignoring local computation which is insignificant. Sometimes
the number of messages is also taken into account. Clearly, the best that can

90 CHAPTER 7. NICHE PLATFORM

be obtained for any remote operation is one or two hops, for asynchronous and
synchronous operations, respectively.

Resource Discovery. Niche is an infrastructure that loosely connects avail-
able physical resources (computers), and provides for resource discovery by using
the structured overlay. Using total broadcast to discover resources means that at
most it take O(log N) hops to find the required resource(s) (where N is the number
of physical nodes). However, the total number of messages sent is large, O(N).
In large systems controlled incremental interval broadcast can be used to decrease
the number of messages sent, at the price of greater delay if and when the discov-
ery search needs to be expanded (i.e., when searching for a rare type of available
resource). Finally, we note that, often there is actually little net increase in the
number of messages, as the resource discovery messages are sent along the same
links that continuously need to be probed anyway for overlay self-management.

The use of a structured overlay allows Niche to deal with the first challenge
(Resource discovery).

Mobility and Location Transparency. In Niche all the architectural ele-
ments are potentially mobile. In much of the Niche actuation API, element identi-
fiers are passed to Niche. An example would be to install a sensor on a given com-
ponent. Associated with the element identifier is a cached location. If the cached
entry is correct, then the action is typically one or two hops, i.e., the minimum.
However, due to the action of other management elements the cached location may
be invalid in which case a lookup needs to be performed. In the worst case a lookup
takes log N hops (where N is the number of physical nodes). What is to be expected
depends on the rate of dynamicity of the system. Additionally if the rate of churn is
low the overlay can be instrumented so as to decrease the average lookup hops (by
increasing the size of routing table at the price of increasing the self-management
overhead of the overlay itself).

In our view, the network or location transparency of element identifiers is an
important requisite for efficient decentralization of management and directly relates
to the second (Robust and efficient sensing and actuation) and third (Management
bottleneck) challenges of the previous section. Management elements do not need
to be informed when the components that they reference are moved, and neither
do sensors need to be informed when the management elements that they reference
are moved. For example, in a dynamic environment both a given component and a
related management element might be moved (from container to container) many
times before the component triggers a high-load event. In this case a DHT-lookup
will occur, and the event will reach the management element later than it would
be if the location of architectural elements was kept up-to-date, but fewer messages
are sent.

Sensing and Actuation. The sensing and actuation services are robust and
churn-tolerant, as Niche itself is self-managing. Niche thus meets the second chal-
lenge (Robust and efficient sensing and actuation). Niche achieves this by leveraging
the self-management properties of an underlying structured overlay. The necessary
information to relay events to subscribers (at least once) is stored with redundancy

7.6. NICHE: A PLATFORM FOR SELF-MANAGING DISTRIBUTED
APPLICATIONS 91

in the overlay. Upon subscription Niche creates the necessary sensors that serve as
the initial detection points. In some cases, sensors can be safely co-located with the
entity whose behavior is being monitored (e.g., a component leave event). In other
cases, the sensors cannot be co-located. For instance, a crash of a machine will
cause all the components (belonging to the same or different applications) being
hosted on it to fail. Here the failure sensors need to be located on other nodes.
Niche does all this transparently for the developer; the only thing the application
developer must do is to use the Niche API to ensure that management elements
subscribe to the events that it is programmed to handle, and that components are
properly programmed to trigger application-specific events (e.g., load change).

Self-management requires monitoring of the execution environment, compo-
nents, and component groups. In Niche monitoring is performed by the push rather
than pull method for the sake of performance and scalability (the fourth challenge:
Scale) using a publish/subscribe event dissemination mechanism. Sensors and man-
agement elements can publish predefined (e.g., node failure) and application-specific
(e.g., load change) events to be delivered to subscribers (event listeners). Niche
provides the publish/subscribe service that allows management elements to pub-
lish events and to subscribe to predefined or application-specific events fired by
sensors and other MEs. A set of predefined events that can be published by the
Niche runtime environment includes resource (node) and component failure/leave
events, group change events, component move events, and other events used to
notify subscribers (if any) about certain changes in the execution environment and
in the architecture of the application. The Niche publish/subscribe API allows the
programmer to define application specific events and sensors to issue the events
whenever needed. A list of subscribers is maintained in an overlay proxy in the
form of an SNR (a Set of Network References described above). The sensor triggers
the proxy which then sends the events to subscribers.

Decentralized and Robust Management. Niche allows for maximum de-
centralization of management. Management can be divided (i.e., parallelized) by as-
pects (e.g., self-healing, self-tuning), spatially, and hierarchically. Later, we present
the design methodology and report on use-case studies of decentralized manage-
ment. In our view, a single application has many loosely synchronized managers.
Niche supports the mobility of management elements. Niche also provides the exe-
cution platform for these managers; they typically get assigned to different machines
in the Niche overlay. There is some support for optimizing this placement of man-
agers, and some support for replication of managers for fault-tolerance. Thus Niche
meets, at least partly, the challenge to avoid the management bottleneck (the third
challenge: Management bottleneck). The main reason for the “at least partly” in
the last sentence, is that more support for optimal placement of managers, taking
into account network locality, will probably be needed (currently Niche recognizes
only some special cases, like co-location). A vanilla management replication mech-
anism is available in the current Niche prototype, and, at the time of writing this
chapter, work is ongoing on a robust replicated manager scheme based on the Paxos
algorithm, adapted to the Niche overlay [90].

92 CHAPTER 7. NICHE PLATFORM

Groups. The fact that Niche provides support for component groups and
group bindings contributes to dealing with the fourth challenge (Scale). Supporting
component groups directly in the runtime system, rather than as a programming
abstraction, allows us to adapt the sensing and actuation infrastructure to minimize
messaging overhead and to increase robustness.

7.7 Development of Self-Managing Applications Using
Niche

The Niche programming environment enables the development of self-managing
applications built of functional components and management elements. Note that
the Niche platform [103] uses Java for programming components and management
elements.

In this section, we describe in more detail the Niche programming model and
exemplify with a Hello World application (singleton and group). The Niche pro-
gramming model is based on Fractal, a modular and extensible component model
intended for designing, implementing, deploying, and reconfiguring complex soft-
ware systems. Niche borrows the core Fractal concepts, which are components,
interfaces, and bindings, and adds new concepts related to group communication,
deployment, and management. The following section discusses the main concepts
of the Niche programming model and how they are used. Then we describe typi-
cal steps of developing a self-managing application illustrated with an example of
programming of a self-healing group service.

Niche Programming Concepts

A self-managing application in Niche is built of functional components and man-
agement elements. The former constitute the functional part of the application;
whereas the latter constitute the management part.

Components are runtime entities that communicate exclusively through named
well-defined access points, called interfaces, including control interfaces used for
management. Component interfaces are divided into two kinds: client interfaces
that emit operation invocations and server interfaces that receive them. Interfaces
are connected through communication paths, called bindings. Components and
interfaces are named in order to lookup component interfaces by names and bind
them.

Components can be primitive or composite, formed by hierarchically assem-
bling other components (called sub-components). This hierarchical composition is
a key Fractal feature that helps managing the complexity of understanding and
developing component systems.

Another important Fractal feature is its support for extensible reflective facili-
ties, allowing inspection and adaptation of the component structure and behavior.
Specifically, each component is made of two parts: the membrane, which embodies

7.7. DEVELOPMENT OF SELF-MANAGING APPLICATIONS 93

reflective behavior, and the content, which consists of a finite set of sub-components.
The membrane exposes an extensible set of control interfaces (called controllers)
for reconfiguring internal features of the component and to control its life cycle.
The control interfaces are server interfaces that must be implemented by compo-
nent classes in order to be manageable. In Niche, the control interfaces are used
by application-specific management elements (namely, sensors and actuators), and
by the Niche runtime environment to monitor and control the components, e.g.,
to (re)bind, change attributes, and start. Fractal defines the following four ba-
sic control interfaces: attribute, biding, content, and life-cycle controllers. The
attribute controller (AttributeController) supports configuring named component
properties. The binding controller (BindingController) is used to bind and unbind
client interfaces to server interfaces, to lookup an interface with a given name,
and to list all client interfaces of the component. The content controller (Con-
tentController) supports listing, adding, and removing sub-components. Finally,
the life-cycle controller (LifeCycleController) supports starting and stopping the
execution of a component and getting the component state.

Figure 7.5: A composite Fractal component HelloWorld with two sub-components
client and server

The core concepts of the Fractal component model are illustrated in Figure 7.5
that depicts a client-server application HelloWorld, which is a composite Fractal

94 CHAPTER 7. NICHE PLATFORM

component containing two sub-components, Client and Server. The client interface
of the Client component is bound to the server interface of the Server component.
Membranes of components contain control interfaces. Note that on deployment,
the composite, the Client, and the Server components can be placed in different
containers.

Building a component-based application involves programming primitive com-
ponents and assembling them into an initial configuration either programmatically,
using methods of the NicheActuatorInterface interface of the Niche runtime envi-
ronment; or declaratively, using an Architecture Description Language (ADL). In
the former case, at least one (startup) component must be described in ADL to
be initially deployed and started by the ADL interpreter. The startup component
can deploy the remaining part of the application by executing a deployment and
configuration workflow programmed using the Niche runtime actuation API, which
allows the developer to program complex and flexible deployment and configuration
workflows. The ADL used by Niche is based on Fractal ADL, an extensible language
made of modules, each module defining an abstract syntax for a given architectural
concern (e.g., hierarchical containment, deployment). Primitive components are
programmed in Java.

Niche extends the Fractal component model with abstractions for group commu-
nication (component group, group bindings) as well as abstractions for deployment
and resource management (package, node). All these abstractions are described
later in this section.

A management part of a Niche application is programmed using the Manage-
ment Element (ME) abstractions that include Sensors, Watchers, Aggregators,
Managers, Executors and Actuators. Note that the distinction between Watch-
ers, Aggregators, Managers and Executors is an architectural one. From the point
of view of the execution environment they are all management elements, and man-
agement can be programmed in a flat manner (managers, sensors and actuators
only). Figure 7.6 depicts a typical hierarchy of management elements in a Niche
application. We distinguish different types of MEs depending on the roles they play
in self-management code. Sensors monitor components through interfaces and trig-
ger events to notify appropriate management elements about different application-
specific changes in monitored components. There are sensors provided by the Niche
runtime environment to monitor component failures/leaves (which in turn may be
triggered by container/machine failures and leaves), component groups (changes in
membership, group creations), and container failures. Watchers receive notification
events from a number of sensors, filter and propagate them to Aggregators, which
aggregate the information, detect and report symptoms to Managers. A symptom
is an indication of the presence of some abnormality in the functioning of monitored
components, groups or environment. Managers analyze the symptoms, make deci-
sions and request Executors to act accordingly. Executors receive commands from
managers and issue commands to Actuators, which act on components through
control interfaces. Sensors and actuators interact with functional components via
control interfaces (e.g., life-cycle and biding controllers), whereas management el-

7.7. DEVELOPMENT OF SELF-MANAGING APPLICATIONS 95

Figure 7.6: Hierarchy of management elements in a Niche application

96 CHAPTER 7. NICHE PLATFORM

ements typically communicate by events using the pub/sub service provided by
the Niche runtime environment. To manage and to access Niche runtime services,
MEs use the NicheActuatorInterface interface bound to the Niche runtime environ-
ment which provides useful service and control methods such as discover, allocate,
de-allocate, deploy, lookup, bind, unbind, subscribe, and unsubscribe. To publish
events, MEs use the TriggerInterface interface of the runtime environment. Both
client interfaces, NicheActuatorInterface and TriggerInterface, used by an ME are
automatically bound to corresponding server interfaces of the Niche runtime envi-
ronment when the ME is deployed (created). In order to receive events, an ME
must implement the EventHandlerInterface server interface and subscribe to the
events of interest.

Development Steps

When developing a self-managing distributed component-based application using
Niche, the developer makes the following steps.

1. Development of architecture of the functional and management parts of the
application. This step includes the following work: definition and design of
functional components (including server and client interfaces) and component
groups, assigning names to components and interfaces, definition of com-
ponent and group bindings, definition and design of management elements
including algorithms of event handlers for application-specific management
objectives, definition of application-specific monitoring and actuation events,
selection of predefined events issued by the Niche runtime environment, defi-
nition of event sources and subscriptions.

2. Description of (initial) architecture of functional and management parts in
ADL, including components, their interfaces and bindings. Note that it is not
necessary to describe the entire configuration in ADL, as components, groups
and management elements can be deployed and configured also programmat-
ically using the Niche actuation API rather than the ADL interpreter.

3. Programming of functional and management components. At this stage, the
developer defines classes and interfaces of functional and management com-
ponents, implements server interfaces (functional), event handlers (manage-
ment), Fractal and Niche control interfaces, e.g., life-cycle and binding con-
trollers.

4. Programming a (startup) component that completes initial deployment and
configuration done by the ADL interpreter. An initial part of the applica-
tion (including the startup component) described in ADL in Step 2 is to be
deployed by the ADL interpreter; whereas the remaining part is to be de-
ployed and configured by the programmer-defined startup component using
the actuation interface NicheActuatorInterface of the Niche runtime system.

7.7. DEVELOPMENT OF SELF-MANAGING APPLICATIONS 97

Completion of the deployment might be either trivial if ADL is maximally
used in Step 2, or complicated if a rather small part of the application is de-
scribed in ADL in Step 2. Typically, the startup component is programmed
to perform the following actions: bind components deployed by ADL, discover
and allocate resources (containers) to deploy components; create, configure
and bind components and groups; create and configure management elements
and subscribe them to events; and start components.

Programming of Functional Components and Component Groups

This section demonstrates how the above concepts are practically applied in pro-
gramming the simple client-server HelloWorld application (Figure 7.4) which is a
composite component containing two sub-components, Client and Server. The ap-
plication provides a singleton service that prints a message (the greeting “Hello
World!”) specified in the client call. In this example, the server component pro-
vides a server interface of type Service containing the print method. The client
component has a client interface of type Service and a server interface of type Main
containing the main method. The client interface of the client component is bound
to the server interface of the service component. The composite HelloWorld com-
ponent provides a server interface that exports the corresponding interface of the
client component; its main method is invoked when the application is launched.

Primitive Components

Primitive components are realized as Java classes that implement server interfaces
(e.g., Service and Main in the HelloWorld example) as well as any necessary control
interfaces (e.g., BindingController). The client component class called ClientImpl,
implements the Main interface. Since the client component has a client interface to
be bound to the server, the class implements also the BindingController interface,
which is the basic control interface for managing bindings. The following code
fragment presents the ClientImpl class that implements the Main and the binding
controller interfaces. Note that the client interface Service is assigned the name “s”.

public class ClientImpl implements Main, BindingController {
// Client interface to be bound to server interface of Server component
private Service service;
private String citfName = "s"; // Name of the client interface
// Implementation of the Main interface
public void main (final String[] args) {

// call the service to print the greeting
service.print ("Hello world!");

}
// All methods below belong to the Binding Controller
// interface with the default implementation
// Returns names of all client interfaces of the component
public String[] listFc () {

return new String[] { citfName };

98 CHAPTER 7. NICHE PLATFORM

}
// Returns the interface to which the given client interface is bound
public Object lookupFc(final String citfName)

throws NoSuchInterfaceException {
if (!this.citfName.equals(citfName))

throw new NoSuchInterfaceException(itfName);
return service;

}
// Binds the client interface with the given name
// to the given server interface
public void bindFc(final String citfName, final Object sItf)

throws NoSuchInterfaceException {
if (!this.citfName.equals(citfName))

throw new NoSuchInterfaceException(itfName);
service = (Service)sItf;

}
// Unbinds the client interface with the given name
public void unbindFc (final String citfName)

throws NoSuchInterfaceException {
if (!this.citfName.equals(citfName))

throw new NoSuchInterfaceException(itfName);
service = null;

}
}

The server component class, called ServerImpl, implements only the Service
interface as shown below.

public class ServerImpl implements Service {
public void print (final String msg) {

for (int i = 0; i < count; ++i)
System.err.println("Server prints:" + msg);

}
}

Assembling Components

The simplest method to assemble components is through the ADL, which specifies a
set of components, their bindings, and their containment relationships, and can be
used to automatically deploy a Fractal system. The main concepts of the ADL are
component definitions, components, interfaces, and bindings. The ADL description
of the HelloWorld application with the singleton service is the following:

<definition name="HelloWorld">
<interface name="m" role="server" signature="Main"/>
<component name="client">

<interface name="m" role="server" signature="Main"/>
<interface name="s" role="client" signature="Service"/>
<content class="ClientImpl"/>

</component>
<component name="server">

<interface name="s" role="server" signature="Service"/>
<content class="ServerImpl"/>

7.7. DEVELOPMENT OF SELF-MANAGING APPLICATIONS 99

</component>
<binding client="this.m" server="client.m" />
<binding client="client.s" server="server.s" />

</definition>

Component Groups and Group Bindings

Niche bindings support communication among components hosted in different ma-
chines. Apart from the previously seen, one-to-one bindings, Niche also supports
groups and group bindings, which are particularly useful for building decentralized,
fault-tolerant applications. Group bindings allow treating a collection of compo-
nents, the group, as a single entity, and can deliver invocations either to all group
members (one-to-all semantics) or to any, randomly-chosen group member (one-
to-any semantics). Groups are dynamic in that their membership can change over
time (e.g., increase the group size to handle increased load in a tier).

Groups are manipulated through the Niche API, which supports creating groups,
binding groups and components, and adding/removing group members. Moreover,
the Fractal ADL has been extended to enable describing groups as part of the
system architecture.

Figure 7.7 depicts the HelloGroup application, in which the client component
is connected to a group of two stateless service components (server1 and server2)
using one-to-any invocation semantics. The group of service components provides
a service that prints the “Hello World!" greeting by any of the group members on
a client request.

The initial configuration of this example application (without management ele-
ments) can be described in ADL as follows:

<definition name="HelloGroup">
<interface name="m" role="server" signature="Main"/>
<component name="client">

<interface name="m" role="server" signature="Main"/>
<interface name="s" role="client" signature="Service"/>
<content class="ClientImpl"/>

</component>
<component name="ServiceGroup">

<interface name="s" role="server" signature="Service"/>
<interface name="clients" role="client" signature="Service"

cardinality="collection"/>
<content class="GROUP"/>

</component>
<component name="server1">
<interface name="s" role="server" signature="Service"/>
<content class="ServerImpl"/>

</component>
<component name="server2">

<interface name="s" role="server" signature="Service"/>
<content class="ServerImpl"/>

</component>
<binding client="this.r" server="client.r" />
<binding client="client.s" server="group.s" bindingType="groupAny"/>

100 CHAPTER 7. NICHE PLATFORM

Figure 7.7: HelloGroup application

<binding client="group1.clients1" server="server1.s"/>
<binding client="group1.clients2" server="server2.s"/>

</definition>

As seen in this description, the service group is represented by a special com-
ponent with content “GROUP”. Group membership is then represented as binding
the server interfaces of members to the client interfaces of the group. The bind-
ingType attribute represents the invocation semantics (one-to-any in this case).
Groups can also be created and bound programmatically using the Niche actuation
API (namely the NicheActuatorInterface client interface bound to the Niche run-
time system). As an example, the following Java code fragment illustrates group
creation performed by a management element.

// Code fragment from the StartManager class
// References to the Niche runtime interfaces
// bound on init or via binding controller
private NicheIdRegistry nicheIdRegistry;
private NicheActuatorInterface myActuatorInterface;
...

7.7. DEVELOPMENT OF SELF-MANAGING APPLICATIONS 101

// Lookup the client component and all server components by names
ComponentId client =

(ComponentId) nicheIdRegistry.lookup("HelloGroup _0/client");
ArrayList<ComponentId> servers = new ArrayList();
servers.add((ComponentId) nicheIdRegistry.lookup("HelloGroup _0/server1");
servers.add((ComponentId) nicheIdRegistry.lookup("HelloGroup_0/server2");
// Create a group containing all server components.
GroupId groupTemplate = myActuatorInterface.getGroupTemplate();
groupTemplate.addServerBinding("s", JadeBindInterface.ONE_TO_ANY);
GroupId serviceGroup = myActuatorInterface.createGroup(groupTemplate, servers);
// Bind the client to the group with one-to-any binding
myActuatorInterface.bind(client, "s", serviceGroup,

"s", JadeBindInterface.ONE_TO_ANY);

Programming of Management Elements

The management part of a Niche application is programmed using the Management
Element (ME) abstractions that include Sensors, Watchers, Aggregators, Managers,
Executors and Actuators. MEs are typically reactive event-driven components;
therefore developing of MEs is mostly programming event handlers, i.e., methods
of the EventHandlerInterface server interface that each ME must implement in or-
der to receive sensor events (including user-defined events and predefined events
issued by the runtime system) and events from other MEs. The event handler is
eventually invoked when a corresponding event is published (generated). The event
handlers can be programmed to receive and handle events of different types. A typ-
ical management algorithm of an event handler includes, but not necessarily and
not limited to, a sequence of conditional if-then(-else or -else-if) control statements
(management logic rules) that examine rule conditions (IF clause) based on infor-
mation retrieved from the received events or/and its internal state (which in turn
reflects previous received events as part of monitoring activity); make a manage-
ment decision and perform management actions and issue events (THEN clause)
(see section Policy-Based Management).

When programming an ME class, the programmer must implement the follow-
ing three server interfaces: the InitInterface interface to initialize an ME instance,
the EventHandlerInterface interface to receive and handle events; and the Mov-
ableInterface interface to get a checkpoint, when the ME is moved and redeployed
for replication or migration (the checkpoint is passed to a new instance through its
InitInterface). To perform control actions, to subscribe and publish events, an ME
class must include the following two client interfaces: the NicheActuatorInterface
interface, named “actuator”; and the TriggerInterface interface, named “trigger”.
Both client interfaces are bound to the Niche runtime system when the ME is
deployed either through its InitInterface or via the BidingController interface.

When developing the management code of an ME (event handlers) to control
the functional part of an application and to subscribe to events, the programmer
uses methods of the NicheActuatorInterface client interface that includes a num-
ber of actuation methods such as discover, allocate, de-allocate, deploy, create a

102 CHAPTER 7. NICHE PLATFORM

component group, add a member to a group, bind, unbind, subscribe, unsubscribe.
Note that the programmer can subscribe/unsubscribe to predefined built-in events
(e.g., component failure, group membership change) issued by built-in sensors of the
Niche runtime system. To publish events, the programmer uses the TriggerInterface
client interface of the ME.

For example, Figure 7.7 depicts the HelloGroup application that provides a
group service with self-healing capabilities. Feedback control in the application
maintains the group size (a specified minimum number of service components) de-
spite node failures, i.e., if any of the components in the group fails, a new service
component is created and added to the group so that the group always contain the
given number of servers. The self-healing control loop includes the Service Super-
visor aggregator that monitors the number of components in the group, and the
Configuration manager that is responsible to create and add a new service com-
ponent on a request from the Service Supervisor. Figure 7.8 depicts a sequence of
events and control actions of the management components. Specifically, if one of
the service components of the service group fails, the group sensor issues a com-
ponent failure event received by the Service Supervisor (1), which checks whether
the number of components has dropped below a specified threshold (2). If so, the
Server Supervisor fires the Service-Availability-Change event received by the Con-
figuration Manager (3), which heals the component, i.e., creates a new instance
of the server component and adds it to the group (4). When a new member is
added to the group, the Service Supervisor, which keeps track of the number of
server components, is notified by the predefined Member-Added-Event issued by
the group sensor (5, 6).

The shortened Java code fragment below shows the management logic of the
Configuration Manager responsible for healing of a failed server component upon
receiving a Service-Availability-Change event issued by the Service Supervisor (steps
3 and 4 in Figure 7.8)

// Code fragment from the ConfigurationManager class
public class ConfigurationManager

implements EventHandlerInterface, MovableInterface,
InitInterface, BindingController, LifeCycleController {

private static final String DISCOVER_PREFIX = "dynamic:";
// Reference to the Actuation interface of the Niche runtime
// (automatically bound on deployment).
private NicheActuatorInterface myManagementInterface;
...
// invoked by the runtime system
public void init(NicheActuatorInterface managementInterface) {

myManagementInterface = managementInterface;
}

// invoked by the runtime system on deployment
public void init(Serializable[] parameters) {

initAttributes = parameters;
componentGroup = (GroupId) initAttributes[0];
serviceCompProps = initAttributes[1];

7.7. DEVELOPMENT OF SELF-MANAGING APPLICATIONS 103

Figure 7.8: Events and actions in the self-healing loop of the HelloGroup application

nodeRequirements = DISCOVER_PREFIX + initAttributes[2];
}
...
// event handler, invoked on an event

public void eventHandler(Serializable e, int flag) {
// For any case, check event type,
// ignore if it is not the event of interest (should not happen)
if (! (e instanceof ServiceAvailabilityChangeEvent)) return;
// Find a node that meets the requirements for a server component.
try {

newNode =
myManagementInterface.oneShotDiscoverResource(nodeRequirements);

} catch (OperationTimedOutException err) {
... // Retry later (the code is removed)

}
// Allocate resources for a server component at the found node.
try {

List allocatedResources =
myManagementInterface.allocate(newNode, null);

} catch (OperationTimedOutException err) {
... // Retry later (the code is removed)

}
...

String deploymentParams = Serialization.serialize(serviceCompProps);
// Deploy a new server component instance at the allocated node.

104 CHAPTER 7. NICHE PLATFORM

try {
deployedComponents = myManagementInterface.deploy(allocatedResource,

deploymentParams);
} catch (OperationTimedOutException err) {
... // Retry later (the code is removed)
}
ComponentId cid = (ComponentId)((Object[])deployedComponents.get(0))[1];
// Add the new server component to the service group and start the server
myManagementInterface.update(componentGroup, cid,

NicheComponentSupportInterface.ADD_TO_GROUP_AND_START);
}

While MEs interact with each other mostly by events, sensors and actuators
are programmed to interact with functional components via interface bindings.
Interfaces between sensors and components are defined by the programmer, who
may choose to use either the push or pull methods of interaction between a sensor
and a component. In the case of the push method, the component pushes the
sensor to issue an event. In this case, the component’s client interface is bound to
the corresponding sensor’s server interface. In the case of the pull method, a sensor
pulls the state from a component. In this case, the sensor’s client interface is bound
to a corresponding component’s server interface. A sensor and a component are
auto-bound when the sensor is deployed by a watcher. Actuation (control actions)
can be done by MEs either through actuators bound to functional components
or directly on components via their control interfaces using the Niche actuation
API. Actuators are programmed in a similar way as sensors and are deployed by
executors. By analogy to sensors, an actuator can be programmed to interact with
a controlled component in the push and/or pull manner. In the former case (push),
the actuator pushes a component through component’s control interfaces, which can
be either application-specific interfaces defined by the programmer or the Fractal
control interfaces, e.g., LifeCycleController and AttributeController. In the case of
the pull-based actuation, the controlled component checks its actuator for actions
to be executed.

Deployment and Resource Management

Niche supports component deployment and resource management through the con-
cepts of component package and node. A component package is a bundle that
contains the executables necessary for creating components, the data needed for
their correct functioning as well as metadata describing their properties. A node is
the physical or virtual machine on which components are deployed and executed. A
node provides processing, storage, and communication resources, which are shared
among the deployed components.

Niche exposes basic primitives for discovering nodes, allocating resources on
those nodes, and deploying components; these primitives are designed to form the
basis for external services for deploying components and managing their underlying
resources. In the current prototype, component packages are OSGi bundles [107]

7.7. DEVELOPMENT OF SELF-MANAGING APPLICATIONS 105

and managed resources include CPU time, physical memory, storage space, and
network bandwidth. The Fractal ADL has been extended to allow specifying pack-
ages and resource constraints on nodes. These extensions are illustrated in the
following ADL extract, which refines the client and composite descriptions in the
HelloGroup example (added elements are show in Bold).

<definition name="HelloGroup">
<interface name="m" role="server" signature="Main"/>
<component name="client">
<interface name="m" role="server" signature="Main"/>
<interface name="s" role="client" signature="Service"/>
<content class="ClientImpl"/>
<packages>

<package name="ClientPackage v1.3" >
<property name="local.dir" value="/tmp/j2ee"/>

</package>
</packages>
<virtual-node name="node1" resourceReqs="(&(memory>=1)(CPUSpeed>=1))"/>
</component>

<!-- description of other components and bindings (is not shown) -->
...

<virtual-node name="node1">
</definition>

The packages element provides information about the OSGi bundles necessary
for creating a component; packages are identified with their unique name in the
OSGi bundle repository (e.g., “ClientPackage v1.3”). The virtual-node element
describes resource and location requirements of components. At deployment time,
each virtual node is mapped to a node (container) that conforms to the given re-
source requirements specified in the resourceReqs attribute. The necessary bundles
are then installed on this node and the associated component is created. In the
example, the client and the composite components are co-located at a node with
memory larger than 1GB and CPU speed larger than 1Ghz.

Initialization of Management Code

The ADL includes support for initializing the management part of an application in
the form of start manager components. Start managers have a predefined definition
“StartManagementType” that contains a set of client interfaces corresponding to
the Niche API. These interfaces are implicitly bound by the system after start
managers are instantiated. The declaration of a start manager is demonstrated in
the following ADL extract, which refines the HelloGroup example.

<component name="StartManager" definition="org.ow2.jade.StartManagementType">
<content class=" helloworld.managers.StartManager"/>

</component>

Typically, the start manager contains the code for creating, configuring, and ac-
tivating the set of management elements that constitute the management part of an

106 CHAPTER 7. NICHE PLATFORM

application. In the HelloGroup example, the management part realizes self-healing
behavior and relies on an aggregator and a manager, which monitors the server
group and maintains its size despite node failures. The start manager implementa-
tion (the StartManager class) then contains the code for deploying and configuring
the elements of the self-healing loop shown in Figure 7.7 (i.e., ServiceSupervisor
and ConfigurationManager). The code is actually located in the implementation
of the LifeCycleController interface (startFc operation) of the startup manager, as
seen next.

// Code fragment from the StartManager class of the HelloGroup application
public class StartManager implements BindingController, LifeCycleController {
// References to the Niche runtime interfaces
// bound on init or via binding controller
private NicheIdRegistry nicheIdRegistry;
private NicheActuatorInterface myActuatorInterface;
...
// Invoked by the Niche runtime system
public void startFc() throws IllegalLifeCycleException {

...
// Lookup client and servers, create service group
// and bind client to the group (code is not shown)
GroupId serviceGroup = myActuatorInterface.createGroup(...);

...
// Configure and deploy the Service Supervisor aggregator

GroupId gid = serviceGroup;
ManagementDeployParameters params = new ManagementDeployParameters();

params.describeAggregator(ServiceSupervisor.class.getName(), "SA", null,
new Serializable[] { gid.getId() });

NicheId serviceSupervisor =
myActuatorInterface.deployManagementElement(params, gid);

// Subscribe the aggregator to events from group
myActuatorInterface.subscribe(gid, serviceSupervisor,

ComponentFailEvent.class.getName());
myActuatorInterface.subscribe(gid, serviceSupervisor,

MemberAddedEvent.class.getName());
// Configure and deploy the Configuration manager

String minimumNodeCapacity = "200";
params = new ManagementDeployParameters();

params.describeManager(ConfigurationManager.class.getName(), "CM", null,
new Serializable[] { gid, fp, minimumNodeCapacity });

NicheId configurationManager =
myActuatorInterface.deployManagementElement(params, gid);

// Subscribe the manager to events from the aggregator
myActuatorInterface.subscribe(serviceSupervisor, configurationManager,

ServiceAvailabilityChangeEvent.class.getName());
...

}

Support for Legacy Systems

The Niche self-management framework can be applied to legacy systems by means
of a wrapping approach. In this approach, legacy software elements are wrapped as

7.8. DESIGN METHODOLOGY 107

Fractal components that hide proprietary configuration capabilities behind Fractal
control interfaces. The approach has been successfully demonstrated with the Jade
management system, which relied also on Fractal and served as a basis for develop-
ing Niche [108]. Another example of the use of a “legacy” application (namely the
VLC program) in a self-managing application developed using Niche, is the gMovie
demo application that performs transcoding of a given movie from one format to
another. The description and the code of the gMovie application can be found
in [109] and [103].

To briefly illustrate the wrapping approach, consider an enterprise system com-
posed of an application server and a database server. The two servers are wrapped
as Fractal components, whose controllers are implemented using legacy configura-
tion mechanisms. For example, the life-cycle controllers are implemented by exe-
cuting shell scripts for starting or stopping the servers. The attribute controllers
are implemented by modifying text entries of configuration files. The connection
between the two servers is represented as a binding between the corresponding
components. The binding controller of the application server wrapper is then im-
plemented by setting the database host address and port in the application server
configuration file.

The wrapping approach produces a layer of Fractal components that enable
observing and controlling the legacy software through standard interfaces. This
layer can be then complemented with a Niche-based management system (e.g., sen-
sors, actuators, managers), developed according to the described methodology. Of
course, the degree of control exposed by the Fractal layer to the management system
depends heavily on the legacy system (e.g., it may be impossible to dynamically
move software elements). Moreover, the wrapping approach cannot take full advan-
tage of Niche features such as name-based communication and group bindings. The
reason is that bindings are only used to represent and manage connections between
legacy software elements, not to implement them.

7.8 A Design Methodology for Self-Management in
Distributed Environments

A self-managing application can be decomposed into three parts: the functional
part, the touchpoints, and the management part. The design process starts by spec-
ifying the functional and management requirements for the functional and manage-
ment parts, respectively. In the case of Niche, the functional part of the application
is designed by defining interfaces, components, component groups, and bindings.
The management part is designed based on management requirements, by defining
autonomic managers (management elements) and the required touchpoints (sensors
and actuators). Touchpoints enable management of the functional part, i.e., make
it manageable.

An Autonomic Manager is a control loop that continuously monitors and affects
the functional part of the application when needed. For many applications and en-

108 CHAPTER 7. NICHE PLATFORM

vironments it is desirable to decompose the autonomic manager into a number of
cooperating autonomic managers each performing a specific management function
or/and controlling a specific part of the application. Decomposition of management
can be motivated by different reasons such as follows. It avoids a single point of
failure. It may be required to distribute the management overhead among par-
ticipating resources. Self-managing a complex system may require more than one
autonomic manager to simplify design by separation of concerns. Decomposition
can also be used to enhance the management performance by running different
management tasks concurrently and by placing the autonomic managers closer to
the resources they manage.

We define the following iterative steps to be performed when designing and
developing the management part of a self-managing distributed application in a
decentralized manner given the management requirements and touchpoints.

• Decomposition: The first step is to divide the management logic into a
number of management tasks. Decomposition can be either functional (e.g.,
tasks are defined based which self-* properties they implement) or spatial
(e.g., tasks are defined based on the structure of the managed application).
The major design issue to be considered at this step is granularity of tasks
assuming that a task or a group of related tasks can be performed by a single
manager.

• Assignment: The tasks are then assigned to autonomic managers each of
which becomes responsible for one or more management tasks. Assignment
can be done based on self-* properties that a task belongs to (according to
the functional decomposition) or based on which part of the application that
task is related to (according to the spatial decomposition).

• Orchestration: Although autonomic managers can be designed indepen-
dently, multiple autonomic managers, in the general case, are not indepen-
dent since they manage the same system and there exist dependencies between
management tasks. Therefore they need to interact and coordinate their ac-
tions in order to avoid conflicts and interference and to manage the system
properly. Orchestration of autonomic managers is discussed in the following
section.

• Mapping: The set of autonomic managers are then mapped to the resources,
i.e., to nodes of the distributed environment. A major issue to be considered
at this step is optimized placement of managers and possibly functional com-
ponents on nodes in order to improve management performance.

In this section, our major focus is on the orchestration of autonomic managers
as the most challenging and less studied problem. The actions and objectives of
the other stages are more related to classical issues in distributed systems such as
partitioning and separation of concerns, and optimal placement of modules in a
distributed environment.

7.8. DESIGN METHODOLOGY 109

Orchestrating Autonomic Managers

Autonomic managers can interact and coordinate their operation in the following
four ways as discussed below and illustrated in Figure 7.9: indirect interactions via
the managed system (stigmergy); hierarchical interaction (through touch points);
direct interaction (via direct bindings); sharing of management elements.

Figure 7.9: Interaction patterns

110 CHAPTER 7. NICHE PLATFORM

Stigmergy

Stigmergy is a way of indirect communication and coordination between agents [110].
Agents make changes in their environment, and these changes are sensed by other
agents and cause them to do more actions. Stigmergy was first observed in social
insects like ants. In our case, agents are autonomic managers and the environment
is the managed application.

The stigmergy effect is, in general, unavoidable when you have more than one
autonomic manager and can cause undesired behavior at runtime. Hidden stig-
mergy makes it challenging to design a self-managing system with multiple auto-
nomic managers. However, stigmergy can be part of the design and used as a way
of orchestrating autonomic managers.

Hierarchical Management

By hierarchical management we mean that some autonomic managers can monitor
and control other autonomic managers. The lower level autonomic managers are
considered to be a managed resource for the higher level autonomic manager. Com-
munications between levels take place using touchpoints. Higher level managers can
sense and affect lower level managers.

Autonomic managers at different levels often operate at different time scales.
Lower level autonomic managers are used to manage changes in the system that
need immediate actions. Higher level autonomic managers are often slower and
used to regulate and orchestrate the system by monitoring global properties and
tuning lower level autonomic managers accordingly.

Direct Interaction

Autonomic managers may interact directly with one another. Technically this is
achieved by direct communication (via bindings or events) between appropriate
management elements in the autonomic managers. Cross autonomic manager bind-
ings can be used to coordinate autonomic managers and avoid undesired behaviors
such as race conditions or oscillations.

Shared Management Elements

Another way for autonomic managers to communicate and coordinate their actions
is by sharing management elements. This can be used to share state (knowledge)
and to synchronize their actions.

7.9 Demonstrator Applications

In order to demonstrate Niche and our design methodology, we present two self-
managing services developed using Niche: (1) a robust storage service called YASS
– Yet Another Storage Service; and (2) a robust computing service called YACS

7.9. DEMONSTRATOR APPLICATIONS 111

– Yet Another Computing Service. Each of the services has self-healing and self-
configuration capabilities and can execute in a dynamic distributed environment,
i.e., the services can operate even if computers join, leave or fail at any time. Each of
the services implements relatively simple self-management algorithms, which can be
extended to be more sophisticated, while reusing existing monitoring and actuation
code of the services. The code and documentation of YASS and YACS services can
be found at [103].

YASS (Yet Another Storage Service) is a robust storage service that allows a
client to store, read and delete files on a set of computers. The service transparently
replicates files in order to achieve high availability of files and to improve access
time. The current version of YASS maintains the specified number of file replicas
despite nodes leaving or failing, and it can scale (i.e., increase available storage
space) when the total free storage is below a specified threshold. Management
tasks include maintenance of file replication degree; maintenance of total storage
space and total free space; increasing availability of popular files; releasing extra
allocate storage; and balancing the stored files among available resources.

YACS (Yet Another Computing Service) is a robust distributed computing ser-
vice that allows a client to submit and execute jobs, which are bags of independent
tasks, on a network of nodes (computers). YACS guarantees execution of jobs de-
spite nodes leaving or failing. YACS scales, i.e., changes the number of execution
components, when the number of jobs/tasks changes. YACS supports checkpointing
that allows restarting execution from the last checkpoint when a worker component
fails or leaves.

Demonstrator I: Yet Another Storage Service (YASS)

In order to illustrate our design methodology, we have developed a storage service
called YASS (Yet Another Storage Service), using Niche. The case study illustrates
how to design a self-managing distributed system monitored and controlled by
multiple distributed autonomic managers.

YASS Specification

YASS is a storage service that allows users to store, read and delete files on a set
of distributed resources. The service transparently replicates the stored files for
robustness and scalability.

Assuming that YASS is to be deployed and provided in a dynamic distributed
environment, the following management functions are required in order to make
the storage service self-managing in the presence of dynamicity in resources and
load: the service should tolerate the resource churn (joins/leaves/failures), optimize
usage of resources, and resolve hot-spots. We define the following tasks based on
the functional decomposition of management according to self-* properties (namely
self-healing, self-configuration, and self-optimization) to be achieved:

112 CHAPTER 7. NICHE PLATFORM

• Maintain the file replication degree by restoring the files which were stored
on a failed/leaving resource. This function provides the self-healing property
of the service so that the service is available despite of the resource churn;

• Maintain the total storage space and total free space to meet QoS require-
ments by allocating additional resources when needed. This function provides
self-configuration of the service;

• Increasing the availability of popular files. This and the next two functions
are related to the self-optimization of the service.

• Release excess allocated storage when it is no longer needed.

• Balance the stored files among the allocated resources.

YASS Functional Design

A YASS instance consists of front-end components and storage components as
shown in Figure 7.10. The front-end component provides a user interface that
is used to interact with the storage service. Storage components represent the
storage capacity available at the resource on which they are deployed.

Figure 7.10: YASS functional design

The storage components are grouped together in a storage group. A user issues
commands (store, read, and delete) using the front-end. A store request is sent to
an arbitrary storage component (using one-to-any binding between the front-end
and the storage group) which in turn will find some r different storage components,
where r is the file’s replication degree, with enough free space to store a file replica.

7.9. DEMONSTRATOR APPLICATIONS 113

These replicas together will form a file group containing the r storage components
that will host the file. The front-end will then use a one-to-all binding to the file
group to transfer the file in parallel to the r replicas in the group. A read request is
sent to any of the r storage components in the group using the one-to-any binding
between the front-end and the file group. A delete request is sent to the file group
in parallel using a one-to-all binding between the front-end and the file group.

Enabling Management of YASS

Given that the functional part of YASS has been developed, to manage it we need
to provide touchpoints. Niche provides basic touchpoints for manipulating the sys-
tem’s architecture and resources, such as sensors for resource failures and compo-
nent group creation; and actuators for deploying and binding components. Beside
the basic touchpoints the following additional, YASS specific, sensors and actuators
are required:

• A load sensor to measure the current free space on a storage component;

• An access frequency sensor to detect popular files;

• A replicate-file actuator to add one extra replica of a specified file;

• A move-file actuator to move files for load balancing.

Self-Managing YASS

The following autonomic managers are needed to manage YASS in a dynamic en-
vironment. All four orchestration techniques described in the previous section on
design methodology, are demonstrated below.

Replica Autonomic Manager: The replica autonomic manager is responsible
for maintaining the desired replication degree for each stored file in spite of resources
failing and leaving. This autonomic manager adds the self-healing property to
YASS. The replica autonomic manager consists of two management elements, the
File-Replica-Aggregator and the File-Replica-Manager as shown in Figure 7.11.
The File-Replica-Aggregator monitors a file group, containing the subset of storage
components that host the file replicas, by subscribing to resource fail or leave events
caused by any of the group members. These events are received when a resource,
on which a component member in the group is deployed, is about to leave or has
failed. The File-Replica-Aggregator responds to these events by triggering a replica
change event to the File-Replica-Manager that will issue a find and restore replica
command.

Storage Autonomic Manager: The storage autonomic manager is responsi-
ble for maintaining the total storage capacity and the total free space in the storage
group, in the presence of dynamism, to meet QoS requirements. The dynamism
is due either to resources failing/leaving (affecting both the total and free stor-
age space) or file creation/addition/deletion (affecting the free storage space only).

114 CHAPTER 7. NICHE PLATFORM

Figure 7.11: Self-healing control loop for restoring file replicas.

The storage autonomic manager reconfigures YASS to restore the total free space
and/or the total storage capacity to meet the requirements. The reconfiguration
is done by allocating free resources and deploying additional storage components
on them. This autonomic manager adds the self-configuration property to YASS.
The storage autonomic manager consists of Component-Load-Watcher, Storage-
Aggregator, and Storage-Manager as shown in Figure 7.12. The Component-Load-
Watcher monitors the storage group, containing all storage components, for changes
in the total free space available by subscribing to the load sensors events. The
Component-Load-Watcher will trigger a load change event when the load is changed
by a predefined delta. The Storage-Aggregator is subscribed to the Component-
Load-Watcher load change event and the resource fail, leave, and join events (note
that the File-Replica-Aggregator also subscribes to the resource failure and leave
events). The Storage-Aggregator, by analyzing these events, will be able to esti-
mate the total storage capacity and the total free space. The Storage-Aggregator
will trigger a storage availability change event when the total and/or free storage
space drops below a predefined threshold. The Storage-Manager responds to this
event by trying to allocate more resources and deploying storage components on
them.

Direct Interactions to Coordinate Autonomic Managers: The two au-
tonomic managers, replica autonomic manager and storage autonomic manager,
described above seem to be independent. The first manager restores files and the
other manager restores storage. But it is possible to have a race condition between
the two autonomic managers that will cause the replica autonomic manager to fail.

7.9. DEMONSTRATOR APPLICATIONS 115

Figure 7.12: Self-configuration control loop for adding storage

For example, when a resource fails the storage autonomic manager may detect that
more storage is needed and start allocating resources and deploying storage com-
ponents. Meanwhile the replica autonomic manager will be restoring the files that
were on the failed resource. The replica autonomic manager might fail to restore
the files due to space shortage if the storage autonomic manager is slower and does
not have time to finish. This may also prevent the users, temporarily, from storing
files.

If the replica autonomic manager would have waited for the storage autonomic
manager to finish, it would not fail to recreate replicas. We used direct interaction
to coordinate the two autonomic managers by binding the File-Replica-Manager to
the Storage-Manager.

Before restoring files the File-Replica-Manager informs the Storage-Manager
about the amount of storage it needs to restore files. The Storage-Manager checks
available storage and informs the File-Replica-Manager that it can proceed if enough
space is available or ask it to wait.

The direct coordination used here does not mean that one manager controls
the other. For example, if there is only one replica left of a file, the File-Replica-
Manager may ignore the request to wait from the Storage-Manager and proceed
with restoring the file anyway.

Optimizing Allocated Storage: Systems should maintain high resource uti-
lization. The storage autonomic manager allocates additional resources if needed to
guarantee the ability to store files. However, users might delete files later causing
the utilization of the storage space to drop. It is desirable that YASS be able to
self-optimize itself by releasing excess resources to improve utilization.

116 CHAPTER 7. NICHE PLATFORM

It is possible to design an autonomic manager that will: detect low resource
utilization, move file replicas stored on a chosen lowly utilized resource, and finally
release it. Since the functionality required by this autonomic manager is partially
provided by the storage and replica autonomic managers we will try to augment
them instead of adding a new autonomic manager, and use stigmergy to coordinate
them.

It is easy to modify the storage autonomic manager to detect low storage uti-
lization. The replica manager knows how to restore files. When the utilization of
the storage components drops, the storage autonomic manager will detect it and
will deallocate some resource. The deallocation of resources will trigger, through
stigmergy, another action at the replica autonomic manager. The replica autonomic
manager will receive the corresponding resource leave events and will move the files
from the leaving resource to other resources.

We believe that this is better than adding another autonomic manager for the
following two reasons: first, it allows avoiding duplication of functionality; and
second, it allows avoiding oscillation between allocating and releasing resources by
keeping the decision about the proper amount of storage at one place.

Improving File Availability. Popular files should have more replicas in order
to increase their availability. A higher level availability autonomic manager can be
used to achieve this through regulating the replica autonomic manager. The au-
tonomic manager consists of two management elements. The File-Access-Watcher
and File-Availability-Manager are shown in Figure 7.13. The File-Access-Watcher
monitors the file access frequency. If the popularity of a file changes dramatically
it issues a frequency change event. The File-Availability-Manager may decide to
change the replication degree of that file. This is achieved by changing the value of
the replication degree parameter in the File-Replica-Manager.

Figure 7.13: Hierarchical management used to implement the self-optimization con-
trol loop for file availability

Balancing File Storage. A load balancing autonomic manager can be used
for self-optimization by trying to lazily balance the stored files among storage com-
ponents. Since knowledge of current load is available at the Storage-Aggregator, we
design the load balancing autonomic manager by sharing the Storage-Aggregator
as shown in Figure 7.14. All autonomic managers we discussed so far are reactive.
They receive events and act upon them. Sometimes proactive managers might be
also required, such as in this case. Proactive managers are implemented in Niche
using a timer abstraction. The load balancing autonomic manager is triggered, by
a timer, every x time units. The timer event will be received by the shared Storage-
Aggregator that will trigger an event containing the most and least loaded storage
components. This event will be received by the Load-Balancing-Manager that will
move some files from the most to the least loaded storage component.

7.9. DEMONSTRATOR APPLICATIONS 117

Figure 7.14: Sharing of management elements used to implement the self-
optimization control loop for load balancing

Demonstrator II: Yet Another Computing Service (YACS)

This section presents a rough overview of YACS (Yet Another Computing Ser-
vice) developed using Niche (see [103, 109] for more detail). The major goal in
development of YACS was to evaluate the Niche platform and to study design and
implementation issues in providing self-management (in particular, self-healing and
self-tuning) for a distributed computing service. YACS is a robust distributed com-
puting service that allows a client to submit and execute jobs, which are bags of
independent tasks, on a network of nodes (computers). YACS guarantees execution
of jobs despite nodes leaving or failing. YACS supports checkpointing that allows
restarting execution from the last checkpoint when a worker component fails or
leaves. The YACS includes a checkpoint service that allows the task programmer
to perform task checkpointing whenever needed. Furthermore, YACS scales, i.e.,
changes the number of execution components, whenever the number of jobs/tasks
changes. In order to achieve high availability, YACS always maintains a number of
free masters and workers so that new jobs can be accepted without delay.

YACS executes jobs, which are collections of tasks, where a task represents
instance of work of a particular type that needs to be done. For example, in order
to transcode a movie, the movie file can be split into several parts (tasks) to be
transcoded independently and in parallel. Tasks are programmed by the user and
can be programmed to do just about anything. Tasks can be programmed in any
programming language using any programming environment, and placed in a YACS
job (bag of independent tasks) using the YACS API.

Figure 7.15 depicts YACS architecture. The functional part of YACS includes

118 CHAPTER 7. NICHE PLATFORM

distributed Masters (only one Master is shown in Figure 7.15) and Workers used to
execute jobs. A user submits jobs via the YACS Frontend component, which assigns
jobs to Masters (one job per Master). A Master finds Workers to execute tasks in
the job. When all tasks complete, the user is notified, and results of execution are
returned to the user through the YACS frontend. YACS is implemented in Java,
and therefore tasks to be executed by YACS can be either programmed in Java
by extending the abstract Task class, or wrapped in a Task subclass. The execute
method of the Task class has to be implemented to include the task code or the
code that invoke the wrapped task. The execute method is invoked by a Worker
that performs the task. When the method returns, the Worker sends to its Master
an object that holds results and final status of execution. When developing a Task
subclass, the programmer can override checkpointing methods to be invoked by the
checkpoint service to make a checkpoint or by the Worker to restart the task from
its last checkpoint. Checkpoints are stored in files identified by URLs.

There are two management objectives of the YACS management part: (1) self-
healing, i.e., to guarantee execution of jobs despite of failures of Masters and Work-
ers, and failures and leaves of Niche containers; (2) self-tuning, i.e., to scale ex-
ecution (e.g., deploy new Masters and Workers if needed whenever a new Niche
container joins the system).

The management elements responsible for self-healing include Master Watchers
and Worker Watchers that monitor and control Masters and Workers correspond-
ingly (see Figure 7.15). A Master Watcher deploys a sensor for the Master group it
is watching, and subscribes to the component failure events and the state change
events that might come from that group. A State Change Event contains a check-
point (a URL of the checkpoint file) for the job executed by the Master. Master
failures are reported by the Component Fail Event that causes the Watcher to find
a free Master in the Master group and reassign the failed group to it, or to deploy
a new Master instance if there are no free Masters in the group. The job check-
point is used to restart the job on another Master. A Worker Watcher monitors
and controls a group of Workers and responsible for healing Workers and restarting
tasks in the case of failures. A Worker Watcher performs in a in a similar way as
a Master Watcher described above.

The management elements responsible for self-tuning include Master-, Worker-
and Service-Aggregators and the Configuration Manager, which is on top of the
management hierarchy. The self-tuning control loop monitors availability of re-
sources (number of Masters and Workers) and adds more resources, i.e., deploys
Masters and Workers on available Niche containers upon requests from the Ag-
gregators. The Aggregators collect information about the status of job execution,
Master and Workers groups and resources (Niche containers) from Master, Worker
and Service Resource Watchers. The Aggregators request the Configuration Man-
ager to deploy and add to the service more Masters and/or Workers when the
number of Masters and/or Workers drops (because of failures) below predefined
thresholds or when there are not enough Masters and Workers to execute jobs and
tasks in parallel.

7.9. DEMONSTRATOR APPLICATIONS 119

Figure 7.15: Architecture of YACS (yet another computing service)

120 CHAPTER 7. NICHE PLATFORM

Evaluation

In order to validate and evaluate the effectiveness of Niche, in terms of efficacy and
overheads, the Niche execution environment and both demo applications, YASS
(Yet Another Storage Service) and YACS (Yeat Another Computing Services),
were tested and evaluated on the Grid5000 testbed (https://www.grid5000.fr/).
The performance and overhead of the Niche execution environment was evaluated
mostly using specially developed test programs: These confirm the expected per-
formance/fault model presented in section Niche: a Platform for Self-Managing
Distributed Applications.

The effectiveness of Niche for developing and executing self-managing applica-
tions was validated by YASS, YACS, and, in particular, with the gMovie demo
application built on top of YACS. The gMovie application has been developed to
validate the functionality and self-* (self-healing and self-configuration) properties
of YACS, as well as to validate and evaluate effectiveness and stability of the Niche
execution environment. The gMovie application performs transcoding of a given
movie from one format to another in parallel on a number of YACS workers. Re-
sults of our validation and evaluation indicate that the desired self-* properties,
e.g., self-healing in the presence of failures and resource churn can be obtained, and
that the programming is not particularly burdensome. Programmers with varying
experience were able to learn and understand Niche to the point that they could
be productive in a matter of days or weeks. For results of performance evaluation
of YACS, the reader is referred ton [109].

7.10 Policy Based Management

So far in our discussion we have shown how to program management logic directly
in the management elements using Java (in addition to ADL for initial deployment).
However, a part of the analysis and planning phases of the management logic can
also be programmed separately using policy languages. Note that currently the
developer has to implement the rest of management logic (e.g., actuation workflow)
in a programming language (e.g., Java) used to program the management part of
a self-managing application.

Policy-based management has been proposed as a practical means to improve
and facilitate self-management. Policies are sets of rules which govern the system
behaviors and reflect the business goals and objectives. Rules dictate management
actions to be performed under certain conditions and constraints. The key idea
of policy-based management is to allow IT administrators to define a set of policy
rules to govern behaviors of their IT systems, rather than relying on manually
managing or ad-hoc mechanics (e.g., writing customized scripts) [111]. In this way,
the complexity of system management can be reduced, and also, the reliability of
the system’s behavior is improved.

The implementation and maintenance (e.g., replacement) of policies in a policy-
based management are rather difficult, if policies are embedded in the management

7.10. POLICY BASED MANAGEMENT 121

logic and programmed in its native language. In this case, policy rules and scat-
tered in the management logic and that makes it difficult to modify the policies,
especially at runtime. The major advantages of using a special policy language
(and a corresponding policy engine) to program policies are the following:

• All related policy rules can be grouped and defined in policy files. This makes
it easier to program and to reason about policy-based management.

• Policy languages are at a higher level than the programming languages used
to program management logic. This makes it easier for system administrators
to understand and modify policies without the need to interact with system
developers.

• When updating policies, the new policies can be applied to the system at run
time without the need to stop, rebuild or redeploy the application (or parts
of it).

In order to facilitate implementation and maintenance of policies, language sup-
port, including a policy language and a policy evaluation engine, is needed. Niche
provides ability to program policy-based management using a policy language, a
corresponding API and a policy engine [62]. The current implementation of Niche
includes a generic policy-based framework for policy-based management using SPL
(Simplified Policy Language) [112] or XACML [113]. Both languages allow defining
policy rules (rules with obligations in XACML, or decision statements in SPL) that
dictate the management actions that are to be enforced on managed resources and
applications in certain situations (e.g., on failures). SPL is intended for management
of distributed systems; whereas XACML was specially designed for access control
rather than for management. Nevertheless, XACML allows for obligations (actions
to be performed) conveyed with access decisions (permit/denied/not-applicable);
and we have adopted obligations for management.

The policy framework includes abstractions (and corresponding API) of policies,
policy-managers and policy-manager groups. A policy is a set of if-then rules that
dictate what should be done (e.g., publishing an actuation request) when some-
thing has happened (e.g., a symptom that require management actions has been
detected). A Policy Manager is a management element that is responsible for load-
ing policies, making decisions based on policies and delegating obligations (actua-
tion requests) to Executors. Niche introduces a policy-manager group abstraction
that represents a group of policy-based managers sharing the same set of policies.
A policy-manager group can be created for performance or robustness. A Policy
Watcher monitors the policy repositories for policy changes and request reloading
policies. The Policy Engine evaluates policies and returns decisions (obligations).

Policy-based management enables self-management under guidelines defined by
humans in the form of management policies that can be easily changed at run-time.
With policy-based management it is easier to administrate and maintain manage-
ment policies. It facilitates development by separating of policy definition and

122 CHAPTER 7. NICHE PLATFORM

maintenance from application logic. However, our performance evaluation shows
that hard-coded management performs better than the policy-based management
due to relatively long policy evaluation latencies of the latter. Based on our evalu-
ation results, we recommend using policy-based management for high-level policies
that require the flexibility to be able to be rapidly changed and manipulated by
administrators at deployment and runtime. Policies can be easily understood by
humans, can be changed on the fly, and separated from development code for easier
management.

Figure 7.16: YASS self-configuration using policies

Policy based management can be introduced to the management part of an
application by adding a policy manager in the control loop. Figure 7.16 depicts an
example on how to introduce a policy manager in the Storage Autonomic Manager
used in the YASS demonstrator (see Figure 7.12). The policy manager receives
monitoring events such as total load in the system. The policy manager then
evaluates the policies using the policy engine. An example of a policy used by
the Storage Autonomic Manager for releasing extra storage is shown below. The
example shows one policy from the policy file written in SPL. When a policy fires
(the condition is true) the state of the manager may change and actuation events

7.11. CONCLUSION 123

may be triggered.

...
Policy {
Declaration {
lowloadthreshold = 500;
}
Condition {
storageInfo.totalLoad <= lowloadthreshold
}
Decision {
manager.setTriggeredHighLoad(false) &&
manager.delegateObligation("release storage")
}
}:1;
...

7.11 Conclusion

The presented management framework enables the development of distributed com-
ponent based applications with self-* behaviors which are independent from appli-
cation’s functional code, yet can interact with it when necessary. The framework
provides a small set of abstractions that facilitate robust and efficient application
management even in dynamic environments. The framework leverages the self-*
properties of the structured overlay network which it is built upon. Our prototype
implementation and demonstrators show the feasibility of the framework.

In dynamic environments, such as community Grids or Clouds, self-management
presents four challenges. Niche mostly meets these challenges, and presents a pro-
gramming model and runtime execution service to enable application developers to
develop self-managing applications.

The first challenge is that of the efficient and robust resource discovery. This
was the most straightforward of the challenges to meet. All resources (containers)
are members of the Niche overlay, and resources can be discovered using the overlay.

The second challenge is that of developing a robust and efficient sensing and ac-
tuation infrastructure. For efficiency we use a push (i.e., publish/subscribe) rather
than a pull mechanism. In Niche all architectural elements (i.e., both functional
components and management elements) are potentially mobile. This is necessary
in dynamic environments but it means that delivering sensing events and actuation
commands is non-trivial. The underlying overlay provides efficient sensing and ac-
tuation storing locations in a DHT-like structure, and through replication (as in
a peer-to-peer system) sensing and actuation is robust. In terms of messaging all
sensing and actuation events are delivered at least once.

The third challenge is to avoid a management bottleneck or single-point-of-
failure. We advocate a decentralized approach to management. Management func-
tions (of a single application) should be distributed among several cooperative au-
tonomic managers that coordinate (as loosely-coupled as possible) their activities

124 CHAPTER 7. NICHE PLATFORM

to achieve the overall management objectives. While multiple managers are needed
for scalability, robustness, and performance, we found that they are also useful for
reflecting separation of concerns. We have worked toward a design methodology,
and stipulate the design steps to take in developing the management part of a
self-managing application including spatial and functional partitioning of manage-
ment, assignment of management tasks to autonomic managers, and co-ordination
of multiple autonomic managers.

The fourth challenge is that of scale, by which we meant that in dynamic systems
the rate of change (join, leaves, failure of resources, change of component load etc.)
is high and that it was important to reduce the need for action/communication in
the system. This may be open-ended task, but Niche contained many features that
directly impact communication. The sensing/actuation infrastructure only delivers
events to management elements that directly have subscribed to the event (i.e.,
avoiding the overhead of keeping management elements up-to-date as to component
location). Decentralizing management makes for better scalability. We support
component groups and bindings to such groups, to be able to map this useful
abstraction to the best (known) efficient communication infrastructure.

7.12 Future Work

Our future work includes issues in the areas of platform improvement, management
design, management replication, high-level programming support, coupled control
loops, and the relevance of the approach in other domains.

Currently, there are many aspects of the Niche platform that could be improved.
This includes better placement of managers, more efficient resource discovery, and
improved containers, the limitations of which were mentioned in section on the
Niche platform (e.g., enforcing isolation of components).

We believe that in dynamic or large-scale systems that decentralized manage-
ment is a must. We have taken a few steps in this direction but additional case
studies with the focus on the orchestration of multiple autonomic managers for a
single application need to be made.

Robustifying management is another concern. Work is ongoing on a Paxos-based
replication scheme for management elements. Other complementary approaches
will be investigated, as consistent replication schemes are heavyweight.

Currently, the high-level (declarative) language support in Niche is limited.
ADLs may be used for initial configuration only. For dynamic reconfiguration the
developer needs to use the Niche API directly, which has the disadvantage of being
somewhat verbose and error-prone. Workflows could be used to lift the level of
abstraction.

There is also the issue of coupled control loops, which we did not study. In our
scenario multiple managers are directly or indirectly (via stigmergy) interacting
with each other and it is not always clear how to avoid undesirable behavior such
as rapid or large oscillations which not only can cause the system to behave non-

7.13. ACKNOWLEDGMENTS 125

optimally but also increase management overhead. We found that it is desirable
to decentralize management as much as possible, but this probably aggravates the
problems with coupled control loops. Although we did not observe this in our two
demonstrators, one might expect problems with coupled control loops in larger and
more complex applications. Application programmers should not need to handle
coordination of multiple managers (where each manager may be responsible for
a specific aspect). Future work might need to address the design of coordination
protocols that could be directly used or specialized.

There is another domain, one that we did not target, where scale is also a
challenge and decentralization probably necessary. This is the domain of very large
(Cloud-scale) applications, involving tens of thousands of machines. Even if the
environment is fairly stable the sheer number of involved machines will generate
many events, and management might become a bottleneck. It would be of interest
to investigate if our approach can, in part of wholly, be useful in that domain.

7.13 Acknowledgments

We thank Konstantin Popov and Joel Höglund (SICS), Noel De Palma (INRIA),
Atli Thor Hannesson, Leif Lindbäck, and Lin Bao, for their contribution to de-
velopment of Niche and self-management demo applications using Niche. This
research has been supported in part by the FP6 projects Grid4All (contract IST-
2006-034567) and SELFMAN (contract IST-2006-034084) funded by the European
Commission. We also thank the anonymous reviewers for their constructive com-
ments.

Chapter 8

A Design Methodology for
Self-Management in Distributed
Environments

Ahmad Al-Shishtawy, Vladimir Vlassov, Per Brand, and Seif Haridi

In IEEE International Conference onComputational Science and Engineering, 2009.
CSE ’09. , vol. 1, (Vancouver, BC, Canada), pp. 430–436, IEEE Computer Society,
August 2009.

A Design Methodology for Self-Management in
Distributed Environments

Ahmad Al-Shishtawy1, Vladimir Vlassov1, Per Brand2, and Seif Haridi1,2

1 KTH Royal Institute of Technology, Stockholm, Sweden
{ahmadas, vladv, haridi}@kth.se

2 Swedish Institute of Computer Science (SICS), Stockholm, Sweden
{perbrand, seif}@sics.se

Abstract

Autonomic computing is a paradigm that aims at reducing administra-
tive overhead by providing autonomic managers to make applications self-
managing. In order to better deal with dynamic environments, for improved
performance and scalability, we advocate for distribution of management func-
tions among several cooperative managers that coordinate their activities in
order to achieve management objectives. We present a methodology for de-
signing the management part of a distributed self-managing application in
a distributed manner. We define design steps, that includes partitioning of
management functions and orchestration of multiple autonomic managers.
We illustrate the proposed design methodology by applying it to design and
development of a distributed storage service as a case study. The storage
service prototype has been developed using the distributing component man-
agement system Niche. Distribution of autonomic managers allows distribut-
ing the management overhead and increased management performance due
to concurrency and better locality.

8.1 Introduction

Autonomic computing [5] is an attractive paradigm to tackle management over-
head of complex applications by making them self-managing. Self-management,
namely self-configuration, self-optimization, self-healing, and self-protection (self-*
thereafter), is achieved through autonomic managers [6]. An autonomic manager
continuously monitors hardware and/or software resources and acts accordingly.
Managing applications in dynamic environments (like community Grids and peer-
to-peer applications) is specially challenging due to high resource churn and lack of
clear management responsibility.

A distributed application requires multiple autonomic managers rather than a
single autonomic manager. Multiple managers are needed for scalability, robust-
ness, and performance and also useful for reflecting separation of concerns. Engi-
neering of self-managing distributed applications executed in a dynamic environ-
ment requires a methodology for building robust cooperative autonomic managers.

129

130 CHAPTER 8. DESIGN METHODOLOGY

The methodology should include methods for management decomposition, distri-
bution, and orchestration. For example, management can be decomposed into a
number of managers each responsible for a specific self-* property or alternatively
application subsystems. These managers are not independent but need to cooperate
and coordinate their actions in order to achieve overall management objectives.

The major contributions of the paper are as follows. We propose a methodology
for designing the management part of a distributed self-managing application in a
distributed manner, i.e., with multiple interactive autonomic managers. Decentral-
ization of management and distribution of autonomic managers allows distributing
the management overhead, increasing management performance due to concurrency
and/or better locality. Decentralization does avoid a single point of failure however
it does not necessarily improve robustness. We define design steps, that includes
partitioning of management, assignment of management tasks to autonomic man-
agers, and orchestration of multiple autonomic managers. We describe a set of
patterns (paradigms) for manager interactions.

We illustrate the proposed design methodology including paradigms of manager
interactions by applying it to design and development of a distributed storage ser-
vice as a case study. The storage service prototype has been developed using the
distributing component management system Niche1 [71, 86,103].

The remainder of this paper is organized as follows. Section 8.2 describes Niche
and relate it to the autonomic computing architecture. Section 8.3 presents the
steps for designing distributed self-managing applications. Section 8.4 focuses on
orchestrating multiple autonomic managers. In Section 8.5 we apply the proposed
methodology to a distributed file storage as a case study. Related work is discussed
in Section 11.9 followed by conclusions and future work in Section 8.7.

8.2 The Distributed Component Management System

The autonomic computing reference architecture proposed by IBM [6] consists of
the following five building blocks.

• Touchpoint: consists of a set of sensors and effectors used by autonomic
managers to interact with managed resources (get status and perform opera-
tions). Touchpoints are components in the system that implement a uniform
management interface that hides the heterogeneity of managed resources. A
managed resource must be exposed through touchpoints to be manageable.

• Autonomic Manager: is the key building block in the architecture. Auto-
nomic managers are used to implement the self-management behaviour of the
system. This is achieved through a control loop that consists of four main
stages: monitor, analyze, plan, and execute. The control loop interacts with
the managed resource through the exposed touchpoints.

1In our previous work [71, 86] our distributing component management system Niche was
called DCMS

8.2. THE DISTRIBUTED COMPONENT MANAGEMENT SYSTEM 131

• Knowledge Source: is used to share knowledge (e.g., architecture informa-
tion and policies) between autonomic managers.

• Enterprise Service Bus: provides connectivity of components in the sys-
tem.

• Manager Interface: provides an interface for administrators to interact
with the system. This includes the ability to monitor/change the status of
the system and to control autonomic managers through policies.

The use-case presented in this paper has been developed using the distributed
component management system Niche [71, 86]. Niche implements the autonomic
computing architecture described above. Niche includes a distributed component
programming model, APIs, and a run-time system including deployment service.
The main objective of Niche is to enable and to achieve self-management of component-
based applications deployed on dynamic distributed environments such as commu-
nity Grids. A self-managing application in Niche consists of functional and manage-
ment parts. Functional components communicate via bindings, whereas manage-
ment components communicate mostly via a publish/subscribe event notification
mechanism.

The Niche run-time environment is a network of distributed containers hosting
functional and management components. Niche uses a structured overlay network
(Niche [86]) as the enterprise service bus. Niche is self-organising on its own and
provides overlay services used by Niche such as name-based communication, dis-
tributed hash table (DHT) and a publish/subscribe mechanism for event dissem-
ination. These services are used by Niche to provide higher level communication
abstractions such as name-based bindings to support component mobility; dynamic
component groups; one-to-any and one-to-all bindings, and event-based communi-
cation.

For implementing the touchpoints, Niche leverages the introspection and dy-
namic reconfiguration features of the Fractal component model [33] in order to
provide sensors and actuation API abstractions. Sensors are special components
that can be attached to the application’s functional components. There are also
built-in sensors in Niche that sense changes in the environment such as resource
failures, joins, and leaves, as well as modifications in application architecture such
as creation of a group. The actuation API is used to modify the application’s
functional and management architecture by adding, removing and reconfiguring
components, groups, bindings.

The Autonomic Manager (a control loop) in Niche is organized as a network
of Management Elements (MEs) interacting through events, monitoring via sen-
sors and acting using the actuation API. This enables the construction of dis-
tributed control loops. MEs are subdivided into watchers, aggregators, and man-
agers. Watchers are used for monitoring via sensors and can be programmed to find
symptoms to be reported to aggregators or directly to managers. Aggregators are

132 CHAPTER 8. DESIGN METHODOLOGY

used to aggregate and analyse symptoms and to issue change requests to managers.
Managers do planning and execute change requests.

Knowledge in Niche is shared between MEs using two mechanisms: first, using
the publish/subscribe mechanism provided by Niche; second, using the Niche DHT
to store/retrieve information such as component group members, name-to-location
mappings.

8.3 Steps in Designing Distributed Management

A self-managing application can be decomposed into three parts: the functional
part, the touchpoints, and the management part. The design process starts by spec-
ifying the functional and management requirements for the functional and manage-
ment parts, respectively. In the case of Niche, the functional part of the application
is designed by defining interfaces, components, component groups, and bindings.
The management part is designed based on management requirements, by defining
autonomic managers (management elements) and the required touchpoints (sensors
and effectors).

An Autonomic Manager is a control loop that senses and affects the functional
part of the application. For many applications and environments it is desirable
to decompose the autonomic manager into a number of cooperating autonomic
managers each performing a specific management function or/and controlling a
specific part of the application. Decomposition of management can be motivated
by different reasons such as follows. It allows avoiding a single point of failure.
It may be required to distribute the management overhead among participating
resources. Self-managing a complex system may require more than one autonomic
manager to simplify design by separation of concerns. Decomposition can also be
used to enhance the management performance by running different management
tasks concurrently and by placing the autonomic managers closer to the resources
they manage.

We define the following iterative steps to be performed when designing and
developing the management part of a self-managing distributed application in a
distributed manner.

Decomposition: The first step is to divide the management into a number of
management tasks. Decomposition can be either functional (e.g., tasks are
defined based which self-* properties they implement) or spacial (e.g., tasks
are defined based on the structure of the managed application). The major
design issue to be considered at this step is granularity of tasks assuming that
a task or a group of related tasks can be performed by a single manager.

Assignment: The tasks are then assigned to autonomic managers each of which
becomes responsible for one or more management tasks. Assignment can
be done based on self-* properties that a task belongs to (according to the

8.4. ORCHESTRATING AUTONOMIC MANAGERS 133

functional decomposition) or based on which part of the application that task
is related to (according to the spatial decomposition).

Orchestration: Although autonomic managers can be designed independently,
multiple autonomic managers, in the general case, are not independent since
they manage the same system and there exist dependencies between manage-
ment tasks. Therefore they need to interact and coordinate their actions in
order to avoid conflicts and interference and to manage the system properly.

Mapping: The set of autonomic managers are then mapped to the resources, i.e.,
to nodes of the distributed environment. A major issue to be considered at this
step is optimized placement of managers and possibly functional components
on nodes in order to improve management performance.

In this paper our major focus is on the orchestration of autonomic managers
as the most challenging and less studied problem. The actions and objectives of
the other stages are more related to classical issues in distributed systems such as
partitioning and separation of concerns, and optimal placement of modules in a
distributed environment.

8.4 Orchestrating Autonomic Managers

Autonomic managers can interact and coordinate their operation in the following
four ways:

Stigmergy

Stigmergy is a way of indirect communication and coordination between agents
[110]. Agents make changes in their environment, and these changes are sensed
by other agents and cause them to do more actions. Stigmergy was first observed
in social insects like ants. In our case agents are autonomic managers and the
environment is the managed application.

The stigmergy effect is, in general, unavoidable when you have more than one
autonomic manager and can cause undesired behaviour at runtime. Hidden stig-
mergy makes it challenging to design a self-managing system with multiple auto-
nomic managers. However stigmergy can be part of the design and used as a way
of orchestrating autonomic managers (Figure 8.1).

Hierarchical Management

By hierarchical management we mean that some autonomic managers can monitor
and control other autonomic managers (Figure 8.2). The lower level autonomic
managers are considered as a managed resource for the higher level autonomic
manager. Communication between levels take place using touchpoints. Higher
level managers can sense and affect lower level managers.

134 CHAPTER 8. DESIGN METHODOLOGY

Figure 8.1: The stigmergy effect.

Figure 8.2: Hierarchical management.

Autonomic managers at different levels often operate at different time scales.
Lower level autonomic managers are used to manage changes in the system that
need immediate actions. Higher level autonomic managers are often slower and
used to regulate and orchestrate the system by monitoring global properties and
tuning lower level autonomic managers accordingly.

Direct Interaction

Autonomic managers may interact directly with one another. Technically this is
achieved by binding the appropriate management elements (typically managers) in
the autonomic managers together (Figure 8.3). Cross autonomic manager bindings
can be used to coordinate autonomic managers and avoid undesired behaviors such

8.5. CASE STUDY: A DISTRIBUTED STORAGE SERVICE 135

Managed Resource

Touchpoint

Autonomic

Manager 1

Autonomic

Manager 2

ME ME ME ME

ME ME

Figure 8.3: Direct interaction.

Figure 8.4: Shared Management Elements.

as race conditions or oscillations.

Shared Management Elements

Another way for autonomic managers to communicate and coordinate their actions
is by sharing management elements (Figure 8.4). This can be used to share state
(knowledge) and to synchronise their actions.

8.5 Case Study: A Distributed Storage Service

In order to illustrate the design methodology, we have developed a storage service
called YASS (Yet Another Storage Service) [71], using Niche. The case study illus-

136 CHAPTER 8. DESIGN METHODOLOGY

trates how to design a self-managing distributed system monitored and controlled
by multiple distributed autonomic managers.

YASS Specification

YASS is a storage service that allows users to store, read and delete files on a set
of distributed resources. The service transparently replicates the stored files for
robustness and scalability.

Assuming that YASS is to be deployed and provided in a dynamic distributed
environment, the following management functions are required in order to make
the storage service self-managing in the presence of dynamicity in resources and
load: the service should tolerate the resource churn (joins/leaves/failures), optimize
usage of resources, and resolve hot-spots. We define the following tasks based on
the functional decomposition of management according to self-* properties (namely
self-healing, self-configuration, and self-optimization) to be achieved.

• Maintain the file replication degree by restoring the files which were stored
on a failed/leaving resource. This function provides the self-healing property
of the service so that the service is available despite of the resource churn;

• Maintain the total storage space and total free space to meet QoS require-
ments by allocating additional resources when needed. This function provides
self-configuration of the service;

• Increasing the availability of popular files. This and the next two functions
are related to the self-optimization of the service.

• Release excess allocated storage when it is no longer needed.

• Balance the stored files among the allocated resources.

YASS Functional Design

A YASS instance consists of front-end components and storage components as
shown in Figure 8.5. The front-end component provides a user interface that is
used to interact with the storage service. Storage components represent the storage
capacity available at the resource on which they are deployed.

The storage components are grouped together in a storage group. A user issues
commands (store, read, and delete) using the front-end. A store request is sent to
an arbitrary storage component (using one-to-any binding between the front-end
and the storage group) which in turn will find some r different storage components,
where r is the file’s replication degree, with enough free space to store a file replica.
These replicas together will form a file group containing the r storage components
that will host the file. The front-end will then use a one-to-all binding to the file
group to transfer the file in parallel to the r replicas in the group. A read request is

8.5. CASE STUDY: A DISTRIBUTED STORAGE SERVICE 137

VO

W
rit

e R
eq

uest

one-t
o-an

y binding

to th
e s

torag
e g

roup

Read Requestone-to-any bindingto a file group

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

Front-end

Component

Ax,Bx,Cx = file groups, x is

replica number in the group.

Ovals = resources.

Rectangles = Components.

Dashed line = YASS storage

components group.

Figure 8.5: YASS Functional Part

sent to any of the r storage components in the group using the one-to-any binding
between the front-end and the file group. A delete request is sent to the file group
in parallel using a one-to-all binding between the front-end and the file group.

Enabling Management of YASS

Given that the functional part of YASS has been developed, to manage it we need
to provide touchpoints. Niche provides basic touchpoints for manipulating the sys-
tem’s architecture and resources, such as sensors of resource failures and component
group creation; and effectors for deploying and binding components.

Beside the basic touchpoint the following additional, YASS specific, sensors and
effectors are required.

• A load sensor to measure the current free space on a storage component;

• An access frequency sensor to detect popular files;

• A replicate file effector to add one extra replica of a specified file;

• A move file effector to move files for load balancing.

Self-Managing YASS

The following autonomic managers are needed to manage YASS in a dynamic en-
vironment. All four orchestration techniques in Section 8.4 are demonstrated.

Replica Autonomic Manager

The replica autonomic manager is responsible for maintaining the desired repli-
cation degree for each stored file in spite of resources failing and leaving. This

138 CHAPTER 8. DESIGN METHODOLOGY

Sensor Effector

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

File

Replica

Aggregator

File

Replica

Manager
M

a
n

a
g

e
d

R
e

s
o

u
rc

e
Failure

Leave

Replica Change

Find and Restore Replica

R
e

p
lic

a
 A

u
to

n
o

m
ic

M
a

n
a

g
e

r

Figure 8.6: Self-healing control loop.

Sensor Effector

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

Storage

Aggregator

Storage

Manager

M
a

n
a

g
e

d

R
e

s
o

u
rc

e

Component

Load

Watcher

Storage

Availability

Change

Allocate

& Deploy

S
to

ra
g

e
 A

u
to

n
o

m
ic

M
a

n
a

g
e

r

Load Change

Load

Join

Failure

Leave

Figure 8.7: Self-configuration control loop.

autonomic manager adds the self-healing property to YASS. The replica autonomic
manager consists of two management elements, the File-Replica-Aggregator and
the File-Replica-Manager as shown in Figure 8.6.

The File-Replica-Aggregator monitors a file group, containing the subset of
storage components that host the file replicas, by subscribing to resource fail or
leave events caused by any of the group members. These events are received when
a resource, on which a component member in the group is deployed, is about to leave
or has failed. The File-Replica-Aggregator responds to these events by triggering a
replica change event to the File-Replica-Manager that will issue a find and restore
replica command.

Storage Autonomic Manager

The storage autonomic manager is responsible for maintaining the total storage
capacity and the total free space in the storage group, in the presence of dynamism,
to meet QoS requirements. The dynamism is due either to resources failing/leaving
(affecting both the total and free storage space) or file creation/addition/deletion
(affecting the free storage space only). The storage autonomic manager reconfigures
YASS to restore the total free space and/or the total storage capacity to meet

8.5. CASE STUDY: A DISTRIBUTED STORAGE SERVICE 139

the requirements. The reconfiguration is done by allocating free resources and
deploying additional storage components on them. This autonomic manager adds
the self-configuration property to YASS. The storage autonomic manager consists
of Component-Load-Watcher, Storage-Aggregator, and Storage-Manager as shown
in Figure 8.7.

The Component-Load-Watcher monitors the storage group, containing all stor-
age components, for changes in the total free space available by subscribing to
the load sensors events. The Component-Load-Watcher will trigger a load change
event when the load is changed by a predefined delta. The Storage-Aggregator
is subscribed to the Component-Load-Watcher load change event and the resource
fail, leave, and join events (note that the File-Replica-Aggregator also subscribes to
the resource failure and leave events). The Storage-Aggregator, by analyzing these
events, will be able to estimate the total storage capacity and the total free space.
The Storage-Aggregator will trigger a storage availability change event when the
total and/or free storage space drops below a predefined thresholds. The Storage-
Manager responds to this event by trying to allocate more resources and deploying
storage components on them.

Direct Interactions to Coordinate Autonomic Managers

The two autonomic managers, replica autonomic manager and storage autonomic
manager, described above seem to be independent. The first manager restores files
and the other manager restores storage. But as we will see in the following example
it is possible to have a race condition between the two autonomic managers that
will cause the replica autonomic manager to fail. For example, when a resource
fails the storage autonomic manager may detect that more storage is needed and
start allocating resources and deploying storage components. Meanwhile the replica
autonomic manager will be restoring the files that were on the failed resource. The
replica autonomic manager might fail to restore the files due to space shortage if
the storage autonomic manager is slower and does not have time to finish. This
may also prevent the users, temporarily, from storing files.

If the replica autonomic manager would have waited for the storage autonomic
manager to finish, it would not fail to recreate replicas. We used direct interaction
to coordinate the two autonomic managers by binding the File-Replica-Manager to
the Storage-Manager.

Before restoring files the File-Replica-Manager informs the Storage-Manager
about the amount of storage it needs to restore files. The Storage-Manager checks
available storage and informs the File-Replica-Manager that it can proceed if enough
space is available or ask it to wait.

The direct coordination used here does not mean that one manager controls
the other. For example if there is only one replica left of a file, the File-Replica-
Manager may ignore the request to wait from the Storage-Manager and proceed
with restoring the file anyway.

140 CHAPTER 8. DESIGN METHODOLOGY

Sensor

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

Sensor Effector

Effector
Replica

Autonomic

Manager

File

Availability

Manager

M
a

n
a

g
e

d

R
e

s
o

u
rc

e

M
a

n
a

g
e

d

R
e

s
o

u
rc

e

File

Access

Watcher

Access Frequency

Frequency

Change

New Replication DegreeA
v
a

ila
b

ili
ty

A
u

to
n

o
m

ic
 M

a
n

a
g

e
r

Figure 8.8: Hierarchical management.

Optimising Allocated Storage

Systems should maintain high resource utilization. The storage autonomic man-
ager allocates additional resources if needed to guarantee the ability to store files.
However, users might delete files later causing the utilization of the storage space
to drop. It is desirable that YASS be able to self-optimize itself by releasing excess
resources to improve utilization.

It is possible to design an autonomic manager that will detect low resource
utilization, move file replicas stored on a chosen lowly utilized resource, and finally
release it. Since the functionality required by this autonomic manager is partially
provided by the storage and replica autonomic managers we will try to augment
them instead of adding a new autonomic manager, and use stigmergy to coordinate
them.

It is easy to modify the storage autonomic manager to detect low storage uti-
lization. The replica manager knows how to restore files. When the utilization of
the storage components drops, the storage autonomic manager will detect it and
will deallocate some resource. The deallocation of resources will trigger, through
stigmergy, another action at the replica autonomic manager. The replica autonomic
manager will receive the corresponding resource leave events and will move the files
from the leaving resource to other resources.

We believe that this is better than adding another autonomic manager for fol-
lowing two reasons: first, it allows avoiding duplication of functionality; and second,
it allows avoiding oscillation between allocation and releasing resources by keeping
the decision about the proper amount of storage at one place.

Improving file availability

Popular files should have more replicas in order to increase their availability. A
higher level availability autonomic manager can be used to achieve this through

8.6. RELATED WORK 141

Sensor Effector

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

Storage

Aggregator

Load

Balancing

Manager
M

a
n

a
g

e
d

R
e

s
o

u
rc

e

Least/Most

Loaded

Move Files

Storage

Autonomic

Manager

L
o

a
d

 B
a

la
n

c
in

g

A
u

to
n

o
m

ic
 M

a
n

a
g

e
r

Timer

Figure 8.9: Sharing of Management Elements.

regulating the replica autonomic manager. The autonomic manager consists of
two management elements. The File-Access-Watcher and File-Availability-Manager
shown in Figure 8.8 illustrate hierarchical management.

The File-Access-Watcher monitors the file access frequency. If the popularity of
a file changes dramatically it issues a frequency change event. The File-Availability-
Manager may decide to change the replication degree of that file. This is achieved by
changing the value of the replication degree parameter in the File-Replica-Manager.

Balancing File Storage

A load balancing autonomic manager can be used for self-optimization by trying
to lazily balance the stored files among storage components. Since knowledge of
current load is available at the Storage-Aggregator, we design the load balancing
autonomic manager by sharing the Storage-Aggregator as shown in Figure 8.9.

All autonomic managers we discussed so far are reactive. They receive events
and act upon them. Sometimes proactive managers might be also required, such
as the one we are discussing. Proactive managers are implemented in Niche using
a timer abstraction.

The load balancing autonomic manager is triggered, by a timer, every x time
units. The timer event will be received by the shared Storage-Aggregator that will
trigger an event containing the most and least loaded storage components. This
event will be received by the Load-Balancing-Manager that will move some files
from the most to the least loaded storage component.

8.6 Related Work

The vision of autonomic management as presented in [5] has given rise to a number
of proposed solutions to aspects of the problem.

An attempt to analyze and understand how multiple interacting loops can man-
age a single system has been done in [17] by studying and analysing existing systems
such as biological and software systems. By this study the authors try to under-

142 CHAPTER 8. DESIGN METHODOLOGY

stand the rules of a good control loop design. A study how to compose multiple
loops and ensure that they are consistent and complementary is presented in [105].
The authors presented an architecture that supports such compositions.

A reference architecture for autonomic computing is presented in [104]. The
authors present patterns for applying their proposed architecture to solve specific
problems common to self-managing applications. Behavioural Skeletons is a tech-
nique presented in [99] that uses algorithmic skeletons to encapsulate general control
loop features that can later be specialized to fit a specific application.

8.7 Conclusions and Future Work

We have presented the methodology of developing the management part of a self-
managing distributed application in distributed dynamic environment. We advo-
cate for multiple managers rather than a single centralized manager that can induce
a single point of failure and a potential performance bottleneck in a distributed
environment. The proposed methodology includes four major design steps: decom-
position, assignment, orchestration, and mapping (distribution). The management
part is constructed as a number of cooperative autonomic managers each responsible
either for a specific management function (according to functional decomposition
of management) or for a part of the application (according to a spatial decompo-
sition). We have defined and described different paradigms (patterns) of manager
interactions, including indirect interaction by stigmergy, direct interaction, sharing
of management elements, and manager hierarchy. In order to illustrate the design
steps, we have developed and presented in this paper a self-managing distributed
storage service with self-healing, self-configuration and self-optimizing properties
provided by corresponding autonomic managers, developed using the distributed
component management system Niche. We have shown how the autonomic man-
agers can coordinate their actions, by the four described orchestration paradigms,
in order to achieve the overall management objectives.

Dealing with failure of autonomic managers (as opposed to functional parts of
the application) is out of the scope of this paper. Clearly, by itself, decentralization
of management, might make the application more robust (as some aspects of man-
agement continue working, while others stop), but also more fragile due to increased
risk of partial failure. In both the centralized and decentralized case, techniques for
fault tolerance are needed to insure robustness. Many of these techniques, while
ensuring fault recovery do so with some significant delay, in which case a decen-
tralized management architecture may prove advantageous as only some aspects of
management are disrupted at any one time.

Our future work includes refinement of the design methodology, further case
studies with the focus on orchestration of autonomic managers, investigating ro-
bustness of managers by transparent replication of management elements.

8.7. CONCLUSIONS AND FUTURE WORK 143

Acknowledgements

We would like to thank the Niche research team including Konstantin Popov and
Joel Höglund from SICS, and Nikos Parlavantzas from INRIA.

Part III

Robust Self-Management and Data
Consistency in Large-Scale

Distributed Systems

145

Chapter 9

Achieving Robust
Self-Management for Large-Scale
Distributed Applications

Ahmad Al-Shishtawy, Muhammad Asif Fayyaz, Konstantin Popov, and
Vladimir Vlassov

In 4th IEEE International Conference on Self-Adaptive and Self-Organizing Sys-
tems (SASO), pp. 31–40, Budapest, Hungary, October 2010.

Achieving Robust Self-Management for
Large-Scale Distributed Applications

Ahmad Al-Shishtawy1,2, Muhammad Asif Fayyaz1, Konstantin Popov2,
and Vladimir Vlassov1

1 KTH Royal Institute of Technology, Stockholm, Sweden
{ahmadas, mafayyaz, vladv}@kth.se

2 Swedish Institute of Computer Science, Stockholm, Sweden
{ahmad, kost}@sics.se

Abstract

Achieving self-management can be challenging, particularly in dynamic
environments with resource churn (joins/leaves/failures). Dealing with the
effect of churn on management increases the complexity of the management
logic and thus makes its development time consuming and error prone. We
propose the abstraction of robust management elements (RMEs), which are
able to heal themselves under continuous churn. Using RMEs allows the de-
veloper to separate the issue of dealing with the effect of churn on management
from the management logic. This facilitates the development of robust man-
agement by making the developer focus on managing the application while
relying on the platform to provide the robustness of management. RMEs can
be implemented as fault-tolerant long-living services.

We present a generic approach and an associated algorithm to achieve
fault-tolerant long-living services. Our approach is based on replicating a
service using finite state machine replication with a reconfigurable replica
set. Our algorithm automates the reconfiguration (migration) of the replica
set in order to tolerate continuous churn. The algorithm uses P2P replica
placement schemes to place replicas and uses the P2P overlay to monitor
them. The replicated state machine is extended to analyze monitoring data
in order to decide on when and where to migrate. We describe how to use our
approach to achieve robust management elements. We present a simulation-
based evaluation of our approach which shows its feasibility.

9.1 Introduction

Autonomic computing [5] is a paradigm to deal with management overhead of
complex systems by making them self-managing. Self-management can be achieved
through autonomic managers [6] that monitor the system and act accordingly. In
our previous work, we have developed a platform called Niche [71,103] that enables
one to build self-managing large-scale distributed systems. An autonomic manager
in Niche consists of a network of management elements (MEs) each of which can be

149

150 CHAPTER 9. ACHIEVING ROBUST SELF-MANAGEMENT

responsible for one or more roles of the MAPE loop [6]: Monitor, Analyze, Plan,
and Execute. MEs are distributed and interact with each other through events.

Large-scale distributed systems are typically dynamic with resources that may
fail, join, or leave the system at any time (resource churn). Constructing autonomic
managers in environments with high resource churn is challenging because MEs need
to be restored with minimal disruption to the autonomic manager, whenever the
resource (where an ME executes) leaves or fails. This challenge increases if the MEs
are stateful because the state needs to be maintained.

We propose the Robust Management Element (RME) abstraction that allows
simplifying the development of robust autonomic managers that can tolerate re-
source churn, and thus self-managing large-scale distributed systems. With RMEs,
developers of self-managing systems can assume that management elements never
fail. An RME 1) is replicated to ensure fault-tolerance; 2) tolerates continuous
churn by automatically restoring failed replicas on other nodes; 3) maintains its
state consistent among replicas; 4) provides its service with minimal disruption in
spite of resource churn (high availability), and 5) is location transparent, i.e., RME
clients communicate with it regardless of current location of its replicas. Because we
target large-scale distributed environments with no central control, all algorithms
of the RME abstraction should be decentralized.

In this paper, we present our approach to implement RMEs which is based on
state machine replication [74] combined with automatic reconfiguration of replica
set. Replication by itself is insufficient to guarantee long-term fault-tolerance under
continuous churn, as the number of failed nodes hosting ME replicas, and hence the
number of failed replicas, will increase over time, and eventually RME will stop.
Therefore, we use service migration [75] to enable the reconfiguration of the set of
nodes hosting ME replicas. Using service migration, new nodes can be introduced
to replace the failed ones. We propose a decentralized algorithm that will use
migration to automatically reconfigure the set of nodes hosting ME replicas. This
will guarantee that RME will tolerate continuous churn.

The major contributions of this paper are:

• The use of Structured Overlay Networks (SONs) [1] to monitor the nodes
hosting replicas in order to detect changes that may require reconfiguration.
SONs are also used to determine replica location using replica placement
schemes such as symmetric replication [91].

• The replicated state machine, beside replicating a service, receives monitoring
information and uses it to construct a new configuration and to decide when
to migrate.

• A decentralized algorithm that automates the reconfiguration of the replica
set in order to tolerate continuous resource churn.

The remainder of the paper is organised as follows. Section 9.2 presents nec-
essary background. In Section 9.3 we describe our decentralized algorithm to au-
tomate the reconfiguration process. Section 9.4 describes how our approach can

9.2. BACKGROUND 151

be applied to achieve RMEs in Niche. In Section 9.5 we discuss our experimental
results. Related work is discussed in Section 11.9. Finally, Section 10.6 presents
conclusions and our future work.

9.2 Background

This section presents the necessary background to our approach and algorithms pre-
sented in this paper, namely: The Niche platform, SON and symmetric replication,
replicated state machines, and an approach to migrate stateful services.

Niche Platform

Niche [71] is a distributed component management system that implements the au-
tonomic computing architecture [6]. Niche includes a programming model, APIs,
and a runtime system. The main objective of Niche is to enable and to achieve self-
management of component-based applications deployed in a dynamic distributed
environment where resources can join, leave, or fail. A self-managing application in
Niche consists of functional and management parts. Functional components com-
municate via interface bindings, whereas management components communicate
via a publish/subscribe event notification mechanism.

The Niche runtime environment is a network of containers hosting functional and
management components. Niche uses a Chord [1]-like structured overlay network
(SON) as its communication layer. The SON is self-organising on its own and pro-
vides overlay services such as address lookup, Distributed Hash Table (DHT) and a
publish/subscribe mechanism for event dissemination. Niche provides higher-level
communication abstractions such as name-based bindings to support component
mobility, dynamic component groups, one-to-any and one-to-all group bindings,
and event-based communication.

Structured Overlay Networks and Symmetric Replication

Structured Overlay Networks (SONs) are known for their self-organisation and
resilience under churn [114]. We assume the following model of SONs and their
APIs. In the model, SON provides the lookup operation to locate items on the
network. For example, items can be data items for DHTs, or some compute facilities
that are hosted on individual nodes in a SON. We say that the node hosting or
providing access to an item is responsible for that item. Both items and nodes
posses unique SON identifiers that are assigned from the same identifier space.
The SON automatically and dynamically divides the responsibility between nodes
such that for every SON identifier there is always a responsible node. The lookup
operation returns the address of a node responsible for a given SON identifier.
Because of churn, node responsibilities change over time and, thus, lookup can
return over time different nodes for the same item. In practical SONs, the lookup
operation can also occasionally return wrong (inconsistent) results due to churn.

152 CHAPTER 9. ACHIEVING ROBUST SELF-MANAGEMENT

Furthermore, SON can notify application software running on a node when the
responsibility range of the node changes. When responsibility changes, items need
to be moved between nodes accordingly.

In Chord-like SONs the identifier space is circular, every node is responsible for
items with identifiers in the range between the identifier of its predecessor and its
own identifier. Such a SON naturally provides for symmetric replication of items
on the SON, where replica identifiers are placed symmetrically around the identifier
space circle.

Symmetric Replication [91] is a scheme used to determine replica placement
in SONs. Given an item identifier i, a replication degree f , and the size of the
identifier space N , symmetric replication is used to calculate the identifiers of the
item’s replicas. The identifier of the x-th (1 ≤ x ≤ f) replica of the item i is
computed as follows:

r(i, x) = (i + (x − 1)N/f) mod N (9.1)

Replicated State Machines

A common way to achieve high availability of a service is to replicate it on several
nodes. Replicating stateless services is relatively simple and is not considered here.
A common way to replicate stateful services is to use the replicated state machine
approach [74]. Using this approach requires the service to be deterministic. A set
of deterministic services will have the same state change and produce the same
output given the same sequence of inputs and the same initial state. This implies
that sources of nondeterminism, such as local clocks, random numbers, and multi-
threading, should be avoided.

Replicated state machines can use the Paxos [115] consensus algorithm to ensure
that all service replicas execute the same input requests in the same order. Paxos
relies on a leader election algorithm, such as [116], to elect one of the replicas as
the leader. The leader determines the order of requests by proposing slot numbers
for requests. Paxos assigns requests to slots. Several requests can be processed by
Paxos concurrently. Replicas execute an assigned request after all requests assigned
to previous slots have been executed. Paxos can tolerate replica failures and still
operate correctly as long as the number of failures is less than half of the total
number of replicas.

Migrating Stateful Services

SMART [75] is a technique for changing the set of nodes where a replicated state
machine runs, i.e., for migrating the service to a new set of nodes. A fixed set of
nodes, where a replicated state machine runs, is called a configuration.

SMART is built on the migration technique proposed by Lamport [115] where
the configuration is kept as a part of the service state. Migration to a new con-
figuration proceeds by executing a special state-change request that describes the

9.3. AUTOMATIC RECONFIGURATION OF REPLICA SETS 153

configuration change. Lamport also proposed to delay the effect of the configuration
change (i.e., using the new configuration) for α slots after the state-change request
have been executed. This improves performance by allowing to assign concurrently
α more requests in the current configuration.

SMART provides a complete treatment of Lamport’s idea, but it does not pro-
vide a specific algorithm for automatic configuration management. SMART also
allows to replace non-failed nodes, enabling configuration management that occa-
sionally removes working nodes due to, e.g., an imperfect failure detector.

The central idea in SMART is the configuration-specific replicas. SMART pre-
forms service migration from a configuration conf1 to a new configuration conf2
by creating a new independent set of replicas for conf2 that run, for a while, in
parallel with replicas in conf1. The first slot of conf2 is assigned to be the next
slot after the last slot of conf1. The replicas in conf1 are kept long enough to
ensure that conf2 is established and replica state is transferred to new nodes. This
simplifies the migration process and helps SMART to overcome limitations of other
techniques. Nodes that carry replicas in both conf1 and conf2 keep a single copy
of replica state per node. The state shared by replicas of different configurations
is maintained by a so-called execution module. Each configuration runs its own
instance of the Paxos algorithm independently without sharing. Thus, from the
point of view of the replicated state machine instance, it looks like as if the Paxos
algorithm is running on a static configuration.

9.3 Automatic Reconfiguration of Replica Sets

In this section we present our approach and associated algorithms to achieve robust
services. Our approach automates the process of selecting a replica set (configu-
ration) and the decision of migrating to a new configuration in order to provide a
robust service that can tolerate continuous resource churn and run for long periods
of time without the need of human intervention. The approach uses the replicated
state machine technique, migration support, and the symmetric replication scheme.
Our approach was mainly designed to provide the Robust Management Elements
(RMEs) abstraction which is used to achieve robust self-management. An example
is our platform Niche [71, 103] where this approach can be applied directly and
RMEs can be used to build robust autonomic managers. However, we believe that
our approach is generic enough to be used to achieve other robust services.

We assume that the environment that will host the Replicated State Machines
(RSMs) consists of a number of nodes forming a Structured Overlay Network (SON)
that may host multiple RSMs. Each RSM is identified by a constant ID (denoted
RSMID) drawn from the SON identifier space. RSMID permanently identifies an
RSM regardless of the number of nodes in the system and node churn that causes
reconfiguration of the replica set. Given an RSMID and the replication degree,
the symmetric replication scheme is used to calculate the SON ID of each replica.
The replica SON ID determines the node responsible for hosting the replica. This

154 CHAPTER 9. ACHIEVING ROBUST SELF-MANAGEMENT

responsibility, unlike the replica ID, is not fixed and may changes over time due
to churn. Clients that send requests to the RSM need to know only its RSMID
and replication degree. With this information clients can calculate identifiers of
individual replicas using the symmetric replication scheme, and locate the nodes
currently responsible for the replicas using the lookup operation provided by the
SON. Most of the nodes found in this way will indeed host the RSM replicas, but
not necessarily all of them because of lookup inconsistency and churn.

Fault-tolerant consensus algorithms like Paxos require a fixed set of known
replicas that we call configuration. Some of replicas, though, can be temporar-
ily unreachable or down (the crash-recovery model). The SMART protocol extends
the Paxos algorithm to enable explicit reconfiguration of replica sets. Note that
RSMIDs cannot be used for neither of the algorithms because the lookup opera-
tion can return over time different sets of nodes. In the algorithm we contribute
for management of replica sets, individual RSM replicas are mutually identified by
their addresses which in particular do not change under churn. Every single replica
in a RSM configuration knows addresses of all other replicas in the RSM.

The RSM, its clients and the replica set management algorithm work roughly as
follows. A dedicated initiator chooses RSMID, performs lookups of nodes responsi-
ble for individual replicas and sends to them a request to create RSM replicas. Note
the request contains RSMID, replication degree, and the configuration consisting of
all replica addresses, thus newly created replicas perceive each other as a group and
can communicate with each other directly withoud relying on the SON. RSMID is
also distributed to future RSM clients.

Because of churn, the set of nodes responsible for individual RSM replicas
changes over time. In response, our distributed configuration management algo-
rithm creates new replicas on nodes that become responsible for RSM replicas, and
eventually deletes unused ones. The algorithm consists of two main parts. The
first part runs on all nodes of the overlay and is responsible for monitoring and
detecting changes in the replica set caused by churn. This part uses several sources
of events and information, including SON node failure notifications, SON notifica-
tions about change of responsibility, and requests from clients that indicates the
absence of a replica. Changes in the replica set (e.g. failure of a node that hosted a
replica) will result in a configuration change request that is sent to the correspond-
ing RSM. The second part is a special module, called the management module,
that is dedicated to receive and process monitoring information (the configuration
change requests). The module use this information to construct a configuration
and also to decide when it is time to migrate (after a predefined number of changes
in the configuration). We discuss the algorithm in greater detail in the following.

Configurations and Replica Placement Schemes

All nodes in the system are part of SON as shown in Fig. 9.1. The RSM that
represents the service is assigned an RSMID from the SON identifier space of size
N . The set of nodes that will form a configuration are selected using the symmetric

9.3. AUTOMATIC RECONFIGURATION OF REPLICA SETS 155

Figure 9.1: Replica Placement Example: Replicas are selected according to the
symmetric replication scheme. A Replica is hosted (executed) by the node respon-
sible for its ID (shown by the arrows). A configuration is a fixed set of direct
references (IP address and port) to nodes that hosted the replicas at the time of
configuration creation. The RSM ID and Replica IDs are fixed and do not change
for the entire life time of the service. The Hosted Node IDs and Configuration are
only fixed for a single configuration. Black circles represent physical nodes in the
system.

replication scheme [91]. The symmetric replication, given the replication factor f
and the RSMID, is used to calculate the Replica IDs according to equation 10.1.
Using the lookup() operation, provided by the SON, we can obtain the IDs and
direct references (IP address and port) of the responsible nodes. These operations
are shown in Algorithm 10.1. The rank of a replica is the parameter x in equa-
tion 10.1. A configuration is represented by an array of size f . The array holds
direct references (IP and port) to the nodes that form the configuration. The array
is indexed from 1 to f , and each element contains the reference to the replica with
the corresponding rank.

The use of direct references, instead of using lookup operations, as the con-
figuration is important for our approach to work for two reasons. First reason is
that we can not rely on the lookup operation because of the lookup inconsistency
problem. The lookup operation, used to find the node responsible for an ID, may
return incorrect references. These incorrect references will have the same effect in
the replication algorithm as node failures even though the nodes might be alive.
Thus the incorrect references will reduce the fault tolerance of the replication ser-
vice. Second reason is that the migration algorithm requires that both the new

156 CHAPTER 9. ACHIEVING ROBUST SELF-MANAGEMENT

Algorithm 9.1 Helper Procedures
1: procedure GetConf(RSMID)
2: ids[] ← GetReplicaIDs(RSMID) � Replica Item IDs
3: for i ← 1, f do refs[i] ← Lookup(ids[i])
4: end for
5: return refs[]
6: end procedure

7: procedure GetReplicaIDs(RSMID)
8: for x ← 1, f do ids[x] ← r(RSMID, x) � See equation 10.1
9: end for

10: return ids[]
11: end procedure

and the previous configurations coexist until the new configuration is established.
Relying on lookup operation for replica_IDs may not be possible. For example,
in Figure 9.1, when a node with ID = 5 joins the overlay it becomes responsible for
the replica SM_r4 with ID = 2. A correct lookup(2) will always return 5. Because
of this, the node 7, from the previous configuration, will never be reached using
the lookup operation. This can also reduce the fault tolerance of the service and
prevent the migration in the case of large number of joins.

Nodes in the system may join, leave, or fail at any time (churn). According to
the Paxos, a configuration can survive the failure of less than half of the nodes in the
configuration. In other words, f/2+1 nodes must be alive for the algorithm to work.
This must hold independently for each configuration. After a new configuration is
established, it is safe to destroy instances of older configurations.

Due to churn, the responsible node for a certain replica may change. For example
in Fig.9.1 if node 20 fails then node 22 becomes responsible for identifier 18 and
should host SM_r2. The algorithms described below automate the migration process
by detecting the change and triggering a ConfChange request. The ConfChange
request will be handled by the state machine and will eventually cause it to migrate
to a new configuration.

State Machine Architecture

The replicated state machine (RSM) consists of a set of replicas, which forms a
configuration. Migration techniques can be used to change the configuration. The
architecture of a replica, shown Figure 9.2, uses the shared execution module op-
timization presented in [75]. This optimization is useful when the same replica
participates in multiple configurations. The execution module executes requests.
The execution of a request may result in state change, producing output, or both.
The execution module should be deterministic. Its outputs and states must depend
only on the sequence of input and the initial state. The execution module is also
required to support checkpointing which enables state transfer between replicas.

The execution module is divided into two parts: the service specific module and
the management module. The service specific module captures the logic of the ser-
vice and executes all requests except the ConfChange request which is handled by

9.3. AUTOMATIC RECONFIGURATION OF REPLICA SETS 157

Figure 9.2: State Machine Architecture: Each machine can participate in more
than one configuration. A new replica instance is assigned to each configuration.
Each configuration is responsible for assigning requests to a none overlapping range
of slot. The execution module executes requests sequentially that can change the
state and/or produce output.

the management module. The management module maintains a next configuration
array that it uses to store ConfChange requests in the element with the correspond-
ing rank. After a predefined threshold of the number and type (join/leave/failure)
of changes, the management module decides that it is time to migrate. It uses the
next configuration array to update the current configuration array resulting in a
new configuration. After that, the management module passes the new configura-
tion to the migration protocol to actually preform the migration. The reason to
split the state into two parts is because the management module is generic and
independent of the service and can be reused with different services. This simpli-
fies the development of the service specific module and makes it independent from
the replication technique. In this way legacy services, that are already developed,
can be replicated without modification given that they satisfy execution module
constraints (determinism and checkpointing).

In a corresponding way, the state of a replica consists of two parts: The first
part is internal state of the service specific module which is application specific;
The second part consists of the configurations. The remaining parts of the replica,
other than the execution module, are responsible to run the replicated state machine
algorithms (Paxos and Leader Election) and the migration algorithm (SMART). As

158 CHAPTER 9. ACHIEVING ROBUST SELF-MANAGEMENT

Algorithm 9.2 Replicated State Machine API
1: procedure CreateRSM(RSMID)

� Creates a new replicated state machine
2: Conf [] ← GetConf(RSMID)

� Hosting Node REFs
3: for i ← 1, f do
4: sendto Conf [i] : InitSM(RSMID, i, Conf)
5: end for
6: end procedure

7: procedure JoinRSM(RSMID, rank)
8: SubmitReq(RSMID, ConfChange(rank, MyRef))

� The new configuration will be submitted and assigned a slot to be executed
9: end procedure

10: procedure SubmitReq(RSMID, req)
� Used by clients to submit requests

11: Conf [] ← GetConf(RSMID)
� Conf is from the view of the requesting node

12: for i ← 1, f do
13: sendto Conf [i] : Submit(RSMID, i, Req)
14: end for
15: end procedure

described in the previous section, each configuration is assigned a separate instance
of the replicated state machine algorithms. The migration algorithm is responsible
for specifying the FirstSlot and LastSlot for each configuration, starting new
configurations, and destroying old configurations after the new configuration is
established.

The Paxos algorithm guarantees liveness when a single node acts as a leader,
thus it relies on a fault-tolerant leader election algorithm. Our system uses the
algorithm described in [116]. This algorithm guarantees progress as long as one
of the participating processes can send messages such that every message obtains
f timely (i.e., with a pre-defined timeout) responses, where f is a algorithm’s
constant parameter specifying how many processes are allowed to fail. Note that
the f responders may change from one algorithm round to another. This is exactly
the same condition on the underlying network that a leader in the Paxos itself relies
on for reaching timely consensus. Furthermore, the aforementioned work proposes
an extension of the protocol aiming to improve leader stability so that qualified
leaders are not arbitrarily demoted which causes significant performance penalty
for the Paxos protocol.

Replicated State Machine Maintenance

This section describes the algorithms used to create a replicated state machine and
to automate the migration process in order to survive resource churn.

9.3. AUTOMATIC RECONFIGURATION OF REPLICA SETS 159

State Machine Creation

A new RSM can be created by any node by calling CreateRSM in Algorithm 9.2.
The creating node constructs the configuration using symmetric replication and
lookup operations. The node then sends an InitSM message to all nodes in the
configuration. Any node that receives the message (Algorithm 9.5) starts a state
machine (SM) regardless of its responsibility. Note that the initial configuration,
due to lookup inconsistency, may contain some incorrect references. This does not
cause problems for the RSM because all incorrect references in the configuration
will eventually be detected and corrected by our algorithms.

Client Interactions

A client that requires the service provided by the RSM can be on any node in the
system. The client needs to know only the RSMID and the replication degree
to be able to send requests to the service. Knowing the RSMID, the client can
determine the current configuration using equation 10.1 and lookup operations (See
Algorithm 10.1). In this way we avoid the need for an external configuration repos-
itory that points to nodes hosting the replicas in the current configuration. The
client submits requests by calling SubmitReq, shown in Algorithm 9.2, that sends
the request to all replicas in the current configuration. Due to lookup inconsistency,
that can happen either at the client side or the RSM side, the client’s view of the
configuration and the actual configuration may differ. For the client to be able
to submit requests, the client’s view must overlap, at least at one node, with the
actual configuration. Otherwise, the request will fail and the client can retry later.
We assume that each request is uniquely stamped and that duplicate requests are
filtered. In the current algorithm the client submits the request to all nodes in the
configuration. It is possible to optimise the number of messages by submitting the
request only to one node in the configuration that will forward it to the current
leader. The trade off is that sending to all nodes increases the probability of the
request reaching the RSM . This reduces the negative effects of lookup inconsis-
tencies and churn on the availability of the service. Clients may also cache the
reference to the current leader and use it directly until the leader changes.

Request Execution

The execution of client requests is initiated by receiving a submit request from a
client and consists of three steps: checking if the node is responsible for the RSMID
in the request, scheduling the request, and executing it. These steps are shown in
Algorithm 9.3.

When a node receives a request from a client it will first check, using the RSMID
in the request, if it is hosting the replica to which the request is directed to. If this
is the case, then the node will submit the request to that replica. The replica will
try to schedule the request for execution if the replica believes that it is the leader.
Otherwise the replica will forward the request to the leader. The scheduling is

160 CHAPTER 9. ACHIEVING ROBUST SELF-MANAGEMENT

Algorithm 9.3 Execution
1: receipt of Submit(RSMID, rank, Req) from m at n
2: SM ← SMs[RSMID][rank]
3: if SM �= φ then � Node is hosting the replica
4: if SM.leader = n then SM.schedule(Req) � Paxos schedule it
5: else � forward the request to the leader
6: sendto SM.leader : Submit(RSMID, rank, Req)
7: end if
8: else � Node is not hosting the replica
9: if r(RSMID, rank) ∈]n.predecessor, n] then � I’m responsible

10: JoinRSM(RSMID, rank) � Fix the configuration
11: else � I’m not responsible
12: DoNothing � This is probably due to lookup inconsistency
13: end if
14: end if
15: end receipt

16: procedure ExecuteSlot(req) � The Execution Module
17: if req.type = ConfChange then � The Management Module
18: nextConf [req.rank] ← req.id

� Update the candidate for the next configuration
19: if nextConf.changes = threshold then
20: newConf ← Update(CurrentConf,NextConf)
21: SM.migrate(newConf)

� SMART will set LastSlot and start new configuration
22: end if
23: else � The Service Specific Module handles all other requests
24: ServiceSpecificModule.Execute(req)
25: end if
26: end procedure

done by assigning the request to a slot that is agreed upon among all replicas in
the configuration (using the Paxos algorithm). Meanwhile, the execution module
executes scheduled requests sequentially in the order of their slot numbers.

On the other hand, if the node is not hosting a replica with the corresponding
RSMID, it will proceed with one of the following two scenarios. In the first scenario,
it may happen due to lookup inconsistency that the configuration calculated by the
client contains some incorrect references. In this case, a incorrectly referenced node
ignores client requests (Algorithm 9.3 line 12) because it is not responsible for the
target RSM. In the second scenario, it is possible that the client’s view is correct
but the current configuration contains some incorrect references. In this case, the
node that discovers, through the client request, that it was supposed to be hosting
a replica will attempt to correct the current configuration by sending a ConfChange
request replacing the incorrect reference with the reference to itself (Algorithm 9.3
line 10). At execution time, the execution module will direct all requests except the
ConfChange request to the service specific module for execution. The ConfChange
will be directed to the management module for processing.

Handling Churn

Algorithm 9.4 contains procedures to maintain the replicated state machine when
a node joins, leaves, or fails. When any of these events occur, a new node might

9.3. AUTOMATIC RECONFIGURATION OF REPLICA SETS 161

Algorithm 9.4 Churn Handling
1: procedure NodeJoin � Called by SON after the node joined the overlay
2: sendto successor : PullSMs(]predecessor, myId])
3: end procedure

4: procedure NodeLeave

sendto successor : NewSMs(SMs) � Transfer all hosted SMs to Successor
5: end procedure

6: procedure NodeFailure(newP redID, oldP redID)
� Called by SON when the predecessor fails

7: I ←
⋃f

x=2
]r(newP redID, x), r(oldP redID, x)]

8: multicast I : PullSMs(I)
9: end procedure

Algorithm 9.5 SM maintenance (handled by the container)
1: receipt of InitSM(RSMID, Rank, Conf) from m at n
2: new SM � Creates a new replica of the state machine
3: SM.ID ← RSMID
4: SM.Rank ← Rank � 1 ≤ Rank ≤ f
5: SMs[RSMID][Rank] ← SM � SMs stores all SM that node n is hosting
6: SM.Start(Conf) � This will start the SMART protocol
7: end receipt

8: receipt of PullSMs(Intervals) from m at n
9: for each SM in SMs do

10: if r(SM.id, SM.rank) ∈ I then
11: newSMs.add(SM)
12: end if
13: end for
14: sendto m : NewSMs(newSMs)
15: end receipt

16: receipt of NewSMs(NewSMs) from m at n
17: for each SM in NewSMs do
18: JoinRSM(SM.id, SM.rank)
19: end for
20: end receipt

become responsible for hosting a replica. In the case of node join, the new node will
send a message to its successor to get information (RSMID and replication degree)
about any replicas that the new node should be responsible for. In the case of
leave, the leaving node will send a message to its successor containing information
about all replicas that it was hosting. In the case of failure, the successor of the
failed node needs to discover if the failed node was hosting any replicas. This can
be done in a proactive way by checking all intervals (Algorithm 9.4 line 7) that
are symmetric to the interval that the failed node was responsible for. One way to
achieve this is by using range-cast that can be efficiently implemented on SONs,
e.g., using bulk operations [91]. The discovery can also be done lazily using client
requests as described in the previous section and Algorithm 9.3 line 10.

In all three cases described above, newly discovered replicas are handled by
NewSMs (Algorithm 9.5). The node will request a configuration change by joining
the corresponding RSM for each new replica. Note that the configuration size is

162 CHAPTER 9. ACHIEVING ROBUST SELF-MANAGEMENT

fixed to f . A configuration change means replacing reference at position r in the
configuration array with the reference of the node requesting the change.

9.4 Robust Management Elements in Niche

The proposed approach with corresponding algorithms, described in the previ-
ous section, allows meeting the requirements of the Robust Management Element
(RME) abstraction specified in Section 9.1. It can be used to implement the RME
abstraction in Niche in order to achieve robustness and high availability of auto-
nomic managers in spite of churn. An autonomic manager in Niche is constructed
from a set of management elements (MEs). A robust management element can
be implemented by wrapping an ordinary ME inside a state machine which is
transparantly replicated by the RME support added to the Niche platform. The ME
will serve as the service-specific module shown in Figure 9.2. However, to be able to
use this approach, the ME must follow the same constraints as the execution mod-
ule, that is the ME must be deterministic and provide checkpointing. The clients
(e.g., sensors) need only to know the RME identifier to be able to use an RME
regardless of the location of individual replicas. The RME support in the Niche
platform will facilitate development of applications with robust self-management.

9.5 Prototype and Evaluation

In this section, we present a simulation-based performance evaluation of our ap-
proach for replicating and maintaining stateful services in various scenarios. In
evaluating the performance, we are mainly interested in measuring the request la-
tency and the number of messages exchanged by our algorithms. The evaluation is
divided in three main categories: critical path evaluation, failure recovery evalua-
tion, and evaluation of the overheads associated with the leader election.

To evaluate the performance of our approach and to show the practicality of our
algorithms, we built a prototype implementation of Robust Management Elements
using the Kompics component model [8]. Kompics is a framework for building and
evaluating distributed systems in simulation, local execution, and distributed de-
ployments. In order to make network simulation more realistic, we used the King
latency dataset, available at [117], that measures the latencies between DNS servers
using the King [118] technique. For the underlying SON, we used Chord implemen-
tation provided by Kompics. To evaluate the performance of our algorithms in var-
ious churn scenarios, we have used the lifetime-based node failure model [114, 119]
with the shifted Pareto lifetime Distribution.

Methodology

In the simulation scenarios described below, we assumed one stateful service (a
Robust Management Element) and several clients (sensors and actuators). A client

9.5. PROTOTYPE AND EVALUATION 163

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1000 2000 3000 4000 5000 6000 7000 8000

R
eq

ue
st

 L
at

en
cy

 (
m

s)

Request Number

Figure 9.3: Request latency for a single client

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30

R
ep

lic
a

Le
ad

er
 F

ai
lu

re
s

Replication Degree

average(highchurn)
std div(highchurn)

average(mediumchurn)
std div(mediumchurn)

average(lowchurn)
std div(lowchurn)

average(nochurn)
std div(nochurn)

Figure 9.4: Leader failures vs. replication degree

164 CHAPTER 9. ACHIEVING ROBUST SELF-MANAGEMENT

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20 25 30

M
es

sa
ge

 O
ve

rh
ea

d
pe

r
R

ep
lic

a
P

er
 M

in
ut

e

Replication Degree

average(highchurn)
std div(highchurn)

average(mediumchurn)
std div(mediumchurn)

average(lowchurn)
std div(lowchurn)

average(nochurn)
std div(nochurn)

average(noReplication)

Figure 9.5: Messages/minute vs. replication degree

represents both a sensor and an actuator. The service is replicated using our ap-
proach. For simplicity but without losing generality, the service is implemented
as an aggregator that accumulates integer values received from clients and replies
with the current aggregated value which is the state of the service. A client request
(containing a value) represents monitoring information whereas a service response
represents an actuation command. Each client repeatedly sends requests to the
service. Upon receiving a client request, the service performs all the actions related
to the replicated state machine, makes a state transition, and sends the response
to the requesting client.

There are various factors in a dynamic distribution environment that can in-
fluence the performance of our approach. The input parameters to the simulator
include:

• Numeric (architectural) parameters:

– Overlay size: in the rage of 200 to 600 nodes;

– Number of services (management elements): 1;

– Number of clients: 4;

– Replication degree: varies from 5 to 25;

9.5. PROTOTYPE AND EVALUATION 165

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30

R
eq

ue
st

 L
at

en
cy

 (
m

s)

Replication Degree

average(highchurn)
std div(highchurn)

average(mediumchurn)
std div(mediumchurn)

average(lowchurn)
std div(lowchurn)

average(nochurn)
std div(nochurn)

average(noReplication)

Figure 9.6: Request latency vs. replication degree

– Failure threshold: this is the number of failures that will cause the RSM
to migrate. This can range from 1 to strictly less than half of the number
of replicas.

• Timing (operational) parameters

– Shifted Pareto distribution of client requests with a specified mean time
between consecutive requests. In the simulations we used four clients
each with mean time between requests of 4 seconds. This gives the
total mean time of 1 second between requests from all four clients to the
service.

– Shifted Pareto distribution of node life time with a specified mean to
model churn. We modeled three levels of churn: high churn rate (mean
life time of 30 minutes), medium churn rate (90 minutes), low churn rate
(150 minutes).

In our experiments, we have enabled pipelining of requests (by setting α to
10) as suggested by SMART [75], i.e., up to 10 client requests can be handled
concurrently. In all plots, unless otherwise stated, we simulated 8 hours. The plot
is the average of 10 independent runs with standard deviation bars.

166 CHAPTER 9. ACHIEVING ROBUST SELF-MANAGEMENT

 1080

 1100

 1120

 1140

 1160

 1180

 1200

 1220

 1240

 1260

 0 2 4 6 8 10 12 14

M
es

sa
ge

 O
ve

rh
ea

d
pe

r
R

ep
lic

a
P

er
 M

in
ut

e

Failure Threshold

average(highchurn)
std div(highchurn)

average(mediumchurn)
std div(mediumchurn)

average(lowchurn)
std div(lowchurn)

Figure 9.7: Messages per minute vs. failure threshold

In our simulation, we have evaluated how the performance of the proposed algo-
rithms depends on the replication degree (the number of replicas) and the overlay
size (the number of physical nodes). The overlay size affects the performance (time
and message complexity) of overlay operations [91], namely, lookup and range-cast,
used by our algorithms in the following three cases: (1) when creating the initial
RSM configuration that is done only once, (2) when looking up the current config-
uration, and (3) when performing failure recovery. The intensity of configuration
lookups depends on the churn rate, and it can be reduced by caching the lookup
results (configuration). The intensity of failure recovery depends on the failure rate.
Therefore, if the rate of churn (including failures) is lower than the client request
rate, the performance of our approach mostly depends on the replication degree
rather than on the overlay size. This is because the overlay operations happen
relatively rarely. With increasing the overlay size, we expect our approach to scale
due to the logarithmic scalability of the overlay operations.

In our experiments, we assumed a reasonable load (the request rate) on the
system, and churn rates which are lower than the client request rate. We simulated
overlays with hundreds of nodes. Study of systems with larger scales and/or extreme
values of load and churn rates is in our future work. We use more than one client
in order to get a better average of client-server communication latency. The mean
time between requests of 1 sec was selected (via testing experiments) as a reasonable

9.5. PROTOTYPE AND EVALUATION 167

 0

 200

 400

 600

 800

 1000

 100 200 300 400 500 600 700

R
eq

ue
st

 L
at

en
cy

 in
 m

s

Overlay Nodes Count

average(highchurn)
std div(highchurn)

average(lowchurn)
std div(mediumchurn)

average(lowchurn)
std div(lowchurn)

average(nochurn)
std div(nochurn)

Figure 9.8: Request latency vs. overlay size

workload that does not overload the system.
The baseline in our evaluation is the system with no replication and no churn.

We expect that the baseline system has better performance compared to the per-
formance of a system with replication and with/without churn. This is because the
replication mechanism as well as migration caused by churn introduce overhead.
There are three kinds of overhead in the system: (i) Paxos (which happens upon
arrival of requests to RSM), (ii) RSM migration (which happens upon churn), and
(iii) the leader election algorithm (which runs continuously). All the overheads
cause increase in the number of messages and may cause performance degrada-
tion. In our experiments described below we compare performance of different sys-
tem configurations (overlay size and replication degree) and different churn rates
against the baseline system configuration with no replication and no churn (hence
no migration).

Simulation Scenarios

Request Critical Path

In this series of experiments we study the effect of various input parameters on the
performance (the request latency and the number of messages) of handling client

168 CHAPTER 9. ACHIEVING ROBUST SELF-MANAGEMENT

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30

D
is

co
ve

ry
 D

el
ay

 in
 m

s

Replication Degree

average(highchurn)
std div(highchurn)

average(mediumchurn)
std div(mediumchurn)

average(lowchurn)
std div(lowchurn)

average(nochurn)
std div(nochurn)

Figure 9.9: Discovery delay vs. replication degree

requests. The request critical path includes sending the request, Paxos, migration,
and receiving the reply.

The effect of churn on performance (request latency) is minimal. Figure 9.3
depicts latencies of requests submitted by a single client during 8 hours in a system
with a high churn rate. Out of more than 7000 requests, only less than 20 requests
were severely affected by churn. The spikes happen when the leader in the Paxos
algorithm fails. This is because Paxos can not proceed until a new leader is elected.
The average number of leader failures during 8 hours is shown in Figure 9.4. This
can help to estimate the number of such spikes that can happen in a system with
a specified replication degree and churn rate. The time to detect the failure of
the current leader and elect a new leader is maximum 10 seconds according to the
leader election parameters used in the simulations. During this time any request
that arrives at the RSM will be delayed. If non-leader fails, the RSM is not affected
as long as the total number of failed replicas is less than the failure threshold
parameter. If the number of failed replicas is at least the value of the failure
threshold parameter then a migration will happen. On average a migration takes
300 milliseconds to complete.

Using our approach increases the number of critical path messages needed to
handle a request compared to the number of messages in the baseline (Figure 9.5).
This is mainly because of the Paxos messages needed to reach consensus for every

9.5. PROTOTYPE AND EVALUATION 169

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30

F
ai

lu
re

 R
ec

ov
er

y
O

ve
rh

ea
d

pe
r

R
ep

lic
a

P
er

 M
in

ut
e

Replication Degree

average(highchurn)
std div(highchurn)

average(mediumchurn)
std div(mediumchurn)

average(lowchurn)
std div(lowchurn)

average(nochurn)
std div(nochurn)

Figure 9.10: Recovery messages vs. replication degree

request. However, increasing the replication degree does not significantly increase
the number of messages per replica, as can be seen in Figure 9.5. The slight increase
in the number of messages, when the replication degree increases, is due to the
increase in the number of migrations. The number of messages is also affected by
the churn rate. This is because the higher the churn rate is the higher the migration
rate will be. On the other hand, the request latency, as shown in Figure 9.6, is not
affected by the replication degree because Paxos requires two phases regardless
of the number of replicas. Figure 9.6 also shows the overhead of our approach
compared to the baseline.

The average number of critical path messages per request is also affected by
the failure threshold parameter as shown in Figure 9.7. A higher failure threshold
results in the lower number of messages caused by migration. This is because the
higher the failure threshold is, the lower the migration rate will be. For example,
with the threshold of 1, the RSM will migrate immediately after one failure; whereas
with the threshold of 10, it will wait for 10 replicas to fail before migrating. In this
experiment we used 25 replicas. Note that in this case the maximum possible failure
threshold is 12. In order to highlight the effect of failure threshold on the message
complexity, we increased the request rate from 1 to 4 requests per second.

Our experiments for overlays with hundreds of nodes have shown that the over-
lay size has minimal or no impact on the request latency, as depicted in Figure 9.8.

170 CHAPTER 9. ACHIEVING ROBUST SELF-MANAGEMENT

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25 30

E
LD

 M
sg

 O
ve

rh
ea

d
pe

r
R

ep
lic

a
P

er
 M

in
ut

e

Replication Degree

average(highchurn)
std div(highchurn)

average(mediumchurn)
std div(mediumchurn)

average(lowchurn)
std div(lowchurn)

average(nochurn)
std div(nochurn)

Figure 9.11: Leader election overhead

The request latency deviates when changing the overlay size. One of the possible
explanations could be a possible deviations in the average communication latency
due to the use of the King latency dataset for network delay. This requires further
study and more simulation experiments.

In the above experiments we did not include the lookup performed by clients to
discover the configuration. This is because it is not on the critical path, as clients
may cache the configuration. For this reason the performance is not affected by the
overlay size because all critical path messages are passed over direct links rather
that through the overlay.

Failure Recovery

When an overlay node fails, another node (the successor) becomes responsible for
any replicas hosted by the failed node. The successor node needs to discover if any
replicas were hosted on the failed node. In the simulation experiments we used
overlay range-cast to do the discovery. Note that this process is not on the critical
path for processing client requests since both can happen in parallel.

Figure 9.9 depicts the discovery delay for various replication degrees. The dis-
covery delay decreases when the number of replicas increases. This is because it is
enough to discover only one replica, and it takes shorter time to find a replica in a

9.6. RELATED WORK 171

system with a higher replication degree, as the probability to find a replica which
is close (in terms of link latency and/or overlay hops) to the requesting node is
higher. As shown in Figure 9.10, a higher churn rate requires more failure recovery
and thus causes higher message overhead.

Other Overheads

Maintaining the SON introduces an overhead in term of messages. We did not
count these messages in our evaluation because they vary a lot depending on the
type of the overlay and the configuration parameters. One important parameter
is the failure detection period that affects the delay between a node failure and
the failure notification issued by the SON. This delay is configurable and was not
counted when evaluating the fault recovery.

Another source of message overhead is the leader election algorithm. Figure 9.11
shows the average number of leader election messages versus replication degree.
The number of messages increases linearly with increasing number of replicas. This
overhead is configurable and affects the period between the leader failure and the
election of a new leader. In our simulation this period was configured to be max-
imum 10 seconds. This period is on the critical path and affects the execution of
requests as discussed in section 9.5.

9.6 Related Work

For the implementation of the RME abstraction we adopt the replicated state
machine approach [74] which is routinely used to build stateful fault-tolerant al-
gorithms and systems. For consensus among replicas on the sequence of input
events, our implementation deploys the so-called "Multi-Paxos" [115] version of
the Paxos protocol [115, 120] where all proposals from the same leader until its
demotion share one single ballot. Other specialized versions of Paxos addressing
latency and message complexity (e.g., [121, 122]) can clearly be used instead when
appropriate. If input events do not interfere with each other and can be processed
in any order yielding the same results and replica state, the Generalized Consen-
sus can be used [123], similarly to relaxing the total order broadcast with generic
broadcast [124]. State machine replication can be made tolerant to Byzantine fail-
ures [125].

For reconfiguration of the replicate state machine we use the SMART ap-
proach [75] which builds on the original idea by Lamport to treat the information
about system configuration explicitly as a part of its state [115]. Recently, Lam-
port also proposed similar extensions to Paxos that enable system reconfiguration
by transition through a series of explicit configuration with well-defined policies on
proposal numbering [126].

The major alternative way to ensure consistency among replicas is to use a group
communication protocol such as Virtual Synchrony [127]. In a Virtual Synchrony
system processes (replicas in our case) are organized in groups, and messages sent

172 CHAPTER 9. ACHIEVING ROBUST SELF-MANAGEMENT

by group members arrive to all group members in the same order; the system
also notifies all group members about joins and leaves of group members. Between
membership changes virtual synchrony systems would use a non-uniform total order
broadcast, while membership changes requires fault-tolerant consensus. We could
deploy our replica group management protocol with state machine replication using
a group communication middleware, but from the practical point of view it appeared
to be simpler to implement from scratch a version of reconfigurable Paxos.

9.7 Conclusions and Future Work

We have proposed the concept of Robust Management Elements (RMEs) which are
able to heal themselves under continuous churn. Using RMEs allows the developer
to separate the issue of robustness of management from the actual management
mechanisms. This will simplify the construction of robust autonomic managers.
We have presented an approach to achieve RMEs which uses replicated state ma-
chines and relies on our proposed algorithms to automate replicated state machine
migration in order to tolerate churn. Our approach uses symmetric replication,
which is a replica placement scheme used in structured overlay networks to de-
cide on the placement of replicas and uses SON to monitor them. The replicated
state machine is used, besides its main purpose of providing the service, to process
monitoring information and to decide when to migrate. Although in this paper we
discussed the use of our approach to achieve RMEs, we believe that this approach
is generic and can be used to replicate other services.

In order to validate and evaluate our approach, we have developed a prototype
and conducted various simulation experiments which have shown the validity and
feasibility of our approach. Evaluation has shown that the performance (latency
and number of messages) of our approach mostly depends on the replication degree
rather than on the overlay size.

In our future work, we will evaluate our approach on larger scales and extreme
values of load and churn rate. We will optimise the algorithms in order to reduce
the amount of messages and improve performance. We intend to implement our
approach in the Niche platform to support RMEs in self-managing distributed appli-
cations. Finally, we will try to apply our approach to other problems in distributed
computing.

Chapter 10

Robust Fault-Tolerant
Majority-Based Key-Value Store
Supporting Multiple Consistency
Levels

Ahmad Al-Shishtawy, Tareq Jamal Khan, and Vladimir Vlassov

In 17th IEEE International Conference on Parallel and Distributed Systems (IC-
PADS’2011), Tainan, Taiwan, December, 2011.

Robust Fault-Tolerant Majority-Based Key-Value
Store Supporting Multiple Consistency Levels

Ahmad Al-Shishtawy1,2, Tareq Jamal Khan1, and Vladimir Vlassov1

1 KTH Royal Institute of Technology, Stockholm, Sweden
{ahmadas, tareqjk, vladv}@kth.se

2 Swedish Institute of Computer Science, Stockholm, Sweden
ahmad@sics.se

Abstract

The wide spread of Web 2.0 applications with rapidly growing amounts
of user generated data, such as, wikis, social networks, and media sharing,
have posed new challenges on the supporting infrastructure, in particular, on
storage systems. In order to meet these challenges, Web 2.0 applications have
to tradeoff between the high availability and the consistency of their data.
Another important issue is the privacy of user generated data that might be
caused by organizations that own and control datacenters where user data are
stored. We propose a large-scale, robust and fault-tolerant key-value object
store that is based on a peer-to-peer network owned and controlled by a
community of users. To meet the demands of Web 2.0 applications, the store
supports an API consisting of different read and write operations with various
data consistency guarantees from which a wide range of web applications
would be able to choose the operations according to their data consistency,
performance and availability requirements. For evaluation, simulation has
been carried out to test the system availability, scalability and fault-tolerance
in a dynamic, Internet wide environment.

10.1 Introduction

The emergence of Web 2.0 opened the door to new applications by allowing users
to do more than just retrieving of information. Web 2.0 applications facilitate
information sharing, and collaboration between users. The wide spread of Web 2.0
applications, such as, wikis, social networks, and media sharing, resulted in a huge
amount of user generated data that places great demands and new challenges on
storage services. An Internet-scale Web 2.0 application serves a large number of
users. This number tends to grow as popularity of the application increases. A
system running such application requires a scalable data engine that enables the
system to accommodate the growing number of users while maintaining a reasonable
performance. Low (acceptable) response time is another important requirement of
Web 2.0 applications that needs to be fulfilled despite of uneven load on application
servers and geographical distribution of users. Furthermore, the system should

175

176 CHAPTER 10. MAJORITY-BASED KEY-VALUE STORE

be highly available as most of the user requests must be handled even when the
system experiences partial failures or has a large number of concurrent requests.
As traditional database solutions could not keep up with the increasing scale, new
solutions, which can scale horizontally, were proposed, such as, PNUTS [15] and
Dynamo [77].

However there is a trade-off between availability and performance on one hand
and data consistency on the other. As proved in the CAP theorem [78], for dis-
tributed systems only two properties out of the three – consistency, availability and
partition-tolerance – can be guaranteed at any given time. For large scale systems,
that are geographically distributed, network partition is unavoidable [79]; there-
fore only one of the two properties, either data consistency or availability, can be
guaranteed in such systems. Many Web 2.0 applications deal with one record at a
time, and employ only key-based data access. Complex querying, data management
and ACID transactions of relational data model are not required in such systems.
Therefore for such applications a NoSQL key-value store would suffice. Also Web
2.0 applications can cope with relaxed consistency as, for example, it is acceptable
if one’s blog entry is not immediately visible for some of the readers.

Another important aspect associated with Web 2.0 applications is the privacy
of user data. Several issues lead to increasing concerns of users, such as, where the
data is stored, who owns the storage, and how stored data can be used (e.g., for
data mining). Typically a Web 2.0 application provider owns datacenters where
user data are stored. User data are governed by a privacy policy. However, the
provider may change the policy from time to time, and users are forced to accept
this if they want to continue using the application. This resulted in many lawsuits
during the past few years and a long debate about how to protect user privacy.

Peer-to-Peer (P2P) networks [1] offers an attractive solution to Web 2.0 stor-
age systems. First, because they are scalable, self-organized, and fault-tolerant;
second, because they are typically owned by the community, rather than a single
organization, thus allow to solve the issue of privacy.

In this paper, we propose a P2P-based object store with a flexible read/write
API allowing the developer of a Web 2.0 application to trade data consistency
for availability in order to meet requirements of the application. Our design uses
quorum-based voting as a replica control method [81]. Our proposed replication
method provides better consistency guarantees than those provided in a classical
DHT [16] but yet not as expensive as consistency guarantees of Paxos based repli-
cation [82]

Our key-value store is implemented as a Distributed Hash Table (DHT) [16]
using Chord algorithms [83]. Our store benefits from the inherent scalability, fault-
tolerance and self-management properties of a DHT. However, classical DHTs lack
support for strong data consistency required in many applications. Therefore a
majority-based quorum technique is employed in our system to provide strong data
consistency guarantees. As mentioned in [84], this technique, when used in P2P
systems, is probabilistic and may lead to inconsistencies. Nevertheless, as proved
in [84], the probability of getting consistent data using this technique is very high

10.2. RELATED WORK 177

(more than 99%). This guarantee is enough for many Web 2.0 applications that
can tolerate relaxed consistency.

To evaluate our approach, we have implemented a prototype of our key-value
store and measured its performance by simulating the network using real traces of
Internet latencies.

10.2 Related Work

This section presents the necessary background to our approach and algorithms
presented in this paper, namely: Peer-to-peer networks, NoSQL data stores, and
consistency models.

Peer-to-Peer Networks

Peer-to-peer (P2P) refers to a class of distributed network architectures that is
formed between participants (usually called nodes or peers) on the edges of the In-
ternet. P2P is becoming more popular as edge devices are becoming more powerful
in terms of network connectivity, storage, and processing power.

P2P networks are scalable and robust. The fact that each peer plays the role
of both client and server allows P2P networks to scale to large number of peers,
because adding more peers increases the capacity of the system (such as storage
and bandwidth). Another important factor that helps P2P to scale is that peers act
as routers. Thus each peer needs only to know about a subset of other peers. The
decentralized nature of P2P networks improves their robustness. There is no single
point of failure, and P2P networks are designed to tolerate churn (joins, leaves and
failures of peers).

Structured P2P network, such as Chord [83], maintains a structure of overlay
links. Using this structure allows peers to implement a DHT [16]. Given a key, any
peer can efficiently retrieve or store the associated data by routing (in log n hops)
a request to the peer responsible for the key. Maintenance of the mapping of keys
to peers and of the routing information is distributed among the peers in such a
way that churn causes minimal disruption to the lookup service. This maintenance
is automatic and does not require human involvement. This feature is known as
self-organization.

Symmetric Replication

Symmetric replication scheme [91,128] has been used in our system to replicate data
at several nodes. Given a key i, a replication degree f , and the size of the identifier
space N , symmetric replication is used to calculate the keys of replicas. The key
of the x-th (1 ≤ x ≤ f) replica of the data identified by the key i is computed as
follows:

r(i, x) = (i + (x − 1)N/f) mod N (10.1)

178 CHAPTER 10. MAJORITY-BASED KEY-VALUE STORE

The advantage of symmetric replication over successor replication [83] is that each
join or leave of a node requires only O(1) messages to be exchanged to restore
replicas; whereas the successor replication schema requires O(f) messages.

Consistency Models

In this context, consistency models define rules that help developers to predict the
results of read/write operations performed on data objects stored in a distributed
data store. Each particular data store supports a consistency model that heavily
affects it performance and guaranties. Most relevant consistency models for our
discussions are the following.

• Sequential consistency offers strong guarantees. All reads and writes appear
as if they were executed in a sequential order; hence, every read returns a
latest written value.

• Eventual consistency guarantees that after sufficiently long period of the ab-
sence of new writes, all read operations will return the latest written value.

• Timeline consistency is weaker than sequential consistency because it allows
a read operation to return a stale value; however, it is stronger than even-
tual consistency as it guarantees that the returned (stale) value includes all
previous updates.

NoSQL Datastores

This section provides some insights into the properties and consistency models of
two large-scale data storage systems, Amazon’s Dynamo and Yahoo!’s PNUTS.

Dynamo

Amazon’s Dynamo [77] is a distributed key-value data store designed to provide a
large number of services on the Amazon’s service oriented platform with an always-
on experience despite of certain failure scenarios such as network partitions and
massive server outages. These services also have a stringent latency requirement
even under high load.

Dynamo is primarily designed for the applications that require high write avail-
ability. It provides eventual consistency so that it sacrifices data consistency under
certain failure scenarios or high write concurrency in order to achieve higher avail-
ability, better operational performance, and scalability. Conflicting versions are
tolerated in the system during writes. However, the divergent versions must be
detected and eventually reconciled. This is done during reads.

Nodes in the system form a ring structured overlay network and use consistent
hashing for data partitioning. The system exposes two operations - get(key) and
put(key, object, context) where context represents metadata about the object, e.g.,

10.2. RELATED WORK 179

version implemented using vector clocks [129]. The context is kept in the store
in order to help the system to maintain its consistency guarantee. Dynamo uses
successor replication.

PNUTS

Yahoo!’s PNUTS [15] is a geographically distributed and replicated large-scale data
storage system currently being used by a number of Yahoo! applications. The
system offers relaxed data consistency guarantees in order to decrease latency of
operations, improve access concurrency and scalability to be able to cope with
ever-increasing load.

Although the eventual consistency model adopted by Dynamo is a good fit
for many web services, the model is vulnerable to exposing inconsistent data to
applications because, even though it guarantees all updates to reach all replicas
eventually, it does not guarantee the same order of updates at different replicas.
Therefore, for many web applications, this model is a weak and inadequate option
for data consistency.

In contrast to Dynamo, PNUTS offers a stronger consistency model, called time-
line consistency, to applications that can live with slightly stale but valid data. It
has been observed that unlike traditional database applications many web applica-
tions typically tend to manipulate only one data record at a time. PNUTS focuses
on maintaining consistency for single records and provides a novel per-record time-
line consistency model, which guarantees that all replicas of a given record apply
updates in the exact same order. Developers can control the level of consistency
through the following operations: read-any, read-critical, read-latest, write, and
test-and-set-write.

The per-record timeline consistency model is implemented by designating one
replica of a record as the master replica to which all updates are directed to be
serialized as described below. The mastership is assigned on a per-record basis,
therefore different records of the same table can have masters at different regions.
The mastership can migrate between regions depending on the intensity of updates
within a region.

PNUTS uses Yahoo! Message Broker (YMB), which is a topic-based publish/-
subscribe system, to implement its asynchronous replication with timeline consis-
tency. When an update reaches the record’s master, the master publishes it to
the YMB in the region. Once published, the update is considered committed.
YMB guarantees that updates published in a particular YMB cluster will be asyn-
chronously propagated to all subscribers (replicas) and delivered in the publish
order. Master replica leverages these reliable publish properties of YMB to imple-
ment timeline consistency. When the system detects a change in mastership of a
particular record, it also publishes identity of the new master to YMB.

180 CHAPTER 10. MAJORITY-BASED KEY-VALUE STORE

10.3 P2P Majority-Based Object Store

In this paper, we propose a distributed key-value object store supporting multiple
consistency levels. Our store exposes an API of read and write operations similar to
the API of PNUTS [15]. In our store, data are replicated at various nodes in order
to achieve fault-tolerance and improve availability, performance, and scalability.
Replication causes different versions of an object to co-exist at the same time. In
contrast to PNUTS, which uses masters to provide timeline consistency, our system
uses a majority-based mechanism to provide multiple consistency guarantees. Our
approach to maintaining per-object consistency using a quorum, rather than a
master, eliminates a potential performance bottleneck and a single point of failure
exposed by the master replica, and allows using our store in a highly dynamic
environment such as P2P networks.

Our system is based on a scalable structured P2P overlay network. We use
consistent hashing scheme [130] to partition the key-value store and distribute par-
titions among peers. Each peer is responsible for a range of keys and stores corre-
sponding key-value pairs. The hashing scheme has good scalability in a sense that
when a peer leaves or joins the system, only immediate neighbors of the peer are
affected as they need to redistribute their partitions.

Figure 10.1: Architecture of a peer shown as layers

System Architecture

The architecture of a peer is depicted in Figure 10.1. It consists of the following
layers.

• Application Layer is formed of applications that invoke read/write opera-
tions of the API exposed by the Consistency Layer to access the underlying
key-value store in the Data Layer with various consistency levels.

• Consistency Layer implements the following read and write operations of
the key-value store API. The operations follow timeline consistency and have
semantics similar to semantics of operations provided by PNUTS [15].

10.3. P2P MAJORITY-BASED OBJECT STORE 181

– Read Any (key) can return an older version of the data even after a
successful write. This operation has lowest latency and can be used by
applications that prefer fast data access over data consistency.

– Read Critical (key, version) returns data with a version, which is the
same or newer than the requested version. Using this operation, an ap-
plication can enforce read-your-writes consistency, i.e., the application
can read the version that reflects previous updates made by the applica-
tion.

– Read Latest (key) returns the latest version of the data associated with
the given key, and is expected to have the highest latency compared to
other reads. This operation is useful for applications to which consis-
tency matters more than performance.

– Write (key, data) stores the given data associated with the given key.
The operation overwrites existing data, if any, associated with the given
key.

– Test and Set Write (key, data, version) writes the data associated with
the key only if the given version is the same as the current version in
the store, otherwise the update is aborted. This operation can be used
to implement transactions.

• DHT Layer of a peer hosts a part of the DHT (the key-value object store) for
which the peer is responsible according to consistent hashing. It also stores
replicas of data of other peers. The read and write operations described
above are translated into Get (key, attachment) and Put (key, value, attach-
ment) operations implemented in the DHT Layer. The attachment argument
contains metadata for the operations, e.g., a version number. A Get/Put op-
eration looks up the node responsible for the given key using the underlying
Chord Layer. After the key is resolved, the responsible node is contacted
directly through the Network Layer to perform the requested operation. The
DHT Layer also manages data handover and recovery caused by churn.

• Chord Layer performs lookup operations requested by the upper DHT Layer
efficiently using the Chord lookup algorithm [83] and returns the address the
node responsible for the given key. The layer enables nodes to join or leave the
ring, also carries out periodic stabilization to keep network pointers correct
in the presence of churn.

• Network Layer provides simple interfaces for sending/receiving messages
to/from peers.

Algorithms

In this section, we describe the read/write operations introduced in Section 10.3
and present corresponding algorithms. Algorithm 10.1 includes common procedures

182 CHAPTER 10. MAJORITY-BASED KEY-VALUE STORE

Algorithm 10.1 Replica Location and Data Access
1: procedure GetNodes(key) � Locates nodes responsible for replicas
2: for x ← 1, f do � f is the replication degree
3: id ← r(key, x) � Calculate replica id using equation 10.1
4: nodes[x] ← Lookup(ids) � Lookup node responsible for replica id
5: end for
6: return nodes[] � Returns references to all nodes responsible for replicas
7: end procedure

8: receipt of ReadReq(key, rank) from m at n
9: (val, ver) ← LocalStore,Read(key, rank)

10: sendto m : ReadResp(key, val, ver)

11: receipt of VerReq(key, rank) from m at n
12: (val, ver) ← LocalStore.Read(key, rank)
13: sendto m : VerResp(key, ver)

14: receipt of WriteReq(key, rank, value, ver) from m at n
15: LocalStore.Write(key, rank, value, ver) � Fails if data is locked
16: sendto m : WriteAck(key)

17: receipt of LockReq(key, rank) from m at n
18: ver ← LocalStore.Lock(key, rank) � Fails if data is locked
19: sendto m : LockAck(key, ver)

20: receipt of WriteUnlockReq(key, rank, value, ver) from m at n
21: if LocalStore.IsLocked then � Fails if data is unlocked
22: LocalStore.Write(key, rank, value, ver)
23: LocalStore,Unlock(key, rank)
24: sendto m : WriteUnlockAck(key)
25: end if

used by other algorithms. The algorithms are simplified and some practical issues
such as timeouts and error handling are not presented.

Read-Any

The Read-Any operation (Algorithm 10.2) sends the read request to all nodes host-
ing replicas (replicas thereafter) and, as soon as it receives the first successful re-
sponse, it returns the received data. If the data is found locally, Read-Any returns
immediately. If no successful response is received within a timeout, the operation
fails, e.g., raises an exception. Read-Any also fails if it receives failure responses
from all replicas. A failure response is issued when data is not found at the expected
node or lookup fails at the Chord layer because of churn. Although the default is
to send requests to all replicas, an alternative design choice is to send requests to
two random replicas [131] with a view to reducing the number of messages.

Read-Critical

The Read-Critical operation (Algorithm 10.3) sends read requests to all nodes host-
ing replicas (replicas thereafter) and, as soon as it receives data with a version not
less than the required version, it returns the data it has received. Read-Critical
fails in the case of timeout. It also fails if it receives failure responses or old versions

10.3. P2P MAJORITY-BASED OBJECT STORE 183

Algorithm 10.2 ReadAny
1: boolean firstResponse ← true
2: procedure ReadAny(key) � Called by application
3: nodes[] ← GetNodes(key) � Nodes hosting replicas
4: for i ← 1, f do
5: sendto nodes[i] : ReadReq(key, i) � Request replica i of key key
6: end for
7: end procedure

8: receipt of ReadResp(key, val, ver) from m at n
9: if firstResponse then � Note that version ver is not used

10: firstResponse ← false
11: return (key, val) � Return (key, val) pair to application
12: else DoNothing()
13: end if

Algorithm 10.3 ReadCritical
1: integer version ← 0, boolean done ← false

2: procedure ReadCritical(key, ver) � Called by application
3: version ← ver
4: nodes[] ← GetNodes(key) � Nodes hosting replicas
5: for i ← 1, f do
6: sendto nodes[i] : ReadReq(key, i)
7: end for
8: end procedure

9: receipt of ReadResp(key, val, ver) from m at n
10: if not done and ver ≥ version then
11: done ← true
12: return (key, val, ver) � Return (key, val, ver) to application
13: else DoNothing()
14: end if

from all replicas. An alternative design choice is to send requests to a majority of
replicas to reduce the number of messages. If all nodes in the majority are alive
during the operation, it is guaranteed that the requested version will be found (if
it exists) because write operations also use majorities.

Read-Latest

The Read-Latest operation (Algorithm 10.4) sends requests to all replicas and, as
soon as it receives successful responses from a majority of replicas, it returns the
latest version of the received data. Reading from a majority of replicas R guarantees
to return the latest version because R always overlaps with the Write majority W ,
as |R| + |W | > n (n is the number of replicas). Read-Latest fails in the case of
timeout or when it receives failures from a majority of replicas.

Write

First, the Write operation (Algorithm 10.5) sends version requests to all nodes
hosting replicas (replicas thereafter) and waits for responses from a majority of
replicas. Requesting from a majority ensures that the latest version number is

184 CHAPTER 10. MAJORITY-BASED KEY-VALUE STORE

Algorithm 10.4 ReadLatest
1: integer version ← -1, count ← 0
2: object value ← null, boolean done ← false

3: procedure ReadLatest(key) � Called by application
4: nodes[] ← GetNodes(key) � Nodes hosting replicas
5: for i ← 1, f do
6: sendto nodes[i] : ReadReq(key, i)
7: end for
8: end procedure

9: receipt of ReadResp(key, val, ver) from m at n
10: if not done then
11: count ← count + 1
12: if ver > version then � Find the latest version and value
13: version ← ver
14: value ← val
15: end if
16: if count = f/2 + 1 then � Reached majority?
17: done ← true
18: return (key, value, version) � Return to application
19: end if
20: else DoNothing()
21: end if

obtained. Note that for new inserts, the version number 0 is returned as nodes
responsible for replicas do not have data. Next, the operation increments the latest
version number and sends a write request with the new version of data to all
replicas. When a majority of replicas has acknowledged the write requests, the
Write operation successfully returns. If two or more distinct nodes try to write
data with the same version number, the node with the highest identifier wins. The
Write operation can fail for a number of reasons such as timeout, lookup failure, a
replica is being locked by a Test-and-Set-Write operation, or collision with another
write.

Test-and-Set-Write

The Test-and-Set-Write operation (Algorithm 10.6) starts with sending a lock re-
quest to all nodes hosting replicas (replicas thereafter). Each replica, if the data
is unlocked, locks the data and sends a successful lock response together with the
current version number to the requesting node. After receiving lock responses from
a majority of replicas, the operation tests if the latest version number obtained
from the majority, matches the required version number. If they do not match,
the operation aborts (sends unlock requests to all replicas and returns). If they do
match, the given data is sent to all replicas to be written with a new version num-
ber. Each of the replicas, which have locked data, writes the received new version,
unlocks the data, and sends a write acknowledgement to the requesting node. As
soon as acknowledgements are received from a majority of replicas, the operation
successfully completes. Note that in order to ensure high read availability, read
operations are allowed to read the locked data.

10.3. P2P MAJORITY-BASED OBJECT STORE 185

Algorithm 10.5 Write
1: integer maxVer ← -1, count ← 0, object value ← null
2: boolean done1 ← false, done2 ← false

3: procedure Write(key, val) � Called by application
4: nodes[] ← GetNodes(key) � Nodes hosting replicas
5: value ← val
6: for i ← 1, f do
7: sendto nodes[i] : VerReq(key, i)
8: end for
9: end procedure

10: receipt of VerResp(key, ver) from m at n
11: if not done1 then
12: count ← count + 1
13: if ver > maxVer then � Find the latest version
14: maxVer ← ver
15: end if
16: if count = f/2 + 1 then � Reached majority?
17: done1 ← true
18: maxVer ← maxVer + 1
19: WriteVer(key, maxVer)
20: end if
21: else DoNothing()
22: end if

23: procedure WriteVer(key,ver)
24: nodes[] ← GetNodes(key)
25: for i ← 1, f do
26: sendto nodes[i] : WriteReq(key, i, value, ver)
27: end for
28: end procedure

29: receipt of WriteAck(key) from m at n
30: if not done2 then
31: count ← count + 1
32: if count = f/2 + 1 then � Majority
33: done2 ← true
34: return (key, SUCCESS) � Return to application
35: end if
36: else DoNothing()
37: end if

A Test-and-Set-Write operation can fail for a number of reasons such as timeout,
lookup failure, a replica is being locked by another Test-and-Set-Write operation,
or collision with another write. When the operation fails, the replicas locked by
it have to be unlocked, and this is requested by the node which has initiated the
operation. After the operation has completed, a late lock request issued by that
operation might arrive at a replica which was not a part of the majority. In this case,
according to the algorithm, the replica locks the data and sends a lock response
to the requesting node, which, upon receiving the response, requests to unlock the
data because the operation has been already completed.

186 CHAPTER 10. MAJORITY-BASED KEY-VALUE STORE

Algorithm 10.6 Test-and-Set-Write
1: integer version ← 0, maxVer ← -1, count ← 0
2: object value ← null, boolean done1 ← false, done2 ← false

3: procedure TSWrite(key, val, ver) � Called by application
4: nodes[] ← GetNodes(key) � Nodes hosting replicas
5: value ← val, version ← ver
6: for i ← 1, f do
7: sendto nodes[i] : LockReq(key, i)
8: end for
9: end procedure

10: receipt of LockAck(key, ver) from m at n
11: if not done1 then
12: count ← count + 1
13: if ver > maxVer then � Find the latest version
14: maxVer ← ver
15: end if
16: if count = f/2 + 1 then � Reached majority?
17: done1 ← true
18: if maxVer equals version then � Test version then set value
19: maxVer ← maxVer + 1
20: WriteUnlockVer(key, version)
21: else
22: Abort() � Unlocks the replicas
23: return (key, ABORTED) � Return to application
24: end if
25: end if
26: else DoNothing()
27: end if

28: procedure WriteUnlockVer(key,ver)
29: nodes[] ← GetNodes(key)
30: for i ← 1, f do
31: sendto nodes[i] : WriteUnlockReq(key, i, value, ver)
32: end for
33: end procedure

34: receipt of WriteUnlockAck(key) from m at n
35: if not done2 then
36: count ← count + 1
37: if count = f/2 + 1 then � Majority
38: done2 ← true
39: return (key, SUCCESS) � Return to application
40: end if
41: else DoNothing()
42: end if

10.4 Discussion

Majority Versus Master

Even though the API of PNUTS is preserved in our key-value store and semantics
of read/write operations are kept largely unchanged; our majority-based approach
to implement the operations is different from the master-based approach adopted
in PNUTS. In PNUTS, all writes to a given record are forwarded to the master
replica, which ensures that updates are applied to all replicas in the same order.
Serialization of updates through a single master works efficiently for PNUTS due

10.4. DISCUSSION 187

to the high write locality (the master is placed in the geographical region with
the highest intensity of updates). The master-based consistency mechanism can
generally hurt the scalability of a system. It leads to uneven load distribution and
makes the master replica a potential performance bottleneck. Furthermore, the
master represents a single point of failure and may cause a performance penalty by
delaying read/write operations until the failed master is restored.

In order to eliminate the aforementioned potential drawbacks of using the master-
based consistency mechanism in a distributed key-value store deployed in a dynamic
environment, we propose to use a majority-based quorum technique to maintain
consistency of replicas when performing read/write operations. Using a majority
rather than a single master removes a single point of failure and allows the sys-
tem to withstand a high level of churn in a dynamic environment that was not
considered for the stable and reliable environment (data centers) of PNUTS. Our
mechanism is decentralized so that any node in the system receiving a client re-
quest can coordinate read/write operations among replicas. This improves load
balancing. However, delegating the coordination role to any node in the system
while maintaining the required data consistency, incurs additional complexity due
to distribution and concurrency.

Performance Model

The number of network hops and the corresponding number of messages for each
API operation of both PNUTS and our system, are compared in Table 10.1. Worst
case scenarios are considered for both systems and the replication degree is assumed
to be 3. For simplicity, we abstract low-level details of communication protocols
and count only the number of communication steps (as hops) and a corresponding
number of messages. For example, in the case of PNUTS, we assume 2 hops and 2
messages for a roundtrip (request/response) interaction of a requesting node with
a master in a local region; Interaction with a master in a remote region adds one
more hop and entails one extra message. The asynchronous message propagation
to replicas in YMB is not included (as, to our best knowledge, details of YMB were
not published at the time this paper was written). For our store, we assume that
it takes 2 hops to send a request from a requesting node to all replicas and receive
responses from a majority, whereas the number of messages depends on the replica-
tion degree. It is worth noting that, taking into account the asynchronous messages
propagated by YMB, both systems use about the same amount of messages, which
is proportional to the number of replicas.

Other Approaches

Other approaches could have been used to implement our P2P-based object store.
For example, a P2P based self-healing replicated state machine [90] could have been
used to implement the read/write operations. However, we believe that Paxos based
replicated state machine is too powerful for implementing timeline consistency and

188 CHAPTER 10. MAJORITY-BASED KEY-VALUE STORE

Operation P2P Object Store PNUTS
Hops messages Hops messages

Read-Any 2 4 2 2
Read-Critical 2 5 3 3
Read-Latest 2 5 3 3
Write 4 10 5 5
Test-and-Set-Write 4 10 5 5

Table 10.1: Analytical comparison of the cost of each operation

should only be used if stronger guarantees and/or more powerful operations (e.g.,
transactions) are required.

10.5 Evaluation

We present a simulation-based performance evaluation of our majority based key-
value store in various scenarios. We are mainly interested in measuring the oper-
ation latency and the operation success ratio under different conditions by varying
churn rate, request rate, network size, and replication degree. To evaluate the
performance and to show the practicality of our algorithms, we built a prototype
implementation of our object store using the Kompics [8] which is a framework
for building and evaluating distributed systems in simulation, local execution, and
distributed deployments. In order to make network simulation more realistic, we
used the King latency dataset, available at [117], that contains measurements of the
latencies between DNS servers obtained using the King [118] technique. To evalu-
ate the performance of our algorithms in various churn scenarios, we have used the
lifetime-based node failure model [114, 119] with the shifted Pareto lifetime Distri-
bution. Note that the smaller the mean life time, the higher the level of churn. In
our experiments, the mean lifetime of 10 and 30 minutes considered to be very low
and used to stress test the system in order to find the breaking point.

When evaluating our approach, we did not make a quantitative comparison of
our approach with PNUTS [15] mainly because we did not have access to details of
PNUTS and YMB algorithms, which, to our best knowledge, were not published
at the time this paper was written. Therefore we could not accurately implement
PNUTS algorithms in our simulator in order to compare PNUTS with our system.
Furthermore, PNUTS was designed to run on geographically distributed but fairly
stable datacenters, whereas our system targets an Internet-scale dynamic P2P en-
vironment with less reliable peers and high churn. The reason for us to choose such
unreliable environment over datacenters is mainly to reduce costs and improve data
privacy. We expect that master-based read/write algorithms used in PNUTS will
perform better in a stable environment whereas our quorum-based algorithms will
win in a highly dynamic environment as discussed in Section 10.4.

10.5. EVALUATION 189

 200

 400

 600

 800

 1000

 1200

 10 30 60 120 180

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

Mean Node Lifetime (min)

(a) Latency Vs Churn (Lifetime based Model)

RA Latency
RC Latency
RL Latency
W Latency

TSW Latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 30 60 120 180

S
uc

ce
ss

 R
at

io

Mean Node Lifetime (min)

(b) Success Ratio Vs Churn (Lifetime based Model)

RA Succ Ratio
RC Succ Ratio
RL Succ Ratio
W Succ Ratio

TSW Succ Ratio

Figure 10.2: The effect of churn on operations (lower mean lifetime = higher level
of churn)

Varying Churn Rate

In this experiment, the system is run with various churn rate represented as the
mean node lifetime. Figure 10.2(a) shows the impact of churn on latency. The
latency for each operation does not vary too much for different levels of churn.

As expected, Read-Any and Read-Critical perform much faster than Read-
Latest. Read-Latest shows higher latency because it requires responses from a
majority of replicas, whereas other reads do not require a majority in order to
complete. Although the Read-Critical latency is expected to be higher than the
Read-Any latency (as in the case for PNUTS) because the former requests a spe-

190 CHAPTER 10. MAJORITY-BASED KEY-VALUE STORE

 200

 400

 600

 800

 1000

 1200

 500 2000 10000

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

Operation Inter-arrival Time (ms)

(a) Latency Vs Operation Rate

RA Latency
RC Latency
RL Latency
W Latency

TSW Latency

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 500 2000 10000

S
uc

ce
ss

 R
at

io

Operation Inter-arrival Time (ms)

(b) Success Ratio Vs Operation Rate

RA Succ Ratio
RC Succ Ratio
RL Succ Ratio
W Succ Ratio

TSW Succ Ratio

Figure 10.3: The effect of operation rate operations (lower inter-arrival time =
higher op rate)

cific version, latencies of both operations in our case are almost identical. This is
because a write operation sends updates to all replicas and completes as soon as it
receives acknowledgements from a majority of replicas, and thus, the first (fastest)
reply to a Read-Critical request with a high probability will come from a node
which has the required version. Compare to reads, both Write and Test-and-Set-
Write have higher latency because they involve more communication steps than
reads. Furthermore, Test-and-Set-Write has slightly higher latency than Write due
to possible contention because of locking.

Figure 10.2(b) shows operation success ratio versus churn rate (represented as

10.5. EVALUATION 191

 0

 200

 400

 600

 800

 1000

 1200

 1400

 100 500 1000 1500

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

Initial Number of Nodes

(a) Latency Vs Network Size

RA Latency
RC Latency
RL Latency
W Latency

TSW Latency

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 500 1000 1500

S
uc

ce
ss

 R
at

io

Initial Number of Nodes

(b) Success Ratio Vs Network Size

RA Succ Ratio
RC Succ Ratio
RL Succ Ratio
W Succ Ratio

TSW Succ Ratio

Figure 10.4: The effect of network size on operations

the mean node lifetime). As expected, the success ratio degrades for increasing
churn rates. As mentioned in Section 10.3, there are several reasons for failures
of operations due to churn. After analyzing the logs, the primary cause of failures
has been identified as the unavailability of data at the responsible node. Another
major reason is lookup failure.

Varying Operation Rate

Several experiments have been conducted to observe how the system performs un-
der different load scenarios in a dynamic environment. Read/write operations are

192 CHAPTER 10. MAJORITY-BASED KEY-VALUE STORE

generated using an exponential distribution of inter-arrival time of operations. The
operation rate (load) is higher for lower mean inter-arrival time. Figure 10.3(a)
shows the impact of the operation rate on latency. The latency for each operation
does not vary too much for different operation rates. This is due to the simulation
that assumes unlimited computing resources (no hardware bottlenecks). Neverthe-
less, these experiments show that our system can serve the increasing number of
requests despite of churn (Figure 10.3(b)), as it quickly heals after failures. One in-
teresting observation is that under the highest load in our experiments, operations
have the highest success ratio. This is due to the fact that, when the intensity of
writes in a dynamic environment increases, the effect of churn on the success ratio
diminishes as the data are updated more often and, as a consequence, the success
ration of operations improves.

Varying P2P Network Size

In this experiment, we evaluate the scalability by running the system with various
network sizes (the number of nodes). Figure 10.4(a) shows the impact of the net-
work size on latency. For all operations, the latency grows when the network size
increases. However the increase is logarithmic because of the logarithmic latency
in the Chord Layer.

Varying Replication Degree

In this experiment, the system is run with various replication degrees. Figure 10.5(a)
shows the impact of the replication degree on the operation latency. The latency
of Read-Any and Read-Critical is highest when there is no replication, but it no-
ticeably decreases as more replicas are added. This is because both operations
complete after receiving the first successful response, and having more replicas in-
crease the probability to get the response from a fast (close) node and hence reduce
the latency. For Read-Latest, Write, and Test-and-Set-Write operations the latency
gets slower with increasing replication degree. This is because in these operations,
a requesting node has to wait for a majority of responses, and as the number of
replicas grows, the majority increases causing longer waiting time.

10.6 Conclusions and Future Work

We have presented a majority-based key-value store (architecture, algorithms, and
evaluation) intended to be deployed in a large-scale dynamic P2P environment. The
reason for us to choose such unreliable environment over datacenters is mainly to
reduce costs and improve data privacy. Our store provides a number of read/write
operations with multiple consistency levels and with semantics similar to PNUTS.

The store uses the majority-based quorum technique to maintain consistency of
replicated data. Our majority-based store provides stronger consistency guarantees
than guarantees provided in a classical DHT but less expensive than guarantees of

10.6. CONCLUSIONS AND FUTURE WORK 193

 0

 200

 400

 600

 800

 1000

 1200

 1 5 8 16 32

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

Replication Degree

(a) Latency Vs Replication Degree

RA Latency
RC Latency
RL Latency
W Latency

TSW Latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 5 8 16 32

S
uc

ce
ss

 R
at

io

Replication Degree

(b) Success Ratio Vs Replication Degree

RA Succ Ratio
RC Succ Ratio
RL Succ Ratio
W Succ Ratio

TSW Succ Ratio

Figure 10.5: The effect of replication degree on operations

Paxos-based replication. Using majority allows avoiding potential drawbacks of a
master-based consistency control, namely, a single-point of failure and a potential
performance bottleneck. Furthermore, using a majority rather than a single master
allows the system to achieve robustness and withstand churn in a dynamic environ-
ment. Our mechanism is decentralized and thus allows improving load balancing
and scalability.

Evaluation by simulation has shown that the system performs rather well in
terms of latency and operation success ratio in the presence of churn.

In our future work, we intend to evaluate our approach on larger scales and
extreme values of load and churn rate, and to optimize the algorithms in order to

194 CHAPTER 10. MAJORITY-BASED KEY-VALUE STORE

reduce the amount of messages and improve performance. As the proposed key-
value store is to be used in a P2P environment, there is a need to ensure security
and protect to personal information by using cryptographic means. This is also to
be considered in our future work.

Acknowledgments

This research is supported by the E2E Clouds project funded by the Swedish Foun-
dation for Strategic Research (SSF), and the Complex Service Systems (CS2) focus
project, a part of the ICT-The Next Generation (TNG) Strategic Research Area
(SRA) initiative at the KTH Royal Institute of Technology.

Part IV

Self-Management for Cloud-Based
Storage Systems: Automation of

Elasticity

195

Chapter 11

State-Space Feedback Control for
Elastic Distributed Storage in a
Cloud Environment

M. Amir Moulavi, Ahmad Al-Shishtawy, and Vladimir Vlassov

In The Eighth International Conference on Autonomic and Autonomous Systems
ICAS 2012, pp. 18–27, St. Maarten, Netherlands Antilles, March, 2012.

Best Paper Award
http://www.iaria.org/conferences2012/awardsICAS12/icas2012_a1.pdf

State-Space Feedback Control for Elastic
Distributed Storage in a Cloud Environment

M. Amir Moulavi1, Ahmad Al-Shishtawy1,2, and Vladimir Vlassov1

1 KTH Royal Institute of Technology, Stockholm, Sweden
{moulavi, ahmadas, vladv}@kth.se

2 Swedish Institute of Computer Science, Stockholm, Sweden
ahmad@sics.se

Abstract

Elasticity in Cloud computing is an ability of a system to scale up and
down (request and release resources) in response to changes in its environ-
ment and workload. Elasticity can be achieved manually or automatically.
Efforts are being made to automate elasticity in order to improve system per-
formance under dynamic workloads. In this paper, we report our experience
in designing an elasticity controller for a key-value storage service deployed
in a Cloud environment. To design our controller, we have adopted a con-
trol theoretic approach. Automation of elasticity is achieved by providing a
feedback controller that automatically increases and decreases the number of
nodes in order to meet service level objectives under high load and to reduce
costs under low load. Every step in the building of a controller for elastic
storage, including system identification and controller design, is discussed.
We have evaluated our approach by using simulation. We have developed
a simulation framework EStoreSim in order to simulate an elastic key-value
store in a Cloud environment and be able to experiment with different con-
trollers. We have examined the implemented controller against specific service
level objectives and evaluated the controller behavior in different scenarios.
Our simulation experiments have shown the feasibility of our approach to
automate elasticity of storage services using state-space feedback control.

11.1 Introduction

Web-based services frequently experience high workloads during their lifetime. A
service can become popular in just an hour, and the occurrence of such high work-
loads has been observed more and more recently. Cloud computing has brought a
great solution to the problem by requesting and releasing VM (Virtual Machine)
instances that provide the service on-the-fly. This helps to distribute the loads
among more instances. However, the high level load typically does not last for long
and keeping resources in the Cloud costs money. This solution has led to Elastic
Computing where a system running in the Cloud can scale up and down based on
a dynamic property that is changing from time to time.

199

200 CHAPTER 11. STATE-SPACE FEEDBACK CONTROL

In 2001, P. Horn from IBM [5] marked the new era of computing as Autonomic
Computing. He pointed out that the software complexity would be the next chal-
lenge of Information Technology. Growing complexity of IT infrastructures can
undermine the benefits IT aims to provide. One traditional approach to manage
the complexity is to rely on human intervention. However, considering the ex-
pansion rate of software, there would not be enough skilled IT staff to tackle the
complexity of its management. Moreover, most of the real-time applications require
immediate administrative decision-making and actions. Another drawback of the
growing complexity is that it forces us to focus on management issues rather than
improving the system itself.

Elastic Computing requires automatic management that can be provided us-
ing results achieved in the field of Autonomic Computing. Systems that exploit
Autonomic Computing methods to enable automated management are called self-
managing systems. In particular, such systems can adjust themselves according to
the changes of the environment and workload. One common and proven way to
apply automation to computing systems is to use elements of control theory. In
this way a complex system, such as a Cloud service, can be automated and can
operate without the need of human supervision.

In this paper, we report our experience in designing an elasticity controller
for a key-value storage service deployed in a Cloud environment. To design our
controller, we have adopted a control theoretic approach. Automation of elasticity
is achieved by providing a feedback controller that continuously monitors the system
and automatically changes (increases or decreases) the number of nodes in order to
meet Service Level Objectives (SLOs) under high load and to reduce costs under
low load. We believe that this approach to automate elasticity has a considerable
potential for practical use in many Cloud-based services and Web 2.0 applications
including services for social networks, data stores, online storage, live streaming
services.

Our second contribution presented in this paper is an open-source simulation
framework called EStoreSim (Elastic key-value Store Simulator) that allows devel-
opers to simulate an elastic key-value store in a Cloud environment and be able to
experiment with different controllers.

The rest of the paper is organized as follows. In Section 11.2, we define the prob-
lem of automated elasticity and describe the architecture of an elastic Cloud-based
key-value store with feedback control. Section 11.3 presents different approaches
to system identification. In Section 11.4, we show how we construct a state-space
model of our elastic key-value store. We continue in Section 11.5 by presenting the
controller designing for our storage. Section 11.6 summarises steps of controller
design including system identification. In Section 11.7, we describe the implemen-
tation of our simulation framework EStoreSim. Experimental results are presented
in Section 11.8 followed by a discussion of related work in Section 11.9. Finally,
our conclusion and our future work are given in Section 11.10.

11.2. PROBLEM DEFINITION AND SYSTEM DESCRIPTION 201

11.2 Problem Definition and System Description

Our research reported here aims at automation of elasticity of a key-value store
deployed in a Cloud environment. We want to automate the management of elastic
storage instances depending on workload. a Cloud environment allows the system
that is running in the Cloud to scale up and down in few minutes in response to
load changes. In-time and proper decisions regarding the size of the system in
response to the changes in the workload is very critical when it comes to enterprise
and scalable applications.

In order to achieve elasticity of a key-value store in the Cloud, we adopt a control
theoretic approach to designing a feedback controller that automatically increases
and decreases the number of storage instances in response to changes in workload
in order to meet SLOs under high load and to reduce costs under low load. The
overall architecture of the key-value store with the feedback controller is depicted
in Fig. 11.1.

Figure 11.1: Architecture of the Elastic Storage with feedback control of elasticity

End-users request files that are located in the storage Cloud nodes (instances).
All the requests arrive at the Elastic Load Balancer (ELB) that sits in front of all
storage instances. The Elastic Load Balancer decides to which instance the request
should be dispatched. In order to do this, the Elastic Load Balancer tracks the CPU
load and the number of requests sent previously to each instance and based on that
it determines the next node that can serve the incoming request. In addition to the

202 CHAPTER 11. STATE-SPACE FEEDBACK CONTROL

performance metrics that it tracks, ELB has the file tables with information about
file replica locations since more than one instance can have a replica of the same
file in order to satisfy the replication degree.

The Cloud Provider (Fig. 11.1) is an entity that is responsible for launching a
new storage instance or terminating the existing one on requests of the Elasticity
Controller.

Our system contains the Elasticity Controller, which is responsible for control-
ling the number of storage instances in the Cloud in order to achieve the desired
SLO (e.g., download time). The Controller monitors the performance of the stor-
age instances (and indirectly the quality of service) and issues requests to scale the
number of instances up and down in response to changes in the measured quality
of service (compared to the desired SLO). These changes are caused by changes in
the workload, which is not controllable and is considered to be a disturbance in
terms of control theory.

In the following two sections, we provide the relevant background and present
steps of the design of the controller including system identification [132].

11.3 Approaches to System Identification

In this section, we present methods of system identification, which is the most
important step in the design of a controller. It deals with how to construct a model
to identify a system. System identification allows us to build a mathematical model
of a dynamic system based on measured data. The constructed model contains a
number of transfer functions, which define how the output depends on past/present
inputs and outputs. Based on the transfer functions and desired properties and
objectives, a control law is chosen. System identification can be performed using
one of the following approaches.

First principle approach is one of the de facto approaches to identification of
computer systems [21]. It can be considered as a consequence of the queue rela-
tionship. The first principle approach is developed based on knowledge of how a
system operates. For example, this approach has been used in some studies and
systems like [133–143]. However, there are some shortcomings with this approach
that have been stated in [132]. It is very difficult to construct a first principle model
for a complex system. Since this approach considers detailed information about the
target systems, it requires an ongoing maintenance by experts. Furthermore, this
approach does not address model validation.

Empirical approach starts by identifying the input and output parameters like
the first principle approach. But rather than using a transfer function, an autore-
gressive moving average (ARMA) model is built and common statistical techniques
are employed to estimate the ARMA parameters [132]. This approach is also known
as Black Box [21]; and it requires minimal knowledge of the system. Most of the sys-
tems in our studies have employed a black-box approach rather than a first-principle
approach for system identification, e.g., [21, 132, 144–147]. This is mainly because

11.4. STATE-SPACE MODEL OF THE ELASTIC KEY-VALUE STORE 203

the relationship between inputs and outputs of the system is complex enough so
that the first-principle system identification cannot be done easily. One of the em-
pirical approaches is to build a State-Space Model, which requires more knowledge
of the internals of the system. We use the state-space model approach for system
identification as described in the next section.

11.4 State-Space Model of the Elastic Key-Value Store

A state-space model provides a scalable approach to model systems with a large
number of inputs and outputs [21]. The state-space model allows dealing with
higher order target systems without a first-order approximation. Since the studied
system executes in a Cloud environment, which is complex and dynamic in a sense
of dynamic set of VMs and applications, we have chosen state-space modeling as
the system identification approach. Another benefit of using the state-space model
is that it can be extended easily. Suppose that after the model is built, we find more
parameters to control the system. This can be accommodated by the state-space
model without affecting the characteristic equations as shown later in Section 11.6
where we summarize a generic approach for system identification and controller
design

The main idea of the state-space approach is to characterize how the system
operates in terms of one or more variables. These variables may not be directly
measurable. However, they can be sufficient in expressing the dynamics of the
system. These variables are called state variables.

State Variables and the State-Space Model

In order to define the state variables for our system, first we need to define the
inputs and measured outputs since the state variables are related to them. In
particular, state variables can be used to obtain the measured output. It is possible
for a state variable to be a measured output like it is in our case.

In our case, the system input is the number of nodes (instances) denoted by
NN(k) at time k. The measured system outputs (and hence state variables) are the
following:

• average CPU load CPU(k): the average CPU load of all instances currently
running in the Cloud during the time interval [k − 1, k];

• interval total cost TC(k): the total cost of all instances during the time interval
[k − 1, k];

• average response time RT(k): the average time required to start a download
during the time interval [k − 1, k].

The value of each state variable at time k is denoted by x1(k), x2(k) and x3(k).
The offset value for input is ū1(k) = NN(k) − N̂N, where N̂N is the operating point

204 CHAPTER 11. STATE-SPACE FEEDBACK CONTROL

for the input. The offset values for outputs are

ȳ1(k) = CPU(k) − ĈPU (11.1)
ȳ2(k) = TC(k) − T̂C (11.2)
ȳ3(k) = RT(k) − R̂T (11.3)

where ĈPU, T̂C and R̂T are operating points for corresponding outputs.
The state-space model uses state variables in two ways [21]. First, it uses state

variables to describe the dynamics of the system and how x(k + 1) can be obtained
from x(k). Second, it obtains the measured output y(k) from state x(k).

State-space dynamics for a system with n states is described as follows

x(k + 1) = Ax(k) + Bu(k) (11.4)
y(k) = Cx(k) (11.5)

where x(k) is a n × 1 vector of state variables, A is a n × n matrix, B is a n × mI

matrix, u(k) is a mI × 1 vector of inputs, y is a mO × 1 vector of outputs and C
is a mO × n matrix.

According to equations 11.4 and 11.5, we can describe dynamics of our system
as follows:

• Average CPU Load (CPU) is dependant on the number of nodes in the system
and previous CPU load, thus it becomes

x1(k + 1) = CPU(k + 1) =
a11CPU(k)+ (11.6)
b11NN(k)+
0 × TC(k) + 0 × RT(k)

• Total Cost (TC) is dependant on the number of nodes in the system (the more
nodes we have, the more money we should pay) and the previous TC, hence it
becomes

x2(k + 1) = TC(k + 1) =
a21TC(k)+ (11.7)
b21NN(k)+
0 × RT(k) + 0 × CPU(k)

• Average Response Time (RT) is dependant on the number of nodes in the
system and the CPU load, so it is

x3(k + 1) = RT(k + 1) =
a31CPU(k) + a33RT(k)+ (11.8)
b31NN(k)+
0 × TC(k)

11.4. STATE-SPACE MODEL OF THE ELASTIC KEY-VALUE STORE 205

In each equation (11.6, 11.7, 11.8) terms with zero factor include those state
variables that do not affect the corresponding state variable definition. Thus their
coefficient is zero. This is to ensure that there is no relation between those state
variables or the relation is negligible and can be ignored. Their presence in the
equations is for the sake of clarity and completeness. In order to prove that there is
no relation or that it is negligible one should do a sensitivity analysis to investigate
this, but it is out of the scope of this paper.

The output for the system at each time point k is equivalent to the corresponding
state variable:

y(k) = I3x(k) (11.9)

The outputs are the same as the internal state of the systems at each time.
That is why the matrix C is an identity matrix, i.e., a diagonal matrix of 1’s. The
matrices of coefficients are:

A =

⎡
⎣a11 0 0

0 a22 0
a31 0 a33

⎤
⎦ (11.10)

B =

⎡
⎣b11

b21
b31

⎤
⎦ (11.11)

C =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ (11.12)

Parameter Estimation

In Section 11.4, we have derived the State-Space model (Equations 11.6-11.12) that
describes the dynamics of an elastic key-value store. There are two matrices A and
B that contain the unknown coefficients for the equations 11.6-11.8. In order to
use the model to design the controller we need to estimate the coefficient matrices
A and B.

Parameter estimation is done using experimental data. In this research, we use
data obtained from the simulation framework EStoreSim that we have built, rather
than from a real system, because the major focus is on controller design and the
simulation framework allows us to experiment with different controllers. We have
implemented a simulation framework EStoreSim (described in Section 11.7) of a
Cloud system. Using the framework we can obtain experimental data for system
identification.

To get the data, we have designed and run an experiment, in which we feed
the system with an input signal and observe the output and internal state variable
periodically. We change the input (which is the number of nodes in the system) by

206 CHAPTER 11. STATE-SPACE FEEDBACK CONTROL

increasing it from a small number of nodes a to a large number of nodes b and then
back from b to a in a fixed period of time, and measure outputs (CPU load, cost,
and response time). In this way, we ensure the complete coverage of the output
signals in their operating regions by the input signal (the number of nodes). Load
should be generated according to an arbitrary periodic function to issue a number
of downloads per seconds. The period of the function should be chosen such that
at least one period is observed during the time of changing the input between [a, b].

For example, using the modeler component of our framework EStoreSim (Sec-
tion 11.7), we scale up the number of nodes from 2 to 10 and then scale down from
10 to 2. Every 225 seconds a new node is either added or removed (depending on
whether we scale up or down); sampling of training data (measuring outputs) is
performed every 10 seconds.

When identifying the system, the workload is modeled as a stream of requests
issued by the request generator component where the time interval between two
consecutive requests forms a triangle signal in the range [1, 10] seconds as follows:
the first request is issued after 10 seconds, the second after 9 seconds, etc. The
requests are received by the load balancer component in the Cloud provider com-
ponent. After each scaling up/down the system will experience 2 triangle loads of
requests between 1 to 10 seconds. The time needed to experience 2 triangles is
4

∑10
i=1 i, which is 220 seconds. That is why we have selected 225 seconds as the

action time.
Once training data are collected, they can be used to compute the matrices

A and B using the multiple linear regression method. We use the regress(y,X)
function of Matlab to calculate matrices:

A =

⎡
⎣ 0.9 0 0

0 0.724 0
5.927 0 0.295

⎤
⎦

B =

⎡
⎣ 2.3003

0.0147
77.8759

⎤
⎦

11.5 Controller Design

In this section, we describe how the feedback controller for the elastic storage de-
ployed in a Cloud environment is designed. The controller design starts by choosing
an appropriate controller architecture according to system properties. There are
three common architectures for state-space feedback control, namely, Static State
Feedback, Precompensated Static Control and Dynamic State Feedback. A good
comparison between these architectures can be found in [21]. A close investigation
in this comparison reveals that dynamic state feedback control is more suitable for

11.5. CONTROLLER DESIGN 207

a Cloud system since it has disturbance rejection that the other two architectures
lack. Disturbance (in terms of control theory) is observed in a Cloud in the form of
changes in the set of virtual machines and workload of Cloud applications. Thus we
choose dynamic state feedback control as our controller architecture for autonomic
management of elasticity.

Dynamic State Feedback

Dynamic state feedback can be viewed as a State-Space analogous to PI (Propor-
tional Integral) control that has good disturbance rejection properties. It both
tracks the reference input and rejects disturbances. We need to augment the state
vector with the control error e(k) = r − y(k) where r is the reference input. We
use integrated control error, which describes the accumulated control error. The
integrated control error is denoted by xI(k) and computed as

xI(k + 1) = xI(k) + e(k)

The augmented state vector is
[

x(k)
xI(k)

]
. The control law is

u(k) = − [
Kp KI

] [
x(k)
xI(k)

]
(11.13)

where Kp is the feedback gain for x(k) and KI is the gain associated with xI(k).

LQR Controller Design

An approach to controller design is to focus on the trade-off between control effort
and control errors. The control error is determined by the squared values of state
variables, which are normally the difference from their operating points. The control
effort is quantified by the square of u(k), which is the offset of the control input
from the operating point. By minimizing control errors we improve accuracy and
reduce both settling times and overshoot and by minimizing control effort, system
sensitivity to noise is reduced.

Least Quadratic Regulation (LQR) design problem is parametrized in terms of
relative cost of control effort (defined by matrix R) and control errors (defined by
matrix Q). The quadratic cost function to minimize is the following [21]:

J =
1
2

∞∑
k=0

[
x�(k)Qx(k) + u�(k)Ru(k)

]
(11.14)

where Q must be positive semidefinite (eigenvalues of Q must be nonnegative) and
R must be positive definite (eigenvalues of R must be positive) in order for J to
be nonnegative.

After selecting the weighting matrices Q and R, the controller gains K can be
computed using the Matlab dlqr function that takes as parameters the matrices

208 CHAPTER 11. STATE-SPACE FEEDBACK CONTROL

A, B, Q, and R. The performance of the system with the designed controller can
be evaluated by simulation. If the performance is not appropriate, the designer can
select new Q and R and recompute the vector gain K.

In our example, the matrices Q and R are defined as follows:

Q =

⎡
⎣100 0 0

0 1 0
0 0 1

⎤
⎦

R =
[
1
]

We have given 100 to the element that corresponds to CPU Load to empha-
size that this state variable is more important compared to the others. One can
give a high weight to total cost TC to trade off cost for performance. Using the
Matlab dlqr function we compute the controller gains K = dlqr(A, B, Q, R). For
example, using the results of system identification in the example in Section 11.4,
the controller gains (corresponding to the measured outputs of the elastic storage,
CPU, TC, and RT) are:

K =
[
0.134 1.470162e − 06 0.00318

]
Fuzzy Controller

The main purpose in using an additional fuzzy controller is to optimize the control
input produced by the Dynamic State Feedback Controller that we have designed
in Section 11.5. A fuzzy controller uses heuristic rules that define when and what
actions the controller should take. The output of the Dynamic State Feedback
Controller (control input) is redirected together with measured outputs to the fuzzy
controller, which decides if the control input should affect the system or not. The
overall architecture for controllers is demonstrated in Fig. 11.2.

There is one important case that the dynamic state feedback controller can-
not act accordingly. Let us assume that there are some instances with high CPU
load. Since the average is high, the controller will issue a control request to add
a number of new instances. The new instances will be launched and will start to
serve requests. But at the beginning of their life cycle they have low CPU load,
thus the average CPU load that is reported back to the controller can be low. The
controller then assumes that the CPU load has dropped, and it requests to remove
some nodes.

A closer look at the CPU loads reveals that we can not judge the system state
by only the average CPU load. Hence the fuzzy controller also takes into account
the standard deviation of CPU load. In this way, if the feedback controller gives an
order to reduce the number of nodes when there is high standard deviation for CPU
loads, the fuzzy controller will not allow this control input to affect the system, thus
reducing the risk of unexpected results and confusions for the controller that may

11.6. SUMMARY OF STEPS OF CONTROLLER DESIGN 209

Figure 11.2: Controllers Architecture

cause oscillations. This will lead to a more stable environment without so many
unnecessary fluctuations.

Stability Analysis of Controller

A system is called stable if all bounded inputs produce bounded outputs. The
BIBO theorem [21] states that for a system to be stable, its poles must lie within
the unit circle (have magnitude less than 1). In order to calculate the poles for
the controller we need to get the eigenvalues of matrix A that are 0.2951, 0.9 and
0.7247. As it is obvious from the values, all of the poles reside within the unit circle
thus the controller is stable.

11.6 Summary of Steps of Controller Design

This section summarizes the steps needed to design a controller for an elastic storage
in a Cloud environment. The steps described below are general enough to be used
to design a controller for an elastic service in a Cloud. The design process consists
of two stages: system identification and controller design. The design steps are as
follows: the system identification stage includes steps 1-9; and the remaining steps
(10-12) belong to the stage of the controller design.

210 CHAPTER 11. STATE-SPACE FEEDBACK CONTROL

1. Study system behavior in order to identify the inputs and outputs of the
system.

2. Place inputs and outputs in u(k) and y(k) vectors respectively.

3. Select n system outputs that you want to control and place them in state
variable vector x. The outputs should be related to SLOs and performance
metrics.

4. Select m system inputs that you will use to control. These system inputs will
be the outputs of your controller. The system outputs should depend on the
system inputs These inputs should have the highest impact in your system. In
some systems there might be only one input that has high impact whereas in
other systems there might be several inputs that together have high impact.
To assess the impact you might need to do sensitivity analysis.

5. Define state variables that describe the dynamics of the system. State vari-
ables can be equivalent to system outputs selected in step 3. Each state
variable can depend on one or more other state variables and system inputs.
Find the relation between the next value for a state variable to other state
variables and system inputs and construct the characteristic equations as fol-
lows (see also Equation 11.4).

x1(k + 1) = a11x1(k) + . . . + a1nxn(k)
+b11u1(k) + . . . + b1mum(k)

x2(k + 1) = a21x1(k) + . . . + a2nxn(k)
+b21u1(k) + . . . + b2mum(k)

...
xn(k + 1) = an1x1(k) + . . . + annxn(k)

+bn1u1(k) + . . . + bnmum(k)

6. Place coefficients from the previous equations into two matrices A and B.
Some of the coefficients can be zero:

An×n =

⎡
⎢⎣

a11 . . . a1n

...
. . .

...
an1 . . . ann

⎤
⎥⎦

Bn×m =

⎡
⎢⎣

b11 . . . b1m

...
. . .

...
bn1 . . . bnm

⎤
⎥⎦

11.7. ESTORESIM: ELASTIC KEY-VALUE STORE SIMULATOR 211

7. In order to simplify the design of controller, one can assume that outputs of
the systems are equal to state variables, thus matrix C is an identity matrix:

Cn×n =

⎡
⎢⎢⎢⎣

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎤
⎥⎥⎥⎦

8. Design an experiment, in which the system is fed with its inputs. Inputs in
the experiment should be changed in such a way that they cover their ranges
at least one time. A range for an input is the interval that the values of
the input will most likely belong to when the system operates. The selection
of ranges can be based on industry’s best practices. All inputs and outputs
should be measured periodically with a fixed time interval T . Store collected
data for each equation in a separate file called xi.

9. In Matlab, for each file xi, load the file and extract each column of data
in a separate matrix. Use the function regress to calculate the coefficients.
Repeat this for every file. At the end you will have all the coefficients that
are required for matrices A and B.

10. Choose a controller architecture for feedback control: such as dynamic state
feedback control, which is, in our opinion, more appropriate for a Cloud-based
elastic service (as discussed in Section 11.5).

11. Construct matrices Q and R as described in Section 11.5. Remember to put
high weights in matrix Q for those state variables that are of more importance.

12. Use the Matlab function dlqr with matrices A, B, Q and R as parameters
to calculate the vector K of controller gains. Perform stability analysis of
the controller checking whether its poles reside within the unit circle (Sec-
tion 11.5).

11.7 EStoreSim: Elastic Key-Value Store Simulator

We have implemented a simulation framework, which we call EStoreSim, that al-
lows developers to simulate an elastic key-value store in a Cloud environment and
to experiment with different controllers. We have selected Kompics as the imple-
mentation tool. Kompics [148] is a message-passing component model for building
distributed systems using event-driven programming. Kompics components are
reactive state machines that execute concurrently and communicate by passing
data-carrying typed events through typed bidirectional ports connected by chan-
nels. For further information please refer to the Kompics programming manual and
the tutorial on its web site [148].

212 CHAPTER 11. STATE-SPACE FEEDBACK CONTROL

Implementation is done in Java and Scala languages [149] and the source is pub-
licly available at [150]. The overall architecture of EStoreSim is shown in Fig. 11.3.
The simulator includes the following components.

Figure 11.3: Overall Architecture of the EStoreSim Simulation Framework

Cloud Instance Component represents an entire storage instance within a
Cloud. The component architecture for instance is shown in Fig. 11.4.

Figure 11.4: Cloud Instance Component Architecture

Cloud Provider Component represents an important unit in the implemen-
tation. It is the heart of a simulated Cloud computing infrastructure and provides
vital services to manage and administer the nodes (VM instances) within the Cloud.
The Cloud provider component architecture is shown in Fig. 11.5.

Elasticity Controller represents the controller that can connect to the Cloud
provider and retrieve information about the current nodes in the system. The
main responsibility of the controller component is to manage the number of nodes
currently running in the Cloud. In other words, it attempts to optimize the cost
and satisfy some SLO parameters. The overall component architecture is shown in
Fig. 11.6.

11.8. EXPERIMENTS 213

Figure 11.5: Cloud Provider Component Architecture

For further information on EStoreSim please refer to [150].

Figure 11.6: Elasticity Controller Component Architecture

11.8 Experiments

We have conducted a number of simulation experiments using EStoreSim in order
to evaluate how the use of an elasticity controller in a Cloud-based key-value store
improves the operation of the store by reducing the cost of Cloud resources and
the number of SLO violations. The baseline in our experiments is a non-elastic
key-value store, i.e., a key-value store without the elasticity controller.

For evaluation experiments, we have implemented a dynamic state feedback con-
troller with the parameters (controller gains) calculated according to the controller
design steps (Section 11.5). The controller is given reference values of the system

214 CHAPTER 11. STATE-SPACE FEEDBACK CONTROL

outputs that correspond to SLO requirements. Values of system outputs (average
CPU load CPU, Total Cost TC, and average Response Time RT) are fed back into the
controller periodically. When the controller gets the values, it calculates and places
the next value of the number of nodes NN on its output. The controller output is
a real number that should be rounded to a natural integer. We round it down in
order to save the total cost the Cloud generates. One can assume two boundaries,
which are defined as follows:

• L (Lower boundary): the minimum number of instances that should exist in
the Cloud at all times;

• U (Upper boundary): the maximum number of instances that is allowed to
exist in the Cloud at all times.

Hence if the value of controller output is smaller than L or greater than U , then
the value should be discarded. If the calculated output of the controller is Θ, the
number of nodes is defined as follows:

NN =

⎧⎨
⎩

L if Θ � L
Θ if L < Θ < U
U if U � Θ

(11.15)

If the number of current nodes in the system is NN′ and the control input (output
of the controller) is NN, then the next control action is determined as follows:

Next action =

⎧⎨
⎩

scale up with NN − NN′ nodes if NN′ < NN
scale down with NN′ − NN nodes if NN < NN′

no action otherwise
(11.16)

We have conducted two series of experiments to prove our approach to elasticity
control. By these experiments we check whether the elasticity feedback controller
operates as expected. In the first series (which we call SLO Experiment), the load
is increased to a higher level. This increase is expected to cause SLO violation
that is detected by the feedback controller, which adds nodes in order to meet SLO
under high load. In the second series (which we call Cost Experiment), the load
decreases to a lower level. This causes the controller to release nodes in order to
save cost under low load. The instance configuration for these experiments are as
follows:

• CPU frequency: 2 GHz;

• Memory: 8 GB;

• Bandwidth: 2 MB/s;

• Number of simultaneous downloads: 70.

11.8. EXPERIMENTS 215

There are 10 data blocks in the experiments with sizes between 1 to 5 MB. Note
that the same configuration is used in the system identification experiments.

SLO Experiment: Increasing Load

In this series we conducted two experiments: one with controller and another with-
out controller. In the results and figures presented below, they are denoted by
w/controller and w/o controller, respectively. Each experiment starts with
three warmed up instances. By a warmed up instance we mean that in this in-
stance each data block is requested at least once thus it resides in the memory of
this instance.

Workload that is used for this experiment is of two levels: normal and high.
Under the normal load the time interval between consecutive requests is selected
from a uniform random distribution in the range [10, 15] seconds that corresponds
to an average request rate of 4.8 requests per minute. Under the high load the time
interval between consecutive requests is selected from a uniform random distribution
in the range [1, 5] seconds that corresponds to an average request rate of 20 requests
per minute. The experiment starts with normal load and after 500 seconds the
workload increases to the high level. This is shown in Fig. 11.7.

Figure 11.7: SLO Experiment Workload

Sensing of instance output is done every 25 seconds. In the case of controller,
actuation is performed every 100 seconds. Thus there are 4 sets of measured data
at each actuation time that the controller should consider. In order to calculate
values of the system output, the controller computes averages of data sets. The
duration of each experiment is 2000 seconds with warm up of 100 seconds. SLO
requirements are as follows:

• Average CPU Load: � 55%

216 CHAPTER 11. STATE-SPACE FEEDBACK CONTROL

Table 11.1: SLO Violations
SLO Parameter Viola-
tion (%)

w/ Con-
troller

w/o Con-
troller

CPU Load 17.94 72.28
Response Time 2.12 7.073
Bandwidth 35.89 74.69

• Response Time: � 1, 5 seconds

• Average Bandwidth per download: > 200000 B/s

For each experiment the percentages of SLO violations are calculated for each
aforementioned SLO requirement based on Equation 11.17. The result is shown in
Table 11.1.

SLO Violations = 100% × Number of SLO Violations
Total Number of SLO Checks (11.17)

Checking of SLO is done at each estimate (sensing) of the Average CPU Load
and Average Bandwidth per download and each estimate of Response Time.

This experiment gives us interesting results that are discussed in this section.
NL and HL in figures 11.8-11.12 indicate periods of Normal Load and High Load
respectively.

Fig. 11.8 depicts the Average CPU Load for the aforementioned experiments.
The Average CPU Load is the average of all nodes’ CPU Loads at each time the
sensing is performed. As one can see in Fig. 11.8, CPU loads for the experiment with
the controller is generally lower than the same experiment without the controller.
This is due to the controller that launches new instances under high workloads
causing a huge drop in average CPU Load.

Fig. 11.9 depicts the Average Response Time for the experiments. By response
time we mean the time that it takes for an instance to respond to a request that
download is started and not the actual download time. As it is seen from the dia-
gram, the average response time for the experiment with the controller is generally
lower than the experiment without controller. This is because in case of having
a fixed number of instances (3 in this experiment), there would be congestion by
the number of requests an instance can process. This increases the responsivity of
an instance. However, in the case that the controller launches new instances, no
instance will actually go under high number of requests.

Fig 11.10 shows the total cost for the experiments. Interval total cost means
that total cost is calculated for each interval in which the senses are done. As
can be observed from the diagram, the interval total cost for the experiment with
the controller is much higher than the experiment without the controller. This is
because launching new instances will cost more money than having a fixed number

11.8. EXPERIMENTS 217

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120
Average CPU Load

Time (s)

A
ve

ra
ge

 C
P

U
 L

oa
d

(%
)

↑SLA Requirement < 55%

NL HL

w/ controller
w/o controller

Figure 11.8: SLO Experiment - Average CPU Load

0 200 400 600 800 1000 1200 1400 1600 1800 2000
100

200

300

400

500

600

700

800

900

1000

1100
Average Response Time

Time (s)

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

NL HL

w/ controller
w/o controller

Figure 11.9: SLO Experiment - Average Response Time

218 CHAPTER 11. STATE-SPACE FEEDBACK CONTROL

w/ controller w/o con-
troller

Total Cost ($) 14.4528 8.6779

Table 11.2: Total Cost for each SLO experiment

of instances available in the Cloud. This experiment has high load of requests for
the system in which the controller is more likely to scale up and resides in that
mood than to scale down. It should be noted that costs are computed according to
Amazon EC2 price list.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Interval Total Cost

Time (s)

In
te

rv
al

 T
ot

al
 C

os
t (

$)

NL HL

w/ controller
w/o controller

Figure 11.10: SLO Experiment - Interval Total Cost

Calculated total cost for each experiment is given in Table 11.2.
Fig. 11.11 depicts the Average bandwidth per download. If an instance has a

bandwidth of 4 Mb/s and has two current downloads running, the bandwidth per
download is 2 Mb/s. As can be seen from the diagram, the experiment with con-
troller shows significantly higher bandwidth per download. This is mainly because
the instances receive less number of requests and bandwidth is divided among less
requests also. This will end up having higher bandwidth available on each instance.

Fig 11.12 shows the number of nodes for each experiment. As we discussed
earlier the number of nodes is constant for experiment without controller. However,
for the experiment with the controller the number of nodes is changed over time
hence the SLO requirements can be met.

11.8. EXPERIMENTS 219

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12

14

16

18
x 10

5 Average Bandwidth per download

Time (s)

A
ve

ra
ge

 B
an

dw
id

th
 (

B
/s

)

↓SLA Requirement > 200 KB/s

NL HL

w/ controller
w/o controller

Figure 11.11: SLO Experiment - Average Bandwidth per download (B/s)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
3

4

5

6

7

8

9
Number of Nodes

Time (s)

N
um

be
r

of
 N

od
es

NL HL

w/ controller
w/o controller

Figure 11.12: SLO Experiment - Number of Nodes

220 CHAPTER 11. STATE-SPACE FEEDBACK CONTROL

w/ controller w/o con-
troller

Total Cost ($) 10.509 16.5001

Table 11.3: Total Cost for Cost experiment

Cost Experiment: Decreasing Load

The purpose of this series of experiments is to show that the controller can save
the total cost by releasing instances when the load is low. Each experiment in this
series starts with 7 instances. The duration of the experiment is 2000 seconds.

In this series we use different workloads of two levels: high and low. In the
high load the time interval between consecutive requests is selected from a uniform
random distribution in the range [1, 3] seconds that corresponds to a request rate
of 30 requests per minute. In the low load the time interval between consecutive
requests is selected from a uniform random distribution in the range [15, 20] seconds
that corresponds to a request rate of about 3.4 requests per minute. Unlike the
SLO experiment, the cost experiment starts with a high load, which changes to a
low load after 500 seconds as shown in Fig. 11.13.

Figure 11.13: Cost Experiment workload

The result of the cost experiment shown in Table 11.3 is interesting. It is
observed that the total cost in the experiment with the controller is actually lower
than the total cost in the experiment without the controller unlike in the SLO
experiment. This is because the controller removes instances under low load and
that results in cost savings. The reason that this experiment has lower cost than the
previous one is that L (lower bound on number of nodes) is not equal to the initial
number of nodes and it is smaller. Hence controller can scale down the number of
nodes to L.

11.9. RELATED WORK 221

11.9 Related Work

There are many projects that use elements of control theory for providing auto-
mated control of computing systems including Cloud-based services [14, 21, 132,
136–138,141,144–147]. Here we consider two related pieces of work [14,145], which
are the closest to our research aiming at automation of elasticity of storage services.

The SCADS Director proposed in [14] is a control framework that reconfigures
a storage system at run time in response to workload fluctuations. Reconfigura-
tion includes adding/removing servers, redistributing and replicating data between
servers. The SCADS Director employs the Model-Predictive Control technique to
predict system performance for the given workload using a performance model of
the system and make control decisions based on prediction. Performance modeling
is performed by statistical machine learning.

Lim et al. [145] have proposed a feedback controller for elastic storage in Cloud
environment. The controller consists of three components: Horizontal Scale Con-
troller responsible for scaling the storage; Data Rebalancer Controller that controls
data transfer for rebalancing after scaling up/down; and the State Machine that
coordinates the actions of the controllers in order to avoid wrong control decisions
caused by interference of rebalancing with applications and sensor measurements.

To our knowledge both aforementioned projects do not explicitly use cost as a
controller input (state variable, system output) in the controller design. In con-
trast, we use state-space feedback control and explicitly include the total cost of
Cloud instances as a state (system output) variable in the state-space model (when
identifying the system) and as a controller input in the controller design (when
determining controller gains). This allows us to use a desired value of cost in addi-
tion to the SLO requirements to automatically control the scale of the storage by
trading off performance for cost.

11.10 Conclusion and Future Work

Elasticity in Cloud computing is an ability of a system to scale up and down (request
and release resources) in response to changes in its environment and workload.
Elasticity provides an opportunity to scale up under high workload and to scale
down under low workload to reduce the total cost for the system while meeting
SLOs. We have presented our experience in designing an elasticity controller for
a key-value store in a Cloud environment and described the steps in designing it
including system identification and controller design. The controller allows the
system to automatically scale the amount of resources while meeting performance
SLO, in order to reduce SLO violations and the total cost for the provided service.
We also introduced our open source simulation framework (EStoreSim) for Cloud
systems that allows to experiment with different controllers and workloads. We have
conducted two series of experiments using EStoreSim. Experiments have shown the
feasibility of our approach to automate elasticity control of a key-value store in a

222 CHAPTER 11. STATE-SPACE FEEDBACK CONTROL

Cloud using state-space feedback control. We believe that this approach can be
used to automate elasticity of other Cloud-based services.

In our future work, we will study other controller architectures such as model
predictive control, and conduct experiments using real-world traces. We will also
research on using feedback control for other elastic Cloud-based services.

Acknowledgments

This research is supported by the End-to-End Clouds project funded by the Swedish
Foundation for Strategic Research, the Complex Service Systems focus project, a
part of the ICT-TNG Strategic Research Area initiative at the KTH Royal Institute
of Technology, and by the Testbed for E2E Clouds RCLD-project funded by EIT
ICT Labs.

Chapter 12

ElastMan: Autonomic Elasticity
Manager for Cloud-Based
Key-Value Stores

Ahmad Al-Shishtawy and Vladimir Vlassov

Technical Report TRITA-ICT/ECS R 12:01, ISSN 1653-7238, ISRN KTH/ICT/ECS/R-
12-01-SE, KTH Royal Institute of Technology, Stockholm, Sweden, August 2012.

ElastMan: Autonomic Elasticity Manager for
Cloud-Based Key-Value Stores

Ahmad Al-Shishtawy1,2, and Vladimir Vlassov1

1 KTH Royal Institute of Technology, Stockholm, Sweden
{ahmadas, vladv}@kth.se

2 Swedish Institute of Computer Science, Stockholm, Sweden
ahmad@sics.se

Abstract

The increasing spread of elastic Cloud services, together with the pay-as-
you-go pricing model of Cloud computing, has led to the need of an elasticity
controller. The controller automatically resizes an elastic service, in response
to changes in workload, in order to meet Service Level Objectives (SLOs) at a
reduced cost. However, variable performance of Cloud virtual machines and
nonlinearities in Cloud services, such as the diminishing reward of adding a
service instance with increasing the scale, complicates the controller design.
We present the design and evaluation of ElastMan, an elasticity controller
for Cloud-based elastic key-value stores. ElastMan combines feedforward and
feedback control. Feedforward control is used to respond to spikes in the work-
load by quickly resizing the service to meet SLOs at a minimal cost. Feedback
control is used to correct modeling errors and to handle diurnal workload. To
address nonlinearities, our design of ElastMan leverages the near-linear scala-
bility of elastic Cloud services in order to build a scale-independent model of
the service. Our design based on combining feedforward and feedback control
allows to efficiently handle both diurnal and rapid changes in workload in
order to meet SLOs at a minimal cost. Our evaluation shows the feasibility
of our approach to automation of Cloud service elasticity.

12.1 Introduction

The growing popularity of Web 2.0 applications, such as wikis, social networks,
and blogs, has posed new challenges on the underlying provisioning infrastructure.
Many large-scale Web 2.0 applications leverage elastic services, such as elastic key-
value stores, that can scale horizontally by adding/removing servers. Voldemort [9],
Cassandra [10], and Dynamo [11] are few examples of elastic storage services.

Cloud computing [3], with its pay-as-you-go pricing model, provides an attrac-
tive environment to provision elastic services as the running cost of such services
becomes proportional to the amount of resources needed to handle the current
workload. The independence of peak loads for different applications enables Cloud

225

226 CHAPTER 12. ELASTMAN: AUTONOMIC ELASTICITY MANAGER

providers to efficiently share the resources among the applications. However, shar-
ing the physical resources among Virtual Machines (VMs) running different applica-
tions makes it challenging to model and predict the performance of the VMs [39,40].

Managing the resources for Web 2.0 applications, in order to guarantee accept-
able performance, is challenging because of the highly dynamic workload that is
composed of both gradual (diurnal) and sudden (spikes) variations [41]. It is dif-
ficult to predict the workload particularly for new applications that can become
popular within few days [12,13]. Furthermore, the performance requirement is usu-
ally expressed in terms of upper percentiles which is more difficult to maintain than
the average performance [11,14].

The pay-as-you-go pricing model, elasticity, and dynamic workload of Web 2.0
applications altogether call for the need for an elasticity controller that automates
the provisioning of Cloud resources. The elasticity controller leverages the hor-
izontal scalability of elastic services by provisioning more resources under high
workloads in order to meet required service level objectives (SLOs). The pay-as-
you-go pricing model provides an incentive for the elasticity controller to release
extra resources when they are not needed once the workload decreases.

In this paper, we present the design and evaluation of ElastMan, an Elasticity
Manager for elastic key-value stores running in Cloud VMs. ElastMan addresses
the challenges of the variable performance of Cloud VMs, dynamic workload, and
stringent performance requirements expressed in terms of upper percentiles by com-
bining feedforward control and feedback control. The feedforward controller mon-
itors the current workload and uses a logistic regression model of the service to
predict whether the current workload will cause the service to violate the SLOs or
not, and acts accordingly. The feedforward controller is used to quickly respond
to sudden large changes (spikes) in the workload. The feedback controller directly
monitors the performance of the service (e.g., response time) and reacts based on
the amount of deviation from the desired performance specified in the SLO. The
feedback controller is used to correct errors in the model used by the feedforward
controller and to handle gradual (e.g., diurnal) changes in workload.

Due to the nonlinearities in elastic Cloud services, resulting from the diminishing
reward of adding a service instance (VM) with increasing the scale, we propose a
scale-independent model used to design the feedback controller. This enables the
feedback controller to operate at various scales of the service without the need
to use techniques such as gain scheduling. To achieve this, our design leverages
the near-linear scalability of elastic service. The feedback controller controls the
number of nodes indirectly by controlling the average workload per server. Thus,
the controller decisions become independent of the current number of instances that
compose the service.

The major contributions of the paper are as follows.

• We leverage the advantages of both feedforward and feedback control to build
an elasticity controller for elastic key-value stores running in Cloud environ-
ments.

12.2. BACKGROUND 227

• We propose a scale-independent feedback controller suitable for horizontally
scaling services running at various scales.

• We describe the complete design of ElastMan including various techniques
required to automate elasticity of Cloud-based services.

• We evaluate effectiveness of the core components of ElastMan using the Volde-
mort [9] key-value store running in a Cloud environment against both diurnal
and sudden variations in workload.

• We provide an open source implementation of ElastMan with detailed instruc-
tions on how to repeat our experiments.

The rest of this paper is organized as following. Section 12.2 summarizes key
concepts necessary for the paper. In Section 12.3 we describe the basic architecture
of the target system we are trying to control. We continue by describing the design
of ElastMan in Section 12.4. This is followed by the evaluation in Section 12.5.
Related work is discussed in Section 12.6. We discus future work in Section 12.7
followed by conclusions in Section 12.8.

12.2 Background

In this section we lay out the necessary background for the paper. This include
Web 2.0 applications, Cloud computing, elastic services, feedback control, and feed-
forward control.

Web 2.0 Applications

Web 2.0 applications, such as Social Networks, Wikis, and Blogs, are data-centric
with frequent data access [37]. This poses new challenges on the data-layer of
multi-tier application servers because the performance of the data-layer is typically
governed by strict Service Level Objectives (SLOs) [14] in order to satisfy costumer
expectations.

With the rapid increase of Web 2.0 users, the poor scalability of a typical data-
layer with ACID [38] properties limited the scalability of Web 2.0 applications. This
has led to the development of new data-stores with relaxed consistency guarantees
and simpler operations such as Voldemort [9], Cassandra [10], and Dynamo [11].
These storage systems typically provide simple key-value storage with eventual
consistency guarantees. The simplified data and consistency models of key-value
stores enable them to efficiently scale horizontally by adding more servers and thus
serve more clients.

Another problem facing Web 2.0 applications is that a certain service, feature, or
topic might suddenly become popular resulting in a spike in the workload [12,13].
The fact that storage is a stateful service complicates the problem since only a
particular subset of servers host the data related to the popular item.

228 CHAPTER 12. ELASTMAN: AUTONOMIC ELASTICITY MANAGER

These challenges have led to the need for an automated approach, to manage
the data-tier, that is capable of quickly and efficiently responding to changes in the
workload in order to meet the required SLOs of the storage service.

Cloud Computing and Elastic Services

Cloud computing [3], with its pay-as-you-go pricing model, provides an attractive
solution to host the ever-growing number of Web 2.0 applications. This is mainly
because it is difficult, specially for startups, to predict the future load that is going
to be imposed on the application and thus the amount of resources (e.g., servers)
needed to serve that load. Another reason is the initial investment, in the form of
buying the servers, that is avoided in the Cloud pay-as-you-go pricing model.

To leverage the Cloud pricing model and to efficiently handle the dynamic Web
2.0 workload, Cloud services (such as key-value stores in the data-tier of a Cloud-
based multi-tier application) are designed to be elastic. An Elastic service is de-
signed to be able to scale horizontally at runtime without disrupting the running
service. An elastic service can be scaled up (e.g., by the system administrator) in
the case of increasing workload by adding more resources in order to meet SLOs.
In the case of decreasing load, an elastic service can be scaled down by removing
extra resource and thus reducing the cost without violating the service SLOs. For
stateful services, scaling is usually combined with a rebalancing step necessary to
redistribute the data among the new set of servers.

Feedback versus Feedforward Control

In computing systems, a controller [21] or an autonomic manager [5] is a software
component that regulates the nonfunctional properties (performance metrics) of a
target system. Nonfunctional properties are properties of the system such as the
response time or CPU utilization. From the controller perspective these perfor-
mance metrics are the system output. The regulation is achieved by monitoring
the target system through a monitoring interface and adapting the system’s con-
figurations, such as the number of servers, accordingly through a control interface
(control input). Controllers can be classified into feedback or feedforward controllers
depending on what is being monitored.

In feedback control, the system’s output (e.g., response time) is being monitored.
The controller calculates the control error by comparing the current system’s output
to a desired value set by the system administrators. Depending on the amount and
sign of the control error, the controller changes the control input (e.g., number of
servers to add or remove) in order to reduce the control error. The main advantage
of feedback control is that the controller can adapt to disturbance such as changes
in the behaviour of the system or its operating environment. Disadvantages in-
clude oscillation, overshoot, and possible instability if the controller is not properly
designed. Due to the nonlinearity of most systems, feedback controllers are ap-

12.3. TARGET SYSTEM 229

Figure 12.1: Multi-Tier Web 2.0 Application with Elasticity Controller Deployed
in a Cloud Environment

proximated around linear regions called the operating region. Feedback controllers
work properly only around the operating region they where designed for.

On the other hand, in feedforward control, the system’s output is not being
monitored. Instead the feedforward controller relies on a model of the system that
is used to calculate the systems output based on the current system state. For
example, given the current request rate and the number of servers, the system
model is used to calculate the corresponding response time and act accordingly to
meet the desired response time. The major disadvantage of feedforward control
is that it is very sensitive to unexpected disturbances that are not accounted for
in the system model. This usually results in a relatively complex system model
compared to feedback control. The main advantages of feedforward control include
being faster than feedback control and avoiding oscillations and overshoot.

12.3 Target System

We are targeting multi-tier Web 2.0 applications as depicted in the left side of
Figure 12.1. We are focusing on managing the data-tier because of its major effect
on the performance of Web 2.0 applications, which are mostly data centric [37].
Furthermore, the fact that storage is a stateful service makes it harder to manage
as each request can be handled only by a subset of the servers that store replicas
of the particular data item in the request.

For the data-tier, we assume horizontally scalable key-value stores due to their
popularity in many large scale Web 2.0 applications such as Facebook and LinkedIn.
A typical key-value store provides a simple put/get interface. This simplicity en-
ables key-value stores to efficiently partition the data among multiple servers and
thus to scale well to a large number of servers.

230 CHAPTER 12. ELASTMAN: AUTONOMIC ELASTICITY MANAGER

The minimum requirements to manage a key-value store using our approach
(described in Section 12.4) is as follows. The store must provide a monitoring
interface that enables the monitoring of both the workload and the latency of
put/get operations. The store must also provide an actuation interface that enables
the horizontal scalability by adding or removing service instances.

Because storage is a stateful service, actuation (adding or removing service
instances) must be combined with a rebalance operation. The rebalance operation
redistributes the data among the new set of servers in order to balance the load
among them. Many key-value stores, such as Voldemort [9] and Cassandra [10],
provide tools to rebalance the data among the service instances. In this paper,
we focus on the control problem and rely on the built-in capabilities of the storage
service to rebalance the load. If the storage does not provide such service, techniques
such as rebalancing using fine grained workload statistics proposed by Trushkowsky
et al. [14], the Aqueduct online data migration proposed by Lu et al. [42], or the
data rebalance controller proposed by Lim et al. [43] can be used.

In this work we target Web 2.0 applications running in Cloud environments such
as Amazon’s EC2 [44] or private Clouds. The target environment is depicted on the
right side of Figure 12.1. We assume that each service instance runs on its own VM;
Each Physical server hosts multiple VMs. The Cloud environment hosts multiple
such applications (not shown in the figure). Such environment complicates the
control problem. This is mainly due to the fact that VMs compete for the shared
resources. This high environmental noise makes it difficult to model and predict
the performance of VMs [39,40].

12.4 Elasticity Controller

The pay-as-you-go pricing model, elasticity, and dynamic workload of Web 2.0
applications altogether call for the need for an elasticity controller that automates
the provisioning of Cloud resources depending on load. The elasticity controller
leverages the horizontal scalability of elastic Cloud services by provisioning more
resources under high workloads in order to meet the required SLOs. The pay-as-
you-go pricing model provides an incentive for the elasticity controller to release
extra resources when they are not needed once the workload starts decreasing.

In this section we describe the design of ElastMan, an elasticity controller de-
signed to control the elasticity of key-value stores running in a Cloud environment.
The objective of ElastMan is to regulate the performance of key-value stores ac-
cording to a predefined SLO expressed as the 99th percentile of read operations
latency over a fixed period of time.

Controlling a noisy signal, such as the 99th percentile, is challenging [14]. The
high level of noise can mislead the controller into taking incorrect decisions. On
the other hand, applying a smoothing filter in order to filter out noise, may also
filter out a spike or, at least, delay its detection and handling. One approach to
control noisy signals is to build a performance model of the system, thus avoiding

12.4. ELASTICITY CONTROLLER 231

the need for measuring the noisy signal. The performance model used to predict
the performance of the system given its current state (e.g., current workload).
However, due to the variable performance of Cloud VMs (compared to dedicated
physical servers), it is difficult to accurately model the performance of the services
running in the Cloud.

To address the challenges of controlling a noisy signal and variable performance
of Cloud VMs, ElastMan consists of two main components, a feedforward controller
and a feedback controller. ElastMan relies on the feedforward controller to handle
rapid large changes in the workload (e.g., spikes). This enables ElastMan to smooth
the noisy 99th percentile signal and use feedback controller to correct errors in the
feedforward system model in order to accurately bring the 99th percentile of read
operations to the desired SLO value. In other words, the feedforward control is
used to quickly bring the performance of the system near the desired value and
then the feedback control is used to fine tune the performance.

The Feedback Controller

The first step in designing a feedback controller is to create a model of the target
system (the key-value store in our case) that relates the control input to the system
output (i.e., how a change in the control input affects the system output). For
computing systems, a black-box approach is usually used [21], which is a statistical
technique used to find the relation between the input and the output. The pro-
cess of constructing a system model using the black-box approach is called system
identification.

System identification is one of the most challenging steps in controller design.
This is because a system can be modelled in many different ways and the choice of
the model can dramatically affect the performance and complexity of the controller.
The model of the system is usually a linear approximation of the behaviour of the
system around an operating point (within an operating region). This makes the
model valid only around the predefined point.

In order to identify a key-value store, we need to define what is the control input
and the system output. In feedback control we typically monitor (measure) the
system output that we want to regulate, which is, in our case, the 99th percentile
of read operations latency over a fixed period of time (called R99p thereafter).
The feedback controller calculates the error, which is the difference between the
setpoint, which in our case is the required SLO value of R99p, and the measured
system output as shown in equation 12.1.

e(t) = SetpointSLO_R99p − MeasuredR99p(t) (12.1)

For the control input, an intuitive choice would be to use the number of storage
servers. In other words, to try to find how changing the number of nodes affects
the R99p of the key-value store. However, there are two drawback for this choice
of a model. First, the model does not account for the current load on the sys-

232 CHAPTER 12. ELASTMAN: AUTONOMIC ELASTICITY MANAGER

tem. By load we mean the number of operations processed by the store per second
(i.e., throughput). The latency is much shorter in an underloaded store than in an
overloaded store. In this case, the load is treated as disturbance in the model. Con-
trollers can be designed to reject disturbances but it might reduce the performance
of the controller. Using the number of servers (which we can control) as a control
input seems to be a natural choice since we can not control the load on the system
as it depends on the number of clients interacting with our web application.

The second drawback is that using the number of servers as input to our
model makes it nonlinear. For example, adding one server to a store having one
server,doubles the capacity of the store. On the other hand, adding one server to a
store with 100 servers increases the capacity by only one percent. This nonlinear-
ity makes it difficult to design a controller because the model behaves differently
depending on the size of the system. This might require having multiple controllers
responsible for different operating regions corresponding to different sizes of the
system. In control theory, this approach is known as gain scheduling.

In the design of the feedback controller for ElastMan, we propose to model
the target store using the average throughput per server ans the control input.
Although we can not control the total throughput on the system, we can indirectly
control the average throughput of a server by adding/removing servers. Adding
servers to the system reduces the average throughput per server, whereas removing
servers reduces the average throughput per server. Our choice is motivated by the
near linear scalability of elastic key-value stores (as discussed in Section 12.5). For
example, when we double both the load and the number of servers, the R99p of the
store remains roughly the same as well as the average throughput per server.

The major advantage of our proposed approach to model the store is that the
model remains valid as we scale the store, and it does not dependent on the num-
ber of nodes. The noise in our model is the slight nonlinearity of the horizontal
scalability of the elastic key-value store and the variable behaviour of the VMs in
the Cloud environment. Note that this noise also exist in the previous model using
the number of servers as control input.

In our proposed model, the operating point is defined as the value of the average
throughput per server (input) and corresponding desired R99p (output); Whereas
in the previous model, using the number of servers as a control input, the operating
point is the number of servers (input) and corresponding R99p (output). Using our
proposed model, the controller remains in the operating region (around operating
point) as it scales the storage service. The operating region is defined around the
value of the average throughput per server that produces the desired R99p regard-
less of the current size of the store. This eliminates the need for gain scheduling
and simplifies the system identification and the controller design.

Given the current value of R99p, the controller uses the error, defined in Equa-
tion 12.1, to calculate how much the current throughput per server (called u) should
be increased or decreased in order to meet the desired R99p defined in the SLO of
the store. We build our controller as a classical PI controller described by Equa-
tion 12.2. The block diagram of our controller is depicted in Figure 12.2. The

12.4. ELASTICITY CONTROLLER 233

+ _

SLO (Desired
99th Percentile
of Read Latency)

Error PI
Controller

New Average
Throughput
per Server

Actuator Key-Value
Store

New Number
of Nodes

Smoothing
Filter

Measured 99th Percentile
of Read Latency

Figure 12.2: Block Diagram of the Feedback controller used in ElastMan

FF
Binary

Classifier

New Average
Throughput
per Server

Actuator Key-Value
Store

New Number
of Nodes

Measured 99th
Percentile of
Read Latency

Measured Average
Throughput
per Server

Figure 12.3: Block Diagram of the Feedforward controller used in ElastMan

controller design step involves using the system model to tune the controller gains,
Kp and Ki, which is out of the scope of the paper.

u(t + 1) = u(t) + Kpe(t) + Ki

t∑
x=0

e(x) (12.2)

The actuator uses the control output u(t+1), which is the new average through-
put per server, to calculate the new number of servers according to Equation 12.3.

New Number of Servers =
Current Total Throughput

New Average Throughput per Server
(12.3)

The actuator uses the Cloud API to request/release resources and uses the
elasticity API to add/remove new servers and also uses the rebalance API of the
store to redistribute the data among servers.

The Feedforward Controller

ElastMan uses a feedforward model predictive controller to detect and quickly re-
spond to spikes (rapid changes in workload). A model predictive controller uses a
model of the system in order to reason about the current status of the system and
make decisions. The block diagram of the feedforward controller is depicted in Fig-
ure 12.3. For our system we use a binary classifier created using logistic regression
as proposed by Trushkowsky et al. [14]. The model is trained offline by varying
the average intensity and the ratio of read/write operations per server as shown

234 CHAPTER 12. ELASTMAN: AUTONOMIC ELASTICITY MANAGER

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

W
rit

e
T

hr
ou

gh
pu

t (
op

s/
se

co
nd

/s
er

ve
r)

Read Throughput (ops/second/server)

Training Data and Model

Violate SLO
Satisfy SLO

Model

Figure 12.4: Binary Classifier for One Server

in Figure 12.4. The final model is a line that splits the plane into two regions.
The region on and below the line is the region where the SLO is met whereas the
region above the line is the region where the SLO is violated. Ideally, the average
measured throughput should be on the line, which means that the SLO is met with
the minimal number of servers.

In a very large system, averaging of throughput of servers may hide a spike that
can occur on a single server or a small number of servers. In order to detect such
spikes, the large system can be partitioned and each partition can be monitored
separately.

The controller uses the model to reason about the current status of the system
and make control decisions. If the measured throughput is far below the line, this
indicates that the system is underloaded and servers (VMs) could be removed and
vice versa. When a spike is detected, the feedforward controller uses the model to
calculate the new average throughput per server. This is done by calculating the
intersection point between the model line and the line connecting the origin with
the point that corresponds to the measured throughput. The slope of the latter
line is equal to the ratio of the write/read throughput of the current workload mix.

Then the calculated throughput is given to the actuator, which computes the
new number of servers (using Equation 12.3) that brings the storage service close

12.4. ELASTICITY CONTROLLER 235

to the desired operating point where the SLO is met with the minimal number of
storage servers.

Note that the feedforward controller does not measure the R99p nor does make
decisions based on error but relies on the accuracy of the model to check if the
current load will cause an SLO violation. This makes the feedforward controller
sensitive to noise such as changes in the behavior of the VM provided by the Cloud.

Elasticity Controller Algorithm of ElastMan

Our elasticity controller ElastMan combines the feedforward controller and feed-
back controller. The feedback and feedforward controllers complement each other.
The feedforward controller relies on the feedback controller to correct errors in the
feedforward model; whereas the feedback controller relies on the feedforward con-
troller to quickly respond to spikes so that the noisy R99p signal that drives the
feedback controller is smoothed. The flowchart of the algorithm of ElastMan is
depicted in Figure 12.5.

The ElastMan elasticity controller starts by measuring the current 99th per-
centile of read operations latency (R99p) and the current average throughput (tp)
per server. The R99p signal is smoothed using a smoothing filter resulting in a
smoothed signal (fR99p). The controller then calculates the error e as in Equa-
tion 12.1. If the error is in the deadzone defined by a threshold around the desired
R99p value, the controller takes no action. Otherwise, the controller compares the
current tp with the value in the previous round. A significant change in the through-
put (workload) indicate a spike. The elasticity controller then uses the feedforward
controller to calculate the new average throughput per server needed to handle the
current load. On the other hand, if the change in the workload is relatively small,
the elasticity controller uses the feedback controller which calculates the new aver-
age throughput per server based on the current error. In both cases the actuator
uses the current total throughput and the new average throughput per server to
calculate the new number fo servers (Equation 12.3).

During the rebalance operation, which is needed in order to add or remove
servers, both controllers are disabled as proposed by Lim et al. [43]. The feedback
controller is disabled because the rebalance operation adds a significant amount of
load on the system that causes increase in R99p. This can mislead the feedback
controller causing it to wrongly add more resources. However if the storage system
supports multiple rebalance instances or modifying the currently running rebalance
instance, the feedforward controller can still be used. This is because the feedfor-
ward controller relies on the measured throughput of read/write operations (and it
does not count rebalance operations) thus it will not be affected by the extra load
added by the rebalancing operation.

Because the actuator can only add complete servers in discreet units, it will not
be able to fully satisfy the controller actuation requests which are continuous values.
For example, to satisfy the new average throughput per server, requested by the
elasticity controller, the actuator might calculate that 1.5 servers are needed to be

236 CHAPTER 12. ELASTMAN: AUTONOMIC ELASTICITY MANAGER

Measure
Average Throughput per server (tp)

and 99 percentile of read latency (R99p)

Error in
dead-zone

Yes

Rebalancing

No

Large change
in Throughput

Use Feedforward
FF(tp)

Binary Classifier

Yes

No

Use Feedback
FB(fp99)

PID Controller

No

Filter rp99
fR99p=f(R99p)

Do nothing!

If storage supports
rebalance restart then

use Feedforward controller
designed for the store

in rebalance mode FFR(tp)

Yes

Start Controller

Calculate number of
new VMs

new_VMs = total_throughput/new_throughput_per_server
subject to:

replication_degree <= new_VMs <= max_VMs

Start rebalance instance
rebalance(n)

End

Figure 12.5: Combined Feedback and Feedforward Flow Chart

12.5. EVALUATION 237

added (or removed). The actuator solves this situation by rounding the calculated
value up or down to get a discrete value. This might result in oscillation, where the
controller continuously adds and removes one node. Oscillations typically happen
when the size of the storage cluster is small, as adding or removing a server have
bigger effect on the total capacity of the storage service. Oscillations can be avoided
by using the proportional thresholding technique as proposed by Lim et al. [43]. The
basic idea is to adjust the lower threshold of the dead zone, depending on the storage
cluster size, to avoid removing a server that will result in SLO violation and thus
will request the server to be added back again causing oscillation.

12.5 Evaluation

We implemented ElastMan, our elasticity controller, in order to validate and evalu-
ate the performance of our proposed solution to control an elastic key-value stores
running in Cloud environments. The source code of ElastMan is publicly available1.

Experimental Setup

In order to evaluate our ElastMan implementation, we used the Voldemort (ver-
sion 0.91) Key-Value Store [9] which is used in production at many top Web 2.0
applications such as LinkedIn. We kept the core unmodified. We only extended
the provided Voldemort client that is part of the Voldemort performance tool. The
Voldemort performance tool is based on the YCSB benchmark [151]. Clients in our
case represent the Application Tier shown in Figure 12.1. The clients connect to the
ElastMan controller. Clients continuously measure the throughput and the 99th
percentile of read operations latency. The controller periodically (every minute in
our experiments) pulls the monitoring information from clients and then executes
the control algorithm described in Section 12.4. ElastMan actuator uses the rebal-
ance API of Voldemort to redistribute the data after adding/removing Voldemort
servers.

Each client runs in its own VM in the Cloud and produces a constant workload of
3000 operations per second. The workload consists of 90% read operations and 10%
read-write transactions unless otherwise stated. The total workload is increased by
adding more client VMs and vice versa. This mimics the horizontal scalability of
the Application Tier shown in Figure 12.1.

We run our experiments on a local cluster consisting of 11 Dell PowerEdge
servers. Each server is equipped with two Intel Xeon X5660 processor (12 cores, 24
HW threads in total), and 44 GB of memory. The cluster runs Ubuntu 11.10. We
setup a private Cloud using OpenStack Diablo release [92].

The Voldemort server is run in a VM with 4 cores and 6GB of memory, The
Voldemort Clients run in a VM with 2 cores and 4GB of memory.

1The source code together with detailed instructions on how to repeat our experiments will
be made publicly available after acceptance notification

238 CHAPTER 12. ELASTMAN: AUTONOMIC ELASTICITY MANAGER

Voldemort Min Max Max Cluster Max Cluster Cluster
Servers Client VMs Client VMs Total Cores Total Mem (GB) Load

9 1 12 60 102 22.7%
18 2 24 120 204 45.5%
27 3 36 180 306 68.2%
36 4 48 240 408 90.9%
45 5 60 300 510 113.6%
54 6 72 360 612 136.3%

Table 12.1: Parameters for the workload used in the scalability test.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350

99
 P

er
ce

nt
ile

 o
f R

ea
d

La
te

nc
y

(m
ill

is
ec

on
ds

)

Time (minutes)

99 Percentile of Read Latency vs. Time

9 Volds
18 Volds
27 Volds
36 Volds
45 Volds
54 Volds

Figure 12.6: 99th percentile of read operations latency versus time under relatively
similar workload

Horizontal Scalability of Key-Value stores

In this experiment we evaluated the scalability of the Voldemort key-value store in
a Cloud environment. We gradually increased the cluster size and relatively scaled
the workload as well. The amount of workload is described in Table 12.1.

The results, summarized in Figure 12.6 and Figure 12.7, shows the near linear
scalability of Voldemort under normal load on our Cloud. That is between 45%-90%
wich corresponds to 18 to 36 Voldemort servers. However, when the Cloud envi-
ronment is underloaded (9 Voldemort servers at 22.7%) or when we Over-provision
our Cloud environment (45 and 54 Voldemort servers at 113.6% and 136.3%), we
notice a big change of the scalability of the Voldemort storage servers. This shows
that the variable performance of the Cloud VMs can dramatically affect the perfor-
mance and thus the ability to accurately model the system. This have motivated
us to use the feedback controller in ElastMan to compensate such inaccuracies.

12.5. EVALUATION 239

 0

 2

 4

 6

 8

 10

 12

 14

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

99
 P

er
ce

nt
ile

 o
f R

ea
d

La
te

nc
y

(m
ill

is
ec

on
ds

)

Throughput (ops/second/server)

99 Percentile of Read Latency vs. Average Throughput per Server

9 Servers
18 Servers
27 Servers
36 Servers
45 Servers
54 Servers

Figure 12.7: 99th percentile of read operations latency versus average throughput
per server

0 50 100 150 200 250 300 350 400
−5

0

5
x 10

6

99
 p

er
ce

nt
ile

 o
f r

ea
d

op
er

at
io

ns
 (

se
c)

Performance of 27 Voldemort Servers around
the Operating Point

0 50 100 150 200 250 300 350 400
−2000

−1000

0

1000

Time (minutes)

T
hr

ou
gh

pu
t p

er
 S

er
ve

r
(o

p/
se

c)

Figure 12.8: Training Data.

System Identification and Controller Design

We have used the average scenario of 27 Voldemort servers to create a model of
the Voldemort storage service. The model is used to design and tune the feedback

240 CHAPTER 12. ELASTMAN: AUTONOMIC ELASTICITY MANAGER

0 50 100 150 200 250 300 350 400
−3

−2

−1

0

1

2

3

4
x 10

6

Time

99
 P

er
ce

nt
ile

 o
f

R
ea

d
O

pe
ra

tio
n

La
te

nc
y

(s
ec

)

Measured and simulated model output

Simulated
Measured

Figure 12.9: Model Performance.

controller. We used black-box system identification. The training data is shown in
Figure 12.8. The performance of our model is shown in Figure 12.9 and Figure 12.10.

Varying Workload

We have tested ElastMan controller with both gradual diurnal workload and sudden
increase/decrease (spikes) in workload. The goal of ElastMan controller is to keep
the 99th percentile of read operation latency (R99p) at a predefined value (setpoint)
as specified in the service SLO. In our experiments we choose the value to be 5
milliseconds in 1 minute period. Since it is not possible to achieve the exact specified
value, we defined a 0.5 millisecond region around our setpoint with 1/3 above and
2/3 below. The controller does not react in this region which is known ad the
deadzone for the controller. Note that we measure the latency from the application
tier (see Figure 12.1). The overall latency observed by the clients depends on the
request type that usually involves multiple read/write operations, and processing.

We start by applying gradual diurnal workload to the Voldemort cluster. The
experiment starts with 9 Voldemort servers each running in its own VM. We set the
maximum number of Voldemort VMs to 38. The total throughput applied on the

12.5. EVALUATION 241

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Poles (x) and Zeros (o)

Figure 12.10: Zeros and Poles of our Model.

cluster starts with about 35000 requests per seconds and then increased to about
80000 requests per seconds. ElastMan controller is started after 30 min warm-up
period. The results of our experiment is depicted in Figure 12.11. Up so far in this
experiment, ElastMan relies mainly on the PI feedback controller since there are
no sudden changes on the workload. ElastMan is able to keep the R99p within the
desired region most of the time.

We continue the experiment by applying workload spikes with various magni-
tudes after 900 minutes. The results of the second part of the experiment is depicted
in Figure 12.12. At the beginning of a spike, ElastMan (according to the algorithm)
uses the feedforward controller since it detects large change in the workload. This
is followed by using the feedback controller to fine tune the R99p at the desired
value. For example, at time 924, the feedforward controller added 18 and at time
1024 added 14 nodes in order to quickly respond to the spike. Another example is
at time 1336 after the spike where the feedforward controller removed 15 nodes.

Figure 12.13 depicts the performance of a Voldemort cluster with fixed number
of servers (18 virtual servers).

242 CHAPTER 12. ELASTMAN: AUTONOMIC ELASTICITY MANAGER

 0

 2

 4

 6

 8

 10

 0 100 200 300 400 500 600 700 800 900

Elasticity Controller

Read p99 (ms)
Desired

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700 800 900

VMs

Clients
Total Throughput (K requests/sec)

Average Throughput per server (K requests/sec)
Number of Servers

Figure 12.11: ElastMan controller performance under gradual (diurnal) workload

12.6 Related Work

There are many projects that use techniques such as control theory, machine learn-
ing, empirical modeling, or a combination of them to achieve SLOs at various levels
of a multi-tier Web 2.0 application.

Lim et al. [43] proposed the use of two controllers. An integral feedback con-
troller is used to keep the average response time at a desired level. A cost-based
optimization is used to control the impact of the rebalancing operation, needed
to resize the elastic storage, on the response time. The authors also propose the
use of proportional thresholding, a technique necessary to avoid oscillations when
dealing with discrete systems. The design of the feedback controller relies on the
high correlation between CPU utilization and the average response time. Thus, the
control problem is transformed into controlling the CPU utilization to indirectly
control the average response time. Relying on such strong correlation might not be
valid in Cloud environments with variable VM performance nor for controlling us-
ing 99th percentile instead of average. In our design, the controller uses a smoothed
signal of the 99th percentile of read operations directly to avoid such problems. It
is not clear how the controller proposed in [43] deals with the nonlinearity resulting

12.6. RELATED WORK 243

 0

 2

 4

 6

 8

 10

 900 1000 1100 1200 1300 1400 1500

Elasticity Controller

Read p99 (ms)
Desired

 0

 10

 20

 30

 40

 50

 60

 70

 80

 900 1000 1100 1200 1300 1400 1500

VMs

Clients
Total Throughput (K requests/sec)

Average Throughput per server (K requests/sec)
Number of Servers

Figure 12.12: ElastMan controller performance with rapid changes (spikes) in work-
load

from the diminishing reward of adding a service instance with increasing the scale.
Thus, it is not clear if the controller can work at different scales, a property that
is needed to handle diurnal workload. In our approach we rely on the near-linear
scalability of horizontally scalable stores to design a scale-independent controller
that indirectly controls the number of nodes by controlling the average workload
per server needed to handle the current workload. Another drawback in using only
feedback controller is that it has to be switched off during rebalancing. This is
because of the high disturbance resulting from the extra rebalancing overhead that
can cause the feedback controller to incorrectly add more servers. We avoid switch-
ing off elasticity control during rebalancing, we use a feedforward controller tuned
for rebalancing. The feedforward controller does not measure latency and thus will
not be disturbed by rebalancing and can detect real increase/decrease in workload
and act accordingly.

Trushkowsky et al. [14] were the first to propose a control framework for con-
trolling upper percentiles of latency in a stateful distributed system. The authors
propose the use of a feedforward model predictive controller to control the upper
percentile of latency. The major motivation for using feedforward control is to

244 CHAPTER 12. ELASTMAN: AUTONOMIC ELASTICITY MANAGER

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000 1200 1400

Elasticity Controller

Read p99 (ms)
Desired

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200 1400

VMs

Clients
Total Throughput (K requests/sec)

Average Throughput per server (K requests/sec)
Number of Servers

Figure 12.13: Voldemont performance with fixed number of servers (18 virtual
servers)

avoid measuring the noisy upper percentile signal necessary for feedback control.
Smoothing the upper percentile signal, in order to use feedback control, may fil-
ter out spikes or delay the response to them. The major drawback of using only
feedforward is that it is very sensitive to noise such as the variable performance of
VMs in the Cloud. The authors relies on replication to reduce the effect of variable
VM performance, but in our opinion, this might not be guaranteed to work in all
cases. Our approach combines both feedback and feedforward control, enabling us
to leverage the advantages of both and avoid disadvantages. We rely of feedforward
to quickly respond to spikes. This enables us to smooth the upper percentile signal
and use feedback control to handle gradual workload and thus deal with model-
ing errors resulting from uncontrolled environmental noise. The authors [14] also
propose the use of fine grained monitoring to reduce the amount of data transfer
during rebalancing. This significantly reduces the disturbance resulting from the
rebalance operation. Fine grain monitoring can be integrated with our approach to
further improve the performance.

Malkowski et al. [72] focus on controlling all tiers on a multi-tier application due
to the dependencies between the tiers. The authors propose the use of an empiri-

12.7. FUTURE WORK 245

cal model of the application constructed using detailed measurements of a running
application. The controller uses the model to find the best known configuration
of the multi-tier application to handle the current load. If no such configuration
exists, the controller falls back to another technique such as a feedback controller.
Our work is different in a way that we integrate and leverage the advantages of
both feedforward and feedback control. Although the empirical model will gener-
ally generate better results, it is more difficult to construct. The binary classifier
proposed by Trushkowsky et al. [14] which we use together with feedback control to
compensate for modeling errors is simpler to construct and might be more suitable
for Cloud environments with variable VM performance. However, if needed, the
empirical model can be used in our approach instead of the binary classifier. The
extension of our work to control all tiers is our future work.

12.7 Future Work

A Web 2.0 application is a complex system consisting of multiple components.
Controlling the entire system typically involves multiple controllers, with different
management objectives, that interact directly or indirectly [47]. In our future work,
we plan to investigate the controllers needed to control all tiers of a Web 2.0 ap-
plication and the orchestration of the controllers in order to correctly achieve their
goals.

We also plan to extend our implementation and evaluation of ElastMan to
include the proportional thresholding technique as proposed by Lim et al. [43] in
order to avoid possible oscillations in the feedback control. We also plan to provide
the feedforward controller for the store in the rebalance mode (when performing
rebalance operation). This will enable us to adapt to changes in workload that
might happen during the rebalance operation.

Since ElastMan runs in the Cloud, it is necessary in real implementation to use
replication in order to guarantee fault tolerance. One possible way is to use Robust
Management Elements [90], that is based on replicated state machines, to replicate
ElastMan and guarantee fault tolerance.

12.8 Conclusions

The strict performance requirements posed on the data-tier in a multi-tier Web
2.0 application together with the variable performance of Cloud virtual machines
makes it challenging to automate the elasticity control. We presented the design
and evaluation of ElastMan, an Elasticity Manager for Cloud-based key-value stores
that address these challenges.

ElastMan combines and leverages the advantages of both feedback and feedfor-
ward control. The feedforward control is used to quickly respond to rapid changes
in workload. This enables us to smooth the noisy signal of the 99th percentile of
read operation latency and thus use feedback control. The feedback controller is

246 CHAPTER 12. ELASTMAN: AUTONOMIC ELASTICITY MANAGER

used to handle gradual (diurnal) workload and to correct errors in the feedforward
control due to the noise that is caused mainly by the variable performance of Cloud
VMs. The feedback controller uses a scale-independent model by indirectly control-
ling the number of servers (VMs) by controlling the average workload per server.
This enables the controller, given the near-linear scalability of key-value stores, to
operate at various scales of the store.

We have implemented and evaluated ElastMan using the Voldemort key-value
store running in a Cloud environment based on OpenStack. The evaluation re-
sults show that ElastMan can handle both gradual (diurnal) workload and quickly
respond to rapid changes in the workload (spikes).

Part V

Bibliography

247

Bibliography

[1] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and com-
parison of peer-to-peer overlay network schemes,” Communications Surveys
& Tutorials, IEEE, vol. 7, pp. 72–93, Second Quarter 2005.

[2] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid: Enabling
scalable virtual organizations,” Int. J. High Perform. Comput. Appl., vol. 15,
pp. 200–222, Aug. 2001.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud
computing,” Commun. ACM, vol. 53, pp. 50–58, Apr. 2010.

[4] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Com-
puter, vol. 36, pp. 41–50, Jan. 2003.

[5] P. Horn, “Autonomic computing: IBM’s perspective on the state of informa-
tion technology,” Oct. 15 2001.

[6] IBM, “An architectural blueprint for autonomic computing, 4th edi-
tion.” http://www-01.ibm.com/software/tivoli/autonomic/pdfs/AC_
Blueprint_White_Paper_4th.pdf, June 2006.

[7] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani, “The
fractal component model and its support in java: Experiences with auto-
adaptive and reconfigurable systems,” Softw. Pract. Exper., vol. 36, no. 11-12,
pp. 1257–1284, 2006.

[8] C. Arad, J. Dowling, and S. Haridi, “Building and evaluating P2P sys-
tems using the Kompics component framework,” in Peer-to-Peer Computing
(P2P’09), pp. 93–94, IEEE, Sept. 2009.

[9] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and S. Shah, “Serv-
ing large-scale batch computed data with project voldemort,” in The 10th
USENIX Conference on File and Storage Technologies (FAST’12), February
2012.

249

250 BIBLIOGRAPHY

[10] A. Lakshman and P. Malik, “Cassandra: a decentralized structured storage
system,” SIGOPS Oper. Syst. Rev., vol. 44, pp. 35–40, Apr. 2010.

[11] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: ama-
zon’s highly available key-value store,” in Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems principles, SOSP ’07, (New York,
NY, USA), pp. 205–220, ACM, 2007.

[12] “Animoto’s Facebook scale-up (visited June 2012).”

[13] P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patterson, “Char-
acterizing, modeling, and generating workload spikes for stateful services,” in
Proceedings of the 1st ACM symposium on Cloud computing, SoCC ’10, (New
York, NY, USA), pp. 241–252, ACM, 2010.

[14] B. Trushkowsky, P. Bodík, A. Fox, M. J. Franklin, M. I. Jordan, and D. A.
Patterson, “The scads director: scaling a distributed storage system under
stringent performance requirements,” in Proceedings of the 9th USENIX con-
ference on File and stroage technologies, FAST’11, (Berkeley, CA, USA),
pp. 12–12, USENIX Association, 2011.

[15] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon,
H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “Pnuts: Yahoo!’s hosted
data serving platform,” Proc. VLDB Endow., vol. 1, pp. 1277–1288, August
2008.

[16] F. Dabek, A Distributed Hash Table. PhD thesis, Massachusetts Institute of
Technology, November 2005.

[17] P. V. Roy, S. Haridi, A. Reinefeld, J.-B. Stefani, R. Yap, and T. Coupaye,
“Self management for large-scale distributed systems: An overview of the self-
man project,” in FMCO ’07: Software Technologies Concertation on Formal
Methods for Components and Objects, (Amsterdam, The Netherlands), Oct
2007.

[18] S. White, J. Hanson, I. Whalley, D. Chess, and J. Kephart, “An architec-
tural approach to autonomic computing,” in Autonomic Computing, 2004.
Proceedings. International Conference on, ICAC2004, pp. 2–9, may 2004.

[19] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng, “Composing
adaptive software,” Computer, vol. 37, pp. 56–64, July 2004.

[20] M. Parashar, Z. Li, H. Liu, V. Matossian, and C. Schmidt, Self-star Properties
in Complex Information Systems, vol. 3460/2005 of Lecture Notes in Com-
puter Science, ch. Enabling Autonomic Grid Applications: Requirements,
Models and Infrastructure, pp. 273–290. Springer Berlin / Heidelberg, May
2005.

BIBLIOGRAPHY 251

[21] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback Control of
Computing Systems. John Wiley & Sons, September 2004.

[22] Y. Diao, J. L. Hellerstein, S. Parekh, R. Griffith, G. Kaiser, and D. Phung,
“Self-managing systems: a control theory foundation,” in Proc. 12th IEEE
International Conference and Workshops on the Engineering of Computer-
Based Systems ECBS ’05, pp. 441–448, Apr. 4–7, 2005.

[23] S. Abdelwahed, N. Kandasamy, and S. Neema, “Online control for self-
management in computing systems,” in Proc. 10th IEEE Real-Time and Em-
bedded Technology and Applications Symposium RTAS 2004, pp. 368–375,
May 25–28, 2004.

[24] R. J. Anthony, “Emergence: a paradigm for robust and scalable distributed
applications,” in Proc. International Conference on Autonomic Computing,
pp. 132–139, May 17–18, 2004.

[25] T. De Wolf, G. Samaey, T. Holvoet, and D. Roose, “Decentralised autonomic
computing: Analysing self-organising emergent behaviour using advanced nu-
merical methods,” in Proc. Second International Conference on Autonomic
Computing ICAC 2005, pp. 52–63, June 13–16, 2005.

[26] O. Babaoglu, M. Jelasity, and A. Montresor, Unconventional Programming
Paradigms, vol. 3566/2005 of Lecture Notes in Computer Science, ch. Grass-
roots Approach to Self-management in Large-Scale Distributed Systems,
pp. 286–296. Springer Berlin / Heidelberg, August 2005.

[27] G. Tesauro, D. M. Chess, W. E. Walsh, R. Das, A. Segal, I. Whalley, J. O.
Kephart, and S. R. White, “A multi-agent systems approach to autonomic
computing,” in AAMAS ’04: Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems, (Washington,
DC, USA), pp. 464–471, IEEE Computer Society, 2004.

[28] D. Bonino, A. Bosca, and F. Corno, “An agent based autonomic seman-
tic platform,” in Proc. International Conference on Autonomic Computing,
pp. 189–196, May 17–18, 2004.

[29] G. Kaiser, J. Parekh, P. Gross, and G. Valetto, “Kinesthetics extreme: an
external infrastructure for monitoring distributed legacy systems,” in Proc.
Autonomic Computing Workshop, pp. 22–30, June 25, 2003.

[30] C. Karamanolis, M. Karlsson, and X. Zhu, “Designing controllable computer
systems,” in HOTOS’05: Proceedings of the 10th conference on Hot Topics in
Operating Systems, (Berkeley, CA, USA), pp. 49–54, USENIX Association,
2005.

252 BIBLIOGRAPHY

[31] G. Valetto, G. Kaiser, and D. Phung, “A uniform programming abstraction
for effecting autonomic adaptations onto software systems,” in Proc. Second
International Conference on Autonomic Computing ICAC 2005, pp. 286–297,
June 13–16, 2005.

[32] M. M. Fuad and M. J. Oudshoorn, “An autonomic architecture for legacy
systems,” in Proc. Third IEEE International Workshop on Engineering of
Autonomic and Autonomous Systems EASe 2006, pp. 79–88, Mar. 27–30,
2006.

[33] E. Bruneton, T. Coupaye, and J.-B. Stefani, “The fractal component model,”
tech. rep., France Telecom R&D and INRIA, Feb. 5 2004.

[34] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Transactions on Networking,
vol. 11, pp. 17–32, Feb. 2003.

[35] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A scal-
able content-addressable network,” in SIGCOMM ’01: Proceedings of the
2001 conference on Applications, technologies, architectures, and protocols
for computer communications, (New York, NY, USA), pp. 161–172, ACM,
2001.

[36] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” in Middleware
’01: Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg, (London, UK), pp. 329–350, Springer-Verlag,
2001.

[37] M. Ohara, P. Nagpurkar, Y. Ueda, and K. Ishizaki, “The data-centricity
of web 2.0 workloads and its impact on server performance,” in ISPASS,
pp. 133–142, IEEE, 2009.

[38] R. Ramakrishnan and J. Gehrke, Database Management Systems. Berkeley,
CA, USA: Osborne/McGraw-Hill, 2nd ed., 2000.

[39] O. Tickoo, R. Iyer, R. Illikkal, and D. Newell, “Modeling virtual machine per-
formance: challenges and approaches,” SIGMETRICS Perform. Eval. Rev.,
vol. 37, pp. 55–60, Jan. 2010.

[40] R. Iyer, R. Illikkal, O. Tickoo, L. Zhao, P. Apparao, and D. Newell, “VM3:
Measuring, modeling and managing VM shared resources,” Computer Net-
works, vol. 53, pp. 2873–2887, December 2009.

[41] M. Arlitt and T. Jin, “A workload characterization study of the 1998 world
cup web site,” Network, IEEE, vol. 14, pp. 30 –37, may/jun 2000.

BIBLIOGRAPHY 253

[42] C. Lu, G. A. Alvarez, and J. Wilkes, “Aqueduct: Online data migration with
performance guarantees,” in Proceedings of the 1st USENIX Conference on
File and Storage Technologies, FAST ’02, (Berkeley, CA, USA), USENIX
Association, 2002.

[43] H. C. Lim, S. Babu, and J. S. Chase, “Automated control for elastic storage,”
in Proceedings of the 7th international conference on Autonomic computing,
ICAC ’10, (New York, NY, USA), pp. 1–10, ACM, 2010.

[44] “Amazon elastic compute cloud (visited June 2012).”

[45] M. Parashar and S. Hariri, “Autonomic computing: An overview,” in Uncon-
ventional Programming Paradigms, pp. 257–269, 2005.

[46] “The green grid.” http://www.thegreengrid.org/ (Visited on Oct 2009).

[47] A. Al-Shishtawy, V. Vlassov, P. Brand, and S. Haridi, “A design methodology
for self-management in distributed environments,” in Computational Science
and Engineering, 2009. CSE ’09. IEEE International Conference on, vol. 1,
(Vancouver, BC, Canada), pp. 430–436, IEEE Computer Society, August
2009.

[48] R. Das, J. O. Kephart, C. Lefurgy, G. Tesauro, D. W. Levine, and H. Chan,
“Autonomic multi-agent management of power and performance in data cen-
ters,” in AAMAS ’08: Proceedings of the 7th international joint conference
on Autonomous agents and multiagent systems, (Richland, SC), pp. 107–114,
International Foundation for Autonomous Agents and Multiagent Systems,
2008.

[49] J. Kephart, H. Chan, R. Das, D. Levine, G. Tesauro, F. Rawson, and C. Le-
furgy, “Coordinating multiple autonomic managers to achieve specified power-
performance tradeoffs,” in Autonomic Computing, 2007. ICAC ’07. Fourth
International Conference on, pp. 24–24, June 2007.

[50] S. Bouchenak, F. Boyer, S. Krakowiak, D. Hagimont, A. Mos, J.-B. Stefani,
N. de Palma, and V. Quema, “Architecture-based autonomous repair man-
agement: An application to J2EE clusters,” in SRDS ’05: Proceedings of the
24th IEEE Symposium on Reliable Distributed Systems, (Orlando, Florida),
pp. 13–24, IEEE, Oct. 2005.

[51] J. O. Kephart and R. Das, “Achieving self-management via utility functions,”
IEEE Internet Computing, vol. 11, no. 1, pp. 40–48, 2007.

[52] S. Abdelwahed and N. Kandasamy, “A control-based approach to autonomic
performance management in computing systems,” in Autonomic Computing:
Concepts, Infrastructure, and Applications (M. Parashar and S. Hariri, eds.),
ch. 8, pp. 149–168, CRC Press, 2006.

254 BIBLIOGRAPHY

[53] V. Bhat, M. Parashar, M. Khandekar, N. Kandasamy, and S. Klasky, “A self-
managing wide-area data streaming service using model-based online control,”
in Grid Computing, 7th IEEE/ACM International Conference on, pp. 176–
183, Sept. 2006.

[54] R. Yanggratoke, F. Wuhib, and R. Stadler, “Gossip-based resource allocation
for green computing in large clouds,” in Network and Service Management
(CNSM), 2011 7th International Conference on, pp. 1 –9, oct. 2011.

[55] A. Ali-Eldin, J. Tordsson, and E. Elmroth, “An adaptive hybrid elasticity
controller for cloud infrastructures,” in The 13th IEEE/IFIP Network Op-
erations and Management Symposium, NOMS 2012, (Hawaii, USA), April
2012.

[56] E. Elmroth, J. Tordsson, F. Hernández, A. Ali-Eldin, P. Svärd, M. Sedaghat,
and W. Li, “Self-management challenges for multi-cloud architectures,” in
Proceedings of the 4th European conference on Towards a service-based inter-
net, ServiceWave’11, (Berlin, Heidelberg), pp. 38–49, Springer-Verlag, 2011.

[57] H. Chan and B. Arnold, “A policy based system to incorporate self-managing
behaviors in applications,” in OOPSLA ’03: Companion of the 18th annual
ACM SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications, (New York, NY, USA), pp. 94–95, ACM, 2003.

[58] J. Feng, G. Wasson, and M. Humphrey, “Resource usage policy expression and
enforcement in grid computing,” in Grid Computing, 2007 8th IEEE/ACM
International Conference on, pp. 66–73, Sept. 2007.

[59] D. Agrawal, S. Calo, K.-W. Lee, J. Lobo, and T. W. Res., “Issues in designing
a policy language for distributed management of it infrastructures,” in Inte-
grated Network Management, 2007. IM ’07. 10th IFIP/IEEE International
Symposium, pp. 30–39, June 2007.

[60] “Apache imperius.” http://incubator.apache.org/imperius/ (Visited on
Oct 2009.

[61] V. Kumar, B. F. Cooper, G. Eisenhauer, and K. Schwan, “imanage: policy-
driven self-management for enterprise-scale systems,” in Middleware ’07: Pro-
ceedings of the ACM/IFIP/USENIX 2007 International Conference on Mid-
dleware, (New York, NY, USA), pp. 287–307, Springer-Verlag New York, Inc.,
2007.

[62] L. Bao, A. Al-Shishtawy, and V. Vlassov, “Policy based self-management
in distributed environments,” in Self-Adaptive and Self-Organizing Systems
Workshop (SASOW), 2010 Fourth IEEE International Conference on, pp. 256
–260, September 2010.

BIBLIOGRAPHY 255

[63] “The center for autonomic computing.” http://www.nsfcac.org/ (Visited
Oct 2009).

[64] B. Rochwerger, A. Galis, E. Levy, J. Caceres, D. Breitgand, Y. Wolfsthal,
I. Llorente, M. Wusthoff, R. Montero, and E. Elmroth, “Reservoir: Manage-
ment technologies and requirements for next generation service oriented in-
frastructures,” in Integrated Network Management, 2009. IM ’09. IFIP/IEEE
International Symposium on, pp. 307–310, June 2009.

[65] “Reservoir: Resources and services virtualization without barriers.” http:
//reservoir.cs.ucl.ac.uk/ (Visited on Oct 2009).

[66] “The vision cloud project.”

[67] M. Parashar, H. Liu, Z. Li, V. Matossian, C. Schmidt, G. Zhang, and S. Hariri,
“Automate: Enabling autonomic applications on the grid,” Cluster Comput-
ing, vol. 9, no. 2, pp. 161–174, 2006.

[68] D. Chess, A. Segal, I. Whalley, and S. White, “Unity: Experiences with a
prototype autonomic computing system,” Proc. of Autonomic Computing,
pp. 140–147, May 2004.

[69] “Selfman project.” http://www.ist-selfman.org/ (Visited Oct 2009).

[70] “Grid4all project.” http://www.grid4all.eu (visited Oct 2009).

[71] A. Al-Shishtawy, J. Höglund, K. Popov, N. Parlavantzas, V. Vlassov, and
P. Brand, “Enabling self-management of component based distributed appli-
cations,” in From Grids to Service and Pervasive Computing (T. Priol and
M. Vanneschi, eds.), pp. 163–174, Springer, 2008.

[72] S. J. Malkowski, M. Hedwig, J. Li, C. Pu, and D. Neumann, “Automated con-
trol for elastic n-tier workloads based on empirical modeling,” in Proceedings
of the 8th ACM international conference on Autonomic computing, ICAC ’11,
(New York, NY, USA), pp. 131–140, ACM, 2011.

[73] V. Vlassov, A. Al-Shishtawy, P. Brand, and N. Parlavantzas, “Niche: A plat-
form for self-managing distributed applications,” in Formal and Practical As-
pects of Autonomic Computing and Networking: Specification, Development,
and Verification (P. Cong-Vinh, ed.), ch. 10, pp. 241–293, IGI Global, 2012.
ISBN13: 9781609608453.

[74] F. B. Schneider, “Implementing fault-tolerant services using the state machine
approach: a tutorial,” ACM Comput. Surv., vol. 22, no. 4, pp. 299–319, 1990.

[75] J. R. Lorch, A. Adya, W. J. Bolosky, R. Chaiken, J. R. Douceur, and J. How-
ell, “The SMART way to migrate replicated stateful services,” in EuroSys’06:
Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on Com-
puter Systems 2006, pp. 103–115, ACM, 2006.

256 BIBLIOGRAPHY

[76] M. A. Fayyaz, “Achieving self management in dynamic distributed environ-
ments,” Master’s thesis, KTH Royal Institute of Technology, School of In-
formation and Communication Technology (ICT), Stockholm, Sweden, May
2010.

[77] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: ama-
zon’s highly available key-value store,” SIGOPS Oper. Syst. Rev., vol. 41,
pp. 205–220, October 2007.

[78] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services,” SIGACT News, vol. 33, pp. 51–59,
June 2002.

[79] W. Vogels, “Eventually consistent,” Queue, vol. 6, pp. 14–19, October 2008.

[80] A. Al-Shishtawy, T. J. Khan, and V. Vlassov, “Robust fault-tolerant majority-
based key-value store supporting multiple consistency levels,” in IEEE 17th
International Conference on Parallel and Distributed Systems (ICPADS),
(Tainan, Taiwan), pp. 589 –596, December 2011.

[81] D. K. Gifford, “Weighted voting for replicated data,” in Proceedings of the
seventh ACM symposium on Operating systems principles, SOSP ’79, (New
York, NY, USA), pp. 150–162, ACM, 1979.

[82] L. Lamport, “Paxos made simple,” SIGACT News, vol. 32, pp. 51–58, De-
cember 2001.

[83] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan, “Chord:
A scalable peer-to-peer lookup service for internet applications,” in ACM
SIGCOMM’01, pp. 149–160, Aug. 2001.

[84] T. M. Shafaat, M. Moser, A. Ghodsi, T. Schütt, S. Haridi, and A. Reinefeld,
“On consistency of data in structured overlay networks,” in Proceedings of
the 3rd CoreGRID Integration Workshop, April 2008.

[85] M. A. Moulavi, A. Al-Shishtawy, and V. Vlassov, “State-space feedback con-
trol for elastic distributed storage in a cloud environment,” in The Eighth In-
ternational Conference on Autonomic and Autonomous Systems ICAS 2012,
(St. Maarten, Netherlands Antilles), pp. 18–27, March 2012.

[86] P. Brand, J. Höglund, K. Popov, N. de Palma, F. Boyer, N. Parlavantzas,
V. Vlassov, and A. Al-Shishtawy, “The role of overlay services in a self-
managing framework for dynamic virtual organizations,” in Making Grids
Work (M. Danelutto, P. Fragopoulou, and V. Getov, eds.), pp. 153–164,
Springer US, 2007.

BIBLIOGRAPHY 257

[87] N. de Palma, K. Popov, V. Vlassov, J. Höglund, A. Al-Shishtawy, and
N. Parlavantzas, “A self-management framework for overlay-based applica-
tions,” in International Workshop on Collaborative Peer-to-Peer Information
Systems (WETICE COPS 2008), (Rome, Italy), June 2008.

[88] K. Popov, J. Höglund, A. Al-Shishtawy, N. Parlavantzas, P. Brand, and
V. Vlassov, “Design of a self-* application using p2p-based management
infrastructure,” in Proceedings of the CoreGRID Integration Workshop
(CGIW’08) (S. Gorlatch, P. Fragopoulou, and T. Priol, eds.), COREGrid,
(Crete, GR), pp. 467–479, Crete University Press, April 2008.

[89] A. Al-Shishtawy, J. Höglund, K. Popov, N. Parlavantzas, V. Vlassov, and
P. Brand, “Distributed control loop patterns for managing distributed ap-
plications,” in Second IEEE International Conference on Self-Adaptive and
Self-Organizing Systems Workshops (SASOW 2008), (Venice, Italy), pp. 260–
265, October 2008.

[90] A. Al-Shishtawy, M. A. Fayyaz, K. Popov, and V. Vlassov, “Achieving robust
self-management for large-scale distributed applications,” in Self-Adaptive
and Self-Organizing Systems (SASO), 2010 4th IEEE International Confer-
ence on, pp. 31 –40, October 2010.

[91] A. Ghodsi, Distributed k-ary System: Algorithms for Distributed Hash Tables.
PhD thesis, KTH Royal Institute of Technology, School of Information and
Communication Technology (ICT), 2006.

[92] “Openstack: Open source software for building private and public clouds..”

[93] S. Tatikoonda, Control under communication constraints. PhD thesis, MIT,
September 2000.

[94] C. E. Garcíaa, D. M. Prettb, and M. Morari, “Model predictive control:
Theory and practice–a survey,” Automatica, vol. 25, pp. 335–348, May 1989.

[95] P. Brand, J. Höglund, K. Popov, N. de Palma, F. Boyer, N. Parlavantzas,
V. Vlassov, and A. Al-Shishtawy, “The role of overlay services in a self-
managing framework for dynamic virtual organizations,” in CoreGRID Work-
shop, Crete, Greece, June 2007.

[96] D. K. F. Araujo, P. Domingues and L. M. Silva, “Using cliques of nodes
to store desktop grid checkpoints,” in Proceedings of CoreGRID Integration
Workshop 2008, pp. 15–26, Apr. 2008.

[97] G. Coulson, G. Blair, P. Grace, A. Joolia, K. Lee, and J. Ueyama, “A compo-
nent model for building systems software,” in Proceedings of IASTED Soft-
ware Engineering and Applications (SEA’04), (Cambridge MA, USA), Nov.
2004.

258 BIBLIOGRAPHY

[98] “Basic features of the Grid component model,” CoreGRID Deliverable
D.PM.04, CoreGRID, EU NoE project FP6-004265, Mar. 2007.

[99] M. Aldinucci, S. Campa, M. Danelutto, M. Vanneschi, P. Kilpatrick, P. Dazzi,
D. Laforenza, and N. Tonellotto, “Behavioural skeletons in gcm: Autonomic
management of grid components,” in PDP’08, (Washington, DC, USA),
pp. 54–63, 2008.

[100] F. Baude, D. Caromel, L. Henrio, and M. Morel, “Collective interfaces for
distributed components,” in CCGRID ’07: Proceedings of the Seventh IEEE
International Symposium on Cluster Computing and the Grid, (Washington,
DC, USA), pp. 599–610, IEEE Computer Society, 2007.

[101] C. Pairot, P. García, R. Mondéjar, and A. Gómez-Skarmeta, “p2pCM: A
structured peer-to-peer Grid component model,” in International Conference
on Computational Science, pp. 246–249, 2005.

[102] C. Pairot, P. García, and A. Gómez-Skarmeta, “Dermi: A new distributed
hash table-based middleware framework,” IEEE Internet Computing, vol. 08,
no. 3, pp. 74–84, 2004.

[103] “Niche homepage.”

[104] J. W. Sweitzer and C. Draper, “Architecture overview for autonomic comput-
ing,” in Autonomic Computing: Concepts, Infrastructure, and Applications
(M. Parashar and S. Hariri, eds.), ch. 5, pp. 71–98, CRC Press, 2006.

[105] S.-W. Cheng, A.-C. Huang, D. Garlan, B. Schmerl, and P. Steenkiste, “An ar-
chitecture for coordinating multiple self-management systems,” in WICSA’04,
(Washington, DC, USA), p. 243, 2004.

[106] S. El-Ansary, L. O. Alima, P. Brand, and S. Haridi, “Efficient broadcast in
structured p2p networks,” in IPTPS (M. F. Kaashoek and I. Stoica, eds.),
vol. 2735 of Lecture Notes in Computer Science, pp. 304–314, Springer, 2003.

[107] “OSGi service platform release (retrieved june 2010).”

[108] S. Sicard, F. Boyer, and N. De Palma, “Using components for architecture-
based management,” in Software Engineering, 2008. ICSE ’08. ACM/IEEE
30th International Conference on, pp. 101–110, may 2008.

[109] A. T. Hannesson, “Yacs: Yet another computing service using niche,” Mas-
ter’s thesis, KTH Royal Institute of Technology, School of Information and
Communication Technology (ICT), 2009.

[110] E. Bonabeau, “Editor’s introduction: Stigmergy,” Artificial Life, vol. 5, no. 2,
pp. 95–96, 1999.

BIBLIOGRAPHY 259

[111] D. Agrawal, J. Giles, K. Lee, and J. Lobo, “Policy ratification,” in Policies for
Distributed Systems and Networks, 2005. Sixth IEEE Int. Workshop (T. Priol
and M. Vanneschi, eds.), pp. 223– 232, June 2005.

[112] “Spl language reference.” http://incubator.apache.org/imperius/docs/
spl_reference.html.

[113] “Oasis extensible access control markup language (xacml) tc.”
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=
xacml#expository.

[114] J. S. Kong, J. S. Bridgewater, and V. P. Roychowdhury, “Resilience of struc-
tured P2P systems under churn: The reachable component method,” Com-
puter Communications, vol. 31, pp. 2109–2123, June 2008.

[115] L. Lamport, “The part-time parliament,” ACM Transactions on Computer
Systems (TOCS), vol. 16, no. 2, pp. 133–169, 1998.

[116] D. Malkhi, F. Oprea, and L. Zhou, “Omega meets paxos: Leader election and
stability without eventual timely links,” in Proc. of the 19th Int. Symp. on
Distributed Computing (DISC’05), pp. 199–213, Springer-Verlag, July 2005.

[117] “Meridian: A lighweight approach to network positioning.” http://www.cs.
cornell.edu/People/egs/meridian.

[118] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: estimating latency
between arbitrary internet end hosts,” in IMW’02: 2nd ACM SIGCOMM
Workshop on Internet measurment, pp. 5–18, ACM, 2002.

[119] D. Leonard, Z. Yao, V. Rai, and D. Loguinov, “On lifetime-based node failure
and stochastic resilience of decentralized peer-to-peer networks,” IEEE/ACM
Trans. Networking, vol. 15, pp. 644–656, June 2007.

[120] B. M. Oki and B. H. Liskov, “Viewstamped replication: a general primary
copy,” in PODC’88: 7th Ann. ACM Symp. on Principles of Distributed Com-
puting, pp. 8–17, ACM, 1988.

[121] L. Lamport and M. Massa, “Cheap Paxos,” in DSN’04: Proceedings of the
2004 International Conference on Dependable Systems and Networks, p. 307,
IEEE Computer Society, June 28–July 1 2004.

[122] B. Charron-Bost and A. Schiper, “Improving fast Paxos: Being optimistic
with no overhead,” in PRDC’06: 12th Pacific Rim International Symp. on
Dependable Computing, pp. 287–295, IEEE, 2006.

[123] L. Lamport, “Generalized consensus and Paxos,” Tech. Rep. MSR-TR-2005-
33, MSR, Apr. 28 2005.

260 BIBLIOGRAPHY

[124] F. Pedone and A. Schiper, “Generic broadcast,” in Distributed Computing,
13th International Symposium (P. Jayanti, ed.), vol. 1693 of LNCS, pp. 94–
108, Springer, Sept. 27–29 1999.

[125] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in OSDI’99:
3rd Symp. on Operating Systems Design and Implementation, pp. 173–186,
USENIX Association, 1999.

[126] L. Lamport, D. Malkhi, and L. Zhou, “Reconfiguring a state machine,”
SIGACT News, vol. 41, no. 1, pp. 63–73, 2010.

[127] K. Birman and T. Joseph, “Exploiting virtual synchrony in distributed sys-
tems,” ACM SIGOPS Operating Systems Review, vol. 21, no. 5, pp. 123–138,
1987.

[128] A. Ghodsi, L. O. Alima, and S. Haridi, “Symmetric replication for structured
peer-to-peer systems,” in Proceedings of The 3rd Int. Workshop on Databases,
Information Systems and P2P Computing, (Trondheim, Norway), 2005.

[129] L. Lamport, “Time, clocks, and the ordering of events in a distributed sys-
tem,” Commun. ACM, vol. 21, pp. 558–565, July 1978.

[130] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin,
“Consistent hashing and random trees: distributed caching protocols for re-
lieving hot spots on the world wide web,” in Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing, STOC ’97, (New York, NY,
USA), pp. 654–663, ACM, 1997.

[131] M. Mitzenmacher, “The power of two choices in randomized load balancing,”
IEEE Trans. Parallel Distrib. Syst., vol. 12, pp. 1094–1104, October 2001.

[132] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and J. Bigus,
“Using control theory to achieve service level objectives in performance man-
agement,” Real-Time Syst., vol. 23, pp. 127–141, July 2002.

[133] D. Chiu and R. Jain, “Analysis of the increase and decrease algorithms for
congestion avoidance in computer networks,” Computer Networks and ISDN,
vol. 17, no. 1, pp. 1–14, 1989.

[134] S. Keshav, “A control-theoretic approach to flow control,” SIGCOMM Com-
put. Commun. Rev., vol. 21, pp. 3–15, August 1991.

[135] B. Li and K. Nahrstedt, “A control-based middleware framework for quality-
of-service adaptations,” Selected Areas in Communications, IEEE Journal on,
vol. 17, pp. 1632 –1650, sep 1999.

[136] A. Kamra, V. Misra, and E. M. Nahum, “Yaksha: A self-tuning controller for
managing the performance of 3-tiered web sites,” In International Workshop
on Quality of Service (IWQoS, pp. 47–56, 2004.

BIBLIOGRAPHY 261

[137] T. F. Abdelzaher, K. G. Shin, and N. Bhatti, “Performance guarantees for
web server end-systems: a control-theoretical approach,” IEEE Transactions
on Parallel and Distributed Systems, vol. 13, pp. 80–96, August 2002.

[138] A. Robertson, B. Wittenmark, and M. Kihl, “Analysis and design of admis-
sion control in web-server systems,” in American Control Conference. Pro-
ceedings of the 2003, vol. 1, pp. 254–259, june 2003.

[139] T. Abdelzaher and N. Bhatti, “Web content adaptation to improve server
overload behavior,” in WWW8 / Computer Networks, pp. 1563–1577, 1999.

[140] B. Li and K. Nahrstedt, “A control theoretical model for quality of service
adaptations,” in In Proceedings of Sixth International Workshop on Quality
of Service, pp. 145–153, 1998.

[141] H. D. Lee, Y. J. Nam, and C. Park, “Regulating i/o performance of shared
storage with a control theoretical approach,” NASA/IEEE conference on
Mass Storage Systems and Technologies (MSST), April 2004.

[142] S. Mascolo, “Classical control theory for congestion avoidance in high-speed
internet,” in Decision and Control, 1999. Proceedings of the 38th IEEE Con-
ference on, vol. 3, pp. 2709 –2714 vol.3, 1999.

[143] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and J. Walpole, “A
feedback-driven proportion allocator for real-rate scheduling,” in Proceedings
of the third symposium on Operating systems design and implementation,
OSDI ’99, (Berkeley, CA, USA), pp. 145–158, USENIX Association, 1999.

[144] M. Karlsson, C. Karamanolis, and X. Zhu, “Triage: Performance isolation and
differentiation for storage systems,” in In International Workshop on Quality
of Service (IWQoS), pp. 67–74, 2004.

[145] H. C. Lim, S. Babu, and J. S. Chase, “Automated control for elastic storage,”
International Conf. on Autonomic Computing, pp. 1–10, 2010.

[146] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
and A. Merchant, “Automated control of multiple virtualized resources,” in
4th ACM European conf. on Computer systems, pp. 13–26, 2009.

[147] C. Lu, T. Abdelzaber, J. Stankovic, and S. Son, “A feedback control approach
for guaranteeing relative delays in web servers,” in Real-Time Technology and
Applications Symposium, 2001. Proceedings. Seventh IEEE, pp. 51–62, 2001.

[148] “Kompics.” http://kompics.sics.se/, accessed Oct 2011.

[149] “Scala language.” http://www.scala-lang.org/, accessed Oct 2011.

[150] “EStoreSim: Elastic storage simulation framework.” https://github.com/
amir343/ElasticStorage, accessed Oct 2011.

262 BIBLIOGRAPHY

[151] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proceedings of the 1st
ACM symposium on Cloud computing, SoCC ’10, (New York, NY, USA),
pp. 143–154, ACM, 2010.

Swedish Institute of Computer Science
SICS Dissertation Series

1. Bogumil Hausman, Pruning and Speculative Work in OR-Parallel PROLOG,
1990.

2. Mats Carlsson, Design and Implementation of an OR-Parallel Prolog Engine,
1990.

3. Nabiel A. Elshiewy, Robust Coordinated Reactive Computing in SANDRA,
1990.

4. Dan Sahlin, An Automatic Partial Evaluator for Full Prolog, 1991.

5. Hans A. Hansson, Time and Probability in Formal Design of Distributed
Systems, 1991.

6. Peter Sjödin, From LOTOS Specifications to Distributed Implementations,
1991.

7. Roland Karlsson, A High Performance OR-parallel Prolog System, 1992.

8. Erik Hagersten, Toward Scalable Cache Only Memory Architectures, 1992.

9. Lars-Henrik Eriksson, Finitary Partial Inductive Definitions and General Logic,
1993.

10. Mats Björkman, Architectures for High Performance Communication, 1993.

11. Stephen Pink, Measurement, Implementation, and Optimization of Internet
Protocols, 1993.

12. Martin Aronsson, GCLA. The Design, Use, and Implementation of a Program
Development System, 1993.

13. Christer Samuelsson, Fast Natural-Language Parsing Using Explanation-Based
Learning, 1994.

14. Sverker Jansson, AKL - - A Multiparadigm Programming Language, 1994.

263

264

15. Fredrik Orava, On the Formal Analysis of Telecommunication Protocols, 1994.

16. Torbjörn Keisu, Tree Constraints, 1994.

17. Olof Hagsand, Computer and Communication Support for Interactive Dis-
tributed Applications, 1995.

18. Björn Carlsson, Compiling and Executing Finite Domain Constraints, 1995.

19. Per Kreuger, Computational Issues in Calculi of Partial Inductive Definitions,
1995.

20. Annika Waern, Recognising Human Plans: Issues for Plan Recognition in
Human-Computer Interaction, 1996.

21. Björn Gambäck, Processing Swedish Sentences: A Unification-Based Gram-
mar and Some Applications, 1997.

22. Klas Orsvärn, Knowledge Modelling with Libraries of Task Decomposition
Methods, 1996.

23. Kia Höök, A Glass Box Approach to Adaptive Hypermedia, 1996.

24. Bengt Ahlgren, Improving Computer Communication Performance by Reduc-
ing Memory Bandwidth Consumption, 1997.

25. Johan Montelius, Exploiting Fine-grain Parallelism in Concurrent Constraint
Languages, 1997.

26. Jussi Karlgren, Stylistic experiments in information retrieval, 2000.

27. Ashley Saulsbury, Attacking Latency Bottlenecks in Distributed Shared Mem-
ory Systems, 1999.

28. Kristian Simsarian, Toward Human Robot Collaboration, 2000.

29. Lars-åke Fredlund, A Framework for Reasoning about Erlang Code, 2001.

30. Thiemo Voigt, Architectures for Service Differentiation in Overloaded Internet
Servers, 2002.

31. Fredrik Espinoza, Individual Service Provisioning, 2003.

32. Lars Rasmusson, Network capacity sharing with QoS as a financial derivative
pricing problem: algorithms and network design, 2002.

33. Martin Svensson, Defining, Designing and Evaluating Social Navigation, 2003.

34. Joe Armstrong, Making reliable distributed systems in the presence of soft-
ware errors, 2003.

265

35. Emmanuel Frécon, DIVE on the Internet, 2004.

36. Rickard Cöster, Algorithms and Representations for Personalised Information
Access, 2005.

37. Per Brand, The Design Philosophy of Distributed Programming Systems: the
Mozart Experience, 2005.

38. Sameh El-Ansary, Designs and Analyses in Structured Peer-to-Peer Systems,
2005.

39. Erik Klintskog, Generic Distribution Support for Programming Systems, 2005.

40. Markus Bylund, A Design Rationale for Pervasive Computing - User Experi-
ence, Contextual Change, and Technical Requirements, 2005.

41. Åsa Rudström, Co-Construction of hybrid spaces, 2005.

42. Babak Sadighi Firozabadi, Decentralised Privilege Management for Access
Control, 2005.

43. Marie Sjölinder, Age-related Cognitive Decline and Navigation in Electronic
Environments, 2006.

44. Magnus Sahlgren, The Word-Space Model: Using Distributional Analysis to
Represent Syntagmatic and Paradigmatic Relations between Words in High-
dimensional Vector Spaces, 2006.

45. Ali Ghodsi, Distributed k-ary System: Algorithms for Distributed Hash Ta-
bles, 2006.

46. Stina Nylander, Design and Implementation of Multi-Device Services, 2007

47. Adam Dunkels, Programming Memory-Constrained Networked Embedded
Systems, 2007

48. Jarmo Laaksolahti, Plot, Spectacle, and Experience: Contributions to the
Design and Evaluation of Interactive Storytelling, 2008

49. Daniel Gillblad, On Practical Machine Learning and Data Analysis, 2008

50. Fredrik Olsson, Bootstrapping Named Entity Annotation by Means of Active
Machine Learning: a Method for Creating Corpora, 2008

51. Ian Marsh, Quality Aspects of Internet Telephony, 2009

52. Markus Bohlin, A Study of Combinatorial Optimization Problems in Indus-
trial Computer Systems, 2009

53. Petra Sundström, Designing Affective Loop Experiences, 2010

266

54. Anders Gunnar, Aspects of Proactive Traffic Engineering in IP Networks,
2011

55. Preben Hansen, Task-based Information Seeking and Retrieval in the Patent
Domain: Process and Relationships, 2011

56. Fredrik Österlind, Improving low-power wireless protocols with timing-accurate
simulation, 2011

