Demo Abstract: From Business Process
Specifications to Sensor Network Deployments

F. Casati}, F. Daniel?, G. Dantchev’, J. Eriksson*, N. Finne*, S. Karnouskos!, P. Moreno Montero**, L. Mottola*,
F.J. Oppermann™, G.P. Piccot, A. Quartulli*, K. Rémer™, P. Spiess', S. Tranquillini?, T. Voigt*
** Acciona Infraestructuras S.A. (Spain), TSAP AG (Germany), *Swedish Institute of Computer Science,
+University of Liibeck (Germany), YUniversity of Trento (Italy),

Abstract—The industrial adoption of wireless sensor networks
(WSNs) is hampered by two main factors. First, there is a lack
of integration of WSNs with business process back-ends. Second,
programming WSNEs is still challenging as it is mainly performed
at the operating system level. To this end, we provide makeSense
— a unified programming framework and a compilation chain
that, from high-level business process specifications, generates
code ready for deployment on WSN nodes.

I. INTRODUCTION AND APPLICATION SCENARIOS

Wireless Sensor Networks (WSNs) are small, untethered
computing devices equipped with sensors and actuators. WSNs
can be easily deployed and are able to self-organize to achieve
application goals. Research has made significant progress in
solving WSN-specific challenges such as energy-efficient com-
munication. Industry, however, is reluctant to adopt WSNs.
We believe this is due to two unsolved issues, integration and
unification.

Integration refers to the need for strong cooperation of
business back-ends with WSNs. Current approaches typically
consider the WSN as a stand-alone system. As such, the
integration between the WSN and the back-end infrastruc-
ture of business processes is left to application developers.
Unfortunately, such an integration requires considerable effort
and significant expertise spanning from traditional information
systems down to low-level system details of WSN devices.
Moreover, these two sets of technologies satisfy very different
goals, making the integration even harder. This paper presents
a holistic approach where application developers “think™ at the
high abstraction level of business processes, but the constructs
they use are effectively implemented in the challenging reality
of WSNEs.

Unification refers to the need for a single, comprehensive
programming framework. It is notoriously difficult to real-
ize WSN applications. They are often developed atop the
operating system, forcing the programmer away from the
application logic and into low-level details. The many pro-
gramming abstractions existing [1] are hard to use since they
typically focus on one specific problem. To drastically simplify
WSN programming, particularly for business scenarios, we
need a broader approach enabling developers to use several
abstractions at once. In this demo, we showcase a unified
comprehensive programming framework where existing WSN
programming abstractions can blend smoothly.

A paradigmatic example of our target scenarios is venti-
lation in buildings. Fans are commonly operated at a fixed

rate, independent of room occupation, resulting in unneces-
sary ventilation of unoccupied rooms and over-ventilation of
sparsely occupied ones, ultimately wasting energy. A smarter
strategy may consider room occupation, resulting in sustain-
able building management. Consider an office environment,
where employees book meeting rooms on the Web through
a back-end process notifying the expected participants. Room
ventilation is minimal when no meeting is scheduled. Sensors
and actuators driven by the business process increase ventila-
tion before the meeting and until human presence is detected
or CO4 levels are above threshold.

Realizing this system requires a tight integration between
the business process and the network of sensors and actuators
dispersed in the environment, as the application logic needs
to extend to the latter. Moreover, implementing the processing
for adaptive ventilation complicates application development,
as it departs from traditional data collection most common in
WSN to encompass possibly distributed control loops.

II. APPROACH

Our design revolves around three fundamental goals:

o makeSense must seamlessly integrate with existing
business process technology, providing an adoption path
that complements, instead of disrupting, existing method-
ologies and technologies with WSN ones.

o makeSense must be modular and extensible. As we
aim for our system to be useful across several real-
world applications, extensibility is key to ensure that the
programming abstractions and their implementation can
be easily adapted to the specificity of the target domain
as well as to unforeseen needs.

o makeSense must self-optimize w.r.t. high-level perfor-
mance goals. This ability to self-adapt is necessary to
support long-lasting, operational business processes im-
mersed in the physical environment and subject to the
vagaries of wireless communication.

These goals are directly reflected in the make Sense archi-
tecture which is based on the separation of concerns provided
by a distinction in layers of functionality: i) an application
layer concerned with business processes and their modeling;
ii) a macroprogramming layer concerned with the distributed
execution of activities within the WSN; iii) a run-time layer
concerned with the low-level aspects supporting the above and
enabling self-optimization.

Application Model
Model Compiler

Application
Capability
Model

Macro Macro
Program Compiler

System
Capability
Model

WSN-ready
Binary

Fig. 1. Compiling business process models into WSN-executable code.

[Room Reservaton Sysem]

€02 monitoring
Meeting.Room

eport: Stream -7

arget: LN
ocal: readCO2Level

Fig. 2. BPMN diagram for a fragment of the ventilation scenario.

A model-driven approach connects the three layers (Fig-
ure 1). Using an extended verion of the Business Process
Model and Notation (BPMN), the application model repre-
sents a holistic, network-agnostic view of the entire business
process, i.e., including the WSN and the process back-end.
It includes performance requirements (e.g., a certain level of
reliability, or a minimum lifetime).

The semantic link among layers is achieved by two compila-
tion steps. The model compiler takes as input the application
model and an application capability model. The latter is a
coarse-grained description of the WSN, providing information
such as the type of sensors/actuators available and their
operations. The model compiler translates these descriptions
into a program written in a macro-programming language,
serving as an intermediate language closer to the reality of
WSN systems, yet high-level enough to be potentially used
directly by a developer. The macro language is similar to Java,
but offers static memory management and threading optimized
for motes. It integrates several existing programming and
networking abstractions such as Logical Neighborhoods [2]
to specify a set of nodes or collection tree protocols into
a common object-oriented framework that is based on the
notion of Actions whose execution can be configured by
embedded declarative languages as illustrated in the next
section. The macro compiler takes as input the macro-program
generated by the model compiler and a system capability
model. The latter provides finer-grained information on the
deployment environment (e.g., how many sensors of a given
type are deployed at a location). The macro-compiler generates
executable code that relies only on the basic functionality
provided by the run-time support available on the target nodes.
By leveraging the system capability model, the macro compiler
can generate different code for different nodes, based on their
application role.

code nhoodTemplateS = {:
neighborhood template CO2Sensors ()
f.getFunction() = "sensor" and t.getType() = "co2" :};
code sensorNeighborhoodDef = nhoodTemplateS + {:
create neighborhood co2Sensors from CO2Sensors () :};

Target co2Sensors = lnew LN();
co2Sensors.instantiate (sensorNeighborhoodDef) ;

Report co2Stream = lnew Stream();
co2stream.setTarget (co2Sensors) ;
co2Stream.setParameter ("period",
co2Stream.execute () ;

5 % 60);

Fig. 3. Macro-programming language fragment for Figure 2.

III. CASE STUDY

Figure 2 depicts a fragment of the business process model
for the ventilation scenario discussed above. The whole pro-
cess is modeled with two participants, the WSN-aware par-
ticipant on top and the intra-WSN participant (modeled in
more detail) that is converted into an application by generating
macrocode. The zoomed part of the process shows a WSN
activity that sets up and executes a periodic reading of CO;
sensors in a certain room. A target identifies a set of nodes
satisfying application constraints, and gives the ability to apply
a distributed action to the nodes in this set.

By graphically combining abstractions (here, a farget to
specify the room and a local action to read the sensor are
placed inside a report action to collect the sensor readings),
setting all necessary parameters, and using meta-information
of the current WSN setup, the model becomes rich enough to
be transformed into the macrocode in Figure 3.

This code describes the instructions to define a target in-
cluding all CO4 sensors and to collect periodic data from them
using an instance of report action implementing a Stream
concrete abstraction. Specifically, the abstraction-specific code
inside the code variable is the Logical Neighborhood [2]
custom language. This is used to create an instance of target,
referring to local actions to retrieve the function and type of
node to possibly include in the target. The farget is given as
parameter to a setTarget method invoked on an instance
of report. The remaining method invocations are used to set
parameters for the functioning of the Stream instance, e.g.,
its reporting period.

The BPMN model may also contain application perfor-
mance objectives. Based on this and monitoring data, the
self-optimization functionality tunes the protocols’ parameters,
e.g., by going into a very low power mode when no meeting
is scheduled and no presence of people has been detected.

Acknowledgments. This work is supported by
the European Commission through the projects
makeSense (www.project-makesense.eu) and CONET

(www.cooperating-objects.eu).

REFERENCES

[1] L. Mottola and G. Picco, “Programming Wireless Sensor Networks:
Fundamental Concepts and State of the Art,” ACM Computing Surveys,
vol. 43, no. 3, 2011.

, “Logical Neighborhoods: A Programming Abstraction for Wireless

Sensor Networks,” in Proc. of the Int. Conf. on Distributed Computing

in Sensor Systems (DCOSS), 2006.

(2]

