
Global Constraint Catalog
2nd Edition(revision a)

Nicolas Beldiceanu1

École des Mines de Nantes
LINA & INRIA, 4 rue Alfred Kastler

BP-20722, FR-44307 Nantes Cedex 3, France

Mats Carlsson
SICS, Box 1263, SE-16 429 Kista, Sweden

Jean-Xavier Rampon
LINA, UMR 6241, 2 rue de la Houssinière

B.P. 92208, FR-44322 Nantes Cedex 3, France

SICS Technical Report T2012:03

ISSN: 1100-3154

Abstract: This report presents a catalogue of global constraints where
each constraint is explicitly described in terms of graph properties and/or
automata and/or first order logical formulae with arithmetic. When avail-
able, it also presents some typical usage as well as some pointers to ex-
isting filtering algorithms.

Keywords: constraint programming, global constraint, catalogue,
graph, automaton, first order formula, meta-data, ontology, symmetry.

February 14, 2012

1Corresponding author, Email:Nicolas.Beldiceanu@mines-nantes.fr

Contents

Preface i

1 Getting started 1

2 Describing Global Constraints 3
2.1 Describing the arguments of a global constraint. 6
2.1.1 Basic data types. 6
2.1.2 Compound data types. 8
2.1.3 Restrictions. 9
2.1.4 Declaring a global constraint. 17
2.1.5 Describing symmetries between arguments. 18
2.2 Describing global constraints in terms of graph properties 39
2.2.1 Basic ideas and illustrative example. 39
2.2.2 Ingredients used for describing global constraints. 41
2.2.3 Graph constraint. 70
2.3 Describing global constraints in terms of automata. 78
2.3.1 Selecting an appropriate description. 78
2.3.2 Defining an automaton. 82
2.4 Reformulating global constraints as a conjunction. 83
2.5 Semantic links between global constraints. 84
2.5.1 Assignment dimension added. 84
2.5.2 Assignment dimension removed. 84
2.5.3 Attached to cost variant. 85
2.5.4 Common keyword. 86
2.5.5 Comparison swapped. 86
2.5.6 Cost variant. 86
2.5.7 Generalisation . 86
2.5.8 Hard version . 86
2.5.9 Implied by . 87
2.5.10 Implies . 87
2.5.11 Implies (if swap arguments). 87
2.5.12 Implies (items to collection). 87
2.5.13 Negation . 88
2.5.14 Part of system of constraints. 88

1

2 CONTENTS

2.5.15 Related. 88
2.5.16 Related to a common problem. 88
2.5.17 Root concept. 89
2.5.18 Shift of concept. 89
2.5.19 Soft variant. 89
2.5.20 Specialisation. 89
2.5.21 System of constraints. 89
2.5.22 Used in graph description. 90
2.5.23 Used in reformulation. 90
2.5.24 Uses in its reformulation. 90

3 Description of the Catalogue 91
3.1 Which global constraints are included?. 98
3.2 Which global constraints are missing?. 100
3.3 Searching in the catalogue. 100
3.3.1 How to see if a global constraint is in the catalogue?. 100
3.3.2 How to search for all global constraints sharing the same structure. 101
3.3.3 Searching all places where a global constraint is referenced. 102
3.3.4 Searching the mapping with a constraint of a concrete system . . . 103
3.4 Figures of the catalogue. 103
3.5 Constraints argument patterns. 105
3.5.1 Constraints with 1 argument. 108
3.5.2 Constraints with 2 arguments. 112
3.5.3 Constraints with 3 arguments. 123
3.5.4 Constraints with 4 arguments. 131
3.5.5 Constraints with 5 arguments. 135
3.5.6 Constraints with 6 arguments. 136
3.5.7 Constraints with 8 arguments. 137
3.5.8 Constraints with 10 arguments. 137
3.6 Meta-keywords attached to the keywords. 138
3.6.1 Application area . 138
3.6.2 Characteristic of a constraint. 138
3.6.3 Combinatorial object. 139
3.6.4 Complexity . 139
3.6.5 Constraint network structure. 139
3.6.6 Constraint type. 140
3.6.7 Constraint arguments. 140
3.6.8 Filtering. 140
3.6.9 Final graph structure. 141
3.6.10 Geometry. 141
3.6.11 Heuristics. 142
3.6.12 Miscellaneous. 142
3.6.13 Modelling. 142
3.6.14 Modelling exercises. 144
3.6.15 Problems. 145
3.6.16 Puzzles. 145

CONTENTS 3

3.6.17 Symmetry. 146
3.7 Keywords attached to the global constraints. 147
3.7.1 3-dimensional-matching. 147
3.7.2 3-SAT. 147
3.7.3 Abstract interpretation. 147
3.7.4 Acyclic . 148
3.7.5 Aggregate. 148
3.7.6 Air traffic management. 150
3.7.7 Alignment. 150
3.7.8 All different . 151
3.7.9 Alpha-acyclic constraint network(2). 151
3.7.10 Alpha-acyclic constraint network(3). 152
3.7.11 Apartition. 152
3.7.12 Arc-consistency. 153
3.7.13 Arithmetic constraint. 155
3.7.14 Array constraint. 155
3.7.15 Assigning and scheduling tasks that run in parallel. 156
3.7.16 Assignment. 159
3.7.17 Assignment dimension. 160
3.7.18 Assignment to the same set of values. 163
3.7.19 At least . 168
3.7.20 At most . 168
3.7.21 Automaton . 168
3.7.22 Automaton with array of counters. 171
3.7.23 Automaton with counters. 171
3.7.24 Automaton without counters. 172
3.7.25 Autoref . 173
3.7.26 Balanced assignment. 173
3.7.27 Balanced tree. 174
3.7.28 Berge-acyclic constraint network. 174
3.7.29 Binary constraint. 177
3.7.30 Bioinformatics . 177
3.7.31 Bipartite. 178
3.7.32 Bipartite matching. 178
3.7.33 Bipartite matching in convex bipartite graphs. 179
3.7.34 Boolean channel. 179
3.7.35 Boolean constraint. 180
3.7.36 Border. 180
3.7.37 Bound-consistency. 180
3.7.38 Business rules. 181
3.7.39 Centered cyclic(1) constraint network(1). 182
3.7.40 Centered cyclic(2) constraint network(1). 182
3.7.41 Centered cyclic(3) constraint network(1). 183
3.7.42 Channel routing. 183
3.7.43 Channelling constraint. 184
3.7.44 Circuit. 184

4 CONTENTS

3.7.45 Circular sliding cyclic(1) constraint network(2). 184
3.7.46 Cluster . 185
3.7.47 Coloured . 185
3.7.48 Compulsory part. 185
3.7.49 Conditional constraint. 186
3.7.50 Configuration problem. 186
3.7.51 Connected component. 187
3.7.52 Consecutive loops are connected. 187
3.7.53 Consecutive values. 187
3.7.54 Constraint between two collections of variables. 188
3.7.55 Constraint between three collections of variables. 188
3.7.56 Constraint involving set variables. 188
3.7.57 Constraint on the intersection. 189
3.7.58 Constructive disjunction. 189
3.7.59 Contact. 190
3.7.60 Contractible. 191
3.7.61 Convex . 197
3.7.62 Convex bipartite graph. 198
3.7.63 Convex hull relaxation. 198
3.7.64 Conway packing problem. 199
3.7.65 Core. 199
3.7.66 Costas arrays. 202
3.7.67 Cost filtering constraint. 202
3.7.68 Cost matrix. 202
3.7.69 Counting constraint. 203
3.7.70 Cumulative longest hole problems. 203
3.7.71 Cycle . 208
3.7.72 Cyclic . 208
3.7.73 Data constraint. 208
3.7.74 Deadlock breaking. 209
3.7.75 Decomposition. 209
3.7.76 Decomposition-based violation measure. 210
3.7.77 DFS-bottleneck. 210
3.7.78 Demand profile. 210
3.7.79 Degree of diversity of a set of solutions. 211
3.7.80 Derived collection . 214
3.7.81 Difference. 214
3.7.82 Difference between pairs of variables. 214
3.7.83 Directed acyclic graph. 215
3.7.84 Disequality . 215
3.7.85 Disjunction . 216
3.7.86 Domain channel. 216
3.7.87 Domain definition . 216
3.7.88 Dominating queens. 216
3.7.89 Domination. 217
3.7.90 Dual model. 217

CONTENTS 5

3.7.91 Duplicated variables. 218
3.7.92 Dynamic programming. 218
3.7.93 Empty intersection. 218
3.7.94 Entailment . 219
3.7.95 Equality. 219
3.7.96 Equality between multisets. 220
3.7.97 Equivalence. 220
3.7.98 Euler knight. 220
3.7.99 Excluded . 221
3.7.100 Extensible. 221
3.7.101 Extension. 224
3.7.102 Facilities location problem. 224
3.7.103 Floor planning problem. 224
3.7.104 Flow. 227
3.7.105 Frequency allocation problem. 233
3.7.106 Functional dependency. 233
3.7.107 Geometrical constraint. 236
3.7.108 Golomb ruler. 237
3.7.109 Graph colouring . 237
3.7.110 Graph constraint. 237
3.7.111 Graph partitioning constraint. 238
3.7.112 Guillotine cut. 238
3.7.113 Hall interval. 238
3.7.114 Hamiltonian. 239
3.7.115 Heuristics. 239
3.7.116 Heuristics and Berge-acyclic constraint network. 239
3.7.117 Heuristics and lexicographical ordering. 241
3.7.118 Heuristics for two-dimensional rectangle placement problems . . . 241
3.7.119 Hungarian method for the assignment problem. 243
3.7.120 Hybrid-consistency. 243
3.7.121 Hypergraph. 244
3.7.122 Included. 244
3.7.123 Inclusion . 244
3.7.124 Incompatible pairs of values. 245
3.7.125 Indistinguishable values. 245
3.7.126 Interval . 245
3.7.127 Joker value. 246
3.7.128 Klee’s measure problem. 246
3.7.129 Labelling by increasing cost. 246
3.7.130 Latin square. 249
3.7.131 Lexicographic order. 249
3.7.132 Limited discrepancy search. 250
3.7.133 Linear programming. 250
3.7.134 Line-segments intersection. 252
3.7.135 Logic . 252
3.7.136 Logigraphe. 252

6 CONTENTS

3.7.137 Magic hexagon. 254
3.7.138 Magic series . 255
3.7.139 Magic square. 255
3.7.140 Matching . 255
3.7.141 Matrix. 256
3.7.142 Matrix model. 256
3.7.143 Matrix symmetry. 256
3.7.144 Maximum. 257
3.7.145 Maximum clique. 257
3.7.146 Maximum number of occurrences. 257
3.7.147 maxint. 257
3.7.148 Metro . 258
3.7.149 Minimum . 260
3.7.150 Minimum cost flow. 261
3.7.151 Minimum feedback vertex set. 262
3.7.152 Minimum hitting set cardinality. 262
3.7.153 Minimum number of occurrences. 262
3.7.154 Modulo . 262
3.7.155 Multi-site employee scheduling with calendar constraints 263
3.7.156 Multiset. 265
3.7.157 Multiset ordering. 265
3.7.158 No cycle . 265
3.7.159 No loop. 265
3.7.160 n-Amazon. 266
3.7.161 n-queen. 269
3.7.162 Non-deterministic automaton. 269
3.7.163 Non-overlapping. 269
3.7.164 Number of changes. 270
3.7.165 Number of distinct equivalence classes. 270
3.7.166 Number of distinct values. 270
3.7.167 Obscure. 271
3.7.168 One succ. 271
3.7.169 Open automaton constraint. 272
3.7.170 Open constraint. 273
3.7.171 Order constraint. 274
3.7.172 Orthotope. 275
3.7.173 Overlapping alldifferent. 275
3.7.174 Pair . 275
3.7.175 Packing almost squares. 276
3.7.176 Pallet loading. 276
3.7.177 Partition. 277
3.7.178 Path. 277
3.7.179 Partridge . 277
3.7.180 Pattern sequencing. 278
3.7.181 Pentomino . 279
3.7.182 Periodic. 279

CONTENTS 7

3.7.183 Permutation. 279
3.7.184 Permutation channel. 280
3.7.185 Phi-tree. 280
3.7.186 Phylogeny. 282
3.7.187 Pick-up delivery . 282
3.7.188 Planarity test. 282
3.7.189 Polygon. 282
3.7.190 Positioning constraint. 282
3.7.191 Predefined constraint. 283
3.7.192 Preferences. 284
3.7.193 Producer-consumer. 284
3.7.194 Product. 285
3.7.195 Program verification. 285
3.7.196 Proximity constraint. 285
3.7.197 Pure functional dependency. 286
3.7.198 Quadtree. 287
3.7.199 Range. 288
3.7.200 Rank . 288
3.7.201 RCC8. 288
3.7.202 Rectangle clique partition. 289
3.7.203 Regret based heuristics. 289
3.7.204 Regret based heuristics in matrix problems. 290
3.7.205 Reified automaton constraint. 290
3.7.206 Reified constraint. 292
3.7.207 Relation. 293
3.7.208 Relaxation . 293
3.7.209 Relaxation dimension. 294
3.7.210 Resource constraint. 295
3.7.211 Run of a permutation. 296
3.7.212 SAT. 296
3.7.213 Scalar product. 297
3.7.214 Sequence. 297
3.7.215 Sequence dependent set-up. 298
3.7.216 Sequencing with release times and deadlines. 299
3.7.217 Set channel. 299
3.7.218 Set packing. 300
3.7.219 Shikaku. 300
3.7.220 Scheduling constraint. 301
3.7.221 Scheduling with machine choice, calendars and preemption 301
3.7.222 Shared table. 305
3.7.223 Schur number. 306
3.7.224 SLAM problem. 306
3.7.225 Sliding cyclic(1) constraint network(1). 306
3.7.226 Sliding cyclic(1) constraint network(2). 307
3.7.227 Sliding cyclic(1) constraint network(3). 307
3.7.228 Sliding cyclic(2) constraint network(2). 308

8 CONTENTS

3.7.229 Sliding sequence constraint. 308
3.7.230 Smallest square for packing consecutive dominoes. 309
3.7.231 Smallest rectangle area. 310
3.7.232 Smallest square for packing rectangles with distinct sizes. 312
3.7.233 Soft constraint . 314
3.7.234 Sort . 314
3.7.235 Sort based reformulation. 314
3.7.236 Sparse functional dependency. 315
3.7.237 Sparse table. 315
3.7.238 Sport timetabling. 315
3.7.239 Squared squares. 315
3.7.240 Statistics . 320
3.7.241 Strip packing. 320
3.7.242 Strong articulation point. 321
3.7.243 Strong bridge. 321
3.7.244 Strongly connected component. 322
3.7.245 Subset sum. 323
3.7.246 Sudoku. 323
3.7.247 Sum. 324
3.7.248 Sweep. 324
3.7.249 Symmetric . 328
3.7.250 Symmetry. 328
3.7.251 System of constraints. 329
3.7.252 Table . 330
3.7.253 Temporal constraint. 330
3.7.254 Ternary constraint. 330
3.7.255 Timetabling constraint. 331
3.7.256 Time window. 331
3.7.257 Touch. 331
3.7.258 Tree. 332
3.7.259 Tuple . 332
3.7.260 Two-dimensional orthogonal packing. 332
3.7.261 Unary constraint. 333
3.7.262 Undirected graph. 333
3.7.263 Value constraint. 333
3.7.264 Value partitioning constraint. 334
3.7.265 Value precedence. 335
3.7.266 Variable-based violation measure. 335
3.7.267 Variable indexing. 335
3.7.268 Variable subscript. 335
3.7.269 Vector. 336
3.7.270 Vpartition. 336
3.7.271 Weighted assignment. 337
3.7.272 Workload covering. 337
3.7.273 Zebra puzzle. 337
3.7.274 Zero-duration task. 342

CONTENTS 9

4 Further Topics 343
4.1 Differences from the 2000 report. 344
4.2 Differences from the 2005 report. 346
4.3 Graph invariants . 347
4.3.1 Graph classes. 347
4.3.2 Format of an invariant. 348
4.3.3 Using the database of invariants. 349
4.3.4 The database of graph invariants. 350
4.4 The electronic version of the catalogue. 399
4.4.1 Prolog facts describing a constraint. 399
4.4.2 XML schema associated with a global constraint. 404

5 Global Constraint Catalogue 409
5.1 absvalue . 420
5.2 all differ from at leastk pos. 422
5.3 all equal. 426
5.4 all incomparable . 428
5.5 all min dist . 430
5.6 alldifferent . 434
5.7 alldifferentbetweensets . 442
5.8 alldifferentconsecutivevalues. 444
5.9 alldifferentcst . 446
5.10 alldifferentexcept0 . 450
5.11 alldifferentinterval . 454
5.12 alldifferentmodulo . 458
5.13 alldifferenton intersection. 462
5.14 alldifferentpartition . 466
5.15 alldifferentsamevalue . 470
5.16 allperm . 474
5.17 among. 478
5.18 amongdiff 0 . 486
5.19 amonginterval . 490
5.20 amonglow up . 494
5.21 amongmodulo . 498
5.22 amongseq . 502
5.23 amongvar . 506
5.24 and . 510
5.25 arith . 514
5.26 arithor . 518
5.27 arithsliding . 522
5.28 assignandcounts. 526
5.29 assignandnvalues . 530
5.30 atleast. 534
5.31 atleastnvalue . 538
5.32 atleastnvector . 542
5.33 atmost. 546

10 CONTENTS

5.34 atmost1. 550
5.35 atmostnvalue . 552
5.36 atmostnvector . 556
5.37 balance. 560
5.38 balancecycle . 566
5.39 balanceinterval . 570
5.40 balancemodulo. 574
5.41 balancepartition . 578
5.42 balancepath . 582
5.43 balancetree . 586
5.44 betweenmin max . 590
5.45 binpacking . 594
5.46 binpackingcapa . 600
5.47 binarytree . 602
5.48 bipartite. 606
5.49 calendar. 610
5.50 cardinalityatleast. 620
5.51 cardinalityatmost . 624
5.52 cardinalityatmostpartition . 628
5.53 change . 632
5.54 changecontinuity . 638
5.55 changepair . 650
5.56 changepartition . 656
5.57 changevectors . 660
5.58 circuit . 662
5.59 circuitcluster . 666
5.60 circularchange. 672
5.61 clauseand . 676
5.62 clauseor . 680
5.63 clique . 684
5.64 coloredmatrix . 688
5.65 colouredcumulative . 692
5.66 colouredcumulatives. 698
5.67 common. 704
5.68 commoninterval . 708
5.69 commonmodulo . 712
5.70 commonpartition . 716
5.71 compareandcount . 720
5.72 condlex cost . 722
5.73 condlex greater . 726
5.74 condlex greatereq . 730
5.75 condlex less . 734
5.76 condlex lesseq. 738
5.77 connectpoints . 742
5.78 connected. 746
5.79 consecutivegroupsof ones . 748

CONTENTS 11

5.80 consecutivevalues . 752
5.81 containssboxes. 754
5.82 correspondence. 758
5.83 count . 762
5.84 counts. 766
5.85 coveredbysboxes. 770
5.86 coverssboxes. 776
5.87 crossing. 782
5.88 cumulative . 786
5.89 cumulativeconvex . 794
5.90 cumulativeproduct . 802
5.91 cumulativetwo d . 808
5.92 cumulativewith level of priority 812
5.93 cumulatives. 818
5.94 cutset . 824
5.95 cycle . 828
5.96 cyclecardon path . 834
5.97 cycleor accessibility. 838
5.98 cycleresource . 842
5.99 cyclicchange. 848
5.100 cyclicchangejoker . 852
5.101 dag . 856
5.102 decreasing. 858
5.103 deepestvalley . 862
5.104 derangement. 866
5.105 differ from at leastk pos . 868
5.106 diffn . 872
5.107 diffn column . 882
5.108 diffn include . 886
5.109 discrepancy. 890
5.110 disj . 894
5.111 disjoint . 898
5.112 disjointsboxes . 902
5.113 disjointtasks . 908
5.114 disjunctive . 912
5.115 disjunctiveor sameend . 916
5.116 disjunctiveor samestart . 918
5.117 distance. 920
5.118 distancebetween . 922
5.119 distancechange. 926
5.120 divisible. 930
5.121 divisibleor . 932
5.122 domreachability . 934
5.123 domain . 938
5.124 domainconstraint . 940
5.125 elem. 946

12 CONTENTS

5.126 elemfrom to . 954
5.127 element. 958
5.128 elementgreatereq. 962
5.129 elementlesseq . 966
5.130 elementmatrix . 970
5.131 elementproduct . 974
5.132 elementsparse . 978
5.133 elementn . 982
5.134 elements . 986
5.135 elementsalldifferent . 990
5.136 elementssparse. 996
5.137 eq . 1000
5.138 eqcst . 1002
5.139 eqset . 1004
5.140 equalsboxes . 1006
5.141 equivalent. 1010
5.142 exactly . 1012
5.143 gcd . 1016
5.144 geost . 1018
5.145 geosttime . 1024
5.146 geq . 1030
5.147 geqcst . 1032
5.148 globalcardinality . 1034
5.149 globalcardinality low up . 1040
5.150 globalcardinality low up no loop 1044
5.151 globalcardinalityno loop . 1048
5.152 globalcardinalitywith costs. 1052
5.153 globalcontiguity . 1058
5.154 golomb . 1062
5.155 graphcrossing . 1066
5.156 graphisomorphism. 1072
5.157 group . 1076
5.158 groupskip isolateditem . 1088
5.159 gt . 1098
5.160 highestpeak . 1100
5.161 imply . 1104
5.162 in . 1106
5.163 in interval . 1110
5.164 in interval reified . 1114
5.165 in intervals . 1118
5.166 inrelation . 1120
5.167 insamepartition . 1124
5.168 inset . 1128
5.169 incomparable. 1130
5.170 increasing. 1132
5.171 increasingglobal cardinality . 1136

CONTENTS 13

5.172 increasingnvalue . 1142
5.173 increasingnvaluechain . 1148
5.174 increasingsum . 1154
5.175 indexedsum . 1156
5.176 inflexion. 1160
5.177 insidesboxes . 1164
5.178 intvalueprecede. 1168
5.179 intvalueprecedechain . 1172
5.180 intervalandcount . 1178
5.181 intervalandsum . 1184
5.182 inverse . 1188
5.183 inverseoffset . 1194
5.184 inverseset . 1198
5.185 inversewithin range . 1202
5.186 ithposdifferent from 0 . 1206
5.187 kalldifferent . 1208
5.188 kcut . 1216
5.189 kdisjoint . 1218
5.190 ksame . 1222
5.191 ksameinterval . 1226
5.192 ksamemodulo . 1230
5.193 ksamepartition . 1234
5.194 kusedby . 1238
5.195 kusedby interval . 1242
5.196 kusedby modulo . 1246
5.197 kusedby partition . 1250
5.198 lengthfirst sequence. 1254
5.199 lengthlast sequence. 1258
5.200 leq. 1262
5.201 leqcst . 1264
5.202 lex2 . 1266
5.203 lexalldifferent . 1268
5.204 lexbetween. 1272
5.205 lexchain less . 1276
5.206 lexchain lesseq. 1280
5.207 lexdifferent . 1284
5.208 lexequal . 1288
5.209 lexgreater . 1292
5.210 lexgreatereq . 1298
5.211 lexless . 1304
5.212 lexlesseq. 1310
5.213 lexlesseqallperm . 1316
5.214 link set to booleans . 1318
5.215 longestchange . 1322
5.216 lt . 1326
5.217 map. 1328

14 CONTENTS

5.218 maxindex. 1332
5.219 maxn . 1334
5.220 maxnvalue . 1338
5.221 maxsizesetof consecutivevar 1344
5.222 maximum. 1348
5.223 maximummodulo . 1352
5.224 meetsboxes. 1354
5.225 minindex . 1360
5.226 minn . 1364
5.227 minnvalue . 1368
5.228 minsizesetof consecutivevar 1374
5.229 minimum . 1378
5.230 minimumexcept0 . 1382
5.231 minimumgreaterthan . 1386
5.232 minimummodulo . 1392
5.233 minimumweight alldifferent . 1394
5.234 multiglobal contiguity . 1398
5.235 multi inter distance. 1400
5.236 nand. 1402
5.237 nclass. 1406
5.238 neq . 1410
5.239 neqcst . 1412
5.240 nequivalence. 1414
5.241 nextelement . 1418
5.242 nextgreaterelement . 1424
5.243 ninterval. 1428
5.244 nopeak . 1432
5.245 novalley . 1436
5.246 nonoverlapsboxes. 1440
5.247 nor . 1446
5.248 notall equal . 1450
5.249 notin . 1454
5.250 npair . 1458
5.251 nsetof consecutivevalues . 1462
5.252 nvalue. 1466
5.253 nvalueon intersection . 1472
5.254 nvalues . 1476
5.255 nvaluesexcept0 . 1480
5.256 nvector . 1484
5.257 nvectors. 1490
5.258 nvisiblefrom end. 1494
5.259 nvisiblefrom start . 1496
5.260 openalldifferent . 1498
5.261 openamong. 1502
5.262 openatleast. 1506
5.263 openatmost. 1508

CONTENTS 15

5.264 openglobal cardinality . 1510
5.265 openglobal cardinality low up 1514
5.266 openmaximum . 1518
5.267 openminimum . 1520
5.268 oppositesign . 1522
5.269 or . 1524
5.270 orchard . 1528
5.271 orderedatleastnvector . 1532
5.272 orderedatmostnvector . 1536
5.273 orderedglobal cardinality . 1540
5.274 orderednvector . 1544
5.275 orthlink ori siz end . 1548
5.276 orthon the ground . 1552
5.277 orthon top of orth . 1554
5.278 orthsareconnected. 1558
5.279 overlapsboxes . 1562
5.280 path. 1566
5.281 pathfrom to . 1570
5.282 pattern. 1574
5.283 peak. 1578
5.284 period. 1582
5.285 periodexcept0 . 1584
5.286 periodvectors. 1586
5.287 permutation. 1588
5.288 placein pyramid . 1590
5.289 polyomino . 1594
5.290 power. 1598
5.291 precedence. 1600
5.292 productctr . 1602
5.293 properforest . 1604
5.294 rangectr . 1608
5.295 relaxedsliding sum. 1612
5.296 remainder. 1616
5.297 roots. 1618
5.298 same . 1622
5.299 sameandglobal cardinality . 1630
5.300 sameandglobal cardinality low up 1634
5.301 sameintersection. 1640
5.302 sameinterval . 1644
5.303 samemodulo . 1648
5.304 samepartition . 1652
5.305 samesign . 1656
5.306 scalarproduct. 1658
5.307 sequencefolding . 1660
5.308 setvalueprecede. 1666
5.309 shift . 1668

16 CONTENTS

5.310 signof . 1672
5.311 sizemax seqalldifferent . 1674
5.312 sizemax startingseqalldifferent 1678
5.313 slidingcardskip0 . 1682
5.314 slidingdistribution . 1686
5.315 slidingsum . 1690
5.316 slidingtime window . 1694
5.317 slidingtime window from start 1698
5.318 slidingtime window sum . 1702
5.319 smooth . 1708
5.320 softall equalmax var . 1714
5.321 softall equalmin ctr . 1716
5.322 softall equalmin var . 1720
5.323 softalldifferent ctr . 1726
5.324 softalldifferent var . 1730
5.325 softcumulative . 1734
5.326 softsameinterval var . 1738
5.327 softsamemodulovar . 1742
5.328 softsamepartition var . 1746
5.329 softsamevar . 1750
5.330 softusedby interval var . 1754
5.331 softusedby modulovar . 1758
5.332 softusedby partition var . 1762
5.333 softusedby var . 1766
5.334 someequal . 1770
5.335 sort . 1772
5.336 sortpermutation . 1778
5.337 stablecompatibility . 1784
5.338 stageelement. 1792
5.339 stretchcircuit . 1798
5.340 stretchpath . 1802
5.341 stretchpathpartition . 1810
5.342 strictlex2 . 1814
5.343 strictlydecreasing . 1816
5.344 strictlyincreasing. 1820
5.345 stronglyconnected. 1824
5.346 subgraphisomorphism. 1826
5.347 sum . 1830
5.348 sumctr . 1834
5.349 sumcubesctr . 1838
5.350 sumfree . 1840
5.351 sumof increments . 1842
5.352 sumof weightsof distinct values 1844
5.353 sumset . 1848
5.354 sumsquaresctr . 1850
5.355 symmetric. 1852

CONTENTS 17

5.356 symmetricalldifferent . 1854
5.357 symmetricalldifferent except0 1858
5.358 symmetriccardinality . 1860
5.359 symmetricgcc . 1864
5.360 temporalpath . 1868
5.361 tour . 1874
5.362 track. 1878
5.363 tree . 1884
5.364 treerange . 1888
5.365 treeresource . 1892
5.366 twin . 1896
5.367 twolayer edgecrossing . 1898
5.368 twoorth are in contact. 1902
5.369 twoorth column . 1906
5.370 twoorth do not overlap . 1910
5.371 twoorth include . 1914
5.372 usedby . 1918
5.373 usedby interval . 1924
5.374 usedby modulo . 1928
5.375 usedby partition . 1932
5.376 uses. 1936
5.377 valley . 1940
5.378 veceq tuple. 1944
5.379 visible. 1946
5.380 weightedpartial alldiff . 1958
5.381 xor . 1962

A Legend for the Description 1965

B Electronic Constraint Catalogue 1967
B.1 absvalue . 1977
B.2 all differ from at leastk pos. 1978
B.3 all equal. 1981
B.4 all incomparable . 1983
B.5 all min dist . 1986
B.6 alldifferent . 1988
B.7 alldifferentbetweensets . 1991
B.8 alldifferentconsecutivevalues. 1993
B.9 alldifferentcst . 1995
B.10 alldifferentexcept0 . 1997
B.11 alldifferentinterval . 2000
B.12 alldifferentmodulo . 2002
B.13 alldifferenton intersection. 2004
B.14 alldifferentpartition . 2007
B.15 alldifferentsamevalue . 2009
B.16 allperm . 2011

18 CONTENTS

B.17 among. 2013
B.18 amongdiff 0 . 2016
B.19 amonginterval . 2019
B.20 amonglow up . 2022
B.21 amongmodulo . 2026
B.22 amongseq . 2029
B.23 amongvar . 2032
B.24 and . 2035
B.25 arith . 2037
B.26 arithor . 2040
B.27 arithsliding . 2045
B.28 assignandcounts. 2050
B.29 assignandnvalues . 2053
B.30 atleast. 2056
B.31 atleastnvalue . 2059
B.32 atleastnvector . 2061
B.33 atmost. 2063
B.34 atmost1. 2065
B.35 atmostnvalue . 2066
B.36 atmostnvector . 2068
B.37 balance . 2070
B.38 balancecycle . 2072
B.39 balanceinterval . 2074
B.40 balancemodulo. 2076
B.41 balancepartition . 2078
B.42 balancepath . 2080
B.43 balancetree . 2083
B.44 betweenmin max . 2086
B.45 bin packing . 2089
B.46 bin packingcapa . 2091
B.47 binarytree . 2093
B.48 bipartite. 2095
B.49 calendar. 2096
B.50 cardinalityatleast. 2100
B.51 cardinalityatmost . 2103
B.52 cardinalityatmostpartition . 2106
B.53 change . 2108
B.54 changecontinuity . 2111
B.55 changepair . 2119
B.56 changepartition . 2128
B.57 changevectors . 2130
B.58 circuit . 2133
B.59 circuit cluster . 2135
B.60 circularchange. 2137
B.61 clauseand . 2140
B.62 clauseor . 2142

CONTENTS 19

B.63 clique . 2144
B.64 coloredmatrix . 2146
B.65 colouredcumulative . 2149
B.66 colouredcumulatives. 2154
B.67 common. 2160
B.68 commoninterval . 2162
B.69 commonmodulo . 2165
B.70 commonpartition . 2167
B.71 compareandcount . 2170
B.72 condlex cost . 2173
B.73 condlex greater . 2175
B.74 condlex greatereq . 2177
B.75 condlex less . 2179
B.76 condlex lesseq. 2181
B.77 connectpoints . 2183
B.78 connected. 2186
B.79 consecutivegroupsof ones . 2187
B.80 consecutivevalues . 2190
B.81 containssboxes. 2192
B.82 correspondence. 2195
B.83 count . 2197
B.84 counts. 2200
B.85 coveredbysboxes. 2203
B.86 coverssboxes. 2207
B.87 crossing. 2211
B.88 cumulative . 2213
B.89 cumulativeconvex . 2216
B.90 cumulativeproduct . 2218
B.91 cumulativetwo d . 2222
B.92 cumulativewith level of priority 2225
B.93 cumulatives. 2228
B.94 cutset . 2232
B.95 cycle . 2234
B.96 cyclecardon path . 2236
B.97 cycleor accessibility. 2238
B.98 cycleresource . 2240
B.99 cyclic change. 2243
B.100 cyclicchangejoker . 2247
B.101 dag . 2252
B.102 decreasing. 2254
B.103 deepestvalley . 2256
B.104 derangement. 2258
B.105 differ from at leastk pos . 2260
B.106 diffn . 2263
B.107 diffn column . 2267
B.108 diffn include . 2269

20 CONTENTS

B.109 discrepancy. 2272
B.110 disj . 2274
B.111 disjoint . 2276
B.112 disjointsboxes . 2278
B.113 disjointtasks . 2282
B.114 disjunctive . 2285
B.115 disjunctiveor sameend . 2287
B.116 disjunctiveor samestart . 2289
B.117 distance. 2291
B.118 distancebetween . 2292
B.119 distancechange. 2298
B.120 divisible. 2304
B.121 divisibleor . 2305
B.122 domreachability . 2306
B.123 domain . 2308
B.124 domainconstraint . 2310
B.125 elem. 2313
B.126 elemfrom to . 2316
B.127 element. 2319
B.128 elementgreatereq. 2322
B.129 elementlesseq . 2325
B.130 elementmatrix . 2328
B.131 elementproduct . 2332
B.132 elementsparse . 2334
B.133 elementn . 2338
B.134 elements . 2341
B.135 elementsalldifferent . 2343
B.136 elementssparse. 2345
B.137 eq . 2348
B.138 eqcst . 2349
B.139 eqset . 2350
B.140 equalsboxes . 2351
B.141 equivalent. 2354
B.142 exactly . 2356
B.143 gcd . 2358
B.144 geost . 2359
B.145 geosttime . 2362
B.146 geq . 2365
B.147 geqcst . 2366
B.148 globalcardinality . 2367
B.149 globalcardinality low up . 2370
B.150 globalcardinality low up no loop 2373
B.151 globalcardinalityno loop . 2377
B.152 globalcardinalitywith costs. 2380
B.153 globalcontiguity . 2384
B.154 golomb . 2387

CONTENTS 21

B.155 graphcrossing . 2389
B.156 graphisomorphism. 2391
B.157 group . 2393
B.158 groupskip isolateditem . 2399
B.159 gt . 2405
B.160 highestpeak . 2406
B.161 imply . 2408
B.162 in . 2410
B.163 in interval . 2412
B.164 in interval reified . 2414
B.165 in intervals . 2415
B.166 in relation . 2417
B.167 in samepartition . 2419
B.168 in set . 2422
B.169 incomparable. 2423
B.170 increasing. 2425
B.171 increasingglobal cardinality . 2428
B.172 increasingnvalue . 2438
B.173 increasingnvaluechain . 2446
B.174 increasingsum . 2448
B.175 indexedsum . 2449
B.176 inflexion. 2452
B.177 insidesboxes . 2454
B.178 int valueprecede. 2457
B.179 int valueprecedechain . 2460
B.180 intervalandcount . 2467
B.181 intervalandsum . 2471
B.182 inverse . 2474
B.183 inverseoffset . 2476
B.184 inverseset . 2478
B.185 inversewithin range . 2480
B.186 ith posdifferent from 0 . 2481
B.187 k alldifferent . 2483
B.188 k cut . 2485
B.189 k disjoint . 2487
B.190 k same . 2489
B.191 k sameinterval . 2491
B.192 k samemodulo . 2493
B.193 k samepartition . 2495
B.194 k usedby . 2497
B.195 k usedby interval . 2499
B.196 k usedby modulo . 2501
B.197 k usedby partition . 2503
B.198 lengthfirst sequence. 2505
B.199 lengthlast sequence. 2508
B.200 leq. 2511

22 CONTENTS

B.201 leqcst . 2512
B.202 lex2 . 2513
B.203 lexalldifferent . 2514
B.204 lexbetween. 2516
B.205 lexchain less . 2521
B.206 lexchain lesseq. 2523
B.207 lexdifferent . 2525
B.208 lexequal . 2528
B.209 lexgreater . 2531
B.210 lexgreatereq . 2534
B.211 lex less . 2537
B.212 lex lesseq. 2540
B.213 lex lesseqallperm . 2543
B.214 link set to booleans . 2544
B.215 longestchange . 2546
B.216 lt . 2549
B.217 map . 2550
B.218 maxindex. 2552
B.219 maxn . 2554
B.220 maxnvalue . 2556
B.221 maxsizesetof consecutivevar 2558
B.222 maximum. 2560
B.223 maximummodulo . 2562
B.224 meetsboxes. 2564
B.225 minindex . 2568
B.226 minn . 2570
B.227 minnvalue . 2572
B.228 minsizesetof consecutivevar 2574
B.229 minimum . 2576
B.230 minimumexcept0 . 2578
B.231 minimumgreaterthan . 2581
B.232 minimummodulo . 2584
B.233 minimumweight alldifferent . 2586
B.234 multi global contiguity . 2588
B.235 multi inter distance. 2590
B.236 nand. 2592
B.237 nclass. 2594
B.238 neq . 2596
B.239 neqcst . 2597
B.240 nequivalence. 2598
B.241 nextelement . 2600
B.242 nextgreaterelement . 2604
B.243 ninterval. 2606
B.244 nopeak . 2608
B.245 novalley . 2610
B.246 nonoverlapsboxes. 2612

CONTENTS 23

B.247 nor . 2615
B.248 notall equal . 2617
B.249 notin . 2619
B.250 npair . 2621
B.251 nsetof consecutivevalues . 2623
B.252 nvalue. 2625
B.253 nvalueon intersection . 2627
B.254 nvalues . 2629
B.255 nvaluesexcept0 . 2631
B.256 nvector . 2633
B.257 nvectors. 2635
B.258 nvisiblefrom end. 2637
B.259 nvisiblefrom start . 2639
B.260 openalldifferent . 2641
B.261 openamong. 2642
B.262 openatleast. 2644
B.263 openatmost. 2646
B.264 openglobal cardinality . 2648
B.265 openglobal cardinality low up 2650
B.266 openmaximum . 2652
B.267 openminimum . 2654
B.268 oppositesign . 2656
B.269 or . 2657
B.270 orchard . 2659
B.271 orderedatleastnvector . 2661
B.272 orderedatmostnvector . 2663
B.273 orderedglobal cardinality . 2665
B.274 orderednvector . 2667
B.275 orthlink ori siz end . 2669
B.276 orthon the ground . 2671
B.277 orthon top of orth . 2672
B.278 orthsareconnected. 2674
B.279 overlapsboxes . 2676
B.280 path . 2679
B.281 pathfrom to . 2681
B.282 pattern. 2683
B.283 peak. 2690
B.284 period. 2692
B.285 periodexcept0 . 2694
B.286 periodvectors. 2696
B.287 permutation. 2698
B.288 placein pyramid . 2700
B.289 polyomino . 2702
B.290 power . 2704
B.291 precedence. 2706
B.292 productctr . 2708

24 CONTENTS

B.293 properforest . 2710
B.294 rangectr . 2712
B.295 relaxedsliding sum. 2714
B.296 remainder. 2717
B.297 roots. 2718
B.298 same . 2719
B.299 sameandglobal cardinality . 2721
B.300 sameandglobal cardinality low up 2724
B.301 sameintersection. 2727
B.302 sameinterval . 2730
B.303 samemodulo . 2732
B.304 samepartition . 2734
B.305 samesign . 2737
B.306 scalarproduct. 2738
B.307 sequencefolding . 2741
B.308 setvalueprecede. 2744
B.309 shift . 2745
B.310 signof . 2749
B.311 sizemax seqalldifferent . 2750
B.312 sizemax startingseqalldifferent 2752
B.313 slidingcardskip0 . 2755
B.314 slidingdistribution . 2758
B.315 slidingsum . 2761
B.316 slidingtime window . 2764
B.317 slidingtime window from start 2766
B.318 slidingtime window sum . 2769
B.319 smooth . 2776
B.320 softall equalmax var . 2779
B.321 softall equalmin ctr . 2781
B.322 softall equalmin var . 2783
B.323 softalldifferent ctr . 2785
B.324 softalldifferent var . 2787
B.325 softcumulative . 2789
B.326 softsameinterval var . 2791
B.327 softsamemodulovar . 2794
B.328 softsamepartition var . 2796
B.329 softsamevar . 2799
B.330 softusedby interval var . 2801
B.331 softusedby modulovar . 2804
B.332 softusedby partition var . 2806
B.333 softusedby var . 2809
B.334 someequal . 2812
B.335 sort . 2814
B.336 sortpermutation . 2816
B.337 stablecompatibility . 2818
B.338 stageelement. 2820

CONTENTS 25

B.339 stretchcircuit . 2823
B.340 stretchpath . 2826
B.341 stretchpathpartition . 2830
B.342 strictlex2 . 2836
B.343 strictlydecreasing . 2837
B.344 strictly increasing. 2840
B.345 stronglyconnected. 2842
B.346 subgraphisomorphism. 2843
B.347 sum . 2845
B.348 sumctr . 2847
B.349 sumcubesctr . 2849
B.350 sumfree . 2851
B.351 sumof increments . 2852
B.352 sumof weightsof distinct values 2854
B.353 sumset . 2857
B.354 sumsquaresctr . 2859
B.355 symmetric. 2861
B.356 symmetricalldifferent . 2862
B.357 symmetricalldifferent except0 2864
B.358 symmetriccardinality . 2866
B.359 symmetricgcc . 2868
B.360 temporalpath . 2870
B.361 tour . 2873
B.362 track. 2875
B.363 tree . 2879
B.364 treerange . 2881
B.365 treeresource . 2885
B.366 twin . 2889
B.367 twolayer edgecrossing . 2891
B.368 twoorth are in contact. 2894
B.369 twoorth column . 2897
B.370 twoorth do not overlap . 2899
B.371 twoorth include . 2902
B.372 usedby . 2904
B.373 usedby interval . 2906
B.374 usedby modulo . 2908
B.375 usedby partition . 2910
B.376 uses. 2913
B.377 valley . 2915
B.378 veceq tuple. 2917
B.379 visible. 2919
B.380 weightedpartial alldiff . 2924
B.381 xor . 2928
B.382 Utilities . 2930

26 CONTENTS

C Systems Correspondence Tables 2963
C.1 From the Catalog toChoco . 2964
C.2 From the Catalog toGecode . 2967
C.3 From the Catalog toJaCoP . 2970
C.4 From the Catalog toMiniZinc . 2971
C.5 From the Catalog toSICStus . 2972
C.6 FromChocoto the Catalog. 2975
C.7 FromGecodeto the Catalog. 2978
C.8 FromJaCoPto the Catalog . 2981
C.9 FromMiniZinc to the Catalog. 2982
C.10 FromSICStus to the Catalog. 2983

Bibliography 2985

Index 3023

Preface

This catalogue presents a list of global constraints. Within this catalogue the term
global constraintshould be understood as anexpressive and concise condition in-
volving a non-fixed number of variables. This informal definition does not make any
assumption neither about the potential use of a global constraint nor about the tech-
niques1 associated with the development of global constraints. It contains about381
constraints, which are explicitly described in terms of graph properties and/or automata
and/or first order logic formulae and/or conjunction of other constraints.

This Global Constraint Catalogueis an expanded version of the list of global con-
straints presented in [25] and an updated version of [37]. The principle used for describ-
ing global constraints has been slightly modified in order todeal with a larger number
of global constraints. Since2003, we try to provide an automaton that recognises the
solutions associated with a global constraint. Since2009, we also try to provide a first
order logic formula for defining the solutions accepted by a geometrical constraint.

Writing a dictionary is a long process, especially in a field where new words are
defined every year. In this context, one difficulty is to express explicitly the meaning of
global constraints in terms of meta-data. Finding an appropriate and concise descrip-
tion that easily captures the meaning of most global constraints seems to be a tricky
task.

One may wonder how so many constraints can be used at all in practice? How-
ever many fields produce a number of articles containing partial and specific results.
Within the area of global constraints, we fill that trying extracting and classifying such
knowledge, as well as providing meta-data for encoding it, may be a help, both for hu-
mans and machines, to exploit systematically ongoing research results and to put these
results in perspective.

Goal of the catalogue. This catalogue has four main goals. First, it provides an
overview of most of the different global constraints that were gradually introduced in
the area of constraint programming since the work of J.-L. Laurière on ALICE [238]. It
also identifies new global constraints for which no existingpublished work exists. The
global constraints are arranged in alphabetic order, and for all of them a description and
an example are systematically provided. When available, it also presents some typical
usage as well as some pointers to existing filtering algorithms.

1As quoted by J. N. Hooker in [197], “ identifying a field with its techniques is an intellectuallyas well as
practically unsatisfying” and has a lot of drawbacks.

i

ii PREFACE

Second, the global constraints described in this catalogueare not only accessible
to humans, who can read the catalogue for searching for some information. It is also
available to machines, which can read and interpret it. Thisis why there exists an
electronic version of this catalogue where one can get, for most global constraints, a
complete description in terms of meta-data. In fact, most ofthis catalogue and its fig-
ures were automatically generated from this electronic version by a computer program.
This description is based on three complementary ways to look at a global constraint.
The first one defines a global constraint as searching for a graph with specific proper-
ties [24], the second one characterises a global constraint in termsof an automaton that
only recognises the solutions associated with that global constraint [34, 286]2, while
the third one defines in the context of geometric constraintsa global constraint as a
restricted first order logic formula [93]. The key point of these descriptions is their
ability to define explicitly in a concise way the meaning of most global constraints. In
addition these descriptions can also be systematically turned into polynomial filtering
algorithms.

Third, we hope that this unified description of apparently diverse global constraints
will allow for establishing a systematic link between the properties of basic concepts
used for describing global constraints and the properties of the global constraints as a
whole.

Finally, we also hope that it will attract more people from the algorithmic commu-
nity into the area of constraints. To a certain extent this has already started at places like
CWI in Amsterdam, the Max-Planck für Informatik (Saarbr̈ucken) or the university of
Waterloo. We also hope that it will attract people from combinatorics in order to pro-
duce theories and knowledge that could nicely unify and/or put in perspective different
aspects of constraints (i.e., breaking symmetries, counting the number of solutions).

Use of the catalogue. The catalogue is organised into five chapters:

• Chapter1 provide a short overview of the main entries you may first consult
when you are not familiar with the catalogue.

• Chapter2 explains how the meaning of global constraints is describedin terms
of graph-properties or in terms of automata. On the one hand,if one wants to
consult the catalogue for getting the informal definition ofa global constraint,
examples of use of that constraint or pointers to filtering algorithms, then one
only needs to read the first section of Chapter2: describing the arguments of a
global constraint, page6. On the other hand, if one wants to understand those
entries describing explicitly the meaning of a constraint then all the material of
Chapter2 is required.

• Chapter3 describes the content of the catalogue as well as different ways for
searching through the catalogue. This material is essential.

2Automata were first use in the 90ies by N. R. Vempaty [406] and J. Amilhastre [6] in the context of
constraint networks. Later on in 2007, they were also used byM.-C. Cot́eet al. [118] in the context of linear
programming.

iii

• Chapter4 covers additional topics, such as the differences from the2000 re-
port [25] on global constraints, the generation of implied constraints that are
systematically linked to the graph-based description of a global constraint, and
the electronic version of the catalogue. The material describing the format of
the entries of a global constraint is mandatory for those whowant to exploit the
electronic version in order to write pre-processors for performing various tasks
for a global constraint.

• Finally, Chapter5 corresponds to the catalogue itself, which gives the global
constraints in alphabetical order.

Acknowledgments. Nicolas Beldiceanu was the principal investigator and mainar-
chitect of the constraint catalogue, provided the main ideas, and wrote a checker for
the constraint descriptions, a figure generation program for the constraint descriptions
and an evaluator for most constraints. Jean-Xavier Rampon provided the proofs for the
graph invariants. Mats Carlsson contributed to the design of the meta-data format, gen-
erated some of the automata together with their negated form, provide some constraints
evaluators, and wrote the program that created the LATEX version of this catalogue from
the constraint descriptions.

The idea of describing explicitly the meaning of global constraints in a declarative
way has been inspired by the work on meta-knowledge of Jacques Pitrat [296, 297,
298].

We are grateful to Magnus̊Agren, Abderrahmane Aggoun, Ernst Althaus, Gre-
gor Baues, Christian Bessière, Éric Bourreau, Sebastian Brand, Pascal Brisset,
Hadrien Cambazard, Gilles Chabert, Peter Chan, Philippe Charlier, François Clautiaux,
Evelyne Contejean, Radoslaw Cymer, Romuald Debruyne, Fréd́eric Deces, Sophie De-
massey, Mehmet Dincbas, Grégoire Dooms, François Fages, Jean-Guillaume Fages,
Pierre Flener, Xavier Gandibleux, Yan Georget, Dávid Hańak, Emmanuel Hebrard,
Fabien Hermenier, Han J. A. Hoogeveen, Giuseppe F. Italiano, Antoine Jouglet,
Narendra Jussien, Irit Katriel, Waldemar Kocjan, Per Kreuger, Krzysztof Kuchcin-
ski, Mikael Zayenz Lagerkvist, Michel Leconte, ChristopheLecoutre, Xavier Lorca,
Michael J. Maher, Michael Marte, Julien Martin, Julien Menana, Per Mildner,
Nicolas Museux, Justin Pearson, Gilles Pesant, Thierry Petit, Emmanuel Poder,
Charles Prud’homme, Luis Quesada, Jean-Charles Régin, Florian Richoux, Guil-
laume Rochart, Xavier Savalle, Pierre Schaus, Thomas Schiex, Christian Schulte,
Helmut Simonis, Ṕeter Szeredi, Radoslaw Szymanek, Guido Tack, Sven Thiel,
Charlotte Truchet, Willem-Jan van Hoeve, Richard J. Wallace, Toby Walsh and
St́ephane Zampelli for correction, discussion, information exchange or common work
about specific global constraints.

Furthermore, we are grateful to Irit Katriel who contributed by updating the de-
scription of some filtering algorithms related to flow and matching of the catalogue, to
Luis Quesada and Stéphane Zampelli who provide inputs for thedom reachability,
the subgraph isomorphism and graph isomorphism constraints, and to Ra-
doslaw Szymanek and Guido Tack for providing the correspondence of global con-
straints of the catalogue with the constraints ofJaCoP andGecode. We are also es-

http://www.jacop.eu/
http://www.gecode.org/

iv PREFACE

pecially grateful to Sophie Demassey both, for creating theon-line version of the cata-
logue (http://www.emn.fr/x-info/sdemasse/gccat/) and for writing down the entry
related to thecumulative longest hole problems, to Helmut Simonis both, for designing
the XML schema (see Section4.4.2) for the global constraints and their arguments, for
providing the corresponding generation programs and for providing data for several
rectangle placement problems, and to Pierre Flener and Justin Pearson for providing
feedback with respect to theSymmetry slot of global constraints.

The geometric constraintsgeost andvisible as well as the constraints related
to theRegion Connection Calculuswhere integrated within the catalogue while work-
ing on the European Union Sixth Framework Programme Contract FP6-034691 “Net-
WMS”.

Finally, we want to acknowledge the continuing support of SICS and EMN for
providing excellent working conditions over the years. Thepart of this work related to
graph properties in Chapter5 was done while the corresponding author was working at
SICS.
Readers may send their suggestion via email to the corresponding author with
catalogue as subject.
Uppsala, Sweden, August 2003 – Nantes, France, February 2012 — NB, MC, JXR

http://www.emn.fr/x-info/sdemasse/gccat/

Chapter 1

Getting started

If you are using the pdf version of the catalogue useAdobe Reader if you want to be
sure to see PDF annotations.1 If you do not see on your screen a small yellow bullet at
the beginning of this paragraph, you are using a PDF viewer that does not fully support
PDF annotations. Within keywords and constraints, the icons

indicates a point of interest (e.g., a necessary condition,a typical use),

denotes a typical error or a common misunderstanding.

The main entries you may consult if you want to have a first lookto the catalogue are:

• To get an idea of how globalconstraint argumentsare described look at Sec-
tion 2.1.

• To search in the cataloguelook at Section3.3.

• To search a constraint from a keywordlook at Section3.7.

• To get an ideahow keywords are structured look at Section3.6.

• To knowavailable semantic links between constraintslook at Section2.5.

• To get through thecore global constraintslook at the keywordcore.

• To see howconstraints symmetriesare described look at Section2.1.5.

• To get an idea ofgeneral filtering techniques look at the meta-keyword
filtering and more specifically to the entriesBerge-acyclic constraint network,
constructive disjunction, flow and sweep. To get the notion ofconsistency
achieved by a filtering algorithm look at the keywordsarc-consistencyand
bound-consistency.

1Since we are using the LATEX packagepdfcomment and since most PDF viewers do not support PDF
annotations.

1

PDF annotations seem supported by your PDF viewer since you see a small yellow bullet.

2 CHAPTER 1. GETTING STARTED

• To get an idea ofmodelling techniquesand ofmodelling exerciseslook at the
meta-keywordsmodellingandmodelling exercises.

• To get and idea ofreformulations of global constraints look at Section2.4.

• To get an idea of general ways toexplicitly represent the meaning of global
constraints look at (a) Section2.2 for the graph property based description,
(b) Section2.3 for theautomaton based description, (c) the reference [93]) for
the logical based description(e.g., see theLogic slot ofmeet sboxes).

• To get an idea of themeta-data used for describing a constraint look at Sec-
tion 4.4.1for the factsand Section4.4.2for theXML schema.

• To get thecorrespondence of global constraintsof the cataloguewith concrete
constraint systems or modelling languages, such asChoco, Gecode, JaCoP,
MiniZinc , or SICStus look at AppendixC.

http://choco.emn.fr/
http://www.gecode.org/
http://www.jacop.eu/
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/

Chapter 2

Describing Global Constraints

Contents
2.1 Describing the arguments of a global constraint. 6
2.1.1 Basic data types. 6

2.1.2 Compound data types. 8

2.1.3 Restrictions. 9

2.1.4 Declaring a global constraint. 17

2.1.5 Describing symmetries between arguments. 18

2.2 Describing global constraints in terms of graph properties . . 39
2.2.1 Basic ideas and illustrative example. 39

2.2.2 Ingredients used for describing global constraints. 41

Collection generators. 42

Elementary constraints attached to the arcs. 48

Simple arithmetic expressions. 48

Arithmetic expressions. 49

Arc constraints . 50

Graph generators. 52

Graph properties. 57

Graph terminology and notations. 57

Graph parameters. 60

Graph class. 69

2.2.3 Graph constraint. 70

Simple graph constraint. 70

Dynamic graph constraint . 74

2.3 Describing global constraints in terms of automata 78
2.3.1 Selecting an appropriate description. 78

2.3.2 Defining an automaton. 82

2.4 Reformulating global constraints as a conjunction 83
2.5 Semantic links between global constraints. 84

3

4 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

2.5.1 Assignment dimension added. 84

2.5.2 Assignment dimension removed. 84

2.5.3 Attached to cost variant. 85

2.5.4 Common keyword. 86

2.5.5 Comparison swapped. 86

2.5.6 Cost variant. 86

2.5.7 Generalisation. 86

2.5.8 Hard version. 86

2.5.9 Implied by. 87

2.5.10 Implies . 87

2.5.11 Implies (if swap arguments). 87

2.5.12 Implies (items to collection). 87

2.5.13 Negation. 88

2.5.14 Part of system of constraints. 88

2.5.15 Related . 88

2.5.16 Related to a common problem. 88

2.5.17 Root concept . 89

2.5.18 Shift of concept. 89

2.5.19 Soft variant . 89

2.5.20 Specialisation. 89

2.5.21 System of constraints. 89

2.5.22 Used in graph description. 90

2.5.23 Used in reformulation. 90

2.5.24 Uses in its reformulation. 90

We first motivate the need for an explicit description of global constraints and then
present thegraph-basedas well as theautomaton-baseddescriptions used throughout
the catalogue. On the one hand, the graph-based representation considers a global con-
straint as a subgraph of an initial given graph. This subgraph has to satisfy a set of
required graph properties. On the other hand, the automaton-based representation de-
notes a global constraint as a hypergraph constructed from agiven constraint checker.1

Both, the initial graph of the graph-based representation,as well as the hypergraph of
the automaton-based representation have a very regular structure, which should give
the opportunity for efficient filtering algorithms taking advantage of this structure.

We now present our motivations for an explicit description of the meaning of global
constraints. The current trend2 is to first use natural language for describing the mean-
ing of a global constraint and second to work out a specialised filtering algorithm.
Since we have a huge number of potential global constraints that can be combined
in a lot of ways, this is an immense task. Since we are also interested in providing
other services, such asvisualisation[425, 364, 367], explanations[340], cuts for lin-
ear programming[199], moves for local search[76], generation of clauses for SAT

1A constraint checkeris a program that takes an instance of a constraint for which all variables are fixed
and tests whether the constraint is satisfied or not.

2This can be observed in all constraint manuals where the description of the meaning is always informal.

5

solvers[275], generation of multivalued decision diagrams that represent compact re-
laxations of global constraints[196], soft global constraints[294, 49, 399], learning
implied global constraints[56], simplifying away fixed variables from global con-
straints when they have the same effect on the remaining unfixed variables in order
to automatically identify equivalent subproblems during search [109], andspecialised
heuristicsfor each global constraint this is even worse. One could argue that a candi-
date for describing explicitly the meaning of global constraints would be second order
predicate calculus. This could perhaps solve our description problem but would, at least
currently, not be useful for deriving any filtering algorithm.3 For a similar reason Pro-
log was restricted to Horn clauses for which one had a reasonable solving mechanism.
What we want to stress through this example is the fact that a declarative description is
really useful only if it also provides some hints about how todeal with that description.
Our first choice of a graph-based representation has been influenced by the following
observations:

• The concept of graph has its roots in the area of mathematicalrecreations (see
for instance L. Euler [142], H. E. Dudeney [135], E. Lucas [250] and T. P. Kirk-
man [220]), which was somehow the ancestor of combinatorial problems. In this
perspective a graph-based description makes sense.

• In one of the first books introducing graph theory [53], C. Berge presents graph
theory as a way of grouping apparently diverse problems and results. This was
also the case for global constraints.

• The parameters associated with graphs are concrete and concise. Moreover a lot
of results about graphs can be expressed in terms of graph invariants involving
various graph parameters that are valid for specific graph classes. In essence,
formulas are a kind of declarative statement that is much more compact than
algorithms.

• Finally, it is well known that graph theory is an important tool [261] with respect
to the development of efficient filtering algorithms [320, 322, 325, 333, 262, 215,
46, 397, 313].

Our second choice of an automaton-based representation hasbeen motivated by
the following observation. Writing a constraint checker is usually a straightforward
task. The corresponding program can usually be turned into an automaton. Of course
an automaton is typically used on a fixed sequence of symbols.But, in the context of
filtering algorithms, we have to deal with a sequence of variables. For this purpose
we have shown [34] for some automata how to decompose them into a conjunction of
smaller constraints. In this context, a global constraint can be seen as a hypergraph
corresponding to its decomposition.

3One could perhaps use a system like MONA [193] or some ideas from [77] for getting a constraint
checker in the context of the graph-based representation.

6 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

2.1 Describing the arguments of a global constraint

Since global constraints have to receive their arguments insome form, no matter
whether we use the graph-based or the automaton-based description, we start by de-
scribing the abstract data types that we use in order to specify the arguments of a
global constraint. These abstract data types are not related to any specific program-
ming language like Caml, C, C++, Java or Prolog. If one wants to focus on a specific
language, then one has to map these abstract data types to thedata types that are avail-
able within the considered programming language. In a second phase we describe all
the restrictions that one can impose on the arguments of a global constraint. Finally, in
a third phase we show how to use these ingredients in order to declare the arguments
of a global constraint.

2.1.1 Basic data types

We provide the followingbasic data types:

• atom corresponds to an atom. Predefined atoms areMININT and MAXINT,
which respectively correspond to thesmallestand to thelargest integer.

• int corresponds to aninteger value.

• dvar corresponds to adomain variable. A domain variableV is a variable
that will be assigned anintegervalue taken from an initial finite set of integer
values denoted bydom(V). V andV respectively denote the minimum and the
maximum values ofdom(V).

• fdvar corresponds to apossibly unbounded domain variable. A possibly un-
bounded domain variableis a variable that will be assigned anintegervalue from
an initial finite set of integer values denoted bydom(V) or from interval minus
infinity, plus infinity. This type is required for declaring the domain of a vari-
able. It is also required by some systems in the context of specific constraints
like arithmeticor element constraints.

• sint corresponds to afinite set of integer values.

• svar corresponds to aset variable. A set variableV is a variable that will be
assigned to afinite setof integer values. Itslower boundV denotes the set of in-
teger values that for sure belong toV , while itsupper boundV denotes the set of
integer values that may belong toV . dom(V) = {v1, . . . ,vn, vn+1, . . . , vm} is
a shortcut for combining the lower and upper bounds ofV in one single notation:

– Bold values designate those values that only belong toV .

– Plain values indicate those values that belong toV and not toV .

• mint corresponds to amultiset of integer values.

• mvar corresponds to amultiset variable. A multiset variableis a variable that
will be assigned to amultiset of integer values.

2.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT 7

• real corresponds to areal number.

• rvar corresponds to areal variable. A real variableis a variable that will be
assigned areal numbertaken from an initial finite set of intervals. A real number
is usually represented by an interval of two floating point numbers.

Beside domain, set, multiset and float variables we have not yet introducedgraph
variables[131]. A graph variable is currently simulated by using one set variable for
each vertex of the graph (see the third example of type declaration of2.1.2).

8 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

2.1.2 Compound data types

We provide the followingcompound data types:

• list(T) corresponds to a list of elements of typeT , whereT is a basic or a
compound data type.

• collection(A1, A2, . . . , An) corresponds to a collection of ordered items,
where each item consists ofn > 0 attributesA1, A2, . . . , An. Each attribute is
an expression of the forma − T , wherea is thenameof the attribute andT
the typeof the attribute (a basic or a compound data type). All names of the
attributes of a given collection should be distinct and different from the keyword
key, which corresponds to an implicit4 attribute. Its value is the position of
an item within the collection. The first item of a collection is associated with
position1.

The following notations are used for instantiated arguments:

• A list of elementse1, e2, . . . , en is denoted[e1, e2, . . . , en].

• A finite set of integersi1, i2, . . . , in is denoted{i1, i2, . . . , in}.

• A multiset of integersi1, i2, . . . , in is denoted{{i1, i2, . . . , in}}.

• A collection ofn items, each item havingm attributes, is denoted by
〈a1− v11 . . . am− v1m, a1− v21 . . . am− v2m, . . . , a1− vn1 . . . am− vnm〉.
Each item is separated from the previous item by a comma. When the items of
the collection involve one single attributea1, 〈v11, v21, . . . , vn1〉 can eventually
be used as a shortcut for〈a1 − v11, a1 − v21, . . . , a1 − vn1〉.

• Theith item of a collectionc is denotedc[i].

• The value of the attributea of the ith item of a collectionc is denotedc[i].a.
Note that, within an arithmetic expression, we can use the shortcutc[i] when the
collectionc involves one single attribute.

• Thenumber of itemsof a collectionc is denoted|c|.

4This attribute is not explicitly defined.

2.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT 9

EXAMPLE: Let us illustrate with four examples, the types one can create. These ex-
amples concern the creation of a collection of variables, a collection of tasks, a graph
variable [131] and a collection oforthotopes.a

• In the first example we defineVARIABLES so that it corresponds to a collection of
variables.VARIABLES is for instance used in thealldifferent constraint. The
declarationVARIABLES : collection(var− dvar) defines a collection of items,
each of which having one attributevar that is a domain variable.

• In the second example we defineTASKS so that it corresponds to a collection of
tasks, each task being defined by its origin, its duration, its end and its resource
consumption. Such a collection is for instance used in thecumulative constraint.
The declarationTASKS : collection(origin− dvar, duration− dvar, end−
dvar, height−dvar) defines a collection of items, each of which having the four
attributesorigin, duration, end andheight which all are domain variables.

• In the third example we define a graph as a collection of nodesNODES, each
node being defined by its index (i.e., identifier) and its successors. Such a col-
lection is for instance used in thedag constraint. The declarationNODES :
collection(index − int, succ − svar) defines a collection of items, each of
which having the two attributesindex andsucc which respectively are integers
and set variables.

• In the last example we defineORTHOTOPES so that is corresponds to a collection of
orthotopes. Eachorthotopeis described by an attributeorth. Unlike the previous
examples, the type of this attribute does not correspond any more to a basic data
type but rather to a collection ofn items, wheren is the number of dimensions of
theorthotope.b This collection, namedORTHOTOPE, defines for a given dimension
the origin, the size and the end of the object in this dimension. This leads to the
two declarations:

– ORTHOTOPE− collection(ori− dvar, siz− dvar, end− dvar),

– ORTHOTOPES− collection(orth− ORTHOTOPE).

ORTHOTOPES is for instance used in thediffn constraint.

aAn orthotopecorresponds to the generalisation of a segment, a rectangle and a box to the
n-dimensional case.

b1 for a segment, 2 for a rectangle, 3 for a box,

2.1.3 Restrictions

When defining the arguments of a global constraint, it is oftenthe case that one needs to
express additional conditions that refine the type declarations of its arguments. For this
purpose we providerestrictionsthat allow for specifying these additional conditions.
Each restriction has a name and a set of arguments and is described by the following
items:

• A small paragraph first describes the effect of the restriction,

• An example points to a constraint using the restriction,

• Finally, a ground instance, preceded by the symbol⊲, which satisfies the restric-
tion is given. Similarly, a ground instance, preceded by thesymbol◮, which

10 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

violates the restriction is proposed. In this latter case, abold font may be used
for pointing to the source of the problem.

Currently the list of restrictions is:

• in list(Arg, ListAtoms)

– Arg is an argument of typeatom,

– ListAtoms is a non-empty list of distinct atoms.

This restriction forcesArg to be one of the atoms specified in the listListAtoms.

EXAMPLE: An example of use of such restriction can be found in the
change(NCHANGE, VARIABLES, CTR) constraint: in list(CTR, [=, 6=, <,≥, >,≤])
forces the last argumentCTR of thechange constraint to take its value in the list of atoms
[=, 6=, <,≥, >,≤].
⊲ change(1, 〈var− 4, var− 4, var− 4, var− 6〉, 6=)
◮ change(1, 〈var− 4, var− 4, var− 4, var− 6〉,3)

• in list(Arg, Attr, ListIntOrAtom)

– Arg is an argument of typecollection,

– Attr is an attribute of typeint or of typeatom of the collection denoted
by Arg,

– WhenAttr is an attribute of typeint, ListIntOrAtom is a non-empty
list of distinct integers; Otherwise, whenAttr is an attribute of typeatom,
ListIntOrAtom is a non-empty list of distinct atoms.

This restriction enforces for all items of the collectionArg, the attributeAttr to
take its value within the listListIntOrAtom.

• in attr(Arg1, Attr1, Arg2, Attr2)

– Arg1 is an argument of typecollection,

– Attr1 is an attribute of typedvar or of typeint of the collection denoted
by Arg1,

– Arg2 is an argument of typecollection,

– Attr2 is an attribute of typeint of the collection denoted byArg2.

Let S2 denote the set of values assigned to theAttr2 attributes of the items of
the collectionArg2. This restriction enforces the following condition: for all
items of the collectionArg1, the attributeAttr1 takes its value in the setS2.

2.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT 11

EXAMPLE: An example of use of such restriction can be found in the
cumulatives(TASKS, MACHINES, CTR) constraint: in attr(TASKS, machine,
MACHINES, id) enforces that themachine attribute of each task of theTASKS col-
lection correspond to a machine identifier (i.e., anid attribute of theMACHINES
collection).
⊲cumulatives(〈 machine− 1 origin− 2 duration− 2 end− 4 height− 2,

machine− 1 origin− 2 duration− 2 end− 4 height− 2,
machine− 2 origin− 1 duration− 4 end− 5 height− 5,
machine− 1 origin− 4 duration− 2 end− 6 height− 1〉,

〈id− 1 capacity− 9, id− 2 capacity− 8〉, ≤)
◮cumulatives(〈 machine− 5 origin− 2 duration− 2 end− 4 height− 2,

machine− 1 origin− 2 duration− 2 end− 4 height− 2,
machine− 2 origin− 1 duration− 4 end− 5 height− 5,
machine− 1 origin− 4 duration− 2 end− 6 height− 1〉,

〈id− 1 capacity− 9, id− 2 capacity− 8〉, ≤)

• distinct(Arg, Attrs)

– Arg is an argument of typecollection,

– Attrs is an attribute of typeint or dvar, or a list (possibly empty) of
distinct attributes of typeint or dvar of the collection denoted byArg.

For all pairs of distinct items of the collectionArg this restriction enforces that
there be at least one attribute specified byAttrs with two distinct values. When
Attrs is the empty list all items of the collectionArg should be distinct.

EXAMPLE: An example of use of such restriction can be found in the
cycle(NCYCLE, NODES) constraint:distinct(NODES, index) enforces that allindex at-
tributes of theNODES collection take distinct values.
⊲cycle(2, 〈index− 1 succ− 2, index− 2 succ− 1, index− 3 succ− 3〉)
◮cycle(2, 〈index− 1 succ− 2, index− 1 succ− 1, index− 3 succ− 3〉)

• increasing seq(Arg, Attrs)

– Arg is an argument of typecollection,

– Attrs is an attribute of typeint or a list of distinct attributes of typeint
of the collection denoted byArg.

Let n andm respectively denote the number of items of the collectionArg, and
the number of attributes ofAttrs. For itemi of the collectionArg let ti denote
the tuple of values〈vi,1, vi,2, . . . , vi,m〉 wherevi,j is the value of attributej of
Attrs of item i of Arg. The restriction enforces a strict lexicographical ordering
on the tuplest1, t2, . . . , tn.

12 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

EXAMPLE: An example of use of such restriction can be found in the
element matrix(MAX I, MAX J, INDEX I, INDEX J, MATRIX, VALUE) constraint:
increasing seq(MATRIX, [i, j]) enforces that all items of theMATRIX collection be
sorted in strictly increasing lexicographic order on the pair(i, j).
⊲ element matrix(2, 2, 1, 2, 〈i− 1 j− 1 v− 4, i− 1 j− 2 v− 7,

i− 2 j− 1 v− 1, i− 2 j− 2 v− 1〉, 7)
◮ element matrix(2, 2, 1, 2, 〈i− 1 j− 2 v− 4, i− 1 j− 1 v− 7,

i− 2 j− 1 v− 1, i− 2 j− 2 v− 1〉, 7)

• non increasing size(Arg, Attr)

– Arg is an argument of typecollection,

– Attr is an attribute of the collection denoted byArg. This attribute should
be of typecollection.

This restriction enforces for each pair of consecutive itemsArg[i], Arg[i+1] that
the number of items of the collectionArg[i].Attr is greater than or equal to the
number of items of the collectionArg[i+ 1].Attr.

EXAMPLE: An example of use of such restriction can be found in thek used by(SETS)
constraint:non increasing size(SETS, set) enforces for all consecutive pairs of items
SETS[i], SETS[i+ 1] that the number of items of the collectionSETS[i].set is not greater
than or equal to the number of items of the collectionSETS[i+ 1].set.
⊲k used by(〈 set− 〈var− 5, var− 1, var− 1〉,

set− 〈var− 5, var− 1, var− 1〉,
set− 〈var− 5, var− 1〉 〉)

◮k used by(〈 set− 〈var− 5, var− 1, var− 1〉,
set− 〈var− 5, var− 1〉,
set− 〈var− 5, var− 1, var− 1〉 〉)

• required(Arg, Attrs)

– Arg is an argument of typecollection,

– Attrs is an attribute or a list of distinct attributes of the collection denoted
by Arg.

This restriction enforces that all attributes denoted byAttrs be explicitly used
within all items of the collectionArg.

EXAMPLE: An example of use of such restriction can be found in the
cumulative(TASKS, LIMIT) constraint: required(TASKS, height) enforces that all
items of theTASKS collection mention theheight attribute.
⊲cumulative(〈 origin− 2 duration− 2 end− 4 height− 2,

origin− 2 duration− 2 end− 4 height− 2,
origin− 1 duration− 4 end− 5 height− 5,
origin− 4 duration− 2 end− 6 height− 1〉, 12)

◮cumulative(〈 origin− 2 duration− 2 end− 4,
origin− 2 duration− 2 end− 4 height− 2,
origin− 1 duration− 4 end− 5 height− 5,
origin− 4 duration− 2 end− 6 height− 1〉, 12)

2.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT 13

Therequired restriction is usually systematically used for every attribute of a
collection. It is not used when some attributes may be implicitly defined accord-
ing to other attributes. In this context, we use therequire at least restriction,
which we now introduce.

• require at least(Atleast, Arg, Attrs)

– Atleast is a positive integer,

– Arg is an argument of typecollection,

– Attrs is a non-empty list of distinct attributes of the collectiondenoted by
Arg. The length of this list should be strictly greater thanAtleast.

This restriction enforces that at leastAtleast attributes of the listAttrs be
explicitly used within all items of the collectionArg.

EXAMPLE: An example of use of such restriction can be found in the
cumulative(TASKS, LIMIT) constraint:
require at least(2, TASKS, [origin, duration, end]) enforces that all items of
the TASKS collection mention at least two attributes from the list of attributes
[origin, duration, end]. In this context, this stems from the equalityorigin +
duration = end. This allows for retrieving the third attribute from the values of the
two others.
⊲cumulative(〈 origin− 2 duration− 2 height− 2,

origin− 2 end− 4 height− 2,
duration− 4 end− 5 height− 5,
origin− 4 duration− 2 end− 6 height− 1〉, 12)

◮cumulative(〈 origin− 2 height− 2,
origin− 2 duration− 2 end− 4 height− 2,
origin− 1 duration− 4 end− 5 height− 5,
origin− 4 duration− 2 end− 6 height− 1〉, 12)

• same size(Arg, Attr)

– Arg is an argument of typecollection,

– Attr is an attribute of the collection denoted byArg. This attribute should
be of typecollection.

This restriction enforces that all collections denoted byAttr have the same num-
ber of items.

14 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

EXAMPLE: An example of use of such restriction can be found in the
diffn(ORTHOTOPES) constrainta: same size(ORTHOTOPES, orth) forces all the items
of theORTHOTOPES collection to be constituted from the same number of items (of type
ORTHOTOPE). From a practical point of view, this forces thediffn constraint to take as
its argument a set of points, a set of rectangles, . . . , a set oforthotopes.
⊲diffn(〈 orth− 〈ori− 2 siz− 2 end− 4, ori− 1 siz− 3 end− 4〉,

orth− 〈ori− 4 siz− 4 end− 8, ori− 3 siz− 3 end− 3〉,
orth− 〈ori− 9 siz− 2 end− 11, ori− 4 siz− 3 end− 7〉 〉)

◮diffn(〈 orth− 〈ori− 2 siz− 2 end− 4〉,
orth− 〈ori− 4 siz− 4 end− 8, ori− 3 siz− 3 end− 3〉,
orth− 〈ori− 9 siz− 2 end− 11, ori− 4 siz− 3 end− 7〉 〉)

aORTHOTOPES corresponds to the third item of the example presented at page9.

• Term1 Comparison Term2

– Term1 is a term. A term is an expression that can be evaluated to one or
possibly several integer values. The expressions we allow for a term are
defined in the next paragraph.

– Comparison is one of the following comparison operators≤, ≥, <, >, =,
6=.

– Term2 is aterm.

Let v1,1, v1,2, . . . , v1,n1
andv2,1, v2,2, . . . , v2,n2

be the values respectively asso-
ciated withTerm1 and withTerm2. The restrictionTerm1 Comparison Term2
forcesv1,i Comparison v2,j to hold for everyi ∈ [1, n1] and everyj ∈ [1, n2].

A term is one of the following expressions:

– e , wheree is an integer. The corresponding value ise.

– |c| , wherec is an argument of typecollection. The value of|c| is the
number of items of the collection denoted byc.

EXAMPLE: This kind of expression is for instance used in the restrictions of the
atleast(N, VARIABLES, VALUE) constraint:N ≤ |VARIABLES| restrictsN to be less
than or equal to the number of items of theVARIABLES collection.
⊲atleast(2, 〈var− 5, var− 8, var− 5〉, 5)
◮atleast(4, 〈var− 5, var− 8, var− 5〉, 5)

– sum(c.a) , sum(c.a) denotes the sum of the values assigned to the attribute
a of the collection denoted byc. It is equal to0 if the collection is empty.

– range(c.a) , range(c.a) denotes the difference between the maximum
value and the minimum value plus one of the values assigned tothe attribute
a of the collection denoted byc. It is equal to0 if the collection is empty.

– minval(c.a) , minval(c.a) denotes the minimum over the values as-
signed to the attributea of the collection denoted byc. It is equal to0
if the collection is empty.

2.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT 15

– maxval(c.a) , maxval(c.a) denotes the maximum over the values as-
signed to the attributea of the collection denoted byc. It is equal to0
if the collection is empty.

– nval(c.a) , nval(c.a) denotes the number of distinct values over the val-
ues assigned to the attributea of the collection denoted byc. It is equal to
0 if the collection is empty.

– prod(c.a) , prod(c.a) denotes the product of the values assigned to the
attributea of the collection denoted byc. It is equal to1 if the collection is
empty.

– t , wheret is an argument of typeint. The value oft is the value of the
corresponding argument.

EXAMPLE: This kind of expression is for instance used in the restrictions of the
atleast(N, VARIABLES, VALUE) constraint:N ≥ 0 forces the first argument of the
atleast constraint to be greater than or equal to0.
⊲atleast(2, 〈var− 5, var− 8, var− 5〉, 5)
◮atleast(−1, 〈var− 5, var− 8, var− 5〉, 5)

– v , wherev is an argument of typedvar. The value ofv will be the value
assigned to variablev.5

EXAMPLE: This kind of expression is for instance used in the restrictions of the
among(NVAR, VARIABLES, VALUES) constraint:NVAR ≥ 0 forces the first argument
of theamong constraint to be greater than or equal to0.
⊲among(2, 〈var− 5, var− 8, var− 5〉, 〈val− 1, val− 5〉)
◮among(−9, 〈var− 5, var− 8, var− 5〉, 〈val− 1, val− 5〉)

– s , wheres is an argument of typesint or svar. The values denoted bys
are all the values of the corresponding set.

EXAMPLE: This kind of expression is for instance used in the restrictions of the
open alldifferent(S, VARIABLES) constraint:S ≥ 1 forces all elements of the
set corresponding to the first argument of theopen alldifferent constraint to be
greater than or equal to1.
⊲open alldifferent({1, 2, 3}, 〈var− 5, var− 8, var− 3, var− 8, var− 9〉)
◮open alldifferent({0, 1, 2, 3}, 〈var−5, var−8, var−3, var−8, var−9〉)

– c.a , wherec is an argument of typecollection anda an attribute ofc
of typeint or dvar. The values denoted byc.a are all the values corre-
sponding to attributea for the different items ofc. Whenc.a designates a
domain variable we consider the value assigned to that variable.

5Restrictions are defined on the ground instance of a global constraint.

16 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

EXAMPLE: This kind of expression is for instance used in the restrictions of the
cumulative(TASKS, LIMIT) constraint: TASKS.duration ≥ 0 enforces for all
items of theTASKS collection that theduration attribute be greater than or equal
to 0.
⊲cumulative(〈 origin− 2 duration− 2 end− 4 height− 2,

origin− 2 duration− 2 end− 4 height− 2,
origin− 1 duration− 4 end− 5 height− 5,
origin− 4 duration− 2 end− 6 height− 1〉, 12)

◮cumulative(〈 origin− 2 duration−−2 end− 4 height− 2,
origin− 2 duration− 2 end− 4 height− 2,
origin− 1 duration− 4 end− 5 height− 5,
origin− 4 duration− 2 end− 6 height− 1〉, 12)

– c.a , wherec is an argument of typecollection anda an attribute ofc of
typesint or svar. The values denoted byc.a are all the values belonging
to the sets corresponding to attributea for the different items ofc. When
c.a designates a set variable we consider the values that finallybelong to
that set.

EXAMPLE: This kind of expression is for instance used in the restrictions of the
inverse set(X, Y) constraint:X.x ≥ 1 enforces for all items of theX collection
that all the potential elements of the set variable associated with thex attribute be
greater than or equal to1.
⊲inverse set(〈 index− 1 x− {2, 4},

index− 2 x− {4},
index− 3 x− {1},
index− 4 x− {4} 〉,
〈 index− 1 y− {3},
index− 2 y− {1},
index− 3 y− {},
index− 4 y− {1, 2, 4},
index− 5 y− {} 〉)

◮inverse set(〈 index− 1 x− {0, 2, 4},
index− 2 x− {4},
index− 3 x− {1},
index− 4 x− {4} 〉,
〈 index− 1 y− {3},
index− 2 y− {1},
index− 3 y− {},
index− 4 y− {1, 2, 4},
index− 5 y− {} 〉)

– min(t1, t2) or max(t1, t2) , wheret1 andt2 are terms. Let V1 andV2

denote the sets of values respectively associated with the termst1 andt2.
Let min(V1), max(V1) andmin(V2), max(V2) denote the minimum and
maximum values ofV1 andV2. The value associated withmin(t1, t2) is
min(min(V1),min(V2)), while the value associated withmax(t1, t2) is
max(max(V1),max(V2)).

2.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT 17

EXAMPLE: This kind of expression is for instance used in the restrictions
of the ninterval(NVAL, VARIABLES, SIZE INTERVAL) constraint: NVAL ≥
min(1, |VARIABLES|) forcesNVAL to be greater than or equal to the minimum of
1 and the number of items of theVARIABLES collection.
⊲ ninterval(2, 〈var− 3, var− 1, var− 9, var− 1, var− 9〉, 4)
◮ ninterval(0, 〈var− 3, var− 1, var− 9, var− 1, var− 9〉, 4)

– t1 op t2 , wheret1 and t2 are termsandop one of the operators+, −,

∗ or /.6 Let V1 andV2 denote the sets of values respectively associated
with the termst1 and t2. The set of values associated witht1 op t2 is
V12 = {v : v = v1 op v2, v1 ∈ V1, v2 ∈ V2}.

EXAMPLE: This kind of expression is for instance used in the restrictions of the
relaxed sliding sum(ATLEAST, ATMOST, LOW, UP, SEQ, VARIABLES) constraint:
ATMOST ≤ |VARIABLES| − SEQ + 1 forcesATMOST to be less than or equal to
an arithmetic expression that corresponds to the number of sequencesof SEQ con-
secutive variables in a sequence of|VARIABLES| variables.
⊲ relaxed sliding sum(3, 4, 3, 7, 4, 〈var− 2, var− 4, var− 2, var− 0,

var− 0, var− 3, var− 4〉)
◮ relaxed sliding sum(3,9, 3, 7, 4, 〈var− 2, var− 4, var− 2, var− 0,

var− 0, var− 3, var− 4〉)

• We can usea disjunction between two restrictions .

EXAMPLE: This kind of expression is for instance used in theTypical slot of the
among low up(LOW, UP, VARIABLES, VALUES) constraint:LOW > 0 ∨ UP < |VARIABLES|
forces the pairLOW, UP to impose a restriction on the variables of theVARIABLES collec-
tion.a

⊲ among low up(1, 2, 〈9, 2, 4, 5〉, 〈0, 2, 4, 6, 9〉)
⊲ among low up(0, 3, 〈9, 2, 4, 5〉, 〈0, 2, 4, 6, 9〉)
⊲ among low up(1, 4, 〈9, 2, 4, 5〉, 〈0, 2, 4, 6, 9〉)
◮ among low up(0,4, 〈9, 2, 4, 5〉, 〈0, 2, 4, 6, 9〉)

aSince when both,LOW ≤ 0 andUP ≥ |VARIABLES|, the correspondingamong low up constraint
always holds.

• Finally, we can also usea constraintC of the catalogue for expressing a restric-
tion as long as that constraint is not defined according to theconstraint under con-
sideration. The constraintC should have a graph-based or an automaton-based
description so that its meaning is explicitly defined.

EXAMPLE: An example of use of such restriction can be found in the
sort permutation(FROM, PERMUTATION, TO) constraint: alldifferent(PERMUTA-
TION) is used to express that the variables of the second argument of the
sort permutation constraint should take distinct values.

2.1.4 Declaring a global constraint

Declaring a global constraint consists of providing the following information:
6/ denotes an integer division, a division in which the fractional part is discarded.

18 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

• A termconstraint(A1, A2, . . . , An) , whereconstraint corresponds to the
nameof the global constraint andA1, A2, . . . , An to itsarguments.

• A possibly empty list of type declarations, where each declaration has the form
type:type declaration; type is the nameof the new type we define and
type declaration is a basic data type, a compound data type or a type pre-
viously defined.

• An argument declarationA1:T1, A2:T2, . . . , An:Tn giving for each argument
A1, A2, . . . , An of the global constraintconstraint its type. Each type is a
basic data type, a compound data type, or a type that was declared in the list of
type declarations.

• A possibly empty list of restrictions, where each restriction is one of the re-
strictions described in Section2.1.3on page9.

EXAMPLE: The arguments of theall differ from at least k pos constraint are de-
scribed by:

Constraint all differ from at least k pos(K, VECTORS)

Type(s) VECTOR− collection(var− dvar)

Argument(s) K− int

VECTORS− collection(vec− VECTOR)

Restriction(s) required(VECTOR, var)

K ≥ 0

required(VECTORS, vec)

same size(VECTORS, vec)

The first line indicates that theall differ from at least k pos constraint has two ar-
guments:K andVECTORS. The second line declares a new typeVECTOR, which corresponds
to a collection of variables. The third line indicates that the first argumentK is an integer,
while the fourth line tells that the second argumentVECTORS corresponds to a collection of
vectors of typeVECTOR. Finally the four restrictions respectively enforce that:

• All the items of theVECTOR collection mention thevar attribute,

• K be greater than or equal to0,

• All the items of theVECTORS collection mention thevec attribute,

• All the vectors have the same number of components.

2.1.5 Describing symmetries between arguments

Given a satisfied ground instance of a global constraintconstraint, it is often the
case that the constraint is still satisfied [113, 156] if we permute:

• Some of itsarguments.

E.g., consider the disequality constraintneq(X, Y), which enforcesX being as-
signed an integer value that is different fromY. Given the solutionneq(3, 5) we
can swap both arguments and still get a solution (i.e.,neq(5, 3)).

2.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT 19

• Items of some collections that are passed as one of its arguments.

E.g., consider thealldifferent(VARIABLES) constraint, which imposes all
variables of the collectionVARIABLES being assigned a distinct integer value.
Given the solutionalldifferent(〈5, 1, 9, 3〉) we can swap any pair of items
and still get a solution. For instance, if we swap the first andfourth items we still
get a solution (i.e.,alldifferent(〈3, 1, 9, 5〉)).

• Attributes of some items of some of its collections.

E.g., given a collection of pairsPAIRS, where each pair has two attributesx and
y, thenpair(N, PAIRS) constraint enforcesN being the number of distinct pairs
in PAIRS. Given the solutionnpair(3, 〈x−3 y−1, x−1 y−5, x−3 y−1, x−
1 y−5, x−1 y−3〉) we can interchange attributesx andy and still get a solution
(i.e.,npair(3, 〈x− 1 y− 3, x− 5 y− 1, x− 1 y− 3, x− 5 y− 1, x− 3 y− 1〉)).

• A pair of values with respect to an attribute of some of its collections.

E.g., consider thebin packing constraint, which assigns items to bins in such
a way that the total weight of the items in each bin does not exceed an overall
fixed capacity. Each item has abin and aweight attributes, which respectively
give the bin to which the item will be assigned, and the weightof the item.
Given the solutionbin packing(5, 〈bin − 3 weight − 4, bin − 1 weight −
3, bin − 3 weight − 1〉), we can interchange all occurrences of value3 with
all occurrences of value1 with respect to thebin attribute. After this swap of
values we get the new solutionbin packing(5, 〈bin − 1 weight − 4, bin −
3 weight − 3, bin − 1 weight − 1〉). This simply consists of swapping the
content of two bins. Since all bins have the same capacity we still get a solution.

We provide the followingmoves, where each move is described by (1) an explicit
fact (i.e., a meta-data), (2) a textual explanation, and (3)several concrete examples:

• args(PERMUTATION) denotes the fact that we swap the arguments of a con-
straint with respect to a given permutation. Arguments which are exchanged
must have the same type under the hypothesis that they are ground (i.e., for in-
stance the basic data typesint anddvar, which respectively denote an integer
value and a domain variable can be exchanged since a ground domain variable
corresponds to an integer value). The permutationPERMUTATION is described by
using standard notation, that is by providing the differentcycles of the permuta-
tion.

EXAMPLE 1: As a first example where we can swap two arguments, consider
the eq cst(VAR1, VAR2, CST2) constraint which, given two domain variablesVAR1,
VAR2 and an integer valueCST2, enforces the conditionVAR1 = VAR2 + CST2.
Within the electronic catalogue this is represented by the following meta-data,
args([[VAR1], [VAR2, CST2]]), to which corresponds the following textual form:

arguments are permutable w.r.t. permutation(VAR1) (VAR2, CST2).
Note that, even if argumentsVAR2 andCST2 do not have the same type (i.e.,VAR2 is
a domain variable, while CST2 is aninteger value), both arguments can be exchanged
since we consider the ground case. For instance, sinceeq cst(8,2,6) is satisfied,
eq cst(8,6,2) is also satisfied.

20 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

EXAMPLE 2: As a second example where we can swap several arguments,
consider thecommon(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2) constraint
which, given two domain variablesNCOMMON1, NCOMMON2 and two collections of do-
main variablesVARIABLES1, VARIABLES2, enforces the following two conditions:

– NCOMMON1 is the number of variables ofVARIABLES1 assigned a value in
VARIABLES2.

– NCOMMON2 is the number of variables ofVARIABLES2 assigned a value in
VARIABLES1.

Within the electronic catalogue this is represented by the following meta-data,
args([[NCOMMON1, NCOMMON2], [VARIABLES1, VARIABLES2]]), to which corresponds
the following textual form:

arguments are permutable w.r.t. permutation(NCOMMON1, NCOMMON2)
(VARIABLES1, VARIABLES2).

For instance, sincecommon(3,4, 〈1 , 9 , 1 , 5 〉, 〈2 , 1 , 9 , 9 , 6 , 9 〉) is satisfied,
common(4,3, 〈2 , 1 , 9 , 9 , 6 , 9 〉, 〈1 , 9 , 1 , 5 〉) is also satisfied.

• items(COLLECTION, PERMUTATIONS) denotes the fact that we can permute the
items of the collectionCOLLECTION with respect to a permutation belonging to
a given set of permutationsPERMUTATIONS:

– COLLECTION stands for one of the following:

1. An argumentARG of the global constraint that corresponds to a
collection of items.

2. A term ARG.attr, whereattr is an attribute of acollection of
items that is an argumentARG of the global constraint; in addition,
the type ofattr is itself a collection. Given a collectionARG of m
items〈ARG[1], ARG[2], . . . , ARG[m]〉, a permutation ofPERMUTATIONS,
not necessarily the same, is applied on the items of a subset of the set
of collections{ARG[1].attr, ARG[2].attr, . . . , ARG[m].attr}.

– PERMUTATIONS represents a set of permutations. It can take one of the
following values:

1. all stands forall possible permutations. Note that this case is a lit-
tle artificial since it does not really correspond to a symmetry of the
constraint, but rather to the use of a collection for representing a set
of variables. But, to our best knowledge in 2010, concrete solvers do
also not use sets of variables but rather collections, listsor arrays of
variables.

2. reverse stands for the set that only contains the permutation that
maps the sequencee1, e2, . . . , en to en, en−1, . . . , e1.

3. shift stands for the set that only contains the permutation that maps
the sequencee1, e2, . . . , en to en, e1, . . . , en−1.

2.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT 21

EXAMPLE 1: As a first example, consider thealldifferent(VARIABLES) con-
straint, which has one single argument corresponding to a collection of variables which
must all be assigned distinct values. Within the electronic catalogue this is represented
by the following meta-data,items(VARIABLES, all), to which corresponds the fol-
lowing textual form:

items ofVARIABLES are permutable.
For instance, sincealldifferent(〈1,4,9〉) is satisfied, all permutations of〈1, 4, 9〉
(i.e., 〈1,4,9〉, 〈1,9,4〉, 〈4,1,9〉, 〈4,9,1〉, 〈9,1,4〉, 〈9,4,1〉) correspond to valid
solutions of thealldifferent constraint.

EXAMPLE 2: As a second example, consider thek same(SETS) constraint, which has
one single argument corresponding to a collection of sets, where each set is a collection
of domain variables that must be assigned the same set of values (i.e.,k same enforces
an equality between multisets). The argumentSETS is a collection, where each item
consists of one singleset attribute. The type of aset attribute is a collection of
domain variables. Within the electronic catalogue this is represented by the following
meta-data,items(SETS.set, all), to which corresponds the following textual form:

items ofSETS.set are permutable.
For instance, sincek same(〈set − 〈1, 4, 4〉, set − 〈4,4,1〉, set − 〈1, 4, 4〉〉) is sat-
isfied, it is also satisfied for all permutations of the elements of its second set 〈4, 4, 1〉,
i.e.:

– k same(〈set− 〈1, 4, 4〉, set− 〈1,4,4〉, set− 〈1, 4, 4〉〉),
– k same(〈set− 〈1, 4, 4〉, set− 〈4,1,4〉, set− 〈1, 4, 4〉〉),
– k same(〈set− 〈1, 4, 4〉, set− 〈4,4,1〉, set− 〈1, 4, 4〉〉).

• items sync(COLLECTIONS, PERMUTATIONS) denotes the fact that we can per-
mute the items of several collectionsCOLLECTIONS with respect to a permutation
belonging to a given set of permutationsPERMUTATIONS in such a way thatone
and the same permutation is used on all collections(i.e., therefore the keyword
items sync which stands foritems synchronisation):

– COLLECTIONS stands for a non-empty list of terms of the formARG or
ARG.attr, whereARG is an argument of the global constraint that corre-
sponds to a collection, andattr is an attribute ofARG such that its type is
itself a collection. In addition, we also have the followingrestrictions:

1. If COLLECTIONS contains one single element then this element has
the formARG.attr. This is done to allow to designate more than one
single collection.

2. All collections designated byCOLLECTIONS have the same type as
well as the same number of items.

The same permutationof PERMUTATIONS is applied on the items of the
different collections referenced byCOLLECTIONS.

– As for the symmetry keyworditems, PERMUTATIONS represents a set of
permutations. It can take the same set of values as before, namely:

1. all stands forall possible permutations.

22 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

2. reverse stands for the set that only contains the permutation that
maps the sequencee1, e2, . . . , en to en, en−1, . . . , e1.

3. shift stands for the set that only contains the permutation that maps
the sequencee1, e2, . . . , en to en, e1, . . . , en−1.

EXAMPLE 1: As a first example, consider the
consecutive groups of ones(GROUP SIZES, VARIABLES) constraint, which
has two argumentsGROUP SIZES andVARIABLES respectively corresponding to a col-
lection of positive integers and to a collection of0-1 domain variables. The constraint
imposes that them successive maximum groups of consecutive ones ofVARIABLES

have sizesGROUP SIZES[1].nb, GROUP SIZES[2].nb, . . . , GROUP SIZES[m].nb. Note
that, if we reverse the items of bothGROUP SIZES andVARIABLES, we still have a so-
lution. Within the electronic catalogue this is represented by the following meta-data,
items sync([GROUP SIZES, VARIABLES], reverse), to which corresponds the
following textual form:

items ofGROUP SIZES andVARIABLES are simultaneously reversable.
For instance, sinceconsecutive groups of ones(〈2,1〉, 〈1 , 1 , 0 , 0 , 0 , 1 , 0 〉) is a
solution,consecutive groups of ones(〈1,2〉, 〈0 , 1 , 0 , 0 , 0 , 1 , 1 〉) is also a valid
solution.

EXAMPLE 2: As a second example, consider thenvector(NVEC, VECTORS) con-
straint, which has two argumentsNVEC andVECTORS respectively corresponding to
a domain variable and to a collection of collections of domain variables, where all
collections have the same number of items. The unique attribute ofVECTORS is de-
noted byvec and its type is a collection of domain variables. Each collection is in-
terpreted as a vector and two vectors are distinct if and only if they differ inat least
one component. Thenvector constraint enforcesNVEC to be equal to the number
of distinct vectors withinVECTORS. If we permute the components of all vectors
with respect to a same permutation we still have the same number of distinct vec-
tors. Within the electronic catalogue this is represented by the following meta-data,
items sync([VECTORS.vec], all), to which corresponds the following textual form:

items ofVECTORS.vec are permutable (same permutation used).
For instance, sincenvector(2, 〈vec − 〈1,1,8〉, vec − 〈5,1,6〉, vec − 〈1,1,8〉〉)
is a solution, any permutation applied simultaneously to the three components of each
vector leads to a solution, i.e.:

– nvector(2, 〈vec− 〈1,1,8〉, vec− 〈5,1,6〉, vec− 〈1,1,8〉〉),
– nvector(2, 〈vec− 〈1,8,1〉, vec− 〈5,6,1〉, vec− 〈1,8,1〉〉),
– nvector(2, 〈vec− 〈1,1,8〉, vec− 〈1,5,6〉, vec− 〈1,1,8〉〉),
– nvector(2, 〈vec− 〈1,8,1〉, vec− 〈1,6,5〉, vec− 〈1,8,1〉〉),
– nvector(2, 〈vec− 〈8,1,1〉, vec− 〈6,1,5〉, vec− 〈8,1,1〉〉),
– nvector(2, 〈vec− 〈8,1,1〉, vec− 〈6,5,1〉, vec− 〈8,1,1〉〉).

• attrs(COLLECTION, PERMUTATION) denotes the fact that we can permute the
attributes of the collectionCOLLECTION, not necessarily all items, with respect
to a permutationPERMUTATION. Attributes that are exchanged must have the
same type under the hypothesis that they are ground (e.g., anattributeattr1 of
typeint can be exchanged with an attributeattr2 of typedvar.

2.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT 23

EXAMPLE: As an example, consider thescalar product(LINEARTERM, CTR, VAL)
constraint, which enforces a linear term, represented by a collection with two at-
tributescoeff andvar, to beequal, different, less, greater than or equal, greater,
or less than or equal(i.e., depending on the value ofCTR) to VAL. In the ground case
we can exchange attributescoeff and var without affecting the fact that the con-
straint is satisfied. Within the electronic catalogue this is represented by the following
meta-data,attrs(LINEARTERM, [[coeff, var]]), to which corresponds the following
textual form:

attributes of LINEARTERM are permutable w.r.t. permutation(coeff, var)
(permutation not necessarily applied to all items).
For instance, sincescalar product(〈coeff−1 var−1, coeff−3 var−1, coeff−
1 var − 4, 〉,=, 8) is a solution,scalar product(〈coeff − 1 var − 1, coeff −
1 var − 3, coeff − 1 var − 4, 〉,=, 8) is also a valid solution (i.e., the attributes
coeff andvar of the second item were permuted).

• attrs sync(COLLECTION, PERMUTATION) denotes the fact that we can per-
mute the attributes of the collectionCOLLECTION, necessarily all items, with
respect to a permutationPERMUTATION. As before, attributes that are exchanged
must have the same type under the hypothesis that they are ground.

EXAMPLE: As an example, consider thecrossing(NCROSS, SEGMENTS) constraint,
which enforcesNCROSS to be equal to the number of line-segments intersections be-
tween the line-segments defined by theSEGMENTS collection. Each line-segment is
defined by the coordinates(ox, oy) and(ex, ey) of its two extremities. Note that we
can exchange the role of thex andy axes without affecting the number of line-segments
intersections. Within the electronic catalogue this is represented by the following
meta-data,attrs sync(SEGMENTS, [[ox, oy], [ex, ey]]), to which corresponds the fol-
lowing textual form:

attributes of SEGMENTS are permutable w.r.t. permutation(ox, oy) (ex, ey)
(permutation applied to all items).
For instance, sincecrossing(3, 〈ox− 1 oy− 4 ex− 9 ey− 2 , ox− 1 oy− 1 ex−
3 ey− 5 , ox−3 oy−2 ex− 7 ey− 4 , ox−9 oy−1 ex− 9 ey− 4 〉) is a solution,
crossing(3, 〈ox − 4 oy − 1 ex − 2 ey − 9 , ox − 1 oy − 1 ex − 5 ey − 3 , ox −
2 oy− 3 ex− 4 ey− 7 , ox− 1 oy− 9 ex− 4 ey− 9 〉) is also a valid solution.

• vals(ATTRIBUTES, PARTITION, PAIRS, SOURCE, TARGET) denotes the fact
that we can permute some source value with some distinct target value. The
kind of value permutation we can perform is parameterized byfive parameters:

– ATTRIBUTES is a list of paths of the formARG0 or ARG1. · · · .ARGn.attr
(n ≥ 1), where:

∗ ARG0 is an argument of the global constraint of typedomain variable,
integer, or collection ofdomain variablesor integers.

∗ ARG1. · · · .ARGn.attr is a path to an integer attribute or to a collection
of integers attribute of the global constraint.ARG1, ARG2, . . . ,ARGn are
collections andattr is an attribute ofARGn of typedomain variable,
integer, or collection ofdomain variablesor integers. In this last con-
text, all collections have the same number of items since we can only

24 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

exchange tuples of values that have the same number of components.
The path does not necessarily start from a top level collection.

Its purpose is to define the scope where the exchange of values, or tuples
of values, will take place. Note that:

∗ The case corresponding toARG0 allows to express the fact that the
value of an integer argument can be changed in such a way that we
still have a solution.

∗ The case whenARG1 is not a top level collection allows to express the
fact that the exchange of value takes place within a nested collection.
In this context this implicitly defines several scopes for the exchange
of values.

∗ The case whereARG1. · · · .ARGn.attr is a path to a collection of vari-
ables or integers allows expressing swap between tuples of values (i.e.,
the exchange of values is generalized to the exchange of tuples of val-
ues).

– PARTITION usually defines a partitionP of integer values. Only when
ARG1. · · · .ARGn.attr is a path to a collection of variables or integers,
PARTITION defines a partition of tuples of integer values. For the time
being we focus on the first case, i.e., a partition of integer values. Its aim
is to define classes of values from which the source and targetvalues will
be selected. In order to define a partitionP we first introduce the notion
of set of values generator. Within these definitions,u andv both denote
(1) an integer value, or (2) an argument of the constraint of typeintegeror
domain variable, or (3) a term of the form|ARG| whereARG is an argument
of type collection denoting the number of items of the collection, (4) a sum
or difference of elements of the form (1), (2) or (3). We have two kinds of
generators, namely:

∗ A basic set of values generatoris defined by one of those:

· ARG.attr, whereARG is an argument of type collection andattr
is an attribute ofARG of type integeror domain variable, denotes
the set of all values assigned toARG.attr.

· notin(ARG.attr), whereARG is an argument of type collection
andattr is an attribute ofARG of typeintegeror domain variable,
denotes the set of all elements ofZ that are not assigned to
ARG.attr.

· diff(ARG1.attr1, ARG2.attr2), where ARG1 (respectively
ARG2) is an argument of type collection andattr1 (respectively
attr2) is an attribute ofARG1 (respectivelyARG2) of typeinteger
or domain variable, denotes the set of all elements ofZ that are
assigned toARG1.attr1 but not toARG2.attr2.

· u, denotes the set{u}.

· cmp(u), (cmp ∈ {=, 6=, <,≥, >,≤}), denotes the set of all inte-
gerse such that the comparisone cmp u holds.

2.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT 25

· in(u, v), (u ≤ v), denotes the set of all integers located in interval
[u, v].

· notin(u, v), (u ≤ v), denotes the set of all integers not located in
interval[u, v].

· mod(u, v), (0 < v < u, u, v ∈ N
+), denotes all integer values in

Z that havev as remainder when divided byu.7

∗ Given set of values generatorsS1, S2, . . . , Sn (n ≥ 2), a compound
set of values generatoris defined by:

· [S1,S2, . . . ,Sn] denotes all values that are in at least one of the
setsS1, S2, . . . , Sn.

· notin([S1,S2, . . . ,Sn]) denotes all values ofZ that are not in any
setS1, S2, . . . , Sn.

We now describe the different partition generators. Withinthe description,
S andD denote set of values generators. Classes of a partition are ordered.
Unless explicitly specified, classes are ordered with respect to the smallest
element they contain.

∗ int denotes a partitionP where, to each element ofZ corresponds a
specific class ofP containing just that element.

∗ int(S) denotes a partitionP where, to each element ofS corresponds
a specific class ofP containing just that element.

∗ all denotes a partitionP containing one single class of values corre-
sponding to all integer values inZ.

∗ all(S) denotes a partitionP containing one single class of values
corresponding to the elements ofS.

∗ comp(S) denotes of partitionP containing two classes of values: a first
class corresponding to the elements ofS, and a second class consisting
of all elements ofZ that are not inS.

∗ comp diff(S,D) denotes of partitionP containing two classes of val-
ues: a first class corresponding to the elements ofS but not inD, and
a second class consisting of all elements ofZ that are neither inS nor
in D.

∗ intervals(u), (u > 0), denotes a partitionP containing intervals of
the form[k · u, k · u+ u− 1], k ∈ Z.

∗ mod(u), (u > 0), denotes a partitionP such that each class ofP is
made up from all integers inZ that have the same remainder when
divided byu.8

∗ part(P), whereP is a collection of collections of integers passed as
one of the arguments of the constraint, where each integer occurs once,
denotes a partitionP such that each class corresponds to the elements
of one of the collections ofP . Classes are ordered with respect to their
occurrence inP .

7remainder(a, n) = a− n⌊ a
n
⌋.

8remainder(a, n) = a− n⌊ a
n
⌋.

26 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

WhenPARTITION defines a partition of tuples, where each tuple consists of
k integers,PARTITION can only be set toint. In this contextint denotes
a partitionP where, to each element ofZk corresponds a specific class of
P containing just that element.

– PAIRS is one of the symbols6=, =, <, ≥, >, ≤, or dontcare. It specifies
a set of pairs{(pi1 , pj1), (pi2 , pj2), . . . , (pin , pjn)} of elements of the par-
tition P such that, whenPAIRS is different fromdontcare,9 the condition
ik PAIRS jk holds for allk ∈ [1, n]. The aim of thePAIRS parameter is
to allow to specify which partitions ofP the source valueu and the tar-
get valuev should belong to. In fact there should exist a pair(pik , pjk),
(k ∈ [1, n]), such thatu ∈ pik andv ∈ pjk .

– SOURCE is one of the optionsall or dontcare:

∗ When set toall it indicates that all occurrences of the source value
should be replaced by the target value. All occurrences of the target
value, if it is used, should also be replaced by the source value.

∗ When set todontcare it tells that not necessarily all occurrences
of the source value should be replaced. The target value is left un-
changed.

– TARGET is one of the optionsin or dontcare:

∗ When set toin it indicates that the target value should correspond to
an already existing value ofARG.attr.

∗ When set todontcare it tells that the target value can either corre-
spond to an already existing value ofARG.attr, or designate a new
value.

We now define the set of conditions we must have in order to exchange a
source and a target values. Given,

1. a ground instance of a global constraintC,

2. a pathPATH that designates either an argument of type integer, or an
integer attribute of a collection that occurs, possibly in anested way,
as one of the arguments ofC,

3. the sets of valuesV1,V2, . . . ,Vh that are assigned toPATH in the
ground instance ofC,10

4. a partition of integer valuesP derived fromPARTITION,

5. a set of pairs{(pi1 , pj1), (pi2 , pj2), . . . , (pin , pjn)} of elements of the
partitionP such that the conditionPAIRS = dontcare∨ ik PAIRS jk
holds for allk ∈ [1, n],

6. aTARGET option,

given one of the sets of valuesVα, (1 ≤ α ≤ h), a source valueu can be
permuted with a target valuev if and only if the following conditions are
all satisfied:

9WhenPAIRS is equal todontcare we just consider all possible pairs.
10We may have more than one set when the path does not start from a top level collection.

2.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT 27

1. u 6= v (source and target values should be distinct),

2. u ∈ Vα (source value, i.e., value that is replaced, should be part ofthe
solution),

3. ∃k|u ∈ pik ∧ v ∈ pjk (source and target values should be located in
the appropriate partition classes),

4. TARGET = in ⇒ v ∈ Vα (if TARGET = in then the target value
should also be part of the solution).

If SOURCE is equal toall we replace each occurrence ofu by v, and con-
versely each occurrence ofv by u. Otherwise we replace at least one oc-
currence ofu by v.

Without loss of generality, whenPATH designates a collection of integer
values or domain variables, the exchange of tuples of valuesis defined in a
similar way.

We now provide a number of examples of value symmetry and illustrate how to
encode them with the five parameters we just introduced. We start from the most
common value symmetry, namely exchanging all occurrences of two distinct
values or replacing all occurrences of a value by an unused value.

EXAMPLE 1: As a first example, consider thealldifferent(VARIABLES) con-
straint, which enforces all variables of the collectionVARIABLES to take distinct val-
ues. Note that we can exchange two assigned values ofVARIABLES, or replace an
assigned value ofVARIABLES by a new value, i.e., a value that is not yet assigned
to any variable ofVARIABLES. Within the electronic catalogue this is represented by
the following meta-data,vals([VARIABLES.var], int, 6=, all, dontcare), to which
corresponds the following textual form:

Two distinct values ofVARIABLES.var can be swapped; a value ofVARIABLES.var
can be renamed to any unused value.
For instance, sincealldifferent(〈5, 1,9, 3〉) is a solution, we can replace value
9 by a not yet assigned value,0 for instance, and get another valid solution
alldifferent(〈5, 1,0, 3〉).
The five parameters ofvals([VARIABLES.var], int, 6=, all, dontcare) have the fol-
lowing meaning:

– [VARIABLES.var] indicates that the modification takes place within the values
assigned to thevar attribute of theVARIABLES collection.

– int defines the partition of valuesP = . . . , {−1}, {0}, {1},

– 6= indicates that the exchange of values takes place between two distinct ele-
ments ofP.

– all specifies that all occurrences of the source value have to be exchanged with
all occurrences of the target value.

– dontcare tells that the source value can be replaced by an already existing
value or by a new value, i.e., a value not already used inVARIABLES.var.

28 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

EXAMPLE 2: As a second example, consider thenvalue(NVAL, VARIABLES) con-
straint, which enforcesNVAL to be equal to the number of distinct values assigned
to the variables of the collectionVARIABLES. Note that we can exchange all occur-
rences of two distinct values ofVARIABLES, or replace all occurrences of an assigned
value ofVARIABLES by a new value, i.e., a value that is not yet assigned to any vari-
able ofVARIABLES. Within the electronic catalogue this is represented by the fol-
lowing meta-data,vals([VARIABLES.var], int, 6=, all, dontcare), to which corre-
sponds the following textual form:

All occurrences of two distinct values ofVARIABLES.var can be swapped; all oc-
currences of a value ofVARIABLES.var can be renamed to any unused value.
For instance, sincenvalue(4, 〈3,1, 7,1, 6〉) is a solution, we can replace all occur-
rences of value1 by a not yet assigned value,8 for instance, and get another valid
solutionnvalue(4, 〈3,8, 7,8, 6〉). We can also swap all occurrences of value1 and
value3, and get another valid solutionnvalue(4, 〈1,3, 7,3, 6〉).
The five parameters ofvals([VARIABLES.var], int, 6=, all, dontcare) have the fol-
lowing meaning:

– [VARIABLES.var] indicates that the modification takes place within the values
assigned to thevar attribute of theVARIABLES collection.

– int defines the partition of valuesP = . . . , {−1}, {0}, {1},

– 6= indicates that the exchange of values takes place between two distinct ele-
ments ofP.

– all specifies that all occurrences of the source value have to be exchanged with
all occurrences of the target value.

– dontcare tells that the source value can be replaced by an already existing
value or by a new value, i.e., a value not already used inVARIABLES.var.

We now introduce a third and a fourth example where the meta-data used for de-
scribing value symmetry,vals([VARIABLES.var], int, 6=, all, dontcare), is
replaced byvals([VARIABLES.var], int, 6=, all, in), i.e., we are not allowed
to introduce an unused value.

2.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT 29

EXAMPLE 3: As a third example, consider theall min dist(MINDIST,
VARIABLES) constraint, which enforces for each pair(vari, varj) of distinct vari-
ables of the collectionVARIABLES that |vari − varj | ≥ MINDIST. Note that we can
exchange two occurrences of distinct values ofVARIABLES, but we cannot replace an
existing valueu by a new valuev (since the new valuev may be too close from an-
other existing valuew, i.e., |v − w| < MINDIST). Within the electronic catalogue this
is represented by the following meta-data,vals([VARIABLES.var], int, 6=, all, in),
to which corresponds the following textual form:

Two distinct values ofVARIABLES.var can be swapped.
For instance, sinceall min dist(2, 〈5, 1,9, 3〉) is a solution, we can swap values5
and9, and get another valid solutionall min dist(2, 〈9, 1,5, 3〉).
The five parameters ofvals([VARIABLES.var], int, 6=, all, in) have the following
meaning:

– [VARIABLES.var] indicates that the modification takes place within the values
assigned to thevar attribute of theVARIABLES collection.

– int defines the partition of valuesP = . . . , {−1}, {0}, {1},

– 6= indicates that the exchange of values takes place between two distinct ele-
ments ofP.

– all specifies that all occurrences of the source value have to be exchanged with
all occurrences of the target value.

– in tells that the source value has to be replaced by an already existing value in
VARIABLES.var.

EXAMPLE 4: As a fourth example, consider theminimum(MIN, VARIABLES) con-
straint, which enforcesMIN to be equal to the minimum value of the collection
VARIABLES. Note that we can exchange all occurrences of two distinct values of
VARIABLES, but we cannot replace an existing valueu by a new valuev (since the new
valuev may be smaller thanMIN). Within the electronic catalogue this is represented
by the following meta-data,vals([VARIABLES.var], int, 6=, all, in), to which cor-
responds the following textual form:

All occurrences of two distinct values ofVARIABLES.var can be swapped.
For instance, sinceminimum(2, 〈3, 2, 7, 2, 6〉) is a solution, we can swap values2 and
6, and get another valid solutionminimum(2, 〈3, 6, 7, 6, 2〉).
The five parameters ofvals([VARIABLES.var], int, 6=, all, in) have the following
meaning:

– [VARIABLES.var] indicates that the modification takes place within the values
assigned to thevar attribute of theVARIABLES collection.

– int defines the partition of valuesP = . . . , {−1}, {0}, {1},

– 6= indicates that the exchange of values takes place between two distinct ele-
ments ofP.

– all specifies that all occurrences of the source value have to be exchanged with
all occurrences of the target value.

– in tells that the source value has to be replaced by an already existing value in
VARIABLES.var.

30 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

We now present three examples where, using the partition generatorcomp(S),
we consider two classes of values: a first class consisting ofelements ofS and a
second class of elements ofZ not inS. The first example corresponds to a value
symmetry where values from the same class are exchanged, while the two other
examples consider permutation of values between distinct classes with respect to
a given class ordering.

EXAMPLE 5: As a fifth example, consider theamong(NVAR, VARIABLES, VALUES)
constraint, which enforcesNVAR to be equal to the number of variables of the col-
lection VARIABLES that are assigned a value inVALUES. We focus on exchanges of
values that take place withinVARIABLES. Note that, given a value that both occurs
in VARIABLES and inVALUES, we can replace it by any value inVALUES. But we
can also replace a value that occurs inVARIABLES, but not inVALUES, by any value
not in VALUES. Within the electronic catalogue this is represented by the following
meta-data, vals([VARIABLES.var], comp(VALUES.val),=, dontcare, dontcare),
to which corresponds the following textual form:

An occurrence of a value ofVARIABLES.var that belongs toVALUES.val
(resp. does not belong toVALUES.val) can be replaced by any other value in
VALUES.val (resp. not inVALUES.val).
For instance, sinceamong(3, 〈4,5, 5,4, 1〉, 〈1, 5, 8〉) is a solution, we can swap the
first occurrence of value5 with the second occurrence of value4 in VARIABLES.var,
and get another valid solutionamong(3, 〈4,4, 5,5, 1〉, 〈1, 5, 8〉).
The five parameters ofvals([VARIABLES.var], comp(VALUES.val),=, dontcare,
dontcare) have the following meaning:

– [VARIABLES.var] indicates that the modification takes place within the values
assigned to thevar attribute of theVARIABLES collection.

– comp(VALUES.val) defines two set of values, a first setS1 corresponding to all
values inVALUES.val, and a second setS2 corresponding to all values not in
VALUES.val.

– = indicates that the exchange of values takes place within the same set, i.e.,
within S1 or within S2.

– dontcare specifies that one occurrence of the source value has to be replaced
by the target value.

– dontcare tells that the source value can be replaced by an already existing
value or by a new value, i.e., a value not already used inVARIABLES.var.

2.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT 31

EXAMPLE 6: As a sixth example, consider theatleast(N, VARIABLES, VALUE)
constraint, which enforces at leastN variables of the collectionVARIABLES to
be assigned valueVALUE. Note that, given an occurrence of value that be-
longs toVARIABLES that is different fromVALUE, we can replace it by any other
value that is also different fromVALUE.a But we can also replace it by value
VALUE since this does not decrease the number of variables that are assigned
value VALUE. Within the electronic catalogue this is represented by the follow-
ing meta-data,vals([VARIABLES.var], comp(VALUE),≥, dontcare, dontcare), to
which corresponds the following textual form:

An occurrence of a value ofVARIABLES.var that is different fromVALUE can be
replaced by any other value.
For instance, sinceatleast(2, 〈4, 2, 4, 5,2〉, 4) is a solution, we can replace the sec-
ond occurrence of value2 with a value that is different from value4, e.g., value
8, and get another valid solutionatleast(2, 〈4, 2, 4, 5,8〉, 4). We can also re-
place the second occurrence of value2 with value4 and get another valid solution
atleast(2, 〈4, 2, 4, 5,4〉, 4).
The five parameters of vals([VARIABLES.var], comp(VALUE),≥, dontcare,
dontcare) have the following meaning:

– [VARIABLES.var] indicates that the modification takes place within the values
assigned to thevar attribute of theVARIABLES collection.

– comp(VALUE) defines two set of values, a first setS1 containing only value
VALUE, and a second setS2 corresponding to all values different fromVALUE.

– ≥ indicates that the the source and target values should respectively belong to
setsSi andSj wherei ≥ j:

1. If the source value is different fromVALUE (i.e., the source value belongs
to S2), then the target value can indifferently be equal or not equal to
VALUE (i.e., the target value belongs toS1 or S2).

2. If the source value is equal toVALUE (i.e., the source value belongs toS1),
then the target value is equal toVALUE (i.e., the target value also belongs
to S1). But in this case no exchange can take place since the source and
target values are identical.

– dontcare specifies that one occurrence of the source value has to be replaced
by the target value.

– dontcare tells that the source value can be replaced by an already existing
value or by a new value, i.e., a value not already used inVARIABLES.var.

aWithin the collectionVARIABLES, this swap does not change the number of variables that are
assigned valueVALUE.

32 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

EXAMPLE 7: As a seventh example, consider theatmost(N, VARIABLES, VALUE)
constraint, which enforces at mostN variables of the collectionVARIABLES to
be assigned valueVALUE. Note that, given an occurrence of value that be-
longs to VARIABLES, and that is different fromVALUE, we can replace it by
any other value that is also different fromVALUE.a But we can also replace
an occurrence of valueVALUE by a value that is different fromVALUE, since
this does not increase the number of variables that are assigned valueVALUE.
Within the electronic catalogue this is represented by the following meta-data,
vals([VARIABLES.var], comp(VALUE),≤, dontcare, dontcare), to which corre-
sponds the following textual form:

An occurrence of a value ofVARIABLES.var can be replaced by any other value
that is different fromVALUE.
For instance, sinceatmost(1, 〈4, 2,4, 5〉, 2) is a solution, we can replace the
second occurrence of value4 with a value that is different from value2,
e.g., value8, and get another valid solutionatmost(1, 〈4, 2,8, 5〉, 2). But, within
atmost(1, 〈4,2, 4, 5〉, 2), we can also replace value2 with any other value, e.g. value
4 and get another valid solutionatmost(1, 〈4,4, 4, 5〉, 2).
The five parameters of vals([VARIABLES.var], comp(VALUE),≤, dontcare,
dontcare) have the following meaning:

– [VARIABLES.var] indicates that the modification takes place within the values
assigned to thevar attribute of theVARIABLES collection.

– comp(VALUE) defines two set of values, a first setS1 containing only value
VALUE, and a second setS2 corresponding to all values different fromVALUE.

– ≤ indicates that the the source and target values should respectively belong to
setsSi andSj wherei ≤ j:

1. If the source value is different fromVALUE (i.e., the source value belongs
to S2), then the target value is also different fromVALUE (i.e., the tar-
get value belongs toS2). This supports the fact that we do not want to
increase the number of occurrences of valueVALUE.

2. If the source value is equal toVALUE (i.e., the source value belongs to
S1), then there is no restriction on the target value (i.e., the target value
belongs toS1 or to S2). But the setS1 is not relevant since the target
value would also be fixed toVALUE, and, in this context, no exchange can
take place.

– dontcare specifies that one occurrence of the source value has to be replaced
by the target value.

– dontcare tells that the source value can be replaced by an already existing
value or by a new value, i.e., a value not already used inVARIABLES.var.

aWithin the collectionVARIABLES, this swap does not change the number of variables that are
assigned valueVALUE.

We now illustrate the fact that the scope of value symmetry can sometimes be
extended to several collections of variables. For this purpose we consider the
common constraint.

2.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT 33

EXAMPLE 8: Consider the common(NCOMMON1, NCOMMON2, VARIABLES1,
VARIABLES2) constraint, which enforces the two following conditions:

– NCOMMON1 is the number of variables of the collectionVARIABLES1 taking a
value inVARIABLES2.

– NCOMMON2 is the number of variables of the collectionVARIABLES2 taking a
value inVARIABLES1.

Note that we can exchange all occurrences of two distinct values of
VARIABLES1 or VARIABLES2, or replace all occurrences of an assigned
value of VARIABLES1 or VARIABLES2 by a new value, i.e., a value that is
not yet assigned to any variable ofVARIABLES1 and VARIABLES2. Within
the electronic catalogue this is represented by the following meta-data,
vals([VARIABLES1.var, VARIABLES2.var], int, 6=, all, dontcare), to which
corresponds the following textual form:

All occurrences of two distinct values inVARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value inVARIABLES1.var or VARIABLES2.var
can be renamed to any unused value.
For instance, sincecommon(3, 4, 〈1, 9,1, 5〉, 〈2,1, 9, 9, 6, 9〉) is a solution, we can re-
place all occurrences of value1 by a not yet assigned value,7 for instance, and get
another valid solutioncommon(3, 4, 〈7, 9,7, 5〉, 〈2,7, 9, 9, 6, 9〉).
The five parameters ofvals([VARIABLES1.var, VARIABLES2.var], int, 6=, all,
dontcare) have the following meaning:

– [VARIABLES1.var, VARIABLES2.var] indicates that the modification takes
place within the values assigned to thevar attribute of theVARIABLES1 and
VARIABLES2 collections.

– int defines the partition of valuesP = . . . , {−1}, {0}, {1},

– 6= indicates that the exchange of values takes place between two distinct ele-
ments ofP.

– all specifies that all occurrences of the source value have to be exchanged with
all occurrences of the target value.

– dontcare tells that the source value can be replaced by an already existing
value or by a new value, i.e., a value not already used inVARIABLES1 or
VARIABLES2.

We now present an example that illustrates the fact that value symmetry can also
occur between two arguments that both correspond to a domainvariable, i.e.,
not just between the variables of a collection of variables.For this purpose we
consider theleq constraint.

34 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

EXAMPLE 9: Consider the leq(VAR1, VAR2) constraint, which enforces
VAR1 to be less than or equal toVAR2. Note that VAR1 can be de-
creased to any value, and thatVAR1 can be increased up toVAR2. Simi-
larly, VAR2 can be increased to any value, andVAR2 can be decreased down
to VAR1. Within the electronic catalogue this is respectively represented
by the following meta-data,vals([VAR1], int(≤ (VAR2)), 6=, all, dontcare) and
vals([VAR2], int(≥ (VAR1)), 6=, all, dontcare), to which corresponds the follow-
ing textual form:

VAR1 can be replaced by any value≤ VAR2;
VAR2 can be replaced by any value≥ VAR1.

For instance, sinceleq(2, 9) is a solution, we can replace value2 by any value less
than or equal to9, e.g. value5 and get another valid solutionleq(5, 9). But, within
leq(2,9), we can also replace value9 with any other value greater than or equal to2,
e.g. value4 and get another valid solutionleq(2,4).
The five parameters ofvals([VAR1], int(≤ (VAR2)), 6=, all, dontcare) have the fol-
lowing meaning:

– [VAR1] indicates that the modification takes place within the value assigned to
the argumentVAR1 of the constraintleq.

– int(≤ (VAR2)) defines the partition of valuesP = . . . , {VAR2− 2}, {VAR2−
1}, {VAR2} (i.e., we only consider values that are less than or equal toVAR2).

– 6= indicates that the exchange of values takes place between two distinct ele-
ments ofP.

– all specifies that all occurrences of the source value have to be replacedby the
target value. Note that, since the scope of the change is reduced to one single
variable, we have one occurrence of the source value and no occurrence of the
target value.

– dontcare tells that the source value will be replaced by a new value.

The meta-datavals([VAR2], int(≥ (VAR1)), 6=, all, dontcare) has a similar expla-
nation.

We now present two examples related to thek disjoint constraint. The first
example illustrates the fact that the path specifying the scope of the exchange
can contain more than one collection. The second example exemplifies the fact
that the path specifying the scope of the exchange does not necessarily start with
a top level collection.

2.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT 35

EXAMPLE 10: Consider thek disjoint(SETS) constraint which, given|SETS| sets
of domain variables, enforces that no value is assigned to more than oneset. Note
that we can swap all the occurrences of two values, or replace all occurrences of a
value by a value that is not yet used. Within the electronic catalogue this is represented
by the following meta-data,vals([SETS.set.var], int, 6=, all, dontcare), to which
corresponds the following textual form:

All occurrences of two distinct values ofSETS.set.var can be swapped; all occur-
rences of a value ofSETS.set.var can be renamed to any unused value.
For instance, sincek disjoint(〈set − 〈1, 9,1, 5〉, set − 〈7, 2, 7〉〉) is a solution,
we can replace value1 by any value that is different from the already used val-
ues2, 5, 7, and9, e.g. value3, and get another valid solutionk disjoint(〈set −
〈3, 9,3, 5〉, set−〈7, 2, 7〉〉). From the solutionk disjoint(〈set−〈1, 9,1, 5〉, set−
〈7,2, 7〉〉), we can also swap all occurrences of two values, e.g. values1 and2, and
get another valid solutionk disjoint(〈set− 〈2, 9,2, 5〉, set− 〈7,1, 7〉〉).
The five parameters ofvals([SETS.set.var], int, 6=, all, dontcare) have the fol-
lowing meaning:

– [SETS.set.var] indicates that the modification takes place within the values
assigned to thevar attribute of theSETS.set collections.

– int defines the partition of valuesP = . . . , {−1}, {0}, {1},

– 6= indicates that the exchange of values takes place between two distinct ele-
ments ofP.

– all specifies that all occurrences of the source value have to be exchanged with
all occurrences of the target value.

– dontcare tells that the source value can be replaced by an already existing
value or by a new value, i.e., a value not already used inSETS.set.var.

36 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

EXAMPLE 11: Consider thek disjoint(SETS) constraint which, given|SETS| sets
of domain variables, enforces that no value is assigned to more than oneset. Note
that, within any set, we can replace any occurrence of a value by anothervalue that
is already used in the same set. Within the electronic catalogue this is represented
by the following meta-data,vals([VARIABLES.var], int, 6=, dontcare, in), to which
corresponds the following textual form:

An occurrence of a value ofVARIABLES.var can be replaced by any value of
VARIABLES.var.
For instance, sincek disjoint(〈set−〈1, 9, 1, 5〉, set−〈7, 2, 7〉〉) is a solution, we
can replace within the first set the first occurrence of value1 by the already used value
5, and get another valid solutionk disjoint(〈set− 〈5, 9, 1, 5〉, set− 〈7, 2, 7〉〉).
The five parameters ofvals([VARIABLES.var], int, 6=, dontcare, in) have the fol-
lowing meaning:

– [VARIABLES.var] indicates that the modification takes place within the values
assigned to thevar attribute of theVARIABLES.var collections. Note that
since the corresponding path does not start from a top level collection (i.e.,
VARIABLES does not correspond to an argument of thek disjoint constraint),
this represents one set of values for each set: the scope of value symmetry is
located within one single set.

– int defines the partition of valuesP = . . . , {−1}, {0}, {1},

– 6= indicates that the exchange of values takes place between two distinct ele-
ments ofP.

– dontcare specifies that one occurrence of the source value has to be replaced
by the target value.

– in tells that the source value has to be replaced by an already existing value in
VARIABLES.var.

We present a last example where the path specifying the scopeof the exchange
does not end with an attribute but rather with a collection. This can be seen
as a generalisation of value symmetry where, instead of exchanging values, we
exchange tuples of values. This kind of value symmetry occurs in constraints
like cond lex cost, in relation, npair, nvector, nvectors, or pattern.

2.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT 37

EXAMPLE 12: Consider thenvector(NVEC, VECTORS) constraint which enforces
an equality betweenNVEC and the number of distinct tuples of values taken by the
vectors of the collectionVECTORS. Note that we can swap all the occurrences of two
tuples of values, or replace all occurrences of a tuple of values by a tuple of values that
is not yet used. Within the electronic catalogue this is represented by the following
meta-data,vals([VECTORS.vec], int, 6=, all, dontcare), to which corresponds the
following textual form:

All occurrences of two distinct tuples of values ofVECTORS.vec can be swapped;
all occurrences of a tuple of values ofVECTORS.vec can be renamed to any unused
tuple of values.
For instance, sincenvector(2, 〈vec−〈5,6〉, vec−〈9, 2〉, vec−〈5,6〉〉) is a solution,
we can replace all the occurrences of the tuple of values〈5, 6〉 by any unused tuple of
values, e.g. the tuple of values〈1, 2〉, and get another valid solutionnvector(2, 〈vec−
〈1,2〉, vec− 〈9, 2〉, vec− 〈1,2〉〉).
The five parameters ofvals([VECTORS.vec], int, 6=, all, dontcare) have the fol-
lowing meaning:

– [VECTORS.vec] indicates that the modification takes place within the tuples of
values assigned to thevec attribute of theVECTORS collections.

– int defines the partition of valuesP = Z
|VECTORS|.

– 6= indicates that the exchange of tuple of values takes place between two distinct
elements ofP.

– all specifies that all occurrences of the source tuple of values have to be ex-
changed with all occurrences of the target tuple of values.

– dontcare tells that the source tuple of values can be replaced by an already
existing tuple of values or by a new tuple of values, i.e., a tuple of values not
already used inVECTORS.vec.

• translate(ATTRIBUTES) denotes the fact that we add a constant to some col-
lection attributes (i.e., we express the fact that solutions are preserved under
some specific translation).ATTRIBUTES is a list of terms of the formARG1, or
ARG2.attr, or ARG3.attri.attrj, where:

– ARG1 is an argument of the global constraint of typedomain variableor
integer.

– ARG2 is an argument of the global constraint that corresponds to acollec-
tion, andattr is an attribute ofARG2 of typedomain variableor integer.

– ARG3 is an argument of the global constraint that corresponds to acollec-
tion, andattri is an attribute ofARG3 of typecollection, andattrj is an
attribute ofARG3.attri of typedomain variableor integer.

Its purpose is to define all the elements that have to be simultaneously incre-
mented by one and the same constant.

– The case corresponding toARG1 is motivated by the fact that we sometimes
want to increment an argument that is a domain variable or an integer.

38 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

– The case corresponding toARG2.attr is the standard case where we want
to express that we increment attributeattr of all items of a collection that
is passed as an argument of the global constraint.

– Finally, the last caseARG3.attri.attrj corresponds to the fact that
we want to increment attributeattrj of all items corresponding to
ARG3.attri.

We now provide two examples, where the translation is respectively applied on one
single attribute and on two attributes of a collection.

EXAMPLE 1: Consider theall min dist(MINDIST, VARIABLES) constraint which
enforces for each pair(vari, varj) of distinct variables of the collectionVARIABLES
that |vari − varj | ≥ MINDIST. Note that we can add one and the same constant to
all variables of the collectionVARIABLES since this does not change the difference be-
tween any pair of variables. Within the electronic catalogue this is represented by the
following meta-data,translate([VARIABLES.var]), to which corresponds the fol-
lowing textual form:

One and the same constant can be added to thevar attribute of all items of
VARIABLES.
For instance, sinceall min dist(2, 〈5,1,9,3〉) is a solution, we can add the con-
stant 6 to all items of the collection〈5, 1, 9, 3〉, and get another valid solution
all min dist(2, 〈11,7,15,9〉).

EXAMPLE 2: Consider thecumulative(TASKS, LIMIT) constraint which enforces
that at each point in time, the cumulated height of the set of tasks that overlap that
point, does not exceed a given limit. Note that we can add one and the sameconstant
to all origin andend attributes of the different tasks of theTASKS collection. This
operation simply shifts the overall schedule by a given constant without affecting the
maximum resource consumption. Within the electronic catalogue this is represented
by the following meta-data,translate([TASKS.origin, TASKS.end]), to which cor-
responds the following textual form:

One and the same constant can be added to theorigin andend attributes of all
items ofTASKS.
For instance, since

〈

origin− 1 duration− 3 end− 4 height− 1,
origin− 2 duration− 9 end− 11 height− 2,
origin− 3 duration− 10 end− 13 height− 1,
origin− 6 duration− 6 end− 12 height− 1,
origin− 7 duration− 2 end− 9 height− 3

〉

, 8

is a solution, we can add the constant2 to all origin and end attributes, and get
another valid solution

〈

origin− 3 duration− 3 end− 6 height− 1,
origin− 4 duration− 9 end− 13 height− 2,
origin− 5 duration− 10 end− 15 height− 1,
origin− 8 duration− 6 end− 14 height− 1,
origin− 9 duration− 2 end− 11 height− 3

〉

, 8

.

2.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES39

We conclude by listing other types of symmetries that we may also consider in the
future, namely:

• In the context ofgraph constraintswe can usually relabel the vertices of the
corresponding graph. This is for instance the case of thecircuit constraint
where theindex attribute corresponds to the name of a vertex.

• In the context of constraints on a matrix we can have symmetries on both the
rows and the columns of the matrix. On the one hand, since a rowcorresponds to
a collection this can be currently expressed. On the other hand, since a column
corresponds to all theith items of the collections corresponding to the rows, this
currently cannot be expressed.

• Given a collection of items, we want to express a symmetry on different subsets
of items: more precisely, on all items for which a given attribute is assigned the
same value. As an illustrative example consider thecumulatives constraint.
We would like to express the possibility of translating the origin of all tasks that
are assigned the same machine.

• Given a collection of items we can sometimes multiply by−1 all occurrences of
one of its attributes. This usually corresponds to a mirror symmetry. This is for
instance the case for theorigin attribute of thecumulative constraint.

2.2 Describing global constraints in terms of graph
properties

Through a practical example, we first present in a simplified form the basic principles
used for describing the meaning of global constraints in terms of graph properties. We
then give the full details about the different features usedin the description process.

2.2.1 Basic ideas and illustrative example

Within the graph-based representation, a global constraint is represented as a digraph
where each vertex corresponds to a variable and each arc to a binary arc constraint be-
tween the variables associated with the extremities of the corresponding arc. The main
difference with classical constraint networks [122], stems from the fact that we do not
force any more all arc constraints to hold. We rather consider this graph from which
we discard all the arc constraints that do not hold as well as all isolated vertices (i.e,
vertices not involved any more in any arc) and impose one or several graph properties
on this remaining graph. These properties can for instance be a restriction on the num-
ber of connected components, on the size of the smallest connected component or on
the size of the largest connected component.

40 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

1 1

1

2

2

3

3

6 8

8

8

8

smallest connected component
(1 vertex)

largest connected component

number of connected

(4 vertices)

components = 5

Figure 2.1: Illustration of the link between graph-properties and global constraints

EXAMPLE: We give an example of interpretation of such graph properties in terms
of global constraints. For this purpose we consider the sequences of values
1 3 1 1 2 8 8 2 3 6 8 8 3 from which we construct the following graphG:

• To each value associated with a position ins corresponds a vertex ofG,

• There is an arc from a vertexv1 to a vertexv2 if these vertices correspond to the
same value.

Figure2.1 depicts graphG. SinceG is symmetric, we omit the directions of the arcs.
We have the following correspondence between graph properties and constraints on the
sequences:

• The number of connected components ofG corresponds to the number of distinct
values ofs.

• The size of the smallest connected component ofG is the smallest number of
occurrences of the same value ins.

• The size of the largest connected component ofG is the largest number of occur-
rences of the same value ins.

As a result, in this context, putting a restriction on the number of connected components
of G can been seen as a global constraint on the number of distinct values ofa sequence
of variables. Similar global constraints can be associated with the two other graph prop-
erties.

We now explain how to generate the initial graph associated with a global constraint.
A global constraint has one or more arguments, which usuallycorrespond to an integer
value, to one variable or to a collection of variables. Therefore we have to describe the
process that allows for generating the vertices and the arcsof the initial graph from the
arguments of a global constraint under consideration. For this purpose we will take a
concrete example.

Consider the constraintnvalue(NVAL, VARIABLES) whereNVAL andVARIABLES
respectively correspond to a domain variable and to a collection of domain variables
〈var − V1, var − V2, . . . , var − Vm〉.11 This constraint holds ifNVAL is equal to the
number of distinct values assigned to the variablesV1, V2, . . . , Vm. We first show how
to generate the initial graph associated with thenvalue constraint. We then describe
the arc constraint associated with each arc of this graph. Finally, we give the graph

11var corresponds to the name of the attribute used in the collection of variables.

2.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES41

property we impose on the final graph.
To each variable of the collectionVARIABLES corresponds a vertex of the initial

graph. We generate an arc between each pair of vertices. To each arc, we associate
an equality constraint between the variables corresponding to the extremities of that
arc. We impose thatNVAL, the variable corresponding to the first argument ofnvalue,
be equal to the number of strongly connected components of the final graph. This
final graph consists of the initial graph from which we discard all arcs such that the
corresponding equality constraint does not hold.

Part (A) of Figure2.2shows the graph initially generated for the constraintnvalue

(NVAL, 〈var−V1, var−V2, var−V3, var−V4〉), whereNVAL, V1, V2, V3 andV4 are
domain variables. Part (B) presents the final graph associated with the ground instance
nvalue(3, 〈var−5, var−5, var−1, var−8〉). For each vertex of the initial and final
graph we respectively indicate the corresponding variableand the value assigned to that
variable. We have removed from the final graph all the arcs associated with equalities
that do not hold. The constraintnvalue(3, 〈var − 5, var − 5, var − 1, var − 8〉)
holds since the final graph contains three strongly connected components, which in the
context of the definition of thenvalue constraint, can be reinterpreted as the fact that
NVAL is the number of distinct values assigned to variablesV1, V2, V3, V4.

(B)

V

2V 3V

4V 5

5 1

8

(A)

1

Figure 2.2: Initial and final graph associated withnvalue

Now that we have illustrated the basic ideas for describing aglobal constraint in
terms of graph properties, we go into more details.

2.2.2 Ingredients used for describing global constraints

We first introduce the basic ingredients used for describinga global constraint and illus-
trate them shortly on the example of thenvalue constraint introduced in the previous
section on page40. We then go through each basic ingredient in more detail. The
graph-based description is founded on the following basic ingredients:

• Data typesandrestrictions used in order to describe the arguments of a global
constraint. Data types and restrictions were already described in the previous
section (from page6 to page18).

• Collection generatorsused in order to derive new collections from the argu-
ments of a global constraint for one of the following reasons:

42 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

– Collection generators are sometimes required since the initial graph of a
global constraint cannot always be directly generated fromthe arguments
of the global constraint. Thenvalue(NVAL, VARIABLES) constraint did not
require any collection generator since the vertices of its initial graph were
directly generated from theVARIABLES collection.

– A second use of collection generators is for deriving a collection of items
for different set of vertices of the final graph. This is sometimes required
when we useset generators(see the last item of the enumeration).

• Elementary constraintsassociated with the arcs of the initial and final graph of
a global constraint. Thenvalue constraint was using anequalityconstraint, but
other constraints are usually required.

• Graph generatorsemployed for constructing the initial graph of a global con-
straint. In the context of thenvalue constraint the initial graph was aclique. As
we will see later, other patterns are needed for generating an initial graph.

• Graph properties andgraph classesused for constraining the final graph we
want to obtain. In the context of thenvalue constraint we were using thenumber
of strongly connected componentsfor counting the number of distinct values.

• Set generatorsthat may be used for generating specific sets of vertices of the
final graph on which we want to enforce a given constraint. Since thenvalue
constraint enforces a graph property on the final graph (and not on subparts of
the final graph) we did not use this feature.

We first start to explain each ingredient separately and thenshow how one can
describe most global constraints in terms of these basic ingredients.

Collection generators

The vertices of the initial graph are usually directly generated from collections of items
that are arguments of the global constraintG under consideration. However, it some-
times happens that we would like to derive a new collection from existing arguments
of G in order to produce the vertices of the initial graph.

EXAMPLE: This is for instance the case of theelement(INDEX, TABLE, VALUE) con-
straint, whereINDEX andVALUE are domain variables that we would like to group as a
single itemI (with two attributes) of a new derived collection. This is in fact done in
order to generate the following initial graph:

• The itemI as well as all items ofTABLE constitute the vertices,

• There is an arc fromI to each item of theTABLE collection.

We provide the following mechanism for deriving new collections:

• In a first phase we declare the name of the new collection as well as the names
of its attributes and their respective types. This is achieved exactly in the same
way as those collections that are used in the arguments of a global constraint (see
page8).

2.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES43

EXAMPLE: Consider again the example of theelement(INDEX, TABLE, VALUE) con-
straint. The declarationITEM− collection(index− dvar, value− dvar) intro-
duces a new collection calledITEM where each item has anindex and avalue at-
tribute. Both attributes correspond to domain variables.

• In a second phase we give a list of patterns that are used for generating the items
of the new collection. A patterno − item(a1 − v1, a2 − v2, . . . , an − vn) or
item(a1 − v1, a2 − v2, . . . , an − vn) specifies for each attributeai(1 ≤ i ≤ n)
of the new collection how to fill it.12 This is done by providing for each attribute
ai one of the following expressionvi:

– A constant.

– An argument of the global constraintG.

– An expressionc.a, wherea is an attribute of a collectionc, such thatc
is an argument of the global constraintG or a derived collection that was
previously declared. An expression of this form is called adirect reference
to an attribute of a collection.

– An expressionc1.c2.a, wherea is an attribute of a collectionc2, andc2
is an attribute of a collectionc1 such thatc1 is an argument of the global
constraintG or a derived collection that was previously declared. An ex-
pression of this form is called anindirect reference to an attribute of a
collection.

This expressionvi must be compatible with the type declaration of the corre-
sponding attribute of the new collection.

EXAMPLE: We continue the example of the
element(INDEX, TABLE, VALUE) constraint and the derived collec-
tion ITEM− collection(index− dvar, value− dvar). The pattern
item(index− INDEX, value− VALUE) indicates that:

• The index attribute of the ITEM collection will be generated by
using the INDEX argument of the element constraint. Since
INDEX is a domain variable, it is compatible with the declaration
ITEM− collection(index− dvar, value− dvar) of the new collection.

• Thevalue attribute of theITEM collection will be generated by using theVALUE
argument of theelement constraint.VALUE is also compatible with the declara-
tion statement of the new collection.

We now describe how we use the pattern for generating the items of a derived collec-
tion. We have the following two cases:

• If the patterno − item(a1 − v1, a2 − v2, . . . , an − vn) does not contain any
direct or indirect reference to an attribute of a collectionthen we generate one
single item for such pattern.13 In this context the valuevi of the attributeai
(1 ≤ i ≤ n) corresponds to a constant, to an argument of the global constraint
or to a new derived collection.

12o is one of the comparison operators=, 6=, <,≥, >,≤. When omitted its default value is=.
13In this first case the value ofo is irrelevant.

44 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

• If the patterno − item(a1 − v1, a2 − v2, . . . , an − vn), whereo is one of the
comparison operators=, 6=, <,≥, >,≤, contains one or several direct or indirect
references to an attribute of a collection14 we denote by:

– D the set of indices of the positions corresponding to a directreference to
an attribute of a collection withinitem(a1 − v1, a2 − v2, . . . , an − vn).
In this context, letcα1

, cα2
, . . . , cαm

andaα1
, aα2

, . . . , aαm
respectively

denote the corresponding collections and attributes.

– I the set of indices of the positions corresponding to an indirect reference
to an attribute of a collection withinitem(a1−v1, a2−v2, . . . , an−vn). In
this context, letc1β1

, c1β2
, . . . , c1βp

, c2β1
, c2β2

, . . . , c2βp
andaβ1

, aβ2
, . . . , aβp

respectively denote the corresponding collections, attributes of type collec-
tion and attributes.

– Let dir1, dir2, . . . , dirm, ind1, ind2, . . . , indp and id1, id2, . . . , idm+p

respectively denote the indices sorted in increasing orderof D, I andD∪I.

For each combination of items cα1
[i1], cα2

[i2], . . . , cαm
[im],

c1β1
[j1].c

2
β1
[k1], c

1
β2
[j2].c

2
β2
[k2], . . . , c

1
βp
[jp].c

2
βp
[kp] such that:

i1 ∈ [1, |cα1 |], i2 ∈ [1, |cα2 |], . . . , im ∈ [1, |cαm |]
j1 ∈ [1, |c1β1

|], j2 ∈ [1, |c1β2
|], . . . , jp ∈ [1, |c1βp

|]
k1 ∈ [1, |c1β1

[j1].c
2
β1
|], k2 ∈ [1, |c1β2

[j2].c
2
β2
|], . . . , kp ∈ [1, |c1βp

[jp].c
2
βp
|]

id1 o id2 o . . . o idm+p

we generate an item of the new derived collection〈a1−w1 a2−w2 . . . an−wn〉
defined by:

wj(1 ≤ j ≤ n) =

cαr [ir].aαr ifj ∈ D, j = dirr
c1βr

[jr].c
2
βr
[kr].aβr ifj ∈ I, j = indr

vj ifj /∈ D ∪ I
.

We illustrate this generation process on a set of examples. Each example is de-
scribed by providing:

• The global constraint and its arguments,

• The declaration of the new derived collection,

• The pattern used for creating an item of the new collection,

• The items generated by applying this pattern to the global constraint,

• A comment about the generation process.

We first start with four examples that do not mention any references to an attribute of a
collection. A box surrounds an argument of a global constraint that is mentioned in a
generated item.

14This collection is an argument of the global constraint or corresponds to a newly derived collection.

2.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES45

EXAMPLE

CONSTRAINT : element(INDEX , TABLE, VALUE)

DERIVED COLLECTION: ITEM− collection(index− dvar, value− dvar)

PATTERN(S) : item(index− INDEX, value− VALUE)

GENERATED ITEM(S) : 〈index− INDEX value− VALUE 〉
We generate one single item where the two attributesindex andvalue respectively take
the first argumentINDEX and the third argumentVALUE of theelement constraint.

EXAMPLE

CONSTRAINT : lex lesseq(VECTOR1, VECTOR2)

DERIVED COLLECTION: DESTINATION− collection(index− int, x− int, y− int)

PATTERN(S) : item(index− 0, x− 0, y− 0)

GENERATED ITEM(S) : 〈index− 0 x− 0 y− 0〉
We generate one single item where the three attributesindex, x andy take value0.

EXAMPLE

CONSTRAINT : in relation(VARIABLES , TUPLES OF VALS)

DERIVED COLLECTION: TUPLES OF VARS− collection(vec− TUPLE OF VARS)

PATTERN(S) : item(vec− VARIABLES)

GENERATED ITEM(S) : 〈vec− VARIABLES 〉
We generate one single item where the unique attributevec takes the first argument of the
in relation constraint as its value.

EXAMPLE

CONSTRAINT : domain constraint(VAR , VALUES)

DERIVED COLLECTION: VALUE− collection(var01− int, value− dvar)

PATTERN(S) : item(var01− 1, value− VAR)

GENERATED ITEM(S) : 〈var01− 1 value− VAR 〉
We generate one single item where the two attributesvar01 andvalue respectively take
value1 and the first argument of thedomain constraint constraint.

We continue with three examples that mention one or several direct references to
an attribute of some collections. We now need to explicitly give the items of these
collections in order to generate the items of the derived collection.

46 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

EXAMPLE

CONSTRAINT : lex lesseq(VECTOR1 , VECTOR2)

VECTOR1 : 〈var− 5, var− 2, var− 3, var− 1〉
VECTOR2 : 〈var− 5, var− 2, var− 6, var− 2〉
DERIVED COLLECTION: COMPONENTS− collection(index− int,

x− dvar, y− dvar)

PATTERN(S) : item(index− VECTOR1.keya,

x− VECTOR1.var, y− VECTOR2.var)

GENERATED ITEM(S) : 〈index− 1 x− 5 y− 5, index− 2 x− 2 y− 2,

index− 3 x− 3 y− 6, index− 4 x− 1 y− 2〉
The pattern mentions three referencesVECTOR1.key, VECTOR1.var andVECTOR2.var to
the collectionsVECTOR1 andVECTOR2 used in the arguments of thelex lesseq con-
straint. ∀i1 ∈ [1, |VECTOR1|], ∀i2 ∈ [1, |VECTOR2|] such thati1 = i2

b we generate an
item index− v1 x− v2 y− v3 where:

v1 = i1, v2 = VECTOR1[i1].var, v3 = VECTOR2[i1].var.
This leads to the four items listed in theGENERATED ITEM(S) field.

aAs defined in Section2.1.2on page8, key is an implicit attribute corresponding to the position
of an item within a collection.

bWe use an equality since this is the default value of the comparison operatoro when we do not
use a pattern of the formo− item(. . .).

2.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES47

EXAMPLE

CONSTRAINT : cumulatives(TASKS , MACHINES, CTR)

TASKS : 〈machine− 1 origin− 1 duration− 4 end− 5 height− 1,

machine− 1 origin− 4 duration− 2 end− 6 height− 3,

machine− 1 origin− 2 duration− 3 end− 5 height− 2,

machine− 2 origin− 5 duration− 2 end− 7 height− 2〉

DERIVED COLLECTION: TIME POINTS− collection(idm− int,

duration− dvar, point− dvar)

PATTERN(S) : item(idm− TASKS.machine,

duration− TASKS.duration, point− TASKS.origin)

item(idm− TASKS.machine,

duration− TASKS.duration, point− TASKS.end)

GENERATED ITEM(S) : 〈idm− 1 duration− 4 point− 1,

idm− 1 duration− 2 point− 4,

idm− 1 duration− 3 point− 2,

idm− 2 duration− 2 point− 5,

idm− 1 duration− 4 point− 5,

idm− 1 duration− 2 point− 6,

idm− 1 duration− 3 point− 5,

idm− 2 duration− 2 point− 7〉

The two patterns mention the referencesTASKS.machine, TASKS.duration,
TASKS.origin and TASKS.end of the TASKS collection used in the arguments
of the cumulatives constraint. ∀i ∈ [1, |TASKS|], we generate two items
idm − u1 duration − u2 point − u3 , idm − v1 duration − v2 point − v3
where:

u1 = TASKS[i].machine, u2 = TASKS[i].duration, u3 = TASKS[i].origin,
v1 = TASKS[i].machine, v2 = TASKS[i].duration, v3 = TASKS[i].end.

This leads to the eight items listed in theGENERATED ITEM(S) field.

EXAMPLE

CONSTRAINT : golomb(VARIABLES)

VARIABLES : 〈var− 0, var− 1, var− 4, var− 6〉
DERIVED COLLECTION: PAIRS− collection(x− dvar, y− dvar)

PATTERN(S) : > −item(x− VARIABLES.var, y− VARIABLES.var)

GENERATED ITEM(S) : 〈x− 1 y− 0,

x− 4 y− 0, x− 4 y− 1,

x− 6 y− 0, x− 6 y− 1, x− 6 y− 4〉
The pattern mentions two referencesVARIABLES.var and VARIABLES.var to the
VARIABLES collection used in the arguments of thegolomb constraint. ∀i1 ∈
[1, |VARIABLES|], ∀i2 ∈ [1, |VARIABLES|] such thati1 > i2

a we generate the item
x− u1 y− u2 where:

u1 = VARIABLES[i1].var, u2 = VARIABLES[i2].var.
This leads to the six items listed in theGENERATED ITEM(S) field.

aWe use the comparison operator> since we have a pattern of the form> −item(. . .).

48 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

We finish with an example that mentions an indirect referenceto an attribute of a
collection.

EXAMPLE

CONSTRAINT : cumulative convex(TASKS , LIMIT)

TASKS : 〈points− 〈var− 2, var− 1, var− 5〉 height− 1,

points− 〈var− 4, var− 5, var− 7〉 height− 2,

points− 〈var− 14, var− 15〉 height− 2〉

DERIVED COLLECTION: INSTANTS− collection(instant− int)

PATTERN(S) : item(instant− TASKS.points.var)

GENERATED ITEM(S) : 〈instant− 2, instant− 1, instant− 5, instant− 4,

instant− 5, instant− 7, instant− 14, instant− 15〉

The pattern mentions the indirect referenceTASKS.points.var of theTASKS collection
used in the arguments of thecumulative convex constraint.∀i ∈ [1, |TASKS|], ∀j ∈
[1, |TASKS[i].points|] we generate the iteminstant− uij where:

uij = TASKS[i].points[j].
This leads to the eight items listed in theGENERATED ITEM(S) field.

Elementary constraints attached to the arcs

This section describes the constraints that are associatedwith the arcs of the initial
graph of a global constraint. These constraints are calledarc constraints. To each
arc one can associate one or several arc constraints. An arc will belong to the final
graph if and only if all its arc constraints hold. An arc constraint from a vertexv1 to a
vertexv2 mentions variables and/or values associated withv1 andv2. Before defining
an arc constraint, we first need to introducesimple arithmetic expressionsas well as
arithmetic expressions. Simple arithmetic expressions and arithmetic expressions are
defined recursively.

Simple arithmetic expressions A simple arithmetic expressionis defined by one of
the five following expressions.

• I : I is an integer.

• Arg : Arg is an argument of the global constraint of typeint or dvar.

• Arg : Arg is a formal parameter provided by the arc generator15 of the
graph-constraint.

• Col.Attr : Col is a formal parameter provided by the arc generator or the
collection used in theFor all items of iterator.16 Attr is an attribute of the
collection referenced byCol.

15Arc generators are described in Section2.2.2on page52.
16TheFor all items of iterator is described in Section2.2.3on page70.

2.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES49

EXAMPLE: As an example consider the first graph-constraint associated with the
global cardinality with costs(VARIABLES, VALUES, MATRIX, COST) constraint
and its arc constraintvariables.var= VALUES.val. Both,variables.var as well as
VALUES.val aresimple arithmetic expressionsof the formCol.Attr:

– In variables.var, variables corresponds to the formal parameter provided by
the arc generatorSELF 7→ collection(variables), while var is an attribute
of theVARIABLES collection.

– In VALUES.val, VALUES corresponds to the collection denoted by theFor

all items of iterator, whileval is an attribute of theVALUES collection.

• Col[Expr].Attr : Col is an argument of typecollection, Attr one attribute
of Col andExpr anarithmetic expression.

Col[Expr].Attr denotes the value of attributeAttr of theExprth item of the
collection denoted byCol.

EXAMPLE: As an example consider theglobal cardinality with costs(
VARIABLES, VALUES, MATRIX, COST) constraint and its second graph-constraint, which
defines theCOST variable. The expressionMATRIX[(variables.key− 1) ∗ |VALUES|+
values.key].c is asimple arithmetic expressionof the formCol[Expr].Attr:

– MATRIX is a collection of itemscollection(i− int, j− int, c− int) where
all items are sorted in increasing order on attributesi, j (because of the restriction
increasing seq(MATRIX, [i, j])).

– MATRIX[(variables.key− 1) ∗ |VALUES|+ values.key].c denotes the value
of attributec of an item of theMATRIX collection. The position of this item within
the MATRIX collection depends on the position of a variable of theVARIABLES

collectiona as well as on the position of a value of theVALUES collection.b

aThis position is denoted by the expressionvariables.key. As defined in Section2.1.2on
page8, key is an implicit attribute corresponding to the position of an item within a collection.

bThis position is denoted by the expressionvalues.key.

Arithmetic expressions An arithmetic expressionis recursively defined by one of
the following expressions:

• A simple arithmetic expression.

• Exp1 Op Exp2

– Exp1 is anarithmetic expression,

– Op is one of the following symbols+, −, ∗, /17,

– Exp2 is anarithmetic expression.

• |Collection|

– Collection is an argument of typecollection and |Collection| de-
notes the number of items of that collection.

17/ denotes an integer division, a division in which the fractional part is discarded.

50 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

• |Exp|

– Exp is anarithmetic expression, and |Exp| denotes the absolute value of
this expression.

• sign(Exp)

– Exp is anarithmetic expression, andsign(Exp) the sign ofExp (−1 if Exp
is negative,0 if Exp is equal to0, 1 if Exp is positive).

EXAMPLE: An example of use ofsign can be found in the last part of the arc constraint
of thecrossing constraint:
sign((s2.ox− s1.ex) ∗ (s1.ey− s1.oy)− (s1.ex− s1.ox) ∗ (s2.oy− s1.ey)) 6=
sign((s2.ex− s1.ex) ∗ (s2.oy− s1.oy)− (s2.ox− s1.ox) ∗ (s2.ey− s1.ey))

• card set(Set) :

– Set is a reference to a set of integers or to a set variable.card set(Set)
denotes the number of elements of that set.

EXAMPLE: An example of use ofcard set can be found in thesymmetric gcc

constraint:vars.nocc = card set(vars.var).

• SimpleExp1 mod SimpleExp2 ,

min(SimpleExp1, SimpleExp2) or max(SimpleExp1, SimpleExp2)

– SimpleExp1 is asimple arithmetic expression,

– SimpleExp2 is asimple arithmetic expression.

Arc constraints Now that we have introducedsimple arithmetic expressionsas well
asarithmetic expressionswe define anarc constraint. An arc constraintis recursively
defined by one of the following expressions:

• TRUE

This stands for an arc constraint that always holds. As a result, the corresponding
arc always belongs to the final graph.

EXAMPLE: An example of use ofTRUE can be found in thesum ctr(VARIABLES, CTR,
VAR) constraint, where it is used in order to enforce keeping all items of theVARIABLES

collection in the final graph.

• Exp1 Comparison Exp2

– Exp1 is anarithmetic expression,

– Comparison is one of the comparison operators≤, ≥, <, >, =, 6=,

– Exp2 is anarithmetic expression.

2.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES51

EXAMPLE: As an example of such arc constraint, the second graph-constraint ofthe
cumulative(TASKS, LIMIT) constraint uses the following arc constraints:

– tasks1.duration > 0,

– tasks2.origin ≤ tasks1.origin,

– tasks1.origin < tasks2.end.

The conjunction of these three arc constraints can be interpreted in the following way:
an arc from a tasktasks1 to a tasktasks2 will belong to the final graph if and only if
tasks2 overlaps the origin oftasks1.

• Exp1 SimpleCtr Exp2

– Exp1 is anarithmetic expression,

– SimpleCtr is an argument of typeatom that can only take one of the values
≤, ≥, <, >, =, 6=,

– Exp2 is anarithmetic expression.

EXAMPLE: An example of use of such an arc constraint can be found
in the change(NCHANGE, VARIABLES, CTR) constraint: variables1.var CTR

variables2.var. Within this expression,variables1 andvariables2 correspond
to consecutive items of theVARIABLES collection.

• Exp1 ¬SimpleCtr Exp2

– Exp1 is anarithmetic expression,

– SimpleCtr is an argument of typeatom that can only take one of the values
≤, ≥, <, >, =, 6=,

– Exp2 is anarithmetic expression.

EXAMPLE: An example of use of such an arc constraint can be found
in the change continuity(NB PERIOD CHANGE, NB PERIOD CONTINUITY,
MIN SIZE CHANGE, MAX SIZE CHANGE, MIN SIZE CONTINUITY,
MAX SIZE CONTINUITY, NB CHANGE, NB CONTINUITY, VARIABLES, CTR) constraint:
variables1.var ¬CTR variables2.var. Within this expression,variables1 and
variables2 correspond to consecutive items of theVARIABLES collection.

• constraint(Exp1, . . . , Expn)

– constraint is a global constraint defined in the catalogue for which there
exists a graph-based and/or an automaton-based representation,

– Exp1, . . . , Expn correspond to the arguments of the global constraint
constraint. Each argument should be asimple arithmetic expressionthat
is compatible with the type declaration of the argument ofconstraint.

52 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

EXAMPLE: An example of such arc constraint can be found in the definition
of diffn: diffn(ORTHOTOPES) uses thetwo orth do not overlap(ORTHOTOPE1,
ORTHOTOPE2) global constraint for defining its arc constraint. SinceORTHOTOPES is a
collection of typecollection(ori− dvar, siz− dvar, end− dvar) and since both
ORTHOTOPE1 and ORTHOTOPE2 correspond to items ofORTHOTOPES there is no type
compatibility problem between the call totwo orth do not overlap and its defini-
tion.

• ArcCtr1 LogicalConnector ArcCtr2

– ArcCtr1 is anarc constraint,

– LogicalConnector is one of the logical connectors∨, ∧, ⇒, ⇔,

– ArcCtr2 is anarc constraint.

EXAMPLE: As shown by the following example,minimum(MIN, VARIABLES) uses
this kind of arc constraint:variables1 = variables2 ∨ variables1.var <
variables2.var, wherevariables1 and variables2 correspond to items of the
VARIABLES collection, holds if and only if one of the following conditions holds:

– variables1 andvariables2 correspond to the same item of theVARIABLES
collection,

– The var attribute of variables1 is strictly less than thevar attribute of
variables2.

Graph generators

This section describes how to generate the initial graph associated with a global con-
straint. Initial graphs correspond to directed hypergraphs [54], which have a very reg-
ular structure. They are defined in the following way:

• The vertices of the directed hypergraph are generated from collections of items
such that each item corresponds to one vertex of the directedhypergraph. These
collections are either collections that arise as argumentsof the global constraint,
or collections that are derived from one or several arguments of the global con-
straint. In this latter case thesederived collectionsare computed by using the
collection generatorspreviously introduced (see Section2.2.2on page42).

• To all arcs of the directed hypergraph corresponds the same arc constraint that
involves vertices in a given order.18 These arc constraints, which are mainly
unary and binary constraints, were described in the previous section (see Sec-
tion 2.2.2on page48). We describe all the arcs of an initial graph with a set of
predefinedarc generators, which correspond to classical regular structures one
can find in the graph literature [369, pages 140–153]. Anarc generatorof aritya
takesn collections of items, denotedci(1 ≤ i ≤ n), as input and returns the cor-
responding hypergraph where the vertices are the items of the input collections

18Usually the edges of a hypergraph are not oriented [54, pages 1–2]. However for our purpose we need
to define an order on the vertices of an edge since the corresponding arc constraint takes its arguments in a
given order.

2.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES53

ci(1 ≤ i ≤ n) and where all arcs involvea vertices. Specific arc generators al-
low for giving ana-ary constraint for whicha is not fixed, which means that the
corresponding hypergraph contains arcs involving variousnumber of vertices.

Each arc generator has a name and takes one or several collections of items as input
and generates a set of arcs. Each arc is made from a sequence ofitemsi1 i2 . . . ia and
is denoted by(i1, i2, . . . , ia). a is called thearity of the arc generator. We have the
following types of arc generators:

• Arc generators with a fixed predefined arity. In fact most arc generators have a
fixed predefined arity of2. The graphs they generate correspond to digraphs.

• Arc generators that can be used with any aritya greater than or equal to1. These
arc generators generate directed hypergraphs where all arcs consist ofa items.

• Arc generators that generate arcs that do not involve the same number of items.

We now give the list of arc generators, listed in alphabetic order, and the arcs they
generate. For each arc generator we point to a global constraint where it is used in
practice. Finally, Figure2.4 illustrates the different arc generators. At present the
following arc generators are in use:

• CHAIN has a predefined arity of2. It takes one collectionc and generates the
following arcs19:

– ∀i ∈ [1, |c| − 1]: (c[i], c[i+ 1]), – ∀i ∈ [1, |c| − 1]: (c[i+ 1], c[i]).

EXAMPLE: The arc generator CHAIN is for instance used in the
group skip isolated item constraint.

• CIRCUIT has a predefined arity of2. It takes one collectionc and generates
the following arcs:

– ∀i ∈ [1, |c| − 1]: (c[i], c[i+ 1]), – (c[|c|], c[1]).

EXAMPLE: The arc generatorCIRCUIT is for instance used in the
circular change constraint.

• CLIQUE can be used with any aritya greater than or equal to2. It takes
one collectionc and generates the arcs:∀i1 ∈ [1, |c|], ∀i2 ∈ [1, |c|], . . . , ∀ia ∈
[1, |c|] : (c[i1], c[i2], . . . , c[ia]).

EXAMPLE: The arc generatorCLIQUE is usually used with an aritya = 2. This is
for instance the case of thealldifferent constraint.

19As defined in Section2.1.2on page8 we use the following notation: for a given collectionc, |c| and
c[i] respectively denote the number of items ofc and theith item ofc.

54 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

• CLIQUE (Comparison) , whereComparison is one of the comparison oper-
ators≤, ≥, <, >, =, 6=, can be used with any aritya greater than or equal to2.
It takes one collectionc and generates the arcs:

∀i1 ∈ [1, |c|],

∀i2 ∈ [1, |c|] such thati1 Comparison i2,

. ,

∀ia ∈ [1, |c|] such thatia−1 Comparison ia : (c[i1], c[i2], . . . , c[ia]).

EXAMPLE: Theorchard(TREES) constraint is an example of constraint that uses the
CLIQUE (<) arc generator with an aritya = 3. It generates an arc for each set of three
trees.

• CYCLE has a predefined arity of2. It takes one collectionc and generates
the following arcs:

– ∀i ∈ [1, |c| − 1] (c[i], c[i+ 1]) and(c[i+ 1], c[i]),

– (c[|c|], c[1]) and(c[1], c[|c|]).

The arc generatorCYCLE is currently not used.

• GRID([d1, d2, . . . , dn]) takes a collectionc consisting ofd1·d2· · · · ·dn items

and generates the arcs(c[i], c[j]) wherei andj satisfy the following condition.
There exists an integerα (0 ≤ α ≤ n− 1) such that (1) and (2) hold:

(1) |i− j| =
∏

1≤k≤α dk (whenα = 0 we have
∏

1≤k≤α = 1),

(2) ⌊ i∏
1≤k≤α+1 dk

⌋ = ⌊ j∏
1≤k≤α+1 dk

⌋.

EXAMPLE: Theconnect points constraint uses theGRID arc generator.

• LOOP has a predefined arity of2. It takes one collectionc and generates the
arcs:∀i ∈ [1, |c|]: (c[i], c[i]). LOOP is usually used in order to generate a loop
on some vertices, so that they do not disappear from the final graph.

EXAMPLE: Theglobal contiguity(VARIABLES) constraint is an example of con-
straint that uses theLOOP arc generator so that each variable of theVARIABLES collec-
tion belongs to the final graph.

• PATH can be used with any aritya greater than or equal to1. It takes one
collectionc, and generates the following arcs:∀i ∈ [1, |c| − a+ 1] : (c[i], c[i+
1], . . . , c[i+ a− 1]).

EXAMPLE: PATH is for instance used in thesliding sum(LOW, UP, SEQ,
VARIABLES) constraint with an aritySEQ, whereSEQ is an argument of thesliding sum

constraint.

2.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES55

• PATH 1 generates arcs that do not involve the same number of items. It takes
one collectionc, and generates the following arcs:(c[1]), (c[1], c[2]), . . . ,
(c[1], c[2], . . . , c[|c|]).

EXAMPLE: PATH 1 is used in the
size max starting seq alldifferent constraint.

• PATH N generates arcs that do not involve the same number of items. It takes
one collectionc, and generates the following arcs:∀i ∈ [1, |c|], ∀j ∈ [i, |c|] :
(c[i], c[i+ 1], . . . , c[j]).

EXAMPLE: PATH N is for instance used in thesize max seq alldifferent con-
straint.

• PRODUCT has a predefined arity of2. It takes two collectionsc1, c2 and
generates the arcs:∀i ∈ [1, |c1|], ∀j ∈ [1, |c2|] : (c1[i], c2[j]).

EXAMPLE: PRODUCT is for instance used in thesame(VARIABLES1, VARIABLES2)
constraint for generating an arc from every item of theVARIABLES1 collection to every
item of theVARIABLES2 collection.

• PRODUCT (Comparison) , whereComparison is one of the comparison
operators≤, ≥, <, >, =, 6=, has a predefined arity of2. It takes two col-
lectionsc1, c2 and generates the arcs:∀i ∈ [1, |c1|], ∀j ∈ [1, |c2|] such that
i Comparison j : (c1[i], c2[j]).

EXAMPLE: PRODUCT (=) is for instance used in the
differ from at least k pos(K, VECTOR1, VECTOR2) constraint in order to generate
an arc between theith component ofVECTOR1 and theith component ofVECTOR2.

• SELF has a predefined arity of1. It takes one collectionc and generates the
arcs:∀i ∈ [1, |c|]: (c[i]).

EXAMPLE: SELF is for instance used in theamong(NVAR, VARIABLES, VALUES) con-
straint in order to generate a unary arc constraintin(variables.var, VALUES) for each
variable of theVARIABLES collection.

• SYMMETRIC PRODUCT has a predefined arity of2. It takes two col-
lectionsc1, c2 and generates the following arcs:∀i ∈ [1, |c1|], ∀j ∈ [1, |c2|] :
(c1[i], c2[j]) and(c2[j], c1[i]).

EXAMPLE: SYMMETRIC PRODUCT is for instance used in the
inverse within range constraint.

• SYMMETRIC PRODUCT (Comparison) , whereComparison is one of
the comparison operators≤, ≥, <, >, =, 6=, has a predefined arity of2. It takes
two collectionsc1, c2 and generates the arcs:∀i ∈ [1, |c1|], ∀j ∈ [1, |c2|] such
thati Comparison j : (c1[i], c2[j]) and(c2[j], c1[i]).

56 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

EXAMPLE: The two orth do not overlap constraint is an example of constraint
that uses theSYMMETRIC PRODUCT (=) arc generator.

• VOID takes one collection and does not generate any arc.

EXAMPLE: VOID is for instance used in thelex lesseq constraint.

Finally, we can combine thePRODUCT arc generator with the arc generators
from the following setGenerator = {CIRCUIT , CHAIN , CLIQUE , LOOP ,
PATH , VOID}. This is achieved by using the constructionPRODUCT (G1, G2)
whereG1 andG2 belong toGenerator . It appliesG1 to the first collectionc1 passed
to PRODUCT andG2 to the second collectionc2 passed toPRODUCT . Finally, it
appliesPRODUCT on c1 andc2. In a similar way thePRODUCT (Comparison)
arc generator is extended toPRODUCT (G1, G2, Comparison).

EXAMPLE: As an illustrative example, consider the
alldifferent same value(NSAME, VARIABLES1, VARIABLES2) constraint, which uses
the arc generatorPRODUCT (CLIQUE ,LOOP ,=) on the collectionsVARIABLES1
andVARIABLES2. It generates the following arcs:

• Since the first argument ofPRODUCT is CLIQUE it generates an arc between
each pair of items of theVARIABLES1 collection.

• Since the second argument ofPRODUCT is LOOP it generates a loop for each
item of theVARIABLES2 collection.

• Since the third argument is the comparison operator= it finally generates an arc
between an item of theVARIABLES1 collection and an item of theVARIABLES2
collection when the two items have the same position.

Figure 2.3 shows the generated graph under the hypothesis thatVARIABLES1 and
VARIABLES2 have respectively3 and3 items.

3

i

2i

3i

j1

VARIABLES2VARIABLES1

j2

j

1

Figure 2.3: Example of initial graph generated byPRODUCT (CLIQUE ,LOOP ,=)

Figure 2.4 illustrates the different arc generators. On the one hand, for those arc
generators that take one single collection, we apply them onthe collection of items
〈i − 1, i − 2, i − 3, i − 4〉. On the other hand, for those arc generators that take two
collections, we apply them on〈i − 1, i − 2〉 and〈i − 3, i − 4〉. We use the following
pictogram for the graphical representation of a constraintnetwork:

• A line for an arc constraint of arity1,

2.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES57

• An arrow for an arc constraint of arity2,

• A closed line for an arc constraint with an arity strictly greater than2. In this
last case, since the vertices of an arc are ordered, a black circle at one of the
extremities indicates the direction of the closed line. Forinstance consider the
example ofPATH 1 in Figure2.4. The closed line that contains vertices1, 2
and3 means that a3-ary arc constraint involves items1, 2, and3 in this specific
order.

Dotted circles represent vertices that do not belong to the graph. This stems from
the fact that the arc generator did not produce any arc involving these vertices. The
leftmost lowest corner indicates the arity of the corresponding arc generator:

• An integer if it has a fixed predefined arity,

• n if it can be used with any arity greater than or equal to1,

• ∗ if it generates arcs that do not necessarily involve the samenumber of items.

Graph properties

We represent a global constraint as the search of a subgraph (i.e., a final graph) of
a known initial graph, so that this final graph satisfies a given set of graph proper-
ties and eventually belongs to a specific graph class. Most graph properties have the
form Parameter Comparison Exp or the formParameter /∈ [Exp1, Exp2], where
Parameter is a graph parameter [53], [182], Comparison is one of the comparison
operators=, <, ≥, >, ≤, 6=, andExp, Exp1, Exp2 are expressions that can be eval-
uated to an integer. Before defining each graph parameter, let’s first introduce some
basic vocabulary on graphs.

Graph terminology and notations A digraphG = (V (G), E(G)) is a pair where
V (G) is a finite set, called the set ofvertices, and whereE(G) is a set of ordered
pairs of vertices, called the set ofarcs. Thearc, path, circuit andstrongly connected
componentof a graphG correspond to oriented concepts, while theedge, chain, cycle
and connected componentare non-oriented concepts. However, as reported in [53,
page 6] an undirected graph can be seen as a digraph where to each edge we associate
the corresponding two arcs. Parts (A) and (B) of Figure2.5 respectively illustrate the
terms for undirected graphs and digraphs.

• We say thate2 is asuccessorof e1 if there exists an arc that starts frome1 and
ends ate2. In the same way, we say thate2 is apredecessorof e1 if there exists
an arc that starts frome2 and ends ate1.

• A vertex ofG that does not have any predecessor is called asource. A vertex of
G that does not have any successor is called asink.

58 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

2

1

2

1

2

1

2

1

1

2 2

1

34

21

2

1 1

2

2

1

2

1

34

21

34

21

2

1

2

1

2

1

2

1

2

1

2

1

4321

2

CYCLE

34

21

34

21

34

21

43

21

321

4321

4321

2

1

2

1

1

2 2

1

2

1 1

2

2

1

2

1

2

1

2

1

2

1

2

1

1

2

1

2

SYMMETRIC_PRODUCT()

PRODUCT()

PRODUCT()

CLIQUE()

PRODUCT()

SYMMETRIC_PRODUCT()

CLIQUE()

PRODUCT()

CLIQUE()

CLIQUE()

PRODUCT()

SYMMETRIC_PRODUCT()

CLIQUE()

PRODUCT()CIRCUIT

2

LOOP

1

CHAIN

2

CLIQUE SELF

1

SYMMETRIC_PRODUCT

2 2

2 2

2 2

2 2

2 2

GRID([2,2])

2 2

2

PRODUCT(PATH,VOID)

2

2

2

PATH

PATH_1

*

PATH_N

*
PRODUCT

2

2

2

2

2

n

n

SYMMETRIC_PRODUCT()

SYMMETRIC_PRODUCT()

SYMMETRIC_PRODUCT()

4321
4321

4321

4321

=

=

>

>

>

<

<

< ≥

≥

≥

6=

6=

≤

≤

≤

6=

Figure 2.4: Examples of arc generators

2.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES59

edge

cycle

vertex connected component

chain

vertex strongly connected component

arc

circuit

path

sink

source

(A) Undirected graph (B) Digraph

Figure 2.5: Graph terminology for an undirected graph and a digraph

• A sequence(e1, e2, . . . , ek) of edges ofG such that each edge has a common
vertex with the previous edge, and the other vertex common tothe next edge is
called achain of lengthk. A chain where all vertices are distinct is called an
elementary chain. Each equivalence class of the relation “ei is equal toej or
there exists a chain betweenei andej” is a connected componentof the graph
G.

• A sequence(e1, e2, . . . , ek) of arcs ofG such that, for each arcei (1 ≤ i < k)
the end ofei is equal to the start of the arcei+1, is called apath of length
k. A path where all vertices are distinct is called anelementary path. Each
equivalence class of the relation “ei is equal toej or there exists a path between
ei andej” is a strongly connected componentof the graphG.

• A chain (e1, e2, . . . , ek) of G is called acycle if the same edge does not occur
more than once in the chain and if the two extremities of the chain coincide. A
cycle(e1, e2, . . . , ek) of G is called acircuit if for each edgeei (1 ≤ i < k), the
end ofei is equal to the start of the edgeei+1.

• Given a graphG, we define thereduced graphR(G) of G as follows: to each
strongly connected component ofG corresponds a vertex ofR(G); to each arc
of G that connects different strongly connected components corresponds an arc
in R(G) (multiple arcs between the same pair of vertices are merged).

• The rank function associated with the verticesV (G) of a graphG that does not
contain any circuit is defined in the following way:

– The rank of the vertices that do not have any predecessor (i.e., the sources)
is equal to0,

– The rankr of a vertexv that is not a source is the length of longest path
(e1, e2, . . . , er) such that the start of the arce1 is a source and the end of
arcer is the vertexv.

We now present the different notations used in the catalogue:

• [k] corresponds to{1, · · · , k} for k any positive integer.

• Given a setX, |X| is the number of its elements.

60 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

• Given two setsX andY , X
⊎

Y denotes the union of the two sets when they are
disjoint.

• Given a digraphG andx ∈ V (G), d+G(x) = |{y : y ∈ V (G) : (x, y) ∈ E(G)}|
andd−G(x) = |{y : y ∈ V (G) : (y, x) ∈ E(G)}|.

• Given a digraphG andX a subset ofV (G), the subdigraph ofG induced byX
is the digraphG[X] whereV (G[X]) = X andE(G[X]) = X2∩E(G). By aim
of simplicity, we denoteG[V (G) −X] by G −X. Moreover, ifX = {x}, we
useG− x instead ofG− {x}.

• Given two digraphG1 andG2 such thatV (G1)∩ V (G2) = ∅, G1 ⊕G2 denotes
the graph whose vertices set isV (G1) ∪ V (G2) and whose arcs set isE(G1) ∪
E(G2).

• Given a graph parameterP ∈ {NCC,NSCC}, a digraphG and an integerk,
CH(G, k) is the number of connected components (respectively strongly con-
nected components) ofG with cardinalk.

Given a graph parameter, for instance the number of connected components,
NCCINITIAL will denote the number of connected components of the initial graph (i.e.,
the graph induced by the constraint under consideration),NCC will denote the num-
ber of connected components of the final graph (i.e., a subgraph of the initial graph).
The use ofNCC(G) will denote the number of connected components of the digraph
G.

Given a global constraintC, and a graph parameterP used in the description ofC,
P (respectivelyP) denotes a lower bound (respectively upper bound) ofP among all
possible final graphs compatible with the current status ofC.

Graph parameters We list in alphabetic order the differentgraph parameterswe
consider for a final graphGf = (V (Gf), E(Gf)) associated with a global constraint
and give an example of constraint where they are used:

• MAX DRG : largest distance between sources and sinks in the reduced
graph associated withGf (adjacent vertices are at a distance of1).

EXAMPLE: We do not provide any example sinceMAX DRG is currently not used.

• MAX ID : number of predecessors of the vertex ofGf that has the maximum
number of predecessors without counting an arc from a vertexto itself.

EXAMPLE: Thecircuit constraint uses the graph propertyMAX ID = 1 in order
to force each vertex of the final graph to have at most one predecessor.

2.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES61

• MAX NCC : number of vertices of the largest connected component ofGf .

EXAMPLE: Thelongest change(SIZE, VARIABLES, CTR) constraint uses the graph
propertyMAX NCC = SIZE in order to catch inSIZE the maximum number of
consecutive variables of theVARIABLES collection for which constraintCTR holds.

• MAX NSCC : number of vertices of the largest strongly connected compo-
nent ofGf .

EXAMPLE: Thetree constraint covers a digraph by a set of trees in such a way that
each vertex belongs to a distinct tree. It uses the graph-propertyMAX NSCC ≤ 1 in
order to avoid to have any circuit involving more than one vertex.

• MAX OD : number of successors of the vertex ofGf that has the maximum
number of successors without counting an arc from a vertex toitself.

EXAMPLE: Thetour constraint enforces to cover a graph with a Hamiltonian cycle.
It uses the graph-propertyMAX OD = 2 to enforce that each vertex ofGf have at
most twoa successors.

aSince thetour constraint uses theCLIQUE(6=) arc generator the vertices ofGf do not have
any loop.

• MIN DRG : smallest distance between sources and sinks in the reduced
graph associated withGf (adjacent vertices are at a distance of1).

EXAMPLE: We do not provide any example sinceMIN DRG is currently not used
by any constraint.

• MIN ID : number of predecessors of the vertex ofGf that has the minimum
number of predecessors without counting an arc from a vertexto itself.

EXAMPLE: Thetour constraint enforces to cover a graph with a Hamiltonian cycle.
It uses the graph-propertyMIN ID = 2 to enforce that each vertex ofGf have at most
twoa predecessors.

aSince thetour constraint uses theCLIQUE(6=) arc generator the vertices ofGf do not have
any loop.

62 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

• MIN NCC : number of vertices of the smallest connected component ofGf .

EXAMPLE: Within the group constraint, each connected component ofGf corre-
sponds to a maximum sequence of consecutive variables that take their value in a given
set of values. Therefore, the graph-propertyMIN NCC = MIN SIZE enforces that
the smallest sequence of such variables consist ofMIN SIZE variables.

• MIN NSCC : number of vertices of the smallest strongly connected com-
ponent ofGf .

EXAMPLE: Thecircuit(NODES) constraint enforces covering a digraph with one
circuit visiting once all its vertices. The graph-propertyMIN NSCC = |NODES|
enforces that the smallest strongly connected component ofGf contain|NODES| vertices.
Since|NODES| also corresponds to the number of vertices of the initial graph this means
thatGf is a strongly connected component involving all the vertices. This is clearlya
necessary conditiona for having a circuit visiting once all vertices.

aOf course, this is not enough, and the description of thecircuit constraint asks for some
other properties.

• MIN OD : number of successors of the vertex ofGf that has the minimum
number of successors without counting an arc from a vertex toitself.

EXAMPLE: Thetour constraint enforces to cover a graph with a Hamiltonian cycle. It
uses the graph-propertyMIN OD = 2 to enforce that each vertex ofGf have at most
twoa successors.

aSince thetour constraint uses theCLIQUE(6=) arc generator the vertices ofGf do not have
any loop.

• NARC : cardinality of the setE(Gf).

EXAMPLE: Thedisjoint(VARIABLES1, VARIABLES2) constraint enforces that each
variable of the collectionVARIABLES1 take a value that is distinct from all the values
assigned to the variables of the collectionVARIABLES2.
This is imposed by creating an arc from each variable ofVARIABLES1 to each variable
of VARIABLES2. To each arc corresponds an equality constraint involving the variables
associated with the extremities of the arc. Finally, the graph propertyNARC = 0
forcesGf to be empty so that no value is both assigned to a variable ofVARIABLES1 as
well as to a variable ofVARIABLES2.

2.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES63

• NARC NO LOOP : cardinality of the setE(Gf) without considering the
arcs linking the same vertex (i.e., a loop).

EXAMPLE: The constraint alldifferent same value uses the
NARC NO LOOP graph-property.

• NCC : number of connected components ofGf .

EXAMPLE: Thetree constraint covers a digraph byNTREES trees in such a way that
each vertex belongs to a distinct tree. It uses the graph-propertyNCC = NTREES in
order to state thatGf is made up fromNTREES connected components.

• NSCC : number of strongly connected components ofGf .

EXAMPLE: The constraintnvalue(NVAL, VARIABLES) forcesNVAL to be equal to the
number of distinct values assigned to the variables of the collectionVARIABLES. This
is enforced by using the graph-propertyNSCC = NVAL. Each strongly connected
component of the final graph corresponds to the variables that are assigned to the same
value.

• NSINK : number of vertices ofGf that do not have any successor.

EXAMPLE: Thesame(VARIABLES1, VARIABLES2) enforces that the variables of the
VARIABLES1 collection correspond to the variables of theVARIABLES2 collection ac-
cording to a permutation.
We first create an arc from each variable ofVARIABLES1 to each variable of
VARIABLES2. To each arc corresponds an equality constraint involving the variables
associated with the extremities of the arc. We use the graph-propertyNSINK =
|VARIABLES2| in order to express the fact that each value assigned to a variable of
VARIABLES2 should also be assigned to a variable ofVARIABLES1.

64 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

• NSINK NSOURCE : sum over the different connected components ofGf

of the minimum of the number of sinks and the number of sourcesof a connected
component.

EXAMPLE: Thesoft same var(C, VARIABLES1, VARIABLES2) constraint enforcesC
to be the minimum number of values to change in theVARIABLES1 and theVARIABLES2
collections of variablesa, so that the variables ofVARIABLES2 correspond to the variables
of VARIABLES1 according to a permutation.
A connected componentCval of the final graphGf corresponds to all variables that are
assigned to the same valueval : the sources and the sinks ofCval respectively correspond
to the variables ofVARIABLES1 and to the variables ofVARIABLES2 that are assigned to
val . For a connected component, the minimum of the number of sources andsinks ex-
presses the number of variables for which we do not need to make any change. Therefore
we use the graph-propertyNSINK NSOURCE = |VARIABLES1| − C for encoding
the meaning of thesoft same var constraint.

aBoth collections have the same number of variables.

• NSOURCE : number of vertices ofGf that do not have any predecessor.

EXAMPLE: Thesame(VARIABLES1, VARIABLES2) enforces that the variables of the
VARIABLES1 collection correspond to the variables of theVARIABLES2 collection ac-
cording to a permutation.
We first create an arc from each variable ofVARIABLES1 to each variable of
VARIABLES2. To each arc corresponds an equality constraint involving the variablesas-
sociated with the extremities of the arc. We use the graph-propertyNSOURCE =
|VARIABLES1| in order to express the fact that each value assigned to a variable of
VARIABLES1 should also be assigned to a variable ofVARIABLES2.

• NTREE : number of vertices ofGf that do not belong to any circuit and for
which at least one successor belongs to a circuit. Such vertices can be interpreted
as root nodes of a tree.

EXAMPLE: The cycle(NCYCLE, NODES) enforces thatNCYCLE equal the number of
circuits for covering an initial graph in such a way that each vertex belongs to one single
circuit.
The graph-propertyNTREE = 0 enforces that all vertices of the final graph belong to
a circuit.

2.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES65

• NVERTEX : cardinality of the setV (Gf).

EXAMPLE: Thecutset(SIZE CUTSET, NODES) constraint considers a digraph withn
vertices described by theNODES collection. It enforces that the subset of kept vertices
of cardinalityn − SIZE CUTSET and their corresponding arcs form a graph without a
circuit. It uses the graph-propertyNVERTEX = n − SIZE CUTSET for enforcing
that the final graphGf contain the required number of vertices.

• RANGE DRG : difference between the largest distance between sources
and sinks in the reduced graph associated withGf and the smallest distance
between sources and sinks in the reduced graph associated withGf .

EXAMPLE: Thetree range constraint enforces to cover a digraph in such a way that
each vertex belongs to a distinct tree. In addition it forces the differencebetween the
longest and the shortest paths ofGf to be equal to the variableR. For this purpose it
uses the graph-propertyRANGE DRG = R.

• RANGE NCC : difference between the number of vertices of the largest
connected component ofGf and the number of vertices of the smallest connected
component ofGf .

EXAMPLE: We do not provide any example sinceRANGE NCC is currently not
used by any constraint.

• RANGE NSCC : difference between the number of vertices of the largest
strongly connected component ofGf and the number of vertices of the smallest
strongly connected component ofGf .

EXAMPLE: The balance(BALANCE, VARIABLES) constraint forcesBALANCE to be
equal to the difference between the number of occurrences of the value that occurs the
most and the value that occurs the least within the collection of variablesVARIABLES.
Each strongly connected component ofGf corresponds to the variables that are assigned
to the same value. The graph propertyRANGE NSCC = BALANCE allows for ex-
pressing this definition.

• ORDER(rank, default, attr)

– rank is an integer or an argument of type integer of the global constraint,

– default is an integer,

66 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

– attr is an attribute corresponding to an integer or to a domain variable that
occurs in all the collections that were used for generating the vertices of the
initial graph.

We explain what is the value associated withORDER(rank, default, attr).
Let V denote the vertices of rankrank of Gf from which we remove any loops.

– WhenV is not empty, it corresponds to the values of attributeattr of the
items associated with the vertices ofV,

– Otherwise, whenV is empty, it corresponds to the default valuedefault.

EXAMPLE: The minimum(MIN, VARIABLES) forces MIN to be the minimum value
of the collection of domain variablesVARIABLES. There is an arc from a vari-
able var1 to a variablevar2 if and only if var1 < var2. The graph-property
ORDER(0, MAXINT, var) = MIN expresses the fact thatMIN is equal to the value
of the source ofGf (sincerank = 0).

• PATH FROM TO(attr, from, to)

– ∗ attr is an attribute corresponding to an integer that occurs in all the
collections that were used for generating the vertices of the initial
graph,

∗ from is an integer or an argument of type integer of the global con-
straint,

∗ to is an integer or an argument of type integer of the global constraint.

LetF (respectivelyT) denote the vertices ofGf such thatattr is equal to
from (respectivelyto). PATH FROM TO(attr, from, to) is equal to
1 if there exists a path between each vertex ofF and each vertex ofT , and
0 if there exists no path between a vertex ofF and a vertex ofT .

– ∗ attr is an attribute corresponding to an integer that occurs in all the
collections that were used for generating the vertices of the initial
graph,

∗ from is an attribute corresponding to an integer or to a set of inte-
gers that occurs in all the collections that were used for generating the
vertices of the initial graph,

∗ to is an attribute corresponding to an integer or to a set of integers that
occurs in all the collections that were used for generating the vertices
of the initial graph,

For each vertexv of Gf let:

∗ Fv the set of vertices for which the value of the attributeattr is equal
to thefrom attribute (or is included within thefrom attribute when it
corresponds to a set of integers).

2.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES67

∗ Tv the set of vertices for which the value of the attributeattr is equal
to theto attribute (or is included within theto attribute when it corre-
sponds to a set of integers).

PATH FROM TO(attr, from, to) is equal to

∗ 1 if for each vertex ofGf there exists a path between each vertex of
Fv and each vertex ofTv.

∗ 0 if for a vertex ofGf there is no path between a vertex ofFv and a
vertex ofTv.

EXAMPLE: The constraintslex lesseq and stable compatibility use the
PATH FROM TO graph-property.

• PROD(col, attr)

– col is a collection that was used for generating the vertices of the initial
graph,

– attr is an attribute corresponding to an integer or to a domain variable of
the collectioncol.

Let V be the set of vertices ofGf that were generated from the items of the
collectioncol.

– If V is not empty,PROD(col, attr) corresponds to the product of the
values of attributeattr associated with the vertices ofV,

– Otherwise, ifV is empty,PROD(col, attr) is equal to1.

EXAMPLE: The constraintproduct ctr(VARIABLES, CTR, VAR) forces the product of
the variables of theVARIABLES collection to be equal, less than or equal, . . . to a given
domain variableVAR.
To each variable ofVARIABLES corresponds a vertex of the initial graph. Since we want
to keep all the vertices of the initial graph we use theSELF arc generator together
with the TRUE arc constraint. Finally,PROD(VARIABLES, var) CTR VAR expresses
the required condition. In this expressionvar andCTR respectively corresponds to the
attribute of the collectionVARIABLES (a domain variable) and to the condition we want
to enforce. Since the final graphGf contains all the vertices of the initial graph, the
expressionPROD(VARIABLES, var) corresponds to the product of the variables of the
VARIABLES collection.

• RANGE(col, attr)

– col is a collection that was used for generating the vertices of the initial
graph,

68 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

– attr is an attribute corresponding to an integer or to a domain variable of
the collectioncol.

Let V be the set of vertices ofGf that were generated from the items of the
collectioncol.

– If V is not empty,RANGE(col, attr) corresponds to the difference be-
tween the maximum and the minimum values of attributeattr associated
with the vertices ofV,

– Otherwise, ifV is empty,RANGE(col, attr) is equal to0.

EXAMPLE: The constraintrange ctr(VARIABLES, CTR, VAR) forces the difference
between the maximum value and the minimum value of the variables of theVARIABLES

collection to be equal, less than or equal, . . . to a given domain variableVAR.
To each variable ofVARIABLES corresponds a vertex of the initial graph. Since we want
to keep all the vertices of the initial graph we use theSELF arc generator together with
the TRUE arc constraint. Finally,RANGE(VARIABLES, var) CTR VAR expresses the
required condition. In this expressionvar andCTR respectively corresponds to the at-
tribute of the collectionVARIABLES (a domain variable) and to the condition we want to
enforce. Since the final graphGf contains all the vertices of the initial graph, the expres-
sionRANGE(VARIABLES, var) corresponds to the difference between the maximum
value and the minimum value of the variables of theVARIABLES collection.

• SUM(col, attr)

– col is a collection that was used for generating the vertices of the initial
graph,

– attr is an attribute corresponding to an integer or to a domain variable of
the collectioncol.

Let V be the set of vertices ofGf that were generated from the items of the
collectioncol.

– If V is not empty,SUM(col, attr) corresponds to the sum of the values
of attributeattr associated with the vertices ofV,

– Otherwise, ifV is empty,SUM(col, attr) is equal to0.

EXAMPLE: The constraintsum ctr(VARIABLES, CTR, VAR) forces the sum of the vari-
ables of theVARIABLES collection to be equal, less than or equal, . . . to a given domain
variableVAR.
To each variable ofVARIABLES corresponds a vertex of the initial graph. Since we want
to keep all the vertices of the initial graph we use theSELF arc generator together
with theTRUE arc constraint. Finally,SUM(VARIABLES, var) CTR VAR expresses the
required condition. In this expressionvar andCTR respectively correspond to the at-
tribute of the collectionVARIABLES (a domain variable) and to the condition we want to
enforce. Since the final graphGf contains all the vertices of the initial graph, the expres-
sionSUM(VARIABLES, var) corresponds to the sum of the variables of theVARIABLES

collection.

2.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES69

• SUM WEIGHT ARC(Expr) Expr is an arithmetic expression.

For each arc a of E(Gf), let f(a) denote the value ofExpr.
SUM WEIGHT ARC(Expr) is equal to

∑

a∈E(Gf)
f(a). The value of

Expr usually depends on the attributes of the items located at theextremities
of an arc.

EXAMPLE: The constraint global cardinality with costs(VARIABLES,
VALUES, MATRIX, COST) enforces that each valueVALUES[i].val be assigned to exactly
VALUES[i].noccurrence variables of theVARIABLES collection. In addition theCOST
of an assignment is equal to the sum of the elementary costs associated withthe fact that
we assign theith variable of theVARIABLES collection to thejth value of theVALUES
collection. These elementary costs are given by theMATRIX collection.
The graph-propertySUM WEIGHT ARC(MATRIX[(variables.key−1)∗size(VALUES)+
values.key].c) = COST expresses that theCOST variable is equal to the sum of the
elementary costs associated with each variable-value assignment. All these elementary
costs are recorded in theMATRIX collection. More precisely, the costcij is recorded in
the attributec of the((i− 1) ∗ |VALUES)|+ j)th entry of theMATRIX collection.

A last graph parameter,DISTANCE , is computed on two final graphsG1 and
G2 that have the same setV of vertices and the setsE(G1) andE(G2) of arcs. This
graph parameter is the cardinality of the set(E(G1) − E(G2)) ∪ (E(G2) − E(G1)).
This corresponds to the number of arcs that belong toE(G1) but not toE(G2), plus
the number of arcs that are inE(G2) but not inE(G1).

Graph class For a given global constraint, a graph class specifies a general property
that holds on its final digraph. We list the different graph classes and, for each of
them, we point to some global constraints that fit in that class. Finding all the global
constraints corresponding to a given graph class can be doneby looking into the list of
keywords (see Section3.7on page147).

• ACYCLIC : the final graph doesn’t have any circuit.

• BIPARTITE : the final graph is bipartite.

• CONSECUTIVE LOOPS ARE CONNECTED : denotes that the graph constraint of
a global constraint uses only thePATH and theLOOP arc generators and that
the final graph does not contain consecutive vertices that have a loop and that are
not connected together by an arc.

• EQUIVALENCE : the final graph is reflexive, symmetric and transitive.

70 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

• NO LOOP : the final graph doesn’t have any loop.

• ONE SUCC : the vertices of the initial graph belong to the final graph and all
vertices of the final graph have exactly one successor.

• SYMMETRIC : the final graph is symmetric. A digraph issymmetricif and only
if, if there is an arc from a vertexu to a vertexv, there is also an arc fromv to u.

2.2.3 Graph constraint

A global constraint can be defined as a conjunction of severalsimpleor dynamic graph
constraints20 that all share the same name, the same arguments and the same argument
restrictions.21 This section first describessimple graph constraintsand thendynamic
graph constraints, which are an extension ofsimple graph constraints.

Simple graph constraint

To a simple graph constraintcorrespond several initial graphs, usually one, where
all the initial graphs have the same vertices and arcs. Specifying more than one ini-
tial graph is usually22 achieved by using theFOR ALL ITEMS OF iterator (e.g., see for
instance the definition of theglobal cardinality constraint), which takes a collec-
tionC and generates an initial graphGi(t) for each itemt of C. In this context, the arc
constraints and/or graph properties of an initial graph maydepend of the attributes of
the itemt of C from which they were generated. All arc constraints attached to a given
arc23 have to be pairwise mutually incompatible.24

The graphs of asimple graph constraintare defined by the following slots:

• An Arc input(s) slot, which consists of:

– Either a sequence of collectionsC1, C2, . . . , Cd (d ≥ 1). To each item
of these collections corresponds a vertex of the initial graph (i.e., in this
context we generate one single initial graph).

– Either a list of sequences of collections. To each item of thecollections of
a given sequence corresponds a vertex of one of the initial graphs (i.e., in
this context we generate one initial graph for each sequence25).

20For an example of global constraint that is defined by more than one graph constraint see for instance
thesort constraint and its two graph constraints.

21The arguments and the argument restrictions were described inSection2.1.4on page17.
22An other way of generating several initial graphs will be explained later on in theArc input(s) slot.
23As we previously said, even if we have more than one initial graph, all vertices and arcs of the different

initial graphs are identical.
24Two arc constraintsconstraint1(X1, X2, . . . , Xn) and constraint2(X1, X2, . . . , Xn) are

incompatible if there does not exist any tuple of values〈v1, v2, . . . , vn〉 such that both
constraint1(X1, X2, . . . , Xn) andconstraint2(X1, X2, . . . , Xn) hold.

25This is for instance the case for thedistance between constraint.

2.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES71

• An Arc generator slot, which can be one or several expressions26 of the follow-
ing forms:

– ARC GENERATOR 7→ collection(item1, item2, . . . , itema),
whereARC GENERATOR is one of the arc generators with a fixed ar-
ity27 defined in Section2.2.2on page52, anditemi (1 ≤ i ≤ a) denotes
the ith item associated with theith vertex of an arc. These items corre-
spond to formal parameters28 which can be used within an arc constraint.
When theArc input(s) slot consists of one single collection(d = 1), itemi
(1 ≤ i ≤ a) represents an item of the collectionC1. Otherwise, when
d > 1, we must havea = d and, in this context,itemi (1 ≤ i ≤ a)
represents an item ofCi.

EXAMPLE: Thealldifferent(VARIABLES) constraint has the followingArc
input(s) andArc generator slots:

∗ Its Arc input(s) slot refers only to the collectionVARIABLES (i.e.,d = 1).

∗ Its Arc generator slot consists of
CLIQUE 7→ collection (variables1, variables2) (i.e.,a = 2).

In this context, whered = 1, bothvariables1 andvariables1 are items of
theVARIABLES collection.

EXAMPLE: The same(VARIABLES1, VARIABLES2) constraint has the follow-
ing Arc input(s) andArc generator slots:

∗ Its Arc input(s) slot refers to the collectionsVARIABLES1 and
VARIABLES2 (i.e.,d = 2).

∗ Its Arc generator slot consists of
PRODUCT 7→ collection(variables1, variables2) (i.e., a =
2).

In this context, whered > 1, variables1 andvariables1 respectively corre-
spond to items of theVARIABLES1 and theVARIABLES2 collections.

– ARC GENERATOR 7→ collection, whereARC GENERATOR

is one of the arc generatorsPATH 1 or PATH N . In this context,
collection denotes a collection of items corresponding to the vertices
of an arc of the initial graph. An arc constraint enforces a restriction on the
items of this collection.

26Usually one single expression.
27Any arc generator different fromPATH 1 andPATH N .
28See the description ofsimple arithmetic expressionspage48.

72 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

EXAMPLE:
Thesize max seq alldifferent (SIZE, VARIABLES) constraint has the fol-
lowing Arc input(s) andArc generator slots:

∗ Its Arc input(s) slot refers to theVARIABLES collection.

∗ Its Arc generator slot consists ofPRODUCT 7→ collection.

In this context,collection is a collection of the same type as theVARIABLES
collection. It corresponds to the variables associated with an arc of the initial
graph.

When theArc generator slot consists ofn (n > 1) expressions then these
expressions have the form:

ARC GENERATOR1 7→ collection(item1, item2, . . . , itema)

ARC GENERATOR2 7→ collection(item1, item2, . . . , itema)

. .

ARC GENERATORn 7→ collection(item1, item2, . . . , itema)

All leftmost part of the expressions must be the same since they will be involved
in one singleArc constraint(s) slot. Theglobal contiguity constraint is an
example of global constraint where more than one arc generator is used.

• An Arc arity slot, which corresponds to the number of verticesa of each arc of
the initial graph.a is either a strictly positive integer, an argument of the global
constraint of typeint, or the character *. In this last case, this is used for denot-
ing that all the arc constraints do not involve the same number of vertices. This
is for instance the case when we use the arc generatorsPATH 1 or PATH N

as in thearith sliding or thesize max seq alldifferent constraints.

• An Arc constraint(s) slot, which corresponds to a conjunction ofarc con-
straints29 those were introduced in Section2.2.2on page48.

• A Graph property(ies) slot, which corresponds to one or severalgraph proper-
ties (see Section2.2.2on page57) to be satisfied on the final graphs associated
with an instantiated solution of the global constraint. To each initial graph corre-
sponds one final graph obtained by removing all arcs for whichthe corresponding
arc constraints do not hold as well as all vertices that do nothave any arc.

We now give several examples of descriptions ofsimple graph constraints, start-
ing from thenvalue constraint, which was introduced as a first example of global
constraint that can be modelled by a graph property in Section 2.2.1on page39.

29Usually this conjunction consists of one singlearc constraint.

2.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES73

EXAMPLE: The constraintnvalue(NVAL, VARIABLES) restrictsNVAL to be the number of
distinct values taken by the variables of the collectionVARIABLES. Its meaning is described
by asimple graph constraintcorresponding to the following items:

Arc input(s) : VARIABLES

Arc generator : CLIQUE 7→ collection(variables1, variables2)

Arc arity : 2

Arc constraint(s) : variables1.var = variables2.var

Graph property(ies): NSCC = NVAL

Since this description does not use theFOR ALL ITEMS OF iterator we generate one single
initial graph. Each vertex of this graph corresponds to one item of theVARIABLES collection.
Since we use theCLIQUE arc generator we have an arc between each pair of vertices.
An arc constraint corresponds to an equality constraint between the two variables that are
associated with the extremities of the arc. Finally, theGraph property(ies) slot forces the
final graph to haveNVAL strongly connected components.

EXAMPLE: The constraintglobal contiguity(VARIABLES) forces all variables of the
VARIABLES collection to be assigned to0 or 1. In addition, all variables assigned to value
1 appear contiguously. Its meaning is described by asimple graph constraintcorresponding
to the following items:

Arc input(s) : VARIABLES

Arc generator : PATH 7→ collection(variables1, variables2)

LOOP 7→ collection(variables1, variables2)

Arc arity : 2

Arc constraint(s) : variables1.var = variables2.var

variables1.var = 1

Graph property(ies): NCC ≤ 1

Since this description does not use theFOR ALL ITEMS OF iterator we generate one single
initial graph. Each vertex of this graph corresponds to one item of theVARIABLES collection.
Since we use thePATH arc generator we generate an arc from itemVARIABLES[i] to item
VARIABLES[i + 1] (1 ≤ i < |VARIABLES|). In addition, since we use theLOOP arc
generator, we generate also an arc from each item of theVARIABLES collection to itself.a

The effect of the arc constraint is to keep in the final graph those vertices for which the
corresponding variable is assigned to1. Adjacent variables assigned to1 form a connected
component of the final graph and the graph propertyNCC ≤ 1 enforces to have at most
one such group of adjacent variables assigned to1.

aWe use theLOOP arc generator in order to keep in the final graph those isolated variables assigned
to 1. This is because isolated vertices with no arcs are always removed from the final graph.

74 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

EXAMPLE:
The global cardinality(VARIABLES, VALUES) constraint enforces that each value
VALUES[i].val (1 ≤ i ≤ |VALUES|) be taken by exactlyVALUES[i].noccurrence vari-
ables of theVARIABLES collection. Its meaning is described by asimple graph constraint
corresponding to the following items:

For all items of VALUES:

Arc input(s) : VARIABLES

Arc generator : SELF 7→ collection(variables)

Arc arity : 1

Arc constraint(s) : variables.var = VALUES.val

Graph property(ies): NVERTEX = VALUES.noccurrence

Since this description uses theFor all items of VALUES iterator on theVALUES collection
we generate an initial graph for each item of theVALUES collection (i.e., one graph for
each value). Each vertex of an initial graph corresponds to one item of the VARIABLES

collection. Since we use theSELF arc generator we have an arc for each vertex. For an
initial graph associated with a valueval an arc constraint on a vertexv corresponds to an
equality constraint between the variable associated withv and the valueval . Finally, the
Graph property(ies) slot forces the final graph to have a given number of vertices (i.e.,
associated with the attributeval).

Dynamic graph constraint

The purpose of adynamic graph constraintis to enforce a condition on different subsets
of variables, not known in advance. This situation occurs frequently in practice and is
hard to express since one cannot use a classical constraint for which it is required
to provide all variables right from the beginning. One good example of such global
constraint is thecumulative constraint where one wants to force the sum of some
variables to be less than or equal to a given limit. In the context of thecumulative
constraint, each set of variables is defined by the height of the different tasks that
overlap a given instanti. Since the origins of the tasks are not initially fixed, we do not
know in advance which task will overlap a given instant and so, we cannot state any
sum constraint initially.

A dynamic graph constraintis defined in exactly the same way as asimple graph
constraint, except that we may omit theGraph property(ies) slot, and that we have to
provide the two following additional slots:

• The Set slot denotes a generator of sets of vertices. Such a generator takes as
argument a final graph and produces different sets of vertices. In order to have
something tractable, we force the total number of generatedsets to be polynomial
in the number of vertices.

In practice each set of vertices is represented by a collection of items. The type
of this collection corresponds either to the type of the items associated with the
vertices, or to the type of a new derived collection. This is achieved by providing
an expression of the formname or name-derived collection, wherename

2.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES75

represents a formal parameter, andderived collection a declaration of a new
derived collection (as specified in Section2.2.2on page42).

• TheConstraint(s) on setsslot provides a global constraint defined in the cata-
logue that has to hold for each set created by the previous generator.

We now describe the different generators of sets of verticescurrently available:

• ALL VERTICES generates one single set containing all the vertices of the final
graph. It is specified by a declaration of the form

ALL VERTICES>> [vertices]

wherevertices represents all the vertices of the final graph.

• CC generates one set of vertices for each connected component of the final
graph. These sets correspond to all the vertices of a given connected component.
It is specified by a declaration of the form

CC>> [connected component]

whereconnected component represents the vertices of a connected component
of the final graph.

• PATH LENGTH(L) generates all elementary paths30 of L vertices of the final
graph such that, discarding loops, all vertices of a path (except the last one) have
no more than one successor in the final graph. It is specified bya declaration of
the form

PATH LENGTH(L)>> [path]

wherepath represents the vertices of an elementary path, ordered according to
their occurrence in the path.

• PRED generates the non-empty sets corresponding to the predecessors of each
vertex of the final graph. It is specified by a declaration of the form

PRED>> [predecessor, destination]

wheredestination represents a vertex of the final graph andpredecessor its
predecessors.

• SUCC generates the non-empty sets corresponding to the successors of each
vertex of the final graph. It is specified by a declaration of the form

SUCC>> [source, successor]

wheresource represents a vertex of the final graph andsuccessor its succes-
sors.

As an illustrative example ofdynamic graph constraintwe now consider the
cumulative constraint.

30A path where all vertices are distinct is called anelementary path.

76 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

EXAMPLE: The cumulative(TASKS, LIMIT) constraint, whereTASKS is a col-
lection of the form collection(origin− dvar, duration− dvar, end− dvar,
height− dvar), and whereLIMIT is a non-negative integer, holds if, for any point the
cumulated height of the set of tasks that overlap that point, does not exceedLIMIT.
The first graph constraint ofcumulative enforces for each task of theTASKS collection
the equalityorigin+ duration = end. We focus on the second graph constraint, which
uses adynamic graph constraintdescribed by the following items:

Arc input(s) : TASKS TASKS

Arc generator : PRODUCT 7→ collection(tasks1, tasks2)

Arc arity : 2

Arc constraint(s) : tasks1.duration > 0

tasks2.origin ≤ tasks1.origin

tasks1.origin ≤ tasks2.end

Sets : SUCC>>

[source,

variables− col(VARIABLES− collection(var− dvar),

[item(var− TASKS.height)])]

Constraint(s) on sets: sum ctr(variables,≤, LIMIT)

The second graph constraint is defined by:

• To each item of theTASKS collection correspond two vertices of the initial graph.

• The arity of the arc constraint is2.

• The arcs of the initial graph are constructed with thePRODUCT arc generator
between theTASKS collection and theTASKS collection. Therefore, each vertex
associated with a task is linked to all the vertices related to the different tasks.

• The arc constraint that is associated with an arc between a tasktasks1 and a task
tasks2 is an overlapping constraint that holds if both, the duration oftasks1 is
strictly greater than zero, and if the origin oftasks1 is overlapped by tasktasks2.

• The set generator isSUCC. The final graph will consist of those tasks for which
the origin is covered by at least one task and of those corresponding tasks.

• The dynamic constraint on a set forces the sum of the heights of the tasksthat
belong to a successor set to not exceedLIMIT.

2.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES77

(B)

time_points tasks time_points tasks

(origins of the tasks) (origins of the tasks)

(A)

5

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

1

Figure 2.6: Initial and final graph of an instance of thecumulative constraint

Parts (A) and (B) of Figure2.6 respectively show the initial and the final graph corre-
sponding to the following instance:
cumulative(〈origin− 1 duration− 3 height− 1,

origin− 2 duration− 9 height− 2,
origin− 3 duration− 10 height− 1,
origin− 6 duration− 6 height− 1,
origin− 7 duration− 2 height− 3〉, 8).

We label the vertices of the initial and final graph by giving thekeya of the corresponding
task. On both graphs the edges are oriented from left to right. On the finalgraph we
consider the sets that consist of the successors of the different vertices; those are the sets
of tasks{1}, {1, 2}, {1, 2, 3}, {2, 3, 4} and{2, 3, 4, 5}. Since theSUCC set generator
uses a derived collection that only considers theheight attribute of a task, these sets
respectively correspond to the following collection of items:

• 〈var− 1〉,
• 〈var− 1, var− 2〉,
• 〈var− 1, var− 2, var− 1〉,
• 〈var− 2, var− 1, var− 1〉,
• 〈var− 2, var− 1, var− 1, var− 3〉.

Thecumulative constraint holds since, for each successors set, the correspondingcon-
straint holds:

• sum ctr(〈var− 1〉, ≤, 8),

• sum ctr(〈var− 1, var− 2〉, ≤, 8),

• sum ctr(〈var− 1, var− 2, var− 1〉, ≤, 8),

• sum ctr(〈var− 2, var− 1, var− 1〉, ≤, 8),

• sum ctr(〈var− 2, var− 1, var− 1, var− 3〉, ≤, 8).

Thesum ctr(VARIABLES, CTR, VAR) constraint holds if the sumS of the variables of the
VARIABLES collection satisfiesS CTR VARIABLES, whereCTR is a comparison operator.

akey is an implicit attribute corresponding to the position of an item within a collection that was
introduced in Section2.1.2on page8.

78 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

2.3 Describing global constraints in terms of automata

This section is based on the article describing global constraint in terms of au-
tomata [34]. The main difference with the original article is the introduction of array
of counters within the description of an automaton. We consider global constraints for
which any ground instance can be checked in linear time by scanning once through
their variables without using any data structure, except counters or arrays of counters.
In order to concretely illustrate this point we first select aset of global constraints and
write down a checker for each of them. Finally, we give for each checker a sketch
of the corresponding automaton. Based on these observations, we define the type of
automaton we use in the catalogue.

2.3.1 Selecting an appropriate description

As we previously said, we focus on those global constraints that can be checked by
scanning once through their variables. This is for instancethe case of:

• element [393],

• minimum [26],

• pattern [78],

• global contiguity [252],

• lex lesseq [160],

• among [39],

• inflexion [24],

• alldifferent [320].

Since they illustrate key points needed for characterisingthe set of solutions asso-
ciated with a global constraint, our discussion will be based on the last five constraints
for which we now recall the definition:

• Theglobal contiguity(vars) constraint forces the sequence of0-1 variables
vars to have at most one group of consecutive1. For instance, the constraint
global contiguity(〈0, 1, 1, 0〉) holds since we have only one group of con-
secutive1.

• The lexicographic ordering constraint−→x≤lex
−→y (seelex lesseq) over two vec-

tors of variables−→x = 〈x0, . . . , xn−1〉 and−→y = 〈y0, . . . , yn−1〉 holds if and only
if n = 0 or x0 < y0 or x0 = y0 and〈x1, . . . , xn−1〉≤lex〈y1, . . . , yn−1〉.

• Theamong(nvar, vars, values) constraint restricts the number of variables of
the sequence of variablesvars that take their value in a given setvalues, to be
equal to the variablenvar. For instance,among(3, 〈4, 5, 5, 4, 1〉, 〈1, 5, 8〉) holds
since exactly3 values of the sequence45541 are located in the set of values
{1, 5, 8}.

• Theinflexion(ninf, vars) constraint forces the number of inflexions of the
sequence of variablesvars to be equal to the variableninf. An inflexionis de-
scribed by one of the following patterns: a strict increase followed by a strict de-
crease or, conversely, a strict decrease followed by a strict increase. For instance,

2.3. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF AUTOMATA 79

inflexion(4, 〈3, 3, 1, 4, 5, 5, 6, 5, 5, 6, 3〉) holds since we can extract from the
sequence33145565563 the four subsequences314, 565, 6556 and563, which
all follow one of these two patterns.

• Thealldifferent(vars) constraint forces all pairs of distinct variables of the
collectionvars to take distinct values. For instancealldifferent(〈6, 1, 5, 9〉)
holds since we have four distinct values.

(E1)

x[i]=y[i]

s:
nvar=c

t

ninf=c

ninf=c

ninf=c
j:i:

s:

s:

x[i]=y[i]

1 BEGIN
2 i=0;
3 WHILE i<n AND vars[i]=0 DO i++;
4 WHILE i<n AND vars[i]=1 DO i++;
5 WHILE i<n AND vars[i]=0 DO i++;
6 RETURN (i=n);
7 END.

global_contiguity (vars[0..n−1]):BOOLEAN

1 BEGIN
2 i=0;
3 WHILE i<n AND x[i]=y[i] DO i++;
4 RETURN (i=n OR x[i]<y[i]);
5 END.

among
1 BEGIN
2 i=0; c=0;
3 WHILE i<n DO
4 IF vars[i] in values THEN c++;

6 RETURN (nvar=c);
5 i++;

7 END.

(nvar,vars[0..n−1],values):BOOLEAN

vars[i]=0

vars[i]=1

vars[i]=0

vars[i]=0

vars[i]=1

n

global_contiguity

vars[i+1]

vars[i]=

vars[i]=vars[i+1]

vars[i]<vars[i+1]

vars[i]<
vars[i+1]

vars[i]=
vars[i+1] vars[i+1]

vars[i]>
vars[i+1]

vars[i]>

c++
vars[i]>vars[i+1],

vars[i]<vars[i+1],
c++

(A1)

(B1)

(C1)

(A2)

(D2)

07 IF vars[i]>vars[i+1] THEN c++; less=FALSE;

lex_lesseq (x[0..n−1],y[0..n−1]):BOOLEAN x[i]<y[i]

vars[i]
notin values

vars[i]
in values,
c++

t

among

(B2) (C2)

lex_lesseq

01 BEGIN
alldifferent (vars[0..n−1]):BOOLEAN

02 u=vars[0]; v=vars[0]; i=1;

04 IF vars[i]<u THEN u=vars[i];
03 WHILE i<n DO

01 BEGIN
02 i=0; c=0;
03 WHILE i<n−1 AND vars[i]=vars[i+1] DO i++;
04 IF i<n−1 THEN less=(vars[i]<vars[i+1]);
05 WHILE i<n−1 DO
06 IF less THEN

08 ELSE

10 i++;
11 RETURN (ninf=c);
12 END.

(D1)

09 IF vars[i]<vars[i+1] THEN c++; less=TRUE;

inflection (ninf,vars[0..n−1]):BOOLEAN

c[vars[i]]=c[vars[i]]+1

(E2)

c[_]<2
<>$,

s

s

{c=0}

{c=0}inflection

{c[_]=0}

alldifferent

05 IF vars[i]>v THEN v=vars[i];
06 i++;
07 FOR i=u TO v DO c[i]=0;
08 FOR i=0 TO n−1 DO c[vars[i]]=c[vars[i]]+1;
09 FOR i=u TO v DO
10 IF c[i]>1 THEN RETURN FALSE;
11 RETURN TRUE;
12 END.

Figure 2.7: Five checkers and their corresponding automata

Parts (A1), (B1), (C1), (D1) and (E1) of Figure2.7 depict the five checkers re-
spectively associated withglobal contiguity, with lex lesseq, with among, with

80 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

inflexion and withalldifferent. For each checker we observe the following facts:

• Within the checker depicted by part (A1) of Figure2.7, the values of the sequence
vars[0], . . . , vars[n− 1] are successively compared against0 and1 in order to
check that we have at most one group of consecutive1. This can be translated to
the automaton depicted by part (A2) of Figure2.7. The automaton takes as input
the sequencevars[0], . . . , vars[n−1], and triggers successively a transition for
each term of this sequence. Transitions labelled by0, 1 and $ are respectively
associated with the conditionsvars[i] = 0, vars[i] = 1 andi = n. Transitions
leading to failure are systematically skipped. This is why no transition labelled
with a1 starts from statez.

• Within the checker given by part (B1) of Figure2.7, the components of vectors
−→x and−→y are scanned in parallel. We first skip all the components thatare
equal and then perform a final check. This is represented by the automaton
depicted by part (B2) of Figure2.7. The automaton takes as input the sequence
〈x[0], y[0]〉, . . . , 〈x[n − 1], y[n − 1]〉 and triggers a transition for each term of
this sequence. Unlike theglobal contiguity constraint, some transitions now
correspond to a condition (e.g.,x[i] = y[i], x[i] < y[i]) between two variables
of thelex lesseq constraint.

• Note that theamong(nvar, vars, values) constraint involves a variablenvar
whose value is computed from a given collection of variablesvars. The
checker depicted by part (C1) of Figure2.7 counts the number of variables of
vars[0], . . . , vars[n − 1] that take their value invalues. For this purpose it
uses a counterc, which is eventually tested against the value ofnvar. This con-
vinced us to allow the use of counters in an automaton. Each counter has an
initial value, which can be updated while triggering certain transitions. The final
state of an automaton can force a variable of the constraint to be equal to a given
counter. Part (C2) of Figure2.7 describes the automaton corresponding to the
code given in part (C1) of the same figure. The automaton uses the counter vari-
ablec initially set to0 and takes as input the sequencevars[0], . . . , vars[n−1].
It triggers a transition for each variable of this sequence and incrementsc when
the corresponding variable takes its value invalues. The final state returns a
success when the value ofc is equal tonvar. At this point we want to stress the
following fact: it would have been possible to use an automaton that avoids the
use of counters. However, this automaton would depend on theeffective value of
the argumentnvar. In addition, it would require more states than the automaton
of part (C2) of Figure2.7. This is typically a problem if we want to have a fixed
number of states in order to save memory as well as time.

• As theamong constraint, theinflexion(ninf, vars) constraint involves a vari-
ableninf whose value is computed from a given sequence of variablesvars[0],
. . . , vars[n − 1]. Therefore, the checker depicted in part (D1) of Figure2.7
uses also a counterc for counting the number of inflexions, and compares its
final value to theninf argument. The automaton depicted by part (D2) of
Figure 2.7 represents this program. It takes as input the sequence of pairs

2.3. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF AUTOMATA 81

〈vars[0], vars[1]〉, 〈vars[1], vars[2]〉 , . . . , 〈vars[n − 2], vars[n − 1]〉 and
triggers a transition for each pair. Note that a given variable may occur in more
than one pair. Each transition compares the respective values of two consecutive
variables ofvars[0..n−1] and increments the counterc when a new inflexion is
detected. The final state returns a success when the value ofc is equal toninf.

• The checker associated withalldifferent is depicted by part (E1) of Fig-
ure 2.7. It first initialises an array of counters to0. The entries of the array
correspond to the potential values of the sequencevars[0], . . . , vars[n − 1].
In a second phase the checker computes for each potential value its number of
occurrences in the sequencevars[0], . . . , vars[n − 1]. This is done by scan-
ning this sequence. Finally in a third phase the checker verifies that no value
is used more than once. These three phases are represented bythe automaton
depicted by part (E2) of Figure2.7. The automaton depicted by part (E2) takes
as input the sequencevars[0], . . . , vars[n − 1]. Its initial state initialises an
array of counters to0. Then it triggers successively a transition for each element
vars[i] of the input sequence and increments by1 the entry corresponding to
vars[i]. The final state checks that all entries of the array of counters are strictly
less than2, which means that no value occurs more than once in the sequence
vars[0], . . . , vars[n− 1].

Synthesising all the observations we got from these examples leads to the following
remarks and definitions for a given global constraintC:

• For a given state, no transition can be triggered indicates that the constraintC
does not hold.

• Since all transitions starting from a given state are mutually incompatible all
automata are deterministic. LetM denote the set of mutually incompatible con-
ditions associated with the different transitions of an automaton.

• Let S0, . . . ,Sm−1 denote the sequence of subsets of variables ofC on which the
transitions are successively triggered. All these subsetscontain the same num-
ber of elements and refer to some variables ofC. Since these subsets typically
depend on the constraint, we leave the computation ofS0, . . . ,Sm−1 outside the
automaton. To each subsetSi of this sequence corresponds a variableSi with an
initial domain ranging over[min,min + |M| − 1], wheremin is a fixed inte-
ger. To each integer of this range corresponds one of the mutually incompatible
conditions ofM. The sequencesS0, . . . , Sm−1 andS0, . . . ,Sm−1 are respec-
tively called thesignatureand thesignature argumentof the constraint. The
constraint betweenSi and the variables ofSi is called thesignature constraint
and is denoted byΨC(Si,Si).

• From a pragmatic point the view, the task of writing a constraint checker is nat-
urally done by writing down an imperative program where local variables, ar-
rays, assignment statements and control structures are used. This suggested us
to consider deterministic finite automata augmented with local variables and as-
signment statements on these variables. Regarding controlstructures, we did not

82 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

introduce any extra feature since the deterministic choiceof which transition to
trigger next seemed to be good enough.

• Many global constraints involve a variable whose value is computed from a given
collection of variables. This convinced us to allow the finalstate of an automaton
to optionally return a result. In practice, this result corresponds to the value of a
local variable of the automaton in the final state.

2.3.2 Defining an automaton

An automatonA of a global constraintC is defined by

〈Signature, SignatureDomain, SignatureArg , SignatureArgPattern,
Counters, Arrays , States , T ransitions〉

where:

• Signature is the sequence of variablesS0, . . . , Sm−1 corresponding to the sig-
nature of the constraintC.

• SignatureDomain is an interval that defines the range of possible values of the
variables ofSignature.

• SignatureArg is the signature argumentS0, . . . ,Sm−1 of the constraintC. The
link between the variables ofSi and the variableSi (0 ≤ i < m) is done by
writing down the signature constraintΨC(Si,Si).

• When used,SignatureArgPattern defines a symbolic name for each term of
SignatureArg . These names can be used within the description of a transition
for expressing an additional condition for triggering the corresponding transition.

• Counters is the, possibly empty, list of all counters used in the automatonA.
Each counter is described by a termt(Counter , InitialValue, FinalVariable)
whereCounter is a symbolic name representing the counter,InitialValue is an
integer giving the value of the counter in the initial state of A, andFinalVariable
gives the variable that should be unified with the value of thecounter in the final
state ofA.

• Arrays is the, possibly empty, list of all arrays used in the automaton A.
Each array is described by a termt(Array , InitialValue, FinalConstraint)
whereArray is a symbolic name representing the array,InitialValue is an in-
teger giving the value of all the entries of the array in the initial state ofA.
FinalConstraint denotes an existing constraint of the catalogue that shouldhold
in the final state ofA. Arguments of this constraint correspond to collections of
variables that are bound to array of counters, or to variables that are bound to
counters declared inCounters. For an array of counters we only consider those
entries that are located between the first and the last entries that were modified
while triggering a transition ofA.

2.4. REFORMULATING GLOBAL CONSTRAINTS AS A CONJUNCTION 83

• States is the list of states ofA, where each state has the formsource(id),
sink(id) or node(id). id is a unique identifier associated with each state. Fi-
nally, source(id) andsink(id) respectively denote the initial and the final state
of A.

• T ransitions is the list of transitions ofA. Each transitiont has the formarc(id1,
label , id2) or arc(id1, label , id2, counters). id1 and id2 respectively corre-
spond to the state just before and just aftert, while label denotes the value that
the signature variable should have in order to triggert. When used,counters
gives for each counter ofCounters its value after firing the corresponding tran-
sition. This value is specified by an arithmetic expression involving counters,
constants, as well as usual arithmetic functions, such as+, −, min, ormax. The
order used in thecounters list is identical to the order used inCounters.

EXAMPLE: As an illustrative example we give the description of the automaton associ-
ated with theinflexion (ninf , vars) constraint. We have:

• Signature = S0, S1, . . . , Sn−2,

• SignatureDomain = 0..2,

• SignatureArg = 〈vars[0], vars[1]〉, . . . , 〈vars[n− 2], vars[n− 1]〉,
• SignatureArgPattern is not used,

• Counters = t(c, 0,ninf),

• States = [source(s),node(i),node(j), sink(t)],

• T ransitions = [arc(s, 1, s), arc(s, 2, i), arc(s, 0, j), arc(s, $, t), arc(i, 1, i),
arc(i, 2, i), arc(i, 0, j, [c + 1]), arc(i, $, t), arc(j, 1, j), arc(j, 0, j),
arc(j, 2, i, [c+ 1]), arc(j, $, t)].

The signature constraint relating each pair of variables〈vars[i], vars[i+1]〉 to the signa-
ture variableSi is defined as follows:Ψinflexion (Si, vars[i], vars[i + 1]) ≡ vars[i] >
vars[i + 1] ⇔ Si = 0 ∧ vars[i] = vars[i + 1] ⇔ Si = 1 ∧ vars[i] <
vars[i + 1] ⇔ Si = 2. The sequence of transitions triggered on the ground in-

stanceinflexion (4, [3, 3, 1, 4, 5, 5, 6, 5, 5, 6, 3]) is s
c=0

3=3⇔S0=1−−−−−−−→ s
3>1⇔S1=0−−−−−−−→

j
1<4⇔S2=2−−−−−−−→

c=1
i

4<5⇔S3=2−−−−−−−→ i
5=5⇔S4=1−−−−−−−→ i

5<6⇔S5=2−−−−−−−→ i
6>5⇔S6=0−−−−−−−→

c=2
j

5=5⇔S7=1−−−−−−−→

j
5<6⇔S8=2−−−−−−−→

c=3
i

6>3⇔S9=0−−−−−−−→
c=4

j
$−→ t

ninf=4
. Each transition gives the corresponding con-

dition and, possibly, the value of the counterc just after firing that transition.

2.4 Reformulating global constraints as a conjunction

Many global constraints can be reformulated as a conjunction of global or reified
constraints. The slotReformulation provides for some global constraints such re-
formulations (see for instance the reformulation slots respectively associated with the
coloured cumulative or thetree constraints). When it exists, the corresponding
code is available in the “.pl file” attached to a constraint. The initial concrete moti-
vation for providing reformulations was triggered by the fact that it is usually an easy
way to have a first implementation of a constraint, which is a feature we want to have

84 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

in the context of the catalogue. However many reformulations (e.g.,alldifferent,
nvalue, tree) involve a quadratic (or even more) number of variables and/or con-
straints, which does not scale in practice when one wants to handle constraints with
thousands of variables. This is why many filtering algorithms compute again and again
common quantities that would require too much memory if stored explicitly.

2.5 Semantic links between global constraints

For each global constraint entry of the catalogue, the slotSee alsoprovides links
to other global constraints. Rather than just pointing to a set of constraints, we
prefer to explicitly indicate the reason why we point to a given constraint. A link
link(Centry , Calso) from a constraintCentry (i.e., the constraint associated with a cat-
alogue entry) to another constraintCalso (i.e., the constraint of theSee alsoslot located
in the catalogue entry of constraintCentry) has a given semantics and this section de-
scribes the kind ofsemantic linksthat are currently used. Before introducing each
semantic link and its meaning, let us first quote that some of them are related by one of
the following relations:

• A link link is symmetricif and only if link(C1, C2) ⇔ link(C2, C1).

• A link link is asymmetricif and only if link(C1, C2) ⇒ ¬link(C2, C1)
(¬link(C2, C1) is a shortcut for denoting that the linklink(C2, C1) does not
occur in the catalogue).

• A link link j is the converseof a link link i if and only if link i(C1, C2) ⇔
link j(C2, C1).

Table2.1 lists each semantic link and the relation it has.31 Then one section de-
scribes the meaning of each semantic link.

2.5.1 Assignment dimension added

ConstraintCalso corresponds to constraintCentry where anassignment dimensionis
added toCentry .

EXAMPLE: As an example, constraintCalso = cumulatives corresponds to constraint
Centry = cumulative where anassignment dimensioncorresponding to themachine
attribute is added (i.e., the constraintcumulatives enforces acumulative constraint
for each maximum set of tasks that are assigned the same machine).

2.5.2 Assignment dimension removed

ConstraintCalso corresponds to constraintCentry where anassignment dimensionis
removed fromCentry .

31All links are automatically checked with respect to their relation each time the catalogue is generated.

2.5. SEMANTIC LINKS BETWEEN GLOBAL CONSTRAINTS 85

semantic links relation between semantic links

assignment dimension added converse:assignment dimension removed
assignment dimension removed converse:assignment dimension added
attached to cost variant converse:cost variant
common keyword symmetric
comparison swapped symmetric
cost variant converse:attached to cost variant
generalisation converse:specialisation
hard version converse:soft variant
implied by converse:implies
implies converse:implied by
implies (if swap arguments) symmetric
implies (items to collection) asymmetric
negation symmetric
part of system of constraints converse:system of constraints
related symmetric
related to a common problem symmetric
root concept converse:shift of concept
shift of concept converse:root concept
soft variant converse:hard version
specialisation converse:generalisation
system of constraints converse:part of system of constraints
used in graph description asymmetric
used in reformulation converse:uses in its reformulation
uses in its reformulation converse:used in reformulation

Table 2.1: Available semantic links between constraints

EXAMPLE: As an example, constraintCalso = among low up corresponds to con-
straintCentry = interval and count where anassignment dimensioncorresponding
to theorigin attribute is removed fromCentry = interval and count (i.e., the con-
straint interval and count enforces aamong low up constraint for each maximum
set of tasks for which the origin is assigned the same interval[k · SIZE INTERVAL, k ·
SIZE INTERVAL + SIZE INTERVAL − 1]) (SIZE INTERVAL is the last argument of
interval and count).

2.5.3 Attached to cost variant

ConstraintCalso is the original version attached to the cost variant constraint Centry .

EXAMPLE: As an example, constraintCalso = alldifferent is the original version
attached to the cost variant constraintCentry = minimum weight alldifferent, where
the total cost of a solution is the sum of the costs associated with the fact that we assign a
given value to a specific variable.

86 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

2.5.4 Common keyword

ConstraintsCentry andCalso share one or more common keywords with a strong se-
mantic connotation.

EXAMPLE: As an example, constraintsCentry = tree andCalso = cycle are both
graph partitioning constraints(i.e., constraints that partition the vertices of a given initial
digraph so that each partition corresponds to a specific pattern, atreeand acircuit in this
example).

2.5.5 Comparison swapped

ConstraintCalso corresponds to constraintCentry where one of the following condi-
tions holds:

• The comparison operator≥ is swapped to≤ or, conversely,≤ is swapped to≥.

• The comparison operator> is swapped to< or, conversely,< is swapped to>.

EXAMPLE: ConstraintCalso = atmost corresponds to constraintCentry = atleast

where the comparison≤ N for expressing that we should not exceed a given threshold
(i.e., restricts the maximum number of occurrences for a given value) is replaced by≥ N

for expressing that we should reach a given threshold (i.e., enforces a minimum number
of occurrences for a given value).

2.5.6 Cost variant

ConstraintCalso is a cost variant of constraintCentry .

EXAMPLE: As an example, constraint Calso =
sum of weights of distinct values is the cost variant of constraintCentry =
nvalue, where we introduce a weight for each value and we replace the numberof
distinct values by the sum of weights associated with distinct values.

2.5.7 Generalisation

Denotes that constraintCalso is a generalisation of constraintCentry .

EXAMPLE: As an example, constraintCalso = all min dist is a generalisation of
constraintCentry = alldifferent where we replace a disequality between two variables
by the fact that two line-segments of same length do not overlap.

2.5.8 Hard version

ConstraintCalso is a hard version of constraintCentry (i.e., constraintCentry is a soft
variant of constraintCalso).

EXAMPLE: As an example, constraintCalso = alldifferent is a hard version of con-
straintCentry = soft alldifferent, which restricts the minimum number of variables
that should be unassigned in order that all variables take a distinct value.

2.5. SEMANTIC LINKS BETWEEN GLOBAL CONSTRAINTS 87

2.5.9 Implied by

If constraintCalso holds and if all restrictions of constraintCentry hold then constraint
Centry also holds. Note that we try to restrict ourselves to the transitive reduction of
the implication graph between constraints.

EXAMPLE: As an example, constraintCentry = minimum is implied by constraint
Calso = and.

2.5.10 Implies

If constraintCentry holds and if all restrictions of constraintCalso hold then constraint
Calso also holds. Note that we also consider all the implications depicted in the impli-
cation graphs mentioned in the tables associated with the normalised signature tree of
global constraints arguments. For an example of such table see Table3.1.

EXAMPLE: As an example, constraintCentry = alldifferent implies constraint
Calso = not all equal. Note that the case of analldifferent constraint with one
single variable does not imply anot all equal constraint since its restriction (i.e., the
number of variables of anot all equal constraint should be strictly greater than one)
does not hold.

2.5.11 Implies (if swap arguments)

Given two constraintsCentry andCalso that both have two arguments, if constraint
Centry(arg1, arg2) holds then constraintCalso(arg2, arg1) also holds.

EXAMPLE: As an example, we can go from constraintCentry = lex lesseq to con-
straintlex greatereq if we swap the two arguments of constraintlex lesseq.

2.5.12 Implies (items to collection)

Given two constraintsCentry andCalso where:

• Centry has one single argumentarg1 corresponding to a collection ofk items,
each attribute of typeint or dvar.

• Calso has one single argumentarg2 corresponding to a collection of collections
of dvar, each of them having the same number of itemsk.

If constraintCentry(arg1) holds then constraintCalso(arg2) also holds.

EXAMPLE: As an example, we can go from constraintCentry = circuit to constraint
lex alldifferent if we create for each item “index − i succ − s” of the circuit

constraint a collection〈var− i, var− s〉.

88 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

2.5.13 Negation

If constraintCentry holds then constraintCalso does not hold. Reciprocally, if con-
straintCalso holds then constraintCentry does not hold. Note that constraintsCentry

andCalso must also have exactly the same parameters, but not necessarily the same
parameters restrictions.

EXAMPLE: As an example, the constraintCalso = not all equal (i.e., prevent all
variables to be assigned the same value) is the negation of constraintCentry = all equal

(i.e., enforce all variables to be assigned the same value).

Note that negation is also directly available for constraints which are defined by:

• One single counter free automaton, see keywordautomaton without counters.

• One single automaton with counter, see keywordautomaton with counters.

• A set of functional dependencies, see keywordpure functional dependency.

2.5.14 Part of system of constraints

Denotes that a constraintCentry is a conjunction of constraintsCalso (i.e., see the
keywordsystem of constraints).

EXAMPLE: As an example, the constraintCalso = neq (i.e., prevent two variables
to be assigned the same value) can be used to reformulate the constraintCentry =
alldifferent (i.e., enforce a set of variables to take distinct values) as a conjunction
of neq constraints.

2.5.15 Related

Denotes that a constraintCentry and a constraintCalso are related by a specific reason
that is not covered by an existing link.

EXAMPLE: As an example, the constraintCalso = tree range (i.e., given a digraph,
partition it so that each vertex belongs to one tree for which the differencebetween the
longest and the shortest paths – from a leaf to the root – is restricted) is related to the
constraintCentry = balance (i.e., given a set of variables, restrict the difference between
the number of occurrence of the value that occurs the most and the value that occurs the
least) by the fact that, on the one hand the constrainttree range can express abalanced
tree, on the other side the constraintbalance can express abalanced assignment.

2.5.16 Related to a common problem

Denotes that a constraintCentry and a constraintCalso are related to a same problem
(i.e., they can both be used for modelling that problem).

EXAMPLE: As an example, the constraintsCentry = colored matrix andCalso =
same can both be used for modelling thematrix reconstruction problem.

2.5. SEMANTIC LINKS BETWEEN GLOBAL CONSTRAINTS 89

2.5.17 Root concept

ConstraintCentry is derived from constraintCalso .

EXAMPLE: As an example, the constraintCentry = tree resource is derived from the
constraintCalso = tree. Given a digraphG, thetree constraint enforces a partitioning
of G by a set of trees in such a way that each vertex ofG belongs to one distinct tree.
In addition, thetree resource constraint distinguishesresourceandtaskvertices, and
enforces each tree to contain exactly one resource vertex.

2.5.18 Shift of concept

ConstraintCalso is derived from constraintCentry .

EXAMPLE: As an example, constraint Calso =
global cardinality no loop(NLOOP, VARIABLES, VALUES) is derived from
constraintCentry = global cardinality(VARIABLES, VALUES) (i.e., each value
VALUES[i].val should be taken by exactlyVALUES[i].val variables of theVARIABLES
collection) by discarding all variables such thatVARIABLES[i].var = i.

2.5.19 Soft variant

ConstraintCalso is a soft variant of constraintCentry . Note that, from an academic
point of view, a soft constraintCalso = is usually defined with a cost variable that quan-
tifies how much the constraintCentry = is violated. We exceptionally breaks this rule
when it seems to make sense from an application point of view.For instance, within
thealldifferent constraint, we reference thealldifferent except 0 since it can
be seen as a kind of relaxation of thealldifferent constraint where we allow to use
value0 several times.

EXAMPLE: As an example, one of the possible soft variant of constraintCentry =
alldifferent (i.e., thealldifferent constraint enforces all variables of a collection to
take distinct values) is the constraintCalso = soft alldifferent var, where the cost is
the minimum number of variables that need to be unassigned to satisfy thealldifferent

constraint.

2.5.20 Specialisation

Denotes that constraintCalso is a specialisation of constraintCentry .

EXAMPLE: As an example, constraintCalso = path is a specialisation of constraint
Centry = tree. Given a digraphG, thetree constraint enforces a covering ofG by a set
of trees in such a way that each vertex ofG belongs to one distinct tree. If, in addition, we
restrict each vertex to have at most one child we get thepath constraint.

2.5.21 System of constraints

Denotes that a constraintCalso is a conjunction of constraintsCentry (see the keyword
system of constraints).

90 CHAPTER 2. DESCRIBING GLOBAL CONSTRAINTS

EXAMPLE: As an example, the constraintCalso = colored matrix corresponds to a
conjunction of constraints of the formCentry = global cardinality: Given a matrix
M of variables, thecolored matrix constraint enforces aglobal cardinality on
each row and each column ofM.

2.5.22 Used in graph description

ConstraintCalso is used within a graph based description of constraintCentry .

EXAMPLE: As an example, the constraintCalso = two orth do not overlap, a con-
straint enforcing twoorthotopesa to not overlap, is used in the graph based description of
the constraintCentry = diffn. Given a collection oforthotopes, thediffn constraint
enforces for each pair oforthotopes(O1, O2) thatO1 andO2 do not overlap.

aAn orthotopecorresponds to the generalisation of a segment, a rectangle and a box to the
n-dimensional case.

2.5.23 Used in reformulation

ConstraintCalso is used within a reformulation of constraintCentry . Since it is already
handled by the linkpart of system of constraints, we do not consider the case where
constraintCentry can be expressed as a conjunction of constraintsCalso .

EXAMPLE: As an example, the constraintCalso = open minimum is used within the
reformulation slot of the constraintCentry = tree range.

2.5.24 Uses in its reformulation

ConstraintCalso uses constraintCentry in its reformulation. Since it is already handled
by the linksystem of constraints, we do not consider the case where constraintCalso

can be expressed as a conjunction of constraintsCentry .

EXAMPLE: As an example, the reformulation slot of constraintCalso = tree range

uses the constraintCentry = open minimum.

Chapter 3

Description of the Catalogue

Contents
3.1 Which global constraints are included? 98
3.2 Which global constraints are missing? 100
3.3 Searching in the catalogue. 100
3.3.1 How to see if a global constraint is in the catalogue?. 100

3.3.2 How to search for all global constraints sharing the same structure 101

Searching from a graph property perspective. 101

Searching from an automaton perspective. 101

Searching from a first order logic perspective. 102

3.3.3 Searching all places where a global constraint is referenced. . . 102

3.3.4 Searching the mapping with a constraint of a concrete system. . 103

3.4 Figures of the catalogue. 103
3.5 Constraints argument patterns 105
3.5.1 Constraints with 1 argument. 108

3.5.2 Constraints with 2 arguments. 112

3.5.3 Constraints with 3 arguments. 123

3.5.4 Constraints with 4 arguments. 131

3.5.5 Constraints with 5 arguments. 135

3.5.6 Constraints with 6 arguments. 136

3.5.7 Constraints with 8 arguments. 137

3.5.8 Constraints with 10 arguments. 137

3.6 Meta-keywords attached to the keywords 138
3.6.1 Application area. 138

3.6.2 Characteristic of a constraint. 138

3.6.3 Combinatorial object. 139

3.6.4 Complexity . 139

3.6.5 Constraint network structure. 139

3.6.6 Constraint type. 140

91

92 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.6.7 Constraint arguments. 140

3.6.8 Filtering . 140

3.6.9 Final graph structure. 141

3.6.10 Geometry. 141

3.6.11 Heuristics. 142

3.6.12 Miscellaneous. 142

3.6.13 Modelling . 142

3.6.14 Modelling exercises. 144

3.6.15 Problems . 145

3.6.16 Puzzles . 145

3.6.17 Symmetry. 146

3.7 Keywords attached to the global constraints. 147
3.7.1 3-dimensional-matching. 147

3.7.2 3-SAT . 147

3.7.3 Abstract interpretation. 147

3.7.4 Acyclic . 148

3.7.5 Aggregate. 148

3.7.6 Air traffic management. 150

3.7.7 Alignment. 150

3.7.8 All different . 151

3.7.9 Alpha-acyclic constraint network(2). 151

3.7.10 Alpha-acyclic constraint network(3). 152

3.7.11 Apartition . 152

3.7.12 Arc-consistency. 153

3.7.13 Arithmetic constraint. 155

3.7.14 Array constraint. 155

3.7.15 Assigning and scheduling tasks that run in parallel. 156

3.7.16 Assignment. 159

3.7.17 Assignment dimension. 160

3.7.18 Assignment to the same set of values. 163

3.7.19 At least . 168

3.7.20 At most . 168

3.7.21 Automaton . 168

3.7.22 Automaton with array of counters. 171

3.7.23 Automaton with counters. 171

3.7.24 Automaton without counters. 172

3.7.25 Autoref . 173

3.7.26 Balanced assignment. 173

3.7.27 Balanced tree. 174

3.7.28 Berge-acyclic constraint network. 174

3.7.29 Binary constraint. 177

3.7.30 Bioinformatics . 177

3.7.31 Bipartite. 178

93

3.7.32 Bipartite matching. 178

3.7.33 Bipartite matching in convex bipartite graphs. 179

3.7.34 Boolean channel. 179

3.7.35 Boolean constraint. 180

3.7.36 Border. 180

3.7.37 Bound-consistency. 180

3.7.38 Business rules. 181

3.7.39 Centered cyclic(1) constraint network(1). 182

3.7.40 Centered cyclic(2) constraint network(1). 182

3.7.41 Centered cyclic(3) constraint network(1). 183

3.7.42 Channel routing. 183

3.7.43 Channelling constraint. 184

3.7.44 Circuit. 184

3.7.45 Circular sliding cyclic(1) constraint network(2). 184

3.7.46 Cluster. 185

3.7.47 Coloured . 185

3.7.48 Compulsory part. 185

3.7.49 Conditional constraint. 186

3.7.50 Configuration problem. 186

3.7.51 Connected component. 187

3.7.52 Consecutive loops are connected. 187

3.7.53 Consecutive values. 187

3.7.54 Constraint between two collections of variables. 188

3.7.55 Constraint between three collections of variables. 188

3.7.56 Constraint involving set variables. 188

3.7.57 Constraint on the intersection. 189

3.7.58 Constructive disjunction. 189

3.7.59 Contact . 190

3.7.60 Contractible. 191

3.7.61 Convex . 197

3.7.62 Convex bipartite graph. 198

3.7.63 Convex hull relaxation. 198

3.7.64 Conway packing problem. 199

3.7.65 Core. 199

3.7.66 Costas arrays. 202

3.7.67 Cost filtering constraint. 202

3.7.68 Cost matrix . 202

3.7.69 Counting constraint. 203

3.7.70 Cumulative longest hole problems. 203

3.7.71 Cycle . 208

3.7.72 Cyclic . 208

3.7.73 Data constraint. 208

3.7.74 Deadlock breaking. 209

94 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.75 Decomposition . 209

3.7.76 Decomposition-based violation measure. 210

3.7.77 DFS-bottleneck. 210

3.7.78 Demand profile. 210

3.7.79 Degree of diversity of a set of solutions. 211

3.7.80 Derived collection. 214

3.7.81 Difference. 214

3.7.82 Difference between pairs of variables. 214

3.7.83 Directed acyclic graph. 215

3.7.84 Disequality . 215

3.7.85 Disjunction . 216

3.7.86 Domain channel. 216

3.7.87 Domain definition. 216

3.7.88 Dominating queens. 216

3.7.89 Domination . 217

3.7.90 Dual model . 217

3.7.91 Duplicated variables. 218

3.7.92 Dynamic programming. 218

3.7.93 Empty intersection. 218

3.7.94 Entailment. 219

3.7.95 Equality . 219

3.7.96 Equality between multisets. 220

3.7.97 Equivalence. 220

3.7.98 Euler knight. 220

3.7.99 Excluded . 221

3.7.100 Extensible. 221

3.7.101 Extension. 224

3.7.102 Facilities location problem. 224

3.7.103 Floor planning problem. 224

3.7.104 Flow. 227

Flow models foralldifferent andopen alldifferent 227

Flow models for thegcc low up and thegcc low up no loop constraints228

Flow models for theused by and thesame constraints 230

Flow model for thesame and global cardinality low up constraint . 232

3.7.105 Frequency allocation problem. 233

3.7.106 Functional dependency. 233

3.7.107 Geometrical constraint. 236

3.7.108 Golomb ruler . 237

3.7.109 Graph colouring. 237

3.7.110 Graph constraint. 237

3.7.111 Graph partitioning constraint. 238

3.7.112 Guillotine cut . 238

3.7.113 Hall interval. 238

95

3.7.114 Hamiltonian. 239

3.7.115 Heuristics. 239

3.7.116 Heuristics and Berge-acyclic constraint network. 239

3.7.117 Heuristics and lexicographical ordering. 241

3.7.118 Heuristics for two-dimensional rectangle placement problems. . 241

Dual strategy for rectangle placement problems with no slack. 242

Strategy that gradually creates a compulsory part. 242

3.7.119 Hungarian method for the assignment problem. 243

3.7.120 Hybrid-consistency. 243

3.7.121 Hypergraph. 244

3.7.122 Included. 244

3.7.123 Inclusion . 244

3.7.124 Incompatible pairs of values. 245

3.7.125 Indistinguishable values. 245

3.7.126 Interval . 245

3.7.127 Joker value. 246

3.7.128 Klee’s measure problem. 246

3.7.129 Labelling by increasing cost. 246

3.7.130 Latin square. 249

3.7.131 Lexicographic order. 249

3.7.132 Limited discrepancy search. 250

3.7.133 Linear programming. 250

3.7.134 Line-segments intersection. 252

3.7.135 Logic . 252

3.7.136 Logigraphe . 252

3.7.137 Magic hexagon. 254

3.7.138 Magic series. 255

3.7.139 Magic square. 255

3.7.140 Matching . 255

3.7.141 Matrix . 256

3.7.142 Matrix model . 256

3.7.143 Matrix symmetry . 256

3.7.144 Maximum. 257

3.7.145 Maximum clique . 257

3.7.146 Maximum number of occurrences. 257

3.7.147 maxint. 257

3.7.148 Metro . 258

3.7.149 Minimum . 260

3.7.150 Minimum cost flow. 261

3.7.151 Minimum feedback vertex set. 262

3.7.152 Minimum hitting set cardinality. 262

3.7.153 Minimum number of occurrences. 262

3.7.154 Modulo . 262

96 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.155 Multi-site employee scheduling with calendar constraints. . . . 263

3.7.156 Multiset . 265

3.7.157 Multiset ordering. 265

3.7.158 No cycle. 265

3.7.159 No loop . 265

3.7.160 n-Amazon. 266

3.7.161 n-queen. 269

3.7.162 Non-deterministic automaton. 269

3.7.163 Non-overlapping . 269

3.7.164 Number of changes. 270

3.7.165 Number of distinct equivalence classes. 270

3.7.166 Number of distinct values. 270

3.7.167 Obscure. 271

3.7.168 One succ. 271

3.7.169 Open automaton constraint. 272

3.7.170 Open constraint. 273

3.7.171 Order constraint. 274

3.7.172 Orthotope. 275

3.7.173 Overlapping alldifferent. 275

3.7.174 Pair . 275

3.7.175 Packing almost squares. 276

3.7.176 Pallet loading. 276

3.7.177 Partition. 277

3.7.178 Path. 277

3.7.179 Partridge. 277

3.7.180 Pattern sequencing. 278

3.7.181 Pentomino. 279

3.7.182 Periodic. 279

3.7.183 Permutation. 279

3.7.184 Permutation channel. 280

3.7.185 Phi-tree . 280

3.7.186 Phylogeny. 282

3.7.187 Pick-up delivery. 282

3.7.188 Planarity test . 282

3.7.189 Polygon. 282

3.7.190 Positioning constraint. 282

3.7.191 Predefined constraint. 283

3.7.192 Preferences. 284

3.7.193 Producer-consumer. 284

3.7.194 Product . 285

3.7.195 Program verification. 285

3.7.196 Proximity constraint. 285

3.7.197 Pure functional dependency. 286

97

3.7.198 Quadtree. 287

3.7.199 Range. 288

3.7.200 Rank. 288

3.7.201 RCC8. 288

3.7.202 Rectangle clique partition. 289

3.7.203 Regret based heuristics. 289

3.7.204 Regret based heuristics in matrix problems. 290

3.7.205 Reified automaton constraint. 290

3.7.206 Reified constraint. 292

3.7.207 Relation. 293

3.7.208 Relaxation. 293

3.7.209 Relaxation dimension. 294

3.7.210 Resource constraint. 295

3.7.211 Run of a permutation. 296

3.7.212 SAT . 296

3.7.213 Scalar product. 297

3.7.214 Sequence. 297

3.7.215 Sequence dependent set-up. 298

3.7.216 Sequencing with release times and deadlines. 299

3.7.217 Set channel. 299

3.7.218 Set packing. 300

3.7.219 Shikaku. 300

3.7.220 Scheduling constraint. 301

3.7.221 Scheduling with machine choice, calendars and preemption. . . 301

3.7.222 Shared table. 305

3.7.223 Schur number. 306

3.7.224 SLAM problem. 306

3.7.225 Sliding cyclic(1) constraint network(1). 306

3.7.226 Sliding cyclic(1) constraint network(2). 307

3.7.227 Sliding cyclic(1) constraint network(3). 307

3.7.228 Sliding cyclic(2) constraint network(2). 308

3.7.229 Sliding sequence constraint. 308

3.7.230 Smallest square for packing consecutive dominoes. 309

3.7.231 Smallest rectangle area. 310

3.7.232 Smallest square for packing rectangles with distinct sizes. . . . 312

3.7.233 Soft constraint. 314

3.7.234 Sort . 314

3.7.235 Sort based reformulation. 314

3.7.236 Sparse functional dependency. 315

3.7.237 Sparse table. 315

3.7.238 Sport timetabling. 315

3.7.239 Squared squares. 315

3.7.240 Statistics. 320

98 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.241 Strip packing . 320

3.7.242 Strong articulation point. 321

3.7.243 Strong bridge. 321

3.7.244 Strongly connected component. 322

3.7.245 Subset sum. 323

3.7.246 Sudoku . 323

3.7.247 Sum. 324

3.7.248 Sweep. 324

3.7.249 Symmetric. 328

3.7.250 Symmetry. 328

3.7.251 System of constraints. 329

3.7.252 Table . 330

3.7.253 Temporal constraint. 330

3.7.254 Ternary constraint. 330

3.7.255 Timetabling constraint. 331

3.7.256 Time window . 331

3.7.257 Touch . 331

3.7.258 Tree. 332

3.7.259 Tuple . 332

3.7.260 Two-dimensional orthogonal packing. 332

3.7.261 Unary constraint. 333

3.7.262 Undirected graph. 333

3.7.263 Value constraint. 333

3.7.264 Value partitioning constraint. 334

3.7.265 Value precedence. 335

3.7.266 Variable-based violation measure. 335

3.7.267 Variable indexing. 335

3.7.268 Variable subscript. 335

3.7.269 Vector. 336

3.7.270 Vpartition . 336

3.7.271 Weighted assignment. 337

3.7.272 Workload covering. 337

3.7.273 Zebra puzzle. 337

3.7.274 Zero-duration task. 342

3.1 Which global constraints are included?

The global constraints of this catalogue come from the following sources:

• Existing constraint systems like:

– ALICE [238],

3.1. WHICH GLOBAL CONSTRAINTS ARE INCLUDED? 99

– CHARME in C [278],

– CHIP [130] in Prolog, C and C++ (http://www.cosytec.com),

– Choco[227] in Java (http://choco.emn.fr/),

– ECLAIR [380] in Claire,

– ECLiPSe [106, 9] in Prolog (http://eclipseclp.org/),

– FaCile in OCaml (http://www.recherche.enac.fr/opti/facile/),

– Gecodein C++ [353] (http://www.gecode.org/),

– IF/PROLOG in Prolog
(http://www.ifcomputer.com/IFProlog/Constraints/home _en.html),

– Ilog Solver [303] in C++ and later in Java (http://www.ilog.com),

– JaCoP in Java (http://www.jacop.eu/),

– Koalog in Java,

– Minion [173] (http://minion.sourceforge.net/index.html),

– Mozart [372, 114] in Oz (http://www.mozart-oz.org/),

– SICStus [95] in Prolog (http://www.sics.se/sicstus/).

When available, theSystemsslot of a global constraint entry of the catalogue
provides the name of the corresponding global constraint inthe context of the
Choco, Gecode, JaCoP, MiniZinc , andSICStussystems.

• Constraint programming articles mostly from conferences like:

– The Principles and Practice of Constraint Programming (CP)
(http://www.informatik.uni-trier.de/ ˜ ley/db/conf/cp/index.html),

– The International Joint Conference on Artificial Intelligence (IJCAI)
(http://www.informatik.uni-trier.de/ ˜ ley/db/conf/ijcai/index.html),

– The National Conference on Artificial Intelligence (AAAI)
(http://www.informatik.uni-trier.de/ ˜ ley/db/conf/aaai/index.html),

– The International Conference on Logic Programming (ICLP)
(http://www.informatik.uni-trier.de/ ˜ ley/db/conf/iclp/index.html),

– The International Conference of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimisation Problems (CPAIOR)
(http://www.informatik.uni-trier.de/ ˜ ley/db/conf/cpaior/).

• Graph constraints from the CP(Graph) computation domain [131].

• New constraints inspired by variations of existing constraints, practical applica-
tions, combinatorial problems, puzzles or discussions with colleagues.

http://www.cosytec.com
http://www.cosytec.com
http://choco.emn.fr/
http://choco.emn.fr/
http://eclipseclp.org/
http://eclipseclp.org/
http://www.recherche.enac.fr/opti/facile/
http://www.recherche.enac.fr/opti/facile/
http://www.gecode.org/
http://www.gecode.org/
http://www.ifcomputer.com/IFProlog/Constraints/home_en.html
http://www.ifcomputer.com/IFProlog/Constraints/home_en.html
http://www.ilog.com
http://www.ilog.com
http://www.jacop.eu/
http://www.jacop.eu/
http://minion.sourceforge.net/index.html
http://minion.sourceforge.net/index.html
http://www.mozart-oz.org/
http://www.mozart-oz.org/
http://www.sics.se/sicstus/
http://www.sics.se/sicstus/
http://choco.emn.fr/
http://www.gecode.org/
http://www.jacop.eu/
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/
http://www.informatik.uni-trier.de/~ley/db/conf/cp/index.html
http://www.informatik.uni-trier.de/~ley/db/conf/ijcai/index.html
http://www.informatik.uni-trier.de/~ley/db/conf/aaai/index.html
http://www.informatik.uni-trier.de/~ley/db/conf/iclp/index.html
http://www.informatik.uni-trier.de/~ley/db/conf/cpaior/

100 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.2 Which global constraints are missing?

Constraints with too many arguments (like for instance the original cycle [117]
constraint with 16 arguments), which are in fact a combination of sev-
eral constraints, were not directly put into the catalogue. Constraints
that have complex arguments were also omitted. Beside this,the follow-
ing constraints should be added in some future version of thecatalogue:
alldifferent on multisets [315] [316], case [94, 89], [107, 108],
choquet [202], cost regular [125], cumulative trapeze [300, 51],
deviation [350, 348], inequality sum [334, 335], minimum spanning tree [132,
329], no cycle [99], range [59, 61], regular [286] [118], soft gcc val [399,
400, 420, 351], soft gcc var [399, 400, 420], soft regular [399],
spread [287, 349], multicost regular [263], pref alldifferent var (i.e.,
variable-based relaxationof alldifferent with preferences) [265, page 100],
pref alldifferent ctr (i.e., decomposition-based relaxationof alldifferent

with preferences) [265, page 103], pref global cardinality low up var

(i.e., variable-based relaxationof global cardinality low up with pref-
erences) [265, page 123], pref global cardinality low up ctr (i.e.,
decomposition-based relaxationof global cardinality low up with prefer-
ences) [265, page 126]. Finally we only consider a restricted number of constraints
involving set variables since this is a relatively new area,which is currently growing
rapidly since2003.

3.3 Searching in the catalogue

3.3.1 How to see if a global constraint is in the catalogue?

Searching a given global constraint through the catalogue can be achieved in the fol-
lowing ways:

• If you have an idea of the name of the global constraint you arelooking for,
then put all its letters in lower case, separate distinct words by an underscore
and search the resulting name in the index. Within the pdf document, the entry
of the catalogue where the constraint is defined is shown inbold. Common
abbreviations, synonyms and usual names found in articles have also been put in
the index inbold and italic.

• If you do not know the name of the global constraint you are looking for, but
you know the types of its arguments then Section3.5lists the different argument
patterns and the corresponding global constraints.

• You can also search a global constraint through the list of keywords that is at-
tached to each global constraint. All available keywords are listed alphabetically
in Section3.7 on page147. For each keyword we give the list of global con-
straints using the corresponding keyword as well as the definition of the key-
word.

3.3. SEARCHING IN THE CATALOGUE 101

• In order to make it possible to search for all keywords related to a spe-
cific area, we have also attached to each keyword one, or exceptionally two,
meta-keywords. For instance, if you are searching for global constraints that are
mentioning puzzles, you first look to the meta-keywordPuzzleswhere you find
the keywords corresponding to puzzles (i.e.,Autoref, Conway packing problem,
. . . ,Sudoku, Zebra puzzle). Then as previously described, for each keyword you
can access to the corresponding global constraints. All available meta-keywords
are listed alphabetically in Section3.6 on page138. For each meta-keyword it
first gives the list of keywords using the corresponding meta-keyword and then
defines the meta-keyword.

3.3.2 How to search for all global constraints sharing the same
structure

Since we have three ways of defining global constraints (e.g., searching for a graph with
specific properties, coming up with an automaton that only recognises the solutions
associated with the global constraint or using a first order logic formula) we can look
to the global constraints from these three perspectives.

Searching from a graph property perspective

The index contains all the arc generators as well as all the graph properties and the
pages where they are mentioned.1 This allows for finding all global constraints that
use a given arc generator or a given graph property in their definition. You can fur-
ther restrict your search to those global constraints usinga specific combination of arc
generators and graph properties. All these combinations are listed at the “signature”
entry of the index. Within these combinations, a graph property with an underline
means that the constraint should be evaluated each time the minimum of this graph
property increases. Similarly a graph property with an overline indicates that the con-
straint should be evaluated each time the maximum of this graph property decreases.
For instance if we look for those constraints that both use theCLIQUE arc generator
as well as theNARC graph-property we find theinverse andplace in pyramid

constraints. SinceNARC is underlined and overlined these constraints will have to
be woken each time the minimum or the maximum ofNARC changes. The signa-
ture associated with a global constraint is also shown in theheader of the even pages
corresponding to the description of the global constraint.

Searching from an automaton perspective

We have created the following list of keywords, which allow for finding all global
constraints defined by a specific type of automaton that recognises its solutions2:

• Automatonindicates that the catalogue provides a deterministic automaton,

1Arc generators and graph properties are introduced in the section “Describing Explicitly Global Con-
straints”.

2Automata that recognise the solutions of a global constraintwere introduced in the section “Describing
Explicitly Global Constraints”.

102 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

• Automaton without countersindicates that the catalogue provides a deterministic
automaton without counters as well as without array of counters,

• Automaton with countersindicates that the catalogue provides a deterministic
automaton with counters but without array of counters,

• Automaton with array of countersindicates that the catalogue provides a deter-
ministic automaton with array of counters and possibly withcounters.

In addition, we also provide a list of keywords that characterise the structure of the
hypergraph associated with the decomposition of the automaton of a global constraints
(i.e., see the meta-keywordconstraint network structure). Note that, when a global
constraint is defined by several graph properties it is also defined by several automata
(usually one automata for each graph property). This is for instance the case of the
change continuity constraint. Currently we have these keywords:

• Berge-acyclic constraint network,

• Alpha-acyclic constraint network(2),

• Alpha-acyclic constraint network(3),

• Sliding cyclic(1) constraint network(1),

• Sliding cyclic(1) constraint network(2),

• Sliding cyclic(1) constraint network(3),

• Sliding cyclic(2) constraint network(2),

• Circular sliding cyclic(1) constraint network(2),

• Centered cyclic(1) constraint network(1),

• Centered cyclic(2) constraint network(1),

• Centered cyclic(3) constraint network(1),

When a global constraint is only defined by one or several automaton its signature is
set to the keywordAUTOMATON.

Searching from a first order logic perspective

The keywordlogic provides the list of constraints that are described within the cata-
logue in term of a first order logic formula where predicates are replaced by arithmetic
constraints.

3.3.3 Searching all places where a global constraint is referenced

Beside the page where a global constraint is defined (in bold), the index also gives all
the pages where a global constraint is referenced.

Last, since a global constraint can also be used for defining another global con-
straint the slotUsed inof the description of a global constraint provides this informa-
tion.

3.4. FIGURES OF THE CATALOGUE 103

3.3.4 Searching the mapping with a constraint of a concrete system

Two distinct ways are provided for making the correspondence between a constraint of
the catalogue and a constraint of a concrete existing system:

1. AppendixC provides, when it exists, the direct correspondence3 between the
constraints of the catalogue and the constraints of a given concrete system. For
the time being we have considered, with the help on their respective authors, the
following systems:

• Choco in Java [227] (http://choco.emn.fr/),

• Gecodein C++ [353] (http://www.gecode.org/),

• JaCoP in Java (http://www.jacop.eu/),

• MiniZinc (http://www.g12.cs.mu.oz.au/minizinc/),

• SICStus [95] in Prolog (http://www.sics.se/sicstus/).

Since not all constraints of a given system always have theircounterpart in the
current version of the catalogue, and since systems are always enriched, this is
the reason why this mapping is not complete.

2. Within the entry of the catalogue the slotSystemsprovides the correspondence
between the constraint associated with that entry and the name of the constraint
in a given concrete system or modelling language. For instance, theSystemsslot
of the entry of the catalogue corresponding to theelement constraint indicates
thatelement is callednth in Chocoandelement in Gecode, JaCoP MiniZinc
andSICStus.

3.4 Figures of the catalogue

The catalogue contains the following types of figures:

• Figures that give the normalised signature tree of the arguments of a global con-
straint These figures are located in Section3.5.

• Figures that provide the implication graph between global constraints that have
the same normalised signature tree for their arguments (e.g., see the figure em-
bedded in the lower part of Table3.1).

• Figures that illustrate a global constraint or a keyword (e.g., see Figure3.31that
illustrates the keywordlimited discrepancy search).

• Figures that depict the initial as well as the final graphs associated with a global
constraint (e.g., see Figure5.96that provides the initial and final graphs of the
change constraint).

3We do not consider that a given constraint of the catalogue can be reformulated in terms of a conjunction
of constraints of a given concrete system.

http://choco.emn.fr/
http://choco.emn.fr/
http://www.gecode.org/
http://www.gecode.org/
http://www.jacop.eu/
http://www.jacop.eu/
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/
http://www.sics.se/sicstus/
http://choco.emn.fr/
http://www.gecode.org/
http://www.jacop.eu/
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/

104 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

• Figures that provide an automaton that only recognises the solutions associated
with a given global constraint (e.g., see Figure5.283that gives the automaton of
theglobal contiguity constraint).

• Figures that give the hypergraph associated with the decomposition of an
automaton in terms of signature and transition constraints(e.g., see Fig-
ure 5.284 that gives the hypergraph of the automaton-based reformulation of
theglobal contiguity constraint).

• Figures for the graph structure of the XML schema of the parameters of a global
constraint. They are only available in the on-line version of the catalogue.

• Figures for visualising different views (i.e., compulsorypart and cumulative pro-
file) of two-dimensional placement of constraints. These figures are only avail-
able in the on-line version of the catalogue. They are accessible from the table
containing thesquared squaresproblem instances.

Most of the graph figures that depict the initial and final graph of a global constraint
of this catalogue as well as the graph structure of the XML schema of the parameters of
a global constraint were automatically generated by using the open source graph draw-
ing software Graphviz [168] available from AT&T.4 Within the web version, figures for
visualising two-dimensional placement constraints were also automatically produced
by generatingPSTricks [411] code.

4http://www.research.att.com/sw/tools/graphviz

http://www.research.att.com/sw/tools/graphviz

3.5. CONSTRAINTS ARGUMENT PATTERNS 105

3.5 Constraints argument patterns

If you do not know the name of the global constraint you are looking for, but you
know the types of its arguments this section allows to find outall global constraints
which have similar arguments. For this purpose we associateto each global constraint
of the catalogue a unique normalised signature tree derivedfrom the types of its argu-
ments.5 The purpose of this normalised signature tree is to get a concise normal form
of the arguments of a global constraint that does not depend of the order in which these
arguments are defined.

count

atom

atom collection

int

int

atom

atom collection

int

int

atom

intatom int collection

int

atom

int collection

intintintint

atom

int collection

int
4

atom

collection

collection

int int int

atom

collection

collection

int
3

atom

int collection

int

atom

int collection

int

atom

collection collection

int int

int

atom

collection
2

atom

collection

int

atom

collection

int

atom

atom

int

int
2

collection

int collection atom

int

atom

collection int

atom

intintint int

atom

collection

collection

int int int

atom

int collection

int

atom

collection collection

int int

atom

collection

int

int collection atom int

int

atom

alldifferent change cumulative diffn minimum same

Figure 3.1: Illustrating steps (2), (3) and (4) for computing the normalised signature
tree

The normalisation takes as input the slotsType(s)andArgument(s) of the description
of a global constraint6 and computes the normalised signature tree in four steps:

1. The first step converts all types related to variables to their corresponding ground
counterpart: the typesdvar, svar, mvar andrvar are respectively transformed
to int, sint, mint andreal.

2. The second step builds a tree of typesT by exploring the slotArgument(s) and
by developing the compound data types eventually used. The root of this tree is
the typeatom and represents the name of the global constraint.

3. The third step normalises the tree of typesT by first normalising each subtree
of T and then by sorting the children ofT . We assume the following ordering
on the different types:atom ≺ int ≺ sint ≺ mint ≺ real ≺ list ≺
collection. Let Tn denote the normalised tree obtained at this third step.

5An informal rule used in the catalogue about the order of the arguments of a constraint is that we usually
first mention a domain variable which represents a result computed from one or several collections that occur
just after. Finally, eventual parameters are put as the last arguments of the constraint.

6See Section2.1.4for the description of these slots.

106 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

4. Finally the last step tries to reduce the size of the normalised treeTn by identify-
ing k(k > 1) childrens of a vertexv of Tn for which thek subtrees are identical.
When such a configuration is identified thek subtrees ofv are replaced by one
single subtree and the integerk is put as an exponent ofv.

atom

col2

int

1. alldifferent on intersection

2. consecutive groups of ones

3. disjoint

4. incomparable

5. int value precede chain

6. inverse within range

7. lex different

8. lex equal

9. lex greater

10. lex greatereq

11. lex less

12. lex lesseq

13. lex lesseq allperm

14. same

15. same intersection

16. sort

17. used by

18. uses

19. vec eq tuple

. .
18

17 15

12 7 10 14 1

11 9 8 16 3

19

Table 3.1: Example of information associated with a normalised signa-
ture tree

3.5. CONSTRAINTS ARGUMENT PATTERNS 107

The three rows of Figure3.1 illustrate respectively the second, third and fourth
steps for computing the normalised signature tree associated with the arguments of
the constraintsalldifferent, change, count, cumulative, diffn, minimum and
same.

The next sections provide for each possible constraints arity all existing normalised
signature trees together with the corresponding list of global constraints of the cata-
logue. The leftmost part of an entry corresponds to a normalised signature tree, while
the rightmost upper part gives the corresponding list of global constraints. Finally
the rightmost lower part describes the dependency between the constraints of the list:
there is an edge from a constraintctr1 to a constraintctr2 if and only if the fact that
ctr1 holds implies thatctr2 also holds. For instance, consider the constraints asso-
ciated with the normalised signature tree corresponding totwo collections of integers
depicted by Table3.1. There is an edge from16 (i.e.,sort) to 14 (i.e.,same) since the
fact that asort constraint holds implies that asame constraint also holds.

108 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.5.1 Constraints with 1 argument

atom

sint
1. sum free

atom

col

int

1. alldifferent

2. alldifferent consecutive values,

3. alldifferent except 0

4. all equal

5. consecutive values

6. decreasing

7. global contiguity

8. golomb

9. increasing

10. multi global contiguity

11. no peak

12. no valley

13. not all equal

14. permutation

15. some equal

16. strictly decreasing

17. strictly increasing

. .
13 3 11 12

10 12 5 1 6 9

7 4 2 16 17

14 8

atom

col

sint
1. alldifferent between sets

3.5. CONSTRAINTS ARGUMENT PATTERNS 109

atom

col

col

int

1. allperm

2. k alldifferent

3. k disjoint

4. k same

5. k used by

6. lex2

7. lex alldifferent

8. lex chain less

9. lex chain lesseq

10. strict lex2

. .
9 7

6 8 5

10 4

atom

col

col

int3

1. diffn

2. orths are connected

. .
1

2

110 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

atom

col

int2

1. alldifferent cst

2. circuit

3. derangement

4. disjunctive

5. disjunctive or same end

6. disjunctive or same start

7. precedence

8. sequence folding

9. symmetric alldifferent

10. symmetric alldifferent except 0

11. twin

atom

col

int sint

1. atmost1

2. bipartite

3. connected

4. dag

5. strongly connected

6. symmetric

7. tour

atom

col

int3 1. inverse

2. orth link ori siz end

atom

col

int3 sint
1. disj

3.5. CONSTRAINTS ARGUMENT PATTERNS 111

atom

col

int2 sint2

1. stable compatibility

atom

col

int5

1. polyomino

112 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.5.2 Constraints with 2 arguments

atom

int2

1. abs value

2. divisible

3. divisible or

4. eq

5. geq

6. gt

7. leq

8. lt

9. neq

10. opposite sign

11. same sign

12. sign of

. .
11

3 11 7 9 5

2 4 8 1 6

4

atom

int sint
1. in set

3.5. CONSTRAINTS ARGUMENT PATTERNS 113

atom

int col

int

1. all min dist

2. alldifferent interval

3. alldifferent modulo

4. among diff 0

5. and

6. atleast nvalue

7. atmost nvalue

8. balance

9. between min max

10. deepest valley

11. equivalent

12. highest peak

13. in

14. increasing nvalue

15. increasing sum

16. inflexion

17. imply

18. length first sequence

19. length last sequence

20. max nvalue

21. max size set of consecutive var

22. maximum

23. min nvalue

24. min size set of consecutive var

25. minimum

26. nand

27. nor

28. not in

29. nset of consecutive values

continuation ☛

114 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

atom

int col

int

30. nvalue

31. nvisible from end

32. nvisible from start

33. or

34. peak

35. size max seq alldifferent

36. size max starting seq alldifferent

37. soft alldifferent ctr

38. soft alldifferent var

39. soft all equal max var

40. soft all equal min ctr

41. soft all equal min var

42. sum of increments

43. valley

44. xor

. .
9

2 6 7 13

1 5,26 27,33 35,36 30 22 25

14 33 5

3.5. CONSTRAINTS ARGUMENT PATTERNS 115

atom

int col

col

int

1. all differ from at least k pos

2. nvector

3. atleast nvector

4. atmost nvector

5. k same interval

6. k same modulo

7. k used by interval

8. k used by modulo

9. ordered atleast nvector

10. ordered atmost nvector

11. ordered nvector

. .
3 4

7 8 9 2 10

5 6 11

atom

int col

col

int3

1. diffn column

2. diffn include

3. place in pyramid

. .
2

1

116 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

atom

int col

int2

1. balance cycle

2. balance path

3. balance tree

4. bin packing

5. binary tree

6. cycle

7. domain constraint

8. in intervals

9. increasing nvalue chain

10. max index

11. min index

12. npair

13. open maximum

14. open minimum

15. ordered global cardinality

16. path

17. tree

. .
17

5

16

atom

int col

int sint

1. clique

2. discrepancy

3. k cut

4. proper forest

3.5. CONSTRAINTS ARGUMENT PATTERNS 117

atom

int col

int col

int
1. cumulative convex

atom

int col

int3

1. circuit cluster

2. graph crossing

3. orchard

4. orth on the ground

5. track

atom

int col

int2 sint
1. cutset

atom

int col

int4

1. coloured cumulative

2. crossing

3. cumulative

4. cumulative product

5. temporal path

. .
1

3

atom

int col

int7

1. cumulative two d

118 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

atom

sint2
1. eq set

atom

sint col

int
1. open alldifferent

atom

sint col

int2

1. link set to booleans

3.5. CONSTRAINTS ARGUMENT PATTERNS 119

atom

col2

int

1. alldifferent on intersection

2. consecutive groups of ones

3. disjoint

4. incomparable

5. int value precede chain

6. inverse within range

7. lex different

8. lex equal

9. lex greater

10. lex greatereq

11. lex less

12. lex lesseq

13. lex lesseq allperm

14. same

15. same intersection

16. sort

17. used by

18. uses

19. vec eq tuple

. .
18

17 15

12 7 10 14 1

11 9 8 16 3

19

120 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

atom

col col

int col

int

1. alldifferent partition

2. in relation

3. pattern

atom

col col

int int2

1. global cardinality

atom

col col

int int3

1. increasing global cardinality

2. global cardinality low up

3. stretch circuit

4. stretch path

atom

col col

int int2 col

int
1. stretch path partition

atom

col2

col

int

1. k same partition

2. k used by partition

. .
2

1

3.5. CONSTRAINTS ARGUMENT PATTERNS 121

atom

col2

int2

1. bin packing capa

2. elem

3. element greatereq

4. element lesseq

5. elements

6. elements alldifferent

7. indexed sum

. .
3 4 5

2 6

atom

col col

int2 int3 1. stage element

2. tree resource

atom

col2

int sint
1. inverse set

atom

col col

int2 int5
1. coloured cumulatives

2. cumulative with level of priority

3. elem from to

122 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

atom

col2

int3

1. cycle resource

2. disjoint tasks

3. two orth are in contact

4. two orth do not overlap

. .
4

3

atom

col2

int2 sint
1. symmetric gcc

atom

col2

int3 sint
1. symmetric cardinality

3.5. CONSTRAINTS ARGUMENT PATTERNS 123

3.5.3 Constraints with 3 arguments

atom

int3

1. distance

2. eq cst

3. gcd

4. geq cst

5. in interval

6. leq cst

7. neq cst

8. power

9. remainder

. .
4 6

2 1

atom

atom int col

int

1. arith

2. arith sliding

3. change

4. circular change

5. longest change

6. nvalues

7. nvalues except 0

8. period

9. period except 0

10. product ctr

11. range ctr

12. sum ctr

13. sum cubes ctr

14. sum squares ctr

. .
9

8

124 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

atom

atom int col

int2 1. assign and nvalues

2. scalar product

atom

atom col col

int2 int5

1. cumulatives

atom

atom int col

col

int
1. nvectors

atom

int col col

atom col

int 1. change vectors

2. period vectors

3.5. CONSTRAINTS ARGUMENT PATTERNS 125

atom

int2 col

int

1. atleast

2. atmost

3. balance interval

4. balance modulo

5. domain

6. element

7. exactly

8. int value precede

9. ith pos different from 0

10. max n

11. maximum modulo

12. min n

13. minimum except 0

14. minimum greater than

15. minimum modulo

16. multi inter distance

17. nequivalence

18. next greater element

19. ninterval

20. smooth

. .
14 1 2

18 7

atom

int2 col

sint
1. set value precede

126 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

atom

int2 col

col

int
1. in same partition

atom

int2 col

int2

1. interval and sum

2. map

3. path from to

4. tree range

atom

int2 col

int3
1. inverse offset

2. shift

3. sliding time window

atom

int2 col

int4 1. cycle or accessibility

2. sliding time window sum

3.5. CONSTRAINTS ARGUMENT PATTERNS 127

atom

int col2

int

1. alldifferent same value

2. among

3. among var

4. cardinality atleast

5. cardinality atmost

6. clause and

7. clause or

8. differ from at least k pos

9. elementn

10. nvalue on intersection

11. same interval

12. same modulo

13. soft same var

14. soft used by var

15. used by interval

16. used by modulo

. .
3 5 15 16 14

2 11 12 13

atom

int col col

int col

int

1. balance partition

2. cardinality atmost partition

3. change partition

4. cond lex cost

5. nclass

atom

int col col

int int2 1. global cardinality no loop

2. sum of weights of distinct values

128 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

atom

int col col

int int3 1. minimum weight alldifferent

2. sliding distribution

atom

int col2

int2

1. element sparse

2. elements sparse

. .
2

1

atom

int col2

int3

1. orth on top of orth

2. two orth column

3. two orth include

. .
3

2

atom

int col col

int2 col int col2

int int
1. geost

atom

sint2 col

int
1. roots

3.5. CONSTRAINTS ARGUMENT PATTERNS 129

atom

sint col col

int int2

1. open global cardinality

atom

sint col col

int int3

1. open global cardinality low up

atom

col3

int

1. correspondence

2. lex between

3. sort permutation

. .
1

3

atom

col col2

int int sint 1. subgraph isomorphism

2. graph isomorphism

atom

col2 col

int col

int

1. cond lex greater

2. cond lex greatereq

3. cond lex less

4. cond lex lesseq

5. same partition

6. used by partition

. .
2 4 6

1 3 5

130 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

atom

col2 col

int int2

1. same and global cardinality

atom

col2 col

int int3

1. same and global cardinality low up

3.5. CONSTRAINTS ARGUMENT PATTERNS 131

3.5.4 Constraints with 4 arguments

atom

atom2 int col

int2

1. change pair

atom

atom int2 col

int

1. count

2. cyclic change

3. cyclic change joker

. .
3

2

atom

atom int sint col

int2

1. sum set

atom

atom int col2

int

1. arith or

2. counts

3. distance between

4. distance change

atom

atom int col col

int int2

1. assign and counts

atom

int4
1. in interval reified

132 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

atom

int3 col

int

1. among interval

2. among modulo

3. element product

4. sliding sum

atom

int3 col

int2

1. next element

atom

int3 col

int3

1. sliding time window from start

atom

int3 col

int4

1. soft cumulative

atom

int2 sint col

int 1. open atleast

2. open atmost

3.5. CONSTRAINTS ARGUMENT PATTERNS 133

atom

int2 col2

int

1. among low up

2. common

3. sliding card skip0

4. soft same interval var

5. soft same modulo var

6. soft used by interval var

7. soft used by modulo var

. .
6 7

4 5

atom

int2 col col

int int2 1. interval and count

2. weighted partial alldiff

atom

int2 col col

int int sint
1. sum

atom

int2 col col

int int3

1. global cardinality low up no loop

atom

int sint col2

int
1. open among

134 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

atom

int sint col col

int col2 int5 col

int int
1. geost time

atom

int col3

int sint
1. dom reachability

atom

int col2 col

int col

int

1. soft same partition var

2. soft used by partition var

. .
2

1

atom

int col col col

int int2 int3

1. global cardinality with costs

atom

int col2 col

int2 int3

1. two layer edge crossing

3.5. CONSTRAINTS ARGUMENT PATTERNS 135

3.5.5 Constraints with 5 arguments

atom

int sint col col col

int2 int5 col int col col2

int int2 int
1. visible

atom

int4 col

int
1. connect points

atom

int3 col2

int
1. among seq

2. common interval

3. common modulo

atom

int2 col2 col

int col

int
1. common partition

136 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.5.6 Constraints with 6 arguments

atom

int5 col

int
1. relaxed sliding sum

atom

int5 col

int3

1. element matrix

atom

int4 col2

int
1. group skip isolated item

atom

int4 col col

int int3

1. cycle card on path

atom

int3 col3

int3

1. colored matrix

3.5. CONSTRAINTS ARGUMENT PATTERNS 137

3.5.7 Constraints with 8 arguments

atom

int6 col2

int
1. group

3.5.8 Constraints with 10 arguments

atom

atom int8 col

int
1. change continuity

138 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.6 Meta-keywords attached to the keywords

This section explains the meaning of the meta-keywords attached to the keywords
of the catalogue. Keywords are usually associated with one single meta-keyword,
except some that are linked to the meta-keywordmodelling exercisesand to one
other meta-keyword likemodelling or puzzles(e.g., see for instance the keywords
magic seriesor degree of diversity of a set of solutions). For each meta-keyword it first
gives the list of keywords using the corresponding meta-keyword and then defines the
meta-keyword. At present the following meta-keywords are in use.

3.6.1 Application area

• Air traffic management,

• Assignment,

• Bioinformatics,

• Configuration problem,

• Deadlock breaking,

• Floor planning problem,

• Frequency allocation problem,

• Phylogeny,

• Program verification,

• SLAM problem,

• Sport timetabling,

• Workload covering.

Denotes that a keyword is related to an application area.

3.6.2 Characteristic of a constraint

• All different,

• Automaton,

• Automaton with array of counters,

• Automaton with counters,

• Automaton without counters,

• Coloured,

• Consecutive values,

• Convex,

• Convex hull relaxation,

• Core,

• Cyclic,

• Derived collection,

• Difference,

• Disequality,

• Equality,

• Hypergraph,

• Joker value,

• Maximum,

• maxint,

• Minimum,

• Modulo,

• Non-deterministic automaton,

• Pair,

• Partition,

• Product,

• Range,

• Rank,

• Reified automaton constraint,

• Reified constraint,

• Sort,

• Sort based reformulation,

• Sum,

• Time window,

• Tuple,

• Undirected graph,

• Vector.

3.6. META-KEYWORDS ATTACHED TO THE KEYWORDS 139

Denotes that a keyword is related to a characteristic of the description of a con-
straint.

3.6.3 Combinatorial object

• Latin square,

• Matching,

• Multiset,

• Path,

• Pentomino,

• Periodic,

• Permutation,

• Relation,

• Run of a permutation,

• Sequence.

Denotes that a keyword corresponds to a combinatorial object or to a characteristic
of a combinatorial object.

3.6.4 Complexity

• 3-dimensional-matching,

• 3-SAT,

• Minimum hitting set cardinality,

• Rectangle clique partition,

• Sequencing with release times and deadlines,

• Set packing,

• Subset sum.

Denotes that a keyword corresponds to a problem used to recognise NP-hard prob-
lems attached to the feasibility of a constraint.

3.6.5 Constraint network structure

• Alpha-acyclic constraint network(2),

• Alpha-acyclic constraint network(3),

• Berge-acyclic constraint network,

• Centered cyclic(1) constraint network(1),

• Centered cyclic(2) constraint network(1),

• Centered cyclic(3) constraint network(1),

• Circular sliding cyclic(1) constraint network(2),

• Sliding cyclic(1) constraint network(1),

• Sliding cyclic(1) constraint network(2),

• Sliding cyclic(1) constraint network(3),

• Sliding cyclic(2) constraint network(2),

Denotes that a keyword designates a specific constraint network structure occurring
repeatedly in several constraints.

140 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.6.6 Constraint type

• Arithmetic constraint,

• Boolean constraint,

• Conditional constraint,

• Constraint on the intersection,

• Counting constraint,

• Data constraint,

• Decomposition,

• Decomposition-based violation measure,

• Extension,

• Graph constraint,

• Graph partitioning constraint,

• Logic,

• Open automaton constraint,

• Open constraint,

• Order constraint,

• Overlapping alldifferent,

• Predefined constraint,

• Proximity constraint,

• Relaxation,

• Resource constraint,

• Scheduling constraint,

• Sliding sequence constraint,

• Soft constraint,

• System of constraints,

• Temporal constraint,

• Timetabling constraint,

• Value constraint,

• Value partitioning constraint,

• Variable-based violation measure.

Denotes that a keyword designates a constraint category.

3.6.7 Constraint arguments

• Aggregate,

• Binary constraint,

• Business rules,

• Constraint between three collections of variables,

• Constraint between two collections of variables,

• Constraint involving set variables,

• Contractible,

• Extensible,

• Pure functional dependency,

• Ternary constraint,

• Unary constraint.

Denotes that a keyword provides an information about the arguments of a con-
straint.

3.6.8 Filtering

• Abstract interpretation,

• Arc-consistency,

• Bipartite matching,

• Bipartite matching in convex bipartite graphs,

• Border,

• Bound-consistency,

3.6. META-KEYWORDS ATTACHED TO THE KEYWORDS 141

• Compulsory part,

• Constructive disjunction,

• Convex bipartite graph,

• Cost filtering constraint,

• Cumulative longest hole problems,

• DFS-bottleneck,

• Duplicated variables,

• Dynamic programming,

• Entailment,

• Flow,

• Hall interval,

• Hungarian method for the assignment problem,

• Hybrid-consistency,

• Klee measure problem,

• Linear programming,

• Minimum cost flow,

• Phi-tree,

• Planarity test,

• Quadtree,

• SAT,

• Strong articulation point,

• Strong bridge,

• Sweep.

Denotes that a keyword is related to an existing or a potential filtering algorithm of
a constraint or to an algorithm checking a ground instance ofa constraint.

3.6.9 Final graph structure

• Acyclic,

• Apartition,

• Bipartite,

• Circuit,

• Connected component,

• Consecutive loops are connected,

• Directed acyclic graph,

• Equivalence,

• No cycle,

• No loop,

• One succ,

• Strongly connected component,

• Symmetric,

• Tree,

• Vpartition.

Denotes that a keyword describes the structure of the final graph associated with a
constraint.

3.6.10 Geometry

• Alignment,

• Contact,

• Geometrical constraint,

• Guillotine cut,

• Line-segments intersection,

• Non-overlapping,

• Orthotope,

• Polygon,

• Positioning constraint,

• RCC8,

• Touch.

Denotes that a keyword is related to a geometrical constraint or to a geometrical
object.

142 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.6.11 Heuristics
• Heuristics,

• Heuristics and Berge-acyclic constraint network,

• Heuristics and lexicographical ordering,

• Heuristics for two-dimensional rectangle placement problems,

• Labelling by increasing cost,

• Limited discrepancy search,

• Regret based heuristics,

• Regret based heuristics in matrix problems.

Denotes that a keyword is related to a search heuristics.

3.6.12 Miscellaneous

• Obscure.

Denotes that a keyword does not belong to any class.

3.6.13 Modelling
• Array constraint,

• Assigning and scheduling tasks that run in parallel,

• Assignment dimension,

• Assignment to the same set of values,

• At least,

• At most,

• Balanced assignment,

• Balanced tree,

• Boolean channel,

• Channelling constraint,

• Cluster,

• Cost matrix,

• Cycle,

• Degree of diversity of a set of solutions,

• Difference between pairs of variables,

• Disjunction,

3.6. META-KEYWORDS ATTACHED TO THE KEYWORDS 143

• Domain channel,

• Domain definition,

• Dual model,

• Empty intersection,

• Equality between multisets,

• Excluded,

• Functional dependency,

• Included,

• Inclusion,

• Incompatible pairs of values,

• Interval,

• Matrix,

• Matrix model,

• Maximum number of occurrences,

• Minimum number of occurrences,

• Multi-site employee scheduling with calendar constraints,

• Number of changes,

• Number of distinct equivalence classes,

• Number of distinct values,

• Permutation channel,

• Preferences,

• Relaxation dimension,

• Scalar product,

• Scheduling with machine choice, calendars and preemption,

• Sequence dependent set-up,

• Set channel,

• Shared table,

• Sparse functional dependency,

• Sparse table,

• Statistics,

• Table,

• Variable indexing,

• Variable subscript,

• Zero-duration task.

Denotes that a keyword is related to a modelling issue.

144 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.6.14 Modelling exercises
• Assigning and scheduling tasks that run in parallel: inspired by a modelling question on theChoco

mailing list about an assignment and scheduling problem involving nurses and surgeons, use one
geost constraint as well as inequalities for breaking symmetries with respect to groups of identical
persons. The keywordrelaxation dimensionshows how to extend the previous model in order to take
into account over-constrained assignment and scheduling problems.

• Assignment to the same set of values: inspired by a presentation of F. Hermenier about a task
assignment problem where subtasks have to be assigned a same group of machines, use sev-
eral element constraints and one single resource constraint that has anassignment dimension
(e.g.,bin packing, cumulatives, diffn, geost).

• Degree of diversity of a set of solutions: inspired by a discussion with E. Hebrard, how to find
out 9 completely different solutionsfor the 10-queensproblem, use thealldifferent, the
soft alldifferent ctr and thelex chain less constraints.

• Logigraphe: inspired by an instance from [297, page 36], use a conjunction of
consecutive groups of ones constraints.

• Magic series: a special case ofAutoref, use one singleglobal cardinality constraint.

• Metro: a model from H. Simonis, use onlyleq cst constraints and propagation (i.e., no enumera-
tion) for modelling theshortest pathproblem in a network.

• Multi-site employee scheduling with calendar constraints: a timetabling problem, inspired by H. Si-
monis, where tasks have to be assigned groups of employes located in different countries subject to
different calendars, use resource constraints as well as thecalendar constraint.

• n-Amazon: an extension of then-queenproblem, use onealldifferent constraint, two
alldifferent cst constraints and threesmooth constraints.

• relaxation dimension: illustrate how to model over-constrained placement problemsby introducing
an extra dimension in the context of thediffn and thegeost constraints.

• Scheduling with machine choice, calendars and preemption: a scheduling problem withcrossable
and non-crossable unavailability periodsas well asresumable and non-resumable tasks, illustrate the
use oftwo time coordinates systemswithin the same model, use precedence and resource constraints
as well as thecalendar constraint.

• Sequence dependent set-up: a classical scheduling problem, use thesum ctr, element and
temporal path constraints.

• Zebra puzzle: illustrate theduality of choice of what is a variable and what is a valuein a con-
straint model as well as the difficulty of stating the constraints in one of the two models, use the
alldifferent, theelement – with variables in the table – and theinverse constraints.

Denotes that a keyword describes a constraint modelling exercise.

http://choco.emn.fr/

3.6. META-KEYWORDS ATTACHED TO THE KEYWORDS 145

3.6.15 Problems

• Channel routing,

• Demand profile,

• Domination,

• Facilities location problem,

• Graph colouring,

• Hamiltonian,

• Maximum clique,

• Minimum feedback vertex set,

• Pallet loading,

• Pattern sequencing,

• Pick-up delivery,

• Producer-consumer,

• Schur number,

• Strip packing,

• Two-dimensional orthogonal packing,

• Weighted assignment.

Denotes that a keyword is related to a problem from Operations Research.

3.6.16 Puzzles
• Autoref,

• Conway packing problem,

• Costas arrays,

• Dominating queens,

• Euler knight,

• Golomb ruler,

• Logigraphe,

• Magic hexagon,

• Magic series,

• Magic square,

• n-Amazon,

• n-queen,

• Packing almost squares,

• Partridge,

• pentomino,

• Shikaku,

• Smallest rectangle area,

• Smallest square for packing consecutive dominoes,

• Smallest square for packing rectangles with distinct sizes,

• Squared squares,

• Sudoku,

• Zebra puzzle.

Denotes that a keyword is related to a specific puzzle.

146 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.6.17 Symmetry

• Indistinguishable values,

• Lexicographic order,

• Matrix symmetry,

• Multiset ordering,

• Symmetry,

• Value precedence.

Denotes that a keyword is related to a symmetry breaking technique [113, 156].

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 147

3.7 Keywords attached to the global constraints

This section explains the meaning of the keywords attached to the global constraints
of the catalogue. For each keyword it first gives the list of global constraints using
the corresponding keyword and then defines the keyword. At present the following
keywords are in use.

3.7.1 H3-dimensional-matching ➠ [2 CONS]

• k same, • soft all equal min ctr.

Denotes that, by reduction to3-dimensional-matching, deciding whether a con-
straint has a solution or not was shown to be NP-hard. The3-dimensional-matching
problem can be described as follows: given a setS ⊆ X × Y ×Z, whereX, Y andZ
are disjoint sets having the same number of elementsm, doesS contain a subsetM of
m elements such that no two elements ofM agree in any coordinate?

3.7.2 H3-SAT ➠ [5 CONS]

• atmost nvalue,

• common,

• global cardinality,

• nvalue,

• uses.

Denotes that, by reduction to3-SAT, deciding whether a constraint has a solution
or not was shown to be NP-hard. The3-SATproblem can be described as follows:
given a collectionC of clauses involving a set of variablesV , where each clause has
exactly3 variables, is there a truth assignment forV that satisfies all the clauses ofC?

3.7.3 HAbstract interpretation ➠ [2 CONS]

• gcd, • power.

Denotes that abstract interpretation was used for derivinga filtering algorithm for
a constraintC from a polynomial algorithm describing a checker for a ground instance
of C. Abstract interpretation[120] executes an algorithm on abstract values in order
to deduce some information about that algorithm.

148 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.4 HAcyclic ➠ [28 CONS]

• alldifferent on intersection,

• allperm,

• among low up,

• among var,

• arith or,

• assign and counts,

• assign and nvalues,

• bin packing,

• cardinality atleast,

• cardinality atmost,

• cardinality atmost partition,

• change,

• change continuity,

• change pair,

• change partition,

• common,

• common interval,

• common modulo,

• common partition,

• correspondence,

• counts,

• crossing,

• cutset,

• cyclic change,

• cyclic change joker,

• decreasing,

• lex equal,

• uses.

Denotes that a constraint is defined by one single graph constraint for which the
final graph doesn’t have any circuit.

3.7.5 HAggregate ➠ [33 CONS]

• among (+, union, sunion),

• among diff 0 (+, union),

• among interval (+, union, id, id),

• among low up (+, +, union, sunion),

• among modulo (+, union, id, id),

• among var (+, union, union),

• and (∧, union),

• count (id, union, id, +) whenRELOP ∈
[<,≤,≥, >],

• counts (unions, union, id, +) when
RELOP ∈ [<,≤,≥, >],

• discrepancy (union, +),

• exactly (+, union, id),

• int value precede (id, id, union),

• int value precede chain (id, union),

• maximum (max, union),

• minimum (min, union),

• minimum greater than (min, id, union),

• nand (∨, union),

• nor (∧, union),

• or (∨, union),

• product ctr (union, id, ∗) whenCTR ∈
[=],

• same (union, union),

• same interval (union, union, id),

• same modulo (union, union, id),

• same partition (union, union, id),

• scalar product (union, id, +),

• sum ctr (union, id, +),

• sum cubes ctr (union, id, +),

• sum squares ctr (union, id, +),

• used by (union, union),

• used by interval (union, union, id),

• used by modulo (union, union, id),

• used by partition (union, union, id),

• uses (union, union).

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 149

Denotes that, given two instances of a constraint, we can combine (i.e., aggregate)
these two instances in order to obtain a third constraint, which has the same name as the
first two constraints. The first two constraints are called the sourceconstraints, while
the implied constraint is called thetarget constraint. Theith argument of the target
constraint is obtained by combining theith arguments of the two source constraints.
This is specified for each argument by one of the following options.

• id: check that the corresponding arguments of the two source constraints are
identicaland take it as the argument of the target constraint; this option if often
used for specifying that an argument corresponding to a parameter has to be the
same in the two source constraints, as well as in the target constraint (i.e., the
source and the target constraints share the same parameter).

• +: add the corresponding arguments of the two source constraints.

• ∗: multiply the corresponding arguments of the two source constraints.

• ∧: make anand between the corresponding0-1 arguments of the two source
constraints.

• ∨: make anor between the corresponding0-1 arguments of the two source con-
straints.

• min: take theminimumof the corresponding arguments of the two source con-
straints.

• max: take themaximumof the corresponding arguments of the two source con-
straints.

• union: take theunion, without removing duplicates, of the collections items of
the corresponding arguments of the two source constraints.

• sunion: take theunion, and remove duplicates, of the collections items of the
corresponding arguments of the two source constraints, where collections corre-
spond to collection of ground values (i.e., parameters).

Finally, the aggregation may me be conditioned by a list of restrictions, each restric-
tion corresponding to one of the restrictions described in Section2.1.3. We call this
conditional aggregation.

Most constraints for which aggregation applies correspondto constraints where
one of the arguments isfunctionally determinedby the other arguments. This is for
instance the case for themaximum(MAX, VARIABLES) constraint which enforcesMAX to
be equal to the maximum value assigned to the variables ofVARIABLES. However
some constraints, like thesame constraint, for which aggregation applies, do not have
any argument that is functionally determined by the other arguments.

We now present three examples of deductions that can be obtained by aggregating
two source constraints.

• among(1, 〈4, 5, 5, 4, 1〉, 〈0, 1〉) ∧ among(3, 〈1, 1, 9, 0〉, 〈0, 1〉) ⇒
among(4, 〈4, 5, 5, 4, 1, 1, 1, 9, 0〉, 〈0, 1〉), where:

150 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

1. The first argument of the target constraint, i.e.,4, is equal to the sum of the
first arguments of the two source constraints, i.e.,1 + 3.

2. The second argument of the target constraint,〈4, 5, 5, 4, 1, 1, 1, 9, 0〉, is
equal to the union (without removing duplicates) of the second arguments
〈4, 5, 5, 4, 1〉 and〈1, 1, 9, 0〉 of the two source constraints.

3. The third arguments of the two source constraints are identical, i.e.,〈0, 1〉,
and the third argument of the target constraint.

• maximum(5, 〈3, 0, 5, 2, 5〉) ∧ maximum(9, 〈1, 1, 9, 0〉) ⇒
maximum(9, 〈3, 0, 5, 2, 5, 1, 1, 9, 0〉), where:

1. The first argument of the target constraint, i.e.,9, is equal to the maximum
value of the first arguments of the two source constraints, i.e.,max(5, 9).

2. The second argument of the target constraint,〈3, 0, 5, 2, 5, 1, 1, 9, 0〉, is
equal to the union (without removing duplicates) of the second arguments
〈3, 0, 5, 2, 5〉 and〈1, 1, 9, 0〉 of the two source constraints.

• same(〈3, 3, 1〉, 〈3, 1, 3〉) ∧ same(〈1, 9, 1, 5, 5〉, 〈5, 5, 1, 1, 9〉) ⇒
same(〈3, 3, 1, 1, 9, 1, 5, 5〉, 〈3, 1, 3, 5, 5, 1, 1, 9〉), where:

1. The first argument of the target constraint,〈3, 3, 1, 1, 9, 1, 5, 5〉, is equal to
the union (without removing duplicates) of the first arguments 〈3, 3, 1〉 and
〈1, 9, 1, 5, 5〉 of the two source constraints.

2. The second argument of the target constraint,〈3, 1, 3, 5, 5, 1, 1, 9〉, is
equal to the union (without removing duplicates) of the second arguments
〈3, 1, 3〉 and〈5, 5, 1, 1, 9〉 of the two source constraints.

3.7.6 HAir traffic management ➠ [3 CONS]

• all min dist,

• k alldifferent,

• multi inter distance.

Denotes that a constraint was used for solving a problem in the area of air traffic
management.

3.7.7 HAlignment ➠ [1 CONS]

• orchard.

Denotes that a constraint enforces the alignment of different sets of points.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 151

3.7.8 HAll different ➠ [19 CONS]

• alldifferent,

• alldifferent between sets,

• alldifferent cst,

• alldifferent consecutive values,

• alldifferent except 0,

• alldifferent interval,

• alldifferent modulo,

• alldifferent on intersection,

• alldifferent partition,

• golomb,

• k alldifferent,

• open alldifferent,

• permutation,

• size max starting seq alldifferent,

• size max seq alldifferent,

• soft alldifferent ctr,

• soft alldifferent var,

• symmetric alldifferent,

• weighted partial alldiff.

Denotes that we have one or several cliques of disequalitiesor that a con-
straint is a variation of thealldifferent constraint. Variations may be related
to relaxation (see, e.g., thealldifferent except 0, soft alldifferent ctr,
and soft alldifferent var constraints), or to specialisation (see, e.g., the
symmetric alldifferent constraint), of thealldifferent constraint. Varia-
tions may also result from an extension of the notion of disequality (see, e.g.,
thealldifferent interval, alldifferent modulo, alldifferent partition

andgolomb constraints).

3.7.9 HAlpha-acyclic constraint network(2) ➠ [14 CONS]

• among,

• among diff 0,

• among interval,

• among low up,

• among modulo,

• atleast,

• atmost,

• count,

• counts,

• differ from at least k pos,

• exactly,

• group,

• group skip isolated item,

• sliding card skip0.

152 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

Before definingalpha-acyclic constraint network(2)we first need to introduce the
following notions:

• The dual graphof a constraint networkN is defined in the following way: to
each constraint ofN corresponds a vertex in the dual graph and if two constraints
have a non-empty setS of shared variables, there is an edge labelledS between
their corresponding vertices in the dual graph.

• An edge in the dual graph of a constraint network isredundantif its variables are
shared by every edge along an alternative path between the two end points [124].

• If the subgraph resulting from the removal of the redundant edges of the dual
graph is a tree the original constraint network is calledα-acyclic [145].

Alpha-acyclic constraint network(2)denotes anα-acyclic constraint network such
that, for any pair of constraints, the two sets of involved variables share at most two
variables.

3.7.10 HAlpha-acyclic constraint network(3) ➠ [3 CONS]

• group,

• group skip isolated item,

• ith pos different from 0.

Alpha-acyclic constraint network(3)denotes anα-acyclic constraint network
(seealpha-acyclic constraint network(2)) such that, for any pair of constraints, the
two sets of involved variables share at most three variables.

3.7.11 HApartition ➠ [1 CONS]

• change continuity.

Denotes that a constraint is defined by two graph constraintshaving the same initial
graph, where each arc of the initial graph belongs to one of the final graph (but not to
both).

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 153

3.7.12 HArc-consistency ➠ [115 CONS]

• abs value,

• alldifferent,

• alldifferent cst,

• alldifferent except 0,

• alldifferent interval,

• alldifferent modulo,

• alldifferent partition,

• among,

• among diff 0,

• among interval,

• among low up,

• among modulo,

• among seq,

• and,

• arith,

• arith or,

• atleast,

• atleast nvalue,

• atmost,

• cardinality atleast,

• cardinality atmost,

• cardinality atmost partition,

• clause and,

• clause or,

• cond lex cost,

• cond lex greater,

• cond lex greatereq,

• cond lex less,

• cond lex lesseq,

• consecutive groups of ones,

• count,

• counts,

• decreasing,

• derangement,

• discrepancy,

• divisible,

• domain constraint,

• elem,

• elem from to,

• element,

• elementn,

• element greatereq,

• element lesseq,

• element matrix,

• element sparse,

• elements,

• elements sparse,

• eq,

• eq cst

• equivalent,

• exactly,

• geq,

• geq cst,

• global cardinality low up,

• global contiguity,

• gt,

• imply,

• in,

• in interval,

• in interval reified,

• in intervals,

• in relation,

• in same partition,

• increasing,

• increasing global cardinality,

• increasing nvalue,

• int value precede,

• int value precede chain,

• inverse,

• inverse offset,

• leq,

• leq cst,

• lex alldifferent,

• lex between,

• lex chain less,

• lex chain lesseq,

154 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

• lex different,

• lex equal,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• lt,

• maximum,

• minimum,

• nand,

• neq,

• neq cst,

• nor,

• not all equal,

• not in,

• opposite sign,

• or,

• ordered global cardinality,

• pattern,

• precedence,

• same,

• same and global cardinality low up,

• same sign,

• sign of,

• soft all equal max var,

• soft all equal min var,

• stage element,

• stretch circuit,

• stretch path,

• stretch path partition,

• strictly decreasing,

• strictly increasing,

• symmetric alldifferent,

• tree,

• two orth are in contact,

• two orth do not overlap,

• used by,

• vec eq tuple,

• xor.

Denotes that, for a given constraint involving only domain variables, there is a
filtering algorithm that ensuresarc-consistency. A constraintctr defined on the distinct
domain variablesV1, . . . , Vn is arc-consistentif and only if for every pair(V, v) such
thatV is a domain variable ofctr andv ∈ dom(V), there exists at least one solution to
ctr in whichV is assigned the valuev. As quoted by C. Bessière in [55], “a different
name has often been used for arc-consistency on non-binary constraints”, like domain
consistency, generalized arc-consistencyor hyper arc-consistency.

There is also a weaker form ofarc-consistencythat also try to remove values from
the middle of the domain of a variableV (i.e., unlikebound-consistencywhich focus
on reducing the minimum and maximum value of a variable), called range consistency
in [55], that is defined in the following way. A constraintctr defined on the distinct
domain variablesV1, . . . , Vn is range-consistentif and only if, for every pair(V, v)
such thatV is a domain variable ofctr andv ∈ dom(V), there exists at least a solution
to ctr in which, (1)V is assigned the valuev, and (2) each variableU ∈ {V1, . . . , Vn}
distinct fromV is assigned a value located in its range[U,U].

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 155

3.7.13 HArithmetic constraint ➠ [29 CONS]

• abs value,

• arith sliding,

• distance,

• divisible,

• divisible or,

• eq,

• eq cst,

• gcd,

• geq,

• geq cst,

• gt,

• increasing sum,

• leq,

• leq cst,

• lt,

• neq,

• neq cst,

• opposite sign,

• power,

• product ctr,

• range ctr,

• remainder,

• same sign,

• sign of,

• scalar product,

• sum ctr,

• sum set,

• sum cubes ctr,

• sum squares ctr.

An arithmetic constraint between two or three variables or an arithmetic constraint
involving a sum, a product, or a difference between a maximumand a minimum value.
The non binary constraints were introduced within the catalogue since they are required
for defining a given global constraint. For instance thesum ctr constraint is used
within the definition of thecumulative constraint.

3.7.14 HArray constraint ➠ [9 CONS]

• elem,

• elem from to,

• element,

• elements alldifferent,

• element lesseq,

• element greatereq,

• element matrix,

• element product,

• element sparse.

A constraint that allows for expressing simple array equations.

156 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.15 HAssigning and scheduling tasks that run in parallel ➠

[3 CONS]

• diffn,

• geost,

• geost time.

Given a set of tasks defined by a set of subtasks, where each subtask has the
following attributes:

• A start telling when the subtask starts.

• A durationgiving the duration of the subtask.

• A deadlinerequesting the subtask to finish no later than a given date.

• A personindicating which person performs the subtask.

Both the start and the person correspond to discrete decision variables, while the du-
ration and the deadline are integers. Since all subtasks of asame task must run in
parallel, their start, duration and deadline are identical. Since a person can perform at
most one task at each timepoint, persons assigned to the subtasks of a same task must
all be distinct. We also assume that a subtask cannot be preempted.

As an instance of this pattern, consider the problem of scheduling surgical oper-
ations in an hospital. Each surgery corresponds to a task that requires a number of
persons with specific skills; these persons will all work together during the operation
(e.g., typically an anaesthetist, a surgeon and one or several nurses). Moreover, each
person has its own calendar defining its unavailability. On the one hand, let us assume
we have two anaesthetists, two surgeons and four nurses thatare labelled from1 to 8.
Each of them has the following unavailability over the time horizon[0, 24]:

• The first anaesthetist is not available during the time periods [0, 1], [5, 6], and
[12, 16].

• The second anaesthetist is not available during the time periods [0, 2], [6, 6],
[15, 15], and[22, 22].

• The first surgeon is not available during the time periods[0, 1], [8, 9], and
[13, 14].

• The second surgeon is not available during the time periods[5, 5], and[20, 21].

• The four nurses are all not available during the time periods[0, 0], [7, 7], [12, 12],
and[22, 22].

On the other hand, let us suppose we have to schedule five operation tasks, each of
them requiring a specific team:

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 157

• Taskt1 needs one anaesthetist, one surgeon and two nurses during two consecu-
tive time slots.

• Taskt2 needs one anaesthetist, one surgeon and one nurse during four consecu-
tive time slots.

• Taskt3 needs one anaesthetist, two surgeons and two nurses during three con-
secutive time slots.

• Taskt4 needs one anaesthetist, one surgeon and three nurses duringtwo consec-
utive time slots.

• Taskt5 needs one anaesthetist, one surgeon and one nurse during sixconsecutive
time slots.

Moreover, taskst1, t2, t3, t4 andt5 must be respectively completed no later than12, 15,
24, 24 and24. The problem is modelled by using a two-dimensionalgeost constraint,
where the first and second dimensions respectively correspond to the time and resource
axes. For each person required by a task we create a rectangleof length corresponding
to the necessary duration and of height1 (i.e., 1 since it requires one person). The
coordinates of the leftmost lower point of the rectangle correspond to the start of the
corresponding task as well as to the person that will be assigned to the subtask (i.e., a
value between1 and2 for an anaesthetist, a value between3 and4 for a surgeon, and
a value between5 and8 for a nurse). Both the start and the person correspond to a
domain variable. Each unavailability period of an anaesthetist, a surgeon and a nurse is
modelled by introducing a fixed rectangle (i.e., its coordinates are set to the start of the
unavailability period and to the person to which the unavailability belongs; its duration
is set to the duration of the unavailability period) that prevent tasks overlapping the
corresponding time period for a specific person. This leads to the followinggeost
constraint,

158 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

geost(2,
〈oid− 1 sid− 2 x− 〈o1, a1〉, oid− 2 sid− 2 x− 〈o1, s1〉,
oid− 3 sid− 2 x− 〈o1, n11〉, oid− 4 sid− 2 x− 〈o1, n12〉,
oid− 5 sid− 4 x− 〈o2, a2〉, oid− 6 sid− 4 x− 〈o2, s2〉,
oid− 7 sid− 4 x− 〈o2, n2〉, oid− 8 sid− 3 x− 〈o3, a3〉,
oid− 9 sid− 3 x− 〈o3, s31〉, oid− 10 sid− 3 x− 〈o3, s32〉,
oid− 11 sid− 3 x− 〈o3, n31〉, oid− 12 sid− 3 x− 〈o3, n32〉,
oid− 13 sid− 2 x− 〈o4, a4〉, oid− 14 sid− 2 x− 〈o4, s4〉,
oid− 15 sid− 2 x− 〈o4, n41〉, oid− 16 sid− 2 x− 〈o4, n42〉,
oid− 17 sid− 2 x− 〈o4, n43〉, oid− 18 sid− 6 x− 〈o5, a5〉,
oid− 19 sid− 6 x− 〈o5, s5〉, oid− 20 sid− 6 x− 〈o5, n5〉,
oid− 21 sid− 2 x− 〈0, 1〉, oid− 22 sid− 2 x− 〈5, 1〉,
oid− 23 sid− 5 x− 〈12, 1〉, oid− 24 sid− 3 x− 〈0, 2〉,
oid− 25 sid− 1 x− 〈6, 2〉, oid− 26 sid− 1 x− 〈15, 2〉,
oid− 27 sid− 1 x− 〈22, 2〉, oid− 28 sid− 2 x− 〈0, 3〉,
oid− 29 sid− 2 x− 〈8, 3〉, oid− 30 sid− 2 x− 〈13, 3〉,
oid− 31 sid− 1 x− 〈5, 4〉, oid− 32 sid− 2 x− 〈20, 4〉,
oid− 33 sid− 1 x− 〈0, 5〉, oid− 34 sid− 1 x− 〈7, 5〉,
oid− 35 sid− 1 x− 〈12, 5〉, oid− 36 sid− 1 x− 〈22, 5〉,
oid− 37 sid− 1 x− 〈0, 6〉, oid− 38 sid− 1 x− 〈7, 6〉,
oid− 39 sid− 1 x− 〈12, 6〉, oid− 40 sid− 1 x− 〈22, 6〉,
oid− 41 sid− 1 x− 〈0, 7〉, oid− 42 sid− 1 x− 〈7, 7〉,
oid− 43 sid− 1 x− 〈12, 7〉, oid− 44 sid− 1 x− 〈22, 7〉,
oid− 45 sid− 1 x− 〈0, 8〉, oid− 46 sid− 1 x− 〈7, 8〉,
oid− 47 sid− 1 x− 〈12, 8〉, oid− 48 sid− 1 x− 〈22, 8〉〉,
〈sid− 1 t− 〈0, 0〉 l− 〈1, 1〉, sid− 2 t− 〈0, 0〉 l− 〈2, 1〉,
sid− 3 t− 〈0, 0〉 l− 〈3, 1〉, sid− 4 t− 〈0, 0〉 l− 〈4, 1〉,
sid− 5 t− 〈0, 0〉 l− 〈5, 1〉, sid− 6 t− 〈0, 0〉 l− 〈6, 1〉〉).

time

re
so

ur
ce

s

anaesthetists: 1..2 surgeons: 3..4 nurses: 5..8

6 7 92 8

t4

4t

t

t

4

3

3t

t3

3t

2t

t2

t1

1t

1t

t52t

t1t3 4t

1t t2 3t t4 5t

t4

t5

5t

10 16 17]]]

8

7

6

5

4

3

2

1

2423222120191815141312110 5431

Figure 3.2: A solution for the operation scheduling problemusing four nurses (a so-
lution using only3 nurses can be obtained by starting taskt4 at instant13 and by
assigning it to the second anaesthetist rather than to the first one)

A deadline constraint for an operation starting ato and of durationd is modelled by
a precedence constraint of the formo+d ≤ deadline. This leads to the five constraints
o1 + 2 ≤ 12, o2 + 4 ≤ 15, o3 + 3 ≤ 24, o4 + 2 ≤ 24, ando5 + 6 ≤ 24. Finally,
we break symmetry on the assignment variables corresponding to a group of similar

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 159

persons. In the example, the four nurses are similar since (1) they all have exactly the
same unavailability periods, and since (2) no task requiresa specific nurse. For each
task using more than one nurse (i.e., taskst1, t3, andt4) this leads to a chain of strict
inequalities, i.e.,n11 < n12, n31 < n32, andn41 < n42 < n43. Figure3.2 depicts
a solution to the problem corresponding to the assignmento1 = 10, a1 = 1, s1 = 3,
n11 = 5, n12 = 6, o2 = 8, a2 = 2, s2 = 4, n2 = 7, o3 = 2, a3 = 1, s31 = 3, s32 = 4,
n31 = 5, n32 = 6, o4 = 17, a4 = 1, s4 = 4, n41 = 5, n42 = 6, n43 = 7, o5 = 16,
a5 = 2, s5 = 3, n5 = 8.

The entry corresponding to the keywordrelaxation dimensionshows how to ex-
press relaxation in the context of over-constrained problems where we have too many
operations to schedule with respect to the number of anaesthetists, surgeons and nurses
and to their unavailability periods.

3.7.16 HAssignment ➠ [31 CONS]

• assign and counts,

• assign and nvalues,

• balance,

• balance interval,

• balance modulo,

• balance partition,

• bin packing,

• bin packing capa,

• cardinality atleast,

• cardinality atmost,

• global cardinality,

• global cardinality low up,

• global cardinality with costs,

• increasing global cardinality,

• indexed sum,

• interval and count,

• interval and sum,

• k alldifferent,

• max nvalue,

• min nvalue,

• min size set of consecutive var,

• minimum weight alldifferent,

• open global cardinality,

• open global cardinality low up,

• ordered global cardinality,

• same and global cardinality,

• same and global cardinality low up,

• sum of weights of distinct values,

• symmetric cardinality,

• symmetric gcc,

• weighted partial alldiff.

A constraint related to assignment problems (i.e.,k alldifferent), or a
constraint putting a restriction on all items that are assigned to the same equiv-
alence class or on all equivalence classes that are effectively used. Usually
an equivalence class corresponds to one single value (see, e.g., the balance,
bin packing, global cardinality, andsum of weights of distinct values

constraints), to an interval of consecutive values (see, e.g., the balance interval,
interval and count, andinterval and sum constraints) or to all values that are
congruent modulo a given number (see, e.g., thebalance modulo constraint). The
restriction on all items that are assigned to the same equivalence class can for in-
stance be a constraint on the number of items (see, e.g., thecardinality atleast,
cardinality atmost, global cardinality, and global cardinality low up

160 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

constraints) or a constraint on the sum of a specific attribute (see, e.g., the
bin packing, andinterval and sum constraints).

3.7.17 HAssignment dimension➠ [12 CONS]

• assign and counts (attributebin of ITEMS collection),

• assign and nvalues (attributebin of ITEMS collection),

• bin packing (attributebin of ITEMS collection),

• bin packing capa (attributebin of ITEMS collection),

• calendar (attributemachine of INSTANTS collection),

• coloured cumulatives (attributemachine of TASKS collection),

• cumulatives (attributemachine of TASKS collection),

• diffn (attributeori of ORTHOTOPE collection for whichsiz = 1),

• geost (attributex of OBJECTS collection for whichl = 1),

• geost time (attributex of OBJECTS collection for whichl = 1),

• interval and count (attributeorigin of TASKS collection),

• interval and sum (attributeorigin of TASKS collection).

A constraint for handling placement problems in the broad sense involving an
assignment dimension (i.e., one of the attribute of a collection passed as argument in-
dicates the assignment dimension — the attribute is shown inparenthesis for each con-
straint). In order to illustrate the notion ofassignment dimensionlet us first introduce
three typical examples described in Figure3.3:

• Part (A) of Figure3.3considers a scheduling problem where we have both to as-
sign a task to a machine and to fix its start to a time-point, in such a way that two
tasks that overlap in time are not assigned to the same machine. In this context
the different potential machines where tasks can be assigned is called an assign-
ment dimension. This problem can be directly modelled by acumulatives, a
diffn or ageost constraint. The corresponding three ground instances encod-
ing the example are (attributes related to the assignment dimension are shown in
bold):

– cumulatives(
〈machine− 1 origin− 2 duration− 2 end− 4 height− 1,
machine− 3 origin− 4 duration− 3 end− 7 height− 1,
machine− 1 origin− 7 duration− 1 end− 8 height− 1〉,
〈id− 1 capacity− 1,
id− 2 capacity− 1,
id− 3 capacity− 1〉)

– diffn(
〈orth− 〈ori− 2 siz− 2 end− 4, ori− 1 siz− 1 end− 2〉,
orth− 〈ori− 4 siz− 3 end− 7, ori− 3 siz− 1 end− 4〉,
orth− 〈ori− 7 siz− 1 end− 8, ori− 1 siz− 1 end− 2〉〉)

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 161

– geost(2, 〈oid− 1 sid− 1 x− 〈2,1〉,
oid− 2 sid− 2 x− 〈4,3〉,
oid− 3 sid− 3 x− 〈7,1〉〉
〈sid− 1 t− 〈0,0〉 l− 〈2,1〉,
sid− 2 t− 〈0,0〉 l− 〈3,1〉,
sid− 3 t− 〈0,0〉 l− 〈1,1〉〉)

• Part (B) of Figure3.3 considers a placement problem where we have both to
assign a rectangle to a rectangular piece and to locate it within the selected rect-
angular piece. In this context the different potential rectangular pieces where
rectangles can be placed is also called an assignment dimension. Note that in
such placement problems the size of an object in an assignment dimension is al-
ways equal to one. This problem can be directly modelled by adiffn or ageost
constraint. The corresponding two ground instances encoding the example are
(attributes related to the assignment dimension are shown in bold):

– diffn(〈orth− 〈ori− 2 siz− 1 end− 3,
ori− 2 siz− 2 end− 4,
ori− 2 siz− 2 end− 4〉,

orth− 〈ori− 1 siz− 1 end− 2,
ori− 3 siz− 3 end− 6,
ori− 1 siz− 2 end− 3〉,

orth− 〈ori− 2 siz− 1 end− 3,
ori− 6 siz− 1 end− 7,
ori− 1 siz− 3 end− 4〉〉)

– geost(3, 〈oid− 1 sid− 1 x− 〈2, 2, 2〉,
oid− 2 sid− 2 x− 〈1, 3, 1〉,
oid− 3 sid− 3 x− 〈2, 6, 1〉〉
〈sid− 1 t− 〈0, 0, 0〉 l− 〈1, 2, 2〉,
sid− 2 t− 〈0, 0, 0〉 l− 〈1, 3, 2〉,
sid− 3 t− 〈0, 0, 0〉 l− 〈1, 1, 3〉〉)

• Part (C) of Figure3.3 considers a placement problem where we have both to
assign a box to a container and to place it within the selectedcontainer. In
this context the different potential containers where boxes can be packed is also
called an assignment dimension. Note that in such placementproblems the size
of an object in an assignment dimension is always equal to one. This problem can
be directly modelled by adiffn or ageost constraint. The corresponding two
ground instances encoding the example are (attributes related to the assignment
dimension are shown in bold):

– diffn(〈orth− 〈ori− 1 siz− 1 end− 2,
ori− 1 siz− 1 end− 2,
ori− 1 siz− 2 end− 3,
ori− 1 siz− 1 end− 2〉,

orth− 〈ori− 1 siz− 1 end− 2,
ori− 1 siz− 1 end− 2,

162 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

ori− 1 siz− 1 end− 2,
ori− 2 siz− 1 end− 3〉,

orth− 〈ori− 2 siz− 1 end− 3,
ori− 1 siz− 2 end− 3,
ori− 1 siz− 2 end− 3,
ori− 1 siz− 1 end− 2〉〉)

– geost(4, 〈oid− 1 sid− 1 x− 〈1, 1, 1, 1〉,
oid− 2 sid− 2 x− 〈1, 1, 1, 2〉,
oid− 3 sid− 3 x− 〈2, 1, 1, 1〉〉
〈sid− 1 t− 〈0, 0, 0, 0〉 l− 〈1, 1, 2, 1〉,
sid− 2 t− 〈0, 0, 0, 0〉 l− 〈1, 1, 1, 1〉,
sid− 3 t− 〈0, 0, 0, 0〉 l− 〈1, 2, 2, 1〉〉)

In summary, within the context of placement problems that use a constraint like
diffn or geost, the coordinate of an object in the assignment dimension corresponds
to the resource to which the object is assigned. Note thatthe size of an object in the
assignment dimension is always set to1. This stems from the fact that an object is
assigned to a single resource.

(A) (B) (C)

1

2

3

1 2 3

3
2

754321 8
1

3

6

1

1

1

2

3

1 3

2
1 2

2

6 8754321

2
1

2

3

1

32

32 1
2

3

1

Figure 3.3: Three illustrations of the notion ofassignment dimensionwhere the assign-
ment dimension is stressed in bold

Using constraints likecoloured cumulatives, cumulatives, diffn, geost or
geost time allows to model directly with one single global constraint such problems
without knowing in advance to which machine, to which rectangular piece, to which
container, a task, a rectangle, a box will be assigned. For each object the potential val-
ues of its assignment variable provide the machines, the rectangular pieces, the con-
tainers to which the object can possibly be assigned. Note that this allows to avoid0-1
variables for modelling such problems.

Within constraints likeinterval and count or interval and sum the concept
of assignment dimension is extended from the fact thata variable is assigned a value
to the fact thata variable is assigned an interval (i.e., a value in an interval).

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 163

3.7.18 HAssignment to the same set of values➠ [9 CONS]

• bin packing,

• bin packing capa,

• coloured cumulatives,

• cumulatives,

• diffn,

• elem,

• element,

• geost,

• geost time.

Given several mutually disjoint finite sets of valuesS1,S2, . . . ,Sm (m > 1) such
thatS1 ∪ S2 ∪ · · · ∪ Sm = {1, 2, . . . , p}, as well as a set of variablesV1, V2, . . . , Vn,
theassignment to the same set of values subproblemconsists of assigning all variables
V1, V2, . . . , Vn values that belong to the same setSi (1 ≤ i ≤ m). As we will see later
on, this subproblem arises naturally in many resource assignment problems where an
additional constraint between variablesV1, V2, . . . , Vn also has to hold. The subprob-
lem can be modelled as a conjunction ofelement constraints of the form:
element(V1, 〈set of val1, set of val2, . . . , set of valp〉,SET INDEX) ∧
element(V2, 〈set of val1, set of val2, . . . , set of valp〉,SET INDEX) ∧
. . .
element(Vn, 〈set of val1, set of val2, . . . , set of valp〉,SET INDEX),

whereset of val i = j if and only if i ∈ Sj (i.e.,set of val i corresponds to the index
of the set that contains valuei). Thek-th element constraint expresses that variable
Vk is assigned a value in setSSET INDEX . Since allelement constraints share the
same third argument this enforces all variablesV1, V2, . . . , Vn to be assigned a value
within the same set. Note that this conjunction ofelement constraints corresponds to
a Berge-acyclic constraint network. Consequently, one can achievearc-consistencyon
this subproblem provided thatarc-consistencyis enforced on eachelement constraint.

As an example, consider the four sets of valuesS1 = {3, 4, 8}, S2 = {1, 5},
S3 = {6, 7}, andS4 = {2, 9}, as well as four variablesw, x, y andz that all must be
assigned values that belong to the same setSs (1 ≤ s ≤ 4). This leads to the following
conjunction ofelement constraints:
element(w, 〈2, 4, 1, 1, 2, 3, 3, 1, 4〉, s) ∧
element(x, 〈2, 4, 1, 1, 2, 3, 3, 1, 4〉, s) ∧
element(y, 〈2, 4, 1, 1, 2, 3, 3, 1, 4〉, s) ∧
element(z, 〈2, 4, 1, 1, 2, 3, 3, 1, 4〉, s).
The first entry of the table〈2, 4, 1, 1, 2, 3, 3, 1, 4〉 is set to2 since value1 belongs

to S2. Similarly, the second entry of the table is set of4 since value2 belongs toS4.
The same logic is used for building up the other entries of thetable.

A generalisation of this subproblem consists in lifting therestriction that the sets
of valuesS1,S2, . . . ,Sm are mutually disjoint. The only change to adapt the previous
model is to replace within eachelement constraint each valueval i (1 ≤ i ≤ p) by
a value variableVal i (i.e., each value of a value variable represents a set containing
i), wherej ∈ dom(Val i) if and only if i ∈ Sj . Distinct element constraints will
get distinct value variables. As an example, consider the previous four sets of values

164 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

where we add value2 to S1 and value5 to S3. We now have the setsS1 = {2, 3, 4, 8},
S2 = {1, 5}, S3 = {5, 6, 7}, andS4 = {2, 9} where value2 occurs both inS1 and
S4, and value5 appears both inS2 andS3. This leads to the following conjunction of
constraints:
in(a1, 〈1, 4〉) ∧ in(b1, 〈2, 3〉) ∧ element(w, 〈2, a1, 1, 1, b1, 3, 3, 1, 4〉, s) ∧
in(a2, 〈1, 4〉) ∧ in(b2, 〈2, 3〉) ∧ element(x, 〈2, a2, 1, 1, b2, 3, 3, 1, 4〉, s) ∧
in(a3, 〈1, 4〉) ∧ in(b3, 〈2, 3〉) ∧ element(y, 〈2, a3, 1, 1, b3, 3, 3, 1, 4〉, s) ∧
in(a4, 〈1, 4〉) ∧ in(b4, 〈2, 3〉) ∧ element(z, 〈2, a4, 1, 1, b4, 3, 3, 1, 4〉, s).
The domain of the variablesai (1 ≤ i ≤ 4) associated with the second entry of

the table7 of theelement constraints is set to1 and4 since value2 belongs toS1 and
to S4. Similarly, the domain of variablesbi (1 ≤ i ≤ 4) associated with the fifth
entry is set to2 and3 since value5 belongs toS2 andS3. Note that, since variables
a1, a2, a3, a4, b1, b2, b3, b4 are distinct, the corresponding constraint network is still
Berge-acyclic. We now provide an alternative model where theith entry of the table
of thekth (1 ≤ k ≤ n) element constraint corresponds to a variableSki for which
the initial domain is the set of values that belong toSi (1 ≤ i ≤ m). We have a
conjunction ofelement constraints of the form:
element(SET INDEX , 〈S11, S12, . . . , S1m〉, V1) ∧
element(SET INDEX , 〈S21, S22, . . . , S2m〉, V2) ∧
. . .
element(SET INDEX , 〈Sn1, Sn2, . . . , Snm〉, Vn),

whereSET INDEX is a variable ranging from1 to m designating the selected set.
This model perhaps seems more natural. However unlike the first model, when the sets
S1,S2, . . . ,Sm are mutually disjoint, it enforces using variables insteadof integers in
the table of eachelement constraint. Like the first model, it isBerge-acyclic.

Now that we have presented two dual models for the assignmentto the same
set of values subproblem, we introduce theresource assignment with groupspat-
tern, which uses several instances of the subproblem. We consider a set of tasks
t1, t2, . . . , tq (q ≥ 1) tasks, where each taskti (1 ≤ i ≤ q) is decomposed into
si subtaskstij (1 ≤ j ≤ si). All subtasks that belong to one and the same task
should be assigned the same group, where groups are defined bythe finite sets of val-
uesS1,S2, . . . ,Sm (m > 1) introduced early on. For this purpose anassignment
variableand agroup variableare respectively associated with each subtask and each
task. In addition, we also have a resource constraint involving all subtasks. This re-
source constraint has anassignment dimensioncorresponding to the different resources
where subtasks can potentially be assigned. To each resource corresponds a value of
S1 ∪ S2 ∪ · · · ∪ Sm = {1, 2, . . . , p}. Depending on the kind of resource constraint we
have (e.g.,bin packing, cumulatives, diffn, geost), each subtask has additional
attributes that characterise it. For instance, if we have abin packing constraint then,
in addition to the assignment dimension that corresponds tothe bin where a subtask
will be assigned, we also have a weight attribute that describes how much space a sub-
task uses in a bin. Then thebin packing constraint expresses that the total weight of
the subtasks in each bin does not exceed a given fixed capacity.

7Thetablecorresponds to the second argument of theelement constraint.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 165

(expressed with element constraints)

t31t
su

bt
as

k

su
bt

as
k

su
bt

as
k

21t t 22

su
bt

as
k

tt
su

bt
as

k
12

su
bt

as
k

t 1311

su
bt

as
k

.......................................

all subtasks of a task have to be assigned a same group

32

(some may be common)

other subtask attributes

resource constraint

group variables

task 1t 2task t ttask 3

assignment variables

grouping constraints :

(expressed for instance with bin_packing,

common resource which has a limited capacity

: all subtasks share somecumulatives, diffn or geost constraints)

Figure 3.4: Illustration of the constraint network associated with theresource assign-
ment with groupspattern

Figure3.4 illustrates the constraint network associated with theresource assign-
ment with groupspattern. Lower circles represent the group variables associated with
the different tasks (three tasks in the example), while all the other circles represent
the attributes of the different subtasks (i.e., verticallyaligned circles correspond to the
attributes of a given subtask). All circles that are associated with the same task are
coloured with the same colour. As said before, each subtask has an attribute that gives
the resource to which the resource will be assigned (called assignment variables in Fig-
ure3.4) and other attributes that depend of the resource constraint we are considering
(called other subtask attributes in the Figure). Each blue rounded box corresponds to
a group constraint that enforces all subtasks of a given taskto be assigned the same
group (i.e., within this blue box, each line-segment represents anelement constraint
of the assignment to the same set of values subproblem). Finally, the pink rounded box
represents the resource constraint that involves all subtasks.

Before illustrating the resource assignment with groups pattern on a particular re-
source constraint, we first point out a potential weakness that is inherent to this con-
straint network, no matter what kind of resource constraintwe use. When pruning the
assignment variables, the resource constraint will ignorethe groups (since the resource
constraint is not aware of theelement constraints) and will therefore miss some filter-
ing. Consequently one may complete the constraint network by some global necessary
conditions. When fixing variables it may be a good idea to fix allvariables that are
attached to one task before considering the next task. While fixing the variables of a
task one may first assign its group variable, and second fix thevariables of its subtasks;

166 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

again we may prefer to fix all variables of a subtask before considering the next subtask.
The idea behind this heuristics is to try to avoid the creation of infeasible subproblems
during search.

assignment dimension

groups of bins

5321 6 7 8 9

2 41332114

31t

22tt21

13t

t

3

4

5

12t11

<6

1

2

32t

4

Figure 3.5: Illustration of the resource assignment with groups pattern in the context
of abin packing resource constraint

Figure 3.5 illustrates the resource assignment with groups pattern when the re-
source constraint corresponds to abin packing constraint. As in Figure3.4, we have
three taskst1, t2 andt3 such that:

• Three subtaskst11, t12 andt13 are associated with taskt1. They have a respective
weight of2, 3 and2 and are coloured in green in Figure3.5.

• Two subtaskst21 andt22 of respective weight2 and3 are associated with task
t2. They are coloured in yellow.

• Two subtaskst31 andt32 of respective weight2 and1 are associated with task
t3. They are coloured in orange.

We consider9 bins that are partitioned into four groups of binsS1 = {3, 4, 8} (coloured
in light blue in Figure3.5), S2 = {1, 5} (coloured in light green),S3 = {6, 7}
(coloured in light brown), andS4 = {2, 9} (coloured in light violet), and enforce
that all subtasks that are associated with the same task are assigned the same group of
bins. In addition, the sum of the weights of the subtasks thatare assigned the same
bin should not exceed the capacity of the bins,5 in our example. Within the solution
depicted by Figure3.5, all constraints are satisfied since:

1. For each task, all its subtasks are assigned the same groupof bins (i.e., all sub-
tasks that have the same colour are assigned bins with the same colour).

2. The capacity constraint of each bin is respected (i.e., the overall capacity of five
is never exceeded).

The conjunction of constraints corresponding to this solution is:
element(4, 〈2, 4, 1, 1, 2, 3, 3, 1, 4〉, 1) ∧
element(8, 〈2, 4, 1, 1, 2, 3, 3, 1, 4〉, 1) ∧

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 167

element(4, 〈2, 4, 1, 1, 2, 3, 3, 1, 4〉, 1) ∧
element(2, 〈2, 4, 1, 1, 2, 3, 3, 1, 4〉, 4) ∧
element(9, 〈2, 4, 1, 1, 2, 3, 3, 1, 4〉, 4) ∧
element(2, 〈2, 4, 1, 1, 2, 3, 3, 1, 4〉, 4) ∧
element(9, 〈2, 4, 1, 1, 2, 3, 3, 1, 4〉, 4) ∧
bin packing(5, 〈bin− 4 weight− 2, bin− 8 weight− 3, bin− 4 weight− 2,

bin− 2 weight− 2, bin− 9 weight− 3,
bin− 2 weight− 2, bin− 9 weight− 1〉).

For each subtask we have oneelement constraint expressing that all subtasks of
a given task are assigned the same group of bins. Finally we have onebin packing

constraint expressing the capacity condition.
We now quote two concrete examples of the resource assignment with groups pat-

tern:

• Given, (1) a set of jobs where each job is decomposed into a setof tasks, each
of them requiring an amount of memory for its execution, as well as (2) a set
of potential machines, each of them having a given availablememory, organised
into clusters, the problem is to:

– Assign all tasks to machines in such a way that tasks from the same job are
assigned the same cluster.

– Fulfil the available memory constraint of each machine (i.e., the sum of the
required memory of all tasks that are assigned a given machine does not
exceed the machine available memory).

This concrete problem corresponds to the example presentedin Figure3.5.

• Given, (1) a set of maintenance activities where each maintenance activity is
decomposed into a set of subactivities, each of them requiring a specific skill
and a given duration, as well as (2) a set of technicians, eachof them having its
own home base location and its own working time window, the problem is to:

– Assign all maintenance subactivities to technicians in such a way that sub-
activities from the same activity are assigned techniciansthat have the same
home base location (i.e., each subactivity should be assigned one single
technician).

– Fulfil both the working time window of each technician, and the fact that
subactivities that are assigned the same technician shouldnot overlap (i.e.,
subactivities must be assigned a starting time and preemption is not al-
lowed).

In this problem we replace thebin packing constraint by a
cumulatives(TASKS, MACHINES,≤) constraint. To each item of theTASKS
collection corresponds a subactivity, such that:

– Its machine attribute designates the potential technicians that can take care
of this subactivity.

168 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

– Itsorigin attribute corresponds to the timepoint where the subactivity will
actually start.

– Its duration attribute is set to the duration of the corresponding subactiv-
ity.

– Its end attribute is equal toorigin+ duration.

– Its height attribute is set to one.

In addition to the subactivities, we also introduce for eachtechnician two fixed
dummy tasks for preventing assigning subactivities outside its time window. To
each item of theMACHINES collection corresponds a technician, such that:

– Its id attribute is a fixed integer that uniquely identifies the technician.

– Its capacity attribute is set to one since it cannot perform more than one
subactivity at any timepoint.

3.7.19 HAt least ➠ [3 CONS]

• atleast,

• cardinality atleast,

• open atleast.

A constraint enforcing that one or several values occur a minimum number of time
within a given collection of domain variables.

3.7.20 HAt most ➠ [5 CONS]

• atmost,

• cardinality atmost,

• cardinality atmost partition,

• multi inter distance,

• open atmost.

A constraint enforcing that one or several values occur a maximum number of time
within a given collection of domain variables.

3.7.21 HAutomaton ➠ [122 CONS]

• alldifferent,

• alldifferent except 0,

• alldifferent interval,

• alldifferent modulo,

• alldifferent on intersection,

• alldifferent same value,

• among,

• among diff 0,

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 169

• among interval,

• among low up,

• among modulo,

• and,

• arith,

• arith or,

• arith sliding,

• assign and counts,

• atleast,

• atmost,

• balance,

• balance interval,

• balance modulo,

• between min max,

• bin packing,

• cardinality atleast,

• cardinality atmost,

• change,

• change continuity,

• change pair,

• change vectors,

• circular change,

• clause and,

• clause or,

• cond lex cost,

• cond lex greater,

• cond lex greatereq,

• cond lex less,

• cond lex lesseq,

• consecutive groups of ones,

• count,

• counts,

• cumulative,

• cyclic change,

• cyclic change joker,

• decreasing,

• deepest valley,

• differ from at least k pos,

• disjoint,

• distance change,

• domain constraint,

• elem,

• elem from to,

• element,

• elementn,

• element greatereq,

• element lesseq,

• element matrix,

• element sparse,

• equivalent,

• exactly,

• global cardinality,

• global contiguity,

• group,

• group skip isolated item,

• highest peak,

• imply,

• in,

• in interval,

• in same partition,

• increasing,

• increasing global cardinality,

• increasing nvalue,

• inflexion,

• int value precede,

• int value precede chain,

• interval and count,

• interval and sum,

• inverse,

• ith pos different from 0,

• length first sequence,

• length last sequence,

• lex between,

• lex different,

• lex equal,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• longest change,

• max nvalue,

• maximum,

• min n,

• min nvalue,

• minimum,

170 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

• minimum except 0,

• minimum greater than,

• nand,

• next element,

• no peak,

• no valley,

• nor,

• not all equal,

• not in,

• nvalue,

• open maximum,

• open minimum,

• or,

• pattern,

• peak,

• same,

• sequence folding,

• sliding card skip0,

• smooth,

• stage element,

• stretch path,

• stretch path partition,

• strictly decreasing,

• strictly increasing,

• two orth are in contact,

• two orth do not overlap,

• used by,

• valley,

• xor.

A constraint for which the catalogue provides a deterministic automaton for the
ground case. This automaton can usually be used for derivingmechanically a filtering
algorithm for the general case. We have the following three types of deterministic
automata:

• Deterministic automata without counters and without arrayof counters,

• Deterministic automata with counters but without array of counters,

• Deterministic automata with array of counters and possiblywith counters.

{C[_]=0}

i
VAR =VALUE,i
{C=C+1} {c[VAR]=c[VAR]+1} i i

1,

VAR =0i

VAR =1i

VAR =1i

VAR =0i

VAR =0i

global_contiguity exactly alldifferent

$

N=C

t:

$

t:
arith(C,<,2)

s

n

z

t

$

$

$

s s

{C=0}

VAR <>VALUE

Figure 3.6: Examples of automata

Figure 3.6 shows three automata respectively associated with the
global contiguity, the exactly and the alldifferent constraints. These
automata correspond to the three types we described above.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 171

3.7.22 HAutomaton with array of counters ➠ [25 CONS]

• alldifferent,

• alldifferent except 0,

• alldifferent interval,

• alldifferent modulo,

• alldifferent on intersection,

• alldifferent same value,

• assign and counts,

• balance,

• balance interval,

• balance modulo,

• bin packing,

• cardinality atleast,

• cardinality atmost,

• cumulative,

• disjoint,

• global cardinality,

• interval and count,

• interval and sum,

• inverse,

• max nvalue,

• min n,

• min nvalue,

• nvalue,

• same,

• used by.

A constraint for which the catalogue provides a deterministic automaton with array
of counters and possibly with counters.

3.7.23 HAutomaton with counters ➠ [33 CONS]

• among,

• among diff 0,

• among interval,

• among low up,

• among modulo,

• arith sliding,

• atleast,

• atmost,

• change,

• change continuity,

• change pair,

• change vectors,

• circular change,

• count,

• counts,

• cyclic change,

• cyclic change joker,

• deepest valley,

• differ from at least k pos,

• distance change,

• exactly,

• group,

• group skip isolated item,

• highest peak,

• inflexion,

• ith pos different from 0,

• length first sequence,

• length last sequence,

• longest change,

• peak,

• sliding card skip0,

• smooth,

• valley.

172 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

A constraint for which the catalogue provides a deterministic automaton with coun-
ters but without array of counters.

3.7.24 HAutomaton without counters ➠ [60 CONS]

• and,

• arith,

• arith or,

• between min max,

• clause and,

• clause or,

• cond lex cost,

• consecutive groups of ones,

• decreasing,

• domain constraint,

• elem,

• elem from to,

• element,

• element greatereq,

• element lesseq,

• element matrix,

• element sparse,

• elementn,

• equivalent,

• global contiguity,

• imply,

• in,

• in interval,

• in same partition,

• increasing,

• increasing global cardinality,

• increasing nvalue,

• int value precede,

• int value precede chain,

• lex between,

• lex different,

• lex equal,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• maximum,

• minimum,

• minimum except 0,

• minimum greater than,

• nand,

• next element,

• no peak,

• no valley,

• nor,

• not all equal,

• not in,

• open maximum,

• open minimum,

• or,

• pattern,

• sequence folding,

• stage element,

• stretch path,

• stretch path partition,

• strictly decreasing,

• strictly increasing,

• two orth are in contact,

• two orth do not overlap,

• xor.

A constraint for which the catalogue provides a deterministic automaton without
counters and without array of counters. Note that the filtering algorithm [286] and the
reformulation [34] that were initially done in the context of deterministic automata can

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 173

also be used for non-deterministic automata. All these constraints are also annotated
with the keywordreified automaton constraint.

3.7.25 HAutoref ➠ [1 CONS]

• global cardinality.

A constraint that allows for modelling theautoref problem with one single con-
straint. Theautoref problem is a generalisation of the problem of finding amagic serie
and can be defined in the following way. Given an integern > 0 and an integer
m ≥ 0, the problem is to find a non-empty finite seriesS = (s0, s1, . . . , sn, sn+1)
such that (1) there aresi occurrences ofi in S for each integeri ranging from0 to n,
and (2)sn+1 = m. This leads to the following model:

global cardinality

〈

var− s0, var− s1, . . . , var− sn, var−m
〉

,

〈

val− 0 noccurrence− s0,
val− 1 noccurrence− s1,

...
val− n noccurrence− sn

〉

23, 2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 5 and23, 3,
0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 5 are the two unique
solutions forn = 27 andm = 5.

3.7.26 HBalanced assignment➠ [7 CONS]

• balance,

• balance interval,

• balance modulo,

• balance partition,

• deviation,

• maximum,

• spread.

A constraint to obtain a balanced assignment over a set of domain variables. Given
a set of domain variables{x1, x2, . . . , xn}, some classical balance criteria reported in
[347] are:

• Themaximum value, i.e., the maximum value overxi (i ∈ [1, n]) can be mod-
elled with amaximum constraint.

• The maximum deviation, i.e., the maximum value overxi −
∑

j∈[1,n] xj

n
(i ∈

[1, n]).

• The total deviation, i.e.,
∑

i∈[1,n]

∣

∣

∣
xi −

∑
j∈[1,n] xj

n

∣

∣

∣
can be modelled with a

deviation constraint [350, 348].

174 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

• Thetotal quadratic deviation, i.e,
∑

i∈[1,n]

(

xi −
∑

j∈[1,n] xj

n

)2

can be modelled

with aspread constraint [287, 349].

3.7.27 HBalanced tree ➠ [1 CONS]

• tree range.

A constraint that allows for expressing that we want to covera digraph by one (or
more)balanced tree. A balanced treeis a tree where no leaf is much farther away than
a given threshold from the root than any other leaf. The distance between a leaf and
the root of a tree is the number of vertices on the path from theroot to the leaf.

3.7.28 HBerge-acyclic constraint network ➠ [40 CONS]

• among,

• and,

• arith,

• arith or,

• change,

• change vectors,

• clause and,

• clause or,

• cond lex cost,

• cond lex greater,

• cond lex greatereq,

• cond lex less,

• cond lex lesseq,

• consecutive groups of ones,

• elementn,

• equivalent,

• global contiguity,

• imply,

• in interval,

• increasing global cardinality,

• increasing nvalue,

• int value precede,

• int value precede chain,

• lex between,

• lex different,

• lex equal,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• nand,

• nor,

• or,

• pattern,

• smooth,

• stretch path,

• stretch path partition,

• two orth are in contact,

• two orth do not overlap,

• xor.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 175

A constraint for which the decomposition associated with its usually counter-free
deterministic automaton8 is Berge-acyclic. Arc-consistency for aBerge-acycliccon-
straint network is achieved by making each constraint of thecorresponding network
arc-consistent [22]. A constraint network for which the correspondingintersection
graphdoes not contain any cycle and such that, for any pair of constraints, the two sets
of involved variables share at most one variable isBerge-acyclic, where Berge-acyclic
is defined by the following two conditions:

1. Their is no more than one shared variable between any pair of constraints,

2. The hypergraph corresponding to the constraint network does not contain any
cycle. Within [54, page 150] a cycle of an hypergraphH is defined as “Let
H be an hypergraph on a finite setX. A cycle of lengthk (k ≥ 2) is a se-
quence(x1, E1, x2, E2, x3, . . . , Ek, x1) such that(1) E1, E2, . . . , Ek are dis-
tinct edges ofH, (2) x1, x2, . . . , xk are distinct vertices ofH, (3) xi, xi+1 ∈ Ei

(i = 1, 2, . . . , k − 1), (4) xk, x1 ∈ Ek.”

The intersection graphof a constraint network is built in the following way: to each
vertex corresponds a constraint and there is an edge betweentwo vertices if and only if
the sets of variables involved in the two corresponding constraints intersect.

CTR 1
CTR 2

CTR 3

CTR 1CTR 2

CTR 3

1VV3 V2

V4

 4CTR 3CTR

 2CTR 1CTR

 4CTR 3CTR

 2CTR 1CTR
 1CTR

 3CTR
 2CTR

7V
6V

5V

 4CTR 3CTR

 2CTR 1CTR
1

8V

4
 V3

 V

2
 V V

5V

 4CTR 3CTR

 2CTR 1CTR
1

7V6V

4
 V3

 V

2
 V V 1CTR

4V

1V

 2CTR 3CTR

6V5V

3
 V2

 V

(H)(G)(F)(E)

(D)(C)(B)(A)

Figure 3.7: Illustration of Berge-acyclic constraint network

Parts (A), (B), (C) and (D) of Figure3.7 provide four examples of constraint net-
works, while parts (E), (F), (G) and (F) give their corresponding intersection graph.

1. The constraint network corresponding to part (A) is Berge-acyclic since its cor-
responding intersection graph (E) does not contain any cycle and since there is
no more than one shared variable between any pair of constraints.

8All the above constraints, exceptamong, change, andsmooth have a deterministic counter-free automa-
ton. Theamong constraint has an automaton involving one counter and one single state, see Figure5.24,
while thechange and thesmooth constraints have a counter-free non deterministic automaton, see Fig-
ures5.99and5.548.

176 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

2. The constraint network corresponding to part (B) is not Berge-acyclic since its
hypergraph (B) contains a cycle.

3. The constraint network corresponding to (C) is also not Berge-acyclic since its
third and fourth constraints share more than one variable.

4. Finally, the constraint network corresponding to (D) is Berge acyclic, even if its
intersection graph (H) has a cycle, since its hypergraph (D)does not contain any
cycle and since there is no more than one shared variable between any pair of
constraints.

If we execute the filtering algorithm of each constraint of a Berge-acyclic constraint
networkN in an appropriate order then each constraint needs only to bewaken twice
in order to reach the fix-point. A static ordering for waking the constraints ofN can be
determined as follows:

• Consider the intersection graphGN associated with the constraint networkN .
We perform a topological sort onGN , which always first selects in the remaining
part ofGN a vertex (i.e., a constraint) which has only one single neighbour. Let
C1, C2, . . . , Cn be the constraints successively removed by the topologicalsort.

• Then, the static ordering for reaching a fix-point is given bythe sequence
C1, C2, . . . , Cn−1, Cn, Cn−1, . . . , C2, C1, where each constraint is woken at
most twice. This can be done by using the notion ofpropagator group[229].
This facility allows the user of a solver controlling the order of execution of a
group of constraints. Propagator groups are useful, both toguaranty the theoret-
ical worst case complexity of a decomposition, and for accelerating convergence
to the fix-point in practice.

If we consider the Berge-acyclic constraint network given by Part (D) of Figure3.7
an appropriate order for waking the constraints could for instance beCTR1, CTR4,
CTR2, CTR3, CTR2, CTR4, CTR1.

For heuristics that try creating a Berge-acyclic constraint network see also the key-
wordheuristics and Berge-acyclic constraint network.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 177

3.7.29 HBinary constraint ➠ [25 CONS]

• abs value,

• divisible,

• divisible or,

• element greatereq,

• element lesseq,

• element sparse,

• eq,

• eq cst,

• eq set,

• geq,

• geq cst,

• gt,

• in same partition,

• leq,

• leq cst,

• lt,

• neq,

• neq cst,

• opposite sign,

• in interval reified,

• remainder,

• same sign,

• sign of,

• stage element,

• sum set.

A constraint involving only two variables.

3.7.30 HBioinformatics ➠ [3 CONS]

• all differ from at least k pos,

• sequence folding,

• stable compatibility.

Denotes that, for a given constraint, either there is a reference to its uses in Bioin-
formatics, or it was inspired by a problem from the area of Bioinformatics.

178 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.31 HBipartite ➠ [29 CONS]

• alldifferent on intersection,

• allperm,

• among low up,

• among var,

• arith or,

• assign and counts,

• assign and nvalues,

• bin packing,

• bipartite,

• cardinality atleast,

• cardinality atmost,

• cardinality atmost partition,

• change,

• change continuity,

• change pair,

• change partition,

• common,

• common interval,

• common modulo,

• common partition,

• correspondence,

• counts,

• cyclic change,

• cyclic change joker,

• decreasing,

• inverse within range,

• lex equal,

• two orth do not overlap,

• uses.

Denotes that a constraint is defined by one graph constraint for which the final
graph is bipartite.

3.7.32 HBipartite matching ➠ [6 CONS]

• alldifferent,

• alldifferent between sets,

• alldifferent cst,

• atleast nvalue,

• disjoint,

• lex alldifferent.

(B)(A)

Figure 3.8: A bipartite graph and one of its bipartite matching

Denotes that, for a given constraint, abipartite matchingalgorithm can be used
within its filtering algorithm. Abipartite matchingis a subgraph that pairs every vertex

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 179

of a bipartite graphwith exactly one other vertex. Abipartite graphis a graph for
which the set of vertices can be partitioned in two parts suchthat no two vertices in the
same part are joined by an edge. Part (A) of Figure3.8shows a bipartite graph with a
possible division of the vertices in black and white, while part (B) depicts with a thick
line a bipartite matching of this graph.

3.7.33 HBipartite matching in convex bipartite graphs ➠ [2 CONS]

• alldifferent, • alldifferent cst.

Denotes that, for a given constraint, a bipartite matching algorithm usingGlover’s
rule for constructing a maximum matching of aconvex bipartite graphcan be used.
Given a convex bipartite graphG = (U, V,E) whereU = {u1, u2, . . . , un} and
V = {v1, v2, . . . , vn}, Glover [179] showed how to efficiently compute a maximum
matching in such a graph:

1. First start with the empty matching.

2. Second for each vertexvj of V , (j = 1, 2, . . . ,m), if vj has still a free neighbour
in U , then add to the current matching the edge(ui, vj) for whichui is free and
αi = max{j : (xi, yj) ∈ E, yj ∈ V } is as small as possible.

3.7.34 HBoolean channel➠ [1 CONS]

• domain constraint.

A constraint that allows for making the link between a set of0-1 variables
B1, B2, . . . , Bn and a domain variableV . It enforces a condition of the formV =
i ⇔ Bi = 1.

180 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.35 HBoolean constraint ➠ [9 CONS]

• and,

• clause and,

• clause or,

• equivalent,

• imply,

• nand,

• nor,

• or,

• xor.

A Boolean constraintis a constraint of the formv = f(v1, . . . , vn) (n ≥ 2)
wherev, v1, . . . , vn are0-1 variables and wheref(v1, . . . , vn) is a logical expression
involving connectors, such as¬, ∨, or∧.

3.7.36 HBorder ➠ [1 CONS]

• period.

A constraint that can be related to the notion ofborder, which we define now.
Given a sequences = urv, r is aprefixof s whenu is empty,r is asuffixof s whenv
is empty,r is aproper factorof s whenr 6= s. A borderof a non-empty sequences is
a proper factorof s, which is both aprefixand asuffixof s. We have that the smallest
period of a sequences is equal to the size ofs minus the length of the longest border
of s.

3.7.37 HBound-consistency➠ [19 CONS]

• alldifferent,

• all min dist,

• atmost1,

• atmost nvalue,

• nvalue,

• global cardinality,

• global cardinality low up,

• increasing sum,

• k alldifferent,

• multi inter distance,

• same,

• same and global cardinality low up,

• sliding sum,

• soft all equal max var,

• soft all equal min ctr,

• sort,

• sum free,

• sum of increments,

• used by.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 181

Denotes that, for a given constraint, there is a filtering algorithm or a reformulation
in term of other constraints that ensuresbound-consistencyfor its domain variables.9 A
filtering algorithm or a reformulation ensurebound-consistencyfor a given constraint
ctr using distinct domain variables if and only if for every domain variableV of ctr:

• There exists at least one solution forctr such thatV = V and every other domain
variableW of ctr is assigned to a value located in its range[W,W],

• There exists at least one solution forctr such thatV = V and every other domain
variableW of ctr is assigned to a value located in its range[W,W].

This consistency is calledbound(Z) consistencyin [55]. One of its interest is that
it sometimes gives the opportunity to come up with a filteringalgorithm that has a
lower complexity than the algorithm that achieves arc-consistency. Discarding holes
from the domain variables usually leads to graphs with a specific structure for which
one can take advantage in order to derive more efficient graphalgorithms. Filtering
algorithms that achievebound-consistencycan also be used in a pre-processing phase
before applying a more costly filtering algorithm that achieves arc-consistency.

Note that there is a second definition ofbound-consistency, calledbound(D) con-
sistencyin [55], where the range[W,W] is replaced by the domain of the variableW .
However within the context of global constraints most filtering algorithms do not refer
to this second definition.

Finally, within the context of constraints involving only set variables,
bound-consistencyis defined in the following way. A constraintctr defined on dis-
tinct set variables isbound-consistentif and only if for every pair(V, v) such thatV is
a set variable ofctr andv an integer value, ifv ∈ V thenv belongs to the set assigned
to V in all solutions toctr and if v ∈ V \ V thenv belongs to the set assigned toV in
at least one solution and is excluded from this set in at leastone solution.

3.7.38 HBusiness rules➠ [3 CONS]

• cycle,

• diffn,

• geost.

Denotes that a dedicated language was introduced within an argument of a global
constraint for directly specifying a specific type of business rules:

• Thecycle constraint was extended in order to accept rules specifyingforbidden
sequences of verticeswithin each cycle [79].

• Thediffn constraint was extended in order to acceptcalendar rulesspecifying
the way tasks can be interrupted or not on each resource [23]. This was done

9In the context of thenvalue constraint, bound-consistency is only achieved if and onlyif, the min-
imum of the variable that denotes the number of distinct valuesis not constrained at all. In the context
of the k alldifferent constraint, bound-consistency is only achieved when we have two overlapping
alldifferent constraints, see [69] for more details.

182 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

since many real scheduling problems have not only to consider disjunctive and
assignment constraints, but also operational rules expressing how tasks can be
interrupted.

• Thegeost constraint was extended in order to directly accept a great variety of
packing and placement rules[93].

3.7.39 HCentered cyclic(1) constraint network(1) ➠ [9 CONS]

• between min max,

• domain constraint,

• in,

• maximum,

• minimum,

• minimum except 0,

• not in,

• open maximum,

• open minimum.

...

Figure 3.9: Hypergraph associated with a centered cyclic(1) constraint network(1)

A constraint network corresponding to the pattern depictedby Figure3.9. Cir-
cles depict variables, while arcs are represented by a set ofvariables. Grey circles
correspond to optional variables. All pairs of constraintshave at most one variable in
common.

3.7.40 HCentered cyclic(2) constraint network(1) ➠ [8 CONS]

• elem,

• element,

• element greatereq,

• element lesseq,

• element sparse,

• in same partition,

• minimum greater than,

• stage element.

A constraint network corresponding to the pattern depictedby Figure3.10. Cir-
cles depict variables, while arcs are represented by a set ofvariables. Grey circles
correspond to optional variables.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 183

...

Figure 3.10: Hypergraph associated with a centered cyclic(2) constraint network(1)

3.7.41 HCentered cyclic(3) constraint network(1) ➠ [2 CONS]

• element matrix, • next element.

...

Figure 3.11: Hypergraph associated with a centered cyclic(3) constraint network(1)

A constraint network corresponding to the pattern depictedby Figure3.11. Cir-
cles depict variables, while arcs are represented by a set ofvariables. Grey circles
correspond to optional variables.

3.7.42 HChannel routing ➠ [1 CONS]

• connect points.

A constraint that can be used for modellingchannel routingproblems.Channel
routing consists of creating a layout in a rectangular region of a VLSI chip in order to
link together the terminals of different modules of the chip. Connections are usually
made by wire segments on two different layers: horizontal wire segments on the first
layer are placed along lines called tracks, while vertical wire segments on the second
layer connect terminals to the horizontal wire segments, with vias at the intersection.

184 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.43 HChannelling constraint ➠ [8 CONS]

• calendar,

• domain constraint,

• inverse,

• inverse offset,

• inverse set,

• inverse within range,

• link set to booleans,

• same.

Constraints that allow for linking two models of the same problem [195]. Usually
channelling constraints show up in the following context:

• When a problem can be modelled by using different types of variables (e.g.,0-1
variables, domain variables, set variables),

• When a problem can be modelled by using two distinct matrices of variables
representing the same information redundantly,

• When, in a problem, the roles of the variables and the values can be interchanged.
This is typically the case when we have a bijection between a set of variables and
the values they can take.

• When, in a problem, we use two time coordinates systems (e.g.,seecalendar).

3.7.44 HCircuit ➠ [5 CONS]

• balance cycle,

• circuit,

• cutset,

• cycle,

• symmetric alldifferent.

A constraint such that its initial or its final graph corresponds to zero
(e.g., cutset), one (e.g., circuit) or several (see, e.g., thecycle, and
symmetric alldifferent constraints) vertex-disjoint circuits.

3.7.45 HCircular sliding cyclic(1) constraint network(2) ➠ [1 CONS]

• circular change.

A constraint network corresponding to the pattern depictedby Figure3.12. Circles
depict variables, while arcs are represented by a set of variables.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 185
These two circles correspond to the same variable

Figure 3.12: Hypergraph corresponding to a circular sliding cyclic(1) constraint net-
work(2)

3.7.46 HCluster ➠ [1 CONS]

• circuit cluster.

A constraint that partitions the vertices of an initial graph into several clusters.

3.7.47 HColoured ➠ [5 CONS]

• assign and counts,

• coloured cumulative,

• coloured cumulatives,

• cycle card on path,

• interval and count.

A constraint with a collection where one of the attributes isa colour.

3.7.48 HCompulsory part ➠ [9 CONS]

• coloured cumulative,

• coloured cumulatives,

• cumulative,

• cumulative convex,

• cumulative product,

• cumulative two d,

• cumulatives,

• diffn,

• disjunctive.

A constraint for which the filtering algorithm may use the notion of compulsory
part. The notion ofcompulsory partwas introduced by A. Lahrichi within the context
of cumulative scheduling problems [230], [232], [231] as well as within the context of
rectangles placement problems [233]. Within these two contexts, thecompulsory part
respectively corresponds to the intersection of all feasible instances of a task or to the
intersection of all feasible instances of a rectangle.

186 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

sx

(A1)

(A2)

(A3)

(B1)

(B3)

(B2)

(C1)

(C2)

(C3)

extreme positions compulsory partshape

s

s

sx

max

min max min max

max
min

max
min

min max min max max min

min

max min

min

ex

sy

ey

s es s e e

sy
sy

ey
ey

exexsxsx

ess s e e

cumulative

trapeze

diffn

cumulative

max

max

min maxmin

sy

e

e

ex

ey

Figure 3.13: Illustration of the notion of compulsory part

Figure3.13 illustrates the notion ofcompulsory partin the context of scheduling
and placement problems. The first, second and third rows respectively corresponds to
thecumulative [1], the cumulative trapeze [299, 300] and thediffn [42] con-
straints. The first, second and third columns respectively correspond to the shape of
the object for which we compute the compulsory part, to the extreme positions of the
object and to the corresponding compulsory part.

3.7.49 HConditional constraint ➠ [2 CONS]

• size max seq alldifferent,

• size max starting seq alldifferent.

A constraint that allows for expressing that some constraints can be enforced dur-
ing the enumeration phase.

3.7.50 HConfiguration problem ➠ [1 CONS]

• element product.

A constraint that was used for modelling configuration problems. Within the con-
text of configuration problems [376], it is crucial to identify all variable-value pairs
which do not participate to any solution. This stems from thefact that one wants typi-
cally to avoid proposing invalid choices to the user of such configuration systems.

Note also thatopen constraintsare also useful in the context of configuration prob-
lems.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 187

3.7.51 HConnected component➠ [21 CONS]

• alldifferent on intersection,

• balance cycle,

• balance path,

• balance tree,

• binary tree,

• change continuity,

• connected,

• cycle,

• cycle card on path,

• cycle resource,

• global contiguity,

• group,

• k cut,

• map,

• nvalue on intersection,

• path,

• proper forest,

• temporal path,

• tree,

• tree range,

• tree resource.

Denotes that a constraint uses in its definition a graph property
(e.g., MAX NCC, MIN NCC, NCC) constraining the connected compo-
nents of its associated final graph.

3.7.52 HConsecutive loops are connected➠ [3 CONS]

• group,

• stretch path,

• stretch path partition.

Denotes that the graph constraints of a global constraint use only thePATH and
theLOOP arc generators and that their final graphs do not contain consecutive vertices
that are not connected together by an arc. Moreover all vertices of their final graphs
have a loop.

3.7.53 HConsecutive values➠ [3 CONS]

• max size set of consecutive var,

• min size set of consecutive var,

• nset of consecutive values.

A constraint for which the definition involves the notion of consecutive values
assigned to the variables of a collection of domain variables.

188 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.54 HConstraint between two collections of variables➠ [26 CONS]

• alldifferent on intersection,

• common,

• common interval,

• common modulo,

• common partition,

• same,

• same and global cardinality,

• same and global cardinality low up,

• same intersection,

• same interval,

• same modulo,

• same partition,

• soft same interval var,

• soft same modulo var,

• soft same partition var,

• soft same var,

• soft used by interval var,

• soft used by modulo var,

• soft used by partition var,

• soft used by var,

• sort,

• uses,

• used by,

• used by interval,

• used by modulo,

• used by partition.

A constraint involving only two collections of domain variables in its arguments.

3.7.55 H Constraint between three collections of vari-
ables ➠ [2 CONS]

• correspondence, • sort permutation.

A constraint involving only three collections of domain variables in its arguments.

3.7.56 HConstraint involving set variables ➠ [32 CONS]

• alldifferent between sets,

• atmost1,

• bipartite,

• clique,

• connected,

• dag,

• disj,

• dom reachability,

• eq set,

• graph isomorphism,

• in set,

• inverse set,

• k cut,

• link set to booleans,

• open alldifferent,

• open among,

• open atleast,

• open atmost,

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 189

• open global cardinality,

• open global cardinality low up,

• path from to,

• proper forest,

• roots,

• set value precede,

• strongly connected,

• subgraph isomorphism,

• sum free,

• sum set,

• symmetric,

• symmetric cardinality,

• symmetric gcc,

• tour.

A constraint involving set variables in its arguments.

3.7.57 HConstraint on the intersection ➠ [4 CONS]

• common,

• alldifferent on intersection,

• nvalue on intersection,

• same intersection.

Denotes that a constraint involving two collections of variables imposes a restric-
tion on the values that occur in both collections.

3.7.58 HConstructive disjunction ➠ [5 CONS]

• case,

• disjunctive,

• diffn,

• geost,

• two orth do not overlap.

A constraint for which a filtering algorithm usesconstructive disjunction. Con-
structive disjunction[395, 417] is a technique for handling in an active way a set of
disjunctive constraints. It consists to try out each alternative of a disjunction and then
to remove values that were pruned in all alternatives. Table3.10illustrates this tech-
nique in the context of a non-overlapping constraint between two rectangles (i.e., a
special case of thetwo orth do not overlap constraint). The first rectangleR1 has
a width of 3 and a height of2, while the second rectangleR2 has a width of2 and
a height of5. The coordinates(x1, y1) of the lower lefmost corner ofR1 have to be
respectively located within intervals[3, 5] and[6, 7]. Similarly the coordinates(x2, y2)
of the lower lefmost corner ofR2 have to be located within[2, 4] and[3, 4].

• In the context of thecase constraint, constructive disjunction is applied on each
sink node of the dag describing the set of solutions (i.e., weremove values that
are removed in all the sink nodes).

• In the context of thedisjunctive (respectivelydiffn) constraint, constructive
disjunction can be applied on each pair of tasks (respectively objects). However,
as described in theAlgorithm slots of these two constraints, more specific and
efficient filtering algorithms exist for both constraints.

190 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

Table 3.10: Illustratingconstructive disjunctionin the context of a non-overlapping
constraint between two rectangles.

Hypothesis regarding the respective position ofR1 andR2

R2 beforeR1: R2 afterR1: R2 belowR1: R2 on top ofR1:
X2 + 2 ≤ X1 X1 + 3 ≤ X2 Y2 + 5 ≤ Y1 Y1 + 2 ≤ Y2

[2, 4] + 2 ≤ [3, 5] [3, 5] + 3 ≤ [2, 4] [3, 4] + 5 ≤ [6, 7] [6, 7] + 2 ≤ [3, 4]
[2,3] + 2 ≤ [4, 5] contradiction contradiction contradiction

Removed values from each variable according to each hypothesis
X1 : {3} X1 : {3, 4, 5} X1 : {3, 4, 5} X1 : {3, 4, 5}
X2 : {4} X2 : {2, 3, 4} X2 : {2, 3, 4} X2 : {2, 3, 4}
Y1 : ∅ Y1 : {6, 7} Y1 : {6, 7} Y1 : {6, 7}
Y2 : ∅ Y2 : {3, 4} Y2 : {3, 4} Y2 : {3, 4}

Values finally removed: value3 fromX1 and value4 fromX2

• In the context of thegeost constraint, constructive disjunction is applied on the
different potential values of the shape variable of an object in order to prune its
coordinates.

3.7.59 HContact ➠ [2 CONS]

• orths are connected, • two orth are in contact.

A constraint enforcing that someorthotopestouch each other. Part (A) of Fig-
ure 3.14 shows twoorthotopesthat are in contact while parts (B) and (C) give two
examples oforthotopesthat are not in contact.

(C)(A) (B)

Figure 3.14: Illustration of the notion of contact

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 191

3.7.60 HContractible ➠ [185 CONS]

• all differ from at least k pos (contractible wrt.VECTORS),

• all equal (contractible wrt.VARIABLES),

• all incomparable (contractible wrt.VECTORS),

• all min dist (contractible wrt.VARIABLES),

• alldifferent (contractible wrt.VARIABLES),

• alldifferent between sets (contractible wrt.VARIABLES),

• alldifferent cst (contractible wrt.VARIABLES),

• alldifferent except 0 (contractible wrt.VARIABLES),

• alldifferent interval (contractible wrt.VARIABLES),

• alldifferent modulo (contractible wrt.VARIABLES),

• alldifferent on intersection (contractible wrt.VARIABLES1),

• alldifferent on intersection (contractible wrt.VARIABLES2),

• alldifferent partition (contractible wrt.VARIABLES),

• allperm (suffix-contractible wrt.MATRIX.vec),

• among (contractible wrt.VARIABLES whenNVAR = 0),

• among (contractible wrt.VARIABLES whenNVAR = |VARIABLES|),

• among diff 0 (contractible wrt.VARIABLES whenNVAR = 0),

• among diff 0 (contractible wrt.VARIABLES whenNVAR = |VARIABLES|),

• among interval (contractible wrt.VARIABLES whenNVAR = 0),

• among interval (contractible wrt.VARIABLES whenNVAR = |VARIABLES|),

• among low up (contractible wrt.VARIABLES whenUP = 0),

• among low up (contractible wrt.VARIABLES whenUP = |VARIABLES|),

• among modulo (contractible wrt.VARIABLES whenNVAR = 0),

• among modulo (contractible wrt.VARIABLES whenNVAR = |VARIABLES|),

• among seq (contractible wrt.VARIABLES whenUP = 0),

• among seq (contractible wrt.VARIABLES whenSEQ = 1),

• among seq (prefix-contractible wrt.VARIABLES),

• among seq (suffix-contractible wrt.VARIABLES),

• among var (contractible wrt.VARIABLES whenNVAR = 0),

• among var (contractible wrt.VARIABLES whenNVAR = |VARIABLES|),

• arith (contractible wrt.VARIABLES),

• arith or (contractible wrt.[VARIABLES1, VARIABLES2]),

• arith sliding (contractible wrt.VARIABLES whenRELOP ∈ [<,≤] and

minval(VARIABLES.var) ≥ 0),

• arith sliding (suffix-contractible wrt.VARIABLES),

• assign and counts (contractible wrt.ITEMS whenRELOP ∈ [<,≤]),

• assign and nvalues (contractible wrt.ITEMS whenRELOP ∈ [<,≤]),

• atmost (contractible wrt.VARIABLES),

• atmost1 (contractible wrt.SETS),

• atmost nvalue (contractible wrt.VARIABLES),

• atmost nvector (contractible wrt.VECTORS),

• bin packing (contractible wrt.ITEMS),

192 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

• bin packing capa (contractible wrt.ITEMS),

• calendar (contractible wrt.INSTANTS),

• change (contractible wrt.VARIABLES whenCTR ∈ [6=, <,≥, >,≤] andNCHANGE = 0),

• change (contractible wrt.VARIABLES whenCTR ∈ [=, <,≥, >,≤] and

NCHANGE = |VARIABLES− 1|),

• coloured cumulative (contractible wrt.TASKS),

• coloured cumulatives (contractible wrt.TASKS),

• compare and count (contractible wrt.[VARIABLES1, VARIABLES2] whenCOUNT ∈ [<,≤]),

• contains sboxes (suffix-contractible wrt.OBJECTS),

• count (contractible wrt.VARIABLES whenRELOP ∈ [<,≤]),

• counts (contractible wrt.VARIABLES whenRELOP ∈ [<,≤]),

• covers sboxes (suffix-contractible wrt.OBJECTS),

• cumulative (contractible wrt.TASKS),

• cumulative convex (contractible wrt.TASKS),

• cumulative product (contractible wrt.TASKS),

• cumulative two d (contractible wrt.RECTANGLES),

• cumulative with level of priority (contractible wrt.TASKS),

• cumulatives (contractible wrt.TASKS whenRELOP ∈ [≤] andminval(TASKS.height) ≥ 0),

• decreasing (contractible wrt.VARIABLES),

• diffn (contractible wrt.ORTHOTOPES),

• diffn column (contractible wrt.ORTHOTOPES),

• diffn include (contractible wrt.ORTHOTOPES),

• disjoint (contractible wrt.VARIABLES1),

• disjoint (contractible wrt.VARIABLES2),

• disjoint sboxes (suffix-contractible wrt.OBJECTS),

• disjoint tasks (contractible wrt.TASKS1),

• disjoint tasks (contractible wrt.TASKS2),

• disjunctive (contractible wrt.TASKS),

• disjunctive or same end (contractible wrt.TASKS),

• disjunctive or same start (contractible wrt.TASKS),

• domain (contractible wrt.VARIABLES),

• equal sboxes (suffix-contractible wrt.OBJECTS),

• global cardinality (contractible wrt.VALUES),

• global cardinality low up (contractible wrt.VALUES),

• global contiguity (contractible wrt.VARIABLES),

• golomb (contractible wrt.VARIABLES),

• increasing (contractible wrt.VARIABLES),

• inside sboxes (suffix-contractible wrt.OBJECTS),

• int value precede (suffix-contractible wrt.VARIABLES),

• int value precede chain (contractible wrt.VALUES),

• int value precede chain (suffix-contractible wrt.VARIABLES),

• interval and count (contractible wrt.COLOURS),

• interval and count (contractible wrt.TASKS),

• interval and sum (contractible wrt.TASKS),

• k alldifferent (contractible wrt.VARS),

• k disjoint (contractible wrt.SETS),

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 193

• k same (contractible wrt.SETS),

• k same interval (contractible wrt.SETS),

• k same modulo (contractible wrt.SETS),

• k same partition (contractible wrt.SETS),

• k used by (contractible wrt.SETS),

• k used by interval (contractible wrt.SETS),

• k used by modulo (contractible wrt.SETS),

• k used by partition (contractible wrt.SETS),

• lex alldifferent (contractible wrt.VECTORS),

• lex between (suffix-contractible wrt.[LOWER BOUND, VECTOR, UPPER BOUND BOUND]),

• lex chain less (contractible wrt.VECTORS),

• lex chain lesseq (contractible wrt.VECTORS),

• lex chain lesseq (suffix-contractible wrt.VECTORS.vec),

• lex equal (contractible wrt.[VECTOR1, VECTOR2]),

• lex greatereq (suffix-contractible wrt.[VECTOR1, VECTOR2]),

• lex lesseq (suffix-contractible wrt.[VECTOR1, VECTOR2]),

• lex lesseq allperm (suffix-contractible wrt.[VECTOR1, VECTOR2]),

• meet sboxes (suffix-contractible wrt.OBJECTS),

• multi inter distance (contractible wrt.VARIABLES),

• multi global contiguity (contractible wrt.VARIABLES),

• nand (contractible wrt.VARIABLES whenVAR = 0),

• nequivalence (contractible wrt.VARIABLES whenNEQUIV = 1 and|VARIABLES| > 0),

• nequivalence (contractible wrt.VARIABLES whenNEQUIV = |VARIABLES|),

• ninterval (contractible wrt.VARIABLES whenNVAL = 1 and|VARIABLES| > 0),

• ninterval (contractible wrt.VARIABLES whenNVAL = |VARIABLES|),

• no peak (contractible wrt.VARIABLES),

• no valley (contractible wrt.VARIABLES),

• non overlap sboxes (suffix-contractible wrt.OBJECTS),

• nor (contractible wrt.VARIABLES whenVAR = 1),

• not in (contractible wrt.VALUES),

• npair (contractible wrt.PAIRS whenNPAIRS = 1 and|PAIRS| > 0),

• npair (contractible wrt.PAIRS whenNPAIRS = |PAIRS|),

• nvalue (contractible wrt.VARIABLES whenNVAL = 1 and|VARIABLES| > 0),

• nvalue (contractible wrt.VARIABLES whenNVAL = |VARIABLES|),

• nvalue on intersection (contractible wrt.VARIABLES1 whenNVAL = 0),

• nvalue on intersection (contractible wrt.VARIABLES2 whenNVAL = 0),

• nvalues (contractible wrt.VARIABLES whenRELOP ∈ [<,≤]),

• nvalues (contractible wrt.VARIABLES whenRELOP ∈ [=] andLIMIT = 1 and|VARIABLES| > 0),

• nvalues (contractible wrt.VARIABLES whenRELOP ∈ [=] andLIMIT = |VARIABLES|),

• nvalues except 0 (contractible wrt.VARIABLES whenRELOP ∈ [<,≤]),

• nvector (contractible wrt.VECTORS whenNVEC = 1 and|VECTORS| > 0),

• nvector (contractible wrt.VECTORS whenNVEC = |VECTORS|,

• nvectors (contractible wrt.VECTORS whenRELOP ∈ [<,≤]),

• open alldifferent (suffix-contractible wrt.VARIABLES),

• open among (suffix-contractible wrt.VARIABLES whenNVAR = 0),

• open atmost (suffix-contractible wrt.VARIABLES),

194 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

• or (contractible wrt.VARIABLES whenVAR = 0),

• ordered atmost nvector (contractible wrt.VECTORS),

• ordered global cardinality (contractible wrt.VALUES),

• ordered nvector (contractible wrt.VECTORS whenNVEC = 1 and|VECTORS| > 0),

• ordered nvector (contractible wrt.VECTORS whenNVEC = |VECTORS|),

• orth link ori siz end (contractible wrt.ORTHOTOPE),

• overlap sboxes (suffix-contractible wrt.OBJECTS),

• pattern (prefix-contractible wrt.VARIABLES),

• pattern (suffix-contractible wrt.VARIABLES),

• peak (contractible wrt.VARIABLES whenN = 0),

• period (contractible wrt.VARIABLES whenCTR ∈ [=] andPERIOD = 1),

• period (prefix-contractible wrt.VARIABLES),

• period (suffix-contractible wrt.VARIABLES),

• period except 0 (contractible wrt.VARIABLES whenCTR ∈ [=] andPERIOD = 1),

• period except 0 (prefix-contractible wrt.VARIABLES),

• period except 0 (suffix-contractible wrt.VARIABLES),

• period vectors (prefix-contractible wrt.VARIABLES),

• period vectors (suffix-contractible wrt.VARIABLES),

• product ctr (contractible wrt.VARIABLES whenCTR ∈ [<,≤] and

minval(VARIABLES.var) > 0),

• range ctr (contractible wrt.VARIABLES whenCTR ∈ [<,≤]),

• same and global cardinality (contractible wrt.VALUES),

• same and global cardinality low up (contractible wrt.VALUES),

• scalar product (contractible wrt.LINEARTERM whenCTR ∈ [<,≤],

minval(LINEARTERM.coeff) ≥ 0 andminval(LINEARTERM.var) ≥ 0),

• set value precede (suffix-contractible wrt.VARIABLES),

• sliding distribution (contractible wrt.VARIABLES whenSEQ = 1),

• sliding distribution (prefix-contractible wrt.VARIABLES),

• sliding distribution (suffix-contractible wrt.VARIABLES),

• sliding distribution (contractible wrt.VALUES),

• sliding sum (contractible wrt.VARIABLES whenSEQ = 1),

• sliding sum (prefix-contractible wrt.VARIABLES),

• sliding sum (suffix-contractible wrt.VARIABLES),

• sliding time window (contractible wrt.TASKS),

• sliding time window from start (contractible wrt.TASKS),

• sliding time window sum (contractible wrt.TASKS),

• smooth (contractible wrt.VARIABLES whenNCHANGE = 0),

• smooth (contractible wrt.VARIABLES whenNCHANGE = |VARIABLES| − 1),

• strictly decreasing (contractible wrt.VARIABLES),

• strictly increasing (contractible wrt.VARIABLES),

• sum ctr (contractible wrt.VARIABLES whenCTR ∈ [<,≤] and

minval(VARIABLES.var) ≥ 0),

• sum ctr (contractible wrt.VARIABLES whenCTR ∈ [≥, >] and

maxval(VARIABLES.var) ≤ 0),

• sum cubes ctr (contractible wrt.VARIABLES whenCTR ∈ [<,≤] and

minval(VARIABLES.var) ≥ 0),

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 195

• sum cubes ctr (contractible wrt.VARIABLES whenCTR ∈ [≥, >] and

maxval(VARIABLES.var) ≤ 0),

• sum of increments (prefix-contractible wrt.VARIABLES),

• sum of increments (suffix-contractible wrt.VARIABLES),

• sum squares ctr (VARIABLES) whenCTR ∈ [<,≤],

• twin (contractible wrt.PAIRS),

• used by (VARIABLES2),

• used by interval (contractible wrt.VARIABLES2),

• used by modulo (contractible wrt.VARIABLES2),

• used by partition (contractible wrt.VARIABLES2),

• uses (contractible wrt.VARIABLES2),

• valley (contractible wrt.VARIABLES whenN = 0),

• vec eq tuple (contractible wrt.[VARIABLES, TUPLE]).

A contractibleconstraint is a constraint for which, given any satisfied ground in-
stance, one can remove any item from one of its collection arguments, without affecting
that the resulting constraint still holds, assuming all itsrestrictions hold. A typical ex-
ample of a contractible constraint is thealldifferent constraint: given any ground
satisfied instance, e.g.,alldifferent(〈3, 8, 1〉), we can remove any value from its
unique argument without affecting that the resulting constraint still holds. We gen-
eralize slightly the original definition of contractibility introduced by [253] in the
following ways:

• The sequence of variables isreplaced by a collection. Consequently,
variables are replaced by items. For instance, in the context of the
cumulative(TASKS, LIMIT) constraint, we can remove any task fromTASKS
from any satisfied instance without affecting that the resulting constraint still
holds (e.g., if the resource limitLIMIT is not exceeded at any point in time, this
still is the case if we remove any task, i.e., since task heights are restricted to be
non negative).

• Since the constraint may havemore than one argument, one has to explicitly
specify the argument from which one may remove items.

• Items can not only be removed from the end of a collection likein [253],
but also from the beginning or from any part. Allowing to remove items
from the beginning is calledprefix-contractibility, while permitting to re-
move items from the end is calledsuffix-contractibility. Removing items
from any part is just calledcontractibility. As an example, consider the
among seq(LOW, UP, SEQ, VARIABLES, VALUES) constraint that enforces all se-
quences ofSEQ consecutive variables of the collectionVARIABLES to be assigned
at leastLOW and at mostUP values fromVALUES. The constraintamong seq is not
contractible w.r.t. the collectionVARIABLES, since removing an item in the mid-
dle ofVARIABLES creates a new sequence for which the restriction with respect
to LOW andUP may not hold. However, if we restrict ourselves to removing just a
prefix or suffix fromVARIABLES, then the correspondingamong seq constraint
still holds, since no new sequence is created.

196 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

• A constraint may be contractible only if certain restrictions apply to some of
its arguments. This is done by explicitly providing a list ofrestrictions, each
restriction corresponding to one of the restrictions described in Section2.1.3.
We call thisconditional contractibility. Given a source and a target constraint
(i.e., the target constraint corresponds to the source constraint from which we
remove some items in some arguments) all arguments of the target constraint
should be identical to the arguments of the source constraint, except:

– Argument corresponding to a collection from which we removeitems.

– Argumentarg occurring in the list of conditional restrictions with of re-
striction of the formarg = f(|c|), wherec is an argument corresponding
to a collection from which we remove items andf a function.

In addition, all restrictions from the list of restrictionsshould apply both to the
source and target constraints.

We now provide two examples of conditional contractibilitywith respect to the
among(NVAR, VARIABLES, VALUES) constraint, which enforcesNVAR to be the
number of variables of the collectionVARIABLES that are assigned a value in
VALUES.

– In general among is not contractible since removing an item from
VARIABLES may change the value ofNVAR. However, given a ground sat-
isfied instance for whichNVAR is set to0, we can remove any item from
VARIABLES without affecting that the constraint still holds. In this context,
the two argumentsNVAR andVALUES are left unchanged within the source
and the target constraint.

As an illustration, consider the source constraintamong(0, 〈2, 4, 2〉, 〈1, 5〉)
and the target constraintamong(0, 〈2, 2〉, 〈1, 5〉). SinceNVAR is set to0
both in the source and the target constraint and sinceVALUES is set to the
same list of values both in the source and the target constraint, we have that
among(0, 〈2, 4, 2〉, 〈1, 5〉) impliesamong(0, 〈2, 2〉, 〈1, 5〉).

– Similarly, whenNVAR is equal to|VARIABLES|, all variables are assigned
a value inVALUES. In this context, we can remove any variable from
VARIABLES to get a new constraint that still holds, provided that the re-
striction NVAR = |VARIABLES| still holds. In this example only the ar-
gumentVALUES is left unchanged between the source and the target con-
straint. NVAR changes since it occurs in a restriction of the formNVAR =
|VARIABLES| in the list of conditional restrictions.

As an illustration, consider the source constraint
among(3, 〈2, 4, 2〉, 〈0, 2, 4, 6, 8〉) and the target constraint
among(2, 〈4, 2〉, 〈0, 2, 4, 6, 8〉). Since NVAR is set to the number of
items of theVARIABLES collection both in the source and the target con-
straint, and sinceVALUES is set to the same list of values both in the source
and the target constraint, we have thatamong(3, 〈2, 4, 2〉, 〈0, 2, 4, 6, 8〉)
impliesamong(2, 〈4, 2〉, 〈0, 2, 4, 6, 8〉).

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 197

• Finally, a last extension corresponds to the fact that the sequence of variables
from which we remove elements may be replaced by several collections. In this
context, items areremoved simultaneously from all collections from exactly the
same set of positions. A set of collections is either defined by a list of collections,
or by a collection and one of its attributes, which is itself acollection.

As a first example, consider thelex greatereq(VECTOR1, VECTOR2) con-
straint, which given two vectors each defined by a collectionof variables of the
same length, enforces thatVECTOR1 is lexicographically greater than or equal
to VECTOR2. We have thatlex greatereq is suffix-contractiblewith respect
to VECTOR1 andVECTOR2. This means that we can remove thek (1 ≤ k ≤
|VECTOR1|) last items from collectionsVECTOR1 andVECTOR2. Note that thek
items should be removed from both collectionssimultaneously. As an illustra-
tion, consider the source constraintlex greatereq(〈5, 2, 8, 9〉, 〈5, 2, 6, 2〉) and
the target constraintlex greatereq(〈5, 2, 8〉, 〈5, 2, 6〉). Sincelex greatereq

is suffix-contractible with respect to the two collectionsVECTOR1 and
VECTOR2, we have that lex greatereq(〈5, 2, 8, 9〉, 〈5, 2, 6, 2〉) implies
lex greatereq(〈5, 2, 8〉, 〈5, 2, 6〉).

As a second example, consider thelex chain lesseq(VECTORS) constraint,
which given a collection of vectors each of them defined by a collec-
tion of variables of the same length, enforces theith vector to be lex-
icographically less than or equal to the(i + 1)th vector (1 ≤ i <
|VECTORS|). We have thatlex chain lesseq is suffix-contractiblewith re-
spect toVECTORS.vec. This means that we can remove thek last compo-
nents of each vectors of theVECTORS collection. As in the previous ex-
ample thek items should be removed from all collectionssimultaneously.
As an illustration, consider the source constraintlex chain lesseq(〈vec −
〈5, 2, 3, 9〉, vec − 〈5, 2, 6, 2〉, vec − 〈5, 2, 6, 2〉〉) and the target constraint
lex chain lesseq(〈vec − 〈5, 2, 3〉, vec − 〈5, 2, 6〉, vec − 〈5, 2, 6〉〉). Since
lex chain lesseq is suffix-contractible with respect toVECTORS.vec, we have
thatlex chain lesseq(〈vec−〈5, 2, 3, 9〉, vec−〈5, 2, 6, 2〉, vec−〈5, 2, 6, 2〉〉)
implieslex chain lesseq(〈vec− 〈5, 2, 3〉, vec− 〈5, 2, 6〉, vec− 〈5, 2, 6〉〉).

The keywordextensibleintroduces a dual notion, where items can be added to a collec-
tion that is passed as an argument of a satisfied global constraint without affecting the
fact that the resulting constraint is satisfied. Contractibility is a more common property
than extensibility.

3.7.61 HConvex ➠ [2 CONS]

• cumulative convex, • global contiguity.

A constraint involving the notion ofconvexity. A subsetS of the plane is called
convexif and only if for any pair of pointsp, q of this subset the corresponding

198 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

line-segment is contained inS. Part (A) of Figure3.15gives an example of convex
set, while part (B) depicts an example of non-convex set.

(B)

p

q p q

(A)

Figure 3.15: A convex set and a non-convex set

3.7.62 HConvex bipartite graph ➠ [3 CONS]

• alldifferent,

• alldifferent cst,

• nvalue.

Denotes that, for a given constraint, its filtering algorithm can take advantage of
having aconvex bipartite graph. A bipartite graphG = (U, V,E) is calledconvex
according to its second set of verticesV if there is an ordering onV such that, for
any vertexu of U , the neighbours ofu form an interval in the previous ordering. Some
graph algorithms or some problems become simpler in the context of a convex bipartite
graph.

3.7.63 HConvex hull relaxation ➠ [1 CONS]

• sum.

Given a non-convex setS, R is aconvex outer approximationof S if:

• R is convex,

• If s ∈ S, thens ∈ R.

Given a non-convex setS, R is theconvex hullof S if:

• R is a convex outer approximation ofS,

• For everyT whereT is a convex outer approximation ofS, R ⊆ T .

Part (A) of Figure3.16depicts a non-convex set, while part (B) gives its corresponding
convex hull.

Within the context of linear programming theconvex hull relaxationof a
non-convex setS corresponds to the set of linear constraints characterising the con-
vex hull ofS.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 199

(A) (B)

Figure 3.16: Convex hull of a non-convex set

3.7.64 HConway packing problem ➠ [2 CONS]

• diffn, • geost.

Denotes that a constraint can be used for solving theConway packingproblem,
which consists of placing6 orthotopesof size4× 2× 1, 6 orthotopesof size3× 2× 2
and5 unit cubes within a5× 5× 5 cube.

3.7.65 HCore ➠ [11 CONS]

• alldifferent,

• cumulative,

• cycle,

• diffn,

• disjunctive,

• element (see alsoelem for the usage),

• global cardinality,

• global cardinality with costs,

• minimum weight alldifferent,

• nvalue,

• sort.

Denotes that a global constraint is an important constraint. In fact many constraints
can been seen as variations or extensions around one of the following notions:

• The notion of all different enforces a set ofdomain variablesto be as-
signed distinct values. Given a set ofdomain variables{v1, v2, . . . , vn},
the alldifferent(〈v1, v2, . . . , vn〉) imposes such a condition. For in-
stance, the ground instancealldifferent(〈3, 8, 2, 1〉) is satisfied, while
alldifferent(〈1, 8, 2, 1〉) is not, since value1 is assigned twice.

• The notion offunctional dependencystates that adomain variabledepends di-
rectly of anotherdomain variable. A functional dependency can either be defined
in intentionor in extension.

– On the one hand, functional dependencies defined by intension are
usually associated with numerical constraints such as, forinstance,
abs value(y, x) that enforce the conditiony = |x|. They can also be as-
sociated with global constraints that mention a characteristics that is com-
puted from one or several collections of variables. This is for instance the

200 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

case for thenvalue(y, 〈x1, x2, . . . , xn〉) constraint that enforcey to be
equal to the number of distinct values assigned tox1, x2, . . . , xn.

– On the other hand, functional dependencies defined by extension are more
general since they allow representing any kind of functional dependency.
Theelement(x, t, y) constraint allows expressing that a variabley is deter-
mined by a variablex via a table of integerst, i.e.,y = t[x]. For instance,
the ground instanceelement(2, 〈3, 8, 3, 1〉, 8) is satisfied since8 is equal
to the second entry of the table3, 8, 3, 1. Typical usages of theelement
constraint are for instance:

∗ Representing a numerical constraint that is not available in a solver,
e.g. a non-linear constraint likey = x3 (see first item of theUsage
slot of theelem constraint).

∗ Expressing the link between a discrete choice and its corresponding
choice (see second item of theUsageslot of theelem constraint).

Both, theelement and thealldifferent constraints, are the most commonly
used global constraints. Many core global constraints can be seen as an extension of
thealldifferent(〈x1, x2, . . . , xn〉) constraint along one of the two following lines:

• In the first line we replace the fact that each value should notbe used more than
once by some more involvedcounting constraintslike:

– Counting thetotal number of effectively used distinct valueslike the
nvalue(y, 〈x1, x2, . . . , xn〉) constraint that enforcey to be be equal to the
number of distinct values assigned tox1, x2, . . . , xn. Wheny is set to
the total number of variables, i.e.y = n, nvalue(n, 〈x1, x2, . . . , xn〉) and
alldifferent(〈x1, x2, . . . , xn〉) are equivalent.

– Counting thenumber of cycles of a permutation, i.e. we assume that
the values assigned to variablesx1, x2, . . . , xn belong to interval[1, n],
like the cycle(y, 〈x1, x2, . . . , xn〉) constraint. When (1)y is uncon-
strained, i.e. its can take any value in[1, n], and when (2) all vari-
ables x1, x2, . . . , xn belong to [1, n], cycle(y, 〈x1, x2, . . . , xn〉) and
alldifferent(〈x1, x2, . . . , xn〉) are equivalent.

– Counting thenumber of occurrences of each assigned valuelike the
global cardinality(〈x1, x2, . . . , xn〉, 〈v1 o1, v2 o2, . . . , vm om〉) con-
straint that enforce each valuevi (1 ≤ i ≤ m) to be assigned
to exactly oi variables of x1, x2, . . . , xn. When (1) all the occur-
rence variableso1, o2, . . . , om are 0-1 variables, and when (2) all vari-
ablesx1, x2, . . . , xn can only be assigned values in{v1, v2, . . . , vm},
global cardinality(〈x1, x2, . . . , xn〉, 〈v1 o1, v2 o2, . . . , vm om〉) and
alldifferent(〈x1, x2, . . . , xn〉) are equivalent.

• In the second line wegeneralise the disequality between two variablesin some
way like:

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 201

1

1

1

2

3

3

values
4 distinct

(1,3,4)(2)
with 2 cycles
a permutation

2

4

val.

#o
cc

.

4321
1

4321

one single occurrence
values 1,2,3 and 4 have

gcc (<3,2,4,1>,<1 1, 2 1, 3 1, 4 1>)

ofcounting the number of occurrences

each value

alldifferent (<3,2,4,1>)

nvalue (4,<3,2,4,1>)

cycle (2,<3,2,4,1>)

distinct values
ofcounting the number

of
a perm

utation

counting the number of cycles

3

2

4

4

Figure 3.17: Three counting based generalisations of thealldifferent constraint:
thenvalue, thecycle and theglobal cardinality (i.e.,gcc) constraints; the same
examplealldifferent(〈3, 2, 4, 1〉) is reinterpreted with respect to the three general-
isations

202 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

– disjunctive.

– cumulative.

– diffn.

3.7.66 HCostas arrays ➠ [1 CONS]

• alldifferent.

A constraint that allows for expressing theCostas arraysproblem. ACostas array
is a permutationp1, p2, . . . , pn of n integers1, 2, . . . , n such that∀δ ∈ [1, n− 2], ∀i ∈
[1, n − δ − 1], ∀j ∈ [i + 1, n − δ] : pi − pi+δ 6= pj − pj+δ. A. Vellino compares
in [405] three approaches respectively using Prolog, Pascal and CHIP for solving
the Costas arraysproblem. In fact the weaker formulation∀δ ∈ [1, ⌊n−1

2 ⌋], ∀i ∈
[1, n− δ− 1], ∀j ∈ [i+1, n− δ] : pi − pi+δ 6= pj − pj+δ was shown to be equivalent
to the original one in [104].

3.7.67 HCost filtering constraint ➠ [5 CONS]

• cond lex cost,

• global cardinality with costs,

• minimum weight alldifferent,

• sum of weights of distinct values,

• weighted partial alldiff.

A constraint that has a set of decision variables as well as a cost variable and
for which there exists a filtering algorithm that restricts the state variables from the
minimum or maximum value of the cost variable.

3.7.68 HCost matrix ➠ [2 CONS]

• global cardinality with costs, • minimum weight alldifferent.

A constraint for which a first argument corresponds to a collection of variables
Vars, a second argument to a cost matrixM, and a third argument to a cost variableC.
Let Vals denote the set of values that can be assigned to the variablesof Vars. The
cost matrix defines for each pairv, u (v ∈ Vars, u ∈ Vals) an elementary cost, which
is used for computingC when valueu is assigned to variablev.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 203

3.7.69 HCounting constraint ➠ [39 CONS]

• among,

• among diff 0,

• among interval,

• among low up,

• among modulo,

• among var,

• atleast nvalue,

• atleast nvector,

• atmost nvalue,

• atmost nvector,

• count,

• counts,

• discrepancy,

• exactly,

• global cardinality,

• global cardinality low up,

• increasing nvalue,

• increasing nvalue chain,

• length first sequence,

• length last sequence,

• max nvalue,

• min nvalue,

• nclass,

• nequivalence,

• ninterval,

• npair,

• nvalue,

• nvalue on intersection,

• nvalues,

• nvalues except 0,

• nvector,

• nvectors,

• open among,

• open global cardinality,

• open global cardinality low up,

• ordered atleast nvector,

• ordered atmost nvector,

• ordered nvector,

• roots.

A constraint restricting the number of occurrences of some values (respectively
some pairs of values) within a given collection of domain variables (respectively pairs
of domain variables).

3.7.70 HCumulative longest hole problems➠ [1 CONS]

• cumulative.

A constraint that can use some filtering based on thelongest closed and open
hole problems [35]. We follow the presentation from the previous paper. Before
presenting the longest closed open hole scheduling problems, let us first introduce some
notation related to thecumulative(TASKS, LIMIT) constraint that will be used within
the context of the longest closed and open hole problems.

Here, TASKS is a collection of tasks, and for a taskt ∈ TASKS, t.origin,
t.duration and t.height denote respectively its start, duration and height, while
LIMIT ∈ Z

+ is the height of the resource. The constraint is equivalent to finding

204 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

an assignments : TASKS.origin → Z
+10 that solves thecumulative placementof

TASKS of maximum heightLIMIT, i.e.:

∀i ∈ Z : σs(i) = LIMIT− P (TASKS, i) ≥ 0

where thecoverageP (TASKS, i) by TASKS of instanti ∈ Z is:

P (TASKS, i) =
∑

t∈TASKS|t.origin≤i<t.origin+t.duration

t.height

We are now in position to define the longest closed and open hole problems. Given
a quantityσ ∈ Z

+ of slack (i.e. the difference between the available space and the
total area of the tasks to place), thelongest closed hole problemis to find the largest
integerlcmax LIMITσ (TASKS) for which there exists a cumulative placements of a subset
of tasksTASKS′ ⊆ TASKS of maximum heightLIMIT, such that the resource area that
is not occupied bys on interval[0, lcmax LIMITσ) does not exceed the maximum allowed
slack valueσ:

lcmax LIMIT
σ −1

∑

i=0

σs(i) ≤ σ.

The longest open hole problemis to find the largest integerlmax LIMITσ (TASKS) for
which there exist a cumulative placements of a subset of tasksTASKS′ ⊆ TASKS of
maximum heightLIMIT and an interval[i′, i′ + lmax LIMITσ) ⊂ Z of lengthlmax LIMITσ ,
such that the resource area that is not occupied bys on [i′, i′ + lmax LIMITσ) does not
exceed the maximum allowed slack valueσ:

i′+lmax LIMIT
σ −1

∑

i=i′

σs(i) ≤ σ.

As an example, consider seven tasks of respective size11 × 11, 9 × 9, 8 × 8,
7 × 7, 6 × 6, 4 × 4, 2 × 2. Part (A) of Figure3.18provides a cumulative placement
corresponding to the longest open hole problem according toLIMIT = 11 andσ = 0.
The longest open holelmax 11

0 ({11× 11, 9× 9, 8× 8, 7× 7, 6× 6, 4× 4, 2× 2}) = 17
since:

• The task8 × 8 cannot contribute since a gap of3 cannot be filled by the unique
candidate the task2× 2.

• The task6×6 can also not contribute since a gap of5 cannot be completely filled
by the candidates4× 4 and2× 2.

The longest close holelcmax 11
0 ({11×11, 9×9, 8×8, 7×7, 6×6, 4×4, 2×2}) = 15:

it corresponds to the longest time interval on which the resource is saturated by the
illustrated placement and such that one bound of the interval does not intersect any
tasks.

10Without loss of generality we assume the earliest start of each task to be greater than or equal to0.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 205

Second, consider a task of size3×2. Part (B) of Figure3.18provides a cumulative
placement corresponding to the longest open hole problem according toǫ = 11 and
σ = 20. The longest open holelmax 11

20({3× 2}) = 2.

L
IM

IT
 =

1
1

15

17lmax =

2

(A) (B)

L
IM

IT
 =

1
1

11

0

11

0

lcmax =

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

87

4

11
9

2

1

6

Figure 3.18: Examples for illustrating the longest closed and open holes problems

Figure3.19provides examples of the longest closed hole when we have15 squares
of sizes1, 2, . . . , 15 and a zero slack. Parts (A), (B),. . . ,(O) respectively give asolution
achieving the longest closed hole for a gap of1, 2, . . . , 15. For comparison, Figure3.20
provides the same examples of the longest open hole with zeroslack.

206 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

10

4

1

8 8

13

7

6 5

1

3

2

12

7

5
3

2

1
9

5

4 3

6

16

(I)

1

8

5

3
2

12

(H)

6
4

2

8

(F)

7

5
3

2

(E)

5

1

4 3
(D)

4

1
3

2
(C)

2

2
(B)

1

1(A)

1

3

10

4

2

6

8

14

25

(N)

4

2

9

1

67

8

15

30

(O)

24

4

1

(M)
26

(L)

20

7

1

4

7

(G)
12

5

23

4

1

(K)

5

6

11

(J)

3

6

15

Figure 3.19: Examples of longest closed holes for various gaps

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 207

13

4

2

1

67

8

15

(O)

10

5

35

9

2

(N)

14

8

6
43

1

30

10

5

9

2

3

1

56

7

13

8

(M)

9

4

30

2

3
5

7

12

8

1

4

(L)
24

3

8

23

11

6

5

(K)

7

1

4

3

7

18

1

2

10

6

4

(J)

7

18

1

5

4 3

6

(I)

9

2

2

6
8

5

3

(H)

7
1

4

3 2

5

12

(G)

1

5 6

9

4

2

(F)

1

4 5
3

2

(E)

5

1

4 3
(D)

4

1
3

2
(C)

2

2
(B)

1

1(A)

8

Figure 3.20: Examples of longest open holes for various gaps

208 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.71 HCycle ➠ [3 CONS]

• balance cycle,

• cycle,

• symmetric alldifferent.

A constraint that can be used for restricting the number of cycles of a permu-
tation (i.e.,cycle), or for restricting the size of the cycles of a permutation (i.e.,
symmetric alldifferent), or for restricting the difference between the largest and
the smallest cycle (i.e.,balance cycle).

3.7.72 HCyclic ➠ [4 CONS]

• circular change,

• cyclic change,

• cyclic change joker,

• stretch circuit.

A constraint that involves a kind of cyclicity in its definition. It either uses the arc
generatorCIRCUIT or an arc constraint involvingmod .

3.7.73 HData constraint ➠ [18 CONS]

• elem,

• elem from to,

• element,

• elementn,

• element greatereq,

• element lesseq,

• element matrix,

• element product,

• element sparse,

• elements,

• elements alldifferent,

• elements sparse,

• in relation,

• ith pos different from 0,

• next element,

• next greater element,

• stage element,

• sum.

In the literature also known asad-hoc constraints. A constraint that allows for rep-
resenting an access to an element of a data structure (e.g., atable, a matrix, a relation)
or to compute a value from a given data structure.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 209

3.7.74 HDeadlock breaking ➠ [1 CONS]

• cutset.

A constraint that was used within the application area ofdeadlock breaking.

3.7.75 HDecomposition ➠ [44 CONS]

• all min dist,

• all differ from at least k pos,

• all incomparable,

• among seq,

• arith,

• arith or,

• arith sliding,

• decreasing,

• diffn,

• diffn column,

• diffn include,

• disj,

• disjunctive,

• disjunctive or same end,

• disjunctive or same start,

• domain constraint,

• geost,

• geost time,

• increasing,

• k alldifferent,

• k disjoint,

• k same,

• k same interval,

• k same modulo,

• k same partition,

• k used by,

• k used by interval,

• k used by modulo,

• k used by partition,

• lex alldifferent,

• lex chain less,

• lex chain lesseq,

• link set to booleans,

• orth link ori siz end,

• precedence,

• roots,

• sequence folding,

• sliding distribution,

• sliding sum,

• strictly decreasing,

• strictly increasing,

• symmetric cardinality,

• symmetric gcc,

• visible.

A constraint for which the catalogue provides a descriptionin terms of a conjunc-
tion of more elementary constraints. This is the case when the constraint is described
by one or several graph constraints that all satisfy the following property: the descrip-
tion uses theNARC graph property and forces all arcs of the initial graph to belong
to the final graph. Most of the time we have only one single graph constraint. But some
constraints (e.g.,diffn) use more than one. Note that the arc constraint can sometimes
be a logical expression involving several constraints (e.g., domain constraint).

210 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.76 HDecomposition-based violation measure➠ [2 CONS]

• soft alldifferent ctr, • soft all equal min ctr.

A soft constraint associated with a constraint that can be described in terms of a
conjunction of more elementary constraints for which the violation cost is the number
of violated elementary constraints.

3.7.77 HDFS-bottleneck ➠ [11 CONS]

• alldifferent,

• balance cycle,

• balance path,

• bipartite,

• circuit,

• cycle,

• global cardinality,

• global cardinality low up,

• path,

• same,

• used by.

A constraint for which a depth first search based procedure usually constitutes
a bottleneck of its filtering algorithm. This is a pity, especially on dense graphs11

were most of the invocations to the filtering algorithm do notusually bring any new
deductions. Motivated by this fact, randomized filtering algorithms were introduced
in [214] and in [217] in the context of theglobal cardinality low up and the
alldifferent constraints.

3.7.78 HDemand profile ➠ [3 CONS]

• cumulatives,

• same and global cardinality,

• same and global cardinality low up.

A constraint that allows for representing problems where one has to allocate re-
sources in order to cover a given demand. A profile specifies for each instant the
minimum, and possibly maximum, required demand.

11A common implementation trick relies on the fact that, quite often on dense graphs, a depth first search
procedure develops one single path such that one can directly reach (i.e. with one single arc) the first node of
the path from the last one (i.e., we have one single strongly connected component). In this context the trick
is to stop the depth first search procedure as soon as the last node of the path is reached, in order to avoid
scanning through all remaining arcs of the graph.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 211

3.7.79 HDegree of diversity of a set of solutions➠ [2 CONS]

• lex chain less, • soft alldifferent ctr.

A constraint that allows for finding a set of solutions with a certain degree of
diversity. As an example, consider the problem of finding9 diverse solutions for
the 10-queensproblem. For this purpose we create a10 by 9 matrix M of domain
variables taking their values in interval[0, 9]. Each row ofM corresponds to a so-
lution of the 10-queensproblem. We assume that the variables ofM are assigned
row by row, and that within a given row, they are assigned fromthe first to the last
column. Moreover values are tried out in increasing order. We first post for each
row of M the 3 alldifferent constraints related to the10-queensproblem (see
Figure 5.5 for an illustration of the3 alldifferent). With a lex chain less

constraint, we lexicographically order the first two variables of each row ofM in
order to enforce that the first two variables of any pair of solutions are always dis-
tinct. We then impose asoft alldifferent ctr constraint on the variables of each
column ofM. Let Ci denote the corresponding cost variable associated with the
soft alldifferent ctr constraint of thei-th column ofM (i.e., the first argument
of thesoft alldifferent ctr constraint). We put a maximum limit (e.g.,3 in our
example) on these cost variables. We also impose that the sumof these cost variables
should not exceed a given maximum value (e.g.,8 in our example). Finally, in order to
balance the diversity over consecutive variables we state that the sum of two consecu-
tive cost variables should not exceed a given threshold (e.g., 2 in our example). As a
result we get the following nine solutions depicted below.

• S1 = 〈0, 2, 5, 7, 9, 4, 8, 1, 3, 6〉,

• S2 = 〈0, 3, 5, 8, 2, 9, 7, 1, 4, 6〉,

• S3 = 〈1, 3, 7, 2, 8, 5, 9, 0, 6, 4〉,

• S4 = 〈2, 4, 8, 3, 9, 6, 1, 5, 7, 0〉,

• S5 = 〈3, 6, 9, 1, 4, 7, 0, 2, 5, 8〉,

• S6 = 〈5, 9, 2, 6, 3, 1, 8, 4, 0, 7〉,

• S7 = 〈6, 8, 1, 5, 0, 2, 4, 7, 9, 3〉,

• S8 = 〈8, 1, 4, 9, 7, 0, 3, 6, 2, 5〉,

• S9 = 〈9, 5, 0, 4, 1, 8, 6, 3, 7, 2〉.

The costs associated with thesoft alldifferent ctr constraints of columns
1, 2, . . . , 10 are respectively equal to1, 1, 1, 0, 1, 0, 1, 1, 1, and1. The different
types of constraints between the previous9 solutions are illustrated by the next figure.

212 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

constraint network

1 1 1 0 1 0 1 1 1 1

0 2 5 7 9 4 8 1 3 6

0 3 5 8 2 9 7 1 4 6

1 3 7 2 8 5 9 0 6 4

2 4 8 3 9 6 1 5 7 0

3 6 9 1 4 7 0 2 5 8

5 9 2 6 3 1 8 4 0 7

6 8 1 5 0 2 4 7 9 3

8 1 4 9 7 0 3 6 2 5

9 5 0 4 1 8 6 3 7 2

S1

S2

S3

S4

S5

S6

S7

S8

S9

diversity repartition constraints:

1 + 1 + 1 + 0 + 1 + 0 + 1 + 1 + 1 + 1 ≤ 8

1 + 1 ≤ 2

1 + 1 ≤ 2

1 + 0 ≤ 2

0 + 1 ≤ 2

1 + 0 ≤ 2

0 + 1 ≤ 2

1 + 1 ≤ 2

1 + 1 ≤ 2

1 + 1 ≤ 2

diversity on last column:

soft alldiff ctr(1, 〈6, 6, 4, 0, 8, 7, 3, 5, 2〉)

queen constraints of last row:

alldifferent cst(〈9, 5 + 1, 0 + 2, 4 + 3, 1 + 4, 8 + 5, 6 + 6, 3 + 7, 7 + 8, 2 + 9〉)

alldifferent(〈9, 5, 0, 4, 1, 8, 6, 3, 7, 2〉)

alldifferent cst(〈9 + 9, 5 + 8, 0 + 7, 4 + 6, 1 + 5, 8 + 4, 6 + 3, 3 + 2, 7 + 1, 2〉)

diversity of initial part of solutions:

lex chain less(〈vec− 〈0, 2〉, vec− 〈0, 3〉, vec− 〈1, 3〉, vec− 〈2, 4〉,

vec− 〈3, 6〉, vec− 〈5, 9〉, vec− 〈6, 8〉, vec− 〈8, 1〉, vec− 〈9, 5〉〉)

Figure 3.21: Constraint network associated with the problem of finding9 diverse solu-
tions for the 10-queens problem

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 213

0Z0ZqZ0Z0Z
Z0Z0Z0l0Z0
0Z0l0Z0Z0Z
Z0Z0Z0Z0Zq
0ZqZ0Z0Z0Z
Z0Z0ZqZ0Z0
0Z0Z0Z0ZqZ
ZqZ0Z0Z0Z0
0Z0Z0Z0l0Z
l0Z0Z0Z0Z0

0Z0Z0l0Z0Z
Z0ZqZ0Z0Z0
0Z0Z0ZqZ0Z
Z0Z0Z0Z0Zq
0ZqZ0Z0Z0Z
Z0Z0Z0Z0l0
0l0Z0Z0Z0Z
Z0Z0l0Z0Z0
0Z0Z0Z0l0Z
l0Z0Z0Z0Z0

0Z0Z0ZqZ0Z
Z0Z0l0Z0Z0
0ZqZ0Z0Z0Z
Z0Z0Z0Z0l0
0Z0Z0l0Z0Z
Z0Z0Z0Z0Zq
0l0Z0Z0Z0Z
Z0ZqZ0Z0Z0
qZ0Z0Z0Z0Z
Z0Z0Z0ZqZ0

0Z0ZqZ0Z0Z
Z0l0Z0Z0Z0
0Z0Z0Z0ZqZ
Z0Z0ZqZ0Z0
0Z0Z0Z0l0Z
ZqZ0Z0Z0Z0
0Z0l0Z0Z0Z
l0Z0Z0Z0Z0
0Z0Z0ZqZ0Z
Z0Z0Z0Z0Zq

0ZqZ0Z0Z0Z
Z0Z0Z0Z0Zq
0Z0Z0l0Z0Z
ZqZ0Z0Z0Z0
0Z0Z0Z0ZqZ
Z0Z0l0Z0Z0
qZ0Z0Z0Z0Z
Z0Z0Z0ZqZ0
0Z0l0Z0Z0Z
Z0Z0Z0l0Z0

0l0Z0Z0Z0Z
Z0Z0Z0l0Z0
0Z0Z0Z0Z0l
Z0ZqZ0Z0Z0
qZ0Z0Z0Z0Z
Z0Z0Z0ZqZ0
0Z0ZqZ0Z0Z
Z0l0Z0Z0Z0
0Z0Z0l0Z0Z
Z0Z0Z0Z0l0

0Z0Z0Z0ZqZ
ZqZ0Z0Z0Z0
0Z0Z0Z0l0Z
l0Z0Z0Z0Z0
0Z0l0Z0Z0Z
Z0Z0Z0l0Z0
0Z0Z0Z0Z0l
Z0Z0ZqZ0Z0
0ZqZ0Z0Z0Z
Z0Z0l0Z0Z0

0Z0l0Z0Z0Z
l0Z0Z0Z0Z0
0Z0ZqZ0Z0Z
Z0Z0Z0ZqZ0
0Z0Z0Z0Z0l
Z0l0Z0Z0Z0
0Z0Z0ZqZ0Z
Z0Z0Z0Z0l0
0l0Z0Z0Z0Z
Z0Z0ZqZ0Z0

qZ0Z0Z0Z0Z
Z0Z0ZqZ0Z0
0Z0Z0Z0ZqZ
Z0Z0Z0l0Z0
0l0Z0Z0Z0Z
Z0ZqZ0Z0Z0
0Z0Z0Z0l0Z
Z0Z0Z0Z0Zq
0Z0ZqZ0Z0Z
Z0l0Z0Z0Z0

Approaches for finding diverse and similar solutions based on the Hamming dis-
tance between each pair of solutions are presented by E. Hebrardand al. in [189].

214 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.80 HDerived collection ➠ [30 CONS]

• assign and counts,

• correspondence,

• cumulative two d,

• cumulative with level of priority,

• cumulatives,

• cycle resource,

• domain constraint,

• element,

• element matrix,

• element sparse,

• elements sparse,

• golomb,

• in,

• in interval,

• in relation,

• in same partition,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• link set to booleans,

• minimum greater than,

• next element,

• next greater element,

• not in,

• sliding time window from start,

• sort permutation,

• track,

• tree resource,

• two layer edge crossing.

A constraint that uses one or several derived collections. Derived collections were
introduced in Section2.2.2on page42.

3.7.81 HDifference ➠ [2 CONS]

• golomb, • sum of increments.

Denotes that the definition of a constraint involves one or several differences be-
tween pairs of variables.

3.7.82 HDifference between pairs of variables➠ [1 CONS]

• lex alldifferent.

A constraint that allows expressing that a set of pairs of variables are different.
Two pairs of variables(X1, Y1) and(X2, Y2) are different if and only ifX1 6= X2 or
Y1 6= Y2.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 215

3.7.83 HDirected acyclic graph ➠ [1 CONS]

• cutset.

A constraint that forces the final graph to be adirected acyclic graph. A directed
acyclic graphis a digraph with no path starting and ending at the same vertex.

3.7.84 HDisequality ➠ [22 CONS]

• all differ from at least k pos,

• alldifferent,

• alldifferent between sets,

• alldifferent cst,

• alldifferent consecutive values,

• disjoint,

• elements alldifferent,

• golomb,

• k alldifferent,

• k disjoint,

• lex different,

• neq cst,

• not all equal,

• not in,

• open alldifferent,

• permutation,

• roots,

• size max starting seq alldifferent,

• size max seq alldifferent,

• soft alldifferent ctr,

• soft alldifferent var,

• symmetric alldifferent.

Denotes that a disequality between two domain variables, one domain variable
and a fixed value, or two set variables is used within the definition of a constraint.
Denotes also that the notion of disequality can be used within the informal definition
of a constraint. This is for instance the case for the relaxation of thealldifferent
constraint (i.e.,soft alldifferent ctr, soft alldifferent var), which do not
strictly enforce a disequality.

216 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.85 HDisjunction ➠ [12 CONS]

• case,

• arith or,

• clause or,

• diffn,

• disjunctive,

• disjunctive or same end,

• disjunctive or same start,

• element,

• elem,

• geost,

• geost time,

• or.

Denotes that a constraint can be used for modelling some kindof disjunction.

3.7.86 HDomain channel ➠ [1 CONS]

• domain constraint.

A constraint that allows for making the link between a domainvariableV and a set
of 0-1 variablesB1, B2, . . . , Bn. It enforces a condition of the formV = i ⇔ Bi = 1.

3.7.87 HDomain definition ➠ [6 CONS]

• arith,

• domain,

• in,

• in interval,

• in intervals,

• not in.

A constraint that is used for defining the initial domain of one or several domain
variables or for removing some values from the domain of one or several domain vari-
ables.

3.7.88 HDominating queens ➠ [1 CONS]

• nvalue.

A constraint that can be used for modelling thedominating queensproblem. Place
a number of queens on an by n chessboard in such a way that all squares are either
attacked by a queen or are occupied by a queen. A queen can attack all squares located
on the same column, on the same row or on the same diagonal. Values of the minimum
number of queens forn less than or equal to120 are reported in [279]. They are in fact
all either equal to⌊n+1

2 ⌋ or to ⌊n+1
2 ⌋+ 1.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 217

3.7.89 HDomination ➠ [6 CONS]

• atleast nvector,

• atmost nvector,

• nvalue,

• nvector,

• nvectors,

• sum of weights of distinct values.

A constraint that can be used for expressing directly the fact that we search for a
dominating setin an undirected graph. Given an undirected graphG = (V,E) where
V is a finite set of vertices andE a finite set of unordered pairs of distinct elements
from V , a setS is adominating setif for every vertexu ∈ V − S there exists a vertex
v ∈ S such thatu is adjacent tov. Part (A) of Figure3.22gives an undirected graph
G, while part (B) depicts a dominating setS = {e, f, g} in G.

k

}
a b c d

e
f

g

h i j k

a b c d

e
f

g

h i j

(A) (B)
S= {e,f,g

Figure 3.22: A graph and one of its dominating set

3.7.90 HDual model ➠ [4 CONS]

• inverse,

• inverse offset,

• inverse set,

• inverse within range.

A constraint that can be used as a channelling constraint in aproblem where the
roles of the variables and the values can be interchanged. This is for instance the case
when we have a bijection between a set of variables and the values they can take.

218 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.91 HDuplicated variables ➠ [8 CONS]

• global cardinality,

• k alldifferent,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• scalar product,

• stretch circuit.

A constraint for which the situation where the same variablecan occur more than
once was considered in order to derive a better filtering algorithm or to prove a com-
plexity result for achieving arc-consistency. Also in the case of thestretch circuit

constraint, a constraint for which the reformulation duplicates some variables.

3.7.92 HDynamic programming ➠ [5 CONS]

• among seq,

• change,

• cumulative,

• stretch circuit,

• stretch path.

A constraint for which a filtering algorithm usesdynamic programming. Note
that dynamic programming was also used by M. A. Trick within the context of linear
constraints [383].

3.7.93 HEmpty intersection ➠ [2 CONS]

• disjoint, • k disjoint.

A constraint that enforces an empty intersection between two sets of variables.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 219

3.7.94 HEntailment ➠ [6 CONS]

• alldifferent,

• among low up,

• global cardinality low up,

• maximum,

• minimum,

• not in.

Denotes that the catalogue mentions a sufficient condition for the entailment of
a constraint. Consider a constraintC(V1, V2, . . . , Vn) and the potential sets of val-
uesdom(V1), dom(V2), . . . , dom(Vn) that can respectively be assigned to the dis-
tinct domain variablesV1, V2, . . . , Vn. The constraintC(V1, V2, . . . , Vn) is entailed
if and only if C(V1, V2, . . . , Vn) holds whatever valuesval1 ∈ dom(V1), val2 ∈
dom(V2), . . . , valn ∈ dom(Vn) will respectively be assigned variablesV1, V2, . . . , Vn.
A satisfied constraint for which all variables are already fixed is trivially entailed.

Entailment is usually not considered as very important whendesigning a filtering
algorithm, even if it can sometimes save waking again and again a constraint that will
for sure be satisfied. Failure to detect entailment can leadsto a memory leak if the
constraint system is supposed to reclaim memory for entailed constraints for which it
is no more possible to backtrack over the point where the constraint was posted. From
a modelling point of view, entailment detection is mandatory for coming up with the
reified version of a constraint (see alsoreified automaton constraint).

3.7.95 HEquality ➠ [1 CONS]

• eq set.

Denotes that the notion of equality can be used within the informal definition of a
constraint.

220 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.96 HEquality between multisets ➠ [4 CONS]

• k same,

• same,

• same and global cardinality,

• same and global cardinality low up.

A constraint that can be used for modelling an equality constraint between two
multisets.

3.7.97 HEquivalence ➠ [21 CONS]

• atleast nvalue,

• atleast nvector,

• atmost nvalue,

• atmost nvector,

• balance interval,

• balance modulo,

• balance partition,

• balance,

• increasing nvalue,

• max nvalue,

• min nvalue,

• nclass,

• nequivalence,

• ninterval,

• not all equal,

• npair,

• nvalue,

• nvalues,

• nvector,

• nvectors,

• soft alldifferent var.

Denotes that a constraint is defined by a graph constraint forwhich the final graph
is reflexive, symmetric and transitive.

3.7.98 HEuler knight ➠ [2 CONS]

• alldifferent, • cycle.

Denotes that a constraint can be used for modelling some parts of theEuler knight
problem. TheEuler knight problemconsists of finding a sequence of moves on a chess-
board by a knight such that each square of the board is visitedexactly once.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 221

3.7.99 HExcluded ➠ [1 CONS]

• not in.

A constraint that prevents certain values to be taken by a variable.

3.7.100 HExtensible ➠ [53 CONS]

• all differ from at least k pos (extensible wrt.VECTORS.vec),

• and (extensible wrt.VARIABLES whenVAR = 0),

• assign and counts (extensible wrt.ITEMS whenRELOP ∈ [≥, >]),

• assign and nvalues (extensible wrt.ITEMS whenRELOP ∈ [≥, >]),

• atleast (extensible wrt.VARIABLES),

• atleast nvalue (extensible wrt.VARIABLES),

• atleast nvector (extensible wrt.VECTORS),

• between min max (extensible wrt.VARIABLES),

• clause and (extensible wrt.POSVARS whenVAR = 0),

• clause and (extensible wrt.NEGVARS whenVAR = 0),

• clause or (extensible wrt.POSVARS whenVAR = 1),

• clause or (extensible wrt.NEGVARS whenVAR = 1),

• compare and count (extensible wrt.[VARIABLES1, VARIABLES2] whenCOUNT ∈ [≥, >]),

• count (extensible wrt.VARIABLES whenRELOP ∈ [≥, >]),

• counts (extensible wrt.VARIABLES whenRELOP ∈ [≥, >]),

• differ from at least k pos (extensible wrt.[VARIABLES1, VARIABLES2]),

• element (suffix-extensible wrt.TABLE),

• element product (suffix-extensible wrt.TABLE),

• elementn (suffix-extensible wrt.TABLE),

• in (extensible wrt.VALUES),

• in intervals (extensible wrt.INTERVALS),

• in relation (extensible wrt.TUPLES OF VALS),

• in same partition (extensible wrt.PARTITIONS),

• ith pos different from 0 (suffix-extensible wrt.VARIABLES),

• lex alldifferent (extensible wrt.VECTORS.vec),

• lex chain less (suffix-extensible wrt.VECTORS.vec),

• lex different (extensible wrt.[VECTOR1, VECTOR2]),

• lex greater (suffix-extensible wrt.[VECTOR1, VECTOR2]),

• lex less (suffix-extensible wrt.[VECTOR1, VECTOR2]),

• nand (extensible wrt.VARIABLES whenVAR = 1),

• nclass (extensible wrt.VARIABLES whenNCLASS = |PARTITIONS|),

222 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

• nequivalence (extensible wrt.VARIABLES whenNEQUIV = M),

• nor (extensible wrt.VARIABLES whenVAR = 0),

• not all equal (extensible wrt.VARIABLES),

• nvalues (extensible wrt.VARIABLES whenRELOP ∈ [≥, >]),

• nvalues except 0 (extensible wrt.VARIABLES whenRELOP ∈ [≥, >]),

• nvectors (extensible wrt.VECTORS whenRELOP ∈ [≥, >]),

• open atleast (suffix-extensible wrt.VARIABLES),

• or (extensible wrt.VARIABLES whenVAR = 1),

• range ctr (extensible wrt.VARIABLES whenCTR ∈ [≥, >]),

• scalar product (extensible wrt. LINEARTERM when CTR ∈ [≥, >],
minval(LINEARTERM.coeff) ≥ 0 andminval(LINEARTERM.var) ≥ 0),

• some equal (extensible wrt.VARIABLES),

• stage element (suffix-extensible wrt.TABLE),

• sum ctr (extensible wrt.VARIABLES whenCTR ∈ [≥, >] andminval(VARIABLES.var) ≥ 0),

• sum ctr (extensible wrt.VARIABLES whenCTR ∈ [<,≤] andmaxval(VARIABLES.var) ≤ 0),

• sum cubes ctr (extensible wrt.VARIABLES whenCTR ∈ [≥, >] andminval(VARIABLES.var) ≥
0),

• sum cubes ctr (extensible wrt.VARIABLES whenCTR ∈ [<,≤] andmaxval(VARIABLES.var) ≤
0),

• sum squares ctr (extensible wrt.VARIABLES whenCTR ∈ [≥, >],

• used by (extensible wrt.VARIABLES1),

• used by interval (extensible wrt.VARIABLES1),

• used by modulo (extensible wrt.VARIABLES1),

• used by partition (extensible wrt.VARIABLES1),

• uses (extensible wrt.VARIABLES1).

An extensibleconstraint is a constraint for which, given any satisfied ground in-
stance (i.e., asourceconstraint), one can add any item without affecting that there-
sulting constraint (i.e., atarget constraint) still holds, assuming all its restrictions
holds. All the extensions ofcontractibility described at the corresponding keyword
entry apply also for extensibility. In particular we also have the restricted notions of
prefix-extensibleandsuffix-extensibleconstraints, which respectively means that items
are added before the first item of a collection or after the last item. As for contractibility,
extensibility may also be conditioned by a list of restrictions. Finally extensibility may
involve more than one collection. In this context, items areadded simultaneously to all
collections from exactly the same set of positions. We now present different examples
of extensible constraints, starting from a very simple one.

• As a first example, consider theatleast(N, VARIABLES, VALUE) constraint,
which enforces at leastN variables of theVARIABLES collection to be assigned
valueVALUE. We have thatatleast is extensiblewith respect toVARIABLES,
since adding a variable to an already satisfied instance ofatleast preserves the
fact that the new constraint is satisfied.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 223

As an illustration consider the source constraintatleast(2, 〈4, 2, 4, 5〉, 4)
and the target constraintatleast(2, 〈4, 2, 4, 5, 0, 4〉, 4). Since the first ar-
gumentN is set to the same value, both in the source and the target con-
straint, and since the thirdVALUE is also set to the same value both in the
source and the target constraint, we have thatatleast(2, 〈4, 2, 4, 5〉, 4) implies
atleast(2, 〈4, 2, 4, 5, 0, 4〉, 4).

• As a second example, consider theelement(INDEX, TABLE, VALUE) constraint,
which enforcesVALUE to equal theINDEXth item of TABLE. We have that
element is suffix-extensiblewith respect toTABLE, since adding new elements
at the end ofTABLE for an already satisfied instance ofelement preserves the
fact that the new constraint is satisfied.

As an illustration consider the source constraintelement(3, 〈6, 9, 2, 9〉, 2) and
the target constraintelement(3, 〈6, 9, 2, 9, 8, 0, 2〉, 2). Since the first argument
INDEX is set to the same value, both in the source and the target constraint,
and since the third argumentVALUE is also set to the same value both in the
source and the target constraint, we have thatelement(3, 〈6, 9, 2, 9〉, 2) implies
element(3, 〈6, 9, 2, 9, 8, 0, 2〉, 2).

• As a third example, consider theand(VAR, VARIABLES) constraint, which en-
forcesVAR to equal1 if all variables ofVARIABLES are set to1, and0 otherwise.
We have thatand is extensiblewith respect toVARIABLES whenVAR is equal to
0. This stems from the fact that, given a satisfied instance ofand whereVAR = 0,
adding any new variable toVARIABLES preserves the fact that the new constraint
is satisfied. As an illustration consider the source constraint and(0, 〈1, 0, 1〉) and
the target constraintand(0, 〈1, 0, 0, 1〉). Since the first argumentVAR is set to0,
both in the source and the target constraint, we have thatand(0, 〈1, 0, 1〉) implies
and(0, 〈1, 0, 0, 1〉).

• As a fourth example, consider thelex greater(VECTOR1, VECTOR2) constraint,
which enforcesVECTOR1 to be lexicographically strictly greater thanVECTOR2.
We have thatlex greater is suffix-extensiblewith respect toVECTOR1 and
VECTOR2. This means that, given a satisfied instance oflex greater, adding
k items at the end of its first argumentVECTOR1 and addingk other items at the
end of its second argumentVECTOR2 preserves the fact that the new constraint is
satisfied.

As an illustration consider the source constraintlex greater(〈5, 2, 7, 1〉,
〈5, 2, 6, 2〉) and the target constraint lex greater(〈5, 2, 7, 1, 0〉,
〈5, 2, 6, 2, 9〉). We have thatlex greater(〈5, 2, 7, 1〉, 〈5, 2, 6, 2〉) implies
lex greater(〈5, 2, 7, 1, 0〉, 〈5, 2, 6, 2, 9〉).

• As a fifth example, consider thelex chain less(VECTORS) constraint, which
given a collection of vectors each of which defined by a collection of variables
of the same length, enforces theith vector to be lexicographically strictly less
than the(i + 1)th vector(1 ≤ i < |VECTORS|). We have thatlex chain less

224 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

is suffix-extensiblewith respect toVECTORS.vec. This means that, given a sat-
isfied instance oflex chain less, addingk items at the end of all collections
simultaneouslypreserves the fact that the new constraint is satisfied.

As an illustration consider the source constraintlex chain less(〈vec −
〈5, 2, 3, 9〉, vec − 〈5, 2, 6, 2〉, vec − 〈5, 2, 6, 3〉) and the target constraint
lex chain less(〈vec−〈5, 2, 3, 9, 9〉, vec−〈5, 2, 6, 2, 8〉, vec−〈5, 2, 6, 3, 7〉).
Since each vector of the source constraint is a prefix of the vector located at the
same position in the target constraint the source constraint implies the target con-
straint.

The keywordcontractibleintroduces a dual notion, where items can be removed
from a collection that is passed as an argument of a satisfied global constraint without
affecting the fact that the resulting constraint is satisfied. Contractibility is a more
common property than extensibility.

3.7.101 HExtension ➠ [1 CONS]

• in relation.

A constraint that is defined by explicitly providing all its solutions.

3.7.102 HFacilities location problem ➠ [2 CONS]

• cycle or accessibility, • sum of weights of distinct values.

A constraint that allows for modelling a facilities location problem. In a facilities
location problem one has to select a subset of locations froma given initial set so that
a given set of conditions holds.

3.7.103 HFloor planning problem ➠ [3 CONS]

• diffn,

• geost,

• lex chain less.

A constraint that can be used for thefloor planning problem. Thefloor planning
problem[295, 382, 251, 105, 259] involves various type of spaces, such as theplace-
ment spaceitself (i.e., thefloor), theroomsto place within the placement space, and
thecirculation between the rooms. The placement space can be located on one single
level or on several levels. Very often the placement space corresponds to one single
rectangle and all rooms are rectangles with their borders parallel to the contour of the

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 225

placement space. Circulation typically corresponds tocorridors or stairs that respec-
tively allow to access from one room to another room or from one level to another
level. Within the context of floor planning three main classes of constraints have been
identified [260], namely dimensionals, topological and implicit constraints:

• A dimensional constraintusually restricts the length, the width or the surface
of one single space. Ratio constraints enforce aesthetic proportions betweenthe
length and the width of a single space or constraint the surfaces of two closely
related spaces such as the toilets and the shower. Dimensional constraints can be
expressed by reducing the domain of some variable or by stating some arithmetic
constraints between two variables.

• A topological constraintimposes a condition betweentwo spaces. Typical topo-
logical constraints are:

– Adjacency constraints with a minimum contactbetween a room and a cor-
ridor or another room allow expressing that their must be enough place to
put a door between two given spaces. In the context of staircases one has
to enforce that fact that the first and last stairs are completely accessible.
When a corridor is made up from two parts, one also has to enforce that the
two parts are fully in contact.

– Adjacency with the contour constraintsbetween a room and a specified (or
not) side of the contour allow expressing the orientation ofa room (or just
that a room must have some window).

– Relative positioning constraintsbetween two specified rooms allow for in-
stance expressing the fact that a room is located to the northof another
room.

– Minimum and maximum distance constraintsbetween two rooms allow ex-
pressing the proximity between two given rooms.

Topological constraints occur naturally in the preliminary design phase in archi-
tecture and can typically be expressed by using reified or global constraints.

• An implicit constraintputs a global condition that is inherent to floor planning
problems betweenall the spacesof the floor. We typically have:

– Inclusionof each room and circulation within the contour.

– Partitioning of the placement space (i.e., no wasted space is permitted).
This is usually a hard constraint which requires specific propagation in or-
der to prevent the creation of wasted space.

– Non-overlappingbetween rooms.

– Symmetry breaking constraintsbetween identical rooms imposes for in-
stance a lexicographic order between their respective lower leftmost cor-
ners.

Such constraints can typically be expressed by using globalconstraints, such as
diffn, geost, or lex chain less.

226 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

Finally, in order to allocate as much surface as possible to the rooms, one wants some-
times to minimise the total circulation area between the different rooms.

����
����
����
����
����
����
����

����
����
����
����
����
����
����

R3 (15)

R2 (15)

NW

R1 (12)

NE

S (6)

SE

K (9)

SW

N

R4 (20)

S

L (35)

E

(2)
T

W

Figure 3.23: A solution to Maculet floor planning problem which minimises the total
area of the corridors

In order to illustrate these constraints we now consider an example of floor planning
problem taken from R. Maculet PhD thesis [251] involving 11 spaces. Constraints on
the dimensions of these space are:

• Thefloor where to place everything has a size of12 by 10 meters.

• The living has a surface between33 and42 square meters and a minimum size
of 4 by 4.

• Thekitchenhas a surface between9 and15 square meters and a minimum size
of 3 by 3.

• Theshowerhas a surface between6 and9 square meters and a minimum size of
2 by 2.

• Thetoilet has a surface between1 and2 square meters and a minimum size of1
by 1.

• Thefirst and second parts of the corridorhave both a surface between1 and12
square meters and a minimum size of1 by 1.

• The first, second and third roomshave all a surface between11 and15 square
meters and a minimum size of3 by 3.

• Thefourth roomhas a surface between15 and20 square meters and a minimum
size of3 by 3.

Topological constraints between spaces are:

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 227

• Theliving is located on the south-west contour. Thekitchen, thefirst, secondand
third roomsare either located on the south or on the north contour. Thefourth
room is on the south contour.

• All spaces, except thekitchen, are adjacent to one of thecorridors with at least
1 meter of full contact.

• Thekitchenis adjacent to theliving and to theshower.

• Thetoilet is adjacent to thekitchenor to theshower.

• Thefirst and thesecond partsof thecorridor are adjacent and fully in contact.

Finally no wasted space is permitted. Figure3.23presents a solution to the correspond-
ing floor planning problem that minimises the area of the two corridors.

3.7.104 HFlow ➠ [16 CONS]

• alldifferent,

• among seq,

• global cardinality,

• global cardinality low up,

• global cardinality low up no loop,

• global cardinality no loop,

• open alldifferent,

• open global cardinality,

• open global cardinality low up,

• same,

• same and global cardinality,

• same and global cardinality low up,

• sliding sum,

• symmetric cardinality,

• symmetric gcc,

• used by.

A constraint for which there is a filtering algorithm based onan algorithm
that finds a feasible flow in a graph. This graph is usually constructed12 from the
variables of the constraint as well as from their potential values. The next sec-
tions provide standard flow models for thealldifferent, theopen alldifferent,
theglobal cardinality low up, theglobal cardinality low up no loop, the
used by, thesame, and thesame and global cardinality low up constraints.

Flow models foralldifferent and open alldifferent

Figure3.24presents flow models for thealldifferent and theopen alldifferent

constraints. Blue arcs represent feasible flows respectively corresponding to the so-
lutions alldifferent(〈x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 5〉) and
open alldifferent({1, 2, 3, 5}, 〈x1 = 1, x2 = 2, x3 = 3, x4 = 3, x5 = 4〉),
while pink arcs correspond to arcs that cannot carry any flow if the constraint has a
solution:

12Sometimes it is also constructed from the reformulation of a global constraint in term of a conjunction of
linear constraints. This is for instance the case for theamong seq and thesliding sum global constraints.

228 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

Table 3.11: Domains of the variables for thealldifferent constraint of Figure3.24.

i dom(xi) i dom(xi) i dom(xi)
1 {1, 2} 3 {1, 2, 3} 5 {3, 4, 5, 6}
2 {1, 2} 4 {2, 3, 4, 5}

• Within the context of thealldifferent constraint the assignmentsx3 = 1,
x3 = 2 andx4 = 2 are forbidden since values1 and2 must be already assigned
to x1 andx2. Finally the assignmentsx4 = 3 andx5 = 3 are also forbidden
since values1, 2 and3 must be assigned tox1, x2 andx3.

• Note that, within the context of theopen alldifferent constraint, the assign-
mentx4 = 3 does not matter at all since the position ofx4 within 〈x1 = 1, x2 =
2, x3 = 3, x4 = 3, x5 = 4〉 does not belong to the set{1, 2, 3, 5}. We can
only prune according to those variables that for sure shouldbe assigned distinct
values. Consequentlyx3 = 1 andx3 = 2 are forbidden since values1 and2
must already be assigned tox1 andx2. Finally the assignmentx5 = 3 is also
forbidden since values1, 2 and3 must be assigned tox1, x2 andx3.

alldifferent open_alldifferent

[1, 1]

t

1

2

3

4

s

x5

x4

x3

x2

x1

6

5

4

3

2

1

t

x5

x4

s x3

x2

x1[1, 1]

[0, 1]

[0, 1]

[5, 5]

[0, 1]

[1, 1] [0, 1]

[1, 1]

[1, 1]

[0, 1]

[4, 5]

Figure 3.24: Flow models for thealldifferent and theopen alldifferent con-
straints described in Tables3.11and3.12.

Flow models for thegcc low up and thegcc low up no loop constraints

Figure 3.25 presents flow models for theglobal cardinality low up and
the global cardinality low up no loop constraints. Blue arcs represent feasi-
ble flows respectively corresponding to the solutionsglobal cardinality low up

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 229

Table 3.12: Domains of the variables for theopen alldifferent constraint of Fig-
ure3.24. In addition the lower bound of the first argument of theopen alldifferent

constraint is equal to{x1, x2, x3}.

i dom(xi) i dom(xi) i dom(xi)
1 {1, 2} 3 {1, 2, 3} 5 {3, 4}
2 {1, 2} 4 {2, 3}

global_cardinality_low_up_no_loopglobal_cardinality_low_up

[0, 2]

[7, 7]

[0, 2]

[0, 2]

[1, 1]

[1, 2]

[1, 2]

[0, 1]

[1, 1]

x7

s

x6

x5

x4

x3

x2

x1

1

2

3

4

5

t

[7, 7]

[2, 3]

[2, 2]

[1, 1]

[1, 2]

[0, 1]

[1, 1]

t

1

2

3

4

5

x1

x2

x3

x4

x5

x6

s

x7

loop

[1, 2]

Figure 3.25: Flow models for theglobal cardinality low up and the
global cardinality low up no loop constraints described in Tables3.13
and3.14.

Table 3.13: Domains of the variables and minimum and maximumnumber of occur-
rences of each value for theglobal cardinality low up constraint of Figure3.25.

i dom(xi) i dom(xi) i [omini, omax i] i [omini, omax i]
1 {1, 2} 5 {1, 2, 3} 1 [1, 2] 5 [0, 2]
2 {1, 2} 6 {2, 3, 4, 5} 2 [1, 2]
3 {1, 2} 7 {3, 5} 3 [1, 1]
4 {1, 2} 4 [0, 2]

230 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

Table 3.14: Domains of the variables and minimum and maximumnumber of occur-
rences of each value for theglobal cardinality low up no loop constraint of Fig-
ure3.25.

i dom(xi) i dom(xi) i [omini, omax i] i [omini, omax i]
1 {1, 2} 5 {1, 2} loop [2, 2] 4 [1, 2]
2 {1, 2} 6 {2, 4, 5} 1 [1, 2] 5 [0, 2]
3 {1, 2} 7 {3, 4, 5} 2 [2, 3]
4 {1, 2, 3} 3 [1, 1]

(〈x1 = 1, x2 = 1, x3 = 2, x4 = 2, x5 = 3, x6 = 5, x7 = 5〉, 〈val − 1 omin −
1 omax− 2, val− 2 omin− 1 omax− 2, val− 3 omin− 1 omax− 1, val− 4 omin−
0 omax−2, val−5 omin−0 omax−2〉) andglobal cardinality low up no loop

(2, 2, 〈x1 = 1, x2 = 2, x3 = 2, x4 = 2, x5 = 1, x6 = 4, x7 = 3〉, 〈val − 1 omin −
1 omax− 2, val− 2 omin− 2 omax− 3, val− 3 omin− 1 omax− 1, val− 4 omin−
1 omax − 2, val − 5 omin − 0 omax − 2〉), while pink arcs correspond to arcs that
cannot carry any flow if the constraint has a solution:

• Within the context of theglobal cardinality low up constraint variablesx1,
x2, x3 andx4 take their value within{1, 2}. Since each value in{1, 2} can be
used at most2 times, variables different fromx1, x2, x3, x4 cannot be assigned
a value in{1, 2}. Consequently,x3 6= 1, x3 6= 2, x4 6= 1 andx4 6= 2. Since3
is the only remaining value forx3, and since value3 should have no more than
one occurrence,x4 6= 3 andx5 6= 3 are also forbidden.

• Note that, within the context of theglobal cardinality low up no loop we
should have at least two assignments of the formxi = i (i ∈ [1, 7]). Andx1 and
x2 are the only two variables such thati ∈ dom(xi). Consequentlyx1 6= 2 and
x2 6= 1. Since we should have at least1+2+1+1 = 5 assignments of the form
xi = j (i 6= j, j ∈ [1, 4]) and since only5 variables can take a value in[1, 4],
x6 6= 4 andx7 6= 5.

Flow models for theused by and thesame constraints

Figure3.26presents flow models for theused by and thesame constraints. Blue arcs
represent feasible flows respectively corresponding to thesolutionsused by(〈x1 =
2, x2 = 4, x3 = 6〉, 〈y1 = 2, y2 = 4〉) andsame(〈x1 = 2, x2 = 4, x3 = 5〉, 〈y1 =
2, y2 = 4, y3 = 5〉), while pink arcs correspond to arcs that cannot carry any flowif
the constraint has a solution. Within the context of thesame constraint, the assignment
x1 = 1 is forbidden since1 /∈ dom(y1) ∪ dom(y2) ∪ dom(y3). Consequentlyx1 = 2
and, sincey1 is the only variable of{y1, y2, y3} that can be assigned value2, the
assignmenty1 = 3 is forbidden. Now since3 /∈ dom(y1) ∪ dom(y2) ∪ dom(y3)
the assignmentx2 = 3 is also forbidden. Finallyx3 = 6 is forbidden since6 /∈
dom(y1) ∪ dom(y2) ∪ dom(y3).

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 231

sameused_by

6

[1, 1]
[0, 1][0, 1]

[1, 1]

t

y1

y2

y3

x1

x2

x3

s

1

2

3

4

5

1

2

3

4

5

6

s

x3

x2

x1

y2

y1

t

[0, 1]
[0, 1] [0, 1]

[1, 1]

[2, 2] [3, 3]

Figure 3.26: Flow models for theused by and thesame constraints described in ta-
bles3.15and3.16.

Table 3.15: Domains of the variables for theused by constraint of Figure3.26.

i dom(xi) i dom(yi)
1 {1, 2} 1 {2, 3}
2 {3, 4} 2 {4, 5}
3 {4, 5, 6}

Table 3.16: Domains of the variables for thesame constraint of Figure3.26.

i dom(xi) i dom(yi)
1 {1, 2} 1 {2, 3}
2 {3, 4} 2 {4, 5}
3 {4, 5, 6} 3 {4, 5}

232 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

Table 3.17: Domains of the variables and minimum and maximumnumber of occur-
rences of each value for thesame and global cardinality low up constraint of
Figure3.27.

i dom(xi) i dom(yi) i [omini, omax i] i [omini, omax i]
1 {1, 2} 1 {2, 3} 1 [0, 1] 4 [2, 3]
2 {3, 4} 2 {4, 5} 2 [1, 2] 5 [0, 2]
3 {4, 5, 6} 3 {4, 5} 3 [0, 3] 6 [0, 1]

Flow model for the same and global cardinality low up constraint

Figure3.27 presents a flow model for thesame and global cardinality low up

constraint. Blue arcs represent a feasible flow corresponding to the solution
same and global cardinality low up (〈x1 = 2, x2 = 4, x4 =〉, 〈y1 = 2, y2 =
4, y3 = 4〉, 〈val − 1 omin − 0 omax − 1, val − 2 omin − 1 omax − 2, val −
3 omin − 0 omax − 3, val − 4 omin − 2 omax − 3, val − 5 omin − 0 omax −
2, val− 6 omin− 0 omax− 1〉), while pink arcs correspond to arcs that cannot carry
any flow if the constraint has a solution. The assignmentx1 = 1 is forbidden since
1 /∈ dom(y1) ∪ dom(y2) ∪ dom(y3). Consequentlyx1 = 2 and, sincey1 is the only
variable of{y1, y2, y3} that can be assigned value2, the assignmenty1 = 3 is forbid-
den. Now since3 /∈ dom(y1) ∪ dom(y2) ∪ dom(y3) the assignmentx2 = 3 is also
forbidden. x3 = 6 is forbidden since6 /∈ dom(y1) ∪ dom(y2) ∪ dom(y3). Finally
x3 = 5 andy3 = 5 are also forbidden since value4 must be assigned to at least two
variables.

same_and_global_cardinality_low_up

[2, 3]

[3, 3]

[0, 1]

[0, 2]

[0, 3]

[1, 2]

[1, 1][0, 1][0, 1][0, 1]

6

5

4

3

2

1

6

5

4

3

2

1

s

x3

x2

x1

y3

y2

y1

t

[1, 1]

Figure 3.27: Flow model for thesame and global cardinality low up constraint
described in table3.17.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 233

3.7.105 HFrequency allocation problem ➠ [1 CONS]

• all min dist.

A constraint that was used for modelling frequency allocation problems.

3.7.106 HFunctional dependency➠ [115 CONS]

• abs value (intension, first argument),

• alldifferent same value (intension, first argument),

• among (intension, first argument),

• among diff 0 (intension, first argument),

• among interval (intension, first argument),

• among modulo (intension, first argument),

• among var (intension, first argument),

• and (intension, first argument),

• balance (intension, first argument),

• balance cycle (intension, first argument),

• balance interval (intension, first argument),

• balance modulo (intension, first argument),

• balance partition (intension, first argument),

• balance path (intension, first argument),

• balance tree (intension, first argument),

• binary tree (intension, first argument),

• cardinality atleast (intension, first argument),

• cardinality atmost (intension, first argument),

• cardinality atmost partition (intension, first argument),

• case (extension),

• change (intension, first argument),

• change continuity (intension, first,second,. . . ,eighth argument),

• change pair (intension, first argument),

• change partition (intension, first argument),

• change vectors (intension, first argument),

• circular change (intension, first argument),

• clique (intension, first argument),

• colored matrix (intension, third attribute of fifth argument, third attribute of sixth argument),

• common (intension, first, second argument),

• common interval (intension, first, second argument),

• common modulo (intension, first, second argument),

234 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

• common partition (intension, first, second argument),

• connect points (intension, fourth argument),

• crossing (intension, first argument),

• cycle (intension, first argument),

• cycle or accessibility (intension, second argument),

• cyclic change (intension, first argument),

• cyclic change joker (intension, first argument),

• discrepancy (intension, second argument),

• distance (intension, third argument),

• distance between (intension, first argument),

• distance change (intension, first argument),

• elem (extension, second attribute of first argument),

• element (extension, third argument),

• element product (extension, fourth argument),

• elements (extension, second attribute of first argument),

• elements alldifferent (extension, second attribute of first argument),

• eq (intension, first, second argument),

• eq cst (intension, first, second, and third argument),

• equivalent (intension, first argument),

• exactly (intension, first argument),

• gcd (intension, third argument),

• global cardinality (intension, second attribute of second argument),

• global cardinality no loop (intension, first argument as well as second attribute of third argu-
ment),

• global cardinality with costs (intension, second attribute of second argument and fourth ar-
gument),

• graph crossing (intension, first argument),

• group (intension, first, second,. . . ,sixth argument),

• group skip isolated item (intension, first, second,. . . ,fourth argument),

• imply (intension, first argument),

• increasing nvalue (intension, first argument),

• inverse (intension, second and third attributes of first argument),

• inverse offset (intension, second and third attributes of third argument),

• longest change (intension, first argument),

• map (intension, first, second argument),

• max n (intension, first argument),

• max nvalue (intension, first argument),

• max size set of consecutive var (intension, first argument),

• maximum (intension, first argument),

• maximum modulo (intension, first argument),

• min n (intension, first argument),

• min nvalue (intension, first argument),

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 235

• min size set of consecutive var (intension, first argument),

• minimum (intension, first argument),

• minimum except 0 (intension, first argument),

• minimum modulo (intension, first argument),

• minimum weight alldifferent (intension, third argument),

• nand (intension, first argument),

• nclass (intension, first argument),

• nequivalence (intension, first argument),

• ninterval (intension, first argument),

• nor (intension, first argument),

• npair (intension, first argument),

• nset of consecutive values (intension, first argument),

• nvalue (intension, first argument),

• nvalue on intersection (intension, first argument),

• nvector (intension, first argument),

• nvisible from end (intension, first argument),

• nvisible from start (intension, first argument),

• open among (intension, second argument),

• or (intension, first argument),

• orchard (intension, first argument),

• ordered nvector (intension, first argument),

• orth link ori siz end (intension, first, second and third attributes of first argument),

• path (intension, first argument),

• period (intension, first argument),

• period except 0 (intension, first argument),

• period vectors (intension, first argument),

• power (intension, third argument),

• proper forest (intension, first argument),

• remainder (intension, third argument),

• sign of (intension, first argument),

• size max seq alldifferent (intension, first argument),

• size max starting seq alldifferent (intension, first argument),

• smooth (intension, first argument),

• stage element (extension, second attribute of first argument),

• sort (intension, second argument),

• sort permutation (intension, second, third argument),

• sum (intension, fourth argument),

• sum of weights of distinct values (intension, third argument),

• temporal path (intension, first argument),

• tree (intension, first argument),

• tree range (intension, first, second argument),

• two layer edge crossing (intension, first argument),

236 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

• weighted partial alldiff (intension, fourth argument),

• xor (intension, first argument).

A constraint that allows for representing afunctional dependencybetween possibly
several domain variables and one single domain variable. A sequence of variables
X1, X2, . . . , Xn is said tofunctionally determineanother variableY if and only if each
potential tuple of values ofX1, X2, . . . , Xn is associated with exactly one potential
value ofY (i.e.,Y is a function ofX1, X2, . . . , Xn). For each constraint we indicate
whether its functional dependency is defined inintention or in extension. We also
indicate which variablevar is determined by the functional dependency. Within the
Arg. properties slot of a constraint that mentions thefunctional dependencykeyword,
we also mention which variables determinevar.

Finally, the keywordPure functional dependencyprovides the list of constraints
that are only defined by one or several functional dependencies. For instance the
nvalue(n, 〈v1, v2, . . . , vm) constraint is only defined in term of a functional depen-
dency (i.e.,n is equal to the number of distinct values inv1, v2, . . . , vm), while the
tree(n, 〈node1,node2, . . . ,nodem) constraint is not only defined in term of a func-
tional dependency since, in addition of counting trees, it also enforces no cycle in the
corresponding graph.

3.7.107 HGeometrical constraint ➠ [32 CONS]

• connect points,

• contains sboxes,

• coveredby sboxes,

• covers sboxes,

• crossing,

• cumulative two d,

• cycle or accessibility,

• diffn,

• diffn column,

• diffn include,

• disjoint sboxes,

• equal sboxes,

• geost,

• geost time,

• graph crossing,

• inside sboxes,

• meet sboxes,

• non overlap sboxes.

• orchard,

• orth on the ground,

• orth on top of orth,

• orths are connected,

• overlap sboxes,

• place in pyramid,

• polyomino,

• sequence folding,

• two layer edge crossing,

• two orth are in contact,

• two orth column,

• two orth do not overlap,

• two orth include,

• visible.

A constraint between geometrical objects (e.g., points, line-segments, rectangles,
orthotopes) or a constraint selecting a subset of points so that a given geometrical prop-
erty holds (e.g., distance).

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 237

3.7.108 HGolomb ruler ➠ [2 CONS]

• alldifferent, • golomb.

A constraint that allows for expressing theGolomb rulerproblem. AGolomb ruler
is a set of integers (marks)a1 < · · · < ak such that all the differencesai − aj (i > j)
are distinct.

3.7.109 HGraph colouring ➠ [3 CONS]

• alldifferent,

• int value precede chain,

• k alldifferent.

A constraint that can be used for thegraph colouring problem. Thegraph colour-
ing problemis to colour with a restricted number of colours the verticesof a given
undirected graph in such a way that adjacent vertices are coloured with distinct colours.

3.7.110 HGraph constraint ➠ [37 CONS]

• balance cycle,

• balance path,

• balance tree,

• binary tree,

• bipartite,

• circuit,

• circuit cluster,

• clique,

• connected,

• cutset,

• cycle,

• cycle card on path,

• cycle or accessibility,

• cycle resource,

• dag,

• derangement,

• dom reachability,

• graph crossing,

• graph isomorphism,

• inverse,

• inverse offset,

• inverse within range,

• k cut,

• map,

• path,

• path from to,

• proper forest,

• stable compatibility,

• strongly connected,

• subgraph isomorphism,

• symmetric,

• symmetric alldifferent,

• temporal path,

• tour,

• tree,

• tree range,

• tree resource.

238 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

A constraint that selects a subgraph from a given initial graph so that this subgraph
satisfies a given property and/or belong to a specific graph class.

3.7.111 HGraph partitioning constraint ➠ [16 CONS]

• balance cycle,

• balance path,

• balance tree,

• binary tree,

• circuit,

• cycle,

• cycle card on path,

• cycle resource,

• graph crossing,

• map,

• path,

• symmetric alldifferent,

• temporal path,

• tree,

• tree range,

• tree resource.

A constraint that partitions the vertices of a given initialgraph and that keeps one
single successor for each vertex so that each partition corresponds to a specific pattern.

3.7.112 HGuillotine cut ➠ [2 CONS]

• diffn column, • two orth column.

A constraint that can enforce some kind ofguillotine cut. In a lot of cutting prob-
lems the stock sheet as well as the pieces to be cut are all shaped as rectangles. In a
guillotine cutting patternall cuts must go from one edge of the rectangle corresponding
to the stock sheet to the opposite edge.

3.7.113 HHall interval ➠ [2 CONS]

• alldifferent, • global cardinality.

A constraint for which some filtering algorithms take advantage ofHall intervals.
Given a set of domain variables, aHall set is a set of valuesH = {v1, v2, . . . , vh}
such that there areh variables whose domains are contained inH. A Hall interval is
a Hall set that consists of an interval of values (and can therefore be specified by its
endpoints).

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 239

3.7.114 HHamiltonian ➠ [2 CONS]

• circuit, • tour.

A constraint enforcing to cover a graph with one Hamiltoniancircuit or cycle. This
corresponds to finding a circuit (respectively a cycle) passing all the vertices exactly
once of a given digraph (respectively undirected graph).

3.7.115 HHeuristics ➠ [5 CONS]

• alldifferent,

• discrepancy,

• inverse,

• inverse offset,

• inverse within range.

A constraint that was introduced for expressing a heuristics or a constraint
(alldifferent) for which an algorithm that evaluate the number of solutions was
proposed.

Remark: when we do not have good bounds on the cost variable ofa constrained
optimisation problem,skewed binary searchwas introduced in [357] in order to take
advantage of the fact that it is usually easier to improve thecurrent solution cost’s than
to prove that a problem is not feasible.

3.7.116 HHeuristics and Berge-acyclic constraint network ➠

Consider a conjunctionC of constraints such that:

1. The constraint networkN corresponding to the conjunctionC is not
Berge-acyclic.

2. The filtering algorithms associated with the different constraints of the conjunc-
tion C all achievearc-consistency.

In this context, one can design a heuristics that fix enough variables, but not all, so that
the remaining constraint networkN becomesBerge-acyclic.13 This can be achieved
by fixing the variables in such a way that some constraints getentailedeven if they
still mention some variables that are not yet fixed. Let us illustrate that idea on a
matrix modelwhere we have aR×K matrixM of domain variablestaking a value in
interval[1, V]. Assume that:

13The point is that, as soon as the constraint network becomes Berge-acyclic no search is needed any more
to check that there is a solution, provided we achievearc-consistencyon the remaining constraints. This
stems from [123], which itself is a consequence of [159].

240 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

• On each row ofM we have a constraint that can be described in term of a
counter-free automaton.

• On each column ofM we have aglobal cardinality low up constraint that
only imposes a minimum number of occurrences for each value in [1, V] (i.e.,
the maximum number of occurrences is not constrained at all).

Note that arc-consistencycan be achieved for such constraints. For this
constraint pattern, an assignment strategy that systematically tries creating a
Berge-acyclic constraint networkcan be achieved as follows. Fix some variables so
thatK − 1 column constraints (i.e.,global cardinality low up constraints) get
entailed. If this is the case the remaining constraint network consists ofR rows con-
straints and of one single column constraint.

C

C6

5C

C1

C1 2C C3 4C

5C C6 7C C76CC5

1C

11

21

31

12

22

32

13

23

33

14

24

34

X X X X

X X X X

X X X X XXXX

XXXX

XXXX

34

24

14

33

23

13

32

22

12

31

21

11

(B)(A)

(C)

C

(D)

7

6C

C5

1C C2 3C C4

7

Figure 3.28: (A,C): Initial constraint network for aR = 3 by K = 4 matrix (with
column constraintsC1, C2, C3, C4 and row constraintsC5, C6, C7) and corresponding
intersection graph; (B,D): Berge-acyclic constraint network after the entailment of the
column constraintsC2, C3 andC4 and corresponding cycle-free intersection graph.

As illustrated by Figure 3.28, this typically corresponds to a
Berge-acyclic constraint network. Let us now finally explain how to assign val-
ues to a subset of variables of aglobal cardinality low up constraint that only
restricts the minimum number of occurrences of certain values so that it becomes
entailed. As an example, let us consider aglobal cardinality low up constraint
involving 10 variables that enforce at least three occurrences of value1 and one
occurrence of value2. A heuristics needs only fixing4 variables out of the10 variables
to values1, 1, 1 and2 so that the correspondingglobal cardinality low up gets
entailed. A typical instance of this pattern corresponds tonurse scheduling problems
where:

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 241

• Each row ofM corresponds to the timetable of a person overK consecutive
days. Using acounter free automatonthe corresponding row constraint encodes
all legal rules of a valid schedule.

• Each column ofM describes the request for a minimum number of services on
a given day. Types of work (i.e., values in[1, V]) can for instance be interpreted
as amorning shift, anafternoon shift, anight shiftor aday off.

The heuristics first addresses the coverage constraints only (i.e., the
global cardinality low up constraints). It seeks to assign enough nurses to
given shifts on given day to satisfy all but one coverage constraints. Once this is done,
the remaining variables can be labelled without search.

3.7.117 HHeuristics and lexicographical ordering ➠ [6 CONS]

• lex chain less,

• lex chain lesseq,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq.

Using a constraint that imposes a lexicographical orderingbetween vectors of vari-
ables may influence the heuristics used for fixing the variables. In particular it may be
a very bad idea to systematically fix theless significant components before the most
significant components.

3.7.118 HHeuristics for two-dimensional rectangle placement prob-
lems ➠ [2 CONS]

• diffn, • geost.

A constraint for which one of the following heuristics was used in the context of
two-dimensional rectangles placement problems where rectangles should not overlap.
For easy instances involving non-overlapping constraintswhere there is enough room,
a standard heuristics where one fixes each rectangle successively by trying out its pos-
sible values for itsx-coordinate and itsy-coordinate will do the job. However, for
more difficult problems a less aggressive heuristics is usually required, specially when
the filtering algorithms attached to the constraints are weak. The paradox is that less
aggressive heuristics sometimes do not find rapidly a first solution to easy instances
since they may potentially artificially create infeasible subproblems.

242 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

Dual strategy for rectangle placement problems with no slack

When the available space is equal to the total area of the rectangles to place (i.e., we
have no slack) this is a two-phase search procedure originally introduced in [1] where
we first fix all thex-coordinates and then, in the second phase, all they-coordinates.
The intuitions behind this heuristics are:

• To systematicallyfill the placement space from right to left in order to avoid
creating small holes that cannot be filled.

• To decrease the combinatorial aspect of the problem byfocussing first on all
x-coordinates. This stems from the fact that it is usually easy to extend a partial
solution, where allx-coordinates are fixed, to a full solution.

Fixing thex-coordinates is done by:

• First, compute the minimumminx over the minimum values of the
x-coordinates of the rectangles for which thex-coordinate is not already fixed.

• Second, create a choice point and, in each branch:

– Fix thex-coordinate of a rectangleR for which thex-coordinates is not al-
ready fixed to valueminx. Usually rectangles are considered by decreasing
height (and decreasing width in case of tie).

– On backtracking, enforce that thex-coordinate of rectangleR is strictly
greater thanminx.

• Third, fail when all branches issued from a choice point havebeen tried (since
otherwise we would create a hole at positionminx because, on thex axis all
rectangles that could start at positionminx were delayed afterminx; in order
to not cut valid choices, this third part assumes that the minimum value of the
x-coordinate of each rectangle is pruned with respect to thecompulsory part
profile of the correspondingcumulative constraint.).

Since, as we said early on, it is usually easy to extend a partial solution, where all
x-coordinates are fixed, to a full solution where ally-coordinates are also fixed, the
search strategy used for fixing they-coordinates is usually not so important, at least
when strong filtering algorithms are used [35].

Strategy that gradually creates a compulsory part

This is a four-phase search procedure that can be used even when the slack is not equal
to zero. We first gradually restrict all thex-coordinates and then, in the second phase,
all y-coordinates without fixing them immediately. Then in the third phase we fix all
thex-coordinates by trying each value (or by making a dichotomicsearch). Finally in
the last phase we fix all they-coordinates as in the third phase. The intuitions behind
this heuristics are:

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 243

• To restrict thex-coordinate of each rectangleR in order to just create some
compulsory partfor R on thex axis. The hope is that it will trigger the fil-
tering algorithm associated with thecumulative constraint involved by the
non-overlapping constraint, even if the starts of the rectangles on thex axis are
not yet completely fixed.

• Again, as in the previous heuristics, to decrease the combinatorial aspect of the
problem by first focussing on allx-coordinates.

Restricting gradually thex-coordinates in phase one is done by partitioning the
domain of thex-coordinate of each rectangleR into intervals whose sizes induce a
compulsory parton thex axis for rectangleR. To achieve this, the size of an in-
terval has to be less than or equal to the size of rectangleR on thex axis. Pick-
ing the best fraction of the size of a rectangle on thex axis depends on the prob-
lem as well as on the filtering algorithms behind the scene. Within the context
of the smallest rectangle area problem[368] and of theSICStus implementation of
disjoint2 and cumulative H. Simonis and B. O’Sullivan have shown empiri-
cally that the best fraction was located within interval[0.2, 0.3]. Restricting the
y-coordinates in phase two can be done in a way similar to restricting thex-coordinates
in phase one.

3.7.119 HHungarian method for the assignment problem ➠ [1 CONS]

• minimum weight alldifferent.

A constraint that can use the Hungarian method for the assignment problem [225]
in order to evaluate the minimum or maximum value of one of itsargument. Givenn
persons,n tasks and a correspondingn byn cost matrix, the assignment problem is the
search for an assignment of persons to tasks so that the sum ofthe costs is maximised.

3.7.120 HHybrid-consistency ➠ [2 CONS]

• proper forest, • roots.

Denotes that, for a given constraint involving both domain and set variables, there
is a filtering algorithm that ensureshybrid-consistency. A constraintctr defined on the
distinct domain variablesV d

1 , . . . , V
d
n and the distinct set variablesV s

n+1, . . . , V
s
m is

hybrid-consistentif and only if:

• For every pair(V d, v) such thatV d is a domain variable ofctr and v ∈
dom(V d), there exists at least one solution toctr in which V d is assigned the
valuev.

http://www.sics.se/sicstus/

244 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

• For every pair(V s, v) such thatV s is a set variable ofctr, if v ∈ V s thenv
belongs to the set assigned toV s in all solutions toctr and if v ∈ V s \ V s then
v belongs to the set assigned toV s in at least one solution and is excluded from
this set in at least one solution.

3.7.121 HHypergraph ➠ [8 CONS]

• among seq,

• arith sliding,

• orchard,

• relaxed sliding sum,

• size max seq alldifferent,

• size max starting seq alldifferent,

• sliding distribution,

• sliding sum.

Denotes that a constraint uses in its definition at least one arc constraint involving
more than two vertices.

3.7.122 HIncluded ➠ [2 CONS]

• in, • in set.

Enforces that a domain or a set variable take a value within a list of values (possibly
one single value).

3.7.123 HInclusion ➠ [8 CONS]

• k used by,

• k used by interval,

• k used by modulo,

• used by,

• used by interval,

• used by modulo,

• used by partition,

• uses.

Denotes that a constraint can model the inclusion of one multiset within another
multiset. Usually we consider multiset of values (e.g.,used by) but this can also be
multisets of equivalence classes (see, e.g., theused by interval, used by modulo,
andused by partition constraints).

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 245

3.7.124 HIncompatible pairs of values ➠ [1 CONS]

• alldifferent partition.

A constraint that is related to the fact that some pairs of values are incompatible
(i.e., the two values of each pair of values cannot simultaneously be part of a solution).

3.7.125 HIndistinguishable values ➠ [3 CONS]

• int value precede,

• int value precede chain,

• set value precede.

A constraint that can be used for breaking symmetries ofindistinguishable val-
ues[239]. Indistinguishable valuesin a solution of a problem can be swapped to con-
struct another solution of the same problem.

3.7.126 HInterval ➠ [16 CONS]

• alldifferent interval,

• among interval,

• balance interval,

• common interval,

• domain,

• in interval,

• in intervals,

• interval and count,

• interval and sum,

• k same interval,

• k used by interval,

• ninterval,

• same interval,

• soft same interval var,

• soft used by interval var,

• used by interval.

Denotes that a constraint puts a restriction related to a setof fixed intervals (or on
one fixed interval).

246 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.127 HJoker value ➠ [10 CONS]

• alldifferent except 0,

• among diff 0,

• connect points,

• cyclic change joker,

• ith pos different from 0,

• minimum except 0,

• nvalues except 0,

• period except 0,

• symmetric alldifferent except 0,

• weighted partial alldiff.

Denotes that, for some variables of a given constraint, there exists specific values
that have a special meaning: for instance they can be assigned without breaking the
constraint. As an example consider thealldifferent except 0 constraint, which
forces a set of variables to take distinct values, except those variables that are assigned
to 0.

3.7.128 HKlee’s measure problem ➠ [1 CONS]

• diffn.

Denotes that, checking the feasibility of a ground instanceof a constraint, is related
to theKlee’s measure problem: given a collection of axis-aligned multi-dimensional
boxes, how quickly can one compute the volume of their union.

3.7.129 HLabelling by increasing cost ➠ [2 CONS]

• elem,

• element.

Some optimization problems involve minimizing a costc consisting of a sum of
elementary costsc1, c2, . . . , cn, where each elementary costci (1 ≤ i ≤ n) is directly
linked to the value assigned to a decision variablevi. Without loss of generality we
assume that each decision variable will be assigned a value between1 andm. The
link between a decision variablevi and its corresponding costci is usually expressed
by a constraint of the formelement(vi, 〈ci,1, ci,2, . . . , ci,m〉, ci) stating thatci = j ⇒
ci = ci,j . During search, while enumerating on the different values of a decision
variablevi, we would like to try out values ofvi so that the corresponding costci
increases. This means we want to use a permutationσ1, σ2, . . . , σm of 1, 2, . . . ,m such
thatci,σ1

≤ ci,σ2
≤ · · · ≤ ci,σm

. Note that such permutation can be obtained by sorting
the costsci,1, ci,2, . . . , ci,m by increasing order and by collecting the positionσj where
item ci,j is located in the sorted list. Assuming that we performarc-consistencyon the
element, we now describe three different ways to obtain the effect wewant to achieve:

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 247

• A first direct way is to use a built in facility that, given variablevi and the corre-
sponding list of valuesσ1, σ2, . . . , σm introduced before, creates a choice point
and tries to successively assign valuesσ1, σ2, . . . , σm to vi. Note that, oncevi is
fixed there is no need to enumerate on the corresponding elementary cost vari-
ableci since, by propagation,element(vi, 〈ci,1, ci,2, . . . , ci,m〉, ci) will fix ci.
Consequently the cost variables do not need to be passed to the search proce-
dure.

• A second indirect way, used when we want to only rely on a standard built in
that creates a choice point and tries to assign values to a variable in increasing
value order, is to introduce an extra variableui. The idea is to link variableui to
variablevi in such a way that, when we try to assign values in increasing value
order to variableui, both variablesvi andci get fixed and, in addition, values
of ci are increasing. This can be modelled by introducing the following two
element constraints:

1. element(ui, 〈σ1, σ2, . . . , σm〉, vi)

2. element(vi, 〈ci,1, ci,2, . . . , ci,m〉, ci)

The effect of a dedicated built in that tries to assign valuesto a variable ac-
cording to an explicit list of values is achieved by introducing the firstelement
constraint. Again, onceui is fixed the firstelement constraint will fix variable
vi. Then the secondelement constraint will also fix variableci. Consequently,
both the cost and the decision variables do not need to be passed to the search
procedure, i.e., we just need to pass the newly introduced variablesui.

• Finally, we can first label on the cost variableci in increasing
value order. If the costsci,1, ci,2, . . . , ci,m are all distinct then the
element(vi, 〈ci,1, ci,2, . . . , ci,m〉, ci) constraint will fix vi by propagation
since we assumeelement to performarc-consistency. Otherwise, when the
costsci,1, ci,2, . . . , ci,m are not all distinct, we also need to label the decision
variablevi.

Figure3.29illustrates the three ways of labelling previously introduced. The prim-
itive member(var , list values) creates a choice point and tries to successively assign
variablevar an integer value from the listlist values with respect to their ordering.
The primitive indomain(var) also creates a choice point and tries to successively as-
sign variablevar an integer value of its domain, by increasing value order.

248 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

c =6=5cc =2

=9cc =9=6cc =5=2c

=5vv =4=2vv =1=3v

u =5=4uu =3=2uu =1

c =9=9cc =6=5cc =2

=5vv =4=2vv =1=3v

cindomain()u)indomain(,[3,1,2,4,5])vmember(

indomain(

(III)(II)(I)

in {4,5}v

)

element(

v

u ,<3,1,2,4,5>,v)

element(v ,<5,6,2,9,9>,c))c,<5,6,2,9,9>,velement(element(v ,<5,6,2,9,9>,c)

v =5=4v

v =2=1vv =3

c =9

Figure 3.29: Given a decision variablev and a corresponding cost variablec linked by
theelement(v, 〈5, 6, 2, 9, 9〉, c) constraint, illustration of three ways for labelling by
increasing cost: Part (I) labels directly on the decision variablev using an appropriate
order so that successive values ofc are increasing; Part (II) introduces a variableu
linked tov by theelement(u, 〈3, 1, 2, 4, 5〉, v) constraint and labels onu by increasing
value order; Part (III) labels first on the cost variablec by increasing value order, and
then on variablev.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 249

3.7.130 HLatin square ➠ [1 CONS]

• k alldifferent.

(B)

1

1

3

3

1

1

1

1

4

4

4

4

3

3

3

3

2

2

2

2

(A)

Figure 3.30: A partially filled Latin square and a possible completion

A constraint that can be used for modelling the Latin square completion problem.
A Latin square of ordern is ann × n array in whichn distinct numbers in[1, n]
are arranged so that each number occurs once in each row and column. TheLatin
square completion problemis to complete a partially filled Latin square. Part (A) of
Figure 3.30 gives a partially filled Latin square, while part (B) provides a possible
completion. The Latin square completion problem is a pattern that occurs in some
applications such thatdynamic wavelength routingor sport timetabling.

3.7.131 HLexicographic order ➠ [16 CONS]

• allperm,

• cond lex cost,

• cond lex greater,

• cond lex greatereq,

• cond lex less,

• cond lex lesseq,

• lex2,

• lex between,

• lex chain less,

• lex chain lesseq,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• lex lesseq allperm,

• strict lex2.

A constraint involving a lexicographic ordering relation in its definition.

250 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.132 HLimited discrepancy search ➠ [1 CONS]

• discrepancy.

A constraint for simulating limited discrepancy search [178]. Limited discrepancy
searchis useful for problems for which there is a successor ordering heuristics that
usually leads directly to a solution. It consists of systematically searching all paths that
differ from the heuristic path in at most a very small number of discrepancies. Fig-
ure3.31illustrates the successive search steps (B), (C), (D), (E) and (F) on the search
tree depicted by part (A). We successively explore the subtree of (A) corresponding to
a discrepancy of0, 1, 2, 3 and4. The number on each leave indicates the total number
of discrepancies to reach a leave.

3.7.133 HLinear programming ➠ [18 CONS]

• alldifferent,

• among seq,

• circuit,

• cumulative,

• disjunctive,

• domain constraint,

• element greatereq,

• element lesseq,

• global cardinality low up,

• k alldifferent,

• k cut,

• link set to booleans,

• path from to,

• regular,

• sliding sum,

• strongly connected,

• sum,

• tour.

A constraint for which a reference provides a linear relaxation (see, e.g., the
alldifferent, the circuit, the cumulative, the sum, and theregular [118]
constraints) or a constraint for which the flow model was derived by reformulating the
constraint as a linear program (see, e.g., theamong seq and thesliding sum con-
straints), or a constraint that was also proposed within thecontext of linear program-
ming (see, e.g., thecircuit, anddomain constraint constraints). In the context
of linear programming the book of John N. Hooker [198] provides a significant set of
relaxations for a number of global constraints.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 251

(F) Subtree with a discrepancy of 4

(A) Full search tree

(C) Subtree with a discrepancy of 1

(E) Subtree with a discrepancy of 3

+1

+1 +1 +1

+1 +1

+1

+1 +1

+1 +1 +1 +1 +1

1 2 2 3 2 3 3 4

+1

0 1 1 2 1 2 2 3

+1

+1 +1 +1

+1 +1

+1

+1 +1

+1 +1 +1 +1 +1

1 2 2 3 2 3 3 4

+1

0 1 1 2 1 2 2 3

+1

+1 +1 +1

+1 +1

+1

+1 +1

+1 +1 +1 +1 +1

1 2 2 3 2 3 3 4

+1

0 1 1 2 1 2 2 3

+1

+1 +1 +1

+1 +1

+1

+1 +1

+1 +1 +1 +1 +1

1 2 2 3 2 3 3 4

+1

0 1 1 2 1 2 2 3

+1

+1 +1 +1

+1 +1

+1

+1 +1

+1 +1 +1 +1 +1

1 2 2 3 2 3 3 4

+1

0 1 1 2 1 2 2 3

+1

+1 +1 +1

+1 +1

+1

+1 +1

+1 +1 +1 +1 +1

1 2 2 3 2 3 3 4

+1

0 1 1 2 1 2 2 3

(B) Subtree with a discrepancy of 0

(D) Subtree with a discrepancy of 2

Figure 3.31: Illustration of limited discrepancy search

252 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.134 HLine-segments intersection➠ [3 CONS]

• crossing,

• graph crossing,

• two layer edge crossing.

A constraint on the number of line-segment intersections.

3.7.135 HLogic ➠ [17 CONS]

• contains sboxes,

• coveredby sboxes,

• covers sboxes,

• disjoint sboxes,

• equal sboxes,

• geost,

• geost time,

• inside sboxes,

• meet sboxes,

• non overlap sboxes,

• orth on top of orth,

• overlap sboxes,

• place in pyramid,

• two orth are in contact,

• two orth column,

• two orth do not overlap,

• two orth include.

A constraint which can be defined with first order logic formula encoded in the
dedicated language introduced in [93].

3.7.136 HLogigraphe ➠ [1 CONS]

• consecutive groups of ones.

A constraint which can be used for modelling the logigraphe problem. Thelogi-
grapheproblem, see Figure3.32 for an instance taken from [297, page 36], consists
of colouring a board of squares in black or white, so that eachrow and each column
contains a specific number of sequences of black squares of given size. A sequence of
integerss1, s2, . . . , sm (p ≥ 1) enforces:

• a first block ofs1 consecutive black squares,

• a second block ofs2 consecutive black squares,

• . ,

• a last block ofsp consecutive black squares.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 253

Each block of consecutive black squares must be separated byat least one white square.
Finally, white squares may eventually precede (respectively follow) the first (respec-
tively the last) block of black squares. Thelogigrapheproblem is NP-complete [386].

4

1

1,

1,3,1,3,

1

1

3,

1

2,

3,

23

3,

1

1,

4,

1

1,

3,

1

1,

(A)

1,1,1,1

2,4

7

6

2,3

1,1,1,1

1,3,1

1,1,1,1

1,1,1,1

2

1,

(B)

Figure 3.32: Part (A): an instance of a logigraphe and the initial deductions achieved
after posting the constraints, Part (B): the correspondingunique solution.

Part (A) of Figure3.32shows an instance of a logigraphe and the corresponding ini-
tial deductions achieved after posting theconsecutive groups of ones constraints
associated with each row and each column. We assume that eachconstraint achieves
arc-consistency, which is actually the case when theconsecutive groups of ones

constraint is represented as acounter free automaton. A white or black square indicates
an initial deduction (i.e., setting a variable to0 or to1). Part (B) of Figure3.32provides
the unique solution found after developing three choices,14 assuming that variables are
assigned from the uppermost to the lowermost row. Within a given row, variables
are assigned from the leftmost to the rightmost column. Value 0 is tried first before
value1. Seven additional choices are required for proving that this solution is unique.
Figure3.33displays the corresponding search tree. Within this figure,a variableVi,j

(1 ≤ i, j ≤ 10) denotes the0-1 variable associated with theith row and thejth column
of the board.

14Each time we try to assign a value to a not yet fixed variable, thenumber of choices is incremented by1
just before making the assignment.

254 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

fail

0 1

0 1

0 1 0 1

0

5,1

1

V

1,1
V

6,3
VV

6,4

V
6,4

solution

fail

fail fail

fail

Figure 3.33: Search tree developed for the logigraphe instance of Figure3.32(variables
that are fixed by propagation were removed from the search tree)

3.7.137 HMagic hexagon ➠ [2 CONS]

• alldifferent, • global cardinality with costs.

A constraint that can be used for modelling some parts of the magic hexagon
problem. Themagic hexagonproblem, see Figure3.34 for an example, consists of
finding an arrangement ofn hexagons, where an integer from1 ton is assigned to each
hexagon so that (1) each integer from1 to n occurs exactly once, (2) the sum of the
numbers along any straight line is the same.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 255

3

9

14
15

13

8

6

10

4

511 12

21

18 7 16

17 19

Figure 3.34: A magic hexagon

3.7.138 HMagic series ➠ [1 CONS]

• global cardinality.

A constraint that allows for modelling themagic seriesproblem with one single
constraint. A non-empty finite seriesS = (s0, s1, . . . , sn) is magicif and only if there
aresi occurrences ofi in S for each integeri ranging from0 to n. 3, 2, 1, 1, 0, 0, 0 is
an example of such a magic series forn = 6.

3.7.139 HMagic square ➠ [2 CONS]

• alldifferent, • global cardinality with costs.

A constraint that can be used for modelling some parts of the magic square prob-
lem. Themagic squareproblem consists in filling ann by n square withn2 distinct
integers so that the sum of each row and column and of both maindiagonals be the
same.

3.7.140 HMatching ➠ [1 CONS]

• symmetric alldifferent.

A constraint that allows for expressing that we want to find aperfect matchingon
a graph with an even number of vertices. Aperfect matchingon a graphG with n
vertices is a set ofn/2 edges ofG such that no two edges have a vertex in common.

256 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.141 HMatrix ➠ [5 CONS]

• allperm,

• colored matrix,

• element matrix,

• lex2,

• strict lex2.

A constraint on a matrix of domain variables (see, e.g., theallperm,
colored matrix, lex2, andstrict lex2 constraints) or a constraint that allows for
representing the access to an element of a matrix (see, e.g.,the element matrix con-
straint).

3.7.142 HMatrix model ➠ [4 CONS]

• allperm,

• colored matrix,

• lex2,

• strict lex2.

A constraint on a matrix of domain variables. Amatrix modelis a model involving
one matrix of domain variables.

3.7.143 HMatrix symmetry ➠ [11 CONS]

• allperm,

• increasing global cardinality,

• lex2,

• lex chain less,

• lex chain lesseq,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• lex lesseq allperm,

• strict lex2.

A constraint that can be used for breaking certain types of symmetries within a
matrix of domain variables.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 257

3.7.144 HMaximum ➠ [6 CONS]

• max index,

• max n,

• max nvalue,

• max size set of consecutive var,

• maximum,

• maximum modulo.

A constraint for which the definition involves the notion of maximum.

3.7.145 HMaximum clique ➠ [4 CONS]

• all min dist,

• alldifferent,

• clique,

• disjunctive.

A constraint (i.e.,clique) that can be used for searching for amaximum cliquein a
graph, or a constraint (i.e.,all min dist, alldifferent, disjunctive) that can be
stated by extracting a large clique [83] from a specific graph of elementary constraints.

A maximum cliqueis a clique of maximum size, a clique being a subset of vertices
such that each vertex is connected to all other vertices of the clique.

3.7.146 HMaximum number of occurrences ➠ [1 CONS]

• max nvalue.

A constraint that restricts the maximum number of times thata given value is taken.

3.7.147 Hmaxint ➠ [4 CONS]

• deepest valley,

• min n,

• minimum,

• minimum modulo.

A constraint that usesmaxint in its definition in terms of graph properties or in
terms of automata.maxint is the largest integer that can be represented on a machine.

258 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.148 HMetro ➠ [1 CONS]

• leq cst.

A constraint that can be used for modelling themetro problem, i.e., finding the
shortest distance from a given metro station to all other stations of the network.

Given an undirected graphG = (V,E), with a non-negative distance attached
to each edge ofE, a conjunction ofleq cst constraints was used by H. Simonis in
order to illustrate how propagation for such a conjunction simulates a näıve version of
Dijsktra algorithm for computing the shortest distance from a given vertexvs of V to all
other vertices. The potential source of inefficiency comes from the fact that, depending
on the scheduling policy of the underlying constraint engine, an inequality constraint
can be reconsidered several times before reaching the fixed point. The problem was
modelled in the following way:

• To each vertexvi ∈ V we associate adistance variableDi, which represents the
domain range of the distance between vertexvi and vertexvs.

• To each edge(vi, vj) ∈ E we impose two inequality constraintsDi ≤ Dj + di,j
andDj ≤ Di + di,j , wheredi,j corresponds to the distance attached to edge
(vi, vj). This restricts the maximum difference between the distances variables
associated with the two extremities of edge(vi, vj).

• Finally, we set the distance variable attached to vertexvs to 0. Propagating the
inequalities constraints by usingarc-consistencyenforces the maximum value of
each distance variableDi to be equal to the shortest distance from vertexvi to
vs when the fixed point is reached.

Figure3.35illustrates this problem on a metro map composed of four lines and18
stations respectively labelled bya, b, . . . , r . Its assumes that the distance associated
with each connection is equal to1. The figure displays the status (i.e., the minimum
and maximum values) of the distance variables under the assumption that we want
to compute the shortest path from stationi. The inequalities constraints between the
distance variablesDa, Db, . . . , Dr corresponding to this metro map are:

• (constraints attached to the connections of the blue metro line)

– Da ≤ Db + 1, Db ≤ Da + 1,

– Db ≤ Dc + 1, Dc ≤ Db + 1,

– Dc ≤ Dd + 1, Dd ≤ Dc + 1,

– Dd ≤ De + 1, De ≤ Dd + 1,

– De ≤ Df + 1, Df ≤ De + 1,

– Df ≤ Da + 1, Da ≤ Df + 1.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 259

h

0..3

0..3

0..1

0..1

0..1

0..2

0..2

0..20..4

0..5

0..5

0..6

0..6

0..0

0..2

0..3

0..4

0..4

i
o

l

k

j

g

f e

d

cb

a

m

n
q

r

p

Figure 3.35: A metro map composed of four lines (a blue, a pink, a green and a yellow
line) and the corresponding minimum and maximum values of the distance variables
attached to each station, under the assumptions (1) that thedistance attached to each
connection is equal to1 and (2) that we compute the shortest path from stationi (in
red); the font size used for displaying the bounds of a distance variable is inversely
proportional to the length of the shortest path to stationi.

260 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

• (constraints attached to the connections of the pink metro line)

– Dg ≤ Df + 1, Df ≤ Dg + 1,

– Df ≤ Dh + 1, Dh ≤ Df + 1,

– Dh ≤ Dc + 1, Dc ≤ Dh + 1,

– Dc ≤ Di + 1, Di ≤ Dc + 1,

– Di ≤ Dj + 1, Dj ≤ Di + 1.

• (constraints attached to the connections of the green metroline)

– Dp ≤ Dq + 1, Dq ≤ Dp + 1,

– Dq ≤ Dr + 1, Dr ≤ Dq + 1,

– Dr ≤ Da + 1, Da ≤ Dr + 1,

– Da ≤ Dh + 1, Dh ≤ Da + 1,

– Dh ≤ Dd + 1, Dd ≤ Dh + 1.

• (constraints attached to the connections of the yellow metro line)

– Dk ≤ Dl + 1, Dl ≤ Dk + 1,

– Dl ≤ Dm + 1, Dm ≤ Dl + 1,

– Dm ≤ Da + 1, Da ≤ Dm + 1,

– Da ≤ Dn + 1, Dn ≤ Da + 1,

– Dn ≤ Do + 1, Do ≤ Dn + 1,

– Do ≤ Di + 1, Di ≤ Do + 1.

3.7.149 HMinimum ➠ [12 CONS]

• min index,

• min n,

• min nvalue,

• min size set of consecutive var,

• minimum,

• minimum except 0,

• minimum greater than,

• minimum modulo,

• next element,

• next greater element,

• open maximum,

• open minimum.

A constraint for which the definition involves the notion of minimum.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 261

Table 3.18: Domains of the variables for thesoft same var constraint of Figure3.36.

i dom(xi) i dom(yi)
1 {1, 2} 1 {2}
2 {2, 3} 2 {2}
3 {1, 3} 3 {2, 3}

3.7.150 HMinimum cost flow ➠ [2 CONS]

• soft alldifferent ctr, • soft same var.

A constraint for which there is a filtering algorithm based onan algorithm that
finds a minimum cost flow in a graph. This graph is usually constructed from the
variables of the constraint as well as from their potential values. Figure3.36illustrates
the minimum cost flow model used for thesoft same var constraint. The demand and
the capacity of the arcs are depicted by an interval on top of the corresponding arcs.
The weight is given after that interval: a weight of0 (respectively1) is depicted by a
dotted (respectively plain) arc. Weights of1 are assigned to arcs linking two values
since they model the correction of a discrepancy between variablesx1, x2, x3 and
variablesy1, y2, y3. Blue arcs represent a feasible flow corresponding to the solution
soft same var(2, 〈1, 3, 3〉, 〈2, 2, 3〉).

[0, 1], 0

s x2

x1

x3

1

3 y3

y2

y1

t

[1, 1], 0 [0, 1], 0 [0, 3], 1 [1, 1], 0

2

Figure 3.36: Minimum cost flow model for thesoft same var constraint described in
table3.18.

262 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.151 HMinimum feedback vertex set ➠ [1 CONS]

• cutset.

Denotes that a constraint is related to theminimum feedback vertex set problem:
given a connected graphG = (V,E), find out a minimum cardinality subsetV ′ of V
such that the graphG′ induced byV \ V ′ does not contain any cycle. A survey on the
feedback vertex set problemis given in [152].

3.7.152 HMinimum hitting set cardinality ➠ [1 CONS]

• nvalue.

Denotes that, by reduction to the problem of finding thecardinality of a minimum
hitting set, deciding whether a constraint has a solution or not, or getting a sharp lower
bound for one of its arguments, was shown to be NP-hard. Thecardinality of a mini-
mum hitting setproblem can be described as follows: given a collectionC of subsets
of a setS, find the minimum cardinality ofS′ ⊆ S such thatS′ contains at least one
element from each subset inC.

3.7.153 HMinimum number of occurrences ➠ [1 CONS]

• min nvalue.

A constraint that restricts the minimum number of times thata given value is taken.

3.7.154 HModulo ➠ [12 CONS]

• alldifferent modulo,

• among modulo,

• balance modulo,

• common modulo,

• k same modulo,

• k used by modulo,

• maximum modulo,

• minimum modulo,

• same modulo,

• soft same modulo var,

• soft used by modulo var,

• used by modulo.

Denotes that the arc constraint associated with a given constraint mentions the
function mod .

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 263

3.7.155 HMulti-site employee scheduling with calendar con-
straints ➠ [3 CONS]

• calendar,

• diffn,

• geost.

An international software company located in France and Germany has offices in
Paris, Lyon and Marseille as well as in Berlin, Hamburg and Munich. Four types of ac-
tivities are performed by its employees, namely (1) software development, (2) software
deployment, (3) software training courses, and (4) business trips. Software develop-
ments tasks and training courses are performed within company’s offices, while soft-
ware deployment and business trips are done at customer’s sites. Scheduling activities
to employees is typically done on a yearly basis fromJan. 1of current year toApr. 30of
next year. Considering the first four months of the next year is done in order to absorb
eventual overload and to anticipate the effect of Christmasand winter vacations. With-
out loss of generality we assume that our planning period is fromJan. 1, 2010to Apr. 30,
2011. The level of granularity is the individual day. Since employees are located on
different home sites, one has to consider the following holidays:

• Public holidaysthat do not fall on a weekend (i.e., a Saturday or a Sunday) are
listed below.

– France:Jan. 1, Apr. 5, May 13, May 24, July 14, Nov. 1, Nov. 11 in 2010, and
Apr. 25 in 2011.

– Germany:Jan. 1, Apr. 2, Apr. 5, May 13, May 24 in 2010, andApr. 22, Apr. 25
in 2011.

• In the context of Germany,regional holidaysrelated to the federal state where
a home site is situated. For Munich (Bavaria) we have the following additional
days off, that all fall outside a weekend:Jan. 6, June 3, Nov. 1 in 2010andJan. 6in
2011.

• Each home site is closed for a known fixed period of nine consecutive days that
is located during summer school vacations. In addition eachemployee has five
consecutive days off, a priori known, crossing winter school vacation. Sum-
mer and winter school vacations are linked to the country andthe area where a
home site is located. Regarding school vacations, France ispartitioned in three
zones, while Germany is divided in 16 federal states. Paris,Lyon and Marseille
are located in distinct zones, while Berlin, Hamburg and Munich are situated in
different federal states.Summer vacations periodsare:

– FromJuly 3, 2010to Sept. 1, 2010in Paris, Lyon and Marseille.

– FromJuly 7, 2010to Aug. 21, 2010in Berlin.

– FromJuly 8, 2010to Aug. 18, 2010in Hamburg.

264 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

– FromAug. 2, 2010to Sept. 13, 2010in Munich.

Winter vacations periodsare:

– FromFeb. 20, 2010to Mar. 7, 2010and fromFeb. 13, 2011to Feb. 27, 2011in
Paris.

– FromFeb. 14, 2010 to Feb. 28, 2010and fromFeb. 27, 2011 to Mar. 13, 2011
in Lyon.

– FromFeb. 7, 2010 to Feb. 21, 2010and fromFeb. 20 2011to Mar. 7, 2011 in
Marseille.

– From Feb. 1, 2010 to Feb. 6, 2010and fromJan. 31, 2011 to Feb. 5, 2011 in
Berlin.

– Jan. 29, 2010andJan. 31, 2011in Hamburg.

– FromFeb. 15, 2010to Feb. 20, 2010and fromMar. 7, 2011to Mar. 11, 2011in
Munich.

The goal is to schedule a given set of known tasks to employeesin such a way that
each employee has 30 days off in2010, some of them corresponding to the mandatory
public and regional holidays depending of the home site of anemployee. Each task
has:

1. A type (i.e., software development, software deployment, software training
courses, and business trips).

2. An earliest startin 2010.

3. A latest endin 2010. Tasks which cannot be allocated with respect to their2010
time window must be scheduled in early2011, i.e., fromJan. 1, 2011 to Apr. 30,
2011.

4. A duration.

5. A number of required employees.

6. A list of home sites qualified to perform the task.

Business trips, training courses and software deployment cannot be interrupted at
all, while software development tasks cannot be interrupted by summer vacation. Busi-
ness trips have to start on a Monday or a Tuesday since the general company policy is
to prevent people staying abroad during weekends. Each taskhas to be allocated to em-
ployees, which are all based on the same home site, in such a way that the same set of
employees takes care of the task from its start towards its completion. Each employee
has:

1. A home site(i.e., Paris, Lyon, Marseille, Berlin, Hamburg or Munich).

2. A five days period of winter2010vacation.

3. A five days period of winter2011vacation.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 265

4. A list of task types(i.e., software development, software deployment, software
training courses, business trips) it can handle.

Finally, each home site has anine days period of summer2010vacationwhere the
home site is closed down.

3.7.156 HMultiset ➠ [6 CONS]

• k same,

• k used by,

• same,

• same and global cardinality,

• same and global cardinality low up,

• used by.

A constraint using domain variables that can be used for modelling some constraint
between multisets.

3.7.157 HMultiset ordering ➠ [4 CONS]

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq.

Similar constraints exist also within the context of multisets.

3.7.158 HNo cycle ➠ [1 CONS]

• proper forest.

A constraint enforcing the fact that an undirected graph hasno cycle.

3.7.159 HNo loop ➠ [31 CONS]

• all differ from at least k pos,

• alldifferent on intersection,

• all incomparable,

• among low up,

• among var,

• arith or,

• assign and counts,

• assign and nvalues,

• bin packing,

• cardinality atleast,

• cardinality atmost partition,

• cardinality atmost,

• change continuity,

• change pair,

266 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

• change partition,

• change,

• common interval,

• common modulo,

• common partition,

• common,

• correspondence,

• counts,

• crossing,

• cutset,

• cyclic change joker,

• cyclic change,

• decreasing,

• inverse within range,

• lex equal,

• two orth do not overlap,

• uses.

Denotes a constraint defined by a graph constraint for which the final graph doesn’t
have any loop.

3.7.160 Hn-Amazon ➠ [4 CONS]

• alldifferent,

• alldifferent cst,

• inverse,

• smooth.

A constraint that can be used for modelling then-Amazonproblem. Placen Ama-
zons on an by n chessboard in such a way that no Amazon attacks another. We say
that two columns (respectively two rows) of a chessboard arealmost adjacentif and
only if the two columns (respectively the two rows) are separated by one single column
(respectively one single row). Two Amazons attack each other if at least one of the
following conditions holds:

1. They are located on the same column, on the same row or on thesame diagonal.

2. They are located either on adjacent columns and on almost adjacent rows, or on
almost adjacent columns and on adjacent rows.

As shown by these conditions, an Amazon combines the movements of a queen and of
a knight. Figure3.37illustrates the movements of an Amazon. Then-Amazonproblem
has no solution whenn is smaller than10.

We now show how to model then-Amazonproblem with six global constraints.
We start from the model that is used for then-queenproblem. We associate to theith

column of the chessboard a domain variableXi that gives the row number where the
corresponding queen is located.

• The fact that two Amazons should not be located on the same column, on the
same row or on the same diagonal can be modelled as the conjunction of three
alldifferent constraints:

– alldifferent(X1, X2 + 1, . . . , Xn + n − 1) for the upper-left to low-
er-right diagonals,

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 267

4

7

1

2

3

5

6

8

X X X X X X XX 2 3 4 5 6 7 81

1

1

1

1

1

1

12

2 2

2

2

2 2

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1 11111

Figure 3.37: Illustration of the moves of an Amazon: moves labelled by1 correspond
to queen’s moves, while moves labelled by2 correspond to knight’s moves

– alldifferent(X1, X2, . . . , Xn) for the rows,

– alldifferent(X1 + n − 1, X2 + n − 2, . . . , Xn) for the lower-right to
upper-left diagonals.

• The fact that two Amazons cannot both be located on adjacent columns and on
almost adjacent rows can be modelled by disequality constraints of the form
|Xi −Xi+1| 6= 2 (1 ≤ i ≤ n− 1).

• Similarly, the fact that two Amazons cannot both be located on almost adjacent
columns and on adjacent rows can be modelled by disequality constraints of the
form |Xi−Xi+2| 6= 1 (1 ≤ i ≤ n−2). For a reason that will become clear later
on, we rewrite this set of disequalities as|X2·i+1−X2·i+3| 6= 1 (0 ≤ i ≤ ⌊n−3

2 ⌋)
and|X2·i −X2·i+2| 6= 1 (1 ≤ i ≤ ⌊n−2

2 ⌋).

If we combine the constraints of the form|Xi − Xi+1| 6= 2 (1 ≤ i ≤ n − 1)
with the threealldifferent constraints we get the conjunction of constraints
Xi − Xi+1 6= 0 ∧ |Xi − Xi+1| 6= 1 ∧ |Xi − Xi+1| 6= 2 (1 ≤ i ≤ n − 1).
This conjunction of three disequalities can be expressed asone single inequality of
the form |Xi − Xi+1| > 2 (1 ≤ i ≤ n − 1). Furthermore all these inequal-
ities can be combined into one singlesmooth constraint of the formsmooth(n −
1, 2, 〈X1, X2, . . . , Xn〉).15 Similarly we get the constraints|X2·i+1 − X2·i+3| > 2
(0 ≤ i ≤ ⌊n−3

2 ⌋) and|X2·i − X2·i+2| > 2 (1 ≤ i ≤ ⌊n−2
2 ⌋). Again we obtain two

smooth constraints of the formsmooth(⌊n−1
2 ⌋, 2, 〈X1, X3, . . . , Xn−1+n mod 2〉) and

smooth(⌊n−2
2 ⌋, 2, 〈X2, X4, . . . , Xn−n mod 2〉).

Finally, theinverse constraint can also be used as achannelling constraintif we
want to create an additional variable for each row. This may be for instance the case
if we want to have a heuristics for selecting first the column or the row that has the
smallest number of possibilities.

15Since we enforce for all pairs of consecutive variablesXi, Xi+1 (1 ≤ i ≤ n − 1) the constraint
|Xi − Xi+1| > 2, the namesmooth seems odd. However the namesmooth stands from the situation
where the number of inequalities constraints should be minimised.

268 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

X1 X2 X3 X4 X5X 6 X7 X8 9X X10

8

6

5

3

2

1

7

4

9

10

Figure 3.38: The unique solution to the10-Amazons problem

Figure3.38shows the unique solution, modulo symmetries, to then-Amazon prob-
lem forn = 10. We have the following conjunction of constraints:

• alldifferent cst (〈var−X1 cst− 0, var−X2 cst− 1,
var−X3 cst− 2, var−X4 cst− 3, var−X5 cst− 4,
var−X6 cst− 5, var−X7 cst− 6, var−X8 cst− 7,
var−X9 cst− 8, var−X10 cst− 9〉),

• alldifferent(〈X1, X2, X3, X4, X5, X6, X7, X8, X9, X10〉),

• alldifferent cst (〈var−X1 cst− 9, var−X2 cst− 8,
var−X3 cst− 7, var−X4 cst− 6, var−X5 cst− 5,
var−X6 cst− 4, var−X7 cst− 3, var−X8 cst− 2,
var−X9 cst− 1, var−X10 cst− 0〉),

• smooth(〈9, 2, 〈X1, X2, X3, X4, X5, X6, X7, X8, X9, X10〉),

• smooth(〈4, 2, 〈X1, X3, X5, X7, X9〉),

• smooth(〈4, 2, 〈X2, X4, X6, X8, X10〉).

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 269

3.7.161 Hn-queen ➠ [3 CONS]

• alldifferent,

• alldifferent cst,

• inverse.

A constraint that can be used for modelling then-queenproblem. Placen queens
on an byn chessboard in such a way that no queen attacks another. Two queens attack
each other if they are located on the same column, on the same row or on the same
diagonal. A constructive method for arbitraryn > 3 was first given in [147]. An
effective heuristics for then-queenproblem was given in [211]. It consists of starting
to place the queens in the center of the chessboard so that they eliminate the maximum
number of potential positions.

3.7.162 HNon-deterministic automaton ➠ [3 CONS]

• among,

• change,

• smooth.

A constraint for which the catalogue provides a non-deterministic automaton with-
out counters and without array of counters. For the mentioned constraints it turn out
that non-determinism is due to the fact that we introduce transitions labelled by the po-
tential values of a counting variable to a single final state (i.e., see Figures5.26, 5.99,
and5.548).

3.7.163 HNon-overlapping ➠ [9 CONS]

• diffn,

• disjoint tasks,

• geost,

• geost time,

• orth on top of orth,

• orths are connected,

• place in pyramid,

• two orth are in contact,

• two orth do not overlap.

A constraint that forces a collection of geometrical objetsto not pairwise overlap.

270 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.164 HNumber of changes➠ [8 CONS]

• change,

• change pair,

• change partition,

• change vectors,

• circular change,

• cyclic change,

• cyclic change joker,

• smooth.

A constraint restricting the number of times that a given binary constraint holds on
consecutive items of a given collection.

3.7.165 HNumber of distinct equivalence classes➠ [13 CONS]

• atleast nvalue,

• atleast nvector,

• atmost nvalue,

• atmost nvector,

• increasing nvalue,

• nclass,

• nequivalence,

• ninterval,

• npair,

• nvalue,

• nvalues,

• nvector,

• nvectors.

A constraint on the number of distinct equivalence classes assigned to a collection
of domain variables.

3.7.166 HNumber of distinct values ➠ [11 CONS]

• atleast nvalue,

• atmost nvalue,

• assign and nvalues,

• coloured cumulative,

• coloured cumulatives,

• increasing nvalue,

• increasing nvalue chain,

• nvalue,

• nvalue on intersection,

• nvalues,

• nvalues except 0.

A constraint on the number of distinct values assigned to oneor several set of
variables.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 271

3.7.167 HObscure ➠ [6 CONS]

• change continuity,

• group,

• group skip isolated item,

• longest change,

• sliding card skip0,

• two layer edge crossing.

A constraint for which a better description is needed (i.e.,
two layer edge crossing), or a constraint for which the automata need to be
checked because the removal of the dollar sign may have introduced an error (i.e., the
five other constraints).

3.7.168 HOne succ ➠ [20 CONS]

• alldifferent,

• alldifferent between sets,

• alldifferent cst,

• alldifferent except 0,

• alldifferent interval,

• alldifferent modulo,

• alldifferent partition,

• balance cycle,

• balance path,

• balance tree,

• binary tree,

• circuit,

• circuit cluster,

• cycle,

• cycle card on path,

• derangement,

• minimum weight alldifferent,

• path,

• permutation,

• tree.

Denotes that a constraint is defined by one single graph constraint such that:

• All the vertices of its initial graph belong to the final graph,

• All the vertices of its final graph have exactly one successor.

272 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.169 HOpen automaton constraint ➠ [2 CONS]

• open maximum, • open minimum.

A constraint for which the set of solutions can be recognisedby a so calledopen
automaton. An open automatonis a finite deterministic automaton taking as input a
sequence of variablesV1 V2 . . . Vn as well as a sequence of0-1 variablesB1 B2 . . . Bn.
A variableBi (1 ≤ i ≤ n) set to value0 means that the corresponding variableVi is
removed from the sequence of variablesV1 V2 . . . Vn.

Consider a constraintC for which we already have a finite deterministic automaton
A that only accepts the set of solutions ofC. Constructing the finite deterministic
automatonA′ that only recognises the set of solutions of the open versionof constraint
C can be done in a systematic way from the automatonA. First, to each transition
of A we add the fact that the corresponding Boolean variable mustalso be equal to
1. Second, to each state ofA we add a loop transition for which the corresponding
Boolean variableBi (1 ≤ i ≤ n) must be equal to0 (since variableVi is ignored, we
stay within the same state). Figure3.39 illustrates this construction in the context of
theminimum constraint and of its open counterpart, theopen minimum constraint.

iB =0

B =1 andi

B =1 andi

iB =1 and

MIN=VARi

MIN<VARi

MIN=VARi

iMIN<VARMIN<VARi

iMIN=VAR

iMIN<VAR

iMIN=VAR

tt

ss

(A)

B =1 and

(B)

i
B =0i

Figure 3.39: (Constructing the (B) automaton of theopen minimum constraint from
the (A) automaton of theminimum constraint

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 273

3.7.170 HOpen constraint ➠ [9 CONS]

• open alldifferent,

• open among,

• open atleast,

• open atmost,

• open global cardinality,

• open global cardinality low up,

• open maximum,

• open minimum,

• size max starting seq alldifferent.

A constraint from which all its variables are not completelyknown when the con-
straint is posted [402]. In many situations, such as configuration, planning, or schedul-
ing of process dependant activities, the variables of a constraint are not completely
known initially when the constraint is posted. Instead, they are revealed during the
search process [20, 148, 149]. In practice, an additional argument of the constraint (a
set variable or a set of0-1 variables) provides the initial set of potential variables(the
lower bound in the context of a set variable). In Bartak’s model [20], an open constraint
admits a sequence of domain variablesV1 V2 . . . Vm (m ≥ 1) as well as an additional
variableC which gives the index of the last variable that effectively belongs to the con-
straint (i.e., variablesVC+1, VC+2, . . . , Vm are discarded). This is for instance the case
for thesize max starting seq alldifferent constraint.

Within the context of open constraints, the notion ofcontractibilitywas introduced
in [253] in order to characterise a global constraint for which any pruning rule that
removes a value from one of its variable (or that enforces anytype of condition) can
be reused in the context of the corresponding open global constraint (i.e., the pruning
rule still makes valid deductions in the context of the open case). Intuitively, many
global constraints that impose a kind ofat mostcondition are contractible, while this is
typically not the case for global constraints that enforce akind of at leastcondition.

See also the keywordsopen automaton constraint, contractible, andextensible.

274 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.171 HOrder constraint ➠ [45 CONS]

• allperm,

• cond lex cost,

• cond lex greater,

• cond lex greatereq,

• cond lex less,

• cond lex lesseq,

• decreasing,

• increasing,

• increasing global cardinality,

• increasing nvalue,

• increasing nvalue chain,

• increasing sum,

• int value precede,

• int value precede chain,

• lex2,

• lex between,

• lex chain less,

• lex chain lesseq,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• lex lesseq allperm,

• max index,

• max n,

• maximum,

• maximum modulo,

• min index,

• min n,

• minimum,

• minimum except 0,

• minimum greater than,

• minimum modulo,

• next greater element,

• open maximum,

• open minimum,

• ordered atleast nvector,

• ordered atmost nvector,

• ordered global cardinality,

• ordered nvector,

• precedence,

• set value precede,

• strict lex2,

• strictly decreasing,

• strictly increasing.

A constraint involving anordering relationin its definition. Anordering relation
R on a setS is a relation such that, for everya, b, c ∈ S:

• a R b or b R a,

• If a R b andb R c, thena R c,

• If a R b andb R a thena = b.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 275

3.7.172 HOrthotope ➠ [12 CONS]

• diffn,

• diffn column,

• diffn include,

• orth link ori siz end,

• orth on the ground,

• orth on top of orth,

• orths are connected,

• place in pyramid,

• two orth are in contact,

• two orth column,

• two orth do not overlap,

• two orth include.

=1n =4n=2n =3n

Figure 3.40: Illustration of the notion of orthotope for various dimensions

A constraint involvingorthotopes. An orthotopecorresponds to the generalisation
of the rectangle and box to then-dimensional case. In addition its sides are parallel
to the axes of the placement space. Figure3.40illustrates the notion of orthotope for
n = 1, 2, 3 and4.

3.7.173 HOverlapping alldifferent ➠ [1 CONS]

• k alldifferent.

A constraint expressing severalalldifferent constraints having some variables
in common.

3.7.174 HPair ➠ [3 CONS]

• change pair,

• npair,

• twin.

A constraint involving a collection of pairs of variables.

276 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.175 HPacking almost squares➠ [2 CONS]

• diffn, • geost.

Denotes that a constraint can be used for solving thepacking almost squaresprob-
lem: tile a rectangle for which sides are consecutive integers by rectangles of size
1 × 2, 2 × 3, . . . , n × (n + 1) which can be rotated by90 degrees. The problem is
described inhttp://www.stetson.edu/ ˜ efriedma/almost/ . Since there does not al-
ways exist a tiling, one can also consider a variant where thegoal is to find the rectangle
with minimal area. Figure3.41provides a solution forn = 26 found by H. Simonis.

1 2 3

4 5

6

7

8 9

101112 13 1415

16

17 18

19

Figure 3.41: A solution to the packing almost squares problem for n = 26

3.7.176 HPallet loading ➠ [2 CONS]

• diffn, • geost.

A constraint that can be used for modelling thepallet loadingproblem. Thepallet
loadingproblem consists of packing a maximum number of identical rectangular boxes
onto a rectangular pallet in such a way that boxes are placed with their edges parallel
to the edges of the pallet. The problem often arises in distribution, when many boxes
must be shipped and an increase of the number of boxes on a pallet saves costs. Even
if the complexity of the problem is not yet known [272], many solutions have been
developed over the past years:

• Exact algorithms based on tree search procedures extend a partial solution by
positioning a new box according to different heuristics. One of the most used
heuristics is the so called G4 heuristics [352] which recursively divides the
placement space into four huge rectangles. Beside the use ofan appropriate

heuristics, the key point is the use of upper bounds on the maximum number of
boxes that can be packed. Some bounds like the Barnes [18] and the Keber [219]
bounds consider the geometric structure of the problem. Some other bounds are
obtained by solving a linear programming problem [204].

http://www.stetson.edu/~efriedma/almost/

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 277

• Approximate algorithms are based on constructive methods (i.e., methods that
either divide the pallet into blocks or methods that divide the pallet in a recursive
way) or metaheuristics based on genetic algorithms or tabu search [5].

Both in the context of exact and approximates algorithms, the problem is usually first
normalised in order to reduce the set of possible solutions [133, 134].

3.7.177 HPartition ➠ [14 CONS]

• alldifferent partition,

• balance partition,

• cardinality atmost partition,

• change partition,

• common partition,

• in same partition,

• k same partition,

• k used by partition,

• nclass,

• same partition,

• stretch path partition,

• soft same partition var,

• soft used by partition var,

• used by partition.

A constraint involving in one of its argument a partitioningof a given finite set of
integers.

3.7.178 HPath ➠ [4 CONS]

• balance path,

• path,

• path from to,

• temporal path.

A constraint allowing for expressing that we search for one or several ver-
tex-disjoint simple paths. Within a digraph asimple pathis a set of links that are
traversed in the same direction and such that each vertex of the simple path is visited
exactly once.

3.7.179 HPartridge ➠ [2 CONS]

• diffn, • geost.

Denotes that a constraint can be used for solving thePartridgeproblem: the Par-
tridge problem consists of tiling a square of sizen·(n+1)

2 by n·(n+1)
2 squares of respec-

tive sizes

• 1 square of size1,

278 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

• 2 squares of size2,

• . . . ,

• n squares of sizen.

It was initially proposed by R. Wainwright and is based on theidentity 1 ·

12 + 2 · 22 + · · · + n · n2 = (n·(n+1)
2)2. The problem is described in

http://mathpuzzle.com/partridge.html . Figure3.42gives a solution forn = 12
found withgeost.

12

12

12

12

12

12

12

12

12

12

12

12

11

11

11

11

11

11

11

11

11

11 11

10

10

10

10

10

10

10

10

10

10

9

9

9

9

9

9

9

9

9

8

8

8

8

8

8

8

8

7

7

7

7

7

7

7

6 6

6 6

6
6

5 5

5

5

5

4

4
4

4

Figure 3.42: A solution to the Partridge problem forn = 12

3.7.180 HPattern sequencing➠ [1 CONS]

• cumulative convex.

A constraint allowing for expressing thepattern sequencing problemas one single
global constraint. Thepattern sequencing problem[153] can be described as follows:
given a0-1 matrix in which each columnj (1 ≤ j ≤ p) corresponds to a product
required by the customers and each rowi (1 ≤ i ≤ c) corresponds to the order of a
particular customer (The entrycij is equal to1 if and only if customeri has ordered
some quantity of productj.), the objective is to find a permutation of the products such
that the maximum number of open orders at any point in the sequence is minimised.
Order i is openat pointk in the production sequence if there is a product required
in orderi that appears at or before positionk in the sequence and also a product that
appears at or after positionk in the sequence.

http://mathpuzzle.com/partridge.html

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 279

3.7.181 HPentomino ➠ [3 CONS]

• diffn,

• geost,

• polyomino,

• regular.

A constraint (i.e.,polyomino) that can be used to model apentomino. A pen-
tominois an arrangement of five unit squares that are joined along their edges.

Also denotes a constraint (i.e.,diffn, geost, regular) that can be used for solv-
ing tiling problems involving pentominoes. For instance, the geost and regular

constraints where respectively used in [36] and in [228] to solve such tiling problems.
Figure3.43presents a tiling of a rectangle with distinct pentominoes.

01

2

3

4 56

7

8

9 10

11

Figure 3.43: Tiling a rectangle with pentominoes

3.7.182 HPeriodic ➠ [3 CONS]

• period,

• period except 0,

• period vectors.

A constraint that can be used for modelling the fact that we are looking for a
sequence that has some kind of periodicity.

3.7.183 HPermutation ➠ [26 CONS]

• alldifferent,

• alldifferent consecutive values,

• balance cycle,

• change continuity,

• circuit,

• circuit cluster,

• correspondence,

• cycle,

• cycle card on path,

• derangement,

• elements alldifferent,

• inverse,

• k alldifferent,

• k same,

• k same interval,

• k same modulo,

• k same partition,

• same,

280 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

• same and global cardinality,

• same and global cardinality low up,

• same interval,

• same modulo,

• same partition,

• sort,

• sort permutation,

• symmetric alldifferent.

A constraint that can be used for modelling a permutation or aspecific type or
characteristic of a permutation. Apermutationis a rearrangement of elements, where
none are changed, added or lost.

3.7.184 HPermutation channel ➠ [1 CONS]

• inverse.

A constraint that allows for modelling the link between apermutationand its
inverse permutation. A permutationis a rearrangement ofn distinct integers between1
andn, where none are changed, added or lost. Aninverse permutationis a permutation
in which each number and the number of its position are swapped.

3.7.185 HPhi-tree ➠ [2 CONS]

• disjunctive, • cumulative.

A constraint for which one of its filtering algorithms uses a balanced binary tree
in order to efficiently evaluate the maximum or minimum valueof a formula over
all possible subsets of tasksΩ of a given set of tasksΦ. Φ-trees were introduced
by P. Viĺım, first in the context of unary resources in [407] and in [408, pages 37–
40], and later on in the context of cumulative resources [410, 409]. Without loss of
generality, let us sketch the main idea behind aΦ-tree in the context of a cumulative
resource of capacityC. For this purpose we follow the description given in [410].
Given a set of tasksΦ where each task has anearliest possible start, a latest possible
end, a durationand aresource consumption, assume we need to evaluate theearliest
completion timeover all tasks ofΦ under the hypothesis that we should not exceed the
maximum resource capacityC. Let us first introduce some notations:

• Ω denotes any non-empty subset of tasks ofΦ.

• estΩ is the minimum over the earliest starts of the tasks inΩ .

• eΩ is the sum of the surfaces (i.e., the product of the duration by the resource
consumption) of the tasks inΩ .

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 281

 5x1+12=17
energy envelope=

=1earliest start
1

 5x3+3=18
energy envelope=

=3earliest start

 5x8+25=65
energy envelope=

=8earliest start

 5x9+8=53
energy envelope=

=9earliest start

=12surface
1

=3surface =25surface =8surface
2

2

3

3

4

4

sum surfaces=33

energy envelope=max(65+8,53)=73

sum surfaces=15

energy envelope=max(17+3,18)=20

sum surfaces=48

energy envelope=max(20+33,73)=73

tasks 1, 2, 3, 4

tasks 3, 4tasks 1, 2

task 4task 3task 2task 1

Figure 3.44: Example ofΦ-tree associated with four tasks of respective duration and
resource consumption3× 4, 1× 3, 5× 5, 2× 4 and of respective earliest start1, 3, 8,
9 under the assumption that the maximum capacity of the cumulative resource is equal
to 5

A common estimation of the earliest completion time over alltasks ofΦ is

maxΩ⊆Φ

{

estΩ +
⌈

eΩ
C

⌉}

which can be rewritten as
⌈

maxΩ⊆Φ{CestΩ+eΩ}
C

⌉

. The nu-

merator of the last fraction is called theenergy envelopeof the set of tasksΦ and the
purpose of aΦ-tree is to evaluate this quantity efficiently. For a noden, let L(n) de-
note the set of leaves of the sub-tree rooted atn. The leaves of theΦ-tree correspond to
the tasks ofΦ sorted from left to right by increasing earliest start. Eachnoden of the
Φ-tree records both, the sum of the surfaces of the tasks inL(n), as well as the energy
envelope of the tasks inL(n). The sum of the surfaces associated with a non-leave
noden of the tree corresponds to the sum of the surfaces of the children ofn, while the
energy envelope ofn is equal to the maximum between on the one hand, the energy
envelop of its right child and on the other hand the sum of the energy envelop of its
left child and the recorded sum of surfaces of its right child(see [410] for a justifica-
tion of these recursive formulae). Figure3.44 illustrates the construction of aΦ-tree
associated with four given tasks.

282 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.186 HPhylogeny ➠ [1 CONS]

• stable compatibility.

A constraint inspired by the area of phylogeny. Phylogeny isconcerned by the
classification of organism based on genetic connections between species.

3.7.187 HPick-up delivery ➠ [1 CONS]

• cycle.

A constraint that was used for modelling apick-up delivery problem. In apick-up
delivery problem, vehicles have to transport loads from origins to destinations without
any transhipment at intermediate locations.

3.7.188 HPlanarity test ➠ [1 CONS]

• circuit.

A constraint that can use theplanarity testin its filtering algorithm. Theplanarity
testdetermines whether a graph can be embedded in the plane.

3.7.189 HPolygon ➠ [1 CONS]

• diffn.

A constraint that can be generalised to handle polygons.

3.7.190 HPositioning constraint ➠ [4 CONS]

• diffn column,

• diffn include,

• two orth column,

• two orth include.

A constraint restricting the relative positioning of two ormore geometrical objects.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 283

3.7.191 HPredefined constraint ➠ [58 CONS]

• abs value,

• atmost1,

• bin packing capa,

• calendar,

• colored matrix,

• compare and count,

• consecutive values,

• cumulative two d,

• distance,

• divisible,

• divisible or,

• dom reachability,

• domain,

• eq,

• eq cst,

• eq set,

• gcd,

• geost,

• geost time,

• geq,

• geq cst,

• graph isomorphism,

• gt,

• in interval reified,

• in intervals,

• in set,

• incomparable,

• increasing sum,

• leq,

• leq cst,

• lex2,

• lex lesseq allperm,

• lt,

• meet sboxes,

• multi global contiguity,

• multi inter distance,

• neq,

• neq cst,

• opposite sign,

• period,

• period except 0,

• period vectors,

• power,

• remainder,

• same sign,

• scalar product,

• set value precede,

• sign of,

• soft cumulative,

• strict lex2,

• subgraph isomorphism,

• sum cubes ctr,

• sum free,

• sum of increments,

• sum squares ctr,

• symmetric alldifferent except 0,

• twin,

• visible.

A constraint for which the meaning is not explicitly described in terms of graph
properties or in terms of automata or in terms of first order logic.

284 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.192 HPreferences➠ [5 CONS]

• cond lex cost,

• cond lex greater,

• cond lex greatereq,

• cond lex less,

• cond lex lesseq.

A constraint that can be used for modelling preferences.

3.7.193 HProducer-consumer ➠ [2 CONS]

• cumulative, • cumulatives.

A constraint that can be used for modelling problems where a first set of tasks
produces a non-renewable resource, while a second set of tasks consumes this resource
so that a limit on the minimum or the maximum stock at each instant is imposed.

Parts (A) and (B) of Figure3.45 describes the simplest variant of the produc-
er-consumer problem [366] where no negative stock is allowed. Given an initial stock,
a first set of tasks (i.e., producers) add instantaneously their respective production to
the stock (when they are finished), and a second set of tasks (i.e., consumers) take in-
stantaneously from the stock (when they start) the amount ofnon-renewable resource
they need. The problem is to schedule these tasks (i.e., fix the end of the producers and
fix the start of the consumers) and to fix for each task the quantity it produces or con-
sumes, so that no negative stock occurs. Part (A) of Figure3.45describes an instance
of such problem where we respectively have2 producers and3 consumers. Part (B)
depicts the corresponding cumulative view of the problem. At each timepoint the dif-
ference between the top line and the top of the cumulated profile gives the amount of
available stock at that timepoint.

A fundamental problem with the previous variant of the producer-consumer prob-
lem is that it does not allow to handle the fact that a resourceis produced or used
gradually. Parts (C) and (D) of Figure3.45describes a second variant where this is in
fact possible. This is achieved by replacing the rectangle associated with a producer
by a task with a decreasing height. At a given instant the cumulated quantity produced
by a producer is the difference between the height of that task at its starting time and
the height of that task at the considered instant. Conversely a consumer is modelled
by a task with an increasing height. At a particular timepoint the cumulated quantity
used by a consumer task is the difference between the height of that task at its end
and the height of that task at the considered instant. Part (C) of Figure3.45describes
an instance of such problem where, again, we respectively have 2 producers and3
consumers. Part (D) depicts the corresponding cumulative view of the problem. As be-
fore, at each timepoint the difference between the top line and the top of the cumulated
profile gives the amount of available stock at that timepoint.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 285

final
stock

time

C
O

N
S

U
M

E
R

S

time

C
O

N
S

U
M

E
R

S

(B)

P
R

O
D

U
C

E
R

S

initial
stock

quantity
consumedP

R
O

D
U

C
E

R
S

stock
initial

final
stock

time

C
O

N
S

U
M

E
R

S

production date
for task 1

consumption date
for task 5(A)

produced
quantity

P
R

O
D

U
C

E
R

S

initial
stock

P
R

O
D

U
C

E
R

S

stock
initial

final
stock

time

C
O

N
S

U
M

E
R

S

production start
for task 1

consumption end
for task 4

produced
quantity

production end
for task 1 (C) (D)

consumation start
for task 4

consumed
quantity

final
stock

1

2

2

2

2

2

2

3

5

4

1

5

4

3

5

4

3

1

4

3

5

1

Figure 3.45: Producer-consumer models (A,C) and correspondingcumulative views
(B,D)

3.7.194 HProduct ➠ [2 CONS]

• cumulative product, • product ctr.

A constraint involving a product in its definition.

3.7.195 HProgram verification ➠ [1 CONS]

• cutset.

A constraint that was used within the application area ofprogram verification.

3.7.196 HProximity constraint ➠ [3 CONS]

• alldifferent same value,

• distance between,

• distance change.

A constraint restricting the distance between two collections of variables according
to some measure.

286 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.197 HPure functional dependency➠ [89 CONS]

• abs value,

• among,

• among diff 0,

• among interval,

• among modulo,

• among var,

• and,

• balance,

• balance interval,

• balance modulo,

• balance partition,

• cardinality atleast,

• cardinality atmost,

• cardinality atmost partition,

• change,

• change pair,

• change partition,

• change vectors,

• circular change,

• colored matrix,

• common,

• common interval,

• common modulo,

• common partition,

• crossing,

• cyclic change,

• cyclic change joker,

• discrepancy,

• distance,

• distance between,

• distance change,

• elem ,

• element,

• element product,

• elements,

• eq,

• eq cst,

• equivalent,

• exactly,

• gcd,

• global cardinality,

• global cardinality no loop,

• global cardinality with costs,

• graph crossing,

• imply,

• inverse,

• inverseoffset,

• longest change,

• map,

• max n,

• max nvalue,

• max size set of consecutive var,

• maximum,

• maximum modulo,

• min n,

• min nvalue,

• min size set of consecutive var,

• minimum,

• minimum except 0,

• minimum modulo,

• nand,

• nclass,

• nequivalence,

• ninterval,

• nor,

• npair,

• nset of consecutive values,

• nvalue,

• nvalue on intersection,

• nvector,

• nvisible from end,

• nvisible from start,

• or,

• orchard,

• orth link ori siz end,

• period,

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 287

• period except 0,

• period vectors,

• power,

• remainder,

• sign of,

• size max seq alldifferent,

• size max starting seq alldifferent,

• smooth,

• sort,

• stage element,

• sum of weights of distinct values,

• two layer edge crossing,

• xor.

A constraint for which the meaning is completely captured byone or more func-
tional dependancies. The negation of such constraints can be directly expressed as a
disjunction between the different functional dependancies. We illustrate this point on
different examples:

• The negation of thenvalue(n, 〈v1, v2, . . . , vm〉) constraint is defined by
nvalue(p, 〈v1, v2, . . . , vm〉) ∧ n 6= p.

• The negation of thecommon(n1, n2, 〈u1, u2, . . . , up〉, 〈v1, v2, . . . , vq〉) con-
straint is defined bycommon(m1,m2, 〈u1, u2, . . . , up〉, 〈v1, v2, . . . , vq〉)∧(n1 6=
m1 ∨ n2 6= m2).

• The negation of theelements(〈index − i1 value − u1, index − i2 value −
u2, . . . , index− in value− un〉, 〈index− 1 value− v1, index− 2 value−
v2, . . . , index− n value− vn〉) constraint is defined byelements(〈index−
i1 value−w1, index−i2 value−w2, . . . , index−in value−wn〉, 〈index−
1 value − v1, index − 2 value − v2, . . . , index − n value − vn〉) ∧ (u1 6=
w1 ∨ u2 6= w2 ∨ · · · ∨ un 6= wn).

• The negation of the sort(〈u1, u2, . . . , un〉, 〈v1, v2, . . . , vn〉) con-
straint is defined by sort(〈u1, u2, . . . , un〉, 〈w1, w2, . . . , wn〉) ∧
lex different(〈v1, v2, . . . , vn〉, 〈w1, w2, . . . , wn〉).

3.7.198 HQuadtree ➠ [2 CONS]

• cumulative two d, • diffn.

Denotes that, for a given constraint, aquadtreecan be used within its filtering algo-
rithm. A quadtreeis a hierarchical data structure based on the recursive decomposition
of space. Figure3.46illustrates the representation of a two-dimensional binary region
(A) with a quadtree (C). A region is subdivised into quadrants, subquadrants, and so
on (B), until blocks consist entirely of 1s or entirely of 0s.

288 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

(C)

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 1 1 1 1 1

0 0 1 1 1 1 1 1

0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

1

2 12 16543 6 13 14 1511

10987

2

4

12 15

13 14
8

9 10

11 16

6
7

5

1

3

(A) (B)

Figure 3.46: A region (A), its subdivision in maximal blocks(B), and the corresponding
quadtree (C)

3.7.199 HRange ➠ [1 CONS]

• range ctr.

An arithmetic constraint involving a difference between a maximum and a mini-
mum value.

3.7.200 HRank ➠ [2 CONS]

• max n, • min n.

A positioning constraint according to an ordering relation.

3.7.201 HRCC8 ➠ [8 CONS]

• contains sboxes,

• coveredby sboxes,

• covers sboxes,

• disjoint sboxes,

• equal sboxes,

• inside sboxes,

• meet sboxes,

• overlap sboxes.

Region Connection Calculus(i.e., RCC-8) [318] provides eight topological rela-
tions (i.e.,disjoint, meet, overlap, equal, covers, coveredby, contains, inside) between
two fixed objects such that any two fixed objects are in one and exactly one of these
topological relations. Figure3.47illustrates the meaning of each topological relation.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 289

disjoint(A,B)

B

B

B AA

inside(B,A)

overlap(A,B)contains(A,B)

coveredby(B,A)

covers(A,B)

A
A AB

B
B

equal(A,B)meet(A,B)

Figure 3.47: The eight topological relations of RCC-8

3.7.202 HRectangle clique partition ➠ [1 CONS]

• nvector.

Denotes that, by reduction to therectangle clique partitionproblem, deciding
whether a constraint has a solution or not was shown to be NP-hard. Therectangle
clique partition problem can be described as follows: given a rectangle graph, can
its set of vertices be partitioned intok subsets of vertices such that all corresponding
induced subgraphs correspond to cliques? Arectangle graphis a graph that can be
associated with a set of fixed rectangles whose sides are parallel to the axes of the
placement space: to each rectangle corresponds a vertex of the rectangle graph, while
to each pair of intersecting rectangles corresponds an edge.

3.7.203 HRegret based heuristics➠ [4 CONS]

• elem,

• element,

• global cardinality with costs,

• sum ctr.

Assume you have a discrete optimisation problem where the sum of some cost
variables should be minimized, and where the cost variablestypically have holes in
their domain. In this context a regret based heuristics firstselects among the not yet
fixed cost variables, the one with the largest difference between its second smallest
value and its smallest value. The idea is to consider first a variable that would cause
the biggest increase in cost if it could not be assigned its minimum value.

290 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.204 HRegret based heuristics in matrix problems➠ [2 CONS]

• global cardinality with costs, • sum ctr.

Assume you have a discrete optimisation problem involving amatrixM of deci-
sion variables such that there is a cost variable attached toeach row ofM. Moreover
assume that the cost associated with each row corresponds toa sum of elementary costs
connected with each decision variable of the same row (e.g.,we have asum ctr or a
global cardinality with costs constraint on each row ofM). Now, suppose we
want to use a heuristics for fixing the decision variables of matrix M row by row. In
this context a question is which row to select first. Since thecost variablecr associ-
ated with a rowr corresponds to a sum of elementary costs, it is very unlikelythat
the cost variablecr has a hole in its domain. Consequently, we cannot any more usea
conventional regret based heuristicswhich relies on the fact that we have holes in the
domains of the cost variables. We still want to use the idea offinding the variable that
would potentially cause the biggest increase in cost in the worst case, i.e. if it would
have to be assigned to its maximum value. For this purpose we consider the variable
for which the difference between its largest value and its smallest value is maximal. In
our context we select the rowr for which the corresponding cost variable maximizes
such difference. First we enumerate in increasing value order on the cost variable asso-
ciated with rowr. Second we fix all decision variables of rowr, using for instance the
heuristics described inlabelling by increasing cost. Using such cost based heuristics
has both some advantage and some drawback:

• The big potential advantage is that, if we can find a first solution at all, then this
solution should have a rather small overall cost.

• The potential drawback is that, depending on how strong the row constraints
propagate from the maximum total cost associated with a row back to the deci-
sion variables of the row, it may be very difficult to find a feasible solution (since
assigning the cost variable of a row to its minimum value potentially creates an
infeasible problem for which we need to develop a large search tree).

3.7.205 HReified automaton constraint ➠ [60 CONS]

• and,

• arith,

• arith or,

• between min max,

• clause and,

• clause or,

• cond lex cost,

• consecutive groups of ones,

• decreasing,

• domain constraint,

• elem,

• elem from to,

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 291

• element,

• element greatereq,

• element lesseq,

• element matrix,

• element sparse,

• elementn,

• equivalent,

• global contiguity,

• imply,

• in,

• in interval,

• in same partition,

• increasing,

• increasing global cardinality,

• increasing nvalue,

• int value precede,

• int value precede chain,

• lex between,

• lex different,

• lex equal,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• maximum,

• minimum,

• minimum except 0,

• minimum greater than,

• nand,

• next element,

• no peak,

• no valley,

• nor,

• not all equal,

• not in,

• open maximum,

• open minimum,

• or,

• pattern,

• sequence folding,

• stage element,

• stretch path,

• stretch path partition,

• strictly decreasing,

• strictly increasing,

• two orth are in contact,

• two orth do not overlap,

• xor.

A constraintC(V1, V2, . . . , Vn) for which the reified version can be mechanically
constructed from the finite deterministic automatonAC that only accepts the set of
solutions ofC. This is done by deriving fromAC a so calledreified automatonAC

¬C

by:

• First, adding a 0-1 variable B in front of the sequence of variables
V1, V2, . . . , Vn. This new sequence of variables will be passed to the reified
automatonAC

¬C .

• Second, constructing fromAC the automatonA¬C that only recognises
non-solutions ofC.

• Third, building from the two automataAC andA¬C the automatonAC
¬C . This is

done by:

1. Creating the initial states of AC
¬C .

2. Adding a transition labelled by value1 from s to the initial state ofAC .

3. Adding a transition labelled by value0 from s to the initial state ofA¬C .

292 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

V =1V =0

V =1V =0i

iV =0

ii

i

i

iV =0

i

i

i

V =0

V =1

V =1

V =0

iV =0

iV =0

V =1i

iV =1

iV =0

B=0B=1
iV =0

iV =1

iV =1

iV =0

iV =0

i

i

iV =0

iV =0

iV =1

iV =1

g

f

e

d

c

b

a

s

g

f

e

d

c

b

a

(C)(B)(A)

V =1

V =1

Figure 3.48: (A) The automaton for recognising the solutions of the
global contiguity constraint; (B) the automaton for recognising the non-solutions
of the global contiguity constraint; (C) the automaton for the reified
global contiguity constraint.

Figure3.48illustrates the construction of a reified automaton in the context of the
global contiguity constraint. Part (A) recalls the automaton that only recognises
the solutions of theglobal contiguity constraint. Assuming the same alphabet
{0, 1}, Part (B) provides the automaton that only recognises the non-solutions of the
global contiguity constraint. Finally, Part (C) depicts the reified automatoncon-
structed from the two automata given in parts (A) and (B).

3.7.206 HReified constraint ➠ [1 CONS]

• in interval reified (reified version ofin interval).

The reified versionCR of a given constraintC, whereCR has as arguments all
arguments ofC plus one extra0-1 variable. This0-1 variable is set to1 when constraint
C holds, and0 otherwise. Note that constraintCR inherits from all restrictions of
constraintC (i.e., incorrect parameters for constraintC are also incorrect for constraint
CR). Within the context of linear programming the extra0-1 variable is often called
an indicator variable.

It was shown in [33] how to reify a global constraint by reformulating it as a con-
junction ofpure functional dependency constraintstogether with a constraint that can
be easily reified (e.g., an automaton with or without counter, or a Boolean combination
of linear arithmetic equalities and inequalities and0-1 variables).

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 293

3.7.207 HRelation ➠ [3 CONS]

• in relation,

• symmetric cardinality,

• symmetric gcc.

A constraint that allows for representing the access to an element of arelation or
to model arelation. A relation is a subset of the product of several finite sets.

3.7.208 HRelaxation ➠ [20 CONS]

• alldifferent except 0,

• diffn,

• geost,

• relaxed sliding sum,

• soft alldifferent ctr,

• soft alldifferent var,

• soft all equal max var,

• soft all equal min ctr,

• soft all equal min var,

• soft cumulative,

• soft same interval var,

• soft same modulo var,

• soft same partition var,

• soft same var,

• soft used by interval var,

• soft used by modulo var,

• soft used by partition var,

• soft used by var,

• sum of weights of distinct values,

• weighted partial alldiff.

Denotes that a constraint allows for specifying a partial degree of satisfaction. For
the constraintsdiffn andgeost see the keywordRelaxation dimension.

294 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.209 HRelaxation dimension ➠ [2 CONS]

• diffn, • geost.

A constraint that allows to model constraint relaxation in the context of place-
ment problems. This is achieved by adding an extra dimensionto the placement space
where objects that are really considered are in the foreground, while objects that are
discarded are rejected in the background. As a concrete example, consider a slight
modification on the data of the task assignment and scheduling problem that is de-
scribed at the keyword entryassigning and scheduling tasks that run in parallel. In this
problem the four nurses were all not available during the time periods[0, 0], [7, 7],
[12, 12] and[22, 22]. We now rather consider the following unavailability periods[0, 0],
[8, 8], [12, 12] and[22, 22]. Under this new hypothesis we cannot anymore schedule all
the five operations taskst1, t2, t3, t4 andt5, i.e., we get ano solutionanswer if we
use the model described inassigning and scheduling tasks that run in parallel. In this
model we are using a two-dimensionalgeost constraint, where the first and second
dimensions respectively correspond to the time and resource axes. Now, in order to
permit relaxation, we introduce a third dimension, arelaxation dimension. The idea
is to map each task to a parallelepiped for which the size in the relaxation dimen-
sion is equal to one. In addition, the coordinate of a parallelepiped in the relaxation
dimension is a variable taking its value in the interval[1, n], wheren represents the
number of operations to schedule (i.e., to each operation task ti (1 ≤ i ≤ n = 5)
we create a coordinate variableri wherer stands forrelaxation. Then, all paral-
lelepipeds for which the coordinate in the relaxation dimension if set to1 correspond
to operations that are effectively scheduled, while all other parallelepipeds represent
operations that are discarded. On the one hand, this model allows to directly express
relaxation right from the beginning without introducing any extra soft constraint and
without dynamically adding any constraint during search. On the other hand, one dis-
advantage is that the model does not directly consider an optimisation criteria like, for
instance, the maximum number of tasks effectively scheduled, or the sum of the dura-
tion of the tasks effectively done; this can be modelled using extra constraints but this
does not provide sharp bounds on the optimisation criteria.Nevertheless, this gives a
compact model, specially in the context where additional constraints make more dif-
ficult the computation of a sharp bound. Going back to the example described at the
keyword entryassigning and scheduling tasks that run in parallel, we get the following
three-dimensionalgeost constraint.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 295

geost(3,
〈oid− 1 sid− 2 x− 〈o1, a1, r1〉, oid− 2 sid− 2 x− 〈o1, s1, r1〉,
oid− 3 sid− 2 x− 〈o1, n11, r1〉, oid− 4 sid− 2 x− 〈o1, n12, r1〉,
oid− 5 sid− 4 x− 〈o2, a2, r2〉, oid− 6 sid− 4 x− 〈o2, s2, r2〉,
oid− 7 sid− 4 x− 〈o2, n2, r2〉, oid− 8 sid− 3 x− 〈o3, a3, r3〉,
oid− 9 sid− 3 x− 〈o3, s31, r3〉, oid− 10 sid− 3 x− 〈o3, s32, r3〉,
oid− 11 sid− 3 x− 〈o3, n31, r3〉, oid− 12 sid− 3 x− 〈o3, n32, r3〉,
oid− 13 sid− 2 x− 〈o4, a4, r4〉, oid− 14 sid− 2 x− 〈o4, s4, r4〉,
oid− 15 sid− 2 x− 〈o4, n41, r4〉, oid− 16 sid− 2 x− 〈o4, n42, r4〉,
oid− 17 sid− 2 x− 〈o4, n43, r4〉, oid− 18 sid− 6 x− 〈o5, a5, r5〉,
oid− 19 sid− 6 x− 〈o5, s5, r5〉, oid− 20 sid− 6 x− 〈o5, n5, r5〉,
oid− 21 sid− 2 x− 〈0, 1, 1〉, oid− 22 sid− 2 x− 〈5, 1, 1〉,
oid− 23 sid− 5 x− 〈12, 1, 1〉, oid− 24 sid− 3 x− 〈0, 2, 1〉,
oid− 25 sid− 1 x− 〈6, 2, 1〉, oid− 26 sid− 1 x− 〈15, 2, 1〉,
oid− 27 sid− 1 x− 〈22, 2, 1〉, oid− 28 sid− 2 x− 〈0, 3, 1〉,
oid− 29 sid− 2 x− 〈8, 3, 1〉, oid− 30 sid− 2 x− 〈13, 3, 1〉,
oid− 31 sid− 1 x− 〈5, 4, 1〉, oid− 32 sid− 2 x− 〈20, 4, 1〉,
oid− 33 sid− 1 x− 〈0, 5, 1〉, oid− 34 sid− 1 x− 〈7, 5, 1〉,
oid− 35 sid− 1 x− 〈12, 5, 1〉, oid− 36 sid− 1 x− 〈22, 5, 1〉,
oid− 37 sid− 1 x− 〈0, 6, 1〉, oid− 38 sid− 1 x− 〈7, 6, 1〉,
oid− 39 sid− 1 x− 〈12, 6, 1〉, oid− 40 sid− 1 x− 〈22, 6, 1〉,
oid− 41 sid− 1 x− 〈0, 7, 1〉, oid− 42 sid− 1 x− 〈7, 7, 1〉,
oid− 43 sid− 1 x− 〈12, 7, 1〉, oid− 44 sid− 1 x− 〈22, 7, 1〉,
oid− 45 sid− 1 x− 〈0, 8, 1〉, oid− 46 sid− 1 x− 〈7, 8, 1〉,
oid− 47 sid− 1 x− 〈12, 8, 1〉, oid− 48 sid− 1 x− 〈22, 8, 1〉〉,
〈sid− 1 t− 〈0, 0, 0〉 l− 〈1, 1, 1〉, sid− 2 t− 〈0, 0, 0〉 l− 〈2, 1, 1〉,
sid− 3 t− 〈0, 0, 0〉 l− 〈3, 1, 1〉, sid− 4 t− 〈0, 0, 0〉 l− 〈4, 1, 1〉,
sid− 5 t− 〈0, 0, 0〉 l− 〈5, 1, 1〉, sid− 6 t− 〈0, 0, 0〉 l− 〈6, 1, 1〉〉).

Figure3.49depicts a solution to the problem corresponding to the assignmento1 =
9, r1 = 1, a1 = 1, s1 = 4, n11 = 5, n12 = 6, o2 = 1, r2 = 2, a2 = 2, s2 = 4, n2 = 8,
o3 = 2, r3 = 1, a3 = 1, s31 = 3, s32 = 4, n31 = 5, n32 = 6, o4 = 17, r4 = 1,
a4 = 1, s4 = 4, n41 = 5, n42 = 6, n43 = 7, o5 = 16, r5 = 1, a5 = 2, s5 = 3, n5 = 8.
During search, relaxation variablesr1, r2, r3, r4, r5 are first set to value one (i.e., the
corresponding operations are scheduled) and then, upon backtracking, assigned to any
value greater than one (i.e., there is no backtrack on the values that are greater than one
since we just want to reject an operation in the background).

3.7.210 HResource constraint ➠ [19 CONS]

• bin packing,

• bin packing capa,

• coloured cumulative,

• coloured cumulatives,

• cumulative,

• cumulative convex,

• cumulative product,

• cumulative with level of priority,

• cumulatives,

• cycle resource,

• disj,

• disjunctive,

• disjunctive or same end,

• disjunctive or same start,

• interval and count,

• interval and sum,

• soft cumulative,

• track,

• tree resource.

296 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

(in the background of the relaxation dimension):operation ignored

dim
en

sio
n

re
lax

at
ion

time

re
so

ur
ce

s

anaesthetists: 1..2 surgeons: 3..4 nurses: 5..8

(in the foreground of the relaxation dimension):operations effectively scheduled

t

t3

3t

t3

3t

t4

4t

t4

4t

t4

5t

t5

5t

t1 t3 4t t5

7

8

]]] 17161082 9761 3 4 50 11 12 13 14 15 18 19 20 21 22 23 24

1

2

3

4

5

6

t

t

1

1

2tt1

t2

2t

t2

t3 4t t5

t2

1t

1t

3

Figure 3.49: A partial solution for the operation scheduling problem that maximises
the number of operations actually performed where only operationt2 is not scheduled

A constraint restricting the utilisation of a resource. Theutilisation of a resource
is computed from all items that are assigned to that resource.

3.7.211 HRun of a permutation ➠ [1 CONS]

• change continuity.

A constraint that can be used for putting a restriction on thesize of the longest
run of a permutation. Arun is a maximal increasing contiguous subsequence in a
permutation.

3.7.212 HSAT ➠ [3 CONS]

• alldifferent,

• among,

• diffn.

A constraint for which a reference provides a reformulationin SAT. Encoding
for thealldifferent and theamong constraints were respectively provided in [175]

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 297

and in [14]. Based on Feketeet al. model of the multi-dimensional orthogonal pack-
ing problem [151], an encoding for thediffn constraint when all the sizes of all the
orthotopesare fixed was described in [183].

3.7.213 HScalar product ➠ [1 CONS]

• global cardinality with costs.

A constraint that can be used for modelling a scalar product constraint.

3.7.214 HSequence➠ [29 CONS]

• among seq,

• arith sliding,

• change continuity,

• cycle card on path,

• deepest valley,

• global contiguity,

• group,

• group skip isolated item,

• highest peak,

• inflexion,

• no peak,

• no valley,

• multi global contiguity,

• nvisible from end,

• nvisible from start,

• peak,

• period,

• period except 0,

• period vectors,

• relaxed sliding sum,

• sequence folding,

• size max seq alldifferent,

• size max starting seq alldifferent,

• sliding card skip0,

• sliding distribution,

• sliding sum,

• stretch path,

• stretch path partition,

298 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

• valley.

Constrains consecutive variables (possibly not all) of a given collection of domain
variables or consecutive vertices of a simple path or a simple circuit. Also a constraint
restricting a variable (when fixed to0 the variable may be omitted) according to con-
secutive variables of a given collection of domain variables.

3.7.215 HSequence dependent set-up➠ [5 CONS]

• diffn,

• disjunctive,

• elem,

• element,

• temporal path.

Denotes that a constraint can be used for modelling sequencedependent set-up
between pairs of tasks. Given,

• a collection ofn tasksT , where each taskti ∈ T (1 ≤ i ≤ n) has anorigin
oi, adurationdi, anendei (oi + di = ei) and amachinemi to which it will be
assigned,

• and an by n matrixM of positive integersδij i, j ∈ [1, n] whererow i denotes
theith row of matrixM,

we want to express thatδij enforces aminimum distancebetween the completion of
taskti ∈ T and the start of tasktj ∈ T (i 6= j) under the hypotheses that (a) both
tasks are assigned the same machine (i.e.,mi = mj) and that (b) tasktj immediately
follows taskti (i.e., there is no tasktk ∈ T (k /∈ {i, j}) such thatmk = mi ∧ ei ≤
ok ∧ ek ≤ oj). In addition, tasks assigned to the same machine should notoverlap (i.e.,
∀i ∈ [1, n], ∀j 6= i ∈ [1, n] such thatmi = mj we haveei ≤ oj ∨ ej ≤ oi). We show
how to model the previous sequence dependent set-up constraint under the hypothesis
that we have one single machine. Without loss of generality we assume thatδii = 0
for all i ∈ [1, n].

In a first phase we create for each taskti ∈ T (1 ≤ i ≤ n) three additional
variablessi, gi andci that respectively correspond to:

• Thesuccessor variablesi ∈ [1, n] allows to get the immediate successor of task
ti. On the one hand, the assignmentsi = i denotes that taskti has no immediate
successor (i.e., taskti is the last task running on machinemi), on the other hand,
si = j (j 6= i) denotes that tasktj is the immediate successor of taskti.

• Thegap variablegi represents the size of the gap between the end of taskti and
the start of its immediate successor (the gap is equal to0 when taskti has no
immediate successor).

• Theextended completionvariableci represents the sum of the end of taskti and
the corresponding gap variablegi (i.e.,ci = ei + gi).

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 299

In a second phase we post for each taskti ∈ T (1 ≤ i ≤ n) the following con-
straints:

• An element(si, row i, gi) constraint to make the link between the successor vari-
ablesi and the gap variablegi.

• A sum ctr(〈ei, gi〉,=, ci) constraint.

Finally in a third phase we create a collection of nodesNODES where each item
corresponds to a taskti ∈ T (1 ≤ i ≤ n) and has anindex attribute set toi, asucc
attribute set tosi, astart attribute set tooi and anend attribute set toci. We post a
temporal path(1, NODES) constraint for linking the successor variables, the start vari-
ables and the extended completion variables associated with the different tasks. The
first argument of thetemporal path constraint enforces one single path correspond-
ing to the succession of the different tasks on the unique machine.

3.7.216 HSequencing with release times and deadlines➠ [5 CONS]

• cumulative,

• cumulatives,

• diffn,

• disj,

• disjunctive.

Denotes that, by reduction tosequencing with release times and deadlines, decid-
ing whether a constraint has a solution or not was shown to be NP-hard. Thesequenc-
ing with release times and deadlinesproblem can be described as follows: given a set
of non-overlapping tasks and, for each task a length, a release time and a deadline the
question is to find a schedule that satisfies all release time constraints and meets all the
deadlines.

3.7.217 HSet channel ➠ [2 CONS]

• inverse set, • link set to booleans.

A channelling constraint involving one or several set variables.

300 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.218 HSet packing ➠ [1 CONS]

• k alldifferent.

Denotes that, by reduction toset packing, deciding whether a constraint has a
solution or not was shown to be NP-hard. Theset packingproblem can be described
as follows: given a collectionC of n finite sets, and a positive integerm ≤ n, doesC
containsm disjoint sets?

3.7.219 HShikaku ➠ [2 CONS]

• diffn, • geost.

Denotes that a constraint can be used for solving theShikakupuzzle. Given a
rectangular grid, where exactlyn cells contain an integer value, the problem is to tile
that grid byn rectangles in such a way that the surface of each rectangle isequal to the
single integer it contains.

66

12

5

86

9

12

86

3

9

8

4

4

(B)(A)

4

4

8

9

3

6 8

12

9

6 8

5

12

Figure 3.50: An example of a Shikaku puzzle and its corresponding unique solution

Parts (A) and (B) of Figure3.50 respectively show a small instance of such
a puzzle and its corresponding unique solution taken from the Nikoli website
https://member.nikoli.com/index.html .

https://member.nikoli.com/index.html

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 301

3.7.220 HScheduling constraint ➠ [19 CONS]

• all min dist,

• calendar,

• coloured cumulative,

• coloured cumulatives,

• cumulative,

• cumulative convex,

• cumulative product,

• cumulative with level of priority,

• cumulatives,

• disjoint tasks,

• disj,

• disjunctive,

• disjunctive or same end,

• disjunctive or same start,

• multi inter distance,

• period,

• period except 0,

• shift,

• soft cumulative.

A constraint useful for the area ofscheduling. Schedulingis concerned with the
allocation or assignment of resources (e.g., manpower, machines, money), over time,
to a set of tasks.

3.7.221 HScheduling with machine choice, calendars and preemp-
tion ➠ [4 CONS]

• calendar,

• cumulatives,

• diffn,

• geost.

A set of constraints that can be used for modelling a scheduling problem where:

• We have tasks that have both to be assigned to machine and time.

• Each task has a fixed duration.

• Machines can run at most one task at a given instant.

• Each machine has its own fixed unavailability periods (i.e.,a calendar of unavail-
ability periods).

• An unavailability period that allows (respectively forbids) a task to be interrupted
and resumed just after is calledcrossable(respectivelynon-crossable). A task
that can be (respectively cannot be) interrupted by a crossable unavailability pe-
riod is calledresumable(respectivelynon-resumable).

• We have a precedence constraint between specific pairs of tasks. Each prece-
dence enforces that a given task ends before the start of another given task.

This model illustrates the use of two time coordinates systems:

302 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

• The first coordinate system, so called thevirtual coordinate system, does not
consider at all the crossable unavailability periods associated with the differ-
ent machines. Since resumable tasks can be preempted by machine crossable
unavailability, all resource scheduling constraints (i.e., diffn, geost) are ex-
pressed within this first coordinate system. This stands from the fact that re-
source scheduling constraints likediffn or geost do not support preemption.

• The second coordinate system, so called thereal coordinate system, considers
all timepoints whether they correspond or not to crossable unavailability peri-
ods. All temporal constraints (i.e., precedence constraints represented byleq
constraints in this model) are expressed with respect to this second coordinate
system.

Consequently, each task has a start and an end that are expressed within the virtual
coordinate system as well as within the real coordinate system.

• Each task, whether it is resumable or not, is passed to the resource scheduling
constraints as well as to the precedence constraints. In addition, we represent
each non-crossable unavailability period as a fixed task that is also passed to the
resource scheduling constraints.

• Thecalendar constraint ensures the link between variables (i.e., the start and
the end of the tasks no matter whether they are resumable or not) expressed in
these two coordinate systems with respect to the crossable unavailability periods.

We now provide the corresponding detailed model. Given:

1. A set of machinesM = {m1,m2, . . . ,mp}, where each machine has a list of
fixed unavailability periods. An unavailabilityui is defined by the following
attributes:

(a) Thecrossable flagci tells whether unavailabilityui is crossable (ci = 1)
or not (ci = 0).

(b) Themachineri indicates the machine (i.e., a value in[1, p]) to which un-
availabilityui corresponds (i.e., since different machines may have differ-
ent unavailability periods).

(c) Thestart si of the unavailabilityui which indicates the first unavailable
timepoint of the unavailability.

(d) Theendei of the unavailabilityui which gives the last unavailable time-
point of the unavailability.

2. A set of tasksT = {t1, t2, . . . , tn}, where each taskti (with i ∈ [1, n]) has the
following attributes which are all domain variables exceptthe resumable flag and
the virtual duration:

(a) Theresumable flagri tells whether taskti is resumable (ri = 1) or not
(ri = 0).

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 303

(b) Themachinemi indicates the machine (i.e., a value in[1, p]) to which task
ti will be assigned.

(c) Thevirtual start vsi gives the start of taskti in the virtual coordinate sys-
tem.

(d) The virtual duration vd i corresponds to the duration of taskti without
counting the eventual unavailability periods crossed by task ti.

(e) Thevirtual end vei provides the end of taskti in the virtual coordinate
system. We have thatvsi + vd i = vei.

(f) The real startrsi gives the start of taskti in the real coordinate system.

(g) The real duration rd i corresponds to the duration of taskti including
the eventual unavailability periods crossed by taskti. When taskti is
non-resumable (i.e.,ri = 0) its real duration is equal to its virtual dura-
tion (i.e.,rd i = vd i).

(h) Thereal endrei indicates the end of taskti in the real coordinate system.
We have thatrsi + rd i = rei.

The link between the virtual starts (respectively virtual ends) and the real
starts (respectively real ends) of the different tasks ofT is ensured by a
calendar(INSTANTS, MACHINES) constraint. More precisely, for each taskti (with
i ∈ [1, n]), no matter whether it is resumable or not, we create the following items for
the collectionINSTANTS:

〈

machine−mi virtual− vsi ireal− rsi flagend− 0
〉

,
〈

machine−mi virtual− vei ireal− rei flagend− 1
〉

.

The first item links the virtual and the real start of taskti, while the second item relates
the virtual and real ends. For each machinemi (with i ∈ [1, p]) and its corresponding
list of crossable unavailability periods, denotedcrossable unavailability i, we create
the following item of the collectionMACHINES:

〈

id− i cal− crossable unavailability i

〉

.

To express the resource constraint, i.e., the fact that two tasks assigned to the same
machine should not overlap in time, we use ageost(2, OBJECTS, SBOXES) constraint.
For each taskti (with i ∈ [1, n]) we create one item for theOBJECTS collection as well
as one item for theSBOXES collection:

〈

oid− i sid− i x− 〈mi, vsi〉
〉

,
〈

sid− i t− 〈0, 0〉 l− 〈1, vd i〉
〉

.

The first item corresponds to an object withi as unique identifier, with a rectangular
shape identifieri and withmi, vsi as the coordinates of its leftmost lower corner. The
second item corresponds to a rectangular shape withi as unique identifier,〈0, 0〉 as
shift offset with respect to its leftmost lower corner, and〈1, vd i〉 as the sizes of the
rectangular shape.

Similarly, to express that each task does not overlap a non-crossable unavailability
period, we create for each non-crossable unavailability period i one item for the

304 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

OBJECTS collection as well as one item for theSBOXES collection:
〈

oid− n+ i sid− n+ i x− 〈ri, si〉
〉

,
〈

sid− n+ i t− 〈0, 0〉 l− 〈1, ei − si + 1〉
〉

.

Finally, a precedence constraint between two distinct tasks ti andtj (with i, j ∈
[1, n]) is modelled by an inequality constraint between the real end of taskti and the
real start of tasktj , namelyrei ≤ rsj . Figure3.51provides a toy example of such
problem with:

• Four machines, numbered from1 to 4, where:

– Machinem1 has two crossable unavailability periods respectively corre-
sponding to intervals[2, 2] and[6, 7].

– Machinem2 has two crossable unavailability periods respectively corre-
sponding to intervals[2, 2] and[6, 7], as well as one non-crossable unavail-
ability period corresponding to interval[3, 3].

– Machinem3 has one single non-crossable unavailability corresponding to
interval[6, 8].

– Machinem4 has one single crossable unavailability period corresponding
to interval[3, 4].

• Five tasks, numbered from1 to 5, where:

– Taskt1 is a non-resumable task that has a virtual duration of3.

– Taskt2 is a resumable task that has a virtual duration of2.

– Taskt3 is a non-resumable task that has a virtual duration of3.

– Taskt4 is a resumable task that has a virtual duration of5.

– Taskt5 is a resumable task that has a virtual duration of2.

• Finally, (1) all five tasks should not overlap, (2) taskt3 should precedes taskt2
and (3) taskt1 should precedes taskt5.

A survey on machine scheduling problems with unavailability constraints both in
the deterministic and stochastic cases can be found in [345]. Unavailability can have
multiple causes such as:

• In the context of production scheduling, machine unavailability corresponds to
accepted orders that were already scheduled for a given date. This can typically
corresponds to unavailability periods at the beginning of the planning horizon.
Preemptive maintenance can also be another cause of machineunavailability.

• In the context of timetabling, unavailability periods may come from work regu-
lation which enforces not to work in a continuous way more than a given limit.
Unavailability periods may also come from scheduled meetings during the work-
ing day.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 305

6 7 8 9

m
ac

hi
ne

s

6

6

6

7 8 9

time
real

6

7

time

9876

m
ac

hi
ne

s

9876 virtual

9

9

8 9

virtual coordinate real coordinate

1

non−crossable unavailability period

precedence constraint

non−resumable task

resumable task

1

2

3

3

4

4

4

5

5

3

3

2 5

4

2 5

2

43

1

crossable unavailability period

1

1

54

4

3

2

1

1 2 3

2

2 5

3 4 5 8

3 4 5 8

5 6 7

(B) resource constraints(A) temporal constraints

3

321

1

2

3

4

4 5

1

1

1
(2)(2)

(4)

(3)

(5)

(3)

(5)

(4)

(1) (1)

Figure 3.51: Illustration of the scheduling problem withcrossable and non-crossable
unavailability periodsas well as withresumable and non-resumable tasks: part (A)
gives the real time coordinate system where all precedence constraints are stated, while
part (B) provides the virtual time coordinate system – from which all crossable unavail-
ability periods are removed – where the non-overlapping constraint is stated

• In the context of distributed computing where cputime is donated for performing
huge tasks, machines are typically partially available [128].

3.7.222 HShared table ➠ [3 CONS]

• case,

• elements,

• elements sparse.

A constraint for which the same table is shared by severalelement constraints.
Within the context of thecase constraint, the same directed acyclic graph can be shared
by several tuples of variables. This happen for instance when thecase constraint is
used for encoding all the transitions of an automaton [34].

Within the context of planning, the idea of reusing the same constraint for encod-
ing the transitions of an automaton16 was proposed under the nameslice encodingby
C. Pralet and G. Verfaillie in [301]. The motivation behind was to avoid to completely
unfold the behaviour of the automaton (i.e., the successivetriggered transitions) over
the full planning horizon. From an implementation point of view, this encoding re-
quires the possibility to reset the domains of the variablesto some initial state.

16Even if the original work was not presented in the context of automata, it can be partly reinterpreted as
the encoding of an automaton.

306 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.223 HSchur number ➠ [1 CONS]

• sum free.

Denotes that a constraint was used for solving Schur problems. Given a
non-negative integerk, theSchur numberS(k) is the largest integern for which the set
{1, 2, . . . , n} can be partitioned intok setsS1, S2, . . . , Sk such that∀i ∈ [1, k] : i ∈
Si ⇒ i+ i /∈ Si.

3.7.224 HSLAM problem ➠ [1 CONS]

• nvector.

Denotes that a constraint was used in the context of thesimultaneous localization
and map building(SLAM) problem. Given a mobile autonomous robot that, for some
reason do not has a direct way to perform self-location (i.e., for instance do not has a
GPS), the problem is to dynamically build a map and locate itstrajectory on that map
from a set of partial snapshots of its environment. Within the context of constraint
programming this problem is described in [208, 102].

3.7.225 HSliding cyclic(1) constraint network(1) ➠ [7 CONS]

• decreasing,

• increasing,

• no peak,

• no valley,

• not all equal,

• strictly decreasing,

• strictly increasing.

A constraint network corresponding to the pattern depictedby Figure3.52. Circles
depict variables, while arcs are represented by a set of variables.

Figure 3.52: Hypergraph associated with a sliding cyclic(1) constraint network(1)

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 307

3.7.226 HSliding cyclic(1) constraint network(2) ➠ [12 CONS]

• change,

• change continuity,

• cyclic change,

• cyclic change joker,

• deepest valley,

• highest peak,

• inflexion,

• length first sequence,

• length last sequence,

• peak,

• smooth,

• valley.

A constraint network corresponding to the pattern depictedby Figure3.53. Circles
depict variables, while arcs are represented by a set of variables.

Figure 3.53: Hypergraph associated with a sliding cyclic(1) constraint network(2)

3.7.227 HSliding cyclic(1) constraint network(3) ➠ [3 CONS]

• change,

• change continuity,

• longest change.

A constraint network corresponding to the pattern depictedby Figure3.54. Circles
depict variables, while arcs are represented by a set of variables.

Figure 3.54: Hypergraph associated with a sliding cyclic(1) constraint network(3)

308 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.228 HSliding cyclic(2) constraint network(2) ➠ [2 CONS]

• change pair, • distance change.

Figure 3.55: Hypergraph associated with a sliding cyclic(2) constraint network(2)

A constraint network corresponding to the pattern depictedby Figure3.55. Circles
depict variables, while arcs are represented by a set of variables.

3.7.229 HSliding sequence constraint➠ [17 CONS]

• among seq,

• arith sliding,

• cycle card on path,

• elementn,

• pattern,

• relaxed sliding sum,

• sliding card skip0,

• sliding distribution,

• size max seq alldifferent,

• size max starting seq alldifferent,

• sliding sum,

• sliding time window,

• sliding time window from start,

• sliding time window sum,

• stretch circuit,

• stretch path,

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 309

• stretch path partition.

A constraint enforcing a condition on sliding sequences of domain variables that
partially overlap or a constraint computing a quantity froma set of sliding sequences.
These sliding sequences can be either initially given or dynamically constructed. In the
latter case they can for instance correspond to adjacent vertices of a path that has to be
built.

3.7.230 HSmallest square for packing consecutive dominoes➠
[2 CONS]

• diffn, • geost.

Find the smallest squareS where one can placen rectangles of respective size
1 × 2, 2 × 4, . . . , n × 2 · n so that they do not overlap and so that their borders are
parallel to the borders ofS. Each rectangle can be rotated by90 degrees. The problem
is described inhttp://www.stetson.edu/ ˜ efriedma/domino/ . Figure3.56 gives a
solution forn = 22 found by H. Simonis.

1

2 3

4 5

6

7

8
9

10 11

12

13
14 15

16 17

Figure 3.56: A solution to the smallest square for packing consecutive dominoes prob-
lem forn = 22

http://www.stetson.edu/~efriedma/domino/

310 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.231 HSmallest rectangle area➠ [2 CONS]

• diffn, • geost.

Denotes that a constraint can be used for finding the smallestrectangle area where
one can pack a given set of rectangles (or squares). A first example of such packing
problem attributed to S. W. Golomb is to find the smallest square that can contain the
set of consecutive squares from1× 1 up ton× n so that these squares do not overlap
each other. A program using thediffn constraint was used to construct such a table
for n ∈ {1, 2, . . . , 25, 27, 29, 30} in [28]. New optimal solutions for this problem were
found in [368] for n = 26, 31, 35. Figure3.57gives the solution found forn = 35
by H. Simonis and B. O’Sullivan. Algorithms and lower boundsfor solving the same
problem can also be respectively found in [85] and in [224].

35 34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

1615
14

13

12

11

10

9

8

Figure 3.57: Smallest square (of size123) for packing squares of size1, 2, . . . , 35

In his paper (i.e., [224]), Richard E. Korf also considers the problem of finding the
minimum-area rectangle that can contain the set of consecutive squares from1× 1 up
to n × n and solve it up ton = 25. In 2008 this value was improved up ton = 27 by
H. Simonis and B. O’Sullivan [368]. Figure3.58gives the solution found forn = 27
by H. Simonis and B. O’Sullivan.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 311

8
9 10

11

12

13 14

15

16

1718

19

20 2122 23

2425 2627

Figure 3.58: Rectangle with the smallest surface (of size148×47) for packing squares
of size1, 2, . . . , 27

312 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.232 HSmallest square for packing rectangles with distinct
sizes ➠ [2 CONS]

• diffn, • geost.

Denotes that a constraint can be used for finding the smallestsquare where one can
packn rectangles for which all the2 · n sizes are distinct integer values. The problem
is described inhttp://www.stetson.edu/ ˜ efriedma/mathmagic/0899.html . Fig-
ures3.59, 3.60 and3.61 present the smallest square (not necessarily optimal) found
with geost for respectively placing9, 10, 11, 12, 13 and 14 rectangles of distinct
sizes.

1

2

3

4

5

6

7

8

9

1 2

3

4 5

6

7

8

9

10

Figure 3.59: (Left) Tiling a square of size24 with 9 rectangles of distinct sizes1× 18,
17× 2, 15× 3, 4× 14, 16× 5, 12× 6, 7× 13, 10× 8, 9× 11; (Right) Tiling a square
of size28 with 10 rectangles of distinct sizes1 × 20, 2 × 19, 18 × 3, 4 × 17, 5 × 16,
6× 15, 7× 14, 12× 8, 9× 13, 10× 11.

http://www.stetson.edu/~efriedma/mathmagic/0899.html

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 313

1 2

3

4

5

6

7
8

9

10

11

2

34

56

7 8

9

10

11

12

Figure 3.60: (Left) Tiling a square of size32 with 11 rectangles of distinct sizes1×22,
21 × 2, 3 × 20, 18 × 4, 19 × 5, 16 × 6, 7 × 17, 8 × 15, 14 × 9, 13 × 10, 12 × 11;
(Right) Tiling a square of size37 with 12 rectangles of distinct sizes1 × 24, 2 × 23,
3× 22, 4× 21, 5× 20, 6× 19, 7× 18, 8× 17, 9× 16, 15× 10, 11× 14, 12× 13.

2 34

5

6 7

8

9

10

11

12

13

234 5

6 7

8

9

10 11

12

13 14

Figure 3.61: (Left) Tiling a square of size41 with 13 rectangles of distinct sizes1×26,
2 × 25, 3 × 24, 4 × 23, 5 × 22, 21 × 6, 20 × 7, 19 × 8, 18 × 9, 17 × 10, 11 × 16,
15× 12, 13× 14; (Right) Tiling a square of size46 with 14 rectangles of distinct sizes
1× 28, 2× 27, 3× 26, 4× 25, 5× 24, 6× 23, 7× 22, 8× 21, 20× 9, 19× 10, 18× 11,
17× 12, 16× 13, 15× 14.

314 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.233 HSoft constraint ➠ [17 CONS]

• open alldifferent,

• relaxed sliding sum,

• soft alldifferent ctr,

• soft alldifferent var,

• soft all equal max var,

• soft all equal min ctr,

• soft all equal min var,

• soft cumulative,

• soft same interval var,

• soft same modulo var,

• soft same partition var,

• soft same var,

• soft used by interval var,

• soft used by modulo var,

• soft used by partition var,

• soft used by var,

• weighted partial alldiff.

A constraint that is a relaxed form of one other constraint.

3.7.234 HSort ➠ [2 CONS]

• sort, • sort permutation.

A constraint involving the notion of sorting in its definition.

3.7.235 HSort based reformulation ➠ [31 CONS]

• all min dist,

• alldifferent,

• alldifferent consecutive values,

• alldifferent cst,

• alldifferent except 0,

• alldifferent interval,

• alldifferent modulo,

• alldifferent partition,

• alldifferent same value,

• allperm,

• consecutive values,

• derangement,

• disjunctive,

• k same,

• k same interval,

• k same modulo,

• k same partition,

• k used by,

• k used by interval,

• k used by modulo,

• k used by partition,

• permutation,

• same,

• same interval,

• same modulo,

• same partition,

• some equal,

• used by,

• used by interval,

• used by modulo,

• used by partition.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 315

A constraint using thesort constraint in one of its reformulation.

3.7.236 HSparse functional dependency➠ [3 CONS]

• case,

• element sparse,

• elements sparse.

A constraint that allows for representing afunctional dependencybetween two
domain variables, where both variables have a restricted number of values. A variable
X is said tofunctionally determineanother variableY if and only if each potential
value ofX is associated with exactly one potential value ofY .

3.7.237 HSparse table ➠ [2 CONS]

• element sparse, • elements sparse.

An element constraint for which the table is sparse.

3.7.238 HSport timetabling ➠ [2 CONS]

• symmetric alldifferent, • symmetric alldifferent except 0.

A constraint used for creating sports schedules.

3.7.239 HSquared squares➠ [3 CONS]

• cumulative,

• diffn,

• geost.

A constraint that can be used for modelling thesquared squaresprob-
lem [121] [404] (also called theperfect squared squaresproblem [136]): a perfect
squared square of ordern is a square that can be tiled withn smaller squares such that
each of the smaller squares has a different integer size. It is calledsimpleif it does not
contain a subset of at least two squares, corresponding to a square or to a rectangle.
Duijvestijn has shown in 1962 that no instances exist with less than21 squares [136].
A single solution depicted by Figure3.62 exists with21 squares, where the squares
have sizes2, 4, 6, 7, 8, 9, 11, 15, 16, 17, 18, 19, 24, 25, 27, 29, 33, 35, 37, 42, 50 and
must be packed into a square of size112.

316 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

33 37

42

18

16
29

25

50

35

6

7

2

1715

19

11

8

24

9

4

27

Figure 3.62: A simple perfect squared squares of order21

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 317

A catalogue of such simple squared squares of orders21 through25 is provided
in [80]. The following table contains all the problem instances from the previous
catalogue. The different fields respectively give the problem number, the number of
squares, the size of the master square and a list of the squaresizes. Problems 166 and
167, 168 and 169, 182 and 183 are identical, but have two non-isomorphic solutions.
A much bigger table can be found at the following linkhttp://www.squaring.net/ .

When the size of the squares is known four constraint programming approach are
respectively reported in [1], in [391], in [365], in [36] and in [35].

1 21 112 2,4,6,7,8,9,11,15,16,17,18,19,24,25,27,29,33,35,37,42,50
2 22 110 2,3,4,6,7,8,12,13,14,15,16,17,18,21,22,23,24,26,27,28,50,60
3 22 110 1,2,3,4,6,8,9,12,14,16,17,18,19,21,22,23,24,26,27,28,50,60
4 22 139 1,2,3,4,7,8,10,17,18,20,21,22,24,27,28,29,30,31,32,38,59,80
5 22 147 1,3,4,5,8,9,17,20,21,23,25,26,29,31,32,40,43,44,47,48,52,55
6 22 147 2,4,8,10,11,12,15,19,21,22,23,25,26,32,34,37,41,43,45,47,55,59
7 22 154 2,5,9,11,16,17,19,21,22,24,26,30,31,33,35,36,41,46,47,50,52,61
8 22 172 1,2,3,4,9,11,13,16,17,18,19,22,24,33,36,38,39,42,44,53,75,97
9 22 192 4,8,9,10,12,14,17,19,26,28,31,35,36,37,41,47,49,57,59,62,71,86

10 23 110 1,2,3,4,5,7,8,10,12,13,14,15,16,19,21,28,29,31,32,37,38,41,44
11 23 139 1,2,7,8,12,13,14,15,16,18,19,20,21,22,24,26,27,28,32,33,38,59,80
12 23 140 1,2,3,4,5,8,10,13,16,19,20,23,27,28,29,31,33,38,42,45,48,53,54
13 23 140 2,3,4,7,8,9,12,15,16,18,22,23,24,26,28,30,33,36,43,44,47,50,60
14 23 145 1,2,3,4,6,8,9,12,15,20,22,24,25,26,27,29,30,31,32,34,36,61,84
15 23 180 2,4,8,10,11,12,15,19,21,22,23,25,26,32,33,34,37,41,43,45,47,88,92
16 23 188 2,4,8,10,11,12,15,19,21,22,23,25,26,32,33,34,37,45,47,49,51,92,96
17 23 208 1,3,4,9,10,11,12,16,17,18,22,23,24,40,41,60,62,65,67,70,71,73,75
18 23 215 1,3,4,9,10,11,12,16,17,18,22,23,24,40,41,60,66,68,70,71,74,76,79
19 23 228 2,7,9,10,15,16,17,18,22,23,25,28,36,39,42,56,57,68,69,72,73,87,99
20 23 257 2,3,9,11,14,15,17,20,22,24,28,29,32,33,49,55,57,60,63,66,79,123,134
21 23 332 1,15,17,24,26,30,31,38,47,48,49,50,53,56,58,68,83,89,91,112,120,123,129
22 24 120 3,4,5,6,8,9,10,12,13,14,15,16,17,19,20,23,25,32,33,34,40,41,46,47
23 24 186 2,3,4,7,8,9,12,15,16,18,22,23,24,26,28,30,33,36,43,46,47,60,90,96
24 24 194 2,3,7,9,10,16,17,18,19,20,23,25,28,34,36,37,42,53,54,61,65,68,69,72
25 24 195 2,4,7,10,11,16,17,18,21,26,27,30,39,41,42,45,47,49,52,53,54,61,63,80
26 24 196 1,2,5,10,11,15,17,18,20,21,24,26,29,31,32,34,36,40,44,47,48,51,91,105
27 24 201 1,3,4,6,9,10,11,12,17,18,20,21,22,23,26,38,40,46,50,52,53,58,98,103
28 24 201 1,4,5,8,9,10,11,15,16,18,19,20,22,24,26,39,42,44,49,52,54,56,93,108
29 24 203 1,2,5,10,11,15,17,18,20,21,24,26,29,31,32,34,36,40,44,48,54,58,98,105
30 24 247 3,5,6,9,12,14,19,23,24,25,28,32,34,36,40,45,46,48,56,62,63,66,111,136
31 24 253 2,4,5,9,13,18,20,23,24,27,28,31,38,40,44,50,61,70,72,77,79,86,88,104
32 24 255 3,5,10,11,16,17,20,22,23,25,26,27,28,32,41,44,52,53,59,63,65,74,118,137
33 24 288 2,7,9,10,15,16,17,18,22,23,25,28,36,39,42,56,57,60,68,72,73,87,129,159
34 24 288 1,5,7,8,9,14,17,20,21,26,30,32,34,36,48,51,54,59,64,69,72,93,123,165
35 24 290 2,3,8,9,11,12,14,17,21,30,31,33,40,42,45,48,59,61,63,65,82,84,124,166
36 24 292 1,2,3,8,12,15,16,17,20,22,24,26,29,33,44,54,57,60,63,67,73,102,117,175
37 24 304 3,5,7,11,12,17,20,22,25,29,35,47,48,55,56,57,69,72,76,92,96,100,116,132
38 24 304 3,4,7,12,16,20,23,24,27,28,30,32,33,36,37,44,53,57,72,76,85,99,129,175
39 24 314 2,4,11,12,16,17,18,19,28,29,40,44,47,59,62,64,65,78,79,96,97,105,113,139
40 24 316 3,9,10,12,13,14,15,23,24,33,36,37,48,52,54,55,57,65,66,78,79,93,144,172
41 24 326 1,6,10,11,14,15,18,24,29,32,43,44,53,56,63,65,71,80,83,101,104,106,119,142
42 24 423 2,9,15,17,27,29,31,32,33,36,47,49,50,60,62,77,105,114,123,127,128,132,168,186
43 24 435 1,2,8,10,13,19,23,33,44,45,56,74,76,78,80,88,93,100,112,131,142,143,150,192
44 24 435 3,5,9,11,12,21,24,27,30,44,45,50,54,55,63,95,101,112,117,123,134,140,178,200
45 24 459 8,9,10,11,16,30,36,38,45,55,57,65,68,84,95,98,100,116,117,126,135,144,180,198
46 24 459 4,6,9,10,17,21,23,25,31,33,36,38,45,50,83,115,117,126,133,135,144,146,180,198
47 24 479 5,6,17,23,24,26,28,29,35,43,44,52,60,68,77,86,130,140,150,155,160,164,174,175
48 25 147 3,4,5,6,8,9,10,12,13,14,15,16,17,19,20,23,25,27,32,33,34,40,41,73,74
49 25 208 1,2,3,4,5,7,8,11,12,17,18,24,26,28,29,30,36,39,44,45,50,59,60,89,119
50 25 213 3,5,6,7,13,16,17,20,21,23,24,25,26,28,31,35,36,47,49,56,58,74,76,81,90
51 25 215 1,4,6,7,11,15,24,26,27,33,37,39,40,41,42,43,45,47,51,55,60,62,63,69,83

http://www.squaring.net/

318 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

52 25 216 1,2,3,4,5,7,8,11,16,17,18,19,25,30,32,33,39,41,45,49,54,59,64,103,113
53 25 236 1,2,4,9,11,12,13,14,15,16,19,24,38,40,44,46,47,48,59,64,65,70,81,85,107
54 25 242 1,3,6,7,9,13,14,16,17,19,23,25,26,28,30,31,47,51,54,57,60,64,67,111,131
55 25 244 1,2,4,5,7,10,15,17,19,20,21,22,26,27,30,37,40,41,45,65,66,68,70,110,134
56 25 252 4,7,10,11,12,13,23,25,29,31,32,34,36,37,38,40,42,44,62,67,68,71,77,108,113
57 25 253 2,4,5,6,9,10,12,14,20,24,27,35,36,37,38,42,43,45,50,54,63,66,70,120,133
58 25 260 1,4,6,7,10,15,24,26,27,28,29,31,33,34,37,38,44,65,70,71,77,78,83,100,112
59 25 264 3,7,8,12,16,18,19,20,22,24,26,31,34,37,38,40,42,53,54,61,64,69,70,130,134
60 25 264 3,8,12,13,16,18,20,21,22,24,26,29,34,38,40,42,43,47,54,59,64,70,71,130,134
61 25 264 1,3,4,6,9,10,11,12,16,17,18,20,21,22,39,42,54,56,61,66,68,69,73,129,135
62 25 265 1,3,4,6,9,10,11,12,16,17,18,20,21,22,39,42,54,56,62,66,68,69,74,130,135
63 25 273 1,4,8,10,11,12,17,19,21,22,27,29,30,33,37,43,52,62,65,86,88,89,91,96,120
64 25 273 1,6,9,14,16,17,18,21,22,23,25,31,32,38,44,46,48,50,54,62,65,68,78,133,140
65 25 275 2,3,7,13,17,24,25,31,33,34,35,37,41,49,51,53,55,60,68,71,74,81,94,100,107
66 25 276 1,5,8,9,11,18,19,21,30,36,41,44,45,46,47,51,53,58,63,69,71,84,87,105,120
67 25 280 5,6,11,17,18,20,21,24,27,28,32,34,41,42,50,53,54,55,68,78,85,88,95,97,117
68 25 280 2,3,7,8,14,18,30,36,37,39,44,50,52,54,56,60,63,64,65,72,75,78,79,96,106
69 25 284 1,2,11,12,14,16,18,19,23,26,29,37,38,39,40,42,59,68,69,77,78,97,106,109,110
70 25 286 1,4,5,7,10,12,15,16,20,23,28,30,32,33,35,37,53,54,64,68,74,79,80,133,153
71 25 289 2,3,5,8,13,14,17,20,21,32,36,41,50,52,60,61,62,68,74,76,83,87,100,102,104
72 25 289 2,3,4,5,7,12,16,17,19,21,23,25,29,31,32,44,57,64,65,68,72,76,84,140,149
73 25 290 1,2,10,11,13,14,15,17,18,28,29,34,36,38,50,56,60,69,77,80,85,91,94,111,119
74 25 293 5,6,11,17,18,20,21,24,27,28,32,34,41,42,50,54,55,66,68,78,85,88,95,110,130
75 25 297 2,7,8,9,10,15,16,17,18,23,25,26,28,36,38,43,53,60,61,68,69,77,99,137,160
76 25 308 1,3,4,7,10,12,13,23,25,34,37,38,39,43,44,45,62,77,79,85,87,108,113,115,116
77 25 308 1,5,6,7,8,9,13,16,19,28,33,36,38,43,45,48,70,71,73,84,86,102,104,120,133
78 25 309 7,8,14,16,23,24,25,26,31,33,34,39,48,56,59,60,62,70,76,82,92,100,101,108,117
79 25 311 2,7,8,9,10,15,16,17,18,23,25,26,28,36,38,43,53,60,61,68,83,91,99,151,160
80 25 314 1,6,7,11,16,22,26,29,32,36,38,44,51,53,64,69,70,73,74,75,85,87,101,116,128
81 25 316 1,3,9,12,21,26,30,33,34,35,38,39,40,41,53,56,59,69,79,85,96,103,111,117,120
82 25 317 1,5,6,7,8,9,16,17,19,32,37,40,42,47,49,52,59,75,81,92,94,110,112,113,126
83 25 320 2,7,8,9,12,14,15,21,23,35,38,44,46,49,53,54,56,63,96,101,103,105,108,112,116
84 25 320 3,8,9,11,17,18,22,25,26,27,29,30,31,33,35,49,51,67,72,73,80,85,95,152,168
85 25 320 1,4,6,7,8,13,14,16,24,28,30,33,34,38,41,42,57,60,69,78,81,90,92,150,170
86 25 320 3,4,6,8,9,14,15,16,24,28,30,31,34,38,39,42,59,60,71,78,79,90,92,150,170
87 25 322 3,4,8,9,10,16,18,20,22,23,24,28,31,38,44,47,64,65,68,76,80,81,97,144,178
88 25 322 3,4,8,10,15,16,18,19,20,22,24,28,35,38,44,53,59,64,68,76,80,85,93,144,178
89 25 323 2,3,4,7,10,13,15,18,23,32,34,35,36,42,46,50,57,60,66,72,78,87,98,159,164
90 25 323 3,8,9,11,17,18,22,25,26,27,29,30,31,33,35,49,51,67,72,73,83,88,95,155,168
91 25 323 2,6,9,11,13,14,18,19,20,23,27,28,29,42,46,48,60,64,72,74,79,82,98,146,177
92 25 325 3,5,6,11,12,13,18,23,25,28,32,37,40,43,45,46,51,79,92,99,103,108,112,114,134
93 25 326 1,4,8,10,12,16,21,22,24,27,28,35,36,37,38,46,49,68,70,75,88,90,93,158,168
94 25 327 2,9,10,12,13,16,19,21,23,26,36,44,46,52,55,61,62,74,84,87,100,103,104,120,140
95 25 328 2,3,4,7,8,10,14,17,26,27,28,36,38,40,42,45,53,58,73,74,79,94,102,152,176
96 25 334 1,4,8,10,12,16,21,22,24,27,28,35,36,37,38,46,49,68,75,78,88,93,98,166,168
97 25 336 2,3,4,7,8,10,14,17,26,27,28,36,38,40,45,50,53,58,73,74,79,94,110,152,184
98 25 338 1,4,8,10,12,16,19,22,24,25,28,36,37,38,39,46,53,68,70,73,94,96,101,164,174
99 25 338 4,5,8,10,12,15,16,21,22,24,28,33,36,38,43,46,57,68,70,77,94,96,97,164,174

100 25 340 1,4,5,6,11,13,16,17,22,24,44,46,50,51,52,53,61,64,66,79,84,85,92,169,171
101 25 344 2,3,8,11,14,17,19,21,23,25,27,36,39,44,48,53,56,71,77,83,86,89,98,169,175
102 25 359 7,8,9,10,14,17,18,23,25,27,29,31,40,41,43,46,69,74,82,85,90,98,102,172,187
103 25 361 2,6,7,8,9,14,20,22,26,27,32,34,36,47,49,56,66,67,74,82,89,98,107,156,205
104 25 363 1,4,6,12,13,20,21,25,26,27,28,32,37,41,45,53,58,64,69,91,97,102,106,155,208
105 25 364 2,3,4,6,8,9,13,14,16,19,23,24,28,29,52,57,64,75,82,91,98,100,109,173,191
106 25 367 1,4,6,12,13,20,21,25,26,27,28,32,37,41,49,53,58,64,69,91,97,102,110,155,212
107 25 368 1,6,15,16,17,18,22,25,31,33,39,42,45,46,47,48,51,69,72,88,91,96,112,160,208
108 25 371 1,2,7,8,20,21,22,24,26,28,30,38,43,46,50,51,64,65,70,90,95,102,109,160,211
109 25 373 3,6,7,8,15,17,22,23,31,32,35,41,43,60,62,68,79,87,104,105,114,120,121,138,148
110 25 378 2,3,10,17,18,20,21,22,24,27,31,38,41,48,51,56,68,78,80,85,87,96,117,165,213
111 25 378 1,2,7,13,15,17,18,25,27,29,30,31,42,43,46,56,61,68,73,93,100,105,112,161,217
112 25 380 4,7,17,18,19,20,21,26,31,33,35,40,45,48,49,60,67,73,79,81,87,107,113,186,194
113 25 380 4,5,6,9,13,15,16,17,22,24,33,38,44,49,50,56,60,67,82,84,95,108,121,177,203
114 25 381 12,13,21,23,25,27,35,36,42,45,54,57,59,60,79,82,84,85,92,95,96,100,110,111,186
115 25 384 1,4,8,9,11,12,19,21,27,32,35,44,45,46,47,51,60,67,84,89,96,108,120,180,204

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 319

116 25 384 1,4,8,9,11,12,15,17,19,25,26,31,32,37,44,57,60,81,84,96,99,108,120,180,204
117 25 384 3,5,7,11,12,17,20,22,25,29,35,47,48,55,56,57,69,72,76,80,96,100,116,172,212
118 25 385 1,2,7,13,15,17,18,25,27,29,30,31,43,46,49,56,61,68,73,93,100,105,119,161,224
119 25 392 4,7,8,15,23,26,29,30,31,32,34,43,48,55,56,68,77,88,98,106,116,135,141,151,153
120 25 392 10,12,14,16,19,21,25,27,31,35,39,41,51,52,54,55,73,92,98,115,121,123,129,148,171
121 25 392 1,4,5,8,11,14,16,21,22,24,27,28,30,31,52,64,81,83,96,97,98,99,114,195,197
122 25 393 4,8,16,20,23,24,25,27,29,37,44,45,50,53,64,66,68,69,73,85,91,101,116,186,207
123 25 396 1,4,5,14,16,32,35,36,46,47,48,49,68,69,73,93,94,97,99,104,110,111,125,126,160
124 25 396 1,4,5,8,11,14,16,21,22,24,27,28,30,31,52,64,81,83,98,99,100,101,114,197,199
125 25 396 3,8,9,11,14,16,17,18,31,32,41,45,48,56,60,66,73,75,81,82,98,99,117,180,216
126 25 398 2,6,7,11,15,17,23,28,29,39,44,46,53,56,58,65,68,99,100,119,120,134,144,145,154
127 25 400 3,6,21,23,24,26,29,35,37,40,41,47,53,55,64,76,79,81,99,100,121,122,137,142,179
128 25 404 3,6,7,14,17,20,21,26,28,31,32,39,46,53,54,68,71,80,88,92,100,111,113,199,205
129 25 404 4,7,10,11,12,13,16,18,20,23,25,28,29,32,47,62,70,88,93,96,101,114,127,189,215
130 25 408 2,3,7,13,16,18,20,27,30,33,41,43,46,52,54,57,72,79,84,100,105,108,116,195,213
131 25 412 3,11,12,15,21,26,32,39,43,47,54,60,68,73,83,85,86,87,89,99,114,129,139,144,169
132 25 413 5,7,17,20,34,38,39,48,56,57,59,60,64,65,70,72,75,81,105,106,110,125,148,153,155
133 25 416 2,4,7,11,13,24,25,30,35,37,39,40,44,58,62,65,82,104,112,120,128,135,143,153,169
134 25 416 1,2,3,8,12,15,16,17,20,22,24,26,29,31,64,75,85,88,91,94,98,104,133,179,237
135 25 421 1,2,4,5,7,9,12,16,20,22,23,35,38,48,56,83,94,104,116,118,128,140,150,153,177
136 25 421 5,11,12,17,18,20,23,26,29,36,38,40,44,51,55,59,72,92,97,102,105,107,117,199,222
137 25 422 2,4,7,13,16,18,20,23,28,29,38,43,46,51,59,68,74,79,86,93,100,111,132,179,243
138 25 425 3,4,5,9,10,12,13,14,16,19,20,31,46,48,56,79,102,104,116,126,128,140,142,157,181
139 25 441 5,6,7,16,18,23,24,27,38,39,47,51,52,62,66,72,80,84,92,101,102,118,120,219,222
140 25 454 1,2,11,17,29,34,35,46,48,51,53,55,63,69,79,87,88,91,109,134,136,143,150,161,184
141 25 456 5,7,10,11,13,15,18,19,31,49,50,52,59,60,63,72,77,115,128,129,135,142,148,179,193
142 25 465 6,9,13,14,19,21,24,25,31,32,53,56,64,73,74,82,91,111,125,127,137,139,153,173,201
143 25 472 7,9,13,15,26,34,35,44,47,51,58,61,65,81,87,103,104,115,118,123,128,133,136,148,221
144 25 477 3,5,12,16,19,22,25,26,37,41,49,72,76,77,82,86,87,115,117,135,141,149,167,169,193
145 25 492 2,9,15,17,27,29,31,32,33,36,47,49,50,60,62,69,77,105,114,123,127,128,132,237,255
146 25 492 3,5,9,11,12,21,24,27,30,44,45,50,54,55,57,63,95,101,112,117,123,134,140,235,257
147 25 503 4,15,16,19,22,23,25,27,33,34,50,62,67,87,88,93,100,113,135,143,149,157,167,179,211
148 25 506 1,7,24,26,33,35,40,45,47,51,55,69,87,90,93,96,117,125,134,145,146,147,160,162,199
149 25 507 2,3,7,11,13,15,28,34,43,50,57,64,80,83,86,89,107,115,116,127,149,163,175,183,217
150 25 512 1,7,8,9,10,15,22,32,34,46,51,65,69,71,91,105,109,111,136,139,152,157,173,200,203
151 25 512 1,6,7,8,9,13,17,19,35,45,47,57,62,73,88,93,104,107,128,130,151,163,184,198,221
152 25 513 6,9,10,17,19,24,28,29,37,39,64,65,68,81,98,99,102,115,145,147,153,159,165,189,201
153 25 517 5,6,7,16,20,24,28,33,38,43,63,71,80,83,86,92,98,122,132,148,164,166,173,180,205
154 25 524 9,12,20,21,33,35,37,39,54,55,61,62,87,90,98,101,125,132,135,141,145,159,163,164,220
155 25 527 11,12,13,14,19,30,41,47,50,52,59,68,71,81,94,97,107,132,147,151,155,169,175,183,197
156 25 528 2,9,15,17,27,29,31,32,33,36,47,49,50,60,62,69,77,123,127,128,132,141,150,255,273
157 25 529 9,12,20,21,33,35,37,39,54,55,61,62,87,90,98,101,125,132,140,141,145,159,163,169,225
158 25 531 6,9,10,17,19,24,29,31,39,40,67,68,71,84,101,102,105,118,151,153,159,165,171,195,207
159 25 532 16,18,26,27,33,39,41,50,51,55,69,71,84,87,91,94,132,133,141,143,164,168,169,173,195
160 25 534 11,13,15,17,18,27,38,44,49,52,60,61,68,81,87,94,107,135,149,153,159,171,174,189,210
161 25 535 2,8,26,27,36,41,45,57,62,77,88,95,97,99,101,102,109,114,117,118,141,147,168,192,226
162 25 536 1,8,21,30,31,32,33,41,44,46,49,55,57,61,84,91,113,134,137,139,150,155,176,205,247
163 25 536 3,5,9,11,12,21,24,27,30,44,45,50,54,55,57,63,95,117,123,134,140,145,156,257,279
164 25 540 1,7,8,9,10,14,19,34,36,51,58,69,81,83,97,109,111,115,136,149,152,167,183,208,221
165 25 540 6,13,15,25,28,36,43,47,55,57,58,59,60,65,82,89,91,107,124,127,144,163,183,233,250
166 25 540 8,9,10,11,16,30,36,38,45,55,57,65,68,81,84,95,98,100,116,117,126,135,144,261,279
167 25 540 8,9,10,11,16,30,36,38,45,55,57,65,68,81,84,95,98,100,116,117,126,135,144,261,279
168 25 540 4,6,9,10,17,21,23,25,31,33,36,38,45,50,81,83,115,117,126,133,135,144,146,261,279
169 25 540 4,6,9,10,17,21,23,25,31,33,36,38,45,50,81,83,115,117,126,133,135,144,146,261,279
170 25 541 3,4,11,13,16,17,21,25,26,44,46,64,75,86,87,97,106,109,133,141,165,185,191,215,217
171 25 541 3,5,27,32,33,37,47,50,53,56,57,69,71,78,97,98,109,111,126,144,165,169,183,189,232
172 25 544 1,7,24,26,33,35,40,45,47,51,55,69,87,90,93,96,117,125,134,145,147,184,198,199,200
173 25 544 6,8,20,21,23,41,42,48,59,61,77,80,81,85,90,92,93,102,115,132,139,168,198,207,244
174 25 547 3,5,16,22,26,27,35,47,49,59,67,71,72,85,87,102,103,111,137,144,150,197,200,203,207
175 25 549 4,10,14,24,26,31,34,36,38,40,43,48,59,63,74,89,97,105,117,124,136,152,156,241,308
176 25 550 1,2,5,13,19,20,25,30,39,43,58,59,73,75,76,90,95,103,116,128,130,132,172,262,288
177 25 550 1,11,16,23,24,27,29,36,41,43,44,47,59,70,71,80,99,103,111,116,128,156,167,227,323
178 25 551 3,5,24,25,26,30,35,36,39,40,42,57,68,76,94,109,120,128,152,162,166,175,176,200,223
179 25 552 5,17,18,22,25,27,32,33,39,59,62,87,91,100,102,111,112,135,137,149,165,168,183,201,204

320 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

180 25 552 1,3,4,7,8,9,10,15,18,19,21,41,52,54,73,93,95,123,125,136,138,153,168,261,291
181 25 556 6,8,10,13,19,25,32,37,49,54,58,76,84,91,92,100,107,128,145,156,165,185,195,205,206
182 25 556 3,12,13,15,19,23,27,34,35,39,42,45,48,52,53,87,140,145,158,166,171,184,189,201,227
183 25 556 3,12,13,15,19,23,27,34,35,39,42,45,48,52,53,87,140,145,158,166,171,184,189,201,227
184 25 556 1,5,7,8,9,10,12,14,20,27,31,43,47,50,74,93,97,121,125,139,143,153,167,264,292
185 25 562 2,3,5,8,13,19,20,29,33,47,53,54,64,65,76,93,119,123,142,157,161,180,184,221,259
186 25 570 3,9,10,33,36,38,40,42,50,51,60,69,72,75,77,90,113,140,141,151,152,189,200,229,230
187 25 575 4,6,14,16,31,39,63,69,74,81,88,103,107,111,115,120,131,132,133,147,156,159,164,198,218
188 25 576 1,4,9,11,15,19,22,34,36,53,60,76,82,84,104,126,127,128,153,156,165,174,183,219,237
189 25 576 8,9,10,11,16,30,36,38,45,55,57,65,68,81,84,95,98,100,116,135,144,153,162,279,297
190 25 576 4,6,9,10,17,21,23,25,31,33,36,38,45,50,81,83,115,133,135,144,146,153,162,279,297
191 25 580 2,5,7,10,12,13,19,21,22,29,36,40,61,65,74,101,135,139,161,179,183,192,205,209,236
192 25 580 5,6,11,13,16,17,21,25,34,44,54,68,80,88,100,112,120,135,142,145,170,173,195,215,265
193 25 580 11,12,16,17,29,32,39,41,53,55,59,60,68,70,81,84,92,124,125,128,129,156,171,280,300
194 25 593 13,14,15,35,48,51,55,67,73,79,83,91,94,105,109,116,119,124,133,150,171,173,196,217,226
195 25 595 4,13,18,19,22,35,40,48,58,61,62,77,78,82,83,86,118,149,163,168,187,192,202,206,240
196 25 601 7,8,25,34,41,42,46,48,54,55,62,70,71,74,98,103,116,143,168,169,190,192,193,218,240
197 25 603 7,11,12,14,21,25,32,40,52,56,60,67,68,81,91,92,132,144,149,163,177,191,196,235,263
198 25 603 13,23,26,27,35,44,45,49,53,54,57,66,75,99,101,110,122,126,144,158,175,180,189,234,270
199 25 607 6,8,10,13,19,25,32,37,49,54,58,76,84,91,92,100,107,128,156,185,196,205,206,216,246
200 25 609 9,14,15,17,32,45,47,58,67,74,76,79,80,83,97,111,125,126,150,170,186,188,215,224,235
201 25 611 1,10,22,26,32,41,45,54,57,61,62,66,85,86,87,95,97,101,119,132,136,167,176,268,343
202 25 614 15,22,24,31,33,49,53,54,57,60,63,68,74,81,83,104,109,151,155,163,167,217,229,230,234
203 25 634 15,17,24,26,33,43,44,54,57,60,63,73,79,81,88,109,119,160,161,172,173,227,234,235,239
204 25 643 2,9,21,29,38,40,41,42,58,62,67,76,82,83,85,96,104,166,172,186,192,201,207,250,270
205 25 644 7,9,13,18,19,22,31,49,53,61,66,68,71,87,93,94,119,164,178,192,199,206,227,239,253
206 25 655 10,14,15,21,25,26,31,40,51,53,54,57,65,83,84,86,151,152,173,193,194,215,216,246,288
207 25 661 5,7,17,18,23,31,36,38,41,64,73,77,83,84,102,106,111,161,175,196,203,210,238,248,262

3.7.240 HStatistics ➠ [2 CONS]

• deviation, • spread.

A constraint representing a function in statistics usuallyused for obtaining a bal-
anced assignment.

3.7.241 HStrip packing ➠ [2 CONS]

• diffn, • geost.

A constraint that can be used to model thestrip packing problem: Given a set of
rectangles pack them into an open ended strip of given width in order to minimise the
total overall height. Borders of the rectangles to pack should be parallel to the borders
of the strip and rectangles should not overlap. Some variants of strip packing allow to
rotate rectangles from90 degrees. Benchmarks with known optima can be obtained
from Hopper’s PhD thesis [201].

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 321

3.7.242 HStrong articulation point ➠ [1 CONS]

• tree.

A constraint for which the filtering algorithm uses the notion of strong articulation
point. A strong articulation pointof a strongly connected digraphG is a vertex such
that if we remove it,G is broken into at least two strongly connected components.
Figure3.63 illustrates the notion of strong articulation point on the digraph depicted
by part (A). The vertex labelled by3 is a strong articulation point since its removal
creates the three strongly connected components depicted by part (B) (i.e., the first,
second and third strongly connected components correspondrespectively to the sets
of vertices{1, 4}, {2} and{5}). From an algorithmic point of view, it was shown
in [205] how to compute all the strong articulation points of a digraphG in linear time
with respect to the number of arcs ofG.

5

(A)

2

3

1

4 5

(B)

2

3

1

4

Figure 3.63: A connected digraph and its strongly articulation point

3.7.243 HStrong bridge ➠ [2 CONS]

• circuit, • cycle.

A constraint for which the filtering algorithm may use the notion of strong bridge
(i.e., enforce arcs corresponding to strong bridges to be part of the solution in order to
avoid creating too many strongly connected components). Astrong bridgeof a strongly
connected digraphG is an arc such that, if we remove it,G is broken into at least two
strongly connected components. Figure3.64illustrates the notion of strong bridge on
the digraph depicted by part (A). The arc from the vertex labelled by 2 to the vertex
labelled by1 is a strong bridge since its removal creates the three strongly connected
components depicted by part (B) (i.e., the first, second and third strongly connected
components correspond respectively to the sets of vertices{1, 3, 4}, {2} and{5}). The
other strong bridges of the digraph depicted by part (A) are the arcs1 → 3 and5 → 2.

322 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

From an algorithmic point of view, it was shown in [205] how to compute all the strong
bridges of a digraphG in linear time with respect to the number of arcs ofG.

(A)

54

1

3

2

(B)

54

1

3

2

Figure 3.64: A connected digraph and one of its strong bridge, the arc2 → 1

3.7.244 HStrongly connected component➠ [25 CONS]

• atleast nvalue,

• atleast nvector,

• atmost nvalue,

• atmost nvector,

• balance cycle,

• circuit cluster,

• connect points,

• cycle,

• cycle or accessibility,

• cycle resource,

• group skip isolated item,

• increasing nvalue,

• nclass,

• nequivalence,

• ninterval,

• npair,

• nset of consecutive values,

• nvalue,

• nvalues,

• nvalues except 0,

• nvector,

• nvectors,

• polyomino,

• soft alldifferent var,

• strongly connected.

Denotes that a constraint restricts the strongly connectedcomponents of its asso-
ciated final graph. This is usually done by using a graph property like MAX NSCC,
MIN NSCC orNSCC.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 323

3.7.245 HSubset sum➠ [1 CONS]

• weighted partial alldiff.

Denotes that, by reduction tosubset sum, deciding whether a constraint has a
solution or not was shown to be NP-hard. Thesubset sumproblem can be described
as follows: given a finite set of integers inZ+ and an integers in Z

+, does any subset
sum equal exactlys?

3.7.246 HSudoku ➠ [2 CONS]

• alldifferent, • k alldifferent.

A constraint that can be used for modelling the Sudoku puzzleproblem. ASudoku
squareis an9 × 9 array in which9 distinct numbers in[1, 9] are arranged so that the
following two conditions hold:

• Each number occurs once in each row and column.

• The numbers in each major3× 3 block are distinct.

(B)

2 6 8 1 2 6 8 17 4 9 3 5

3 7 8 6 3 7 8 61 5 2 9 4

4 5 7 4 5 78 9 6 1 2 3

5 1 7 9 5 1 7 98 2 4 6 3

3 9 5 1 3 9 5 16 7 8 2 4

4 3 2 5 4 3 2 59 1 6 7 8

1 3 2 1 3 29 4 8 6 5 7

5 2 4 9 5 2 4 96 7 1 3 8

3 8 4 6 3 8 4 62 5 7 9 1

(A)

Figure 3.65: A partially Sudoku square and its completion

The Sudoku puzzle problemis to complete a partially filled board in order to get
a Sudoku square. Part (A) of Figure3.65gives a partially filled Sudoku board, while
part (B) provides a possible completion.

324 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.247 HSum ➠ [10 CONS]

• increasing sum,

• scalar product,

• sliding sum,

• sliding time window sum,

• sum,

• sum ctr,

• sum of increments,

• sum set,

• sum cubes ctr,

• sum squares ctr.

A constraint involving one or several sums.

3.7.248 HSweep ➠ [7 CONS]

• cumulatives,

• diffn,

• geost,

• geost time,

• soft all equal min var,

• spread,

• visible.

A constraint for which the filtering algorithm may use asweep algorithm. A sweep
algorithm[302, pages 10–11] solves a problem by moving an imaginary object(usually
a line, a plane or sometime a point). The object does not move continuously, but
only at particular points where we actually do something. A sweep algorithm uses the
following two data structures:

• A data structure called thesweep status, which contains information related to
the current position of the object that moves,

• A data structure named theevent point series, which holds the events to process.

The algorithm initialises the sweep status for the initial position of the imaginary object.
Then the object jumps from one event to the next event; each event is handled by
updating the status of the sweep.

A first typical application reported in [31] of the idea of sweep within the context
of constraint programming is to aggregate several constraints that have two variables
in common in order to perform more deduction. Let:

• X andY be two distinct variables,

• C1(V11, . . . , V1n1
), . . . , Cm(Vm1, . . . , Vmnm

) be a set ofm constraints such that
all constraints mentionX andY.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 325

The sweep algorithm tries to adjust the minimum value ofX wrt. the conjunction of
the previous constraints by moving a sweep-line from the minimum value ofX to its
maximum value. It accumulates within the sweep-line statusthe values to be cur-
rently removed from the domain ofY. If, for the current position∆ of the sweep-line,
all values ofY have to be removed, then the algorithm removes value∆ from the
domain ofX. The events to process correspond to the starts and ends of forbidden
two-dimensional regions wrt. constraintsC1, . . . , Cm and variablesX and Y. For-
bidden regions are a way to represent constraintsC1, . . . , Cm that is suited for this
sweep algorithm. A forbidden region of the constraintCi wrt. the variablesX andY
is an ordered pair([F−

x , F+
x], [F−

y , F+
y]) of intervals such that:∀x ∈ [F−

x , F+
x], ∀y ∈

[F−
y , F+

y] : Ci(Vi1, . . . , Vini
) has no solution in whichX = x andY = y.

Figure3.66shows five constraints and their respective forbidden regions (in pink)
wrt. two given variablesX andY and their domains. The first constraint requires that
X, Y andR be pairwise distinct. Constraints (B,C) are usual arithmetic constraints.17

Constraint (D) can be interpreted as requiring that two rectangles of respective origins
(X, Y) and(T, U) and sizes(2, 4) and(3, 2) do not overlap. Finally, constraint (E) is a
parity constraint of the sum ofX andY.

(X+Y) mod 2 = 0

2 3 41

0

1

2

3

4

0 2 3 41

0

1

2

3

4

0 2 3 41

0

1

2

3

4

Y

(A)

R in 0..9

alldifferent(<X,Y,R>)

X

Y

(B)

|X−Y|>2

Y

(C)

X+2Y−1<S

X X

S in 1..6

0 2 3 41

0

1

2

3

4

0 2 3 41

0

1

2

3

4

X

Y

(D)

T in 0..2, U in 0..3

X

Y

(E)

X+1<T or T+2<X or Y+3<U or U+1<Y

0

Figure 3.66: Examples of forbidden regions (in pink) according to the two variablesX
andY (X in 0..4, Y in 0..4) for five constraints

We illustrate the use of the sweep algorithm on a concrete example. Assume that
we want to find out the minimum value of variableX wrt. the conjunction of the five
constraints that were introduced by Figure3.66, that is versus the following conjunction

17Within the context of continuous variables, Chabertet al.[101] shows how to compute a forbidden region
that contains a given unfeasible point for numerical constraints with arbitrary mathematical expressions.

326 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

of constraints:

X ∈ 0..4, Y ∈ 0..4, R ∈ 0..9, T ∈ 0..2, U ∈ 0..3
alldifferent(〈X, Y, R〉) (A)
|X− Y| > 2 (B)
X+ 2Y− 1 < S (C)
X+ 1 < T ∨ T+ 2 < X ∨ Y+ 3 < U ∨ U+ 1 < Y (D)
(X+ Y) mod 2 = 2 (E)

Figure 3.67 shows the content of the sweep-line status (i.e., the forbidden values
for Y according the current position of the sweep-line) for different positions of the
sweep-line. More precisely, the sweep-line status can be viewed as an array (see the
rightmost part of Figure3.67) which records for each possible value ofY the number
of forbidden regions that currently intersect the sweep-line (see the leftmost part of
Figure3.67where these forbidden regions are coloured in red). The smallest possible
value ofX is 4, since this is the first position of the sweep-line where the sweep-line
status contains a value ofY which is not forbidden (i.e.,X = 4, Y = 0 is not covered by
any forbidden region).

A second similar application of the idea of sweep in the context of thecardinality
operator[394], where all constraints have at least two variables in common, is reported
in [30]. As before, each constraintC of the cardinality operator is defined by its for-
bidden regions wrt. a pair of variables(X, Y) that occur in every constraint. In addition
to that, a constraintC is also defined by itssafe regions, where a safe region is the set
of assignments to the pair(X, Y) located in a rectangle such that the constraint always
holds, no matter which values are taken by the other variables ofC. Then the extended
sweep algorithm filters the pair of variables(X, Y) right from the beginning according
to the minimum and maximum number of constraints of the cardinality operator that
have to hold.

A third typical application reported in [36] and in [93] of the idea of sweep within
the context of multi-dimensional placement problems (see for instance thediffn and
thegeost constraints) for filtering each coordinate of the origin of an objecto to place
is as follows. To adjust the minimum (respectively maximum)value of a coordinate of
the origin we perform a recursive traversal of the placementspace in increasing (re-
spectively decreasing) lexicographic order and skips infeasible points that are located in
a multi-dimensional forbidden set. Each multi-dimensional forbidden set is computed
from a constraint where objecto occurs (for instance a non-overlapping constraint in
the context of thediffn and thegeost constraints).

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 327

SWEEP−LINE

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

2 3 41 0 2 3 41 0 2 3 41 0 2 3 41 0 2 3 41

0 2 3 41 0 2 3 41 0 2 3 41 0 2 3 41 0 2 3 41

0 2 3 41 0 2 3 41 0 2 3 41 0 2 3 41 0 2 3 41

0 2 3 41 0 2 3 41 0 2 3 41 0 2 3 41 0 2 3 41

0 2 3 41 0 2 3 41 0 2 3 41 0 2 3 41 0 2 3 41

0

0

1

2

3

4

2

2

1

1

1

3

3

2

2

2

0

1

2

3

4

2

3

2

3

2

0

1

2

3

4

1

1

3

3

3

0

1

2

3

4

0

1

2

3

3

0

1

2

3

4

X=0

X=1

X=2

X=3

X=4

X=0

X=1

X=2

X=3

X=4

(A) (B) (D) (E)(C)

CONSTRAINTS

STATUS

0

Figure 3.67: Sweep-line status while sweeping through the values ofX

328 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.249 HSymmetric ➠ [9 CONS]

• all differ from at least k pos,

• all incomparable,

• bipartite,

• clique,

• connect points,

• connected,

• inverse within range,

• proper forest,

• symmetric.

Denotes that a constraint is defined by a graph constraint forwhich the final graph
is symmetric. A digraph issymmetricif and only if, if there is an arc from a vertexu
to a vertexv, there is also an arc fromv to u.

3.7.250 HSymmetry ➠ [22 CONS]

• allperm,

• increasing global cardinality,

• increasing nvalue,

• increasing sum,

• int value precede,

• int value precede chain,

• geost,

• lex2,

• lex between,

• lex chain less,

• lex chain lesseq,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• lex lesseq allperm,

• ordered atleast nvector,

• ordered atmost nvector,

• ordered nvector,

• set value precede,

• strict lex2,

• subgraph isomorphism.

A constraint that can be used for breaking certain types of symmetries (i.e.,
allperm,int value precede,. . . , strict lex2) or for identifying certain symme-
tries (i.e.,subgraph isomorphism).

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 329

3.7.251 HSystem of constraints➠ [27 CONS]

• all differ from at least k pos (system ofdiffer from at least k pos),

• all incomparable (system ofincomparable),

• alldifferent (system ofneq),

• allperm (system oflex lesseq allperm),

• among seq (system ofamong low up),

• colored matrix (system ofglobal cardinality),

• elements (system ofelem or of element sharing the same table),

• elements sparse (system ofelement sparse sharing the same table),

• global cardinality (system ofamong),

• k alldifferent (system ofalldifferent),

• k disjoint (system ofdisjoint),

• k same (system ofsame),

• k same interval (system ofsame interval),

• k same modulo (system ofsame modulo),

• k same partition (system ofsame partition),

• k used by (system ofused by),

• k used by interval (system ofused by interval),

• k used by modulo (system ofused by modulo),

• k used by partition (system ofused by partition),

• lex2 (system oflex chain lesseq),

• lex between (system oflex lesseq),

• lex chain lesseq (system oflex lesseq),

• lex chain less (system oflex less),

• lex alldifferent (system oflex different),

• sliding distribution (system ofglobal cardinality low up),

• sliding sum (system ofsum ctr),

• strict lex2 (system oflex chain less).

Denotes that a constraint is defined as the conjunction of several identical global
constraints that have some variables in common.

330 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.252 HTable ➠ [15 CONS]

• elem,

• elem from to,

• element,

• elementn,

• element greatereq,

• element lesseq,

• element product,

• element sparse,

• elements,

• elements alldifferent,

• elements sparse,

• ith pos different from 0,

• next element,

• next greater element,

• stage element.

A constraint that allows for representing the access to an element of a table.

3.7.253 HTemporal constraint ➠ [17 CONS]

• calendar,

• coloured cumulative,

• coloured cumulatives,

• cumulative,

• cumulative convex,

• cumulative product,

• cumulative with level of priority,

• cumulatives,

• disjoint tasks,

• interval and count,

• interval and sum,

• shift,

• sliding time window,

• sliding time window from start,

• sliding time window sum,

• soft cumulative,

• track.

A constraint involving the notion of time.

3.7.254 HTernary constraint ➠ [4 CONS]

• distance,

• element matrix,

• gcd,

• power.

A constraint involving only three variables.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 331

3.7.255 HTimetabling constraint ➠ [31 CONS]

• change,

• change continuity,

• change pair,

• change partition,

• circular change,

• colored matrix,

• cumulatives,

• cyclic change,

• cyclic change joker,

• diffn,

• geost,

• geost time,

• group,

• group skip isolated item,

• interval and count,

• interval and sum,

• longest change,

• pattern,

• period,

• period except 0,

• shift,

• sliding card skip0,

• smooth,

• stretch circuit,

• stretch path,

• stretch path partition,

• symmetric alldifferent,

• symmetric alldifferent except 0,

• symmetric cardinality,

• symmetric gcc,

• track.

A constraint that can occur in timetabling problems.

3.7.256 HTime window ➠ [1 CONS]

• sliding time window sum.

A constraint involving one or several date ranges.

3.7.257 HTouch ➠ [2 CONS]

• orths are connected, • two orth are in contact.

A constraint enforcing that someorthotopestouch each other (seeContact).

332 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.258 HTree ➠ [9 CONS]

• balance path,

• balance tree,

• binary tree,

• path,

• proper forest,

• stable compatibility,

• tree,

• tree range,

• tree resource.

According to the context, the keywordtree has the following meaning:

• In the context of adigraph, a constraint that partitions the vertices of a given
initial digraph and that keeps one single successor for eachvertex so that each
partition corresponds to one tree. Each vertex points to itsfather or to itself if it
corresponds to the root of a tree.

• In the context of anundirected grapha constraint that partitions the vertices of a
given initial undirected graph in a set of connected components with no cycles.

3.7.259 HTuple ➠ [2 CONS]

• in relation, • vec eq tuple.

A constraint involving atuple. A tupleis an element of arelation, where arelation
is a subset of the product of several finite sets.

3.7.260 HTwo-dimensional orthogonal packing ➠ [2 CONS]

• diffn, • geost.

A constraint that can be used to model thetwo-dimensional orthogonal packing
problem. Given a set of rectangles pack them into a rectangular placement space.
Borders of the rectangles should be parallel to the borders of the placement space and
rectangles should not overlap. Some variants of strip packing allow to rotate rectan-
gles from90 degrees. Benchmarks can be obtained from a generator described in the
following paper [111].

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 333

3.7.261 HUnary constraint ➠ [5 CONS]

• in,

• in interval,

• in intervals,

• not in,

• sum free.

A constraint involving only one variable.

3.7.262 HUndirected graph ➠ [2 CONS]

• proper forest, • tour.

A constraint that deals with anundirected graph. An undirected graphis a graph
whose edges consist of unordered pairs of vertices.

3.7.263 HValue constraint ➠ [76 CONS]

• all equal,

• all min dist,

• alldifferent,

• alldifferent cst,

• alldifferent consecutive values,

• alldifferent except 0,

• alldifferent interval,

• alldifferent modulo,

• alldifferent on intersection,

• alldifferent partition,

• among,

• among diff 0,

• among interval,

• among low up,

• among modulo,

• arith,

• arith or,

• atleast,

• atmost,

• balance,

• balance interval,

• balance modulo,

• balance partition,

• cardinality atleast,

• cardinality atmost,

• cardinality atmost partition,

• consecutive values,

• count,

• counts,

• differ from at least k pos,

• discrepancy,

• disjoint,

• domain,

• exactly,

• global cardinality,

• global cardinality low up,

• global cardinality low up no loop,

• global cardinality no loop,

• in,

• in interval,

• in interval reified,

• in intervals,

334 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

• in same partition,

• in set,

• increasing global cardinality,

• k alldifferent,

• k disjoint,

• length first sequence,

• length last sequence,

• link set to booleans,

• max nvalue,

• max size set of consecutive var,

• min nvalue,

• min size set of consecutive var,

• multi inter distance,

• not all equal,

• not in,

• nset of consecutive values,

• open alldifferent,

• open among,

• open atleast,

• open atmost,

• open global cardinality,

• open global cardinality low up,

• ordered global cardinality,

• permutation,

• roots,

• same and global cardinality,

• same and global cardinality low up,

• soft alldifferent ctr,

• soft alldifferent var,

• soft all equal max var,

• soft all equal min ctr,

• soft all equal min var,

• some equal,

• vec eq tuple.

A constraint that puts a restriction on how values can be assigned to usually one
or several collections of variables, or possibly one or two variables. These variables
usually correspond to domain variables but can sometimes beset variables.

3.7.264 HValue partitioning constraint ➠ [14 CONS]

• atleast nvalue,

• atleast nvector,

• atmost nvalue,

• atmost nvector,

• increasing nvalue,

• nclass,

• nequivalence,

• ninterval,

• npair,

• nvalue,

• nvalues,

• nvalues except 0,

• nvector,

• nvectors.

A constraint involving a partitioning of values in its definition.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 335

3.7.265 HValue precedence➠ [3 CONS]

• int value precede,

• int value precede chain,

• set value precede.

A constraint that allows for expressing symmetries betweenvalues that are as-
signed to variables.

3.7.266 HVariable-based violation measure➠ [11 CONS]

• soft alldifferent var,

• soft all equal max var,

• soft all equal min var,

• soft same interval var,

• soft same modulo var,

• soft same partition var,

• soft same var,

• soft used by interval var,

• soft used by modulo var,

• soft used by partition var,

• soft used by var.

A soft constraint for which the violation cost is the minimumnumber of variables
to unassign in order to get back to a solution.

3.7.267 HVariable indexing ➠ [7 CONS]

• elem,

• elem from to,

• element,

• element greatereq,

• element lesseq,

• element sparse,

• indexed sum.

A constraint where one or several variables are used as an index into an array.

3.7.268 HVariable subscript ➠ [7 CONS]

• elem,

• elem from to,

• element,

• element greatereq,

• element lesseq,

• element product,

• indexed sum.

A constraint that can be used to model one or several variables that have a variable
subscript.

336 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

3.7.269 HVector ➠ [30 CONS]

• all differ from at least k pos,

• all incomparable,

• allperm,

• atleast nvector,

• atmost nvector,

• change vectors,

• cond lex cost,

• cond lex greater,

• cond lex greatereq,

• cond lex less,

• cond lex lesseq,

• differ from at least k pos,

• incomparable,

• lex alldifferent,

• lex between,

• lex chain less,

• lex chain lesseq,

• lex different,

• lex equal,

• lex greater,

• lex greatereq,

• lex less,

• lex lesseq,

• lex lesseq allperm,

• nvector,

• nvectors,

• ordered atleast nvector,

• ordered atmost nvector,

• ordered nvector,

• period vectors.

Denotes that one (or more) argument of a constraint corresponds to a collection of
vectors that all have the same number of components.

3.7.270 HVpartition ➠ [1 CONS]

• group.

Denotes that a constraint is defined by two graph constraintsC1 andC2 such that:

• The two graph constraints have the same initial graphGi,

• Each vertex of the initial graphGi belongs to exactly one of the final graphs
associated withC1 andC2.

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 337

3.7.271 HWeighted assignment➠ [4 CONS]

• global cardinality with costs,

• minimum weight alldifferent,

• sum of weights of distinct values,

• weighted partial alldiff.

A constraint expressing an assignment problem such that a cost can be computed
from each solution.

3.7.272 HWorkload covering ➠ [1 CONS]

• cumulatives.

A constraint that can be used for modelling problems where a first set of tasksT1
has to cover a second set of tasksT2. Each task ofT1 andT2 is defined by an origin, a
duration and a height. At each point in timet the sum of the heights of the tasks of the
first setT1 that overlapt has to be greater than or equal to the sum of the heights of the
tasks of the second setT2 that also overlapt.

3.7.273 HZebra puzzle ➠ [4 CONS]

• alldifferent,

• elem,

• element,

• inverse.

A constraint that can be used for modelling thezebra puzzleproblem. Here is the
first known publication of that puzzle quoted in italic from Life International, Decem-
ber 17, 1962:

1. There are five houses.

2. The Englishman lives in the red house.

3. The Spaniard owns the dog.

4. Coffee is drunk in the green house.

5. The Ukrainian drinks tea.

6. The green house is immediately to the right of the ivory house.

7. The Old Gold smoker owns snails.

8. Kools are smoked in the yellow house.

338 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

9. Milk is drunk in the middle house.

10. The Norwegian lives in the first house.

11. The man who smokes Chesterfields lives in the house next to theman with the
fox.

12. Kools are smoked in the house next to the house where the horseis kept.

13. The Lucky Strike smoker drinks orange juice.

14. The Japanese smokes Parliaments.

15. The Norwegian lives next to the blue house.

Now, who drinks water? Who owns the zebra?
In the interest of clarity, it must be added that each of the five houses is painted a
different color, and their inhabitants are of different national extractions, own different
pets, drink different beverages and smoke different brandsof American cigarettes. In
statement6, right refers to the reader’s right.

A first model involveselement constraints with variables in their tables (i.e., the
table of anelement constraint corresponds to its second argument). It consists of
creating for each housei (1 ≤ i ≤ 5) five variablesCi, Ni, Ai, Di, Bi respectively
corresponding to thecolour of housei, thenationalityof the person leaving in house
i, the preferredpet of the person leaving in housei, the preferredbeverageof the
person leaving in housei, the preferredbrand of American cigarettesof the person
leaving in housei. We first state the following fivealldifferent constraints on
these variables for expressing that colours, nationalities, pets, beverages, and brands of
American cigarettes are distinct:

• alldifferent(〈C1, C2, C3, C4, C5〉),

• alldifferent(〈N1, N2, N3, N4, N5〉),

• alldifferent(〈A1, A2, A3, A4, A5〉),

• alldifferent(〈D1, D2, D3, D4, D5〉),

• alldifferent(〈B1, B2, B3, B4, B5〉).

Now observe that most statements link two specific attributes (e.g.,The Englishman
lives in the red house). Consequently, in order to ease the encoding of such statements
in term of constraints, we will first create for each attribute a variable that indicates
the house where an attribute occurs. For instance, for the statementThe Englishman
lives in the red housewe will create two variables which respectively indicate inwhich
house the Englishman lives and which house is red. We now create all the variables
attached to each class of attributes.

For each possible colourc ∈ {red , green, ivory , yellow , blue} we create a variable
Ic that corresponds to the index of the house having this colour. For each variableIc,
anelement constraint links it to the variablesC1, C2, C3, C4, C5 giving the colour of
each house:

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 339

• Red = 1, Green = 2, Ivory = 3, Yellow = 4, Blue = 5,

• element(Ired , 〈C1, C2, C3, C4, C5〉,Red),

• element(Igreen , 〈C1, C2, C3, C4, C5〉,Green),

• element(Iivory , 〈C1, C2, C3, C4, C5〉, Ivory),

• element(Iyellow , 〈C1, C2, C3, C4, C5〉,Yellow),

• element(Iblue , 〈C1, C2, C3, C4, C5〉,Blue).

Note that we can replace the five previouselement constraints by the following
inverse constraint:

• inverse

〈

index− 1 succ− C1 pred− Ired ,
index− 2 succ− C2 pred− Igreen ,
index− 3 succ− C3 pred− Iivory ,
index− 4 succ− C4 pred− Iyellow ,
index− 5 succ− C5 pred− Iblue

〉

For each possible nationalityn ∈ {englishman, spaniard , ukrainian,norwegian,
japanese} we create a variableIn that corresponds to the index of the house where the
person with this nationality lives. For each variableIn, anelement constraint links it
to the variablesN1, N2, N3, N4, N5 giving the nationality associated with each house:

• Englishman = 1, Spaniard = 2, Ukrainian = 3, Norwegian = 4,
Japanese = 5,

• element(Ienglishman , 〈N1, N2, N3, N4, N5〉,Englishman),

• element(Ispaniard , 〈N1, N2, N3, N4, N5〉,Spaniard),

• element(Iukrainian , 〈N1, N2, N3, N4, N5〉,Ukrainian),

• element(Inorwegian , 〈N1, N2, N3, N4, N5〉,Norwegian),

• element(Ijapanese , 〈N1, N2, N3, N4, N5〉, Japanese).

Again we can replace the five previouselement constraints by the followinginverse
constraint:

• inverse

〈

index− 1 succ−N1 pred− Ienglishman ,
index− 2 succ−N2 pred− Ispaniard ,
index− 3 succ−N3 pred− Iukrainian ,
index− 4 succ−N4 pred− Inorwegian ,
index− 5 succ−N5 pred− Ijapanese

〉

For each possible preferred peta ∈ {dog , snail , fox , horse, zebra} we create a
variableIa that corresponds to the index of the house where the person that prefers
this pet lives. For each variableIa, an element constraint links it to the variables
A1, A2, A3, A4, A5 giving the preferred pet of each house:

340 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

• Dog = 1, Snail = 2, Fox = 3, Horse = 4, Zebra = 5,

• element(Idog , 〈A1, A2, A3, A4, A5〉,Dog),

• element(Isnail , 〈A1, A2, A3, A4, A5〉,Snail),

• element(Ifox , 〈A1, A2, A3, A4, A5〉,Fox),

• element(Ihorse , 〈A1, A2, A3, A4, A5〉,Horse),

• element(Izebra , 〈A1, A2, A3, A4, A5〉,Zebra).

Again we can replace the five previouselement constraints by the followinginverse
constraint:

• inverse

〈

index− 1 succ−A1 pred− Idog ,
index− 2 succ−A2 pred− Isnail ,
index− 3 succ−A3 pred− Ifox ,
index− 4 succ−A4 pred− Ihorse ,
index− 5 succ−A5 pred− Izebra

〉

For each possible preferred beveraged ∈ {coffee, tea,milk , orange juice,water}
we create a variableId that corresponds to the index of the house where the person that
prefers this beverage lives. For each variableId, anelement constraint links it to the
variablesD1, D2, D3, D4, D5 giving the preferred beverage of each house:

• Coffee = 1, Tea = 2, Milk = 3, Orange juice = 4, Water = 5,

• element(Icoffee , 〈D1, D2, D3, D4, D5〉,Coffee),

• element(Itea , 〈D1, D2, D3, D4, D5〉,Tea),

• element(Imilk , 〈D1, D2, D3, D4, D5〉,Milk),

• element(Iorange juice , 〈D1, D2, D3, D4, D5〉,Orange juice),

• element(Iwater , 〈D1, D2, D3, D4, D5〉,Water).

Again we can replace the five previouselement constraints by the followinginverse
constraint:

• inverse

〈

index− 1 succ−D1 pred− Icoffee ,
index− 2 succ−D2 pred− Itea ,
index− 3 succ−D3 pred− Imilk ,
index− 4 succ−D4 pred− Iorange juice ,
index− 5 succ−D5 pred− Iwater

〉

For each possible preferred brand of American cigarettesb ∈ {old gold , kool ,
chesterfield , lucky strike, parliament} we create a variableIb that corresponds to the
index of the house where the person that prefers this brand lives. For each variableIb,
anelement constraint links it to the variablesB1, B2, B3, B4, B5 giving the preferred
brand of American cigarettes of each house:

3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 341

• Old gold = 1, Kool = 2, Chesterfield = 3, Lucky strike = 4, Parliament =
5,

• element(Iold gold , 〈B1, B2, B3, B4, B5〉, Old gold),

• element(Ikool , 〈B1, B2, B3, B4, B5〉,Kool),

• element(Ichesterfield , 〈B1, B2, B3, B4, B5〉, Chesterfield),

• element(Ilucky strike , 〈B1, B2, B3, B4, B5〉, Lucky strike),

• element(Iparliament , 〈B1, B2, B3, B4, B5〉, Parliament).

Again we can replace the five previouselement constraints by the followinginverse
constraint:

• inverse

〈

index− 1 succ−B1 pred− Iold gold ,
index− 2 succ−B2 pred− Ikool ,
index− 3 succ−B3 pred− Ichesterfield ,
index− 4 succ−B4 pred− Ilucky strike ,
index− 5 succ−B5 pred− Iparliament

〉

Finally we state one constraint for each statement from2 to 15:

• Ienglishman = Ired (the Englishman lives in the red house).

• Ispaniard = Idog (the Spaniard owns the dog).

• Icoffee = Igreen (coffee is drunk in the green house).

• Iukrainian = Itea (the Ukrainian drinks tea).

• Igreen = Iivory + 1 (the green house is immediately to the right of the ivory
house).

• Iold gold = Isnail (the Old Gold smoker owns snails).

• Ikool = Iyellow (kools are smoked in the yellow house).

• Imilk = 3 (milk is drunk in the middle house).

• Inorwegian = 1 (the Norwegian lives in the first house).

• |Ichesterfield − Ifox | = 1 (the man who smokes Chesterfields lives in the house
next to the man with the fox).

• |Ikool − Ihorse | = 1 (kools are smoked in the house next to the house where the
horse is kept).

• Ilucky strike = Iorange juice (the Lucky Strike smoker drinks orange juice).

• Ijapanese = Iparliament (the Japanese smokes Parliaments).

• |Inorwegian − Iblue | = 1 (the Norwegian lives next to the blue house).

342 CHAPTER 3. DESCRIPTION OF THE CATALOGUE

Now note that variablesCi, Ni, Ai, Di, Bi (1 ≤ i ≤ 5) do not occur at all within
the constraints encoding statements2 to15. Consequently they can be removed, as long
as we replace the fivealldifferent constraints on these variables by the following
alldifferent constraints:

• alldifferent(〈Ired , Igreen , Iivory , Iyellow , Iblue〉),

• alldifferent(〈Ienglishman , Ispaniard , Iukrainian , Inorwegian , Ijapanese〉),

• alldifferent(〈Idog , Isnail , Ifox , Ihorse , Izebra〉),

• alldifferent(〈Icoffee , Itea , Imilk , Iorange juice , Iwater 〉),

• alldifferent(〈Iold gold , Ikool , Ichesterfield , Ilucky strike , Iparliament 〉).

In our experience, when confronted for the first time to this puzzle, a lot of people
come up with the model that associates to each housei (1 ≤ i ≤ 5) five variablesCi,
Ni, Ai, Di, Bi that describe the attributes of the person living in housei. However it is
difficult to directly express the constraints according to these variables and the second
model which associates to each attribute a variable that gives the corresponding house
is more convenient for expressing the constraints.

3.7.274 HZero-duration task [9 CONS]

• coloured cumulative,

• coloured cumulatives,

• cumulative,

• cumulative product,

• cumulative with level of priority,

• cumulatives,

• disjunctive,

• disjunctive or same end,

• disjunctive or same start.

A resource scheduling constraint that accepts tasks which can potentially have a
duration equal to zero. Zero-duration tasks can be used for modelling over-constrained
resource scheduling problems where, due to some resource limitations, some tasks have
to be discarded. This can be expressed by creating for each task i a duration variable
Di with values0 anddi in its initial domain, wheredi is the effective duration of taski
when it is not discarded. Then, depending on the relaxation costCi associated with the
fact that taski is not considered, a reified constraint of the formDi = 0 ⇔ Ci = αi

(αi > 0) is created. The initial domain of the cost variableCi is set to0 andαi, where
αi is the cost associated with the decision of discarding taski. Then all the relaxation
costs associated with the different tasks have to be aggregated together, i.e., typically
by taking the sum or the maximum of the relaxation costs of thedifferent tasks. On the
one hand, the overall advantage of the approach is that it does not require developing
any specific algorithm. On the other hand, the disadvantage is the lack of bounds on the
overall relaxation cost that can sometimes be compensated by a specific enumeration
heuristics.

Chapter 4

Further Topics

Contents
4.1 Differences from the 2000 report 344
4.2 Differences from the 2005 report 346
4.3 Graph invariants . 347
4.3.1 Graph classes. 347

4.3.2 Format of an invariant. 348

4.3.3 Using the database of invariants. 349

4.3.4 The database of graph invariants. 350

Graph invariants involving one parameter of a final graph. 354

Graph invariants involving two parameters of a final graph. 356

Graph invariants involving three parameters of a final graph. 365

Graph invariants involving four parameters of a final graph. 379

Graph invariants involving five parameters of a final graph. 385

Graph invariants relating two parameters of two final graphs. 386

Graph invariants relating three parameters of two final graphs. 388

Graph invariants relating four parameters of two final graphs. 391

Graph invariants relating five parameters of two final graphs. 393

Graph invariants relating six parameters of two final graphs. 398

4.4 The electronic version of the catalogue. 399
4.4.1 Prolog facts describing a constraint. 399

4.4.2 XML schema associated with a global constraint. 404

Related work . 404

Key features . 404

Structure of schema. 405

Model . 405

Variables . 405

constraints . 406

collection . 406

343

344 CHAPTER 4. FURTHER TOPICS

item . 406

Generating schema from the catalogue. 406

schema.ecl . 406

schemadot.ecl . 406

Conclusion . 407

4.1 Differences from the 2000 report

This section summarises the main differences with the SICS report [24] as well as of
the corresponding article [25]. The main differences are listed below:

• We have both simplified and extended the way to generate the vertices of the
initial graph and we have introduced a new way of defining set of vertices. We
have also removed theCLIQUE(MAX) set of vertices generator since it can-
not in general be evaluated in polynomial time. Therefore, we have modified
the description of the constraintsassign and counts, assign and nvalues,
interval and count, interval and sum, bin packing, cumulative,
cumulatives, coloured cumulative, coloured cumulatives,
cumulative two d, which all used this feature.

• We have introduced the new arc generatorsPATH 1 andPATH N , which al-
low for specifying ann-ary constraint for whichn is not fixed.
Thesize max starting seq alldifferent and the
size max seq alldifferent are examples of global constraints that use these
arc generators in order to generate a set of sliding
alldifferent constraints.

• In addition to traditional domain variables we have introduced float, set
and multiset variables as well as several global constraints mentioning
float and set variables (see for instance thechoquet [202] and the
alldifferent between sets constraints). This decision was initially moti-
vated by the fact that several constraint systems and articles mention global con-
straints dealing with these types of variables. Later on, werealised that set vari-
ables also greatly simplify the interface of existing global constraints. This was
especially true for those global constraints that explicitly deal with a graph, like
clique or cutset. In this context, using a set variable for catching the succes-
sors of a vertex is quite natural. This is especially true when a vertex of the final
graph can have more than one successor since it allows for avoiding a lot of0-1
variables.

• We have introduced the possibility of using more than one graph constraint for
defining a given global constraint (see for instance thecumulative or thesort
constraints). Therefore we have removed the notion of dual graph, which was
initially introduced in the original report. In this context, we now use two graph
constraints (see for instancechange continuity).

4.1. DIFFERENCES FROM THE 2000 REPORT 345

• On the one hand, we have introduced the following new graph parameters:

– MAX DRG,

– MAX OD,

– MIN DRG,

– MIN ID,

– MIN OD,

– NTREE,

– PATH FROM TO,

– PROD,

– RANGE,

– RANGE DRG,

– RANGE NCC,

– SUM,

– SUM WEIGHT ARC.

On the other hand, we have removed the following graph parameters:

– NCC(COMP, val),

– NSCC(COMP, val),

– NTREE(ATTR, COMP, val),

– NSOURCE EQ NSINK,

– NSOURCE GREATEREQ NSINK.

Finally,MAX IN DEGREE has been renamedMAX ID.

• We have introduced an iterator over the items of a collectionin order to spec-
ify in a generic way a set of similar elementary constraints or a set of simi-
lar graph properties. This was required for describing someglobal constraints
such asglobal cardinality, cycle resource or stretch. All these global
constraints mention a condition involving some limit depending on the specific
values that are effectively used. For instance theglobal cardinality con-
straint forces each valuev to be respectively used at leastatleastv and at most
atmostv times. This iterator was also necessary in the context of graph cover-
ing constraints where one wants to cover a digraph with some patterns. Each
pattern consists of one resource and several tasks. One can now attach spe-
cific constraints to the different resources. Both thecycle resource and the
tree resource constraints illustrate this point.

• We have added some standard existing global constraints that were obviously
missing from the previous report. This was for instance the case of theelement
constraint.

346 CHAPTER 4. FURTHER TOPICS

• In order to make clear the notion offamily of global constraints we have com-
puted for each global constraint asignature, which summarises its structure.
Each signature was inserted into the index so that one can retrieve all the global
constraints sharing the same structure.

• We have generalised some existing global constraints. For instance the
change pair constraint extends thechange constraint. Finally we have intro-
duced some novel global constraints likedisjoint tasks or symmetric gcc.

• We have defined the rules for specifying arc constraints.

4.2 Differences from the 2005 report

The second edition has more than1300 pages of new content. The slots describing
explicitly the meaning of a global constraint (e.g., the slots Graph model and Au-
tomaton) were moved to the last part of the description. This was motivated by the
fact that most users want first to get the informal description of a global constraint
(e.g., the slotsPurposeandExample). Effort was not only devoted to the introduction
of new constraints but also to a better description of multiple aspects like:

• The slotSymmetriesdescribes a set of mapping that preserve the solution of a
constraint (see Section2.1.5).

• The slotReformulation provides reformulation of a global constraint as a con-
junction of constraints (see Section2.4).

• The slotSystemsgives links to concrete constraint systems.

• The slotsSee alsoandKeywords were redesigned in order to respectively indi-
cate why we point to a given constraint (see Section2.5) and to group together
keywords by meta-keywords (see Section3.6).

• In addition to the slotsGraph model andAutomaton that respectively describe
the meaning of a global constraint in terms of graph properties and automaton,
we have introduced the slotLogic in order to describe some geometrical con-
straints with first order formulae (see keywordLogic).

• Finally, an evaluator was provided for most global constraints.

4.3. GRAPH INVARIANTS 347

4.3 Graph invariants

Within the scope of the graph-based description this section shows how to use implied
constraints, which are systematically linked to the description of a global constraint.
This usually occurs in the following context:

• Quite often, it happens that one wants to enforce the final graph to satisfy more
than one graph property. In this context, these graph properties involve several
graph parameters that cannot vary independently.

EXAMPLE: As a practical example, consider thegroup constraint and its first graph
constraint. It involves the four graph parametersNCC,MIN NCC,MAX NCC and
NVERTEX, which respectively correspond to the number of connected components,
the number of vertices of the smallest connected component, the numberof vertices of the
largest connected component and the number of vertices of the final graph. In this example
the number of connected components of the final graph cannot vary independently from
the size of the smallest connected component. The same remark applies also for the size
of the largest connected component. Having a graph invariant that directly relates the four
graph parameters can dramatically improve the propagation.

• Even if the description of a global constraint involves one single graph parameter
C, we can introduce the number of vertices,NVERTEX, and the number of
arcs,NARC, of the final digraph. In this context, we can take advantage of
graph invariants linkingC, NARC andNVERTEX.

• It also happens that we enforce two graph constraintsGC1 andGC2 that have the
same initial graphG. In this context we consider the following situations:

– Each arc ofG belongs to one of the final graphs associated withGC1 or
with GC2 (but not to both). An example of such global constraint is the
change continuity constraint. Within the graph invariants this situation
is denoted byapartition.

– Each vertex ofG belongs to one of the final graphs associated withGC1

or with GC2 (but not to both). An example of such global constraint is the
group constraint. Within the graph invariants this situation is denoted by
vpartition.

In these situations the graph properties associated with the two graph constraints
are also not independent.

In practice the graphs associated with global constraints have a regular structure
that comes from the initial graph or from the property of the arc constraints. So, in ad-
dition to graph invariants that hold for any graph, we want also tighter graph invariants
that hold for specific graph classes. The next section introduces the graph classes we
consider, while the two other sections give the graph invariants on one and two graphs.

4.3.1 Graph classes

By definition, a graph invariant has to hold for any digraph. For instance, we have the
graph invariantNARC ≤ NVERTEX2, which relates the number of arcs and the

348 CHAPTER 4. FURTHER TOPICS

number of vertices of any digraph. This invariant is sharp since the equality is reached
for a clique. However, by considering the structure of a digraph, we can get sharper
invariants. For instance, if our digraph is a subset of an elementary path (e.g., we use the
PATH arc generator depicted by Figure2.4) we have thatNARC ≤ NVERTEX−
1, which is a tighter bound of the maximum number of arcs sinceNVERTEX− 1 <
NVERTEX2. For this reason, we consider recurring graph classes that show up
for different global constraints of the catalogue. Beside the graph classes that were
introduced in Section2.2.2we also have the following classes relating several graph
constraints:

• apartition: constraint defined by two graph constraints having the sameinitial
graph, where each arc of the initial graph belongs to one of the final graph (but
not to both).

• vpartition: constraint defined by two graph constraints having the sameinitial
graph, where each vertex of the initial graph belongs to one of the final graph (but
not to both).

In addition, we also consider graph constraints such that their final graphs is a
subset of the graph generated by the arc generators:

• CHAIN ,

• CIRCUIT ,

• CLIQUE ,

• CLIQUE(Comparison)

• GRID ,

• LOOP ,

• PATH ,

• PRODUCT ,

• PRODUCT (Comparison),

• SYMMETRIC PRODUCT ,

• SYMMETRIC PRODUCT (Comparison),

whereComparison is one of the following comparison operators≤, ≥, <, >, =, 6=.

4.3.2 Format of an invariant

As we previously saw, we have graph invariants that hold for any digraph as well as
tighter graph invariants for specific graph classes. As a consequence, we partition the
database in groups of graph invariants. Agroup of graph invariantscorresponds to
several invariants such that all invariants relate the samesubset of graph parameters
and such that all invariants are variations of the first invariant of the group taking into
accounts the graph class. Therefore, the first invariant of agroup has no precondition,
while all other invariants have a non-empty precondition that characterises the graph
class for which they hold.

4.3. GRAPH INVARIANTS 349

EXAMPLE: As a first example consider the group of invariants denoted by Proposition 68,
which relate the number of arcsNARC with the number of vertices of the smallest and
largest connected component (i.e.,MIN NCC andMAX NCC).

MIN NCC 6= MAX NCC ⇒ NARC ≥ MIN NCC+MAX NCC− 2+

(MIN NCC = 1)

equivalence : MIN NCC 6= MAX NCC ⇒

NARC ≥ MIN NCC2 +MAX NCC2

On the one hand, since the first rule has no precondition it correspondsto a general
graph invariant. On the other hand the second rule specifies a tighter condition (since
MIN NCC2+MAX NCC2 is greater than or equal toMIN NCC+MAX NCC−
2+(MIN NCC = 1)), which only holds for a final graph that is reflexive, symmetric and
transitive.

EXAMPLE: As a second example, consider the following group of invariants correspond-
ing to Proposition51, which relate the number of arcsNARC to the number of vertices
NVERTEX according to the arc generator (see Figure2.4) used for generating the initial
digraph:

NARC ≤ NVERTEX2

arc gen = CIRCUIT : NARC ≤ NVERTEX

arc gen = CHAIN : NARC ≤ 2 ·NVERTEX− 2

arc gen = CLIQUE(≤) : NARC ≤
NVERTEX · (NVERTEX+ 1)

2

arc gen = CLIQUE(≥) : NARC ≤
NVERTEX · (NVERTEX+ 1)

2

arc gen = CLIQUE(<) : NARC ≤
NVERTEX · (NVERTEX− 1)

2

arc gen = CLIQUE(>) : NARC ≤
NVERTEX · (NVERTEX− 1)

2

arc gen = CLIQUE(6=) : NARC ≤ NVERTEX2 −NVERTEX

arc gen = CYCLE : NARC ≤ 2 ·NVERTEX

arc gen = PATH : NARC ≤ NVERTEX− 1

4.3.3 Using the database of invariants

The purpose of this section is to provide a set of graph invariants, each invariant relating
a given set of graph parameters. Once we have these graph invariants we can use them
systematically by applying the following steps:

• For a given graph constraint we extract all the graph parameters occurring in
its description. This can be done automatically by scanningthe corresponding
graph properties. LetGP denote this subset of graph parameters. For each graph
parametergp of GP we check if we have a graph property of the formgp = var

wherevar is a domain variable. If this is the case we record the pair(gp, var);
if not, we create a new domain variablevar and also record the pair(gp, var).

• We then search for all groups of graph invariants involving asubset of the pre-
vious graph parametersGP. For each selected group we filter out those graph
invariants for which the preconditions are not compatible with the graph class

350 CHAPTER 4. FURTHER TOPICS

of the graph constraint under consideration. In each group we finally keep those
invariants that have the maximum number of preconditions (i.e., the most spe-
cialised graph invariants).

• Finally we state all the previous collected graph invariants as implied constraints.
This is achieved by using the variables associated with eachgraph parameter.

EXAMPLE: We continue with the example of thegroup constraint and its first graph con-
straint. The steps for creating the implied constraints are:

• We first extract the graph parametersNCC, MIN NCC, MAX NCC and
NVERTEX from the first graph constraint of thegroup constraint. Since
all the graph properties attached to the previous graph parameters havethe form
gc = var we extract the corresponding domain variables and get the following
pairs(NCC, NGROUP), (MIN NCC, MIN SIZE), (MAX NCC, MAX SIZE) and
(NVERTEX, NVAL).

• We search for all groups of graph invariants involving the graph parametersNCC,
MIN NCC, MAX NCC andNVERTEX and filter out the irrelevant graph
invariants that cannot be applied on the graph class associated with thegroup con-
straint.

• We state all the previous invariants by substituting each graph parameter byits corre-
sponding variable, which leads to a set of implied constraints.

4.3.4 The database of graph invariants

For each combination of graph parameters we give the number of graph invariants we
currently have. The items are sorted first in increasing number of graph parameters
of the invariant, second in alphabetic order on the name of the parameters. All graph
invariants assume a digraph for which each vertex has at least one arc. For some propo-
sitions, a figure depicts the corresponding final graph, which minimises or maximises a
given graph parameter. The propositions of this section andtheir corresponding proofs
use the notations introduced in Section2.2.2on page57.

• Graph invariants involving one graph parameter of a final graph:

– MAX NCC: 1 (see Proposition1),

– MAX NSCC: 2 (see Propositions2 and3),

– MIN NCC: 1 (see Proposition4),

– MIN NSCC: 2 (see Propositions5 and6),

– NARC: 1 (see Proposition7),

– NCC: 2 (see Propositions8 and 9),

– NSCC: 1 (see Proposition10),

– NSINK: 1 (see Proposition11),

– NSOURCE: 1 (see Proposition12),

– NVERTEX: 1 (see Proposition13).

• Graph invariants involving two graph parameters of a final graph:

4.3. GRAPH INVARIANTS 351

– MAX NCC, MAX NSCC: 2 (see Propositions14and15),

– MAX NCC, MIN NCC: 2 (see Propositions16and17),

– MAX NCC, NARC: 2 (see Propositions18and19),

– MAX NCC, NSINK: 2 (see Propositions20and21),

– MAX NCC, NSOURCE: 2 (see Propositions22and23),

– MAX NCC, NVERTEX: 2 (see Propositions24and25),

– MAX NSCC, MIN NSCC: 2 (see Propositions26and27),

– MAX NSCC, NARC: 2 (see Propositions28and29),

– MAX NSCC, NVERTEX: 2 (see Propositions30and31),

– MIN NCC, MIN NSCC: 2 (see Propositions32and33),

– MIN NCC, NARC: 2 (see Propositions34and35),

– MIN NCC, NCC: 1 (see Proposition36),

– MIN NCC, NVERTEX: 3 (see Propositions37, 38and 39),

– MIN NSCC, NARC: 2 (see Propositions40and41),

– MIN NSCC, NVERTEX: 2 (see Propositions42and43),

– NARC, NCC: 2 (see Propositions44and45),

– NARC, NSCC: 2 (see Propositions46and47),

– NARC, NSINK: 1 (see Proposition48),

– NARC, NSOURCE: 1 (see Proposition49),

– NARC, NVERTEX: 4 (see Propositions50, 51, 52and 53),

– NCC, NSCC: 2 (see Propositions54and 55),

– NCC, NVERTEX: 3 (see Propositions56and 57and 58),

– NSCC, NSINK: 1 (see Proposition59),

– NSCC, NSOURCE: 1 (see Proposition60),

– NSCC, NVERTEX: 3 (see Propositions61, 62and 63),

– NSINK, NVERTEX: 2 (see Propositions64and65),

– NSOURCE, NVERTEX: 2 (see Propositions66and67).

• Graph invariants involving three graph parameters of a finalgraph:

– MAX NCC, MIN NCC, NARC: 1 (see Proposition68),

– MAX NCC, MIN NCC, NCC: 1 (see Proposition69),

– MAX NCC,MIN NCC,NVERTEX: 5 (see Propositions70, 71, 72, 73and 74),

– MAX NCC, NARC, NCC: 2 (see Propositions75and 76),

– MAX NCC, NARC, NVERTEX: 2 (see Propositions77and 78),

– MAX NCC, NCC, NSINK: 1 (see Proposition79),

– MAX NCC, NCC, NSOURCE: 1 (see Proposition80),

– MAX NCC, NCC, NVERTEX: 2 (see Propositions81and 82),

– MAX NSCC, MIN NSCC, NARC: 1 (see Proposition83),

– MAX NSCC, MIN NSCC, NSCC: 1 (see Proposition84),

– MAX NSCC, MIN NSCC, NVERTEX: 2 (see Propositions85and 86),

– MAX NSCC, NCC, NVERTEX: 1 (see Proposition87),

– MAX NSCC, NSCC, NVERTEX: 2 (see Propositions88and 89),

352 CHAPTER 4. FURTHER TOPICS

– MIN NCC, NARC, NVERTEX: 2 (see Propositions90and 91),

– MIN NCC, NCC, NVERTEX: 2 (see Propositions92and 93),

– MIN NSCC, NARC, NVERTEX: 1 (see Proposition94),

– MIN NSCC, NCC, NVERTEX: 1 (see Proposition95),

– MIN NSCC, NSCC, NVERTEX: 2 (see Propositions96and 97),

– NARC, NCC, NVERTEX: 2 (see Propositions98and 99),

– NARC, NSCC, NVERTEX: 4 (see Propositions100, 101, 102and 103),

– NARC, NSINK, NVERTEX: 2 (see Propositions104and 105),

– NARC, NSOURCE, NVERTEX: 2 (see Propositions106and 107),

– NSCC, NSINK, NSOURCE: 1 (see Proposition108),

– NSINK, NSOURCE, NVERTEX: 1 (see Proposition109).

• Graph invariants involving four graph parameters of a final graph:

– MAX NCC, MIN NCC, NARC, NCC: 2 (see Propositions110and111),

– MAX NCC, MIN NCC, NCC, NVERTEX: 2 (see Propositions112and113),

– MAX NCC, NCC, NSINK, NSOURCE: 1 (see Proposition114),

– MAX NSCC, MIN NSCC, NARC, NSCC: 2 (see Propositions115and116),

– MAX NSCC, MIN NSCC, NSCC, NVERTEX: 2 (see Propositions117
and118),

– MIN NCC, NARC, NCC, NVERTEX: 1 (see Proposition119),

– NARC, NCC, NSCC, NVERTEX: 2 (see Propositions120and121),

– NARC, NSINK, NSOURCE, NVERTEX: 1 (see Proposition122).

• Graph invariants involving five graph parameters of a final graph:

– MAX NCC, MIN NCC, NARC, NCC, NVERTEX: 1 (see Proposition123),

– MIN NCC, NARC, NCC, NSCC, NVERTEX: 1 (see Proposition124).

• Graph invariants relating two parameters of two final graphs:

– MAX NCC1, MIN NCC1: 1 (see Proposition125),

– MAX NCC2, MIN NCC2: 1 (see Proposition126),

– MAX NCC1, NCC2: 1 (see Proposition127),

– MAX NCC2, NCC1: 1 (see Proposition128),

– MIN NCC1, NCC2: 1 (see Proposition129),

– MIN NCC2, NCC1: 1 (see Proposition130),

– NARC1, NARC2: 1 (see Proposition131),

– NCC1, NCC2: 2 (see Propositions132and133),

– NVERTEX1, NVERTEX2: 1 (see Proposition134).

• Graph invariants relating three parameters of two final graphs:

– MAX NCC1,MIN NCC1,MIN NCC2: 3 (see Propositions135, 136and 137),

– MAX NCC2,MIN NCC2,MIN NCC1: 3 (see Propositions138, 139and 140),

– MAX NCC1,MIN NCC1,NVERTEX2: 1 (see Proposition141),

– MAX NCC2,MIN NCC2,NVERTEX1: 1 (see Proposition142),

4.3. GRAPH INVARIANTS 353

– MIN NCC1,NARC2,NCC1: 1 (see Proposition143),

– MIN NCC2,NARC1,NCC2: 1 (see Proposition144).

• Graph invariants relating four parameters of two final graphs:

– MAX NCC1,MIN NCC1,MIN NCC2,NCC1: 2 (see Propositions145 and
146),

– MAX NCC2,MIN NCC2,MIN NCC1,NCC2: 2 (see Propositions147 and
148),

– MAX NCC1,MIN NCC1,MIN NCC2,NVERTEX2: 1 (see Proposition
149),

– MAX NCC2,MIN NCC2,MIN NCC1,NVERTEX1: 1 (see Proposition
150).

• Graph invariants relating five parameters of two final graphs:

– MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1: 7 (see Propo-
sitions 151, 152, 153, 154, 155, 156and 157).

– MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC2: 7 (see Propo-
sitions 158, 159, 160, 161, 162, 163and 164).

• Graph invariants relating six parameters of two final graphs:

– MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1, NCC2: 2
(see Propositions165and 166).

354 CHAPTER 4. FURTHER TOPICS

Graph invariants involving one parameter of a final graph

MAX NCC

Proposition 1.
no loop : MAX NCC 6= 1 (4.1)

Proof. Since we do not have any loop, a non-empty connected component hasat least two
vertices.

MAX NSCC

Proposition 2.
acyclic : MAX NSCC ≤ 1 (4.2)

Proof. Since we do not have any circuit, a non-empty strongly connected component consists
of one single vertex.

Proposition 3.
no loop : MAX NSCC 6= 1 (4.3)

Proof. Since we do not have any loop, a non-empty strongly connected component has at least
two vertices.

MIN NCC

Proposition 4.
no loop : MIN NCC 6= 1 (4.4)

Proof. Since we do not have any loop, a non-empty connected component hasat least two
vertices.

MIN NSCC

Proposition 5.
acyclic : MIN NSCC ≤ 1 (4.5)

Proof. Since we do not have any circuit, a non-empty strongly connected component consists
of one single vertex.

Proposition 6.
no loop : MIN NSCC 6= 1 (4.6)

Proof. Since we do not have any loop, a non-empty strongly connected component has at least
two vertices.

NARC

Proposition 7.
one succ : NARC = NVERTEXINITIAL (4.7)

Proof. By definition ofone succ.

4.3. GRAPH INVARIANTS 355

NCC

Proposition 8.
no loop : 2 ·NCC ≤ NVERTEXINITIAL (4.8)

Proof. By definition ofno loop, each connected component has at least two vertices.

Proposition 9.

consecutive loops are connected : 2 ·NCC ≤ NVERTEXINITIAL + 1 (4.9)

Proof. By definition ofconsecutive loops are connected.

NSCC

Proposition 10.
no loop : 2 ·NSCC ≤ NVERTEXINITIAL (4.10)

Proof. By definition ofno loop, each strongly connected component has at least two vertices.

NSINK

Proposition 11.
symmetric : NSINK = 0 (4.11)

Proof. Since we do not have any isolated vertex.

NSOURCE

Proposition 12.
symmetric : NSOURCE = 0 (4.12)

Proof. Since we do not have any isolated vertex.

NVERTEX

Proposition 13.

one succ : NVERTEX = NVERTEXINITIAL (4.13)

Proof. By definition ofone succ.

356 CHAPTER 4. FURTHER TOPICS

Graph invariants involving two parameters of a final graph

MAX NCC, MAX NSCC

Proposition 14.
MAX NCC = 0 ⇔ MAX NSCC = 0 (4.14)

Proof. By definition ofMAX NCC and ofMAX NSCC.

Proposition 15.
MAX NSCC ≤ MAX NCC (4.15)

Proof. MAX NSCC is a lower bound of the size of the largest connected component since
the largest strongly connected component is for sure included within a connected component.

MAX NCC, MIN NCC

Proposition 16.
MAX NCC = 0 ⇔ MIN NCC = 0 (4.16)

Proof. By definition ofMAX NCC and ofMIN NCC.

Proposition 17.
MIN NCC ≤ MAX NCC (4.17)

Proof. By definition ofMIN NCC and ofMAX NCC.

MAX NCC, NARC

Proposition 18.
MAX NCC = 0 ⇔ NARC = 0 (4.18)

Proof. By definition ofMAX NCC and ofNARC.

Proposition 19.

MAX NCC > 0 ⇒ NARC ≥ max(1,MAX NCC− 1) (4.19)

symmetric : MAX NCC > 0 ⇒ NARC ≥ max(1, 2 ·MAX NCC− 2) (4.20)

equivalence : NARC ≥ MAX NCC
2 (4.21)

arc gen = PATH : NARC ≥ MAX NCC− 1 (4.22)

Proof.
(4.19)MAX NCC−1 arcs are needed to connectMAX NCC vertices that belong to a given
connected component containing at least two vertices. And one arc is required for a connected
component containing one single vertex.
(4.20) Similarly, when the graph is symmetric,2 · MAX NCC − 2 arcs are needed to con-
nectMAX NCC vertices that belong to a given connected component containing at leasttwo
vertices.
(4.21) Finally, when the graph is reflexive, symmetric and transitive,MAX NCC2 arcs are
needed to connectMAX NCC vertices that belong to a given connected component.
(4.22) When the initial graph corresponds to a path, the minimum number of arcsof a connected
component involvingn vertices is equal ton− 1.

4.3. GRAPH INVARIANTS 357

MAX NCC, NSINK

Proposition 20.
MAX NCC = 0 ⇒ NSINK = 0 (4.23)

Proof. By definition ofMAX NCC and ofNSINK.

Proposition 21.
NSINK ≥ 1 ⇒ MAX NCC ≥ 2 (4.24)

Proof. Since we do not have any isolated vertex a sink is connected to at least oneother vertex.
Therefore, if the graph has a sink, there exists at least one connectedcomponent with at least two
vertices.

MAX NCC, NSOURCE

Proposition 22.
MAX NCC = 0 ⇒ NSOURCE = 0 (4.25)

Proof. By definition ofMAX NCC and ofNSOURCE.

Proposition 23.
NSOURCE ≥ 1 ⇒ MAX NCC ≥ 2 (4.26)

Proof. Since we do not have any isolated vertex a source is connected to at leastone other
vertex. Therefore, if the graph has a source, there exists at least one connected component with
at least two vertices.

MAX NCC, NVERTEX

Proposition 24.
MAX NCC = 0 ⇔ NVERTEX = 0 (4.27)

Proof. By definition ofMAX NCC and ofNVERTEX.

Proposition 25.
NVERTEX ≥ MAX NCC (4.28)

Proof. By definition ofMAX NCC.

MAX NSCC, MIN NSCC

Proposition 26.
MAX NSCC = 0 ⇔ MIN NSCC = 0 (4.29)

Proof. By definition ofMAX NSCC and ofMIN NSCC.

Proposition 27.
MIN NSCC ≤ MAX NSCC (4.30)

Proof. By definition ofMIN NSCC and ofMAX NSCC.

358 CHAPTER 4. FURTHER TOPICS

MAX NSCC, NARC

Proposition 28.
MAX NSCC = 0 ⇔ NARC = 0 (4.31)

Proof. By definition ofMAX NSCC and ofNARC.

Proposition 29.
NARC ≥ MAX NSCC (4.32)

symmetric : NARC ≥ 2 ·MAX NSCC (4.33)

equivalence : NARC ≥ MAX NSCC
2 (4.34)

Proof. (4.32) In a strongly connected component at least one arc has to leave eachvertex. Since
we have at least one strongly connected component ofMAX NSCC vertices this leads to the
previous inequality.

MAX NSCC, NVERTEX

Proposition 30.
MAX NSCC = 0 ⇔ NVERTEX = 0 (4.35)

Proof. By definition ofMAX NSCC and ofNVERTEX.

Proposition 31.
NVERTEX ≥ MAX NSCC (4.36)

Proof. By definition ofMAX NSCC.

MIN NCC, MIN NSCC

Proposition 32.
MIN NCC = 0 ⇔ MIN NSCC = 0 (4.37)

Proof. By definition ofMIN NCC and ofMIN NSCC.

Proposition 33.
MIN NCC ≥ MIN NSCC (4.38)

Proof. By constructionMIN NCC is an upper bound of the number of vertices of the smallest
strongly connected component.

4.3. GRAPH INVARIANTS 359

MIN NCC, NARC

Proposition 34.
MIN NCC = 0 ⇔ NARC = 0 (4.39)

Proof. By definition ofMIN NCC and ofNARC.

Proposition 35.

MIN NCC > 0 ⇒ NARC ≥ max(1,MIN NCC− 1) (4.40)

symmetric : MIN NCC > 0 ⇒ NARC ≥ max(1, 2 ·MIN NCC− 2) (4.41)

equivalence : NARC ≥ MIN NCC
2 (4.42)

arc gen = PATH : NARC ≥ MIN NCC− 1 (4.43)

Proof. Similar to Proposition19.

MIN NCC, NCC

Proposition 36.

consecutive loops are connected : (MIN NCC+1)·NCC ≤ NVERTEXINITIAL+1
(4.44)

Proof. By definition ofconsecutive loops are connected.

MIN NCC, NVERTEX

Proposition 37.
MIN NCC = 0 ⇔ NVERTEX = 0 (4.45)

Proof. By definition ofMIN NCC and ofNVERTEX.

Proposition 38.
NVERTEX ≥ MIN NCC (4.46)

Proof. By definition ofMIN NCC.

Proposition 39.

MIN NCC /∈
[

min

(⌊

NVERTEX

2

⌋

,

⌊

NVERTEXINITIAL − 1

2

⌋)

+ 1,NVERTEX− 1

]

(4.47)

Proof. On the one hand, ifNCC ≤ 1, we have thatMIN NCC ≥ NVERTEX.
On the other hand, ifNCC > 1, we have thatMIN NCC + MIN NCC ≤
NVERTEX and thatMIN NCC + MIN NCC + 1 ≤ NVERTEXINITIAL, which
by isolatingMIN NCC and by grouping the two inequalities leads toMIN NCC ≤
min

(⌊

NVERTEX

2

⌋

,
⌊

NVERTEXINITIAL−1
2

⌋)

. The result follows.

360 CHAPTER 4. FURTHER TOPICS

MIN NSCC, NARC

Proposition 40.
MIN NSCC = 0 ⇔ NARC = 0 (4.48)

Proof. By definition ofMIN NSCC and ofNARC.

Proposition 41.
NARC ≥ MIN NSCC (4.49)

symmetric : NARC ≥ 2 ·MIN NSCC (4.50)

equivalence : NARC ≥ MIN NSCC
2 (4.51)

Proof. Similar to Proposition29.

MIN NSCC, NVERTEX

Proposition 42.
MIN NSCC = 0 ⇔ NVERTEX = 0 (4.52)

Proof. By definition ofMIN NSCC and ofNVERTEX.

Proposition 43.
NVERTEX ≥ MIN NSCC (4.53)

Proof. By definition ofMIN NSCC.

NARC, NCC

Proposition 44.
NARC = 0 ⇔ NCC = 0 (4.54)

Proof. By definition ofNARC and ofNCC.

Proposition 45.
NARC ≥ NCC (4.55)

Proof. Each connected component contains at least one arc (since, by hypothesis, each vertex
has at least one arc).

NARC, NSCC

Proposition 46.
NARC = 0 ⇔ NSCC = 0 (4.56)

Proof. By definition ofNARC and ofNSCC.

Proposition 47.
NARC ≥ NSCC (4.57)

no loop : NARC ≥ 2 ·NSCC (4.58)

Proof. 4.57(respectively4.58) holds since each strongly connected component contains at least
one (respectively two) arc(s).

4.3. GRAPH INVARIANTS 361

NARC, NSINK

Proposition 48.
NARC ≥ NSINK (4.59)

Proof. Since isolated vertices are not allowed, each sink has a distinct ingoing arc.

NARC, NSOURCE

Proposition 49.
NARC ≥ NSOURCE (4.60)

Proof. Since isolated vertices are not allowed, each source has a distinct outgoing arc.

NARC, NVERTEX

Proposition 50.
NARC = 0 ⇔ NVERTEX = 0 (4.61)

Proof. By definition ofNARC and ofNVERTEX.

Proposition 51.
NARC ≤ NVERTEX

2 (4.62)

arc gen = CIRCUIT : NARC ≤ NVERTEX (4.63)

arc gen = CHAIN : NARC ≤ 2 ·NVERTEX− 2 (4.64)

arc gen = CLIQUE(≤) : NARC ≤ NVERTEX · (NVERTEX+ 1)

2
(4.65)

arc gen = CLIQUE(≥) : NARC ≤ NVERTEX · (NVERTEX+ 1)

2
(4.66)

arc gen = CLIQUE(<) : NARC ≤ NVERTEX · (NVERTEX− 1)

2
(4.67)

arc gen = CLIQUE(>) : NARC ≤ NVERTEX · (NVERTEX− 1)

2
(4.68)

arc gen = CLIQUE(6=) : NARC ≤ NVERTEX
2 −NVERTEX (4.69)

arc gen = CYCLE : NARC ≤ 2 ·NVERTEX (4.70)

arc gen = PATH : NARC ≤ NVERTEX− 1 (4.71)

Proof. 4.62holds since each vertex of a digraph can have at mostNVERTEX successors.
The next items correspond to the maximum number of arcs that can be achieved according to a
specific arc generator.

Note that, when the equality is reached in4.62, the corresponding extreme graph is
in fact the graph initially generated. The same observationholds for inequalities4.63
to 4.71. As a consequence allU -arcs have to be turned intoT -arcs.

Proposition 52.
2 ·NARC ≥ NVERTEX (4.72)

Proof. By induction on the number of vertices of a graphG:

1. If NVERTEX(G) is equal to1 or 2 Proposition52holds.

362 CHAPTER 4. FURTHER TOPICS

2. Assume thatNVERTEX(G) ≥ 3.

• Assume there exists a vertexv such that, if we removev, we do not create any
isolated vertex in the remaining graph. We haveNARC(G) ≥ NARC(G −
v) + 1. Thus2 · NARC(G) ≥ 2 · NARC(G − v) + 1. Since by induction
hypothesis2 ·NARC(G−v) ≥ NVERTEX(G−v) = NVERTEX(G)−1
the result holds.

• Otherwise, all the connected components ofG are reduced to two elements with
only one arc. We remove one of such connected component(v, w).

ThusNARC(G) = NARC(G − {v, w}) + 1. As by induction hypothesis,
2 ·NARC(G−{v, w}) ≥ NVERTEX(G−{v, w}) = NVERTEX(G)−2
the result holds.

Note that, when the equality is reached in52, the corresponding extreme graph is
in fact a perfect matching of the graph. As a consequence allU -arcs that do not belong
to any perfect matching have to be turned intoF -arcs.

Proposition 53.
arc gen = LOOP : NARC = NVERTEX (4.73)

Proof. From the definition ofLOOP .

NCC, NSCC

Proposition 54.
NCC = 0 ⇔ NSCC = 0 (4.74)

Proof. By definition ofNCC and ofNSCC.

Proposition 55.
NCC ≤ NSCC (4.75)

Proof. Holds since each connected component contains at least one strongly connected compo-
nent.

Note that, when the equality is reached in55, each connected component of the cor-
responding extreme graph is strongly connected. As a consequence all sink vertices of
the graph induced by theT -vertices and theT -arcs should have at least one successor.
NCC, NVERTEX

Proposition 56.
NCC = 0 ⇔ NVERTEX = 0 (4.76)

Proof. By definition ofNCC and ofNVERTEX.

Proposition 57.
NCC ≤ NVERTEX (4.77)

no loop : 2 ·NCC ≤ NVERTEX (4.78)

Proof. 4.77 (respectively4.78) holds since each connected component contains at least one
(respectively two) vertex.

4.3. GRAPH INVARIANTS 363

Note that, when the equality is reached in4.77, the corresponding extreme graph
does not contain any arc between two distinct vertices. As a consequence anyU -arc
between two distinct vertices is turned into aF -vertex.

Proposition 58.

vpartition ∧ consecutive loops are connected :

NVERTEX ≤ NVERTEXINITIAL − (NCC− 1)
(4.79)

Proof. Holds since between two “consecutive” connected components of the initial graph there
is at least one vertex that is missing.

NSCC, NSINK

Proposition 59.
NSCC ≥ NSINK+ 1 (4.80)

Proof. Since each sink cannot belong to a circuit and since no isolated vertex is allowed at least
one extra non-sink vertex is required the result follows.

NSCC, NSOURCE

Proposition 60.
NSCC ≥ NSOURCE+ 1 (4.81)

Proof. Since each source cannot belong to a circuit and since no isolated vertexis allowed at
least one extra non-source vertex is required the result follows.

NSCC, NVERTEX

Proposition 61.
NSCC = 0 ⇔ NVERTEX = 0 (4.82)

Proof. By definition ofNSCC and ofNVERTEX.

Proposition 62.
NSCC ≤ NVERTEX (4.83)

Proof. Proposition62 holds since each strongly connected component contains at least one
vertex.

Proposition 63.
acyclic : NSCC = NVERTEX (4.84)

Proof. In a directed acyclic graph we have that each vertex corresponds to a strongly connected
component involving only that vertex.

364 CHAPTER 4. FURTHER TOPICS

NSINK, NVERTEX

Proposition 64.
NVERTEX = 0 ⇒ NSINK = 0 (4.85)

Proof. By definition ofNVERTEX and ofNSINK.

Proposition 65.

NVERTEX > 0 ⇒ NSINK < NVERTEX (4.86)

Proof. Holds since each sink must have a predecessor that cannot be a sink and since each
vertex has at least one arc.

NSOURCE, NVERTEX

Proposition 66.
NVERTEX = 0 ⇒ NSOURCE = 0 (4.87)

Proof. By definition ofNVERTEX and ofNSOURCE.

Proposition 67.

NVERTEX > 0 ⇒ NSOURCE < NVERTEX (4.88)

Proof. Holds since each source must have a successor that cannot be a source and since each
vertex has at least one arc.

4.3. GRAPH INVARIANTS 365

Graph invariants involving three parameters of a final graph

MAX NCC, MIN NCC, NARC

Proposition 68.

MIN NCC 6= MAX NCC ⇒
NARC ≥ MIN NCC+MAX NCC− 2 + (MIN NCC = 1)

(4.89)

equivalence : MIN NCC 6= MAX NCC ⇒
NARC ≥ MIN NCC

2 +MAX NCC
2

(4.90)

Proof. (4.89) n − 1 arcs are needed to connectn (n > 1) vertices that all belong to a
given connected component. Since we have two connected components, which respectively
haveMIN NCC andMAX NCC vertices, this leads to the previous inequality. When
MIN NCC is equal to one we need an extra arc.

MAX NCC, MIN NCC, NCC

Proposition 69.
MIN NCC 6= MAX NCC ⇒ NCC ≥ 2 (4.91)

Proof. If MIN NCC andMAX NCC are different then they correspond for sure to at least
two distinct connected components.

MAX NCC, MIN NCC, NVERTEX

Proposition 70.

MIN NCC 6= MAX NCC ⇒ NVERTEX ≥ MIN NCC+MAX NCC (4.92)

Proof. Since we have at least two distinct connected components, which respectively have
MIN NCC andMAX NCC vertices, this leads to the previous inequality.

Proposition 71.

MAX NCC ≤ max(MIN NCC,NVERTEX−max(1,MIN NCC)) (4.93)

Proof. On the one hand, ifNCC ≤ 1, we have thatMAX NCC ≤ MIN NCC. On
the other hand, ifNCC > 1, we have thatNVERTEX ≥ max(1,MIN NCC) +
MAX NCC (i.e., MAX NCC ≤ NVERTEX − max(1,MIN NCC)). The result
is obtained by taking the maximum value of the right-hand sides of the two inequalities.

Proposition 72.

MIN NCC /∈ [NVERTEX−max(1,MAX NCC) + 1,NVERTEX− 1] (4.94)

Proof. On the one hand, ifNCC ≤ 1, we have thatMIN NCC ≥ NVERTEX.
On the other hand, ifNCC > 1, we have thatMIN NCC + max(1,MAX NCC) ≤
NVERTEX (i.e.,MIN NCC ≤ NVERTEX−max(1,MAX NCC)). The result fol-
lows.

Proposition 73.

NVERTEX /∈ [MIN NCC+ 1,MIN NCC+MAX NCC− 1] (4.95)

366 CHAPTER 4. FURTHER TOPICS

Proof. On the one hand, ifNCC ≤ 1, we have thatNVERTEX ≤ MIN NCC. On the
other hand, ifNCC > 1, we have thatNVERTEX ≥ MIN NCC+MAX NCC. Since
MIN NCC ≤ MIN NCC+MAX NCC the result follows.

Proposition 74.

ifMIN NCC > 0

then kinf =

⌊

NVERTEX+MIN NCC

MIN NCC

⌋

else kinf = 1

ifMAX NCC > 0

then ksup1
=

⌊

NVERTEX− 1

MAX NCC

⌋

else ksup1
= NVERTEX

ifMAX NCC < MIN NCC

then ksup2
=

⌊

MIN NCC− 2

MAX NCC−MIN NCC

⌋

else ksup2
= NVERTEX

ksup = min(ksup1
, ksup2

)

∀k ∈ [kinf , ksup] : NVERTEX /∈ [k ·MAX NCC+ 1, (k + 1) ·MIN NCC− 1]
(4.96)

Proof. We make the proof fork ∈ N (the interval[kinf , ksup] is only used for restricting
the number of intervals to check). We have thatNVERTEX ∈ [k · MIN NCC, k ·
MAX NCC]. A forbidden interval[k · MAX NCC + 1, (k + 1) · MIN NCC − 1]
corresponds to an interval between the end of interval[k ·MIN NCC, k ·MAX NCC] and
the start of the next interval[(k+1) ·MIN NCC, (k+1) ·MAX NCC]. Since all intervals
[i ·MIN NCC, i ·MAX NCC] (i < k) end beforek ·MAX NCC and since all intervals
[j ·MIN NCC, j ·MAX NCC] (j > k) start after(k+ 1) ·MIN NCC, they do not use
any value in[k ·MAX NCC+ 1, (k + 1) ·MIN NCC− 1].

MAX NCC, NARC, NCC

Proposition 75.
NARC ≤ NCC ·MAX NCC

2 (4.97)

arc gen = PATH : NARC ≤ NCC · (MAX NCC− 1) (4.98)

Proof. On the one hand, (4.97) holds since the maximum number of arcs is achieved by
taking NCC connected components where each connected component is a clique involving
MAX NCC vertices. On the other hand, (4.98) holds since a tree ofn vertices hasn − 1
arcs.

Proposition 76.
NARC ≥ MAX NCC+NCC− 2 (4.99)

Proof. The minimum number of arcs is achieved by taking one connected component with
MAX NCC vertices andMAX NCC−1 arcs as well asNCC−1 connected components
with one single vertex and a loop.

4.3. GRAPH INVARIANTS 367

MAX NCC, NARC, NVERTEX

Proposition 77.

NARC ≤ MAX NCC
2·
⌊

NVERTEX

max(1,MAX NCC)

⌋

+(NVERTEXmodmax(1,MAX NCC))2

(4.100)

NVERTEX

MAX_NCC
connected components, each of them involving MAX_NCC verticesA connected component with

NVERTEX mod MAX_NCC vertices

Figure 4.1: Illustration of Proposition77. A graph that achieves the maximum number of
arcs according to the size of the largest connected component as well as to a fixed num-

ber of vertices (MAX NCC = 3,NVERTEX = 11,NARC = 32 ·
⌊

11
max(1,3)

⌋

+

(11 mod max(1, 3))2 = 31)

Proof. If MAX NCC = 0 we getNARC ≤ 0 which holds since the set of vertices is
empty. We now assume thatMAX NCC > 0. We first begin with the following claim:
let G be a graph such thatV (G) − NCC(G,MAX NCC(G)) ∗ MAX NCC(G) ≥
MAX NCC(G), then there exists a graphG′ such that V (G′) = V (G),
MAX NCC(G′) = MAX NCC(G), NCC(G′,MAX NCC(G′)) =
NCC(G,MAX NCC(G)) + 1 and|E(G)| ≤ |E(G′)|.

Proof of the claim
Let (Ci)i∈[n] be the connected components ofG on less thanMAX NCC(G) vertices
and such that|Ci| ≥ |Ci+1|. By hypothesis there existsk ≤ n such that|⋃k−1

i=1 Ci| <

MAX NCC(G) and|⋃k
i=1 Ci| ≥ MAX NCC(G).

• Either |⋃k
i=1 Ci| = MAX NCC(G), and then withG′ such thatG′ restricted to the

⋃k
i=1 Ci be a complete graph andG′ restricted toV (G) − ⋃k

i=1 Ci being exactlyG
restricted toV (G)−⋃k

i=1 Ci we obtain the claim.

• Or |⋃k
i=1 Ci| > MAX NCC(G). Then Ck = C1

k ⊎ C2
k such that

|(⋃k−1
i=1 Ci) ∪ C1

k | = MAX NCC(G) and |C2
k | < |C1| (notice thatk ≥ 2).

Then withG′ such thatG′ restricted to(
⋃k−1

i=1 Ci) ∪ C1
k is a complete graph andG′ re-

stricted toV (G)−((
⋃k−1

i=1 Ci)∪C1
k) is exactlyG restricted toV (G)−((

⋃k−1
i=1 Ci)∪C1

k)
we obtain the claim.

End of proof of the claim

368 CHAPTER 4. FURTHER TOPICS

We prove by induction onr(G) =
⌊

NVERTEX(G)
MAX NCC(G)

⌋

− NCC(G,MAX NCC(G)),

whereG is any graph. Forr(G) = 0 the result holds (see Prop 44). Otherwise, sincer(G) > 0
we have thatV (G)−NCC(G,MAX NCC(G))∗MAX NCC(G) ≥ MAX NCC(G),
by the previous claim there existsG′ with the same number of vertices and the same number of
vertices in the largest connected component, such thatr(G′) = r(G) − 1. Consequently the
result holds by induction.

Proposition 78.

NARC ≥ MAX NCC− 1 +

⌊

NVERTEX−MAX NCC+ 1

2

⌋

(4.101)

Proof. Let G be a graph, letX be a maximal size connected component ofG, then we have
G = G[X] ⊕ G[V (G) − X]. On the one hand, asG[X] is connected, by settingNCC = 1
in 4.143of Proposition99, we have|E(G[X]) ≥ |X| − 1, on the other hand, by Proposition52,

|E(G[V (G)−X])| ≥
⌈

|V (G)−X|
2

⌉

. Thus the result follows.

MAX NCC, NCC, NSINK

Proposition 79.
NSINK ≤ NCC ·max(0,MAX NCC− 1) (4.102)

Proof. Since a connected component contains at mostMAX NCC vertices and since it does
not contain any isolated vertex a connected component involves at mostMAX NCC−1 sinks.
Thus the result follows.

MAX NCC, NCC, NSOURCE

Proposition 80.

NSOURCE ≤ NCC ·max(0,MAX NCC− 1) (4.103)

Proof. Similar to Proposition79.

MAX NCC, NCC, NVERTEX

Proposition 81.
NVERTEX ≤ NCC ·MAX NCC (4.104)

Proof. The number of vertices is less than or equal to the number of connected components
multiplied by the largest number of vertices in a connected component.

Proposition 82.

NVERTEX ≥ MAX NCC+max(0,NCC− 1) (4.105)

no loop : NVERTEX ≥ MAX NCC+max(0, 2 ·NCC− 2) (4.106)

Proof. (4.105) The minimum number of vertices according to a fixed number of connected
componentsNCC such that one of the connected component containsMAX NCC vertices
is obtained as follows: we getMAX NCC vertices from the connected component involving
MAX NCC vertices and one vertex for each remaining connected component.

4.3. GRAPH INVARIANTS 369

MAX NSCC, MIN NSCC, NARC

Proposition 83.

MIN NSCC 6= MAX NSCC ⇒ NARC ≥ MIN NSCC+MAX NSCC (4.107)

equivalence : MIN NSCC 6= MAX NSCC ⇒
NARC ≥ MIN NSCC

2 +MAX NSCC
2

(4.108)

Proof. (4.107) In a strongly connected component at least one arc has to leave eacharc.
Since we have two strongly connected components, which respectively haveMIN NSCC

andMAX NSCC vertices, this leads to the previous inequality.

MAX NSCC, MIN NSCC, NSCC

Proposition 84.

MIN NSCC 6= MAX NSCC ⇒ NSCC ≥ 2 (4.109)

Proof. Follows from the definitions ofMIN NSCC and ofMAX NSCC.

MAX NSCC, MIN NSCC, NVERTEX

Proposition 85.

MIN NSCC 6= MAX NSCC ⇒ NVERTEX ≥ MIN NSCC+MAX NSCC

(4.110)

Proof. Since we have at least two distinct strongly connected components, whichrespectively
haveMIN NSCC andMAX NSCC vertices, this leads to the previous inequality.

Proposition 86.

ifMIN NSCC > 0

then kinf =

⌊

NVERTEX+MIN NSCC

MIN NSCC

⌋

else kinf = 1

ifMAX NSCC > 0

then ksup1
=

⌊

NVERTEX− 1

MAX NSCC

⌋

else ksup1
= NVERTEX

ifMAX NSCC < MIN NSCC

then ksup2
=

⌊

MIN NSCC− 2

MAX NSCC−MIN NSCC

⌋

else ksup2
= NVERTEX

ksup = min(ksup1
, ksup2

)

∀k ∈ [kinf , ksup] : NVERTEX /∈ [k ·MAX NSCC+ 1, (k + 1) ·MIN NSCC− 1]
(4.111)

Proof. Similar to Proposition74.

370 CHAPTER 4. FURTHER TOPICS

MAX NSCC, NCC, NVERTEX

Proposition 87.
NVERTEX ≤ NCC ·MAX NSCC (4.112)

Proof. The largest number of vertices is obtained by putting within each connectedcomponent
the number of vertices of the largest strongly connected component.

MAX NSCC, NSCC, NVERTEX

Proposition 88.
NVERTEX ≤ NSCC ·MAX NSCC (4.113)

Proof. Since each strongly connected component contains at mostMAX NSCC vertices the
total number of vertices is less than or equal toNSCC ·MAX NSCC.

Proposition 89.

NVERTEX ≥ MAX NSCC+max(0,NSCC− 1) (4.114)

no loop : NVERTEX ≥ MAX NSCC+max(0, 2 ·NSCC− 2) (4.115)

Proof. (4.114) The minimum number of vertices according to a fixed number of stronglycon-
nected componentsNSCC such that one of them containsMAX NSCC vertices is equal to
MAX NSCC+max(0,NSCC− 1).

MIN NCC, NARC, NVERTEX

Proposition 90.

NARC ≤ MIN NCC
2 + (NVERTEX−MIN NCC)2 (4.116)

arc gen = CIRCUIT : NARC ≤ NVERTEX− 2 · (MIN NCC < NVERTEX)
(4.117)

arc gen = CHAIN : NARC ≤ NVERTEX− 2 · (MIN NCC < NVERTEX)
(4.118)

arc gen = CLIQUE(≤) : NARC ≤ MIN NCC · (MIN NCC+ 1)

2
+

(NVERTEX−MIN NCC) · (NVERTEX−MIN NCC+ 1)

2

(4.119)

arc gen = CLIQUE(≥) : NARC ≤ MIN NCC · (MIN NCC+ 1)

2
+

(NVERTEX−MIN NCC) · (NVERTEX−MIN NCC+ 1)

2

(4.120)

arc gen = CLIQUE(<) : NARC ≤ MIN NCC · (MIN NCC− 1)

2
+

(NVERTEX−MIN NCC) · (NVERTEX−MIN NCC− 1)

2

(4.121)

arc gen = CLIQUE(>) : NARC ≤ MIN NCC · (MIN NCC− 1)

2
+

(NVERTEX−MIN NCC) · (NVERTEX−MIN NCC− 1)

2

(4.122)

4.3. GRAPH INVARIANTS 371

arc gen = CLIQUE(6=) : NARC ≤ MIN NCC
2 −MIN NCC+

(NVERTEX−MIN NCC)2 − (NVERTEX−MIN NCC)
(4.123)

arc gen = CYCLE : NARC ≤ NVERTEX− 4 · (MIN NCC < NVERTEX)
(4.124)

arc gen = PATH : NARC ≤ max(0,MIN NCC− 1)+

max(0,NVERTEX−MIN NCC− 1)
(4.125)

Proof. (4.116) The maximum number of vertices according to a fixed number of vertices
NVERTEX and to the fact that there is a connected component withMIN NCC vertices is
obtained by:

• Building a connected component withMIN NCC vertices and creating an arc between
each pair of vertices.

• Building a connected component with all theNVERTEX − MIN NCC remaining
vertices and creating an arc between each pair of vertices.

Proposition 91.

MIN NCC > 1 ⇒

NARC ≥
⌊

NVERTEX

MIN NCC

⌋

· (MIN NCC− 1) +NVERTEXmodMIN NCC

(4.126)

Proof. Achieving the minimum number of arcs with a fixed number of vertices and with a min-
imum number of vertices greater than or equal to one in each connected component is achieved
in the following way:

• Since the minimum number of arcs of a connected component ofn vertices isn − 1,
splitting a connected component intok parts that all have more than one vertex saves
k−1 arcs. Therefore we build a maximum number of connected components. Since each
connected component has at leastMIN NCC vertices we get

⌊

NVERTEX

MIN NCC

⌋

connected
components.

• Since we cannot build a connected component with the rest of the vertices
(i.e.,NVERTEX mod MIN NCC vertices left) we have to incorporate them in the
previous connected components and this costs one arc for each vertex.

WhenMIN NCC = 1, note that Proposition52 provides a lower bound on the number of
arcs.

372 CHAPTER 4. FURTHER TOPICS

MIN NCC, NCC, NVERTEX

Proposition 92.
NVERTEX ≥ NCC ·MIN NCC (4.127)

Proof. The smallest number of vertices is obtained by taking all connected components to their
minimum number of verticesMIN NCC.

Proposition 93.
NVERTEX > MIN NCC ⇒ NCC ≥ 2 (4.128)

Proof. If all vertices do not fit within the smallest connected component then we have at least
two connected components.

MIN NSCC, NARC, NVERTEX

Proposition 94.

NARC ≤ NVERTEX
2 +MIN NSCC

2 −NVERTEX ·MIN NSCC (4.129)

Proof. Achieving the maximum number of arcs, provided that we have at least one strongly
connected component withMIN NSCC vertices, is done by:

• Building a first strongly connected componentC1 withMIN NSCC vertices and adding
an arc between each pair of vertices ofC1.

• Building a second strongly connected componentC2 with NVERTEX −
MIN NSCC vertices and adding an arc between each pair of vertices ofC2.

Finally, we add an arc from every vertex ofC1 to every vertex ofC2. This leads to a total
number of arcs ofMIN NSCC2 + (NVERTEX − MIN NSCC)2 + MIN NSCC ·
(NVERTEX−MIN NSCC).

MIN NSCC, NCC, NVERTEX

Proposition 95.
NVERTEX ≥ NCC ·MIN NSCC (4.130)

Proof. The smallest number of vertices is obtained by putting within each connectedcomponent
the number of vertices of the smallest strongly connected component.

MIN NSCC, NSCC, NVERTEX

Proposition 96.
NVERTEX ≥ NSCC ·MIN NSCC (4.131)

Proof. Since each strongly connected component contains at leastMIN NSCC vertices the
total number of vertices is greater than or equal toNSCC ·MIN NSCC.

Proposition 97.

NVERTEX > MIN NSCC ⇒ NSCC ≥ 2 (4.132)

Proof. If all vertices do not fit within the smallest strongly connected componentthen we have
at least two strongly connected components.

4.3. GRAPH INVARIANTS 373

NARC, NCC, NVERTEX

Proposition 98.

NARC ≤ (NVERTEX−NCC+ 1)2 +NCC− 1 (4.133)

arc gen = CIRCUIT : NARC ≤ NVERTEX−NCC+ 1− (NCC 6= 1) (4.134)

arc gen = CHAIN : NARC ≤ 2 ·NVERTEX− 2 ·NCC (4.135)

arc gen = CLIQUE(≤) : NARC ≤ NCC− 1+

(NVERTEX−NCC+ 1) · (NVERTEX−NCC+ 2)

2

(4.136)

arc gen = CLIQUE(≥) : NARC ≤ NCC− 1+

(NVERTEX−NCC+ 1) · (NVERTEX−NCC+ 2)

2

(4.137)

arc gen = CLIQUE (<) : NARC ≤ NCC− 1+

(NVERTEX−NCC+ 1) · (NVERTEX−NCC)

2

(4.138)

arc gen = CLIQUE (>) : NARC ≤ NCC− 1+

(NVERTEX−NCC+ 1) · (NVERTEX−NCC)

2

(4.139)

arc gen = CLIQUE(6=) : NARC ≤ max(0,NCC− 1)+

(NVERTEX−NCC+ 1)2 − (NVERTEX−NCC+ 1)
(4.140)

arc gen = CYCLE : NARC ≤ 2 ·NVERTEX− 2 ·NCC+ 2 · (NCC = 1) (4.141)

arc gen = PATH : NARC = NVERTEX−NCC (4.142)

connected components

vertices
NVERTEX−NCC+1

NCC−1

Figure 4.2:Illustration of Proposition98. A graph that achieves the maximum number of arcs
according to a fixed number of connected components as well as to a fixed number of vertices
(NCC = 5,NVERTEX = 7,NARC = (7− 5 + 1)2 + 5− 1 = 13)

Proof. (4.133) We proceed by induction onT (G) = NVERTEX(G)−|X|− (NCC(G)−
1), whereX is any connected component ofG of maximum cardinality. ForT (G) = 0 then
eitherNCC(G) = 1 and thus the formula is clearly true, or all the connected components ofG,
but possiblyX, are reduced to one element. Since isolated vertices are not allowed, the formula
holds.

Assume thatT (G) ≥ 1. Then there existsY , a connected component ofG distinct fromX,
with more than one vertex. Lety ∈ Y and letG′ be the graph such thatV (G′) = V (G) and
E(G′) is defined by:

374 CHAPTER 4. FURTHER TOPICS

• For allZ connected components ofG distinct fromX andY we haveG′[Z] = G[Z].

• With X ′ = X ∪ {y} andY ′ = Y − {y}, we haveG′[Y ′] = G[Y ′] andE(G′[X ′]) =
E(G[X]) ∪ (

⋃

x∈X′{(x, y), (y, x)}).
Clearly|E(G′)|−|E(G)| ≥ 2 · |X|+1−(2 · |Y |−1) and sinceX is of maximal cardinality the
difference is strictly positive. Now asNVERTEX(G′) = NVERTEX(G), NCC(G′) =
NCC(G) and asT (G′) = T (G)− 1 the result holds by induction hypothesis.

Proposition 99.
NARC ≥ NVERTEX−NCC (4.143)

equivalence : NCC > 0 ⇒
NARC ≥ (NVERTEXmodNCC) ·

(⌊

NVERTEX

NCC

⌋

+ 1
)2

+

(NCC−NVERTEXmodNCC) ·
⌊

NVERTEX

NCC

⌋2
(4.144)

Proof. (4.143) By induction of the number of vertices. The formula holds for one vertex. Let
G a graph withn+1 vertices(n ≥ 1). First assume there existsx in G such thatG− x has the
same number of connected components thanG. SinceNARC(G) ≥ NARC(G − x) + 1,
and by induction hypothesisNARC(G − x) ≥ NVERTEX(G − x) −NCC(G − x) the
result holds. Otherwise all connected components ofG are reduced to one vertex and the formula
holds.

NARC, NSCC, NVERTEX

Proposition 100.

NARC ≤ (NVERTEX−NSCC+1)·NVERTEX+
NSCC · (NSCC− 1)

2
(4.145)

equivalence : NARC ≤ NSCC− 1 + (NVERTEX−NSCC+ 1)2 (4.146)

verticesstrongly connected components
NSCC−1 NVERTEX−NSCC+1

Figure 4.3:Illustration of Proposition100(4.145). A graph that achieves the maximum number
of arcs according to a fixed number of strongly connected componentsas well as to a fixed
number of vertices (NSCC = 5,NVERTEX = 6,NARC = (6−5+1)·6+ 5·(5−1)

2
= 22)

Proof. For proving4.145, it is easier to rewrite the formula asNARC ≤ (NVERTEX −
(NSCC − 1))2 + (NCC − 1) · (NVERTEX− (NSCC − 1)) + NSCC·(NSCC−1)

2
. We

proceed by induction onT (G) = NVERTEX(G) − |X| − (NSCC(G) − 1), whereX is
any strongly connected component ofG of maximum cardinality.

4.3. GRAPH INVARIANTS 375

For T (G) = 0 then eitherNSCC(G) = 1 and thus the formula is clearly true, or all
the strongly connected components ofG, but possiblyX, are reduced to one element. Since
the maximum number of arcs in a directed acyclic graph ofn vertices isn·(n+1)

2
, and as the

subgraph ofG induced by all the strongly connected components ofG exceptedX is acyclic,
the formula clearly holds.

Assume thatT (G) ≥ 1, let (Xi)i∈I be the family of strongly connected components ofG,
and letGr be the reduced graph ofG induced by(Xi)i∈I (that isV (Gr) = I and∀i1, i2 ∈ I,
(i1, i2) ∈ E(Gr) if and only if ∃x1 ∈ Xi1 , ∃x2 ∈ Xi2 such that(x1, x2) ∈ E). ConsiderG′

such thatV (G′) = V (G) andE(G′) is defined by:

• For all strongly connected componentsZ of G we haveG′[Z] = G[Z].

• Forσ be any topological sort ofGr, ∀xi ∈ Xi, ∀xj ∈ Xj , (xi, xj) ∈ E(G′) whenever
i is less thanj with respect toσ.

Notice that G′ satisfies the following properties:T (G′) = T (G), V (G′) = V (G),
NSCC(G′) = NSCC(G), E(G) ⊆ E(G′), (Xi)i∈I is still the family of strongly con-
nected components ofG′, and moreover, for everyi ∈ I and everyxi ∈ Xi we have thatxi

is connected to any vertex outsideXi, that is the number of arcs incident toxi and incident to
vertices outsideXi is exactly|V (G′)| − |Xi|.

Now, asT (G′) ≥ 1, there existsY , a strongly connected component ofG′ distinct fromX,
with more than one vertex. Lety ∈ Y and letG′′ be the graph such thatV (G′′) = V (G′) and
E(G′′) is defined by:

• G′′[V (G)− {y}] = G′[V (G)− {y}].
• With X ′ = X ∪ {y}, we haveG′′[Y ′] = G′[Y ′] andE(G′′[X ′]) = E(G′[X]) ∪

(
⋃

x∈X′{(x, y), (y, x)}).
• Assume thatX = Xj for j ∈ I. Then∀i ∈ I − {j}, ∀xi ∈ Xi, (xi, y) ∈ E(G′′)

wheneveri is less thanj with respect toσ and(y, xi) ∈ E(G′′) wheneverj is less than
i with respect toσ.

Clearly|E(G′′)| − |E(G′)| ≥ 2|X|+ 1 + |V (G′)| − |X| − (2 · |Y | − 1 + |V (G′)| − |Y |) =
|X| − |Y | + 2 and sinceX is of maximal cardinality the difference is strictly positive. As
E(G) ⊆ E(G′), |E(G′′)| − |E(G)| is also strictly positive. Now asNVERTEX(G′′) =
NVERTEX(G′) = NVERTEX(G), NSCC(G′′) = NSCC(G′) = NSCC(G) and as
T (G′′) = T (G′)− 1 = T (G)− 1 the result holds by induction hypothesis.

Proposition 101.

NARC ≥ NVERTEX−
⌊

NSCC− 1

2

⌋

(4.147)

equivalence : NSCC > 0 ⇒
NARC ≥ (NVERTEXmodNSCC) ·

(⌊

NVERTEX

NSCC

⌋

+ 1
)2

+

(NSCC−NVERTEXmodNSCC) ·
⌊

NVERTEX

NSCC

⌋2
(4.148)

Proof. For proving part4.147of Proposition101we proceed by induction onNSCC(G). If
NSCC(G) = 1 then, we haveNARC(G) ≥ NVERTEX(G) (i.e., for one vertex this is
true since every vertex has at least one arc, otherwise every vertexv has an arc arriving onv as
well as an arc starting fromv, thus we haveNARC ≥ 2·NVERTEX

2
). If NSCC(G) > 1

let X be a strongly connected component ofG. ThenNARC(G) ≥ NARC(G[V (G) −

376 CHAPTER 4. FURTHER TOPICS

NVERTEX − 2
NSCC

2
2 strongly connected components vertices

NSCC

2

Figure 4.4: Illustration of Proposition4.147. A graph that achieves the minimum number of
arcs according to a fixed number of strongly connected components aswell as to a fixed number
of vertices (NSCC = 7,NVERTEX = 10,NARC = 10−

⌊

7
2

⌋

= 7)

X]) +NARC(G[X]). By induction hypothesisNARC(G[V (G) −X]) ≥ |V (G) −X| −
⌊

NSCC(G[V (G)−X])−1
2

⌋

, thusNARC(G[V (G)−X]) ≥ |V (G)−X| −
⌊

(NSCC(G)−1)−1
2

⌋

.

SinceNARC(G[X]) ≥ |X| we obtainNARC(G) ≥ |V (G)| −
⌊

(NSCC(G)−1)−1
2

⌋

, and

thus the result holds.

Proposition 102.

equivalence : NVERTEX > 0 ⇒ NSCC ≥
⌈

NVERTEX2

NARC

⌉

(4.149)

Proof. As shown in [58], a lower bound for the minimum number of equivalence classes
(e.g., strongly connected components) is the independence number of the graph and the
right-hand side of Proposition102 corresponds to a lower bound of the independence number
proposed by Tuŕan [385].

Proposition 103.

equivalence : NVERTEX > 0 ⇒ NSCC ≥

2 ·NVERTEX− NARC−NVERTEX

⌈NARC−NVERTEX

NVERTEX
⌉

⌈

NARC−NVERTEX

NVERTEX

⌉

+ 1

(4.150)

Proof. See [185] and [150].

NARC, NSINK, NVERTEX

Proposition 104.

NARC ≤ (NVERTEX−NSINK) ·NVERTEX (4.151)

Proof. The maximum number of arcs is achieved by the following pattern: for all non-sink
vertices we have an arc to all vertices.

Proposition 105.

NARC ≥ NSINK+max(0,NVERTEX− 2 ·NSINK) (4.152)

4.3. GRAPH INVARIANTS 377

(B)

NVERTEX−NSINK

2.NSINK vertices

vertices
max(0,NVERTEX−2.NSINK)

vertices

NSINK vertices

(A)

Figure 4.5: Illustration of Proposition105. Graphs that achieve the minimum number of
arcs according to a fixed number of sinks as well as to a fixed number ofvertices (A :

NSINK = 3,NVERTEX = 5,NARC = 3 + max(0, 5 − 2 · 3) = 3;B : NSINK =

3,NVERTEX = 9,NARC = 3 +max(0, 9− 2 · 3) = 6)

Proof. Recall that forx ∈ V (G), we have thatd+G(x) + d−G(x) ≥ 1. If x is a sink then
d−G(x) ≥ 1, consequentlyNARC(G) ≥ NSINK(G). If x is not a sink thend+G(x) ≥ 1,
consequentlyNARC(G) ≥ |V (G)| −NSINK(G).

NARC, NSOURCE, NVERTEX

Proposition 106.

NARC ≤ (NVERTEX−NSOURCE) ·NVERTEX (4.153)

Proof. The maximum number of arcs is achieved by the following pattern: for all non-source
vertices we have an arc from all vertices.

Proposition 107.

NARC ≥ NSOURCE+max(0,NVERTEX− 2 ·NSOURCE) (4.154)

Proof. Similar to Proposition105.

NSCC, NSINK, NSOURCE

Proposition 108.
NSCC ≥ NSINK+NSOURCE (4.155)

Proof. Since sinks and sources cannot belong to a circuit and since they cannot coincide (i.e.,
because isolated vertices are not allowed) the result follows.

378 CHAPTER 4. FURTHER TOPICS

NSOURCE vertices

vertices
NVERTEX−NSOURCE

2.NSOURCE vertices

vertices

(A) (B)

max(0,NVERTEX−2.NSOURCE)

Figure 4.6: Illustration of Proposition107. Graphs that achieve the minimum number of
arcs according to a fixed number of sources as well as to a fixed number of vertices (A :

NSOURCE = 3,NVERTEX = 5,NARC = 3 + max(0, 5 − 2 · 3) = 3;B :

NSOURCE = 3,NVERTEX = 9,NARC = 3 +max(0, 9− 2 · 3) = 6)

NSINK, NSOURCE, NVERTEX

Proposition 109.
NVERTEX ≥ NSINK+NSOURCE (4.156)

Proof. No vertex can be both a source and a sink (isolated vertices are removed).

4.3. GRAPH INVARIANTS 379

Graph invariants involving four parameters of a final graph

MAX NCC, MIN NCC, NARC, NCC

Proposition 110. Letα denotemax(0,NCC− 1).

NARC ≤ α ·MAX NCC
2 +MIN NCC

2 (4.157)

arc gen = CIRCUIT : NARC ≤ α ·MAX NCC+MIN NCC (4.158)

arc gen = CHAIN : NARC ≤ α · (2 ·MAX NCC−2)+2 ·MIN NCC−2 (4.159)

arc gen ∈ {CLIQUE(≤),CLIQUE(≥)} : NARC ≤
α · MAX NCC·(MAX NCC+1)

2
+ MIN NCC·(MIN NCC+1)

2
(4.160)

arc gen ∈ {CLIQUE(<),CLIQUE(>)} : NARC ≤
α · MAX NCC·(MAX NCC−1)

2
+ MIN NCC·(MIN NCC−1)

2
(4.161)

arc gen = CLIQUE (6=) : NARC ≤ MIN NCC2 −MIN NCC+

α · (MAX NCC2 −MAX NCC) (4.162)

arc gen = CYCLE : NARC ≤ 2 · α ·MAX NCC+ 2 ·MIN NCC (4.163)

arc gen = PATH : NARC ≤ α · (MAX NCC− 1) +MIN NCC− 1 (4.164)

Proof. We constructNCC − 1 connected components withMAX NCC vertices and one
connected component withMIN NCC vertices.n2 corresponds to the maximum number of
arcs in a connected component.n, 2·n−2, n·(n+1)

2
, n·(n+1)

2
, n·(n−1)

2
, n·(n−1)

2
, n2−n, 2·n and

n − 1 respectively correspond to the maximum number of arcs in a connectedcomponent ofn
vertices according to the fact that we use the arc generatorCIRCUIT , CHAIN , CLIQUE (≤)
CLIQUE (≥) CLIQUE(<) CLIQUE(>) CLIQUE(6=) CYCLE orPATH .

Proposition 111.

NCC > 0 ⇒ NARC ≥ (NCC−1)·max(1,MIN NCC−1)+max(1,MAX NCC−1)
(4.165)

arc gen = PATH : NARC ≥ max(0,NCC−1) ·(MIN NCC−1)+MAX NCC−1
(4.166)

Proof. (4.165) We constructNCC− 1 connected components withMIN NCC vertices and
one connected component withMAX NCC vertices. The quantitymax(1, n−1) corresponds
to the minimum number of arcs in a connected component ofn (n > 0) vertices.

380 CHAPTER 4. FURTHER TOPICS

MAX NCC, MIN NCC, NCC, NVERTEX

Proposition 112.

NVERTEX ≤ max(0,NCC− 1) ·MAX NCC+MIN NCC (4.167)

Proof. Derived from the definitions ofMIN NCC andMAX NCC.

Proposition 113.

NVERTEX ≥ max(0,NCC− 1) ·MIN NCC+MAX NCC (4.168)

Proof. Derived from the definitions ofMIN NCC andMAX NCC.

MAX NCC, NARC, NSOURCE, NVERTEX

Proposition 114.

NSINK+NSOURCE ≤ NCC ·max(0,MAX NCC− 1) (4.169)

Proof. Since a connected component contains at mostMAX NCC vertices and since it does
not contain any isolated vertex and since a same vertex cannot be both a sink and a source a
connected component involves at mostMAX NCC − 1 sinks and sources alltogether. Thus
the result follows.

MAX NSCC, MIN NSCC, NARC, NSCC

Proposition 115.

NARC ≤ max(0,NSCC− 1) ·MAX NSCC2 +MIN NSCC2 +

max(0,NSCC− 1) ·MIN NSCC ·MAX NSCC+

MAX NSCC2 · max(0,NSCC−2)·max(0,NSCC−1)
2

(4.170)

Proof. We assume that we have at least two strongly connected components (thecase with one
being obvious). Let(SCCi)i∈[NCC(G)] be the family of strongly connected components ofG.
Then|E(G)| ≤ ∑

i∈[NCC(G)] |E(G[SCCi])| + k, wherek is the number of arcs between the
distinct strongly connected components ofG. For any strongly connected componentSCCi the
number of arcs it has with the other strongly connected components is bounded by|SCCi| ·
(|V (G)− SCCi|). Consequently,k ≤ 1

2
·∑i∈[NCC(G)] |SCCi| · (|V (G)− SCCi|). W.l.o.g.

we assume|SCC1| = MIN NCC. Then we getk ≤ 1
2
· (MIN NCC · (NCC − 1) ·

MAX NCC+MAX NCC · ((NCC− 2) ·MAX NCC+MIN NCC)).

Proposition 116.

NARC ≥ max(0,NSCC− 1) ·MIN NSCC+MAX NSCC (4.171)

Proof. Let (SCCi)i∈[NCC(G)] be the family of strongly connected components ofG, as
|E(G)| ≥ ∑

i∈[NCC(G)] |E(G[SCCi])|, we obtain the result since in a strongly connected
graph the number of edges is at least its number of vertices.

4.3. GRAPH INVARIANTS 381

MAX NSCC, MIN NSCC, NSCC, NVERTEX

Proposition 117.

NVERTEX ≤ max(0,NSCC− 1) ·MAX NSCC+MIN NSCC (4.172)

Proof. Derived from the definitions ofMIN NSCC andMAX NSCC.

Proposition 118.

NVERTEX ≥ max(0,NSCC− 1) ·MIN NSCC+MAX NSCC (4.173)

Proof. Derived from the definitions ofMIN NSCC andMAX NSCC.

MIN NCC, NARC, NCC, NVERTEX

Proposition 119. Letα, β andγ respectively denotemax(0,NCC − 1), NVERTEX −
α ·MIN NCC andMIN NCC.

NARC ≤ α · γ2 + β2 (4.174)

arc gen ∈ {CLIQUE(≤),CLIQUE(≥)} : NARC ≤ α · γ · (γ + 1)

2
+

β · (β + 1)

2
(4.175)

arc gen ∈ {CLIQUE(<),CLIQUE(>)} : NARC ≤ α · γ · (γ − 1)

2
+

β · (β − 1)

2
(4.176)

arc gen = CLIQUE (6=) : NARC ≤ α · γ · (γ − 1) + β · (β − 1) (4.177)

vertices
connected components

each of them consisting of

MIN_NCC vertices

NVERTEX−(NCC−1).MIN_NCCNCC−1

Figure 4.7:Illustration of Proposition119(4.174). Graphs that achieve the maximum number
of arcs according to a minimum number of vertices in a connected component, to a number of
connected components, as well as to a fixed number of vertices (MIN NCC = 2,NCC =

5,NVERTEX = 11,NARC = (11− (5− 1) · 2)2 + (5− 1) · 22 = 25)

Proof. For proving inequality4.174we proceed by induction on the number of vertices ofG.
First note that if all the connected components are reduced to one element the result is obvious.
Thus we assume that the number of vertices in the maximal sized connected component ofG
is at least2. Let x be an element of the maximal sized connected component ofG. Then,
G − x satisfiesα(G − x) = α(G), γ(G − x) = γ(G) andβ(G − x) = β(G) − 1. Since
by induction hypothesis|E(G − x)| ≤ α(G − x) · γ(G − x)2 + β(G − x)2, and since the
number of arcs ofG incident tox is at most2 · (β(G) − 1) + 1, we have that|E(G)| ≤
α(G) · γ(G)2 + (β(G)− 1)2 + 2 · (β(G)− 1) + 1. And thus the result follows.

382 CHAPTER 4. FURTHER TOPICS

NARC, NCC, NSCC, NVERTEX

Proposition 120.

NARC ≤ NCC− 1 + (NVERTEX−NSCC+ 1) · (NVERTEX−NCC+ 1)

+
(NSCC−NCC+ 1) · (NSCC−NCC)

2
(4.178)

NVERTEX−NSCC+1
verticesstrongly connected components

NSCC−NCC
connected components
NCC−1

Figure 4.8:Illustration of Proposition120. A graph that achieves the maximum number of arcs
according to a fixed number of connected components, to a fixed number of strongly connected
components as well as to a fixed number of vertices (NCC = 3,NSCC = 6,NVERTEX =

7,NARC = 3− 1 + (7− 6 + 1) · (7− 3 + 1) + (6−3+1)·(6−3)
2

= 18)

Proof. We proceed by induction onT (G) = NVERTEX(G) − |X| − (NCC(G) − 1),
whereX is any connected component ofG of maximum cardinality. ForT (G) = 0 then
eitherNCC(G) = 1 and thus the formula is clearly true, by Proposition4.145 or all the
connected components ofG, but possiblyX, are reduced to one element. Since isolated
vertices are not allowed, again by Proposition4.145applied onG[X], the formula holds in-
deedNVERTEX(G[X]) = NVERTEX(G) − (NCC(G) − 1) andNSCC(G[X]) =
NSCC(G)− (NCC(G)− 1).

Assume thatT (G) ≥ 1. Then there existsY , a connected component ofG distinct fromX,
with more than one vertex.

• Firstly assume thatG[Y] is strongly connected. Lety ∈ Y and letG′ be the graph such
thatV (G′) = V (G) andE(G′) is defined by:

– For all Z connected components ofG distinct fromX andY we haveG′[Z] =
G[Z].

– With X ′ = X ∪ (Y − {y}) andY ′ = {y}, we haveE(G′[Y ′]) = {(y, y)},
E(G′[X ′]) = E(G[X]) ∪ {(z, x) : z ∈ Y − {y}, x ∈ X} ∪ {(z, t) : z, t ∈
Y − {y}}.

Clearly we have that|E(G′)| − |E(G)| ≥ (|Y | − 1) · |X| − 2 · (|Y | − 1) and since
|X| ≥ |Y | ≥ 2, the difference is positive or null. Now asNVERTEX(G′) =
NVERTEX(G), NCC(G′) = NCC(G), NSCC(G′) = NSCC(G) (since
G′[Y −{y}] is strongly connected becauseE(G′[Y −{y}]) = {(z, t) : z, t ∈ Y −{y}}
and since the reduced graph of the strongly connected components ofG′[X ′] is exactly the
reduced graph of the strongly connected components ofG[X] to which a unique source
has been added) and asT (G′) ≤ T (G)− 1, the result holds by induction hypothesis.

4.3. GRAPH INVARIANTS 383

• Secondly assume thatG[Y] is not strongly connected. LetZ ⊂ Y such thatZ is a
strongly connected component ofG[Y] corresponding to a source in the reduced graph
of the strongly connected components ofG[Y]. LetG′ be the graph such thatV (G′) =
V (G) andE(G′) is defined by:

– For allW connected components ofG distinct fromX andY we haveG′[W] =
G[W].

– With X ′ = X ∪Z andY ′ = Y −Z, we haveE(G′[Y ′]) = E(G[Y ′]) if |Y ′| > 1
andE(G′[Y ′]) = {(y, y)} if Y ′ = {y}. E(G′[X ′]) = E(G[X]) ∪ {(z, x) : z ∈
Z, x ∈ X}.

Clearly we have that|E(G′)| − |E(G)| ≥ |Z| · |X| − |Z| · (|Y | − |Z|) and since
|X| > |Y | − |Z|, the difference is strictly positive. Now asNVERTEX(G′) =
NVERTEX(G), NCC(G′) = NCC(G), NSCC(G′) = NSCC(G) and as
T (G′) ≤ T (G)− 1, the result holds by induction hypothesis.

Proposition 121.

NARC ≥ NVERTEX−max(0,min(NCC,NSCC−NCC)) (4.179)

Proof. We prove that the invariant is valid for any digraphG. First notice that for an operational
behaviour, since we cannot assume that Proposition55 (i.e., NCC(G) ≤ NSCC(G)) was
already triggered, we use themax operator. But since any strongly connected component is con-
nected, thenNSCC(G)−NCC(G) is never negative. Consequently we only show by induc-
tion onNSCC(G) thatNARC(G) ≥ NVERTEX(G) − min(NCC(G),NSCC(G) −
NCC(G)). To begin notice that ifX is a strongly (non void) connected component then ei-
therNARC(G[X]) ≥ |X| or NARC(G[X]) = 0 and in this latter case we have that both
|X| = 1 andX is strictly included in a connected component ofG (recall that isolated vertices
are not allowed). Thus we can directly assume thatNSCC(G) = k > 1.

First, consider that there exists a connected component ofG, sayX, which is also strongly
connected. LetG′ = G − X, consequently we haveNSCC(G′) = NSCC(G) −
1, NCC(G′) = NCC(G) − 1, NVERTEX(G′) = NVERTEX(G) − |X|, and
NARC(G) ≥ |X| + NARC(G′). ThenNARC(G) ≥ |X| + NVERTEX(G′) −
min(NCC(G′),NSCC(G′) − NCC(G′)) and thusNARC(G) ≥ NVERTEX(G) −
min(NCC(G)− 1,NSCC(G)−NCC(G)), which immediately gives the result.

Second consider that any strongly connected component is strictly included in a con-
nected component ofG. Then, either there exists a strongly connected componentX
such that |X| ≥ 2. Let G′ = G − X, consequently we haveNSCC(G′) =
NSCC(G)−1,NCC(G′) = NCC(G),NVERTEX(G′) = NVERTEX(G)−|X|, and
NARC(G) ≥ |X|+1+NARC(G′). ThenNARC(G) ≥ |X|+1+NVERTEX(G′)−
min(NCC(G′),NSCC(G′) − NCC(G′)) and thusNARC(G) ≥ NVERTEX(G) +
1 − min(NCC(G),NSCC(G) − NCC(G) + 1), which immediately gives the result. Or,
all the strongly connected components are reduced to one element, so wehaveNSCC(G) =
NVERTEX(G), and thus we obtain thatNVERTEX(G)−min(NCC(G),NSCC(G)−
NCC(G)) = min(NCC(G),NVERTEX(G) −NCC(G)), which gives the result by for
example Proposition99 (4.143).

This bound is tight: take for example any circuit.

384 CHAPTER 4. FURTHER TOPICS

NARC, NSINK, NSOURCE, NVERTEX

Proposition 122.

NARC ≤ NVERTEX
2 −NVERTEX ·NSOURCE

−NVERTEX ·NSINK+NSOURCE ·NSINK

(4.180)

Proof. Since the maximum number of arcs of a digraph isNVERTEX2, and since:

• No vertex can have a source as a successor we loseNVERTEX ·NSOURCE arcs,

• No sink can have a successor we loseNVERTEX ·NSINK arcs.

In these two sets of arcs we count twice the arcs from the sinks to the sources, so we finally get
a maximum number of arcs corresponding to the right-hand side of the inequality to prove.

4.3. GRAPH INVARIANTS 385

Graph invariants involving five parameters of a final graph

MAX NCC, MIN NCC, NARC, NCC, NVERTEX

Proposition 123.
Let:

• ∆ = NVERTEX−NCC ·MIN NCC,

• δ = ⌊ ∆
max(1,MAX NCC−MIN NCC)

⌋,
• r = ∆mod max(1,MAX NCC−MIN NCC),

• ǫ = (r > 0).

∆ = 0 ∨ (MAX NCC 6= MIN NCC ∧ δ + ǫ ≤ NCC) (4.181)

NARC ≤ (NCC− δ − ǫ) ·MIN NCC
2 + ǫ · (MIN NCC+ r)2 + δ ·MAX NCC

2

(4.182)

Proposition123is currently a conjecture.
MIN NCC, NARC, NCC, NSCC, NVERTEX

Proposition 124.

NARC ≤(NCC− 1) ·max(1, (MIN NCC− 1))+

(NVERTEX−NSCC+ 1) · (NVERTEX−NCC+ 1)+

(NSCC−NCC+ 1) · (NSCC−NCC)

2

(4.183)

Proposition124is currently a conjecture.

386 CHAPTER 4. FURTHER TOPICS

Graph invariants relating two parameters of two final graphs

MAX NCC1, MIN NCC1

Proposition 125.

vpartition ∧ consecutive loops are connected :

MIN NCC1 /∈ [NVERTEXINITIAL −MAX NCC1,MAX NCC1 − 1]
(4.184)

Proof. We show that the conjunctionMIN NCC1 ≥ NVERTEXINITIAL−MAX NCC1

andMIN NCC1 ≤ MAX NCC1 − 1 leads to a contradiction.
SinceMIN NCC1 ≤ MAX NCC1−1 we have thatMIN NCC1 6= MAX NCC1

and the minimum required size for the different groups isMIN NCC1 +1+MAX NCC1.
This minimum required size should not exceed the number of verticesNVERTEXINITIAL

of the initial graph. But since, by hypothesis,MIN NCC1 ≥ NVERTEXINITIAL −
MAX NCC1, this is impossible.

MAX NCC2, MIN NCC2

Proposition 126.

vpartition ∧ consecutive loops are connected :

MIN NCC2 /∈ [NVERTEXINITIAL −MAX NCC2,MAX NCC2 − 1]
(4.185)

Proof. Similar to Proposition125.

MAX NCC1, NCC2

Proposition 127.

vpartition : MAX NCC1 < NVERTEXINITIAL ⇔ NCC2 > 0 (4.186)

apartition : MAX NCC1 < NVERTEXINITIAL ⇔ NCC2 > 0 (4.187)

Proof. (4.186) Since we have the preconditionvpartition, we know that each vertex of the
initial graph belongs to the first or to the second final graphs (but not to both).

1. On the one hand, if the largest connected component of the first final graph cannot contain
all the vertices of the initial graph, then the second final graph has at least one connected
component.

2. On the other hand, if the second final graph has at least one connected component then the
largest connected component of the first final graph cannot be equal to the initial graph.

(4.187) holds for a similar reason.

MAX NCC2, NCC1

Proposition 128.

vpartition : MAX NCC2 < NVERTEXINITIAL ⇔ NCC1 > 0 (4.188)

apartition : MAX NCC2 < NVERTEXINITIAL ⇔ NCC1 > 0 (4.189)

Proof. Similar to Proposition127.

4.3. GRAPH INVARIANTS 387

MIN NCC1, NCC2

Proposition 129.

vpartition : MIN NCC1 < NVERTEXINITIAL ⇔ NCC2 > 0 (4.190)

Proof. Since we have the preconditionvpartition, we know that each vertex of the initial
graph belongs to the first or to the second final graphs (but not to both).

1. On the one hand, if the smallest connected component of the first final graph cannot
contain all the vertices of the initial graph, then the second final graph hasat least one
connected component.

2. On the other hand, if the second final graph has at least one connected component then the
smallest connected component of the first final graph cannot be equal to the initial graph.

MIN NCC2, NCC1

Proposition 130.

vpartition : MIN NCC2 < NVERTEXINITIAL ⇔ NCC1 > 0 (4.191)

Proof. Similar to Proposition129.

NARC1, NARC2

Proposition 131.

apartition ∧ arc gen = PATH : NARC1 +NARC2 = NVERTEXINITIAL − 1
(4.192)

Proof. Holds since each arc of the initial graph belongs to one of the two final graphs and since
the initial graph hasNVERTEXINITIAL − 1 arcs.

NCC1, NCC2

Proposition 132.

apartition ∧ arc gen = PATH : |NCC1 −NCC2| ≤ 1 (4.193)

vpartition ∧ consecutive loops are connected : |NCC1 −NCC2| ≤ 1 (4.194)

Proof. Holds because the two initial graphs correspond to a path and because consecutive con-
nected components do not come from the same graph constraint.

Proposition 133.

apartition ∧ arc gen = PATH : NCC1 +NCC2 < NVERTEXINITIAL (4.195)

Proof. Holds because the initial graph is a path.

NVERTEX1, NVERTEX2

Proposition 134.

vpartition : NVERTEX1 +NVERTEX2 = NVERTEXINITIAL (4.196)

Proof. By definition ofvpartition each vertex of the initial graph belongs to one of the two
final graphs (but not to both).

388 CHAPTER 4. FURTHER TOPICS

Graph invariants relating three parameters of two final graphs

MAX NCC1, MIN NCC1, MIN NCC2

Proposition 135.

apartition ∧ arc gen = PATH :

max(2,MIN NCC1) + max(3,MIN NCC1 + 1,MAX NCC1)+

max(2,MIN NCC2)− 2 > NVERTEXINITIAL ⇒ MIN NCC1 = MAX NCC1

(4.197)

Proof. The quantitymax(2,MIN NCC1)+max(3,MIN NCC1+1,MAX NCC1)+
max(2,MIN NCC2)− 2 corresponds to the minimum number of variables needed for build-
ing two non-empty connected components of respective sizeMIN NCC1 andMAX NCC1

such thatMAX NCC1 is strictly greater thanMIN NCC1. If this quantity is greater than
the total number of variables we have thatMIN NCC1 = MAX NCC1.

Proposition 136.

vpartition ∧ consecutive loops are connected :

max(1,MIN NCC1) + max(2,MIN NCC1 + 1,MAX NCC1)+

max(1,MIN NCC2) > NVERTEXINITIAL ⇒ MIN NCC1 = MAX NCC1

(4.198)

Proof. The quantitymax(1,MIN NCC1)+max(2,MIN NCC1+1,MAX NCC1)+
max(1,MIN NCC2) corresponds to the minimum number of variables needed for building
two non-empty connected components of respective sizeMIN NCC1 andMAX NCC1

such thatMAX NCC1 is strictly greater thanMIN NCC1. If this quantity is greater than
the total number of variables we have thatMIN NCC1 = MAX NCC1.

Proposition 137.

vpartition ∧ consecutive loops are connected :

MIN NCC2 /∈
[

max

(

NVERTEXINITIAL −MAX NCC1 −MIN NCC1 + 1,

⌊

NVERTEXINITIAL −MAX NCC1 + 2

2

⌋)

,

NVERTEXINITIAL −MAX NCC1 − 1

]

(4.199)

Proof. A valuev is not a possible number of vertices for the smallest connected component of
type2 if the following two conditions hold:

• v +MAX NCC1 does not allow to cover all the vertices of the initial graph: we need
at least one extra connected component of type1 or 2.

• If we add an additional connected component of type1 or 2 we exceed the number of
vertices of the initial graph.

4.3. GRAPH INVARIANTS 389

MAX NCC2, MIN NCC2, MIN NCC1

Proposition 138.

apartition ∧ arc gen = PATH :

max(2,MIN NCC2) + max(3,MIN NCC2 + 1,MAX NCC2)+

max(2,MIN NCC1)− 2 > NVERTEXINITIAL ⇒ MIN NCC2 = MAX NCC2

(4.200)

Proof. Similar to Proposition135.

Proposition 139.

vpartition ∧ consecutive loops are connected :

max(1,MIN NCC2) + max(2,MIN NCC2 + 1,MAX NCC2)+

max(1,MIN NCC1) > NVERTEXINITIAL ⇒ MIN NCC2 = MAX NCC2

(4.201)

Proof. Similar to Proposition136.

Proposition 140.

vpartition ∧ consecutive loops are connected :

MIN NCC1 /∈
[

max

(

NVERTEXINITIAL −MAX NCC2 −MIN NCC2 + 1,

⌊

NVERTEXINITIAL −MAX NCC2 + 2

2

⌋)

,

NVERTEXINITIAL −MAX NCC2 − 1

]

(4.202)

Proof. Similar to Proposition137.

MAX NCC1, MIN NCC1, NVERTEX2

Proposition 141.

vpartition : MIN NCC1 = MAX NCC1 ∧MIN NCC1 mod 2 = 0 ⇒
NVERTEX2 mod 2 = NVERTEXINITIAL mod 2

(4.203)

Proof. If the number of vertices of the first graph is even then the number of vertices of the
second graph has the same parity as the number of vertices of the initial graph (since a vertex of
the initial graph belongs either to the first graph, either to the second graph(but not to both).

MAX NCC2, MIN NCC2, NVERTEX1

Proposition 142.

vpartition : MIN NCC2 = MAX NCC2 ∧MIN NCC2 mod 2 = 0 ⇒
NVERTEX1 mod 2 = NVERTEXINITIAL mod 2

(4.204)

Proof. Similar to Proposition141.

390 CHAPTER 4. FURTHER TOPICS

MIN NCC1, NARC2, NCC1

Proposition 143.

apartition ∧ arc gen = PATH ∧NVERTEXINITIAL > 0 :

NCC1 = 1 ⇔ MIN NCC1 +NARC2 = NVERTEXINITIAL

(4.205)

Proof. WhenMIN NCC1 +NARC2 = NVERTEXINITIAL there is no more room for an
extra connected component for the first final graph.

MIN NCC1, NARC2, NCC1

Proposition 144.

apartition ∧ arc gen = PATH ∧NVERTEXINITIAL > 0 :

NCC2 = 1 ⇔ MIN NCC2 +NARC1 = NVERTEXINITIAL

(4.206)

Proof. Similar to Proposition143.

4.3. GRAPH INVARIANTS 391

Graph invariants relating four parameters of two final graph s

MAX NCC1, MIN NCC1, MIN NCC2, NCC1

Proposition 145.

apartition ∧ arc gen = PATH :

max(2,MIN NCC1) + max(2,MAX NCC1) + max(2,MIN NCC2)− 2 >

NVERTEXINITIAL ⇒ NCC1 ≤ 1

(4.207)

Proof. The quantity max(2,MIN NCC1) + max(2,MAX NCC1) +
max(2,MIN NCC2) − 2 corresponds to the minimum number of variables needed
for building two non-empty connected components of respective sizeMIN NCC1 and
MAX NCC1. If this quantity is greater than the total number of variables we have that
NCC1 ≤ 1.

Proposition 146.

vpartition ∧ consecutive loops are connected :

max(1,MIN NCC1) + max(1,MAX NCC1) + max(1,MIN NCC2) >

NVERTEXINITIAL ⇒ NCC1 ≤ 1

(4.208)

Proof. The quantity max(1,MIN NCC1) + max(1,MAX NCC1) +
max(1,MIN NCC2) corresponds to the minimum number of variables needed for building
two non-empty connected components of respective sizeMIN NCC1 andMAX NCC1. If
this quantity is greater than the total number of variables we have thatNCC1 ≤ 1.

MAX NCC2, MIN NCC2, MIN NCC1, NCC2

Proposition 147.

apartition ∧ arc gen = PATH :

max(2,MIN NCC2) + max(2,MAX NCC2) + max(2,MIN NCC1)− 2 >

NVERTEXINITIAL ⇒ NCC2 ≤ 1

(4.209)

Proof. Similar to Proposition145.

Proposition 148.

vpartition ∧ consecutive loops are connected :

max(1,MIN NCC2) + max(1,MAX NCC2) + max(1,MIN NCC1) >

NVERTEXINITIAL ⇒ NCC2 ≤ 1

(4.210)

Proof. Similar to Proposition146.

392 CHAPTER 4. FURTHER TOPICS

MAX NCC1, MIN NCC1, MIN NCC2, NVERTEX2

Proposition 149.

vpartition ∧ consecutive loops are connected :

MIN NCC2 /∈
[⌊

NVERTEX2

2

⌋

+ 1,

NVERTEXINITIAL −MIN NCC1 −MAX NCC1 − 1

]

(4.211)

Proof. First, note that, whenNCC2 > 1, we have thatMIN NCC2 ≤
⌊

NVERTEX2
2

⌋

.
Second, note that, whenNCC2 ≤ 1, we have thatMIN NCC2 ≥ NVERTEXINITIAL −
MIN NCC1−MAX NCC1. SinceNCC2 has to have at least one value the result follows.

MAX NCC2, MIN NCC2, MIN NCC1, NVERTEX1

Proposition 150.

vpartition ∧ consecutive loops are connected :

MIN NCC1 /∈
[⌊

NVERTEX1

2

⌋

+ 1,

NVERTEXINITIAL −MIN NCC2 −MAX NCC2 − 1

]

(4.212)

Proof. Similar to Proposition149.

4.3. GRAPH INVARIANTS 393

Graph invariants relating five parameters of two final graphs

MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1

Proposition 151.

vpartition ∧ consecutive loops are connected :

MIN NCC1 ·max(0,NCC1 − 1) +MAX NCC1+

MIN NCC2 ·max(0,NCC1 − 2) +MAX NCC2 ≤ NVERTEXINITIAL

(4.213)

Proof. The left-hand side of151 corresponds to the minimum number of vertices of the two
final graphs provided that we build the smallest possible connected components.

Proposition 152.

vpartition ∧ consecutive loops are connected :

NCC1 ≤ (MAX NCC1 > 0) +

⌊

α

β

⌋

+
(

αmod β ≥ max(1,MIN NCC1)
)

{

• α = max(0,NVERTEXINITIAL −max(1,MAX NCC1)−max(1,MAX NCC2)),
• β = max(1,MIN NCC1) + max(1,MIN NCC2).

(4.214)

Proof. The maximum number of connected components is achieved by building non-empty
groups as small as possible, except for two groups of respective size max(1,MAX NCC1)
andmax(1,MAX NCC2), which have to be built.

Proposition 153.

vpartition ∧ consecutive loops are connected :

MAX NCC1 ·max(0,NCC1 − 1) +MIN NCC1+

MAX NCC2 ·NCC1 +MIN NCC2 ≥ NVERTEXINITIAL

(4.215)

Proof. The left-hand side of153 corresponds to the maximum number of vertices of the two
final graphs provided that we build the largest possible connected components.

Proposition 154.

vpartition ∧ consecutive loops are connected :

NCC1 ≥ (MAX NCC2 < NVERTEXINITIAL) +

⌊

α

β

⌋

+
(

αmod β > MAX NCC2

)

{

• α = max(0,NVERTEXINITIAL −MIN NCC1 −MIN NCC2,

• β = max(1,MAX NCC1) + max(1,MAX NCC2).

(4.216)

Proof. The minimum number of connected components is achieved by taking the groups as
large as possible except for two groups of respective sizeMIN NCC2 andMIN NCC1,
which have to be built.

394 CHAPTER 4. FURTHER TOPICS

Proposition 155.

vpartition ∧ consecutive loops are connected :

MAX NCC2 ≤ max(MIN NCC2,NVERTEXINITIAL − α), with :

• α = MIN NCC1 ·max(0,NCC1 − 1) +MAX NCC1+

MIN NCC2 +MIN NCC2 ·max(0,NCC1 − 3)

(4.217)

Proof. If NCC1 ≤ 1 we have thatMAX NCC2 ≤ MIN NCC2. Otherwise, when
NCC1 > 1, we have thatMIN NCC1 · max(0,NCC1 − 1) + MAX NCC1 +
MIN NCC2+MAX NCC2+MIN NCC2·max(0,NCC1−3) ≤ NVERTEXINITIAL.
NCC1 − 3 comes from the fact that we build the minimum number of connected components
in the second final graph (i.e.,NCC1 − 1 connected components) and that we have already
built two connected components of respective sizeMIN NCC2 andMAX NCC2. By iso-
latingMAX NCC2 in the previous expression and by grouping the two inequalities the result
follows.

Proposition 156.

apartition ∧ arc gen = PATH ∧MIN NCC1 > 1 ∧MIN NCC2 > 1 :

NCC1 ≤ (MAX NCC1 > 0) +

⌊

α

β

⌋

+ ((αmod β) + 1 ≥ MIN NCC1), with :

{

• α = max(0,NVERTEXINITIAL −MAX NCC1 −MAX NCC2 + 1),
• β = MIN NCC1 +MIN NCC2 − 2.

(4.218)

MAX_NCC1 MIN_NCC 1

MIN_NCC2MAX_NCC2

graph G

initial graph

2

graph G1

Figure 4.9:Illustration of Proposition156. Configuration achieving the maximum number of
connected components forG1 according to the size of the smallest and largest connected compo-
nents ofG1 andG2 and to an initial number of vertices (MAX NCC1 = 4,MAX NCC2 =

5,MIN NCC1 = 3,MIN NCC2 = 4,NVERTEXINITIAL = 14, α = max(0, 14 − 4 −
5+1) = 6, β = max(2, 3+4−2) = 5,NCC1 = (4 > 0)+

⌊

6
5

⌋

+(((6mod5)+1) ≥ 3) = 2)

Proof. The maximum number of connected components ofG1 is achieved by:

• Building a first connected component ofG1 involvingMAX NCC1 vertices,

• Building a first connected component ofG2 involvingMAX NCC2 vertices,

• Building alternatively a connected component ofG1 and a connected component ofG2

involving respectivelyMIN NCC1 andMIN NCC2 vertices,

4.3. GRAPH INVARIANTS 395

• Finally, if this is possible, building a connected component ofG1 involving
MIN NCC1 vertices.

Proposition 157.

apartition ∧ arc gen = PATH ∧MIN NCC1 > 1 ∧MIN NCC2 > 1 :

NCC1 ≥ (MIN NCC1 > 0) +

⌊

α

β

⌋

+ ((αmod β) + 1 > MAX NCC2), with :

{

• α = max(0,NVERTEXINITIAL −MIN NCC1 −MIN NCC2 + 1),
• β = MAX NCC1 +MAX NCC2 − 2.

(4.219)

graph G2

graph G1

initial graph

MAX_NCC

MAX_NCCMAX_NCC

1

2 2MIN_NCC2

MIN_NCC1

Figure 4.10: Illustration of Proposition157. Configuration achieving the minimum num-
ber of connected components forG1 according to the size of the smallest and largest con-
nected components ofG1 and G2 and to an initial number of vertices (MAX NCC1 =

4,MAX NCC2 = 5,MIN NCC1 = 3,MIN NCC2 = 4,NVERTEXINITIAL =

18, α = max(0, 18 − 3 − 4 + 1) = 12, β = max(2, 4 + 5 − 2) = 7,NCC1 = (3 >

0) +
⌊

12
7

⌋

+ (((12 mod 7) + 1) > 5) = 3)

Proof. The minimum number of connected components ofG1 is achieved by:

• Building a first connected component ofG2 involvingMIN NCC2 vertices,

• Building a first connected component ofG1 involvingMIN NCC1 vertices,

• Building alternatively a connected component ofG2 and a connected component ofG1

involving respectivelyMAX NCC2 andMAX NCC1 vertices,

• Finally, if this is possible, building a connected component ofG2 involving
MAX NCC2 vertices and a connected component ofG1 with the remaining vertices.
Note that these remaining vertices cannot be incorporated in the connected components
previously built.

396 CHAPTER 4. FURTHER TOPICS

MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC2

Proposition 158.

vpartition ∧ consecutive loops are connected :

MIN NCC2 ·max(0,NCC2 − 1) +MAX NCC2+

MIN NCC1 ·max(0,NCC2 − 2) +MAX NCC1 ≤ NVERTEXINITIAL

(4.220)

Proof. Similar to Proposition151.

Proposition 159.

vpartition ∧ consecutive loops are connected :

NCC2 ≤ (MAX NCC2 > 0) +

⌊

α

β

⌋

+
(

αmod β ≥ max(1,MIN NCC2)
)

{

• α = max(0,NVERTEXINITIAL −max(1,MAX NCC2)−max(1,MAX NCC1)),
• β = max(1,MIN NCC2) + max(1,MIN NCC1).

(4.221)

Proof. Similar to Proposition152.

Proposition 160.

vpartition ∧ consecutive loops are connected :

MAX NCC2 ·max(0,NCC2 − 1) +MIN NCC2+

MAX NCC1 ·NCC2 +MIN NCC1 ≥ NVERTEXINITIAL

(4.222)

Proof. Similar to Proposition153.

Proposition 161.

vpartition ∧ consecutive loops are connected :

NCC2 ≥ (MAX NCC1 < NVERTEXINITIAL) +

⌊

α

β

⌋

+
(

αmod β > MAX NCC1

)

{

• α = max(0,NVERTEXINITIAL −MIN NCC2 −MIN NCC1,

• β = max(1,MAX NCC2) + max(1,MAX NCC1).

(4.223)

Proof. Similar to Proposition154.

Proposition 162.

vpartition ∧ consecutive loops are connected :

MAX NCC1 ≤ max(MIN NCC1,NVERTEXINITIAL − α), with :

• α = MIN NCC2 ·max(0,NCC2 − 1) +MAX NCC2+

MIN NCC1 +MIN NCC1 ·max(0,NCC2 − 3)

(4.224)

Proof. Similar to Proposition155.

4.3. GRAPH INVARIANTS 397

Proposition 163.

apartition ∧ arc gen = PATH ∧MIN NCC1 > 1 ∧MIN NCC2 > 1 :

NCC2 ≤ (MAX NCC2 > 0) +

⌊

α

β

⌋

+ ((αmod β) + 1 ≥ MIN NCC2), with :

{

• α = max(0,NVERTEXINITIAL −MAX NCC1 −MAX NCC2 + 1),
• β = MIN NCC1 +MIN NCC2 − 2.

(4.225)

Proof. Similar to Proposition156.

Proposition 164.

apartition ∧ arc gen = PATH ∧MIN NCC1 > 1 ∧MIN NCC2 > 1 :

NCC2 ≥ (MIN NCC2 > 0) +

⌊

α

β

⌋

+ ((αmod β) + 1 > MAX NCC1, with :

{

• α = max(0,NVERTEXINITIAL −MIN NCC1 −MIN NCC2 + 1),
• β = MAX NCC1 +MAX NCC2 − 2.

(4.226)

Proof. Similar to Proposition157.

398 CHAPTER 4. FURTHER TOPICS

Graph invariants relating six parameters of two final graphs

MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1, NCC2

Proposition 165.

apartition ∧ arc gen = PATH ∧NVERTEXINITIAL > 0 :

α ·MIN NCC1 +MAX NCC1+

β ·MIN NCC2 +MAX NCC2 ≤ NVERTEXINITIAL +NCC1 +NCC2 − 1, with :
{

• α = max(0,NCC1 − 1),
• β = max(0,NCC2 − 1).

(4.227)

Proof. Let CC(G1) = {CC1
a : a ∈ [NCC1]} andCC(G2) = {CC2

a : a ∈ [NCC2]} be
respectively the set of connected components of the first and the second final graphs. Since the
initial graph is a path, and since each arc of the initial graph belongs to the first or to the second
final graphs (but not to both), there exists(Ai)i∈[NCC1+NCC2] and there existsj ∈ [2] such that
Ai ∈ CC(G1+(j mod 2)), for i mod 2 = 0 andAi ∈ CC(G1+((j+1) mod 2)) for i mod 2 = 1
andAi ∩Ai+1 6= ∅ for i ∈ [NCC1 +NCC2 − 1].
By inclusion-exclusion principle, sinceAi ∩ Aj = ∅ wheneverj 6= i + 1, we obtain
NVERTEXINITIAL = Σa∈[NCC1]|CC1

a| + Σa∈[NCC2]|CC2
a| − Σi∈[NCC1+NCC2−1]|Ai ∩

Ai+1|. Since|Ai ∩ Ai+1| is equal to1 for every well definedi, we obtainΣa∈[NCC1]|CC1
a|+

Σa∈[NCC2]|CC2
a| = NVERTEXINITIAL +NCC1 +NCC2− 1.

Since α · MIN NCC1 + MAX NCC1 + β · MIN NCC2 + MAX NCC2 ≤
Σa∈[NCC1]|CC1

a|+Σa∈[NCC2]|CC2
a| the result follows.

Proposition 166.

apartition ∧ arc gen = PATH ∧NVERTEXINITIAL > 0 :

α ·MAX NCC1 +MIN NCC1+

β ·MAX NCC2 +MIN NCC2 ≥ NVERTEXINITIAL +NCC1 +NCC2 − 1, with :
{

• α = max(0,NCC1 − 1),
• β = max(0,NCC2 − 1).

(4.228)

Proof. Similar to Proposition165.

4.4. THE ELECTRONIC VERSION OF THE CATALOGUE 399

4.4 The electronic version of the catalogue

4.4.1 Prolog facts describing a constraint

An electronic version of the catalogue containing every global constraint of the cata-
logue is given in Appendix B. In addition the entry “Utilities” contains a set of shared
utilities used for evaluating the constraints. This electronic version was used for gen-
erating the LATEX file of this catalogue, the figures associated with the graph-based
description and a filtering algorithm for some of the constraints that use the automa-
ton-based description. Within the electronic version, each constraint is described in
terms of meta-data. A typical entry is:

400 CHAPTER 4. FURTHER TOPICS

ctr_date(minimum, [’20000128’,’20030820’,’20040530’,
’20041230’,’20060811’,’20090416’]).

ctr_origin(minimum, ’\\index{CHIP|indexuse}CHIP’, []) .

ctr_arguments(minimum, [’MIN’-dvar, ’VARIABLES’-collection(var-dvar)]).

ctr_exchangeable(minimum,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],int,=\=,all,in),
translate([’MIN’,’VARIABLES’ˆvar])]).

ctr_synonyms(minimum, [min]).

ctr_restrictions(minimum, [size(’VARIABLES’) > 0, requi red(’VARIABLES’,var)]).

ctr_graph(minimum,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆkey = variables2ˆkey #\/ variables1ˆvar < var iables2ˆvar],
[’ORDER’(0,’MAXINT’,var) = ’MIN’],
[]).

ctr_example(minimum, minimum(2,[[var-3],[var-2],[var -7],[var-2],[var-6]])).

ctr_see_also(minimum,
[link(’generalisation’, minimum_modulo,

’%e replaced by %e’, [variable, variable mod constant]),
link(’specialisation’, min_n,

’minimum or order %e replaced by absolute minimum’, [n]),
link(’comparison swapped’, maximum, ’’, []),
link(’common keyword’, maximum, ’%k’, [’order constraint ’]),
link(’soft variant’, open_minimum, ’%k’, [’open constrai nt’]),
link(’soft variant’, minimum_except_0, ’value %e is ignor ed’, [0]),
link(’implies’, between_min_max, ’’, []),
link(’implies’, in, ’’, []),
link(’implied by’, and, ’’, [])]).

ctr_key_words(minimum,[’order constraint’ ,
’minimum’ ,
’maxint’ ,
’automaton’ ,
’automaton without counters’ ,
’reified automaton constraint’ ,
’centered cyclic(1) constraint network(1)’,
’arc-consistency’]).

ctr_persons(minimum,[’Beldiceanu N.’]).

ctr_eval(minimum, [builtin(minimum_b), automaton(mini mum_a)]).

minimum_b(MIN, VARIABLES) :-
check_type(dvar, MIN), collection(VARIABLES, [dvar]),
length(VARIABLES, N), N > 0,
get_attr1(VARIABLES, VARS), minimum(MIN, VARS).

minimum_a(MIN, VARIABLES) :- % 0: MIN<VAR, 1: MIN=VAR, 2: MI N>VAR
minimum_signature(VARIABLES, SIGNATURE, MIN),
automaton(SIGNATURE, _, SIGNATURE,

[source(s),sink(t)], [arc(s,0,s),arc(s,1,t),arc(t,1, t),arc(t,0,t)],
[],[],[]).

minimum_signature([], [], _).
minimum_signature([[var-VAR]|VARs], [S|Ss], MIN) :-

S in 0..2,
MIN #< VAR #<=> S #= 0, MIN #= VAR #<=> S #= 1, MIN #> VAR #<=> S #= 2,
minimum_signature(VARs, Ss, MIN).

4.4. THE ELECTRONIC VERSION OF THE CATALOGUE 401

and consists of the following Prolog facts, whereCONSTRAINT NAME is the name of the
constraint under consideration. The facts are organised inthe following15 items:

• Items1, 2, 3, 4, 12 and13 provide general information about a global constraint,

• Items5, 6 and7 describe the arguments of a global constraint.

• Items 9 and 10 describes the meaning of a global constraint in terms of a
graph-based representation.

• Item11 provides a ground instance which holds.

• Item14 gives the list of available evaluators of a global constraint.

• Item 15 describes the meaning of a global constraint in terms of a setof first
order logic formulae.

Items1, 2, 6 and11 are mandatory, while all other items are optional. We now give the
different items:

1. ctr date (CONSTRAINT NAME, LIST OF DATES OF MODIFICATIONS)

• LIST OF DATES OF MODIFICATIONS is a list of dates when the description of the
constraint was modified.

2. ctr origin (CONSTRAINT NAME, STRING, LIST OF CONSTRAINTS NAMES)

• STRING is a string denoting the origin of the constraint.
LIST OF CONSTRAINTS NAMES is a possibly empty list of constraint names
related to the origin of the constraint.

3. ctr usual name(CONSTRAINT NAME, USUAL NAME)

• When, for some reason, the constraint name used in the catalogue doesnot corre-
spond to the usual name of the constraint,USUAL NAME provides the usual name
of the constraint. This stems from the fact that each entry of the catalogueshould
have a distinct name. This is for instance the case for thestretch path and the
stretch circuit constraints which are both usually calledstretch.

4. ctr synonyms (CONSTRAINT NAME, LIST OF SYNONYMS)

• LIST OF SYNONYMS is a list of synonyms for the constraint. This stems from
the fact that, quite often, different authors use a different name for the same
constraint. This is for instance the case for thealldifferent and the
symmetric alldifferent constraints.

402 CHAPTER 4. FURTHER TOPICS

5. ctr types (CONSTRAINT NAME, LIST OF TYPES DECLARATIONS)

• LIST OF TYPES DECLARATIONS is a list of elements of the formname-type, where
name is the name of a new type andtype the type itself (usually a collection). Basic
and compound data types were respectively introduced in sections2.1.1and2.1.2
on page6. This field is only used when we need to declare a new type that will be
used for specifying the type of the arguments of the constraint. This is forinstance
the case when one argument of the constraint is a collection for which the type
of one attribute is also a collection. This is for instance the case for thediffn

constraint where the unique argumentORTHOTOPES is a collection ofORTHOTOPE;
ORTHOTOPE refers to a new type declared inLIST OF TYPES DECLARATIONS.

6. ctr arguments (CONSTRAINT NAME, LIST OF ARGUMENTS DECLARATIONS)

• LIST OF ARGUMENTS DECLARATIONS is a list of elements of the formarg-type,
wherearg is the name of an argument of the constraint andtype the type of the
argument. Basic and compound data types were respectively introduced in sec-
tions2.1.1and2.1.2on page6.

7. ctr restrictions (CONSTRAINT NAME, LIST OF RESTRICTIONS)

• LIST OF RESTRICTIONS is a list of restrictions on the different argument of the
constraint. Possible restrictions were described in Section2.1.3on page9.

8. ctr exchangeable (CONSTRAINT NAME, LIST OF SYMMETRIES)

• LIST OF SYMMETRIES is a list of mappings preserving the solutions of the con-
straint. Possible mappings were described in Section2.1.5on page18.

9. ctr derived collections (CONSTRAINT NAME, LIST OF DERIVED COLLECTIONS)

• LIST OF DERIVED COLLECTIONS is a list of derived collections. Derived collec-
tions are collections that are computed from the arguments of the constraint and
are used in the graph-based description. Derived collections were described in Sec-
tion 2.2.2on page42.

10. ctr graph (CONSTRAINT NAME, LIST OF ARC INPUT, ARC ARITY,

ARC GENERATORS, ARC CONSTRAINTS, GRAPH PROPERTIES)

• LIST OF ARC INPUT is a list of collections used for creating the vertices of the
initial graph. This was described at page70of Section2.2.3.

• ARC ARITY is the number of vertices of an arc. Arc arity was explained at page72
of Section2.2.3.

• ARC GENERATORS is a list of arc generators. Arc generators were introduced at page
71of Section2.2.3.

• ARC CONSTRAINTS is a list of arc constraints. Arc constraints were defined in Sec-
tion 2.2.2on page48.

• GRAPH PROPERTIES is a list of graph properties. Graph properties were described
in Section2.2.2on page57.

4.4. THE ELECTRONIC VERSION OF THE CATALOGUE 403

11. ctr example (CONSTRAINT NAME, LIST OF EXAMPLES)

• LIST OF EXAMPLES is a list of examples (usually one). Each example corresponds
to a ground instance for which the constraint holds.

12. ctr see also (CONSTRAINT NAME, LIST OF CONSTRAINTS)

• LIST OF CONSTRAINTS is a list of constraints that are related in some
way to the constraint. Each element of the list is a fact of the form
link(TYPE OF LINK, CONSTRAINT, STRING, SYMBOLS), where:

– TYPE OF LINK is a semantic link that explains why we refer toCONSTRAINT.
Semantic links were described in Section2.5on page84.

– CONSTRAINT is the name of the constraint that is linked toCONSTRAINT NAME.

– STRING is a string providing contextual explanation.

– SYMBOLS is a list of symbols (e.g., keywords, constraint names, mathematical
expressions) that are inserted inSTRING.

13. ctr key words (CONSTRAINT NAME, LIST OF KEYWORDS)

• LIST OF KEYWORDS is a list of keywords associated with the constraint. Keywords
may be linked to themeaningof the constraint, to atypical patternwhere the con-
straint can be applied or to aspecific problemwhere the constraint is useful. All
keywords used in the catalogue are listed in alphabetic order in Section3.7on page
147. Each keyword has an entry explaining its meaning and providing the list of
global constraints using that keyword.

14. ctr eval (CONSTRAINT NAME, LIST OF EVALUATORS)

• For many of the constraints of the catalogue one or several evaluators are provided.
Each evaluator is explicitly described inLIST OF EVALUATORS by an element of
the formmethod(predicate name), wherepredicate name is the name of the
Prolog predicate to call in order to evaluate the constraint,1, andmethod can be one
of the following keywords:

– builtin when the corresponding evaluator uses aSICStus built-in. This is
for instance the case for thealldifferent constraint.

– reformulation when the corresponding evaluator reformulates the con-
straints in terms of a conjunction of constraints of the catalogue and/or in
term of a conjunction of reified constraints. This is for instance the case for
thetree constraint.

– automaton when the corresponding evaluator is based on an automaton that
describes the set of solutions accepted by the constraint. The evaluator cor-
responds to the Prolog code that creates the signature constraints as wellas
the automata (usually one) associated with the constraint. A fact of the form
automaton/9 lists the states and the transitions of the automata used for
describing the set of solutions accepted by the constraint. It follows the de-
scription provided in Section2.3.2on page82. Thepattern constraint is an
example of constraint for which an automaton is provided.

1Note that this predicate name should be different from existingSICStusbuilt-ins

http://www.sics.se/sicstus/
http://www.sics.se/sicstus/

404 CHAPTER 4. FURTHER TOPICS

– logicwhen the corresponding evaluator is based on a first order logic formula
that describes the meaning of the constraint. This is for instance the case for
themeet sboxes constraint.

– checker when the corresponding evaluator only accepts ground instances of
the constraint. This is for instance the case for thecycle constraint.

15. ctr logic (CONSTRAINT NAME, LIST OF FIRST ORDER LOGIC FORMULAE)

• LIST OF FIRST ORDER LOGIC FORMULAE is a list of first order logical formulae
that describe the meaning of the constraint [93].

4.4.2 XML schema associated with a global constraint

In this section we describe an XML schema associated with theglobal constraint cata-
logue. We present the motivation for this schema, how it integrates with the description
of the constraint in the catalogue, and how the schema information is updated when the
catalogue is modified.

Related work

There have been a number of approaches to defining an exchangeformat for constraint
models.

The seminal OPL language [392] provides a modelling language for constraint pro-
grams, which is linked to Ilog’s solver products. Its use an exchange format is limited
by its proprietary background. MiniZinc [273] is a subset of the Zinc modelling lan-
guage intended to be compiled to multiple solver implementations. First, a model in
FlatZinc is generated from the MiniZinc model, removing alliteration (respectively re-
cursion). The flat model can then be compiled into different solver implementations,
currently Mercury,ECLiPSe andGecode. The development of new back-ends is fa-
cilitated by the co-development of the Cadmium [375] term-rewriting system, which
can parse and transform FlatZinc code.

The work most closely related to our format probably is the XML format used for
the CSP solver competitions [389]. We reviewed an earlier draft version before gener-
ating our own schema for the catalogue, the 2007 version (forthe 2008 competition)
is described in [276]. It is intended as a solver independent format, which can beused
by all participants of the competition. As a design choice, the authors decided not to
fully structure the format, e.g. to use string values to holdstructured information. In
order to understand the actual meaning of the model, these strings need to be parsed
and analysed as well. This may have size advantages for CSP data given in extensional
form, but makes it more complex to check validity of a data file.

Key features

The following list summarizes the core features of our XML format and the associated
schema:

http://eclipseclp.org/
http://www.gecode.org/

4.4. THE ELECTRONIC VERSION OF THE CATALOGUE 405

language independentThe underlying description of the constraint in the catalogue
is provided as Prolog facts. These may be difficult/tedious to read in other pro-
gramming languages. The use of XML as an exchange format allows use with
most programming languages via provided XML parsers.

machine readable, precise formatThe format is precisely defined, using XML
schema data types throughout, so that validity of a model canbe checked with
standard XML tools.

one-to-one match with the data format used for the catalogThe internal structure
of the schema follows the data format for the constraints in the rest of the cat-
alogue. This minimises the need for relearning, once the basic format of the
catalogue description has been understood.

detailed description of the allowed format for arguments For each global con-
straint, the allowed format of the argument is specified in great detail. As the
complexity of global constraints increases, this becomes more and more impor-
tant to simplify the generation of valid problem files.

automated generation of schema from the catalogue data filesThe schema is auto-
matically generated from the catalogue data files by the simple generator pro-
gram. This keeps the schema up-to-date with changes of the catalogue, and
reduces the task of schema maintenance.

generation of examples for each constraintExample XML files based on the exam-
ples in the catalogue can be generated automatically, so that a link to these ex-
amples can be added to each catalogue entry.

generation of diagrams describing schema for each constraint At the same time,
graph structures of the schema for each constraint can be automatically gener-
ated using thegraphviz[168] tool. This can help a human user to produce XML
data for a particular constraint without reading the details of the schema.

Structure of schema

Model The top-level element for the schema ismodel, which contains an optional
variableselement and a requiredconstraintselement.

Variables Thevariableselement consists of a non-empty sequence ofvariableele-
ments, each describing a single variable which may occur in some of the constraints.
Each variable has some attributes, an requiredid, an optionalnameand a requiredex-
ternal. The id is an XML schemaID used to refer to the variable in the constraints of
the model, thenameis astring which describes the variable to the user, andexternal
is a “yes”/“no” string which states if the variable is visible outside the model.

The domains of variables are not described as part of the variables section, special
unary constraints (e.g.,in interval) are used in the constraint section instead.

406 CHAPTER 4. FURTHER TOPICS

constraints The constraintselement consists of one or more elements representing
constraints in the catalogue. The constraints can be statedin any order, with the under-
standing that the order may influence the sequence in which they are introduced to the
solver.

For each constraint in the catalogue, a specific element withthe same name is
described in the schema. This imposes restrictions on the names of constraints in the
catalogue, only alphanumerical names (with underscores) should be used.

Each constraint has attributesid (typeID), aname(typestring) and an optionalde-
scription(typestring). Thenameanddescriptioncan be used to include user-readable
information about the constraint for example for debuggingor explanations.

For each introduced element, a sequence of arguments is defined to define the ar-
guments of the constraints in the same order as described in the catalogue. Each of the
arguments has a specific type, which is defined in accordance with the catalogue def-
inition. The argument names can be reused throughout the catalogue, as long as they
are unique within each constraint. Arguments can have atomic values (i.e., consist of a
single value), or they may becollectionelements.

collection Roughly, collections correspond to lists in Prolog. Collections can be
empty, or must contain entries of the same type. Collectionscan be nested as required.

item Items correspond to terms in Prolog. Items have named arguments, for which
the same rules apply as for the arguments of constraints. Thedifferent arguments of an
item can be of different type.

Generating schema from the catalogue

There are two programs which can be used to build the schema description from the
data describing the catalogue. They should be run whenever adescription of a con-
straint in the catalogue has been changed.

schema.ecl The ECLiPSe [9] programschema.eclcan be used to re-generate the
schema when the catalogue description has been modified. Thequeryschema.pro-
duces the schema from descriptions in thesrc directory, the querytop. produces exam-
ple files for each constraint in thexml directory.

The predicatehandletable defines which of the restrictions in the constraint de-
scription are included as part of the schema information. Many of the more complex
rules cannot be easily checked by the schema, an entry inhandletablesays to ignore
the restriction for the moment.

schemadot.ecl The programschemadot.eclcan be used to generategraphvizdot
files from the schema fileschema.xsd. The generated files are placed in theimages
directory, and adot command to produce.png and .eps output is run in the same
directory. The pixel based png files are intended for use in web pages, the scalable
eps files can be used in LATEX files producing postscript or pdf documents.

http://eclipseclp.org/

4.4. THE ELECTRONIC VERSION OF THE CATALOGUE 407

There are some predicates inschemadot.eclwhich control the format of the gen-
erated graph. They are:

• The predicaterangestyle controls the display of range information, and op-
tional/required choices for attributes.

• The predicatetypeshapedefines the shape and color of the different elements in
the schema for a constraint.

• The predicatematchbuiltin provides an abbreviated element name for some of
the predefined element types in the schema. This is required as the graphs should
not become too big to fit onto a single A4 page in the output.

Conclusion

We have described the rationale and details for an XML schemaattached to the global
constraint catalogue. It allows to describe models using the constraints of the catalogue
as flat XML files, which are a good exchange format for generating and/or parsing
constraint data.

408 CHAPTER 4. FURTHER TOPICS

Chapter 5

Global Constraint Catalogue

Contents
5.1 absvalue . 420
5.2 all differ from at least k pos 422
5.3 all equal . 426
5.4 all incomparable . 428
5.5 all min dist . 430
5.6 alldifferent . 434
5.7 alldifferent betweensets. 442
5.8 alldifferent consecutivevalues 444
5.9 alldifferent cst . 446
5.10 alldifferent except0 . 450
5.11 alldifferent interval . 454
5.12 alldifferent modulo . 458
5.13 alldifferent on intersection 462
5.14 alldifferent partition . 466
5.15 alldifferent samevalue . 470
5.16 allperm . 474
5.17 among. 478
5.18 amongdiff 0 . 486
5.19 amonginterval . 490
5.20 amonglow up . 494
5.21 amongmodulo . 498
5.22 amongseq . 502
5.23 amongvar . 506
5.24 and . 510
5.25 arith . 514
5.26 arith or . 518
5.27 arith sliding . 522

409

410 CHAPTER 5. GLOBAL CONSTRAINT CATALOGUE

5.28 assignand counts . 526
5.29 assignand nvalues . 530
5.30 atleast. 534
5.31 atleastnvalue . 538
5.32 atleastnvector . 542
5.33 atmost. 546
5.34 atmost1 . 550
5.35 atmostnvalue . 552
5.36 atmostnvector . 556
5.37 balance . 560
5.38 balancecycle . 566
5.39 balanceinterval . 570
5.40 balancemodulo . 574
5.41 balancepartition . 578
5.42 balancepath . 582
5.43 balancetree . 586
5.44 betweenmin max . 590
5.45 bin packing . 594
5.46 bin packing capa. 600
5.47 binary tree . 602
5.48 bipartite . 606
5.49 calendar . 610
5.50 cardinality atleast . 620
5.51 cardinality atmost . 624
5.52 cardinality atmost partition 628
5.53 change . 632
5.54 changecontinuity . 638
5.55 changepair . 650
5.56 changepartition . 656
5.57 changevectors . 660
5.58 circuit . 662
5.59 circuit cluster . 666
5.60 circular change. 672
5.61 clauseand . 676
5.62 clauseor . 680
5.63 clique . 684
5.64 coloredmatrix . 688
5.65 colouredcumulative . 692
5.66 colouredcumulatives . 698
5.67 common. 704
5.68 commoninterval . 708
5.69 commonmodulo . 712
5.70 commonpartition . 716

411

5.71 compareand count . 720
5.72 condlex cost . 722
5.73 condlex greater . 726
5.74 condlex greatereq . 730
5.75 condlex less . 734
5.76 condlex lesseq . 738
5.77 connectpoints . 742
5.78 connected. 746
5.79 consecutivegroups of ones 748
5.80 consecutivevalues . 752
5.81 containssboxes. 754
5.82 correspondence. 758
5.83 count . 762
5.84 counts. 766
5.85 coveredbysboxes. 770
5.86 coverssboxes. 776
5.87 crossing. 782
5.88 cumulative . 786
5.89 cumulativeconvex . 794
5.90 cumulativeproduct . 802
5.91 cumulativetwo d . 808
5.92 cumulativewith level of priority 812
5.93 cumulatives. 818
5.94 cutset . 824
5.95 cycle. 828
5.96 cyclecard on path . 834
5.97 cycleor accessibility . 838
5.98 cycleresource . 842
5.99 cyclicchange . 848
5.100 cyclicchangejoker . 852
5.101 dag . 856
5.102 decreasing . 858
5.103 deepestvalley . 862
5.104 derangement. 866
5.105 differ from at least k pos . 868
5.106 diffn . 872
5.107 diffn column . 882
5.108 diffn include . 886
5.109 discrepancy. 890
5.110 disj . 894
5.111 disjoint . 898
5.112 disjoint sboxes . 902
5.113 disjoint tasks . 908

412 CHAPTER 5. GLOBAL CONSTRAINT CATALOGUE

5.114 disjunctive . 912
5.115 disjunctiveor sameend . 916
5.116 disjunctiveor samestart . 918
5.117 distance. 920
5.118 distancebetween . 922
5.119 distancechange . 926
5.120 divisible . 930
5.121 divisibleor . 932
5.122 domreachability . 934
5.123 domain . 938
5.124 domainconstraint . 940
5.125 elem. 946
5.126 elemfrom to . 954
5.127 element . 958
5.128 elementgreatereq . 962
5.129 elementlesseq . 966
5.130 elementmatrix . 970
5.131 elementproduct . 974
5.132 elementsparse . 978
5.133 elementn . 982
5.134 elements . 986
5.135 elementsalldifferent . 990
5.136 elementssparse . 996
5.137 eq . 1000
5.138 eqcst . 1002
5.139 eqset . 1004
5.140 equalsboxes . 1006
5.141 equivalent. 1010
5.142 exactly . 1012
5.143 gcd . 1016
5.144 geost. 1018
5.145 geosttime . 1024
5.146 geq . 1030
5.147 geqcst . 1032
5.148 globalcardinality . 1034
5.149 globalcardinality low up . 1040
5.150 globalcardinality low up no loop 1044
5.151 globalcardinality no loop . 1048
5.152 globalcardinality with costs 1052
5.153 globalcontiguity . 1058
5.154 golomb . 1062
5.155 graphcrossing . 1066
5.156 graphisomorphism . 1072

413

5.157 group . 1076
5.158 groupskip isolated item . 1088
5.159 gt . 1098
5.160 highestpeak . 1100
5.161 imply . 1104
5.162 in . 1106
5.163 in interval . 1110
5.164 in interval reified . 1114
5.165 in intervals . 1118
5.166 in relation . 1120
5.167 in samepartition . 1124
5.168 in set . 1128
5.169 incomparable. 1130
5.170 increasing. 1132
5.171 increasingglobal cardinality 1136
5.172 increasingnvalue . 1142
5.173 increasingnvalue chain . 1148
5.174 increasingsum . 1154
5.175 indexedsum . 1156
5.176 inflexion. 1160
5.177 insidesboxes . 1164
5.178 int value precede. 1168
5.179 int value precedechain . 1172
5.180 interval and count . 1178
5.181 interval and sum . 1184
5.182 inverse . 1188
5.183 inverseoffset . 1194
5.184 inverseset . 1198
5.185 inversewithin range . 1202
5.186 ith pos different from 0 . 1206
5.187 k alldifferent . 1208
5.188 k cut . 1216
5.189 k disjoint . 1218
5.190 k same . 1222
5.191 k sameinterval . 1226
5.192 k samemodulo . 1230
5.193 k samepartition . 1234
5.194 k usedby . 1238
5.195 k usedby interval . 1242
5.196 k usedby modulo . 1246
5.197 k usedby partition . 1250
5.198 lengthfirst sequence. 1254
5.199 lengthlast sequence. 1258

414 CHAPTER 5. GLOBAL CONSTRAINT CATALOGUE

5.200 leq. 1262
5.201 leqcst . 1264
5.202 lex2 . 1266
5.203 lexalldifferent . 1268
5.204 lexbetween . 1272
5.205 lexchain less . 1276
5.206 lexchain lesseq . 1280
5.207 lexdifferent . 1284
5.208 lexequal . 1288
5.209 lexgreater . 1292
5.210 lexgreatereq . 1298
5.211 lexless . 1304
5.212 lexlesseq . 1310
5.213 lexlesseqallperm . 1316
5.214 link set to booleans . 1318
5.215 longestchange . 1322
5.216 lt . 1326
5.217 map . 1328
5.218 maxindex . 1332
5.219 maxn . 1334
5.220 maxnvalue . 1338
5.221 maxsizeset of consecutivevar 1344
5.222 maximum. 1348
5.223 maximummodulo . 1352
5.224 meetsboxes. 1354
5.225 min index . 1360
5.226 min n . 1364
5.227 min nvalue . 1368
5.228 min sizeset of consecutivevar 1374
5.229 minimum . 1378
5.230 minimum except0 . 1382
5.231 minimum greater than . 1386
5.232 minimum modulo . 1392
5.233 minimum weight alldifferent 1394
5.234 multi global contiguity . 1398
5.235 multi inter distance . 1400
5.236 nand. 1402
5.237 nclass. 1406
5.238 neq . 1410
5.239 neqcst . 1412
5.240 nequivalence . 1414
5.241 nextelement . 1418
5.242 nextgreater element . 1424

415

5.243 ninterval . 1428
5.244 nopeak . 1432
5.245 novalley . 1436
5.246 nonoverlap sboxes . 1440
5.247 nor . 1446
5.248 notall equal . 1450
5.249 not in . 1454
5.250 npair . 1458
5.251 nsetof consecutivevalues . 1462
5.252 nvalue. 1466
5.253 nvalueon intersection . 1472
5.254 nvalues . 1476
5.255 nvaluesexcept0 . 1480
5.256 nvector . 1484
5.257 nvectors. 1490
5.258 nvisiblefrom end . 1494
5.259 nvisiblefrom start . 1496
5.260 openalldifferent . 1498
5.261 openamong . 1502
5.262 openatleast . 1506
5.263 openatmost . 1508
5.264 openglobal cardinality . 1510
5.265 openglobal cardinality low up 1514
5.266 openmaximum . 1518
5.267 openminimum . 1520
5.268 oppositesign . 1522
5.269 or . 1524
5.270 orchard . 1528
5.271 orderedatleast nvector . 1532
5.272 orderedatmost nvector . 1536
5.273 orderedglobal cardinality 1540
5.274 orderednvector . 1544
5.275 orth link ori siz end . 1548
5.276 orth on the ground . 1552
5.277 orth on top of orth . 1554
5.278 orthsare connected . 1558
5.279 overlapsboxes . 1562
5.280 path . 1566
5.281 pathfrom to . 1570
5.282 pattern . 1574
5.283 peak. 1578
5.284 period . 1582
5.285 periodexcept0 . 1584

416 CHAPTER 5. GLOBAL CONSTRAINT CATALOGUE

5.286 periodvectors . 1586
5.287 permutation . 1588
5.288 placein pyramid . 1590
5.289 polyomino . 1594
5.290 power . 1598
5.291 precedence. 1600
5.292 product ctr . 1602
5.293 proper forest . 1604
5.294 rangectr . 1608
5.295 relaxedsliding sum . 1612
5.296 remainder . 1616
5.297 roots. 1618
5.298 same. 1622
5.299 sameand global cardinality 1630
5.300 sameand global cardinality low up 1634
5.301 sameintersection . 1640
5.302 sameinterval . 1644
5.303 samemodulo . 1648
5.304 samepartition . 1652
5.305 samesign . 1656
5.306 scalarproduct . 1658
5.307 sequencefolding . 1660
5.308 setvalue precede. 1666
5.309 shift . 1668
5.310 signof . 1672
5.311 sizemax seqalldifferent . 1674
5.312 sizemax starting seqalldifferent 1678
5.313 slidingcard skip0 . 1682
5.314 slidingdistribution . 1686
5.315 slidingsum . 1690
5.316 slidingtime window . 1694
5.317 slidingtime window from start 1698
5.318 slidingtime window sum . 1702
5.319 smooth . 1708
5.320 softall equal max var . 1714
5.321 softall equal min ctr . 1716
5.322 softall equal min var . 1720
5.323 softalldifferent ctr . 1726
5.324 softalldifferent var . 1730
5.325 softcumulative . 1734
5.326 softsameinterval var . 1738
5.327 softsamemodulo var . 1742
5.328 softsamepartition var . 1746

417

5.329 softsamevar . 1750
5.330 softusedby interval var . 1754
5.331 softusedby modulo var . 1758
5.332 softusedby partition var . 1762
5.333 softusedby var . 1766
5.334 someequal . 1770
5.335 sort . 1772
5.336 sortpermutation . 1778
5.337 stablecompatibility . 1784
5.338 stageelement . 1792
5.339 stretchcircuit . 1798
5.340 stretchpath . 1802
5.341 stretchpath partition . 1810
5.342 strict lex2 . 1814
5.343 strictly decreasing . 1816
5.344 strictly increasing . 1820
5.345 stronglyconnected. 1824
5.346 subgraphisomorphism . 1826
5.347 sum . 1830
5.348 sumctr . 1834
5.349 sumcubesctr . 1838
5.350 sumfree . 1840
5.351 sumof increments . 1842
5.352 sumof weights of distinct values 1844
5.353 sumset . 1848
5.354 sumsquaresctr . 1850
5.355 symmetric . 1852
5.356 symmetricalldifferent . 1854
5.357 symmetricalldifferent except0 1858
5.358 symmetriccardinality . 1860
5.359 symmetricgcc . 1864
5.360 temporalpath . 1868
5.361 tour . 1874
5.362 track . 1878
5.363 tree . 1884
5.364 treerange . 1888
5.365 treeresource . 1892
5.366 twin . 1896
5.367 twolayer edgecrossing . 1898
5.368 twoorth are in contact . 1902
5.369 twoorth column . 1906
5.370 twoorth do not overlap . 1910
5.371 twoorth include . 1914

418 CHAPTER 5. GLOBAL CONSTRAINT CATALOGUE

5.372 usedby . 1918

5.373 usedby interval . 1924

5.374 usedby modulo . 1928

5.375 usedby partition . 1932

5.376 uses. 1936

5.377 valley . 1940

5.378 veceq tuple . 1944

5.379 visible . 1946

5.380 weightedpartial alldiff . 1958

5.381 xor . 1962

419

420 PREDEFINED

5.1 absvalue

DESCRIPTION LINKS

Origin Arithmetic.

Constraint abs value(Y, X)

Usual name abs

Synonym absolute value.

Arguments Y : dvar

X : dvar

Restriction Y ≥ 0

Purpose Enforce the fact that the first variable is equal to the absolute value of thesecond variable.

Example (8,−8)

Theabs value constraint holds since8 is equal to| − 8|.

Arg. properties
Functional dependency: Y determined byX.

Systems abs in Choco, abs in Gecode.

See also implied by: eq.

implies: geq.

Keywords constraint arguments:binary constraint, pure functional dependency.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.

modelling: functional dependency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntArith.html
http://www.gecode.org/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20100821 421

422 NARC,CLIQUE(6=)

5.2 all differ from at least k pos

DESCRIPTION LINKS GRAPH

Origin Inspired by [164].

Constraint all differ from at least k pos(K, VECTORS)

Type VECTOR : collection(var−dvar)

Arguments K : int

VECTORS : collection(vec− VECTOR)

Restrictions required(VECTOR, var)
|VECTOR| ≥ 1
|VECTOR| ≥ K

K ≥ 0
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose
Enforce all pairs of distinct vectors of theVECTORS collection to differ from at leastK
positions.

Example

 2,

〈

vec− 〈2, 5, 2, 0〉 ,
vec− 〈3, 6, 2, 1〉 ,
vec− 〈3, 6, 1, 0〉

〉

Theall differ from at least k pos constraint holds since:

• The first and second vectors differ from3 positions, which is greater than or equal to
K = 2.

• The first and third vectors differ from3 positions, which is greater than or equal to
K = 2.

• The second and third vectors differ from2 positions, which is greater than or equal
to K = 2.

Typical K > 0
|VECTOR| < |VECTORS|
|VECTORS| > 1

Symmetries • Items ofVECTORS arepermutable.

• Items ofVECTORS.vec arepermutable(same permutation used).

Arg. properties
• Contractiblewrt. VECTORS.

• Extensiblewrt. VECTORS.vec (add items at same position).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

20030820 423

See also part of system of constraints:differ from at least k pos.

used in graph description:differ from at least k pos.

Keywords application area: bioinformatics.

characteristic of a constraint: disequality, vector.

constraint type: system of constraints, decomposition.

final graph structure: no loop, symmetric.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

424 NARC,CLIQUE(6=)

Arc input(s) VECTORS

Arc generator CLIQUE (6=) 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) differ from at least k pos(K, vectors1.vec, vectors2.vec)

Graph property(ies) NARC= |VECTORS| ∗ |VECTORS| − |VECTORS|
Graph class • NO LOOP

• SYMMETRIC

Graph model TheArc constraint(s) slot uses thediffer from at least k pos constraint defined in
this catalogue.

Parts (A) and (B) of Figure5.1respectively show the initial and final graph associated with
theExampleslot. Since we use theNARC graph property, the arcs of the final graph are
stressed in bold. The previous constraint holds since exactly3 · (3− 1) = 6 arc constraints
hold.

VECTORS

1

2

3

NARC=6

1:2
 5
 2
 0

2:3
 6
 2
 1

3:3
 6
 1
 0

(A) (B)

Figure 5.1: Initial and final graph of theall differ from at least k pos con-
straint

Signature Since we use theCLIQUE (6=) arc generator on the items of theVECTORS collection, the
expression|VECTORS| · |VECTORS| − |VECTORS| corresponds to the maximum number of
arcs of the final graph. Therefore we can rewrite the graph propertyNARC= |VECTORS|·
|VECTORS| − |VECTORS| toNARC ≥ |VECTORS| · |VECTORS| − |VECTORS|. This leads to
simplify NARC toNARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 425

426 NARC,PATH

5.3 all equal

DESCRIPTION LINKS GRAPH

Origin Derived fromsoft all equal min ctr

Constraint all equal(VARIABLES)

Synonym rel.

Argument VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
|VARIABLES| > 0

Purpose Enforce all variables of the collectionVARIABLES to take the same value.

Example (〈5, 5, 5, 5〉)

Theall equal constraint holds since all its variables are fixed to value5.

Typical |VARIABLES| > 2

Symmetries • Items ofVARIABLES arepermutable.

• All occurrences of a value ofVARIABLES.var can berenamedto any unused value.

Arg. properties
Contractiblewrt. VARIABLES.

Systems atMostNValue in Choco, rel in Gecode, all equal in MiniZinc .

See also generalisation:nvalue (a variable counting the number of distinct values is introduced).

implies: consecutive values, decreasing, increasing.

negation:not all equal.

soft variant: soft all equal max var,
soft all equal min ctr (decomposition-based violation measure),
soft all equal min var (variable-based violation measure).

specialisation:eq (equality between just two variables).

Keywords constraint type: value constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#all_equal
http://www.g12.cs.mu.oz.au/minizinc/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20081005 427

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NARC= |VARIABLES| − 1

Graph model We use the arc generatorPATH in order to link consecutive variables of the collection
VARIABLES by a binary equality constraint.

Parts (A) and (B) of Figure5.2respectively show the initial and final graph of theExample
slot. Since we use theNARC graph property, the arcs of the final graph are stressed in
bold.

VARIABLES

1

2

3

4

NARC=3

1:5

2:5

3:5

4:5

(A) (B)

Figure 5.2: Initial and final graph of theall equal constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

428 NARC,CLIQUE(6=)

5.4 all incomparable

DESCRIPTION LINKS GRAPH

Origin Inspired by incomparable rectangles.

Constraint all incomparable(VECTORS)

Synonym all incomparables.

Type VECTOR : collection(var−dvar)

Argument VECTORS : collection(vec− VECTOR)

Restrictions required(VECTOR, var)
|VECTOR| ≥ 1
required(VECTORS, vec)
|VECTORS| ≥ 1
same size(VECTORS, vec)

Purpose

Enforce for each pair of distinct vectors of theVECTORS collection the fact that
they are incomparable. Two vectorsVECTOR1 andVECTOR2 are incomparable if and
only, when the components of both vectors are ordered, and respectively denoted by
SVECTOR1 and SVECTOR2, we neither haveSVECTOR1[i].var ≤ SVECTOR2[i].var
(for all i ∈ [1, |SVECTOR1|]) nor haveSVECTOR2[i].var ≤ SVECTOR1[i].var (for all
i ∈ [1, |SVECTOR1|]).

Example

〈

vec− 〈16, 2〉 ,
vec− 〈4, 11〉 ,
vec− 〈5, 10〉

〉

The all incomparable constraint holds since all distinct pairs of vectors are in-
comparable.

Typical |VECTOR| > 1
|VECTORS| > 1
|VECTORS| > |VECTOR|

Symmetry Items ofVECTORS arepermutable.

Arg. properties
Contractiblewrt. VECTORS.

See also part of system of constraints:incomparable.

used in graph description:incomparable.

Keywords characteristic of a constraint: vector.

constraint type: system of constraints, decomposition.

final graph structure: no loop, symmetric.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20120202 429

Arc input(s) VECTORS

Arc generator CLIQUE(6=) 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) incomparable(vectors1.vec, vectors2.vec)

Graph property(ies) NARC= |VECTORS| ∗ |VECTORS| − |VECTORS|
Graph class • NO LOOP

• SYMMETRIC

Graph model TheArc constraint(s) slot uses theincomparable constraint defined in this catalogue.

Parts (A) and (B) of Figure5.3respectively show the initial and final graph associated with
theExampleslot. Since we use theNARC graph property, the arcs of the final graph are
stressed in bold. The previous constraint holds since exactly3 · (3− 1) = 6 arc constraints
hold.

VECTORS

1

2

3

NARC=6

1:16
 2

2:4
 11

3:5
 10

(A) (B)

Figure 5.3: Initial and final graph of theall incomparable constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

430 NARC,CLIQUE(<)

5.5 all min dist

DESCRIPTION LINKS GRAPH

Origin [323]

Constraint all min dist(MINDIST, VARIABLES)

Synonyms minimum distance, inter distance.

Arguments MINDIST : int

VARIABLES : collection(var−dvar)

Restrictions MINDIST > 0
|VARIABLES| < 2 ∨ MINDIST <range(VARIABLES.var)
required(VARIABLES, var)

Purpose
Enforce for each pair(vari, varj) of distinct variables of the collectionVARIABLES that
|vari − varj | ≥ MINDIST.

Example (2, 〈5, 1, 9, 3〉)

Theall min dist constraint holds since the following expressions|5−1|, |5−9|, |5−3|,
|1− 9|, |1− 3|, |9− 3| are all greater than or equal to the first argumentMINDIST = 2 of
theall min dist constraint.

Typical MINDIST > 1
|VARIABLES| > 1

Symmetries • MINDIST can bedecreasedto any value≥ 1.

• Items ofVARIABLES arepermutable.

• Two distinct values ofVARIABLES.var can beswapped.

• One and the same constant can beaddedto the var attribute of all items of
VARIABLES.

Arg. properties
Contractiblewrt. VARIABLES.

Usage Theall min dist constraint was initially created for handling frequency allocation prob-
lems. In [10] it is used for scheduling tasks that all have the same fixed duration in the
context ofair traffic managementin the terminal radar control area of airports.

Remark Theall min dist constraint can be modelled as a set of tasks that should not overlap. For
each variablevar of theVARIABLES collection we create a taskt wherevar andMINDIST
respectively correspond to the origin and the duration oft.

Some solvers use in a pre-processing phase, while stating constraints ofthe form |Xi −
Xj | ≥ Dij (whereXi andXj are domain variables andDij is a constant), an algo-
rithm for automatically extracting large cliques [83] from such inequalities in order to state
all min dist constraints.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

20050508 431

Algorithm K. Artiouchine and P. Baptiste came up with a cubic time complexity algorithm achieving
bound-consistencyin [10, 11] based on the adaptation of a feasibility test algorithm from
M.R. Gareyet al. [171]. Later on, C.-G. Quimperet al., proposed a quadratic algorithm
achieving the same level of consistency in [312].

See also generalisation: diffn (line segment, of same length, replaced byorthotope),
disjunctive (line segment, of same length, replaced byline segment),
multi inter distance (LIMIT parameter introduced to specify capacity≥1).

implies: alldifferent interval.

related: distance.

specialisation:alldifferent (line segment, of same length, replaced byvariable).

Keywords application area: frequency allocation problem, air traffic management.

characteristic of a constraint: sort based reformulation.

constraint type: value constraint, decomposition, scheduling constraint.

filtering: bound-consistency.

final graph structure: acyclic.

problems: maximum clique.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

432 NARC,CLIQUE(<)

Arc input(s) VARIABLES

Arc generator CLIQUE (<) 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) abs(variables1.var− variables2.var) ≥ MINDIST

Graph property(ies) NARC= |VARIABLES| ∗ (|VARIABLES| − 1)/2

Graph class • ACYCLIC

• NO LOOP

Graph model We generate aclique with a minimum distance constraint between each pair of distinct
vertices and state that the number of arcs of the final graph should be equal to the number
of arcs of the initial graph.

Parts (A) and (B) of Figure5.4respectively show the initial and final graph associated with
theExampleslot. Theall min dist constraint holds since all the arcs of the initial graph
belong to the final graph: all the minimum distance constraints are satisfied.

VARIABLES

1

2

3

4

NARC=6

1:5

2:1

3:9

4:3

(A) (B)

Figure 5.4: Initial and final graph of theall min dist constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20050508 433

434 MAX NSCC,CLIQUE

5.6 alldifferent

DESCRIPTION LINKS GRAPH AUTOMATON

Origin [238]

Constraint alldifferent(VARIABLES)

Synonyms alldiff, alldistinct, distinct, bound alldifferent, bound alldiff,
bound distinct, rel.

Argument VARIABLES : collection(var−dvar)

Restriction required(VARIABLES, var)

Purpose Enforce all variables of the collectionVARIABLES to take distinct values.

Example (〈5, 1, 9, 3〉)

Thealldifferent constraint holds since all the values5, 1, 9 and3 are distinct.

Typical |VARIABLES| > 1

Symmetries • Items ofVARIABLES arepermutable.

• Two distinct values of VARIABLES.var can be swapped; a value of
VARIABLES.var can berenamedto any unused value.

Arg. properties
Contractiblewrt. VARIABLES.

Usage The alldifferent constraint occurs in most practical problems directly or indirectly.
A classical example is then-queenchess puzzle problem: Placen queens on an by n
chessboard in such a way that no queen attacks another. Two queens attack each other if
they are located on the same column, on the same row or on the same diagonal. This can be
modelled as the conjunction of threealldifferent constraints. We associate to columni
of the chessboard a domain variableXi that gives the row number where the corresponding
queen is located. The threealldifferent constraints are:

• alldifferent(X1, X2 + 1, . . . , Xn + n − 1) for the upper-left to lower-right di-
agonals,

• alldifferent(X1, X2, . . . , Xn) for the rows,

• alldifferent(X1 + n− 1, X2 + n− 2, . . . , Xn) for the lower right to upper-left
diagonals.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

20000128 435

They are respectively depicted by parts (A), (C) and (D) of Figure5.5.

A second example taken from [13] when the bipartite graph associated with the
alldifferent constraint isconvexis a ski assignment problem: “a set of skiers have
each specified the smallest and largest skis they will accept from a given set of skis”. The
task is to find a ski for each skier.

Examples such asCostas arraysor Golomb rulersinvolve one or severalalldifferent
constraints ondifferencesof variables.

Quite often, thealldifferent constraint is also used in conjunction with several
element constraints, specially in the context of assignment problems [pages 372–
374][198], or with severalprecedenceconstraints, specially in the context of symmetry
breaking or scheduling problems [71].

Other examples involving severalalldifferent constraints sharing some variables can
be found in theUsageslot of thek alldifferent constraint.

Remark Even if the alldifferent constraint had not this form, it was specified in AL-
ICE [237, 238] by asking for an injective correspondence between variables and values:
x 6= y ⇒ f(x) 6= f(y). From an algorithmic point of view, the algorithm for computing
the cardinality of the maximum matching of a bipartite graph was not used forchecking
the feasibility of thealldifferent constraint, even if the algorithm was already known
in 1976. This is because the goal of ALICE was to show that a general system could be
as efficient as dedicated algorithms. For this reason the concluding partof [237] explicitly
mentions that specialized algorithms should be discarded. On the one hand, many people,
specially from the OR community, have complained about such radical statement [343,
page 28]. On the other hand, the motivation of such statement stands from the fact that a
truly intelligent system should not rely on black box algorithms, but should rather be able
to reconstruct them from some kind of first principle. How to achieve this isstill an open
question.

Some solvers use in a pre-processing phase before stating all constraints, an algorithm for
automatically extracting large cliques[83, 140] from a set of binary disequalities in order
to replace them byalldifferent constraints.

W.-J. van Hoeve provides a survey about thealldifferent constraint in [396].

For possible relaxation of the alldifferent constraints see the
alldifferent except 0, the k alldifferent (i.e., some different),
the soft alldifferent ctr, the soft alldifferent var and the
weighted partial alldiff constraints.

Within the context oflinear programming, relaxations of thealldifferent constraint are
described in [415] and in [198, pages 362–367].

Within the context ofconstraint-centered search heuristics, G. Pesant and A. Za-
narini [421] have proposed several estimators for evaluating the number of solutions of
analldifferent constraint (since counting the total number of maximum matchings of
the corresponding variable-value graph is #P-complete [388]). Faster, but less accurate es-
timators, based on upper bounds of the number of solutions were proposed three years later
by the same authors [422].

Givenn variables taking their values within the interval[1, n], the total number of solutions
of the correspondingalldifferent constraint corresponds to the sequenceA000142of
the On-Line Encyclopedia of Integer Sequences [370].

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://oeis.org/A000142

436 MAX NSCC,CLIQUE

Algorithm The first complete filtering algorithm was independently found by M.-C. Costa [116] and
J.-C. Ŕegin [320]. This algorithm is based on a corollary of C. Berge that characterises the
edges of a graph that belong to a maximum matching but not to all [53, page 120].1 A short
time after, assuming that all variables have no holes in their domain, M. Leconte came up
with a filtering algorithm [241] based on edge finding. A firstbound-consistencyalgorithm
was proposed by Bleuzen-Guernalecet al. [74]. Later on, two different approaches were
used to designbound-consistencyalgorithms. Both approaches model the constraint as a
bipartite graph. The first identifiesHall intervalsin this graph [304, 247] and the second
applies the same algorithm that is used to computearc-consistency, but achieves a speedup
by exploiting the simpler structure [179] of the graph [262]. Ian P. Gentet al. discuss
in [174] implementations issues behind the complete filtering algorithm and in particular
the computation of the strongly connected components of the residual graph (i.e., a graph
constructed from a maximum variable-value matching and from the possible values of the
variables of thealldifferent constraint), which appears to be the main bottleneck in
practice.

From a worst case complexity point of view, assuming thatn is the number of variables
andm the sum of the domains sizes, we have the following complexity results:

• Complete filtering is achieved inO(m
√
n) by Régin’s algorithm [320].

• Range consistency is done inO(n2) by Leconte’s algorithm [241].

• Bound-consistencyis performed inO(n log n) in [304, 262, 247]. If sort can be
achieved in linear time, typically when thealldifferent constraint encodes a per-
mutation,2 the worst case complexity of the algorithms described in [262, 247] goes
down toO(n).

Within the context ofexplanations[210], the explanation of the filtering algorithm that
achievesarc-consistencyfor thealldifferent constraint is described in [339, pages 60–
61]. Given the residual graph (i.e., a graph constructed from a maximum variable-value
matching and from the possible values of the variables of thealldifferent constraint),
the removal of an arc starting from a vertex belonging to a strongly connected component
C1 to a distinct strongly connected componentC2 is explained by all missing arcs starting
from a descendant component ofC2 and ending in an ancestor component ofC1 (i.e., since
the addition of any of these missing arcs would merge the strongly connected components
C1 andC2). Let us illustrate this on a concrete example. For this purpose assume wehave
the following variables and the values that can potentially be assigned to eachof them,
A ∈ {1, 2}, B ∈ {1, 2}, C ∈ {2, 3, 4, 6}, D ∈ {3, 4}, E ∈ {5, 6}, F ∈ {5, 6},
G ∈ {6, 7, 8}, H ∈ {6, 7, 8}. Figure5.6represents the residual graph associated with the
maximum matching corresponding to the assignmentA = 1, B = 2, C = 3, D = 4,
E = 5, F = 6, G = 7, H = 8. It has four strongly connected components containing
respectively vertices{A,B, 1, 2}, {C,D, 3, 4}, {E,F, 5, 6} and{G,H, 7, 8}. Arcs that
are between strongly connected components correspond to values thatcan be removed:

• The removal of value2 from variableC is explained by the absence of the arcs
corresponding to the assignmentsA = 3, A = 4, B = 3 andB = 4 (since adding
any of these missing arcs would merge the blue and the pink strongly connected
components containing the vertices corresponding to value2 and variableC).

1A similar result is in fact given in [289].
2In this context the total number of values that can be assignedto the variables of thealldifferent

constraint is equal to the number of variables. Under this assumption sorting the variables on their minimum
or maximum values can be achieved in linear time.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

20000128 437

• The removal of value6 from variableC is explained by the absence of the arcs
corresponding to the assignmentsE = 3, E = 4, F = 3 andF = 4. Again
adding the corresponding arcs would merge the two strongly connected components
containing the vertices corresponding to value6 and variableC.

• The removal of value6 from variableG is explained by the absence of the arcs
corresponding to the assignmentsE = 7, E = 8, F = 7 andF = 8.

• The removal of value6 from variableH is explained by the absence of the arcs
corresponding to the assignmentsE = 7, E = 8, F = 7 andF = 8.

After applying bound-consistencythe following property holds for all variables of an
alldifferent constraint. Given aHall interval [l, u], any variableV whose range
[V , V] intersects[l, u] without being included in[l, u] has its minimum valueV (respec-
tively maximum valueV) that is located before (respectively after) theHall interval (i.e.,
V < l ≤ u < V).

The alldifferent constraint isentailedif and only if there is no valuev that can be
assigned two distinct variables of theVARIABLES collection (i.e., the intersection of the
two sets of potential values of any pair of variables is empty).

Reformulation Thealldifferent constraint can be reformulated into a set ofdisequalitiesconstraints.
This model neither preservesbound-consistencynorarc-consistency:

• On the one hand a model, involving linear constraints, preservingbound-consistency
was introduced in [67]. For each potential interval[l, u] of consecutive values this
model uses|VARIABLES| 0-1 variablesB1,l,u, B2,l,u, . . . , B|VARIABLES|,l,u for mod-
elling that each variable of the collectionVARIABLES is assigned a value within in-
terval [l, u] (i.e., ∀i ∈ [1, |VARIABLES|] : Bi,l,u ⇔ VARIABLES[i].var ∈ [l, u]),3

and an inequality constraint for enforcing the condition that the sum of the corre-
sponding0-1 variables is less than or equal to the sizeu− l+1 of the corresponding
interval (i.e.B1,l,u +B2,l,u + · · ·+B|VARIABLES|,l,u ≤ u− l + 1).

• On the other hand, it was shown in [70] that there is no polynomial sized decompo-
sition that preservesarc-consistency.

Finally the alldifferent(VARIABLES) constraint can also be reformu-
lated as the conjunction sort(VARIABLES, SORTED VARIABLES) ∧
strictly increasing(SORTED VARIABLES). Unlike the naive reformulation, i.e.,
a disequality constraint between each pair of variables, thesort-based reformulation
is linear in space.

Systems allDifferent in Choco, linear in Gecode, alldifferent in JaCoP, alldiff
in JaCoP, alldistinct in JaCoP, all different in MiniZinc , all different
in SICStus, all distinct in SICStus.

Used in alldifferent consecutive values, circuit cluster,
correspondence, cumulative convex, size max seq alldifferent,
size max starting seq alldifferent, sort permutation.

3How to encode the reified constraintBi,l,u ⇔ VARIABLES[i].var ∈ [l, u] with linear constraints is
described in theReformulation slot of thein interval reified constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntDistinct.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/Alldifferent.html
http://www.jacop.eu/
http://jacopapi.osolpro.com/JaCoP/constraints/Alldiff.html
http://www.jacop.eu/
http://jacopapi.osolpro.com/JaCoP/constraints/Alldistinct.html
http://www.jacop.eu/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#all_different
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

Used in
List of constraints that use this constraint in their description.

438 MAX NSCC,CLIQUE

(D)

4

7

1

2

3

5

6

8

X X X X X X XX 2 3 4 5 6 7 81

(E)(B)

(A) (C)

4

7

1

2

3

5

6

8

X X X X X X XX 2 3 4 5 6 7 81 X X X X X X XX 2 3 4 5 6 7 81

4

7

1

2

3

5

6

8

Figure 5.5: Upper-left to lower-right diagonals (A-B), rows (C) and lower-right to
upper-left diagonals (D-E)

E

F

5

6

G

H

7

8

A 1

2B

C

D

3

4

Figure 5.6: Strongly connected components of the residual graph il-
lustrating the explanation of the removal of a value for the constraint
alldifferent(〈A,B,C,D,E, F,G,H〉), A ∈ {1, 2}, B ∈ {1, 2}, C ∈ {2, 3, 4, 6},
D ∈ {3, 4}, E ∈ {5, 6}, F ∈ {5, 6}, G ∈ {6, 7, 8}, H ∈ {6, 7, 8}: the explanation
why value 2 is removed from variableC corresponds to all missing arcs whose
addition would merge the blue and the pink strongly connected components (i.e., the
missing arcs corresponding to the assignmentsA = 3, A = 4, B = 3 andB = 4 that
are depicted by thick pink lines)

20000128 439

See also common keyword: circuit, circuit cluster, cycle,
derangement (permutation), golomb (all different), size max seq alldifferent,
size max starting seq alldifferent (all different,disequality),
symmetric alldifferent (permutation).

cost variant: minimum weight alldifferent, weighted partial alldiff.

generalisation: all min dist (variable replaced by line segment, all
of the same size), alldifferent between sets (variable replaced by
set variable), alldifferent cst (variable replaced byvariable + constant),
alldifferent interval (variable replaced by variable/constant),
alldifferent modulo (variable replaced by variable mod constant),
alldifferent partition (variable replaced by variable ∈ partition),
diffn (variable replaced byorthotope), disjunctive (variable replaced bytask),
global cardinality (control the number of occurrence of each value with a counter
variable), global cardinality low up (control the number of occurrence of each value
with an interval), lex alldifferent (variable replaced byvector), nvalue (count
number of distinct values).

implied by: alldifferent consecutive values, circuit, cycle,
strictly decreasing, strictly increasing.

implies: alldifferent except 0, not all equal.

negation:some equal.

part of system of constraints:neq.

shift of concept:alldifferent on intersection, alldifferent same value.

soft variant: alldifferent except 0 (value 0 can be
used several times), open alldifferent (open constraint),
soft alldifferent ctr (decomposition-based violation measure),
soft alldifferent var (variable-based violation measure).

system of constraints:k alldifferent.

used in reformulation: in interval reified (bound-consistencypreserving reformu-
lation), sort, strictly increasing.

uses in its reformulation: cycle, elements alldifferent, sort permutation.

Keywords characteristic of a constraint: core, all different, disequality, sort based reformulation,
automaton, automaton with array of counters.

combinatorial object: permutation.

constraint type: system of constraints, value constraint.

filtering: bipartite matching, bipartite matching in convex bipartite graphs,
convex bipartite graph, flow, Hall interval, arc-consistency, bound-consistency, SAT,
DFS-bottleneck, entailment.

final graph structure: onesucc.

modelling exercises:n-Amazon, zebra puzzle.

problems: maximum clique, graph colouring.

puzzles:n-Amazon, n-queen, Costas arrays, Euler knight, Golomb ruler, magic hexagon,
magic square, zebra puzzle, Sudoku.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

440 MAX NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) MAX NSCC≤ 1

Graph class ONE SUCC

Graph model We generate acliquewith anequalityconstraint between each pair of vertices (including a
vertex and itself) and state that the size of the largest strongly connected component should
not exceed one.

Parts (A) and (B) of Figure5.7respectively show the initial and final graph associated with
the Example slot. Since we use theMAX NSCC graph property we show one of the
largest strongly connected component of the final graph. Thealldifferent holds since
all the strongly connected components have at most one vertex: a valueis used at most
once.

VARIABLES

1

2

3

4

MAX_NSCC=1

MAX_NSCC

1:5 2:1 3:9 4:3

(A) (B)

Figure 5.7: Initial and final graph of thealldifferent constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 441

Automaton Figure5.8 depicts theautomatonassociated with thealldifferent constraint. To each
item of the collectionVARIABLES corresponds a signature variableSi that is equal to1.
The automatoncounts the number of occurrences of each value and finally imposes that
each value is taken at most one time.

arith(C,<,2)

{C[_]=0}

{C[VAR]=C[VAR]+1}i i

1,s:

Figure 5.8: Automaton of thealldifferent constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

442 MAX NSCC,CLIQUE

5.7 alldifferent betweensets

DESCRIPTION LINKS GRAPH

Origin ILOG

Constraint alldifferent between sets(VARIABLES)

Synonyms all null intersect, alldiff between sets, alldistinct between sets,
alldiff on sets, alldistinct on sets, alldifferent on sets.

Argument VARIABLES : collection(var−svar)

Restriction required(VARIABLES, var)

Purpose Enforce all sets of the collectionVARIABLES to be distinct.

Example

〈
var− {3, 5},
var− ∅,
var− {3},
var− {3, 5, 7}

〉

The alldifferent between sets constraint holds since all the sets{3, 5}, ∅,
{3} and{3, 5, 7} are distinct.

Typical |VARIABLES| > 2

Symmetry Items ofVARIABLES arepermutable.

Arg. properties
Contractiblewrt. VARIABLES.

Usage This constraint was available in some configuration library offered by Ilog.

Algorithm A filtering algorithm for thealldifferent between sets is proposed by C.-G. Quimper
and T. Walsh in [315] and a longer version is available in [316] and in [317].

See also common keyword:link set to booleans (constraint involving set variables).

specialisation:alldifferent (set variable replaced byvariable).

used in graph description:eq set.

Keywords characteristic of a constraint: all different, disequality.

constraint arguments:constraint involving set variables.

filtering: bipartite matching.

final graph structure: onesucc.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 443

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) eq set(variables1.var, variables2.var)

Graph property(ies) MAX NSCC≤ 1

Graph class ONE SUCC

Graph model We generate aclique with binary set equalitiesconstraints between each pair of vertices
(including a vertex and itself) and state that the size of the largest strongly connected com-
ponent should not exceed1.

Parts (A) and (B) of Figure5.9 respectively show the initial and final graph asso-
ciated with theExample slot. Since we use theMAX NSCC graph property
we show one of the largest strongly connected component of the final graph. The
alldifferent between sets holds since all the strongly connected components have
at most one vertex.

(A)

VARIABLES

1

2

3

4

(B) MAX_NSCC=1

MAX_NSCC

1:{3,5} 2:{} 3:{3} 4:{3,5,7}

Figure 5.9: Initial and final graph of thealldifferent between sets constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

444 RANGE,SELF

5.8 alldifferent consecutivevalues

DESCRIPTION LINKS GRAPH

Origin Derived fromalldifferent.

Constraint alldifferent consecutive values(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
alldifferent(VARIABLES)

Purpose

Enforce (1) all variables of the collectionVARIABLES to take distinct values and (2) con-
straint the difference between the largest and the smallest values of theVARIABLES col-
lection to be equal to the number of variables minus one (i.e., there is no holes at all
within the used values).

Example (〈5, 4, 3, 6〉)

The alldifferent consecutive values constraint holds since (1) all the values
5, 4, 3 and6 are distinct and since (2) all values between value3 and value6 are effectively
used.

Typical |VARIABLES| > 2

Symmetries • Items ofVARIABLES arepermutable.

• Two distinct values ofVARIABLES.var can beswapped.

• One and the same constant can beaddedto the var attribute of all items of
VARIABLES.

See also implied by: permutation.

implies: alldifferent, consecutive values.

Keywords characteristic of a constraint: all different, disequality, sort based reformulation.

combinatorial object: permutation.

constraint type: value constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20080618 445

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) TRUE

Graph property(ies) RANGE(VARIABLES, var) = |VARIABLES| − 1

446 MAX NSCC,CLIQUE

5.9 alldifferent cst

DESCRIPTION LINKS GRAPH

Origin CHIP

Constraint alldifferent cst(VARIABLES)

Synonyms alldiff cst, alldistinct cst.

Argument VARIABLES : collection(var−dvar, cst−int)

Restriction required(VARIABLES, [var, cst])

Purpose
For all pairs of items(VARIABLES[i], VARIABLES[j]) (i 6= j) of the collection
VARIABLES enforceVARIABLES[i].var + VARIABLES[i].cst 6= VARIABLES[j].var +
VARIABLES[j].cst.

Example

〈
var− 5 cst− 0,
var− 1 cst− 1,
var− 9 cst− 0,
var− 3 cst− 4

〉

The alldifferent cst constraint holds since all the expressions5 + 0 = 5,
1 + 1 = 2, 9 + 0 = 9 and3 + 4 = 7 correspond to distinct values.

Typical |VARIABLES| > 2
range(VARIABLES.var) > 1
range(VARIABLES.cst) > 1

Symmetries • Items ofVARIABLES arepermutable.

• Attributes ofVARIABLES arepermutablew.r.t. permutation(var, cst) (permuta-
tion not necessarily applied to all items).

• One and the same constant can beaddedto the var attribute of all items of
VARIABLES.

• One and the same constant can beaddedto the cst attribute of all items of
VARIABLES.

Arg. properties
Contractiblewrt. VARIABLES.

Usage Thealldifferent cst constraint was originally introduced inCHIP in order to express
then-queen problem with3 global constraints (see theUsageslot of thealldifferent
constraint).

Algorithm See the filtering algorithms of thealldifferent constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

http://www.cosytec.com

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

20051104 447

Systems linear in Gecode.

See also implies (items to collection):lex alldifferent.

specialisation:alldifferent (variable+ constant replaced byvariable).

Keywords characteristic of a constraint: all different, disequality, sort based reformulation.

constraint type: value constraint.

filtering: bipartite matching, bipartite matching in convex bipartite graphs,
convex bipartite graph, arc-consistency.

final graph structure: onesucc.

modelling exercises:n-Amazon.

puzzles:n-Amazon, n-queen.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntDistinct.html
http://www.gecode.org/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

448 MAX NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var+ variables1.cst =
variables2.var+ variables2.cst

Graph property(ies) MAX NSCC≤ 1

Graph class ONE SUCC

Graph model We generate acliquewith anequalityconstraint between each pair of vertices (including a
vertex and itself) and state that the size of the largest strongly connected component should
not exceed one.

Parts (A) and (B) of Figure5.10 respectively show the initial and final graph associated
with the Example slot. Since we use theMAX NSCC graph property we show one
of the largest strongly connected component of the final graph. Thealldifferent cst

holds since all the strongly connected components have at most one vertex: a value is used
at most once.

VARIABLES

1

2

3

4

MAX_NSCC=1

MAX_NSCC

1:5,0 2:1,1 3:9,0 4:3,4

(A) (B)

Figure 5.10: Initial and final graph of thealldifferent cst constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20051104 449

450 MAX NSCC,CLIQUE

5.10 alldifferent except0

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromalldifferent.

Constraint alldifferent except 0(VARIABLES)

Synonyms alldiff except 0, alldistinct except 0.

Argument VARIABLES : collection(var−dvar)

Restriction required(VARIABLES, var)

Purpose
Enforce all variables of the collectionVARIABLES to take distinct values, except those
variables that are assigned value0.

Example

〈

var− 5,
var− 0,
var− 1,
var− 9,
var− 0,
var− 3

〉

The alldifferent except 0 constraint holds since all the values (that are differ-
ent from0) 5, 1, 9 and3 are distinct.

Typical |VARIABLES| > 2
atleast(2, VARIABLES, 0)
range(VARIABLES.var) > 1

Symmetries • Items ofVARIABLES arepermutable.

• Two distinct values ofVARIABLES.var that are both different from0 can be
swapped; a value ofVARIABLES.var that is different from0 can berenamedto
any unused value that is also different from0.

Arg. properties
Contractiblewrt. VARIABLES.

Usage Quite often it appears that, for some modelling reason, you create ajoker value. You
do not want that normal constraints hold for variables that take thisjoker value. For this
purpose we modify the binary arc constraint in order to discard the vertices for which the
corresponding variables are assigned value0. This will be effectively the case since all the
corresponding arcs constraints will not hold.

See also cost variant: weighted partial alldiff.

hard version: alldifferent.

implied by: alldifferent.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

20000128 451

Keywords characteristic of a constraint: joker value, all different, sort based reformulation,
automaton, automaton with array of counters.

constraint type: value constraint, relaxation.

filtering: arc-consistency.

final graph structure: onesucc.

Keywords
Related keywords grouped by meta-keywords.

452 MAX NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var 6= 0
• variables1.var = variables2.var

Graph property(ies) MAX NSCC≤ 1

Graph model The graph model is the same as the one used for thealldifferent constraint, except that
we discard all variables that are assigned value0.

Parts (A) and (B) of Figure5.11respectively show the initial and final graph associated with
the Example slot. Since we use theMAX NSCC graph property we show one of the
largest strongly connected component of the final graph. Thealldifferent except 0

holds since all the strongly connected components have at most one vertex: a value different
from 0 is used at most once.

VARIABLES

1

2

3

4

5

6

MAX_NSCC=1

MAX_NSCC

1:5 3:1 4:9 6:3

(A) (B)

Figure 5.11: Initial and final graph of thealldifferent except 0 constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 453

Automaton Figure 5.12 depicts the automaton associated with thealldifferent except 0 con-
straint. To each variableVARi of the collectionVARIABLES corresponds a0-1 signature
variableSi. The following signature constraint linksVARi andSi: VARi 6= 0 ⇔ Si. The
automaton counts the number of occurrences of each value differentfrom 0 and finally
imposes that each non-zero value is taken at most one time.

arith(C,<,2)

{C[_]=0}

{C[VAR]=C[VAR]+1}
i

i i

VAR <>0,
VAR =0i

s:

Figure 5.12: Automaton of thealldifferent except 0 constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

454 MAX NSCC,CLIQUE

5.11 alldifferent interval

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromalldifferent.

Constraint alldifferent interval(VARIABLES, SIZE INTERVAL)

Synonyms alldiff interval, alldistinct interval.

Arguments VARIABLES : collection(var−dvar)
SIZE INTERVAL : int

Restrictions required(VARIABLES, var)
SIZE INTERVAL > 0

Purpose
Enforce all variables of the collectionVARIABLES to belong to distinct intervals. The
intervals are defined by[SIZE INTERVAL ·k, SIZE INTERVAL ·k+SIZE INTERVAL−1]
wherek is an integer.

Example (〈2, 4, 10〉 , 3)

In the example, the second argumentSIZE INTERVAL = 3 defines the following
family of intervals[3 · k, 3 · k + 2], wherek is an integer. Since the three variables of the
collectionVARIABLES take values that are respectively located within the three following
distinct intervals[0, 2], [3, 5] and[9, 11], thealldifferent interval constraint holds.

Typical |VARIABLES| > 2
SIZE INTERVAL > 1
SIZE INTERVAL <range(VARIABLES.var)

Symmetries • Items ofVARIABLES arepermutable.

• A value of VARIABLES.var that belongs to thek-th interval, of size
SIZE INTERVAL, can be renamed to any unused value of the same interval.

• Two distinct values ofVARIABLES.var that belong to two distinct intervals, of size
SIZE INTERVAL, can beswapped.

Arg. properties
Contractiblewrt. VARIABLES.

See also implied by: all min dist.

specialisation:alldifferent (variable/constant replaced byvariable).

Keywords characteristic of a constraint: all different, sort based reformulation, automaton,
automaton with array of counters.

constraint type: value constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 455

filtering: arc-consistency.

final graph structure: onesucc.

modelling: interval.

456 MAX NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL = variables2.var/SIZE INTERVAL

Graph property(ies) MAX NSCC≤ 1

Graph class ONE SUCC

Graph model Similar to thealldifferent constraint, but we replace the binaryequalityconstraint of
the alldifferent constraint by the fact that two variables are respectively assigned to
two values that belong to the same interval. We generate acliquewith abelong to the same
interval constraint between each pair of vertices (including a vertex and itself) and state
that the size of the largest strongly connected component should not exceed1.

Parts (A) and (B) of Figure5.13 respectively show the initial and final graph associated
with theExample slot. Since we use theMAX NSCC graph property we show one of
the largest strongly connected component of the final graph.

VARIABLES

1

2

3

MAX_NSCC=1

MAX_NSCC

1:2 2:4 3:10

(A) (B)

Figure 5.13: Initial and final graph of thealldifferent interval constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 457

Automaton Figure 5.14 depicts the automaton associated with thealldifferent interval con-
straint. To each item of the collectionVARIABLES corresponds a signature variableSi that is
equal to1. For each interval[SIZE INTERVAL·k, SIZE INTERVAL·k+SIZE INTERVAL−1]
of values the automaton counts the number of occurrences of its values and finally imposes
that the values of an interval are taken at most once.

arith(C,<,2)
i i

1,

{C[_]=0}

s:

{C[VAR /SIZE_INTERVAL]=C[VAR /SIZE_INTERVAL]+1}

Figure 5.14: Automaton of thealldifferent interval constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

458 MAX NSCC,CLIQUE

5.12 alldifferent modulo

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromalldifferent.

Constraint alldifferent modulo(VARIABLES, M)

Synonyms alldiff modulo, alldistinct modulo.

Arguments VARIABLES : collection(var−dvar)
M : int

Restrictions required(VARIABLES, var)
M > 0
M ≥ |VARIABLES|

Purpose
Enforce all variables of the collectionVARIABLES to have a distinct rest when divided
by M.

Example (〈25, 1, 14, 3〉 , 5)

The equivalence classes associated with values25, 1, 14 and 3 are respectively
equal to25 mod 5 = 0, 1 mod 5 = 1, 14 mod 5 = 4 and3 mod 5 = 3. Since they are
distinct thealldifferent modulo constraint holds.

Typical |VARIABLES| > 2
M > 1

Symmetries • Items ofVARIABLES arepermutable.

• A valueu of VARIABLES.var can be renamed to any valuev such thatv is con-
gruent tou moduloM.

• Two distinct valuesu andv of VARIABLES.var such thatumod M 6= vmod M can
beswapped.

Arg. properties
Contractiblewrt. VARIABLES.

See also specialisation:alldifferent (variablemod constant replaced byvariable).

Keywords characteristic of a constraint:modulo, all different, sort based reformulation, automaton,
automaton with array of counters.

constraint type: value constraint.

filtering: arc-consistency.

final graph structure: onesucc.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 459

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.varmod M = variables2.varmod M

Graph property(ies) MAX NSCC≤ 1

Graph class ONE SUCC

Graph model Exploit the same model used for thealldifferent constraint. We replace the binary
equalityconstraint by another equivalence relation depicted by the arc constraint. We gen-
erate aclique with a binaryequality moduloM constraint between each pair of vertices
(including a vertex and itself) and state that the size of the largest strongly connected com-
ponent should not exceed1.

Parts (A) and (B) of Figure5.15 respectively show the initial and final graph associated
with theExample slot. Since we use theMAX NSCC graph property we show one of
the largest strongly connected component of the final graph.

VARIABLES

1

2

3

4

MAX_NSCC=1

MAX_NSCC

1:25 2:1 3:14 4:3

(A) (B)

Figure 5.15: Initial and final graph of thealldifferent modulo constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

460 MAX NSCC,CLIQUE

Automaton Figure5.16depicts the automaton associated with thealldifferent modulo constraint.
To each item of the collectionVARIABLES corresponds a signature variableSi that is equal
to 1. The automaton counts for each equivalence class the number of usedvalues and
finally imposes that each equivalence class is used at most one time.

arith(C,<,2)

{C[_]=0}

{C[VAR mod M]=C[VAR mod M]+1}i i

1,
s:

Figure 5.16: Automaton of thealldifferent modulo constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20030820 461

462 MAX NCC,PRODUCT

5.13 alldifferent on intersection

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromcommon andalldifferent.

Constraint alldifferent on intersection(VARIABLES1, VARIABLES2)

Synonyms alldiff on intersection, alldistinct on intersection.

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose The values that both occur in theVARIABLES1 andVARIABLES2 collections have only
one occurrence.

Example

〈5, 9, 1, 5〉 ,

〈

var− 2,
var− 1,
var− 6,
var− 9,
var− 6,
var− 2

〉

The alldifferent on intersection constraint holds since the values9 and 1
that both occur in〈5, 9, 1, 5〉 as well as in〈2, 1, 6, 9, 6, 2〉 have exactly one occurrence in
each collection.

Typical |VARIABLES1| > 1
|VARIABLES2| > 1

Symmetries • Arguments arepermutablew.r.t. permutation(VARIABLES1, VARIABLES2).

• Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• All occurrences of two distinct values inVARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value inVARIABLES1.var or
VARIABLES2.var can berenamedto any unused value.

Arg. properties
• Contractiblewrt. VARIABLES1.

• Contractiblewrt. VARIABLES2.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

20040530 463

See also common keyword:common, nvalue on intersection (constraint on the intersection).

implied by: disjoint.

implies: same intersection.

root concept:alldifferent.

Keywords characteristic of a constraint:all different, automaton, automaton with array of counters.

constraint arguments:constraint between two collections of variables.

constraint type: constraint on the intersection, value constraint.

final graph structure: connected component, acyclic, bipartite, no loop.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

464 MAX NCC,PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) MAX NCC≤ 2

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model Parts (A) and (B) of Figure5.17 respectively show the initial and final graph associated
with theExampleslot. Since we use theMAX NCC graph property we show one of the
largestconnected componentof the final graph. Thealldifferent on intersection

constraint holds since eachconnected componenthas at most two vertices. Note that all
the vertices corresponding to the variables that take values5, 2 or 6 were removed from the
final graph since there is no arc for which the associated equality constraint holds.

VARIABLES1

VARIABLES2

1

1234 56

234

MAX_NCC=2

MAX_NCC

2:9

4:9

3:1

2:1

(A) (B)

Figure 5.17: Initial and final graph of thealldifferent on intersection con-
straint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20040530 465

Automaton Figure5.18depicts the automaton associated with thealldifferent on intersection

constraint. To each variableVAR1i of the collectionVARIABLES1 corresponds a signature
variableSi that is equal to0. To each variableVAR2i of the collectionVARIABLES2 corre-
sponds a signature variableSi+|VARIABLES1| that is equal to1. The automaton first counts the
number of occurrences of each value assigned to the variables of theVARIABLES1 collec-
tion. It then counts the number of occurrences of each value assignedto the variables of
theVARIABLES2 collection. Finally, the automaton imposes that each value is not taken by
two variables of both collections.

s

1,

i iarith_or(C,D,<,2)
t:

{D[VAR]=D[VAR]+1}
1,

i i

{C[VAR]=C[VAR]+1}
i i

0,

{C[_]=0,D[_]=0}

{D[VAR]=D[VAR]+1}

Figure 5.18: Automaton of thealldifferent on intersection constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

466 MAX NSCC,CLIQUE

5.14 alldifferent partition

DESCRIPTION LINKS GRAPH

Origin Derived fromalldifferent.

Constraint alldifferent partition(VARIABLES, PARTITIONS)

Synonyms alldiff partition, alldistinct partition.

Type VALUES : collection(val−int)

Arguments VARIABLES : collection(var−dvar)
PARTITIONS : collection(p− VALUES)

Restrictions |VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)
|VARIABLES| ≤ |PARTITIONS|
required(VARIABLES, var)
|PARTITIONS| ≥ 2
required(PARTITIONS, p)

Purpose
Enforce all variables of the collectionVARIABLES to take values that belong to distinct
partitions.

Example

〈6, 3, 4〉 ,
〈

p− 〈1, 3〉 ,
p− 〈4〉 ,
p− 〈2, 6〉

〉

Since all variables take values that are located within distinct partitions the
alldifferent partition constraint holds.

Typical |VARIABLES| > 2

Symmetries • Items ofVARIABLES arepermutable.

• Items ofPARTITIONS arepermutable.

• Items ofPARTITIONS.p arepermutable.

• A value ofVARIABLES.var can be renamed to any value that belongs to the same
partition ofPARTITIONS.

• Two distinct values ofVARIABLES.var that do not belong to the same partition of
PARTITIONS can beswapped.

Arg. properties
Contractiblewrt. VARIABLES.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

20030820 467

See also common keyword:in same partition (partition).

specialisation:alldifferent (variable ∈ partition replaced byvariable).

used in graph description:in same partition.

Keywords characteristic of a constraint: partition, all different, sort based reformulation.

constraint type: value constraint.

filtering: arc-consistency.

final graph structure: onesucc.

modelling: incompatible pairs of values.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

468 MAX NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) MAX NSCC≤ 1

Graph class ONE SUCC

Graph model Similar to thealldifferent constraint, but we replace the binaryequalityconstraint of
thealldifferent constraint by the fact that two variables are respectively assigned to two
values that belong to the same partition. We generate acliquewith ain same partition

constraint between each pair of vertices (including a vertex and itself) and state that the
size of the largest strongly connected component should not exceed1.

Parts (A) and (B) of Figure5.19 respectively show the initial and final graph associated
with theExample slot. Since we use theMAX NSCC graph property we show one of
the largest strongly connected component of the final graph.

VARIABLES

1

2

3

MAX_NSCC=1

MAX_NSCC

1:6 2:3 3:4

(A) (B)

Figure 5.19: Initial and final graph of thealldifferent partition constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 469

470 MAX NSCC,NARC NO LOOP,PRODUCT (CLIQUE ,LOOP ,=)

5.15 alldifferent samevalue

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromalldifferent.

Constraint alldifferent same value(NSAME, VARIABLES1, VARIABLES2)

Synonyms alldiff same value, alldistinct same value.

Arguments NSAME : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions NSAME ≥ 0
NSAME ≤ |VARIABLES1|
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose
All the values assigned to the variables of the collectionVARIABLES1 are pairwise
distinct. NSAME is equal to number of constraints of the formVARIABLES1[i].var =
VARIABLES2[i].var (1 ≤ i ≤ |VARIABLES1|) that hold.

Example
(

2, 〈7, 3, 1, 5〉 ,
〈1, 3, 1, 7〉

)

Thealldifferent same value constraint holds since:

• All the values7, 3, 1 and5 are distinct,

• Among the four expressions7 = 1, 3 = 3, 1 = 1 and5 = 7 exactly2 conditions
hold.

Typical NSAME < |VARIABLES1|
|VARIABLES1| > 2

Symmetries • Items ofVARIABLES1 andVARIABLES2 arepermutable(same permutation used).

• All occurrences of two distinct values inVARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value inVARIABLES1.var or
VARIABLES2.var can berenamedto any unused value.

Arg. properties
Functional dependency: NSAME determined byVARIABLES1 andVARIABLES2.

Usage When all variables of the second collection are initially bound to distinct valuesthe
alldifferent same value constraint can be explained in the following way:

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

20000128 471

• We interpret the variables of the second collection as the previous solution of a prob-
lem where all variables have to be distinct.

• We interpret the variables of the first collection as the current solution to find, where
all variables should again be pairwise distinct.

The variableNSAME measures thedistance of the current solution from the previous solu-
tion. This corresponds to the number of variables ofVARIABLES2 that are assigned to the
same previous value.

See also root concept:alldifferent.

Keywords characteristic of a constraint: sort based reformulation, automaton,
automaton with array of counters.

constraint type: proximity constraint.

modelling: functional dependency.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

472 MAX NSCC,NARC NO LOOP,PRODUCT (CLIQUE ,LOOP ,=)

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT (CLIQUE ,LOOP ,=) 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • MAX NSCC≤ 1
• NARC NO LOOP= NSAME

Graph model The arc generatorPRODUCT (CLIQUE ,LOOP ,=) is used in order to generate all the
arcs of the initial graph:

• The arc generatorCLIQUE creates all links between the items of the first collection
VARIABLES1,

• The arc generatorLOOP creates a loop for each item of the second collection
VARIABLES2,

• Finally the arc generatorPRODUCT (=) creates an arc between items located at
the same position in the collectionsVARIABLES1 andVARIABLES2.

Part (A) of Figure5.20gives the initial graph associated with theExample slot. Variables
of collectionVARIABLES1 are coloured, while variables of collectionVARIABLES2 are kept
in white. Part (B) represents the final graph associated with theExampleslot. In this graph
each vertex constitutes a strongly connected component and the numberof arcs that do not
correspond to a loop is equal to2 (i.e.,NSAME).

(B)

2

4 3

4 3

211

(A)

2

4 3

4 3

2

1 1

Figure 5.20: Initial and final graph of thealldifferent same value constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 473

Automaton Figure5.21depicts the automaton associated with thealldifferent same value con-
straint. LetVAR1i and VAR2i respectively denote theith variables of theVARIABLES1
and VARIABLES2 collections. To each pair of variables(VAR1i, VAR2i) corresponds a
signature variableSi. The following signature constraint linksVAR1i, VAR2i and Si:
VAR1i = VAR2i ⇔ Si.

arith(C,<,2)

{C[_]=0,D=0}

{C[VAR1]=C[VAR1]+1}
i iVAR1 <>VAR2 ,

i i {C[VAR1]=C[VAR1]+1,D=D+1}i i

i iVAR1 =VAR2 ,s:

NSAME=D

Figure 5.21: Automaton of thealldifferent same value constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

474 NARC,CLIQUE(<)

5.16 allperm

DESCRIPTION LINKS GRAPH

Origin [155]

Constraint allperm(MATRIX)

Synonyms all perm, all permutations.

Type VECTOR : collection(var−dvar)

Argument MATRIX : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
required(VECTOR, var)
required(MATRIX, vec)
same size(MATRIX, vec)

Purpose
Given a matrixM of domain variables, enforces that the first row is lexicographically
less than or equal to all permutations of all other rows. Note that the components of a
given vector of the matrixM may be equal.

Example
(〈

vec− 〈1, 2, 3〉 ,
vec− 〈3, 1, 2〉

〉)

The allperm constraint holds since vector〈1, 2, 3〉 is lexicographically less than or
equal to all the permutations of vector〈3, 1, 2〉 (i.e., 〈1, 2, 3〉, 〈1, 3, 2〉, 〈2, 1, 3〉, 〈2, 3, 1〉,
〈3, 1, 2〉, 〈3, 2, 1〉).

Typical |VECTOR| > 1
|MATRIX| > 1

Symmetry One and the same constant can beaddedto thevar attribute of all items ofMATRIX.vec.

Arg. properties
Suffix-contractiblewrt. MATRIX.vec (remove items from same position).

Usage A symmetry-breakingconstraint.

See also common keyword: lex2, lex chain lesseq (matrix symmetry,lexicographic order),
lex lesseq (lexicographic order), lex lesseq allperm (matrix symmetry,lexicographic order),
strict lex2 (lexicographic order).

part of system of constraints:lex lesseq allperm.

used in graph description:lex lesseq allperm.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

20031008 475

Keywords characteristic of a constraint: sort based reformulation, vector.

constraint type: order constraint, system of constraints.

final graph structure: acyclic, bipartite.

modelling: matrix, matrix model.

symmetry: matrix symmetry, symmetry, lexicographic order.

Keywords
Related keywords grouped by meta-keywords.

476 NARC,CLIQUE(<)

Arc input(s) MATRIX

Arc generator CLIQUE (<) 7→collection(matrix1, matrix2)

Arc arity 2

Arc constraint(s) • matrix1.key = 1
• matrix2.key > 1
• lex lesseq allperm(matrix1.vec, matrix2.vec)

Graph property(ies) NARC= |MATRIX| − 1

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model We generate a graph with an arc constraintlex lesseq allperm between the vertex cor-
responding to the first item of theMATRIX collection and the vertices associated with all
other items of theMATRIX collection. This is achieved by specifying that (1) an arc should
start from the first item (i.e.,matrix1.key = 1) and (2) an arc should not end on the first
item (i.e.,matrix2.key > 1). We finally state that all these arcs should belong to the
final graph. Parts (A) and (B) of Figure5.22respectively show the initial and final graph
associated with theExampleslot.

MATRIX

1

2

NARC=1

1:1
 2
 3

2:3
 1
 2

(A) (B)

Figure 5.22: Initial and final graph of theallperm constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20031008 477

478 NARC,SELF ; AUTOMATON

5.17 among

DESCRIPTION LINKS GRAPH AUTOMATON

Origin [39]

Constraint among(NVAR, VARIABLES, VALUES)

Synonyms between, count.

Arguments NVAR : dvar

VARIABLES : collection(var−dvar)
VALUES : collection(val−int)

Restrictions NVAR ≥ 0
NVAR ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose NVAR is the number of variables of the collectionVARIABLES that take their value in
VALUES.

Example
(

3, 〈4, 5, 5, 4, 1〉 ,
〈1, 5, 8〉

)

The among constraint holds since exactly3 values of the collection of variables
〈4, 5, 5, 4, 1〉 belong to the set of values{1, 5, 8}.

Typical NVAR > 0
NVAR < |VARIABLES|
|VARIABLES| > 1
|VALUES| > 1
|VARIABLES| > |VALUES|

Symmetries • Items ofVARIABLES arepermutable.

• Items ofVALUES arepermutable.

• An occurrence of a value ofVARIABLES.var that belongs toVALUES.val (resp.
does not belong toVALUES.val) can bereplacedby any other value inVALUES.val
(resp. not inVALUES.val).

Arg. properties
• Functional dependency: NVAR determined byVARIABLES andVALUES.

• Contractiblewrt. VARIABLES whenNVAR = 0.

• Contractiblewrt. VARIABLES whenNVAR = |VARIABLES|.
• Aggregate: NVAR(+), VARIABLES(union), VALUES(sunion).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

20000128 479

Remark A similar constraint calledbetween was introduced inCHIP in 1990.

Thecommon constraint can be seen as a generalisation of theamong constraint where we
allow theval attributes of theVALUES collection to be domain variables.

A generalisation of this constraint when the values ofVALUES are not initially fixed is called
among var.

When the variableNVAR (i.e., the first argument of theamong constraint) does not occur
in any other constraints of the problem, it may be operationally more efficient to replace
theamong constraint by anamong low up constraint whereNVAR is replaced by the corre-
sponding interval[NVAR, NVAR]. This stands for two reasons:

• First, by using anamong low up constraint rather than anamong constraint, we avoid
the filtering algorithm related toNVAR.

• Second, unlike theamong constraint where we need to fix all its variables to get
entailment, theamong low up constraint can beentailedbefore all its variables get
fixed. As a result, this potentially avoid unnecessary calls to its filtering algorithm.

Algorithm A filtering algorithm achieving arc-consistency was given by Bessièreet al. in [57, 60].

Systems among in Choco, count in Gecode, among in JaCoP, among in MiniZinc .

See also common keyword: arith, atleast, atmost (value constraint),
count (counting constraint), counts (value constraint,counting constraint),
discrepancy, max nvalue, min nvalue, nvalue (counting constraint).

generalisation:among var (constant replaced byvariable).

implies: among var, cardinality atmost.

related: roots (can be used for expressingamong), sliding card skip0 (counting con-
straint on maximal sequences).

shift of concept:among seq (variable replaced byinterval and constraint applied in
a sliding way), common.

soft variant: open among (open constraint).

specialisation: among diff 0 (variable ∈ values replaced byvariable different
from 0), among interval (variable ∈ values replaced byvariable ∈ interval),
among low up (variable replaced byinterval), among modulo (list of values re-
placed by list ofvalues v such thatvmodQUOTIENT = REMAINDER), exactly (variable
replaced byconstant andvalues replaced by one singlevalue).

system of constraints:global cardinality (count the number of occurrences of differ-
ent values).

used in graph description:in.

uses in its reformulation: count.

Keywords characteristic of a constraint: automaton, automaton with counters,
non-deterministic automaton.

constraint arguments:pure functional dependency.

constraint network structure: alpha-acyclic constraint network(2),
Berge-acyclic constraint network.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.cosytec.com

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntCount.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/Among.html
http://www.jacop.eu/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#among
http://www.g12.cs.mu.oz.au/minizinc/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

480 NARC,SELF ; AUTOMATON

constraint type: value constraint, counting constraint.

filtering: arc-consistency, SAT.

modelling: functional dependency.

20000128 481

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) in(variables.var, VALUES)

Graph property(ies) NARC= NVAR

Graph model The arc constraint corresponds to the unary constraintin(variables.var, VALUES) de-
fined in this catalogue. Since this is a unary constraint we employ theSELF arc generator
in order to produce an initial graph with a single loop on each vertex.

Parts (A) and (B) of Figure5.23 respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the loops of the final
graph are stressed in bold.

VARIABLES

12345

NARC=3

2:5 3:5 5:1

(A) (B)

Figure 5.23: Initial and final graph of theamong constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

482 NARC,SELF ; AUTOMATON

Automaton Figure5.24depicts a first automaton that only accepts all the solutions of theamong con-
straint. This automaton uses a counter in order to record the number of satisfied constraints
of the formVARi ∈ VALUES already encountered. To each variableVARi of the collection
VARIABLES corresponds a0-1 signature variableSi. The following signature constraint
links VARi andSi: VARi ∈ VALUES ⇔ Si. The automaton counts the number of variables
of theVARIABLES collection that take their value inVALUES and finally assigns this number
to NVAR.

not_in(VAR ,VALUES)i
{C=C+1} NVAR=C

s:

{C=0}

iin(VAR ,VALUES),

Figure 5.24: Automaton (with a counter) of theamong constraint

n

C

1
VAR

1S

1Q

2
VAR

2S

n
VAR

nS

0Q =s

0C =0
nC =NVAR

Q =s

1

Figure 5.25: Hypergraph of the reformulation corresponding to the automaton (with
a counter) of theamong constraint: since all states variables are fixed to the unique
state of the automaton, the transitions constraints share at most one variable and the
constraint network is Berge-acyclic

We now describe a second counter free automaton that also only acceptsall the solutions
of the among constraint. Without loss of generality, assume that the collection of vari-
ablesVARIABLES contains at least one variable (i.e.,|VARIABLES| ≥ 1). Let n andD
respectively denote the number of variables of the collectionVARIABLES, and the union
of the domains of the variables ofVARIABLES. Clearly, the maximum number of vari-
ables ofVARIABLES that are assigned a value inVALUES cannot exceed the quantity
m = min(n, NVAR). Them + 2 states of the automaton that only accepts all the solu-
tions of theamong constraint can be defined in the following way:

• We have an initial state labelled bys0.

• We havem intermediate states labelled bysi (1 ≤ i ≤ m). The intermediate states
are indexed by the number of already encountered satisfied constraintsof the form
VARk ∈ VALUES from the initial states0 to the statesi.

• We have a final state labelled bysF .

Three classes of transitions are respectively defined in the following way:

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20000128 483

1. There is a transition, labeled byj, (j ∈ D \ VALUES), from every statesi, (i ∈
[0,m]), to itself.

2. There is a transition, labeled byj, (j ∈ VALUES), from every statesi, (i ∈ [0,m −
1]), to the statesi+1.

3. There is a transition, labelled byi, from every statesi, (i ∈ [0,m]), to the final state
sF .

This leads to an automaton that hasm · |D|+ |D \ VALUES|+m+1 transitions. Since the
maximum value ofm is equal ton, in the worst case we haven · |D|+ |D\VALUES|+n+1
transitions.

Figure5.26depicts a counter free non deterministic automaton associated with theamong

constraint under the hypothesis that (1) all variables ofVARIABLES are assigned a value
in {0, 1, 2, 3}, (2) |VARIABLES| is equal to3, (3) VALUES corresponds to odd values.
The sequenceVAR1, VAR2, . . . , VAR|VARIABLES|, NVAR is passed to this automaton. A state
si (1 ≤ i ≤ 3) represents the fact thati odd values were already encountered, whilesF
represents the final state. A transition fromsi (1 ≤ i ≤ 3) to sF is labelled byi and
represents the fact that we can only go in the final state from a state that is compatible
with the total number of odd values enforced byNVAR. Note that non determinism only
occurs if there is a non-empty intersection between the set of potential values that can be
assigned to the variables ofVARIABLES and the potential value of theNVAR. While the
counter free non deterministic automaton depicted by Figure5.26has5 states and18 tran-
sitions, its minimum-state deterministic counterpart shown in Figure5.27has7 states and
23 transitions.

We make the following final observation. Since theSymmetriesslot of theamong con-
straint indicates that the variables ofVARIABLES are permutable, and since all incoming
transitions to any state of the automaton depicted by Figure5.26are labelled with distinct
values, we can mechanically construct from this automaton a counter free deterministic au-
tomaton that takes as input the sequenceNVAR, VAR3, VAR2, VAR1 rather than the sequence
VAR1, VAR2, VAR3, NVAR. This is achieved by respectively makingsF ands0 the initial and
the final state, and by reversing each transition.

484 NARC,SELF ; AUTOMATON

0

1

2

3

s

s

s
F

s

s

The sequence of variables

is passed to the automaton

0,2

0,2

0,2

0,2

1,3

1,3

1,3
0

1

2

3

VAR1 2VAR 3VAR NVAR

Figure 5.26: Counter free non deterministic automaton of the
among(NVAR, 〈VAR1, VAR2, VAR3〉, 〈1, 3〉) constraint assumingVARi ∈ [0, 3]
(1 ≤ i ≤ 3), with initial states0 and final statesF

20000128 485

0

2

4

2

1,3

1,3 0,2

is passed to the automaton

The sequence of variables

2

0

6
s

0

VAR 3VAR 21VAR

s

s
1

3
s

s
5

3

0,2

NVAR

s

s

2

1,3

0

2
0

1,3

3

1

Figure 5.27: Counter free minimum-state deterministic automaton of the
among(NVAR, 〈VAR1, VAR2, VAR3〉, 〈1, 3〉) constraint assumingVARi ∈ [0, 3] (1 ≤ i ≤
3), with initial states0 and final statesF

486 NARC,SELF ; AUTOMATON

5.18 amongdiff 0

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Used in the automaton ofnvalue.

Constraint among diff 0(NVAR, VARIABLES)

Arguments NVAR : dvar

VARIABLES : collection(var−dvar)

Restrictions NVAR ≥ 0
NVAR ≤ |VARIABLES|
required(VARIABLES, var)

Purpose NVAR is the number of variables of the collectionVARIABLES that take a value different
from 0.

Example (3, 〈0, 5, 5, 0, 1〉)

The among diff 0 constraint holds since exactly3 values of the collection of val-
ues〈0, 5, 5, 0, 1〉 are different from0.

Typical NVAR > 0
NVAR < |VARIABLES|
|VARIABLES| > 1
atleast(1, VARIABLES, 0)

Symmetries • Items ofVARIABLES arepermutable.

• An occurrence of a value ofVARIABLES.var that is different from0 can be
replacedby any other value that is also different from0.

Arg. properties
• Functional dependency: NVAR determined byVARIABLES.

• Contractiblewrt. VARIABLES whenNVAR = 0.

• Contractiblewrt. VARIABLES whenNVAR = |VARIABLES|.
• Aggregate: NVAR(+), VARIABLES(union).

See also common keyword:nvalue (counting constraint).

generalisation:among (variable 6= 0 replaced byvariable ∈ values).

Keywords characteristic of a constraint: joker value, automaton, automaton with counters.

constraint arguments:pure functional dependency.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: value constraint, counting constraint.

filtering: arc-consistency.

modelling: functional dependency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20040807 487

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var 6= 0

Graph property(ies) NARC= NVAR

Graph model Since this is a unary constraint we employ theSELF arc generator in order to produce an
initial graph with a single loop on each vertex.

Parts (A) and (B) of Figure5.28 respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the loops of the final
graph are stressed in bold.

VARIABLES

12345

NARC=3

2:5 3:5 5:1

(A) (B)

Figure 5.28: Initial and final graph of theamong diff 0 constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

488 NARC,SELF ; AUTOMATON

Automaton Figure5.29depicts the automaton associated with theamong diff 0 constraint. To each
variableVARi of the collectionVARIABLES corresponds a0-1 signature variableSi. The
following signature constraint linksVARi andSi: VARi 6= 0 ⇔ Si. The automaton counts
the number of variables of theVARIABLES collection that take a value different from0 and
finally assigns this number toNVAR.

NVAR=C
VAR <>0,

{C=C+1}
iVAR =0

{C=0}

s:
i

Figure 5.29: Automaton of theamong diff 0 constraint

n

C

1
VAR

1S

1Q

2
VAR

2S

n
VAR

nS

0Q =s

0C =0
nC =NVAR

Q =s

1

Figure 5.30: Hypergraph of the reformulation corresponding to the automaton of the
among diff 0 constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20040807 489

490 NARC,SELF ; AUTOMATON

5.19 amonginterval

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromamong.

Constraint among interval(NVAR, VARIABLES, LOW, UP)

Arguments NVAR : dvar

VARIABLES : collection(var−dvar)
LOW : int

UP : int

Restrictions NVAR ≥ 0
NVAR ≤ |VARIABLES|
required(VARIABLES, var)
LOW ≤ UP

Purpose
NVAR is the number of variables of the collectionVARIABLES taking a value that is lo-
cated within interval[LOW, UP].

Example (3, 〈4, 5, 8, 4, 1〉 , 3, 5)

The among interval constraint holds since we have3 values, namely4, 5 and 4
that are situated within interval[3, 5].

Typical NVAR > 0
NVAR < |VARIABLES|
|VARIABLES| > 1
LOW < UP

LOW ≤maxval(VARIABLES.var)
UP ≥minval(VARIABLES.var)

Symmetries • Items ofVARIABLES arepermutable.

• An occurrence of a value ofVARIABLES.var that belongs to[LOW, UP] (resp. does
not belong to[LOW, UP]) can bereplacedby any other value in[LOW, UP]) (resp. not
in [LOW, UP]).

Arg. properties
• Functional dependency: NVAR determined byVARIABLES, LOW andUP.

• Contractiblewrt. VARIABLES whenNVAR = 0.

• Contractiblewrt. VARIABLES whenNVAR = |VARIABLES|.
• Aggregate: NVAR(+), VARIABLES(union), LOW(id), UP(id).

Remark By giving explicitly all values of the interval[LOW, UP] theamong interval constraint can
be modelled with theamong constraint. However whenLOW − UP + 1 is a large quantity
theamong interval constraint provides a more compact form.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

20030820 491

See also generalisation:among (variable in interval replaced byvariable ∈ values).

Keywords characteristic of a constraint: automaton, automaton with counters.

constraint arguments:pure functional dependency.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: value constraint, counting constraint.

filtering: arc-consistency.

modelling: interval, functional dependency.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

492 NARC,SELF ; AUTOMATON

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) • LOW ≤ variables.var
• variables.var ≤ UP

Graph property(ies) NARC= NVAR

Graph model The arc constraint corresponds to a unary constraint. For this reasonwe employ theSELF
arc generator in order to produce a graph with a single loop on each vertex.

Parts (A) and (B) of Figure5.31 respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the loops of the final
graph are stressed in bold.

VARIABLES

12345

NARC=3

1:4 2:5 4:4

(A) (B)

Figure 5.31: Initial and final graph of theamong interval constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 493

Automaton Figure5.32 depicts the automaton associated with theamong interval constraint. To
each variableVARi of the collectionVARIABLES corresponds a0-1 signature variableSi.
The following signature constraint linksVARi andSi: LOW ≤ VARi ∧ VARi ≤ UP ⇔ Si.
The automaton counts the number of variables of theVARIABLES collection that take their
value in[LOW, UP] and finally assigns this number toNVAR.

{C=0}

LOW<=VAR and VAR <=UPi i
LOW>VAR or VAR >UPi i

NVAR=C
s:

{C=C+1}

Figure 5.32: Automaton of theamong interval constraint

Q =s

C =NVAR0C =0

0Q =s

nS

n
VAR

2S

2
VAR

1Q

1S

1
VAR

1C

n

n

Figure 5.33: Hypergraph of the reformulation corresponding to the automaton of the
among interval constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

494 NARC,PRODUCT ; AUTOMATON

5.20 amonglow up

DESCRIPTION LINKS GRAPH AUTOMATON

Origin [39]

Constraint among low up(LOW, UP, VARIABLES, VALUES)

Arguments LOW : int

UP : int

VARIABLES : collection(var−dvar)
VALUES : collection(val−int)

Restrictions LOW ≥ 0
LOW ≤ |VARIABLES|
UP ≥ 0
UP ≤ |VARIABLES|
UP ≥ LOW

required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose BetweenLOW andUP variables of theVARIABLES collection are assigned a value of the
VALUES collection.

Example
(

1, 2, 〈9, 2, 4, 5〉 ,
〈0, 2, 4, 6, 8〉

)

The among low up constraint holds since between1 and 2 values (i.e., in fact 2
values) of the collection of values〈9, 2, 4, 5〉 belong to the set of values{0, 2, 4, 6, 8}.

Typical LOW < |VARIABLES|
UP > 0
LOW < UP

|VARIABLES| > 1
|VALUES| > 1
|VARIABLES| > |VALUES|
LOW > 0 ∨ UP < |VARIABLES|

Symmetries • Items ofVARIABLES arepermutable.

• Items ofVALUES arepermutable.

• LOW can bedecreasedto any value≥ 0.

• UP can beincreasedto any value≤ |VARIABLES|.
• An occurrence of a value ofVARIABLES.var that belongs toVALUES.val (resp.

does not belong toVALUES.val) can bereplacedby any other value inVALUES.val
(resp. not inVALUES.val).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20030820 495

Arg. properties
• Contractiblewrt. VARIABLES whenUP = 0.

• Contractiblewrt. VARIABLES whenUP = |VARIABLES|.
• Aggregate: LOW(+), UP(+), VARIABLES(union), VALUES(sunion).

Algorithm Theamong low up constraint isentailedif and only if the following two conditions hold:

1. The number of variables of theVARIABLES collection assigned a value of theVALUES
collection is greater than or equal toLOW.

2. The number of variables of theVARIABLES collection that can potentially be assigned
a value of theVALUES collection is less than or equal toUP.

Used in among seq, cycle card on path, interval and count, sliding card skip0.

See also assignment dimension added: interval and count (assignment dimension corre-
sponding to intervals added).

generalisation: among (interval replaced byvariable), sliding card skip0 (full
sequence replaced by maximal sequences of non-zeros).

system of constraints:among seq.

Keywords characteristic of a constraint: automaton, automaton with counters.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: value constraint, counting constraint.

filtering: arc-consistency, entailment.

final graph structure: acyclic, bipartite, no loop.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

496 NARC,PRODUCT ; AUTOMATON

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) • NARC≥ LOW

• NARC≤ UP

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model Each arc constraint of the final graph corresponds to the fact that a variable is assigned to
a value that belong to theVALUES collection. The two graph properties restrict the total
number of arcs to the interval[LOW, UP].

Parts (A) and (B) of Figure5.34 respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

VARIABLES

VALUES

1

12 345

234

NARC=2

2:2

2:2

3:4

3:4

(A) (B)

Figure 5.34: Initial and final graph of theamong low up constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 497

Automaton Figure5.35depicts the automaton associated with theamong low up constraint. To each
variableVARi of the collectionVARIABLES corresponds a0-1 signature variableSi. The
following signature constraint linksVARi andSi: VARi ∈ VALUES ⇔ Si. The automaton
counts the number of variables of theVARIABLES collection that take their value inVALUES
and finally checks that this number is within the interval[LOW, UP].

s:i
{C=C+1}

not_in(VAR ,VALUES)i

{C=0}

LOW<=C and C<=UP

in(VAR ,VALUES),

Figure 5.35: Automaton of theamong low up constraint

n

LOW<=C and C <=UP0C =0

0Q =s

nS

n
VAR

2S

2
VAR

1Q

1S

1
VAR

1C

Q =s

 n n

Figure 5.36: Hypergraph of the reformulation corresponding to the automaton of the
among low up constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

498 NARC,SELF ; AUTOMATON

5.21 amongmodulo

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromamong.

Constraint among modulo(NVAR, VARIABLES, REMAINDER, QUOTIENT)

Arguments NVAR : dvar

VARIABLES : collection(var−dvar)
REMAINDER : int

QUOTIENT : int

Restrictions NVAR ≥ 0
NVAR ≤ |VARIABLES|
required(VARIABLES, var)
REMAINDER ≥ 0
REMAINDER < QUOTIENT

QUOTIENT > 0

Purpose
NVAR is the number of variables of the collectionVARIABLES taking a value that is con-
gruent toREMAINDER moduloQUOTIENT.

Example (3, 〈4, 5, 8, 4, 1〉 , 0, 2)

In this exampleREMAINDER = 0 andQUOTIENT = 2 specifies that we count the number
of even values taken by the different variables. As a consequence theamong modulo

constraint holds since exactly3 values of the collection〈4, 5, 8, 4, 1〉 are even.

Typical NVAR > 0
NVAR < |VARIABLES|
|VARIABLES| > 1
QUOTIENT > 1
QUOTIENT <maxval(VARIABLES.var)

Symmetries • Items ofVARIABLES arepermutable.

• An occurrence of a valueu of VARIABLES.var such thatu mod QUOTIENT =
REMAINDER (resp.umod QUOTIENT 6= REMAINDER) can bereplacedby any other
valuev such thatv mod QUOTIENT = REMAINDER (resp. u mod QUOTIENT 6=
REMAINDER).

Arg. properties
• Functional dependency: NVAR determined byVARIABLES, REMAINDER and

QUOTIENT.

• Contractiblewrt. VARIABLES whenNVAR = 0.

• Contractiblewrt. VARIABLES whenNVAR = |VARIABLES|.
• Aggregate: NVAR(+), VARIABLES(union), REMAINDER(id), QUOTIENT(id).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

20030820 499

Remark By giving explicitly all valuesv that satisfy the equalityv mod QUOTIENT = REMAINDER,
the among modulo constraint can be modelled with theamong constraint. However the
among modulo constraint provides a more compact form.

See also generalisation:among (list ofvalues v such thatvmodQUOTIENT = REMAINDER replaced
by list ofvalues).

Keywords characteristic of a constraint: modulo, automaton, automaton with counters.

constraint arguments:pure functional dependency.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: value constraint, counting constraint.

filtering: arc-consistency.

modelling: functional dependency.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

500 NARC,SELF ; AUTOMATON

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.varmod QUOTIENT = REMAINDER

Graph property(ies) NARC= NVAR

Graph model The arc constraint corresponds to a unary constraint. For this reasonwe employ theSELF
arc generator in order to produce a graph with a single loop on each vertex.

Parts (A) and (B) of Figure5.37 respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the loops of the final
graph are stressed in bold.

VARIABLES

12345

NARC=3

1:4 3:8 4:4

(A) (B)

Figure 5.37: Initial and final graph of theamong modulo constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 501

Automaton Figure5.38depicts the automaton associated with theamong modulo constraint. To each
variableVARi of the collectionVARIABLES corresponds a0-1 signature variableSi. The
following signature constraint linksVARi andSi: VARi mod QUOTIENT = REMAINDER ⇔
Si.

NVAR=C

{C=0}

VAR mod QUOTIENT<>REMAINDERi
{C=C+1}

iVAR mod QUOTIENT = REMAINDER, s:

Figure 5.38: Automaton of theamong modulo constraint

n

C =NVAR0C =0

0Q =s

nS

n
VAR

2S

2
VAR

1Q

1S

1
VAR

1C

Q =s

n

Figure 5.39: Hypergraph of the reformulation corresponding to the automaton of the
among modulo constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

502 NARC,PATH

5.22 amongseq

DESCRIPTION LINKS GRAPH

Origin [39]

Constraint among seq(LOW, UP, SEQ, VARIABLES, VALUES)

Synonym sequence.

Arguments LOW : int

UP : int

SEQ : int

VARIABLES : collection(var−dvar)
VALUES : collection(val−int)

Restrictions LOW ≥ 0
LOW ≤ |VARIABLES|
UP ≥ LOW

SEQ > 0
SEQ ≥ LOW

SEQ ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose Constrains all sequences ofSEQ consecutive variables of the collectionVARIABLES to
take at leastLOW values inVALUES and at mostUP values inVALUES.

Example

1, 2, 4,

〈

var− 9,
var− 2,
var− 4,
var− 5,
var− 5,
var− 7,
var− 2

〉

,

〈0, 2, 4, 6, 8〉

The among seq constraint holds since the different sequences of4 consecutive
variables contains respectively2, 2, 1 and1 even numbers.

Typical LOW < SEQ

UP > 0
SEQ > 1
SEQ < |VARIABLES|
|VARIABLES| > 1
|VALUES| > 0
|VARIABLES| > |VALUES|
LOW > 0 ∨ UP < SEQ

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20000128 503

Symmetries • Items ofVARIABLES can bereversed.

• Items ofVALUES arepermutable.

• LOW can bedecreasedto any value≥ 0.

• UP can beincreasedto any value≤ SEQ.

• An occurrence of a value ofVARIABLES.var that belongs toVALUES.val (resp.
does not belong toVALUES.val) can bereplacedby any other value inVALUES.val
(resp. not inVALUES.val).

Arg. properties
• Contractiblewrt. VARIABLES whenUP = 0.

• Contractiblewrt. VARIABLES whenSEQ = 1.

• Prefix-contractiblewrt. VARIABLES.

• Suffix-contractiblewrt. VARIABLES.

Usage The among seq constraint occurs in many timetabling problems. As a typical example
taken from [401], consider for instance a nurse-rostering problem where each nurse can
work at most2 night shifts during every period of7 consecutive days.

Algorithm Beldiceanu and Carlsson [29] have proposed a first incomplete filtering algorithm for
the among seq constraint. Later on, W.-J. van Hoeveet al. proposed two filtering al-
gorithms [401] establishingarc-consistencyas well as an incomplete filtering algorithm
based ondynamic programmingconcepts. In2007 Brandet al. came up with a reformu-
lation [82] that provides a complete filtering algorithm. One year later, Maheret al. use a
reformulation in term of alinear program[254] where (1) each coefficient is an integer in
{−1, 0, 1}, (2) each column has a block of consecutive1’s or −1’s. From this reformula-
tion they derive a flow model that leads to an algorithm that achieves a complete filtering
in O(n2) along a branch of the search tree.

Systems sequence in Gecode, sequence in JaCoP.

See also generalisation:sliding distribution (single set of values replaced by individual val-
ues).

part of system of constraints:among low up.

root concept:among.

used in graph description:among low up.

Keywords characteristic of a constraint: hypergraph.

combinatorial object: sequence.

constraint type: system of constraints, decomposition, sliding sequence constraint.

filtering: arc-consistency, linear programming, flow.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntSequence.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/Sequence.html
http://www.jacop.eu/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

504 NARC,PATH

Arc input(s) VARIABLES

Arc generator PATH 7→collection

Arc arity SEQ

Arc constraint(s) among low up(LOW, UP,collection, VALUES)

Graph property(ies) NARC= |VARIABLES| − SEQ+ 1

Graph model A constraint on sliding sequences of consecutive variables. Each vertex of the graph cor-
responds to a variable. Since they linkSEQ variables, the arcs of the graph correspond to
hyperarcs. In order to linkSEQ consecutive variables we use the arc generatorPATH . The
constraint associated with an arc corresponds to theamong low up constraint defined at
another entry of this catalogue.

Signature Since we use thePATH arc generator with an arity ofSEQ on the items of theVARIABLES
collection, the expression|VARIABLES| − SEQ + 1 corresponds to the maximum num-
ber of arcs of the final graph. Therefore we can rewrite the graph propertyNARC =
|VARIABLES| − SEQ+ 1 to NARC ≥ |VARIABLES| − SEQ+ 1 and simplifyNARC to
NARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20000128 505

506 NSOURCE,PRODUCT

5.23 amongvar

DESCRIPTION LINKS GRAPH

Origin Generalisation ofamong

Constraint among var(NVAR, VARIABLES, VALUES)

Arguments NVAR : dvar

VARIABLES : collection(var−dvar)
VALUES : collection(val−dvar)

Restrictions NVAR ≥ 0
NVAR ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)

Purpose NVAR is the number of variables of the collectionVARIABLES that are equal to one of the
variables of the collectionVALUES.

Example
(

3, 〈4, 5, 5, 4, 1〉 ,
〈1, 5, 8, 1〉

)

The among var constraint holds since exactly3 values of the collection of variables
〈4, 5, 5, 4, 1〉 occurs within the collection〈1, 5, 8, 1〉.

Typical |VARIABLES| > 1
|VALUES| > 1
|VARIABLES| > |VALUES|

Symmetries • Items ofVARIABLES arepermutable.

• Items ofVALUES arepermutable.

• All occurrences of two distinct values inVARIABLES.var or VALUES.val can be
swapped; all occurrences of a value inVARIABLES.var or VALUES.val can be
renamedto any unused value.

• An occurrence of a value ofVARIABLES.var that belongs toVALUES.val (resp.
does not belong toVALUES.val) can bereplacedby any other value inVALUES.val
(resp. not inVALUES.val).

Arg. properties
• Functional dependency: NVAR determined byVARIABLES andVALUES.

• Contractiblewrt. VARIABLES whenNVAR = 0.

• Contractiblewrt. VARIABLES whenNVAR = |VARIABLES|.
• Aggregate: NVAR(+), VARIABLES(union), VALUES(union).

Systems among in Choco, count in Gecode, amongvar in JaCoP.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntCount.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/AmongVar.html
http://www.jacop.eu/

20090418 507

See also implied by: among.

related: common.

specialisation:among (variable replaced byconstant within list ofvalues VALUES).

uses in its reformulation: min n.

Keywords constraint arguments:pure functional dependency.

constraint type: counting constraint.

final graph structure: acyclic, bipartite, no loop.

modelling: functional dependency.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

508 NSOURCE,PRODUCT

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) NSOURCE= NVAR

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model Parts (A) and (B) of Figure5.40 respectively show the initial and final graph associated
with theExampleslot. Since we use theNSOURCE graph property, the source vertices
of the final graph are stressed with a double circle. Since the final graphhas only3 sources
the variablesNVAR is fixed to3.

VARIABLES

VALUES

1

1234

2345

NSOURCE=3

2:5

2:5

3:5 5:1

1:1 4:1

(A) (B)

Figure 5.40: Initial and final graph of theamong var constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20090418 509

510 AUTOMATON

5.24 and

DESCRIPTION LINKS AUTOMATON

Origin Logic

Constraint and(VAR, VARIABLES)

Synonym rel.

Arguments VAR : dvar

VARIABLES : collection(var−dvar)

Restrictions VAR ≥ 0
VAR ≤ 1
|VARIABLES| ≥ 2
required(VARIABLES, var)
VARIABLES.var ≥ 0
VARIABLES.var ≤ 1

Purpose Let VARIABLES be a collection of0-1 variablesVAR1, VAR2, . . . , VARn (n ≥ 2). Enforce
VAR = VAR1 ∧ VAR2 ∧ . . . ∧ VARn.

Example (0, 〈0, 0〉)
(0, 〈0, 1〉)
(0, 〈1, 0〉)
(1, 〈1, 1〉)
(0, 〈1, 0, 1〉)

Symmetry Items ofVARIABLES arepermutable.

Arg. properties
• Functional dependency: VAR determined byVARIABLES.

• Extensiblewrt. VARIABLES whenVAR = 0.

• Aggregate: VAR(∧), VARIABLES(union).

Systems reifiedAnd in Choco, rel in Gecode, andbool in JaCoP, #/\ in SICStus.

See also common keyword: clause and, equivalent, imply, nand, nor, or,
xor (Boolean constraint).

implies: atleast nvalue, minimum.

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint arguments:pure functional dependency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelBool.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/AndBool.html
http://www.jacop.eu/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20051226 511

constraint network structure: Berge-acyclic constraint network.

constraint type: Boolean constraint.

filtering: arc-consistency.

modelling: functional dependency.

512 AUTOMATON

Automaton Figure5.41depicts the automaton associated with theand constraint. To the first argument
VAR of theand constraint corresponds the first signature variable. To each variableVARi

of the second argumentVARIABLES of theand constraint corresponds the next signature
variable. There is no signature constraint.

VAR=0

i

VAR =1
i

VAR =0
i

VAR =1
i

i
VAR =1

s

i j

k

VAR=1

VAR =0

Figure 5.41: Automaton of theand constraint

j

VAR
n

VAR

0Q =s 1Q

VAR

n+1Q =
k

1

Figure 5.42: Hypergraph of the reformulation corresponding to the automaton of the
and constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20051226 513

514 NARC,SELF ; AUTOMATON

5.25 arith

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Used in the definition of several automata

Constraint arith(VARIABLES, RELOP, VALUE)

Synonym rel.

Arguments VARIABLES : collection(var−dvar)
RELOP : atom

VALUE : int

Restrictions required(VARIABLES, var)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose Enforce for all variablesvar of theVARIABLES collection to havevar RELOP VALUE.

Example (〈4, 5, 7, 4, 5〉 , <, 9)

Thearith constraint holds since all values of the collection〈4, 5, 7, 4, 5〉 are strictly less
than9.

Typical |VARIABLES| > 1
RELOP ∈ [=]

Symmetries • Items ofVARIABLES arepermutable.

• An occurrence of a value ofVARIABLES.var can bereplacedby any value of
VARIABLES.var.

Arg. properties
Contractiblewrt. VARIABLES.

Systems eq in Choco, neq in Choco, geq in Choco, gt in Choco, leq in Choco, lt in Choco,
rel in Gecode, #< in SICStus, #=< in SICStus, #> in SICStus, #>= in SICStus, #= in
SICStus, #\= in SICStus.

Used in arith sliding.

See also common keyword:among, count (value constraint).

generalisation:arith or (variable RELOP VALUE replaced byvariable RELOP VALUE
∨ variable RELOP VALUE).

system of constraints:arith sliding.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

20040814 515

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: decomposition, value constraint.

filtering: arc-consistency.

modelling: domain definition.

Keywords
Related keywords grouped by meta-keywords.

516 NARC,SELF ; AUTOMATON

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var RELOP VALUE

Graph property(ies) NARC= |VARIABLES|

Graph model Parts (A) and (B) of Figure5.43 respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the loops of the final
graph are stressed in bold.

VARIABLES

12345

NARC=5

1:4 2:5 3:7 4:4 5:5

(A) (B)

Figure 5.43: Initial and final graph of thearith constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20040814 517

Automaton Figure5.44depicts the automaton associated with thearith constraint. To each variable
VARi of the collectionVARIABLES corresponds a0-1 signature variableSi. The following
signature constraint linksVARi andSi: VARi RELOP VALUE ⇔ Si. The automaton enforces
for each variableVARi the conditionVARi RELOP VALUE.

VAR RELOP VALUEis

Figure 5.44: Automaton of thearith constraint

n1Q0Q =s

1S 2S nS

1
VAR

2
VAR

n
VAR

Q =s

Figure 5.45: Hypergraph of the reformulation corresponding to the automaton of the
arith constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

518 NARC,PRODUCT (=); AUTOMATON

5.26 arith or

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Used in the definition of several automata

Constraint arith or(VARIABLES1, VARIABLES2, RELOP, VALUE)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
RELOP : atom

VALUE : int

Restrictions required(VARIABLES1, var)
required(VARIABLES2, var)
|VARIABLES1| = |VARIABLES2|
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose Enforce for all pairs of variablesvar1i, var2i of the VARIABLES1 andVARIABLES2
collections to havevar1i RELOP VALUE ∨ var2i RELOP VALUE.

Example
(

〈0, 1, 0, 0, 1〉 ,
〈0, 0, 0, 1, 0〉 ,=, 0

)

The constraintarith or holds since, for all pairs of variablesvar1i, var2i of the
VARIABLES1 andVARIABLES2 collections, there is at least one variable that is equal to0.

Typical |VARIABLES1| > 0
RELOP ∈ [=]

Symmetry Items ofVARIABLES1 andVARIABLES2 arepermutable(same permutation used).

Arg. properties
Contractiblewrt. VARIABLES1 andVARIABLES2 (remove items from same position).

See also specialisation:arith (variable RELOP VALUE ∨ variable RELOP VALUE replaced by
variable RELOP VALUE).

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: decomposition, value constraint.

filtering: arc-consistency.

final graph structure: acyclic, bipartite, no loop.

modelling: disjunction.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20040814 519

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT (=) 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var RELOP VALUE ∨ variables2.var RELOP VALUE

Graph property(ies) NARC= |VARIABLES1|
Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model Parts (A) and (B) of Figure5.46respectively show the initial and final graphs associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

VARIABLES1

VARIABLES2

1

1

2

2

3

3

4

4

5

5

NARC=5

1:0

1:0

2:1

2:0

3:0

3:0

4:0

4:1

5:1

5:0

(A) (B)

Figure 5.46: Initial and final graph of thearith or constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

520 NARC,PRODUCT (=); AUTOMATON

Automaton Figure5.47depicts the automaton associated with thearith or constraint. LetVAR1i and
VAR2i be theith variables of theVARIABLES1 andVARIABLES2 collections. To each pair
of variables(VAR1i, VAR2i) corresponds a signature variableSi. The following signature
constraint linksVAR1i, VAR2i and Si: VAR1i RELOP VALUE ∨ VAR2i RELOP VALUE ⇔
Si. The automaton enforces for each pair of variablesVAR1i,VAR2i the condition
VAR1i RELOP VALUE ∨ VAR2i RELOP VALUE.

i iVAR1 RELOP VALUE or VAR2 RELOP VALUEs

Figure 5.47: Automaton of thearith or constraint

n

VAR2
 2

VAR2 1
VAR2

 1
VAR1

 2
VAR1

 n
VAR1

1Q0Q =s

1S 2S nS

Q =s

 n

Figure 5.48: Hypergraph of the reformulation corresponding to the automaton of the
arith or constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20040814 521

522 NARC,PATH 1 ; AUTOMATON

5.27 arith sliding

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Used in the definition of some automaton

Constraint arith sliding(VARIABLES, RELOP, VALUE)

Arguments VARIABLES : collection(var−dvar)
RELOP : atom

VALUE : int

Restrictions required(VARIABLES, var)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose
Enforce for all sequences of variablesvar1, var2, . . . , vari (1 ≤ i ≤ |VARIABLES|) of
theVARIABLES collection to have(var1 + var2 + . . .+ vari) RELOP VALUE.

Example

〈

var− 0,
var− 0,
var− 1,
var− 2,
var− 0,
var− 0,
var−−3

〉

, <, 4

Thearith sliding constraint holds since all the following seven inequalities hold:

• 0 < 4,

• 0 + 0 < 4,

• 0 + 0 + 1 < 4,

• 0 + 0 + 1 + 2 < 4,

• 0 + 0 + 1 + 2 + 0 < 4,

• 0 + 0 + 1 + 2 + 0 + 0 < 4,

• 0 + 0 + 1 + 2 + 0 + 0− 3 < 4.

Typical |VARIABLES| > 1
RELOP ∈ [<,≥, >,≤]

Arg. properties
• Contractible wrt. VARIABLES when RELOP ∈ [<,≤] and

minval(VARIABLES.var) ≥ 0.

• Suffix-contractiblewrt. VARIABLES.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

20040814 523

See also common keyword:sum ctr (arithmetic constraint).

part of system of constraints:arith.

used in graph description:arith.

Keywords characteristic of a constraint: hypergraph, automaton, automaton with counters.

combinatorial object: sequence.

constraint type: arithmetic constraint, decomposition, sliding sequence constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

524 NARC,PATH 1 ; AUTOMATON

Arc input(s) VARIABLES

Arc generator PATH 1 7→collection

Arc arity ∗
Arc constraint(s) arith(collection, RELOP, VALUE)

Graph property(ies) NARC= |VARIABLES|

20040814 525

Automaton Figure5.49depicts the automaton associated with thearith sliding constraint. To each
item of the collectionVARIABLES corresponds a signature variableSi that is equal to0.

{C=0}

{C=C+VAR }i

0,
{C=C+VAR }

i

s:

C RELOP VALUE

t:
C RELOP VALUE

0,C RELOP VALUE

Figure 5.49: Automaton of thearith sliding constraint

nQ =s 1Q
nC2C

nS2S1S

 nVAR 2VAR

1C =0
 1VAR

t

s
Q =

0

Figure 5.50: Hypergraph of the reformulation corresponding to the automaton of the
arith sliding constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

526 PRODUCT , SUCC

5.28 assignand counts

DESCRIPTION LINKS GRAPH AUTOMATON

Origin N. Beldiceanu

Constraint assign and counts(COLOURS, ITEMS, RELOP, LIMIT)

Arguments COLOURS : collection(val−int)
ITEMS : collection(bin−dvar, colour−dvar)
RELOP : atom

LIMIT : dvar

Restrictions required(COLOURS, val)
distinct(COLOURS, val)
required(ITEMS, [bin, colour])
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose
Given several items (each of them having a specific colour that may notbe initially
fixed), and different bins, assign each item to a bin, so that the total numbern of items
of colourCOLOURS in each bin satisfies the conditionn RELOP LIMIT.

Example

〈4〉 ,
〈

bin− 1 colour− 4,
bin− 3 colour− 4,
bin− 1 colour− 4,
bin− 1 colour− 5

〉

,≤, 2

Figure 5.51 shows the solution associated with the example. The items and the
bins are respectively represented by little squares and by the differentcolumns. Each little
square contains the value of thekey attribute of the item to which it corresponds. The
items for which the colour attribute is equal to4 are located under the thick line. The
assign and counts constraint holds since for each used bin (i.e., namely bins1 and3)
the number of assigned items for which the colour attribute is equal to4 is less than or
equal to the limit2.

2
=4

<3

1 2 3 4 5

1

3

4

<>4

Figure 5.51: Assignment of the items to the bins

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20000128 527

Typical |COLOURS| > 0
|ITEMS| > 1
range(ITEMS.bin) > 1
RELOP ∈ [<,≤]
LIMIT > 0
LIMIT < |ITEMS|

Symmetries • Items ofCOLOURS arepermutable.

• Items ofITEMS arepermutable.

• All occurrences of two distinct values ofITEMS.bin can beswapped; all occur-
rences of a value ofITEMS.bin can berenamedto any unused value.

Arg. properties
• Contractiblewrt. ITEMS whenRELOP ∈ [<,≤].

• Extensiblewrt. ITEMS whenRELOP ∈ [≥, >].

Usage Some persons have pointed out that it is impossible to use constraints suchas among,
atleast, atmost, count, or global cardinality if the set of variables is not initially
known. However, this is for instance required in practice for some timetabling problems.

See also assignment dimension removed:count, counts.

used in graph description:counts.

Keywords application area: assignment.

characteristic of a constraint: coloured, automaton, automaton with array of counters,
derived collection.

final graph structure: acyclic, bipartite, no loop.

modelling: assignment dimension.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

528 PRODUCT , SUCC

Derived Collection
col(VALUES−collection(val−int), [item(val− COLOURS.val)])

Arc input(s) ITEMS ITEMS

Arc generator PRODUCT 7→collection(items1, items2)

Arc arity 2

Arc constraint(s) items1.bin = items2.bin

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Sets SUCC 7→

source,

variables− col

(

VARIABLES−collection(var−dvar),
[item(var− ITEMS.colour)]

)

Constraint(s) on sets counts(VALUES, variables, RELOP, LIMIT)

Graph model We enforce thecounts constraint on the colour of the items that are assigned to the same
bin.

Parts (A) and (B) of Figure5.52respectively show the initial and final graph associated with
theExampleslot. The final graph consists of the following two connected components:

• The connected component containing six vertices corresponds to the items that are
assigned to bin1.

• The connected component containing two vertices corresponds to the items that are
assigned to bin3.

ITEMS

ITEMS

1

1234

234

ITEMS

ITEMS

1:1,4

1:1,4 3:1,44:1,5

2:3,4

2:3,4

3:1,44:1,5

(A) (B)

Figure 5.52: Initial and final graph of theassign and counts constraint

Theassign and counts constraint holds since for each set of successors of the vertices
of the final graph no more than two items take colour4.

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 529

Automaton Figure5.53depicts the automaton associated with theassign and counts constraint. To
eachcolour attributeCOLOURi of the collectionITEMS corresponds a0-1 signature vari-
ableSi. The following signature constraint linksCOLOURi andSi: COLOURi ∈ COLOURS ⇔
Si. For all items of the collectionITEMS for which thecolour attribute takes its value in
COLOURS, counts for each value assigned to thebin attribute its number of occurrencesn,
and finally imposes the conditionn RELOP LIMIT.

arith(C,RELOP,LIMIT)
in(COLOUR ,COLOURS),

{C[BIN]=C[BIN]+1}i i
 inot_in(COLOUR ,COLOURS)

{C[_]=0}

s:
 i

Figure 5.53: Automaton of theassign and counts constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

530 PRODUCT , SUCC

5.29 assignand nvalues

DESCRIPTION LINKS GRAPH

Origin Derived fromassign and counts andnvalues.

Constraint assign and nvalues(ITEMS, RELOP, LIMIT)

Arguments ITEMS : collection(bin−dvar, value−dvar)
RELOP : atom

LIMIT : dvar

Restrictions required(ITEMS, [bin, value])
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose
Given several items (each of them having a specific value that may not be initially fixed),
and different bins, assign each item to a bin, so that the numbern of distinct values in
each bin satisfies the conditionn RELOP LIMIT.

Example

〈

bin− 2 value− 3,
bin− 1 value− 5,
bin− 2 value− 3,
bin− 2 value− 3,
bin− 2 value− 4

〉

,≤, 2

Figure5.54depicts the solution corresponding to the example. Theassign and nvalues

constraint holds since for each used bin (i.e., namely bins1 and2) the number of distinct
colours of the corresponding assigned items is less than or equal to the limit2.

5

Second value

First value 5 3

4

1 2 3 4

<3

Figure 5.54: An assignment with at most two distinct values in parallel

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20000128 531

Typical |ITEMS| > 1
range(ITEMS.bin) > 1
range(ITEMS.value) > 1
RELOP ∈ [<,≤]
LIMIT > 1
LIMIT < |ITEMS|

Symmetries • Items ofITEMS arepermutable.

• All occurrences of two distinct values ofITEMS.bin can beswapped; all occur-
rences of a value ofITEMS.bin can berenamedto any unused value.

Arg. properties
• Contractiblewrt. ITEMS whenRELOP ∈ [<,≤].

• Extensiblewrt. ITEMS whenRELOP ∈ [≥, >].

Usage Let us give two examples where theassign and nvalues constraint is useful:

• Quite often, in bin-packing problems, each item has a specific type, and one wants to
assign items of similar type to each bin.

• In a vehicle routing problem, one wants to restrict the number of towns visited by
each vehicle. Note that several customers may be located at the same town. In this
example, each bin would correspond to a vehicle, each item would correspond to a
visit to a customer, and the colour of an item would be the location of the correspond-
ing customer.

See also assignment dimension removed:nvalue, nvalues.

common keyword:nvalues except 0 (number of distinct values).

related: roots.

used in graph description:nvalues.

Keywords application area: assignment.

final graph structure: acyclic, bipartite, no loop.

modelling: assignment dimension, number of distinct values.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

532 PRODUCT , SUCC

Arc input(s) ITEMS ITEMS

Arc generator PRODUCT 7→collection(items1, items2)

Arc arity 2

Arc constraint(s) items1.bin = items2.bin

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Sets SUCC 7→

source,

variables− col

(

VARIABLES−collection(var−dvar),
[item(var− ITEMS.value)]

)

Constraint(s) on sets nvalues(variables, RELOP, LIMIT)

Graph model We enforce thenvalues constraint on the items that are assigned to the same bin.

Parts (A) and (B) of Figure5.55respectively show the initial and final graph associated with
theExampleslot. The final graph consists of the following two connected components:

• The connected component containing8 vertices corresponds to the items that are
assigned to bin2.

• The connected component containing2 vertices corresponds to the items that are
assigned to bin1.

ITEMS

ITEMS

1

12 345

2345

ITEMS

ITEMS

1:2,3

1:2,33:2,3 4:2,35:2,4

2:1,5

2:1,5

3:2,3 4:2,35:2,4

(A) (B)

Figure 5.55: Initial and final graph of theassign and nvalues constraint

Theassign and nvalues constraint holds since for each set of successors of the vertices
of the final graph no more than two distinct values are used:

• The unique item assigned to bin1 uses value5.

• Items assigned to bin2 use values3 and4.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 533

534 NARC,SELF ; AUTOMATON

5.30 atleast

DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint atleast(N, VARIABLES, VALUE)

Synonym count.

Arguments N : int

VARIABLES : collection(var−dvar)
VALUE : int

Restrictions N ≥ 0
N ≤ |VARIABLES|
required(VARIABLES, var)

Purpose At leastN variables of theVARIABLES collection are assigned valueVALUE.

Example (2, 〈4, 2, 4, 5〉 , 4)

The atleast constraint holds since at least2 values of the collection〈4, 2, 4, 5〉
are equal to value4.

Typical N > 0
N < |VARIABLES|
|VARIABLES| > 1

Symmetries • Items ofVARIABLES arepermutable.

• N can bedecreasedto any value≥ 0.

• An occurrence of a value ofVARIABLES.var that is different fromVALUE can be
replacedby any other value.

Arg. properties
Extensiblewrt. VARIABLES.

Systems occurenceMin in Choco, count in Gecode, atleast in Gecode, count in JaCoP,
at least in MiniZinc , count in SICStus.

Used in alldifferent except 0, among diff 0, atmost, int value precede,
ith pos different from 0, minimum except 0, nvalues except 0,
period except 0, sliding card skip0, weighted partial alldiff.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntCount.html
http://www.gecode.org/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelMiniModelIntAlias.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/Count.html
http://www.jacop.eu/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#at_least
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

Used in
List of constraints that use this constraint in their description.

20030820 535

See also common keyword:among (value constraint).

comparison swapped:atmost.

implied by: exactly (≥ N replaced by= N).

related: roots.

soft variant: open atleast (open constraint).

Keywords characteristic of a constraint: automaton, automaton with counters.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: value constraint.

filtering: arc-consistency.

modelling: at least.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

536 NARC,SELF ; AUTOMATON

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUE

Graph property(ies) NARC≥ N

Graph model Since each arc constraint involves only one vertex (VALUE is fixed), we employ theSELF
arc generator in order to produce a graph with a single loop on each vertex.

Parts (A) and (B) of Figure5.56 respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the loops of the final
graph are stressed in bold.

VARIABLES

1234

NARC=2

1:4 3:4

(A) (B)

Figure 5.56: Initial and final graph of theatleast constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 537

Automaton Figure5.57depicts the automaton associated with theatleast constraint. To each vari-
ableVARi of the collectionVARIABLES corresponds a0-1 signature variableSi. The fol-
lowing signature constraint linksVARi andSi: VARi = VALUE ⇔ Si. The automaton
counts the number of variables of theVARIABLES collection that are assigned valueVALUE
and finally checks that this number is greater than or equal toN.

N<=C

{C=0}

VAR =VALUE,
i

{C=C+1}

VAR <>VALUE
i

s:

Figure 5.57: Automaton of theatleast constraint

n

C >=N1C

1
VAR

1S

1Q

2
VAR

2S

n
VAR

nS

0Q =s

0C =0

Q =s

n

Figure 5.58: Hypergraph of the reformulation corresponding to the automaton of the
atleast constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

538 NSCC,CLIQUE

5.31 atleastnvalue

DESCRIPTION LINKS GRAPH

Origin [321]

Constraint atleast nvalue(NVAL, VARIABLES)

Synonym k diff.

Arguments NVAL : dvar

VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
NVAL ≥ 0
NVAL ≤ |VARIABLES|
NVAL ≤range(VARIABLES.var)

Purpose
The number of distinct values taken by the variables of the collectionVARIABLES is
greater than or equal toNVAL.

Example (2, 〈3, 1, 7, 1, 6〉)

The atleast nvalue constraint holds since the collection〈3, 1, 7, 1, 6〉 involves at
least2 distinct values (i.e., in fact4 distinct values).

Typical NVAL > 0
NVAL < |VARIABLES|
NVAL <range(VARIABLES.var)
|VARIABLES| > 1

Symmetries • NVAL can bedecreasedto any value≥ 0.

• Items ofVARIABLES arepermutable.

• All occurrences of two distinct values ofVARIABLES.var can beswapped; all
occurrences of a value ofVARIABLES.var can berenamedto any unused value.

Arg. properties
Extensiblewrt. VARIABLES.

Remark The atleast nvalue constraint was first introduced by J.-C. Régin under the name
k diff in [321]. Later on theatleast nvalue constraint was introduced together with
the atmost nvalue constraint by C. Bessièreet al. in a article [58] providing filtering
algorithms for thenvalue constraint.

Algorithm [58] provides a sketch of a filtering algorithm enforcingarc-consistencyfor the
atleast nvalue constraint. This algorithm is based on the maximal matching in a bi-
partite graph.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

20050618 539

See also comparison swapped:atmost nvalue.

implied by: and, nand, nor, nvalue (≥ NVAL replaced by = NVAL), or,
size max seq alldifferent, size max starting seq alldifferent.

uses in its reformulation: not all equal.

Keywords constraint type: counting constraint, value partitioning constraint.

filtering: bipartite matching, arc-consistency.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes, number of distinct values.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

540 NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC≥ NVAL

Graph class EQUIVALENCE

Graph model Parts (A) and (B) of Figure5.59respectively show the initial and final graph associated with
theExampleslot. Since we use theNSCC graph property we show the different strongly
connected components of the final graph. Each strongly connected component corresponds
to a specific value that is assigned to some variables of theVARIABLES collection. The4
following values1, 3, 6 and7 are used by the variables of theVARIABLES collection.

(A)

VARIABLES

1

2

3

4

5

(B) NSCC=4

SCC#1 SCC#2 SCC#3 SCC#4

1:3 2:1

4:1

3:7 5:6

Figure 5.59: Initial and final graph of theatleast nvalue constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20050618 541

542 NSCC,CLIQUE

5.32 atleastnvector

DESCRIPTION LINKS GRAPH

Origin Derived fromnvector

Constraint atleast nvector(NVEC, VECTORS)

Type VECTOR : collection(var−dvar)

Arguments NVEC : dvar

VECTORS : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
NVEC ≥ 0
NVEC ≤ |VECTORS|
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose

The number of distinct tuples of values taken by the vectors of the collectionVECTORS

is greater than or equal toNVEC. Two tuples of values〈A1, A2, . . . , Am〉 and
〈B1, B2, . . . , Bm〉 aredistinct if and only if there exist an integeri ∈ [1,m] such that
Ai 6= Bi.

Example

2,

〈

vec− 〈5, 6〉 ,
vec− 〈5, 6〉 ,
vec− 〈9, 3〉 ,
vec− 〈5, 6〉 ,
vec− 〈9, 4〉

〉

The atleast nvector constraint holds since the collectionVECTORS involves at
least2 distinct tuples of values (i.e., in fact the3 distinct tuples〈5, 6〉, 〈9, 3〉 and〈9, 4〉).

Typical |VECTOR| > 1
NVEC > 1
NVEC < |VECTORS|
|VECTORS| > 1

Symmetries • NVEC can bedecreasedto any value≥ 0.

• Items ofVECTORS arepermutable.

• Items ofVECTORS.vec arepermutable(same permutation used).

• All occurrences of two distinct tuples of values ofVECTORS.vec can beswapped;
all occurrences of a tuple of values ofVECTORS.vec can berenamedto any unused
tuple of values.

Arg. properties
Extensiblewrt. VECTORS.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

20081226 543

Reformulation By introducing an extra variable NV ∈ [0, |VECTORS|], the
atleast nvector(NV, VECTORS) constraint can be expressed in term of an
nvector(NV, VECTORS) constraint and of an inequality constraintNV ≥ NVEC.

See also comparison swapped:atmost nvector.

implied by: nvector (≥ NVEC replaced by= NVEC), ordered atleast nvector.

used in graph description:lex equal.

Keywords characteristic of a constraint: vector.

constraint type: counting constraint, value partitioning constraint.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes.

problems: domination.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

544 NSCC,CLIQUE

Arc input(s) VECTORS

Arc generator CLIQUE 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) lex equal(vectors1.vec, vectors2.vec)

Graph property(ies) NSCC≥ NVEC

Graph class EQUIVALENCE

Graph model Parts (A) and (B) of Figure5.60 respectively show the initial and final graph associated
with the Example slot. Since we use theNSCC graph property we show the different
strongly connected components of the final graph. Each strongly connected component
corresponds to a tuple of values that is assigned to some vectors of theVECTORS collection.
The 3 following tuple of values〈5, 6〉, 〈9, 3〉 and 〈9, 4〉 are used by the vectors of the
VECTORS collection.

VECTORS

1

2

3

4

5

NSCC=3

SCC#1 SCC#2 SCC#3

1:5
 6

2:5
 6

4:5
 6

3:9
 3

5:9
 4

(A) (B)

Figure 5.60: Initial and final graph of theatleast nvector constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20081226 545

546 NARC,SELF ; AUTOMATON

5.33 atmost

DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint atmost(N, VARIABLES, VALUE)

Synonym count.

Arguments N : int

VARIABLES : collection(var−dvar)
VALUE : int

Restrictions N ≥ 0
required(VARIABLES, var)

Purpose At mostN variables of theVARIABLES collection are assigned valueVALUE.

Example (1, 〈4, 2, 4, 5〉 , 2)

The atmost constraint holds since at most1 value of the collection〈4, 2, 4, 5〉 is
equal to value2.

Typical N > 0
N < |VARIABLES|
|VARIABLES| > 1
atleast(1, VARIABLES, VALUE)

Symmetries • Items ofVARIABLES arepermutable.

• N can beincreased.

• An occurrence of a value ofVARIABLES.var can bereplacedby any other value
that is different fromVALUE.

Arg. properties
Contractiblewrt. VARIABLES.

Systems occurenceMax in Choco, count in Gecode, atmost in Gecode, count in JaCoP,
at most in MiniZinc , count in SICStus.

See also common keyword:among (value constraint).

comparison swapped:atleast.

generalisation:cumulative (variable replaced bytask).

implied by: exactly (≤N replaced by=N).

related: roots.

soft variant: open atmost (open constraint).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntCount.html
http://www.gecode.org/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelMiniModelIntAlias.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/Count.html
http://www.jacop.eu/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#at_most
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

20030820 547

Keywords characteristic of a constraint: automaton, automaton with counters.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: value constraint.

filtering: arc-consistency.

modelling: at most.

Keywords
Related keywords grouped by meta-keywords.

548 NARC,SELF ; AUTOMATON

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUE

Graph property(ies) NARC≤ N

Graph model Since each arc constraint involves only one vertex (VALUE is fixed), we employ theSELF
arc generator in order to produce a graph with a single loop on each vertex.

Parts (A) and (B) of Figure5.61 respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the loops of the final
graph are stressed in bold.

VARIABLES

1234

NARC=1

2:2

(A) (B)

Figure 5.61: Initial and final graph of theatmost constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 549

Automaton Figure5.62depicts the automaton associated with theatmost constraint. To each variable
VARi of the collectionVARIABLES corresponds a0-1 signature variableSi. The following
signature constraint linksVARi andSi: VARi = VALUE ⇔ Si. The automaton counts the
number of variables of theVARIABLES collection that are assigned valueVALUE and finally
checks that this number is less than or equal toN.

N>=C

{C=0}

VAR <>VALUE
iVAR =VALUE,

i
{C=C+1}

s:

Figure 5.62: Automaton of theatmost constraint

n

C <=N1C

1
VAR

1S

1Q

2
VAR

2S

n
VAR

nS

0Q =s

0C =0

Q =s

n

Figure 5.63: Hypergraph of the reformulation corresponding to the automaton of the
atmost constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

550 PREDEFINED

5.34 atmost1

DESCRIPTION LINKS

Origin [344]

Constraint atmost1(SETS)

Synonym pair atmost1.

Argument SETS : collection(s−svar, c−int)

Restrictions required(SETS, [s, c])
SETS.c ≥ 1

Purpose

Given a collection of set variabless1, s2, . . . , sn and their respective cardinality
c1, c2, . . . , cn, theatmost1 constraint enforces the following two conditions:

• ∀i ∈ [1, n] : |si| = ci,

• ∀i, j ∈ [1, n] (i < j) : |si
⋂

sj | ≤ 1.

Example

〈
s− {5, 8} c− 2,
s− {5} c− 1,
s− {5, 6, 7} c− 3,
s− {1, 4} c− 2

〉

Theatmost1 constraint holds since:

• |{5, 8}| = 2, |{5}| = 1, |{5, 6, 7}| = 3, |{1, 4}| = 2.

• |{5, 8}⋂{5}| ≤ 1, |{5, 8}⋂{5, 6, 7}| ≤ 1, |{5, 8}⋂{1, 4}| ≤ 1,

|{5}⋂{5, 6, 7}| ≤ 1, |{5}⋂{1, 4}| ≤ 1,

|{5, 6, 7}⋂{1, 4}| ≤ 1.

Typical |SETS| > 1

Symmetries • Items ofSETS arepermutable.

• All occurrences of two distinct values ofSETS.s can beswapped; all occurrences
of a value ofSETS.s can berenamedto any unused value.

Arg. properties
Contractiblewrt. SETS.

Remark When we have only two set variables theatmost1 constraint was calledpair atmost1

in [403].

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

20061003 551

Algorithm C. Bessìere et al. have shown in [64] that it is NP-hard to enforce bound consistency
for the atmost1 constraint. Consequently, following the first filtering algorithm from
A. Sadler and C. Gervet [344], W.-J. van Hoeve and A. Sabharwal have proposed an algo-
rithm that enforcesbound-consistencywhen theatmost1 constraint involves only two sets
variables [403].

Systems at most1 in MiniZinc .

Keywords constraint arguments:constraint involving set variables.

constraint type: predefined constraint.

filtering: bound-consistency.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#at_most1
http://www.g12.cs.mu.oz.au/minizinc/

Keywords
Related keywords grouped by meta-keywords.

552 NSCC,CLIQUE

5.35 atmostnvalue

DESCRIPTION LINKS GRAPH

Origin [58]

Constraint atmost nvalue(NVAL, VARIABLES)

Synonyms soft alldiff max var, soft alldifferent max var,
soft alldistinct max var.

Arguments NVAL : dvar

VARIABLES : collection(var−dvar)

Restrictions NVAL ≥ min(1, |VARIABLES|)
required(VARIABLES, var)

Purpose
The number of distinct values taken by the variables of the collectionVARIABLES is less
than or equal toNVAL.

Example (4, 〈3, 1, 3, 1, 6〉)

The atmost nvalue constraint holds since the collection〈3, 1, 3, 1, 6〉 involves at
most4 distinct values (i.e., in fact3 distinct values).

Typical NVAL > 1
NVAL < |VARIABLES|
|VARIABLES| > 1

Symmetries • NVAL can beincreased.

• Items ofVARIABLES arepermutable.

• All occurrences of two distinct values ofVARIABLES.var can beswapped; all
occurrences of a value ofVARIABLES.var can berenamedto any unused value.

• An occurrence of a value ofVARIABLES.var can bereplacedby any value of
VARIABLES.var.

Arg. properties
Contractiblewrt. VARIABLES.

Remark This constraint was introduced together with theatleast nvalue constraint by
C. Bessìereet al. in a article [58] providing filtering algorithms for thenvalue constraint.

It was shown in [65] that, finding out whether aatmost nvalue constraint has a solution
or not is NP-hard. This was achieved by reduction from3-SAT.

Algorithm [26] provides an algorithm that achievesbound consistency. [38] provides two filtering
algorithms, while [58] provides a greedy algorithm and a graph invariant for evaluating the
minimum number of distinct values. [58] also gives a linear relaxation for approximating
the minimum number of distinct values.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

20050618 553

Systems atMostNValue in Choco.

See also comparison swapped:atleast nvalue.

implied by: nvalue (≤ NVAL replaced by= NVAL).

related: soft all equal max var, soft all equal min ctr,
soft all equal min var, soft alldifferent ctr, soft alldifferent var.

Keywords complexity: 3-SAT.

constraint type: counting constraint, value partitioning constraint.

filtering: bound-consistency.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes, number of distinct values.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

554 NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC≤ NVAL

Graph class EQUIVALENCE

Graph model Parts (A) and (B) of Figure5.64respectively show the initial and final graph associated with
theExampleslot. Since we use theNSCC graph property we show the different strongly
connected components of the final graph. Each strongly connected component corresponds
to a specific value that is assigned to some variables of theVARIABLES collection. The3
following values1, 3 and6 are used by the variables of theVARIABLES collection.

(A)

VARIABLES

1

2

3

4

5

(B)
NSCC=3

SCC#1 SCC#2 SCC#3

1:3

3:3

2:1

4:1

5:6

Figure 5.64: Initial and final graph of theatmost nvalue constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20050618 555

556 NSCC,CLIQUE

5.36 atmostnvector

DESCRIPTION LINKS GRAPH

Origin Derived fromnvector

Constraint atmost nvector(NVEC, VECTORS)

Type VECTOR : collection(var−dvar)

Arguments NVEC : dvar

VECTORS : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
NVEC ≥ min(1, |VECTORS|)
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose

The number of distinct tuples of values taken by the vectors of the collection
VECTORS is less than or equal toNVEC. Two tuples of values〈A1, A2, . . . , Am〉 and
〈B1, B2, . . . , Bm〉 aredistinct if and only if there exist an integeri ∈ [1,m] such that
Ai 6= Bi.

Example

3,

〈

vec− 〈5, 6〉 ,
vec− 〈5, 6〉 ,
vec− 〈9, 3〉 ,
vec− 〈5, 6〉 ,
vec− 〈9, 3〉

〉

The atmost nvector constraint holds since the collectionVECTORS involves at
most3 distinct tuples of values (i.e., in fact the2 distinct tuples〈5, 6〉 and〈9, 3〉).

Typical |VECTOR| > 1
NVEC > 1
NVEC < |VECTORS|
|VECTORS| > 1

Symmetries • NVEC can beincreased.

• Items ofVECTORS arepermutable.

• Items ofVECTORS.vec arepermutable(same permutation used).

• All occurrences of two distinct tuples of values ofVECTORS.vec can beswapped;
all occurrences of a tuple of values ofVECTORS.vec can berenamedto any unused
tuple of values.

Arg. properties
Contractiblewrt. VECTORS.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

20081226 557

Reformulation By introducing an extra variableNV ∈ [0, |VECTORS|], theatmost nvector(NV, VECTORS)
constraint can be expressed in term of annvector(NV, VECTORS) constraint and of an
inequality constraintNV ≤ NVEC.

See also comparison swapped:atleast nvector.

implied by: nvector (≤ NVEC replaced by= NVEC), ordered atmost nvector.

used in graph description:lex equal.

Keywords characteristic of a constraint: vector.

constraint type: counting constraint, value partitioning constraint.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes.

problems: domination.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

558 NSCC,CLIQUE

Arc input(s) VECTORS

Arc generator CLIQUE 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) lex equal(vectors1.vec, vectors2.vec)

Graph property(ies) NSCC≤ NVEC

Graph class EQUIVALENCE

Graph model Parts (A) and (B) of Figure5.65 respectively show the initial and final graph associated
with the Example slot. Since we use theNSCC graph property we show the different
strongly connected components of the final graph. Each strongly connected component
corresponds to a tuple of values that is assigned to some vectors of theVECTORS collection.
The2 following tuple of values〈5, 6〉 and〈9, 3〉 are used by the vectors of theVECTORS
collection.

VECTORS

1

2

3

4

5

NSCC=2

SCC#1 SCC#2

1:5
 6

2:5
 6

4:5
 6

3:9
 3

5:9
 3

(A) (B)

Figure 5.65: Initial and final graph of theatmost nvector constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20081226 559

560 RANGE NSCC,CLIQUE

5.37 balance

DESCRIPTION LINKS GRAPH AUTOMATON

Origin N. Beldiceanu

Constraint balance(BALANCE, VARIABLES)

Arguments BALANCE : dvar

VARIABLES : collection(var−dvar)

Restrictions BALANCE ≥ 0
BALANCE ≤ max(0, |VARIABLES| − 2)
required(VARIABLES, var)

Purpose
BALANCE is equal to the difference between the number of occurrence of the value that
occurs the most and the value that occurs the least within the collection of variables
VARIABLES.

Example (2, 〈3, 1, 7, 1, 1〉)

In this example, values1, 3 and 7 are respectively used3, 1 and 1 times. The
balance constraint holds since its first argumentBALANCE is assigned to the difference
between the maximum and minimum number of the previous occurrences (i.e., 3 − 1).
Figure5.66shows the solution associated with the example.

Typical |VARIABLES| > 2

Symmetries • Items ofVARIABLES arepermutable.

• All occurrences of two distinct values ofVARIABLES.var can beswapped; all
occurrences of a value ofVARIABLES.var can berenamedto any unused value.

Arg. properties
Functional dependency: BALANCE determined byVARIABLES.

Usage An application of thebalance constraint is to enforce abalanced assignmentof values,
no matter how many distinct values will be used. In this case one willpush downthe
maximum value of the first argument of thebalance constraint.

Remark If we do not want to use an automaton with an array of counters a possiblereformulation
of thebalance constraint can be achieved in the following way. We use asort constraint
in order to reorder the variables of the collectionVARIABLES and compute the difference
between the longest and the smallest sequences of consecutive values.

See also generalisation: balance interval (variable replaced by variable/constant),
balance modulo (variable replaced by variable mod constant),
balance partition (variable replaced byvariable ∈ partition).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

20000128 561

related: balance cycle (balanced assignment versus graph partitionning with balanced
cycles), balance path (balanced assignment versus graph partitionning with balanced
paths), balance tree (balanced assignment versus graph partitionning with balanced
trees), nvalue (no restriction on how balanced an assignment is), tree range (balanced
assignment versus balanced tree).

Keywords application area: assignment.

characteristic of a constraint: automaton, automaton with array of counters.

constraint arguments:pure functional dependency.

constraint type: value constraint.

final graph structure: equivalence.

modelling: balanced assignment, functional dependency.

Keywords
Related keywords grouped by meta-keywords.

562 RANGE NSCC,CLIQUE

B
A

L
A

N
C

E
=

2

Variables

1

8

6

5

2

321 4 5

3

4

7

of occurrences=3
maximum number

minimum number
of occurrences=1

V
al

ue
s

Figure 5.66: Illustration of the example: five variables respectively fixed to values3, 1,
7, 1 and1, and the corresponding value ofBALANCE = 2

20000128 563

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) RANGE NSCC= BALANCE

Graph class EQUIVALENCE

Graph model The graph propertyRANGE NSCC constraints the difference between the sizes of the
largest and smallest strongly connected components.

Parts (A) and (B) of Figure5.67 respectively show the initial and final graph associated
with theExampleslot. Since we use theRANGE NSCC graph property, we show the
largest and smallest strongly connected components of the final graph.

VARIABLES

1

2

3

4

5

RANGE_NSCC=3-1=2

MIN_NSCC MAX_NSCC

1:3 2:1

4:1

5:1

3:7

(A) (B)

Figure 5.67: Initial and final graph of thebalance constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

564 RANGE NSCC,CLIQUE

Automaton Figure5.68depicts the automaton associated with thebalance constraint. To each item
of the collectionVARIABLES corresponds a signature variableSi that is equal to1.

maximum(N2,C)

{C[_]=0}

1,

i i{C[VAR]=C[VAR]+1}

s:
minimum_except_0(N1,C)

BALANCE=N2−N1

Figure 5.68: Automaton of thebalance constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20000128 565

566 NTREE,RANGE NCC,CLIQUE

5.38 balancecycle

DESCRIPTION LINKS GRAPH

Origin derived frombalance andcycle

Constraint balance cycle(BALANCE, NODES)

Arguments BALANCE : dvar

NODES : collection(index−int, succ−dvar)

Restrictions BALANCE ≥ 0
BALANCE ≤ max(0, |NODES| − 2)
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Consider a digraphG described by theNODES collection. PartitionG into a set of ver-
tex disjoint circuits in such a way that each vertex ofG belongs to one singlecircuit.
BALANCE is equal to the difference between the number of vertices of the largest circuit
and the number of vertices of the smallest circuit.

Example

1,

〈

index− 1 succ− 2,
index− 2 succ− 1,
index− 3 succ− 5,
index− 4 succ− 3,
index− 5 succ− 4

〉

In this example we have the following two circuits:1 → 2 → 1 and3 → 5 → 4 → 3.
SinceBALANCE = 1 is the difference between the number of vertices of the largest circuit
(i.e., 3) and the number of vertices of the smallest circuit (i.e., 2) thebalance cycle

constraint holds.

Typical |NODES| > 2

Symmetry Items ofNODES arepermutable.

Arg. properties
Functional dependency: BALANCE determined byNODES.

See also related: balance (equivalence classes correspond to vertices in same cycle rather than
variables assigned to the same value), cycle (do not care how many cycles but how bal-
anced the cycles are).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

20111218 567

Keywords combinatorial object: permutation.

constraint type: graph constraint, graph partitioning constraint.

filtering: DFS-bottleneck.

final graph structure: circuit, connected component, strongly connected component,
onesucc.

modelling: cycle, functional dependency.

Keywords
Related keywords grouped by meta-keywords.

568 NTREE,RANGE NCC,CLIQUE

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • NTREE= 0
• RANGE NCC= BALANCE

Graph class ONE SUCC

Graph model From the restrictions and from the arc constraint, we deduce that we havea bijection from
the successor variables to the values of interval[1, |NODES|]. With no explicit restrictions it
would have been impossible to derive this property.

In order to express the binary constraint that links two vertices one has tomake explicit the
identifier of the vertices. This is why thebalance cycle constraint considers objects that
have two attributes:

• One fixed attributeindex that is the identifier of the vertex,

• One variable attributesucc that is the successor of the vertex.

The graph propertyNTREE = 0 is used in order to avoid having vertices that both do
not belong to acircuit and have at least one successor located on acircuit. This concretely
means that all vertices of the final graph should belong to acircuit.

Parts (A) and (B) of Figure5.69 respectively show the initial and final graph associated
with theExample slot. Since we use theRANGE NCC graph property, we show the
connected components of the final graph. The constraint holds since all the vertices belong
to acircuit (i.e.,NTREE = 0) and sinceBALANCE = RANGE NCC = 1.

NODES

1

2

3

4

5

NTREE=0, RANGE_NCC=3-2=1

MIN_NCC MAX_NCC

1:1,2

2:2,1

3:3,5

5:5,4

4:4,3

(A) (B)

Figure 5.69: Initial and final graph of thebalance cycle constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20111218 569

570 RANGE NSCC,CLIQUE

5.39 balanceinterval

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived frombalance.

Constraint balance interval(BALANCE, VARIABLES, SIZE INTERVAL)

Arguments BALANCE : dvar

VARIABLES : collection(var−dvar)
SIZE INTERVAL : int

Restrictions BALANCE ≥ 0
BALANCE ≤ max(0, |VARIABLES| − 2)
required(VARIABLES, var)
SIZE INTERVAL > 0

Purpose

Consider the largest setS1 (respectively the smallest setS2) of variables of the collection
VARIABLES that take their value in a same interval[SIZE INTERVAL·k, SIZE INTERVAL·
k + SIZE INTERVAL − 1], wherek is an integer.BALANCE is equal to the difference
between the cardinality ofS2 and the cardinality ofS1.

Example (3, 〈6, 4, 3, 3, 4〉 , 3)

In the example, the third argumentSIZE INTERVAL = 3 defines the following
family of intervals [3 · k, 3 · k + 2], wherek is an integer. Values6,4,3,3 and 4 are
respectively located within intervals[6, 8], [3, 5], [3, 5], [3, 5] and [3, 5]. Therefore
intervals[6, 8] and [3, 5] are respectively used1 and4 times. Thebalance interval

constraint holds since its first argumentBALANCE is assigned to the difference between the
maximum and minimum number of the previous occurrences (i.e.,4− 1).

Typical |VARIABLES| > 2
SIZE INTERVAL > 1
SIZE INTERVAL <range(VARIABLES.var)

Symmetries • Items ofVARIABLES arepermutable.

• An occurrence of a value ofVARIABLES.var that belongs to thek-th interval, of
sizeSIZE INTERVAL, can bereplacedby any other value of the same interval.

Arg. properties
Functional dependency: BALANCE determined byVARIABLES andSIZE INTERVAL.

Usage An application of thebalance interval constraint is to enforce abalanced assignmentof
interval of values, no matter how many distinct interval of values will be used. In this case
one will push downthe maximum value of the first argument of thebalance interval

constraint.

See also specialisation:balance (variable/constant replaced byvariable).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

20030820 571

Keywords application area: assignment.

characteristic of a constraint: automaton, automaton with array of counters.

constraint arguments:pure functional dependency.

constraint type: value constraint.

final graph structure: equivalence.

modelling: interval, balanced assignment, functional dependency.

Keywords
Related keywords grouped by meta-keywords.

572 RANGE NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL = variables2.var/SIZE INTERVAL

Graph property(ies) RANGE NSCC= BALANCE

Graph class EQUIVALENCE

Graph model The graph propertyRANGE NSCC constraints the difference between the sizes of the
largest and smallest strongly connected components.

Parts (A) and (B) of Figure5.70 respectively show the initial and final graph associated
with theExampleslot. Since we use theRANGE NSCC graph property, we show the
largest and smallest strongly connected components of the final graph.

VARIABLES

1

2

3

4

5

RANGE_NSCC=4-1=3

MIN_NSCC MAX_NSCC

1:6 2:4

3:3

4:3

5:4

(A) (B)

Figure 5.70: Initial and final graph of thebalance interval constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 573

Automaton Figure5.71depicts the automaton associated with thebalance interval constraint. To
each item of the collectionVARIABLES corresponds a signature variableSi that is equal to
1.

maximum(N2,C) {C[VAR /SIZE_INTERVAL]=C[VAR /SIZE_INTERVAL]+1}
1,

{C[_]=0}

s:
minimum_except_0(N1,C)

BALANCE=N2−N1
i i

Figure 5.71: Automaton of thebalance interval constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

574 RANGE NSCC,CLIQUE

5.40 balancemodulo

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived frombalance.

Constraint balance modulo(BALANCE, VARIABLES, M)

Arguments BALANCE : dvar

VARIABLES : collection(var−dvar)
M : int

Restrictions BALANCE ≥ 0
BALANCE ≤ max(0, |VARIABLES| − 2)
required(VARIABLES, var)
M > 0

Purpose
Consider the largest setS1 (respectively the smallest setS2) of variables of the collection
VARIABLES that have the same remainder when divided byM. BALANCE is equal to the
difference between the cardinality ofS2 and the cardinality ofS1.

Example (2, 〈6, 1, 7, 1, 5〉 , 3)

In this example values6, 1, 7, 1, 5 are respectively associated with the equivalence
classes6 mod 3 = 0, 1 mod 3 = 1, 7 mod 3 = 1, 1 mod 3 = 1, 5 mod 3 = 2.
Therefore the equivalence classes0, 1 and2 are respectively used1, 3 and1 times. The
balance modulo constraint holds since its first argumentBALANCE is assigned to the
difference between the maximum and minimum number of the previous occurrences
(i.e.,3− 1).

Typical |VARIABLES| > 2
M > 1
M <maxval(VARIABLES.var)

Symmetries • Items ofVARIABLES arepermutable.

• An occurrence of a valueu of VARIABLES.var can bereplacedby any other value
v such thatv is congruent tou moduloM.

Arg. properties
Functional dependency: BALANCE determined byVARIABLES andM.

Usage An application of thebalance modulo constraint is to enforce abalanced assignmentof
values, no matter how many distinct equivalence classes will be used. Inthis case one will
push downthe maximum value of the first argument of thebalance modulo constraint.

See also specialisation:balance (variablemod constant replaced byvariable).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

20030820 575

Keywords application area: assignment.

characteristic of a constraint: modulo, automaton, automaton with array of counters.

constraint arguments:pure functional dependency.

constraint type: value constraint.

final graph structure: equivalence.

modelling: balanced assignment, functional dependency.

Keywords
Related keywords grouped by meta-keywords.

576 RANGE NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.varmod M = variables2.varmod M

Graph property(ies) RANGE NSCC= BALANCE

Graph class EQUIVALENCE

Graph model The graph propertyRANGE NSCC constraints the sdifference between the sizes of the
largest and smallest strongly connected components.

Parts (A) and (B) of Figure5.72 respectively show the initial and final graph associated
with theExampleslot. Since we use theRANGE NSCC graph property, we show the
largest and smallest strongly connected components of the final graph.

VARIABLES

1

2

3

4

5

RANGE_NSCC=3-1=2

MIN_NSCC MAX_NSCC

1:6 2:1

3:7

4:1

5:5

(A) (B)

Figure 5.72: Initial and final graph of thebalance modulo constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 577

Automaton Figure5.73 depicts the automaton associated with thebalance modulo constraint. To
each item of the collectionVARIABLES corresponds a signature variableSi that is equal to
1.

maximum(N2,C) {C[VAR mod M]=C[VAR mod M]+1}
1,

{C[_]=0}

s:
minimum_except_0(N1,C)

BALANCE=N2−N1
i i

Figure 5.73: Automaton of thebalance modulo constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

578 RANGE NSCC,CLIQUE

5.41 balancepartition

DESCRIPTION LINKS GRAPH

Origin Derived frombalance.

Constraint balance partition(BALANCE, VARIABLES, PARTITIONS)

Type VALUES : collection(val−int)

Arguments BALANCE : dvar

VARIABLES : collection(var−dvar)
PARTITIONS : collection(p− VALUES)

Restrictions |VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)
BALANCE ≥ 0
BALANCE ≤ max(0, |VARIABLES| − 2)
required(VARIABLES, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose

Consider the largest setS1 (respectively the smallest setS2) of variables of the
collection VARIABLES that take their value in the same partition of the collection
PARTITIONS.BALANCE is equal to the difference between the cardinality ofS2 and the
cardinality ofS1.

Example

1, 〈6, 2, 6, 4, 4〉 ,
〈

p− 〈1, 3〉 ,
p− 〈4〉 ,
p− 〈2, 6〉

〉

In this example values6, 2, 6, 4, 4 are respectively associated with the partitions
p − 〈2, 6〉 andp − 〈4〉. Partitionsp − 〈4〉 andp − 〈2, 6〉 are respectively used2 and
3 times. Thebalance partition constraint holds since its first argumentBALANCE is
assigned to the difference between the maximum and minimum number of theprevious
occurrences (i.e.,3− 2). Note that we do not consider those partitions that are not used at
all.

Typical |VARIABLES| > 2
|VARIABLES| > |PARTITIONS|

Symmetries • Items ofVARIABLES arepermutable.

• Items ofPARTITIONS arepermutable.

• Items ofPARTITIONS.p arepermutable.

• An occurrence of a value ofVARIABLES.var can be replaced by any other value
that also belongs to the same partition ofPARTITIONS.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20030820 579

Arg. properties
Functional dependency: BALANCE determined byVARIABLES andPARTITIONS.

Usage An application of thebalance partition is to enforce abalanced assignmentof values,
no matter how many distinct partitions will be used. In this case one willpush downthe
maximum value of the first argument of thebalance partition constraint.

See also specialisation:balance (variable ∈ partition replaced byvariable).

used in graph description:in same partition.

Keywords application area: assignment.

characteristic of a constraint: partition.

constraint arguments:pure functional dependency.

constraint type: value constraint.

final graph structure: equivalence.

modelling: balanced assignment, functional dependency.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

580 RANGE NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) RANGE NSCC= BALANCE

Graph class EQUIVALENCE

Graph model The graph propertyRANGE NSCC constraints the difference between the sizes of the
largest and smallest strongly connected components.

Parts (A) and (B) of Figure5.74 respectively show the initial and final graph associated
with theExampleslot. Since we use theRANGE NSCC graph property, we show the
largest and smallest strongly connected components of the final graph.

VARIABLES

1

2

3

4

5

RANGE_NSCC=3-2=1

MIN_NSCC MAX_NSCC

4:4

5:4

1:6

2:2

3:6

(A) (B)

Figure 5.74: Initial and final graph of thebalance partition constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 581

582 MAX ID,MAX NSCC,RANGE NCC,CLIQUE

5.42 balancepath

DESCRIPTION LINKS GRAPH

Origin derived frombalance andpath

Constraint balance path(BALANCE, NODES)

Arguments BALANCE : dvar

NODES : collection(index−int, succ−dvar)

Restrictions BALANCE ≥ 0
BALANCE ≤ max(0, |NODES| − 2)
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Consider a digraphG described by theNODES collection. PartitionG into a set of vertex
disjoint paths in such a way that each vertex ofG belongs to one singlepath. BALANCE is
equal to the difference between the number of vertices of the largest path and the number
of vertices of the smallest path.

Example

3,

〈

index− 1 succ− 1,
index− 2 succ− 3,
index− 3 succ− 5,
index− 4 succ− 4,
index− 5 succ− 1,
index− 6 succ− 6,
index− 7 succ− 7,
index− 8 succ− 6

〉

In this example we have the following four paths:2 → 3 → 5 → 1, 8 → 6, 4,
and7. SinceBALANCE = 3 is the difference between the number of vertices of the largest
path (i.e.,4) and the number of vertices of the smallest path (i.e., 1) thebalance path

constraint holds.

Typical |NODES| > 2

Symmetry Items ofNODES arepermutable.

Arg. properties
Functional dependency: BALANCE determined byNODES.

See also related: balance (equivalence classes correspond to vertices in same path rather than
variables assigned to the same value), path (do not care how many paths but how balanced
the paths are).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

20111226 583

Keywords combinatorial object: path.

constraint type: graph constraint, graph partitioning constraint.

filtering: DFS-bottleneck.

final graph structure: connected component, tree, onesucc.

modelling: functional dependency.

Keywords
Related keywords grouped by meta-keywords.

584 MAX ID,MAX NSCC,RANGE NCC,CLIQUE

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • MAX NSCC≤ 1
• MAX ID≤ 1
• RANGE NCC= BALANCE

Graph class ONE SUCC

Graph model In order to express the binary constraint that links two vertices one has tomake explicit the
identifier of the vertices. This is why thebalance path constraint considers objects that
have two attributes:

• One fixed attributeindex that is the identifier of the vertex,

• One variable attributesucc that is the successor of the vertex.

We use the graph propertyMAX NSCC≤ 1 in order to specify the fact that the size
of the largest strongly connected component should not exceed one.In fact each root
of a tree is a strongly connected component with one single vertex. The graph property
MAX ID≤ 1 constraints the maximum in-degree of the final graph to not exceed1.
MAX ID does not consider loops: This is why we do not have any problem with the
final node of each path.

Parts (A) and (B) of Figure5.75respectively show the initial and final graphs associated
with theExample slot. Since we use theRANGE NCC graph property, we show the
connected components of the final graph. The constraint holds since all the vertices belong
to apathand sinceBALANCE = RANGE NCC = 3.

NODES

1

2

3

4

5

6

7

8 MAX_NSCC=1, MAX_ID=1
RANGE_NCC=4-1=3

MIN_NCC MAX_NCC

4:4,4

1:1,1

5:5,1

3:3,5

2:2,3

6:6,6

7:7,78:8,6

(A) (B)

Figure 5.75: Initial and final graph of thebalance path constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20111226 585

586 MAX NSCC,RANGE NCC,CLIQUE

5.43 balancetree

DESCRIPTION LINKS GRAPH

Origin derived frombalance andtree

Constraint balance tree(BALANCE, NODES)

Arguments BALANCE : dvar

NODES : collection(index−int, succ−dvar)

Restrictions BALANCE ≥ 0
BALANCE ≤ max(0, |NODES| − 2)
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Consider a digraphG described by theNODES collection. PartitionG into a set of vertex
disjoint trees in such a way that each vertex ofG belongs to one singletree. BALANCE is
equal to the difference between the number of vertices of the largest tree and the number
of vertices of the smallest tree.

Example

4,

〈

index− 1 succ− 1,
index− 2 succ− 5,
index− 3 succ− 5,
index− 4 succ− 7,
index− 5 succ− 1,
index− 6 succ− 1,
index− 7 succ− 7,
index− 8 succ− 5

〉

In this example we have two trees involving respectively the set of vertices{1, 2, 3, 5, 6, 8}
and the set{4, 7}. They are depicted by Figure5.76. SinceBALANCE = 6 − 2 = 4 is the
difference between the number of vertices of the largest tree (i.e.,6) and the number of
vertices of the smallest tree (i.e., 2) thebalance tree constraint holds.

2 8

1

5 6

3

7

4

Figure 5.76: The two trees associated with the example respectively containing 6 and
2 vertices, thereforeBALANCE = 6− 2 = 4

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20111226 587

Typical |NODES| > 2

Symmetry Items ofNODES arepermutable.

Arg. properties
Functional dependency: BALANCE determined byNODES.

See also related: balance (equivalence classes correspond to vertices in same tree rather than
variables assigned to the same value), tree (do not care how many trees but how balanced
the trees are).

Keywords constraint type: graph constraint, graph partitioning constraint.

final graph structure: connected component, tree, onesucc.

modelling: functional dependency.

Typical
Typical condition on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

588 MAX NSCC,RANGE NCC,CLIQUE

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • MAX NSCC≤ 1
• RANGE NCC= BALANCE

Graph model In order to express the binary constraint that links two vertices one has tomake explicit the
identifier of the vertices. This is why thebalance tree constraint considers objects that
have two attributes:

• One fixed attributeindex that is the identifier of the vertex,

• One variable attributesucc that is the successor of the vertex.

We use the graph propertyMAX NSCC≤ 1 in order to specify the fact that the size of
the largest strongly connected component should not exceed one. Infact each root of a tree
is a strongly connected component with one single vertex.

Parts (A) and (B) of Figure5.77respectively show the initial and final graphs associated
with theExample slot. Since we use theRANGE NCC graph property, we show the
connected components of the final graph. The constraint holds since all the vertices belong
to atreeand sinceBALANCE = RANGE NCC6− 2 = 4.

NODES

1

2

3

4

5

6

7

8

MAX_NSCC=1, RANGE_NCC=6-2=4

MIN_NCC MAX_NCC

4:4,7

7:7,7

2:2,5

5:5,1

3:3,58:8,5

1:1,1

6:6,1

(A) (B)

Figure 5.77: Initial and final graph of thebalance tree constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20111226 589

590 NARC,PRODUCT ; AUTOMATON

5.44 betweenmin max

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Used for definingcumulative convex.

Constraint between min max(VAR, VARIABLES)

Arguments VAR : dvar

VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
|VARIABLES| > 0

Purpose
VAR is greater than or equal to at least one variable of the collectionVARIABLES and less
than or equal to at least one variable of the collectionVARIABLES.

Example (3, 〈1, 1, 4, 8〉)

The between min max constraint holds since its first argument3 is greater than or
equal to the minimum value of the values of the collection〈1, 1, 4, 8〉 and less than or
equal to the maximum value of〈1, 1, 4, 8〉.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetries • Items ofVARIABLES arepermutable.

• VAR can besetto any value ofVARIABLES.var.

Arg. properties
Extensiblewrt. VARIABLES.

Reformulation By introducing two extra variablesMIN andMAX, thebetween min max(VAR, VARIABLES)
constraint can be expressed in term of the following conjunction of constraints:
minimum(MIN, VARIABLES),
maximum(MAX, VARIABLES),
VAR ≥ MIN,
VAR ≤ MAX.

Used in cumulative convex.

See also implied by: in.

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint network structure: centered cyclic(1) constraint network(1).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20050824 591

Derived Collection
col(ITEM−collection(var−dvar), [item(var− VAR)])

Arc input(s) ITEM VARIABLES

Arc generator PRODUCT 7→collection(item, variables)

Arc arity 2

Arc constraint(s) item.var ≥ variables.var

Graph property(ies) NARC≥ 1

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Arc input(s) ITEM VARIABLES

Arc generator PRODUCT 7→collection(item, variables)

Arc arity 2

Arc constraint(s) item.var ≤ variables.var

Graph property(ies) NARC≥ 1

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model Parts (A) and (B) of Figure5.78 respectively show the initial and final graph associated
with the second graph constraint of theExample slot. Since we use theNARC graph
property, the two arcs of the final graph are stressed in bold. The constraint holds since3
is greater than1 and since3 is less than8.

ITEM

VARIABLES

1

1234

NARC=2

1:3

1:1 2:1

(A) (B)

Figure 5.78: Initial and final graph of thebetween min max constraint

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

592 NARC,PRODUCT ; AUTOMATON

Automaton Figure5.79depicts the automaton associated with thebetween min max constraint. To
each pair(VAR, VARi), whereVARi is a variable of the collectionVARIABLES corresponds a
signature variableSi. The following signature constraint linksVAR, VARi andSi: (VAR <
VARi ⇔ Si = 0) ∧ (VAR = VARi ⇔ Si = 1) ∧ (VAR > VARi ⇔ Si = 2).

j

 i

VAR>VAR iVAR<VAR i

VAR<VAR i

 iVAR=VAR

 iVAR>VAR

 iVAR=VAR

 iVAR<VAR iVAR>VAR

 iVAR<VAR iVAR>VAR

 iVAR<VAR

 iVAR=VAR

s

t

i

VAR=VAR

Figure 5.79: Automaton of thebetween min max constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20050824 593

VAR

n

Q =tn
Q1Q =s0

S2S1

VAR
1

VAR
2

VAR
n

S

Figure 5.80: Hypergraph of the reformulation corresponding to the automaton of the
between min max constraint

594 PRODUCT , SUCC

5.45 bin packing

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromcumulative.

Constraint bin packing(CAPACITY, ITEMS)

Arguments CAPACITY : int

ITEMS : collection(bin−dvar, weight−int)

Restrictions CAPACITY ≥ 0
required(ITEMS, [bin, weight])
ITEMS.weight ≥ 0
ITEMS.weight ≤ CAPACITY

Purpose
Given several items of the collectionITEMS (each of them having a specific weight), and
different bins of a fixed capacity, assign each item to a bin so that the total weight of the
items in each bin does not exceedCAPACITY.

Example

 5,

〈

bin− 3 weight− 4,
bin− 1 weight− 3,
bin− 3 weight− 1

〉

The bin packing constraint holds since the sum of the height of items that are as-
signed to bins1 and3 is respectively equal to3 and5. The previous quantities are both
less than or equal to the maximumCAPACITY 5. Figure5.81shows the solution associated
with the example.

3

4

5
<6

5

3

4321

12

1

2

Figure 5.81: Bin-packing solution

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20000128 595

Typical CAPACITY >maxval(ITEMS.weight)
CAPACITY ≤sum(ITEMS.weight)
|ITEMS| > 1
range(ITEMS.bin) > 1
range(ITEMS.weight) > 1
ITEMS.bin ≥ 0
ITEMS.weight > 0

Symmetries • CAPACITY can beincreased.

• Items ofITEMS arepermutable.

• ITEMS.weight can bedecreasedto any value≥ 0.

• All occurrences of two distinct values ofITEMS.bin can beswapped; all occur-
rences of a value ofITEMS.bin can berenamedto any unused value.

Arg. properties
Contractiblewrt. ITEMS.

Remark Note the difference with theclassicalbin-packing problem [256, page 221] where one
wants to find solutions that minimise the number of bins. In our case each itemmay be
assigned only to specific bins (i.e., the different values of the bin variable) and the goal is
to find a feasible solution. This constraint can be seen as a special case of thecumulative
constraint [1], where all task durations are equal to1.

In [358] theCAPACITY parameter of thebin packing constraint is replaced by a collection
of domain variables representing theload of each bin (i.e., the sum of the weights of the
items assigned to a bin). This allows representing problems where a minimumlevel has to
be reached in each bin.

Coffman and al. give in [112] the worst case bounds of different list algorithms for
the bin packing problem (i.e., given a positive integerCAPACITY and a listL of inte-
ger sizesweight1, weight2, . . . , weightn (0 ≤ weighti ≤ CAPACITY), what is the
smallest integerm such that there is a partitionL = L1 ∪ L2 ∪ . . . ∪ Lm satisfying
∑

weighti∈Lj
weighti ≤ CAPACITY for all j ∈ [1,m]?).

Algorithm Initial filtering algorithms are described in [271, 268, 269, 270, 358]. More recently, lin-
ear continuous relaxations based on the graph associated with the dynamicprogramming
approach for knapsack by Trick [383], and on the more compact model introduced by Car-
valho [96, 97] are presented in [84].

Systems pack in Choco, binpacking in Gecode, bin packing in MiniZinc .

See also generalisation: bin packing capa (fixed overall capacity replaced by non-fixed ca-
pacity), cumulative (task of duration 1 replaced by task of givenduration),
cumulative two d (task of duration 1 replaced bysquare of size1 with a height),
indexed sum (negative contribution also allowed, fixed capacity replaced by a set of vari-
ables).

used in graph description:sum ctr.

Keywords application area: assignment.

characteristic of a constraint: automaton, automaton with array of counters.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntBinPacking.html
http://www.gecode.org/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#bin_packing
http://www.g12.cs.mu.oz.au/minizinc/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

596 PRODUCT , SUCC

constraint type: resource constraint.

final graph structure: acyclic, bipartite, no loop.

modelling: assignment dimension, assignment to the same set of values.

modelling exercises:assignment to the same set of values.

20000128 597

Arc input(s) ITEMS ITEMS

Arc generator PRODUCT 7→collection(items1, items2)

Arc arity 2

Arc constraint(s) items1.bin = items2.bin

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Sets SUCC 7→

source,

variables− col

(

VARIABLES−collection(var−dvar),
[item(var− ITEMS.weight)]

)

Constraint(s) on sets sum ctr(variables,≤, CAPACITY)

Graph model We enforce thesum ctr constraint on the weight of the items that are assigned to the same
bin.

Parts (A) and (B) of Figure5.82 respectively show the initial and final graph associated
with the Example slot. Each connected component of the final graph corresponds to the
items that are all assigned to the same bin.

ITEMS

ITEMS

1

1 23

2 3

ITEMS

ITEMS

1:3,4

1:3,4 3:3,1

2:1,3

2:1,3

3:3,1

(A) (B)

Figure 5.82: Initial and final graph of thebin packing constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

598 PRODUCT , SUCC

Automaton Figure5.83depicts the automaton associated with thebin packing constraint. To each
item of the collectionITEMS corresponds a signature variableSi that is equal to1.

arith(C,<=,CAPACITY) {C[BIN]=C[BIN]+WEIGHT }
1,

{C[_]=0}

s:

i i i

Figure 5.83: Automaton of thebin packing constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20000128 599

600 PREDEFINED

5.46 bin packing capa

DESCRIPTION LINKS

Origin Derived frombin packing.

Constraint bin packing capa(BINS, ITEMS)

Arguments BINS : collection(id−int, capa−int)
ITEMS : collection(bin−dvar, weight−int)

Restrictions |BINS| > 0
required(BINS, [id, capa])
distinct(BINS, id)
BINS.id ≥ 1
BINS.id ≤ |BINS|
BINS.capa ≥ 0
required(ITEMS, [bin, weight])
in attr(ITEMS, bin, BINS, id)
ITEMS.weight ≥ 0

Purpose

Given several items of the collectionITEMS (each of them having a specific weight), and
different bins described the the items of collectionBINS (each of them having a specific
capacitycapa), assign each item to a bin so that the total weight of the items in each bin
does not exceed the capacity of the bin.

Example

〈

id− 1 capa− 4,
id− 2 capa− 3,
id− 3 capa− 5,
id− 4 capa− 3,
id− 5 capa− 3

〉

,

〈

bin− 3 weight− 4,
bin− 1 weight− 3,
bin− 3 weight− 1

〉

The bin packing capa constraint holds since the sum of the height of items that
are assigned to bins1 and 3 is respectively equal to3 and 5. The previous quantities
are respectively less than or equal to the maximum capacities4 and5 of bins 1 and3.
Figure5.84shows the solution associated with the example.

Typical |BINS| > 1
range(BINS.capa) > 1
BINS.capa >maxval(ITEMS.weight)
BINS.capa ≤sum(ITEMS.weight)
|ITEMS| > 1
range(ITEMS.bin) > 1
range(ITEMS.weight) > 1
ITEMS.weight > 0

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20091404 601

Symmetries • Items ofBINS arepermutable.

• Items ofITEMS arepermutable.

• BINS.capa can beincreased.

• ITEMS.weight can bedecreasedto any value≥ 0.

• All occurrences of two distinct values inBINS.id or ITEMS.bin can beswapped;
all occurrences of a value inBINS.id or ITEMS.bin can berenamedto any unused
value.

Arg. properties
Contractiblewrt. ITEMS.

Remark In MiniZinc (http://www.g12.cs.mu.oz.au/minizinc/) there is also a constraint
calledbin packing load which, for each bin has a domain variable that is equal to the
sum of the weights assigned to the corresponding bin.

Systems pack in Choco, binpacking in Gecode, bin packing capa in MiniZinc .

See also generalisation:indexed sum (negative contribution also allowed).

specialisation:bin packing (non-fixed capacity replaced by fixed overall capacity).

Keywords application area: assignment.

constraint type: predefined constraint, resource constraint.

modelling: assignment dimension, assignment to the same set of values.

modelling exercises:assignment to the same set of values.

<6<5 <4 <4

5

<4

4321

12

1

2

3

4

5 3

Figure 5.84: Bin-packing solution

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.g12.cs.mu.oz.au/minizinc/

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntBinPacking.html
http://www.gecode.org/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#bin_packing_capa
http://www.g12.cs.mu.oz.au/minizinc/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

602 MAX ID,MAX NSCC,NCC,CLIQUE

5.47 binary tree

DESCRIPTION LINKS GRAPH

Origin Derived fromtree.

Constraint binary tree(NTREES, NODES)

Arguments NTREES : dvar

NODES : collection(index−int, succ−dvar)

Restrictions NTREES ≥ 0
NTREES ≤ |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Cover the digraphG described by theNODES collection withNTREES binary trees in such
a way that each vertex ofG belongs to exactly one binary tree (i.e., each vertex ofG has
at most two children). The edges of the binary trees are directed from their leaves to
their respective root.

Example

2,

〈

index− 1 succ− 1,
index− 2 succ− 3,
index− 3 succ− 5,
index− 4 succ− 7,
index− 5 succ− 1,
index− 6 succ− 1,
index− 7 succ− 7,
index− 8 succ− 5

〉

The binary tree constraint holds since its second argument corresponds to the
2 (i.e., the first argument of thebinary tree constraint) binary trees depicted by
Figure5.85.

5

7

46

8 3

2

1

Figure 5.85: The two binary trees corresponding to theExample slot

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20000128 603

Typical NTREES > 0
NTREES < |NODES|
|NODES| > 2

Symmetry Items ofNODES arepermutable.

Arg. properties
Functional dependency: NTREES determined byNODES.

Reformulation The binary tree constraint can be expressed in term of (1) a set of|NODES|2 reified
constraints for avoiding circuit between more than one node and of (2)|NODES| reified
constraints and of one sum constraint for counting the trees and of (3) aset of |NODES|2
reified constraints and of|NODES| inequalities constraints for enforcing the fact that each
vertex has at most two children.

1. For each vertexNODES[i] (i ∈ [1, |NODES|]) of the NODES collection we create a
variableRi that takes its value within interval[1, |NODES|]. This variable represents
the rank of vertexNODES[i] within a solution. It is used to prevent the creation of
circuit involving more than one vertex as explained now. For each pair ofvertices
NODES[i], NODES[j] (i, j ∈ [1, |NODES|]) of theNODES collection we create a reified
constraint of the formNODES[i].succ = NODES[j].index ∧ i 6= j ⇒ Ri < Rj .
The purpose of this constraint is to express the fact that, if there is an arcfrom vertex
NODES[i] to another vertexNODES[j], thenRi should be strictly less thanRj .

2. For each vertexNODES[i] (i ∈ [1, |NODES|]) of the NODES collection we cre-
ate a0-1 variableBi and state the following reified constraintNODES[i].succ =
NODES[i].index ⇔ Bi in order to force variableBi to be set to value1 if and
only if there is a loop on vertexNODES[i]. Finally we create a constraintNTREES =
B1 +B2 + . . .+B|NODES| for stating the fact that the number of trees is equal to the
number of loops of the graph.

3. For each pair of verticesNODES[i], NODES[j] (i, j ∈ [1, |NODES|]) of the NODES

collection we create a0-1 variableBij and state the following reified constraint
NODES[i].succ = NODES[j].index ∧ i 6= j ⇔ Bij . VariableBij is set to value1 if
and only if there is an arc fromNODES[i] to NODES[j]. Then for each vertexNODES[j]
(j ∈ [1, |NODES|]) we create a constraint of the formB1j+B2j+. . .+B|NODES|j ≤ 2.

See also generalisation:tree (at most two childrens replaced by no restriction on maximum num-
ber of childrens).

implied by: path.

implies: tree.

specialisation:path (at most two childrens replaced by at most one child).

Keywords constraint type: graph constraint, graph partitioning constraint.

final graph structure: connected component, tree, onesucc.

modelling: functional dependency.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

604 MAX ID,MAX NSCC,NCC,CLIQUE

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • MAX NSCC≤ 1
• NCC= NTREES

• MAX ID≤ 2

Graph class ONE SUCC

Graph model We use the same graph constraint as for thetree constraint, except that we add the graph
propertyMAX ID ≤ 2, which constraints the maximum in-degree of the final graph to
not exceed2. MAX ID does not consider loops: This is why we do not have any problem
with the root of each tree.

Parts (A) and (B) of Figure5.86 respectively show the initial and final graph associated
with the Example slot. Since we use theNCC graph property, we display the two
connected componentsof the final graph. Each of them corresponds to a binary tree. Since
we use theMAX IN DEGREE graph property, we also show with a double circle a
vertex that has a maximum number of predecessors.

The binary tree constraint holds since all strongly connected components of the final
graph have no more than one vertex, sinceNTREES = NCC = 2 and sinceMAX ID =
2.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 605

NODES

1

2

3

4

5

6

7

8
MAX_NSCC=1, NCC=2

MAX_ID=2

CC#1 CC#2

1:1,1

2:2,3

3:3,5

5:5,1 6:6,1

8:8,5

4:4,7

7:7,7

(A) (B)

Figure 5.86: Initial and final graph of thebinary tree constraint

606 CLIQUE

5.48 bipartite

DESCRIPTION LINKS GRAPH

Origin [131]

Constraint bipartite(NODES)

Argument NODES : collection(index−int, succ−svar)

Restrictions required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Consider a digraphG described by theNODES collection. Select a subset of arcs ofG
so that the corresponding graph is symmetric (i.e., if there is an arc from i to j, there is
also an arc fromj to i) and bipartite (i.e., there is no cycle involving an odd number of
vertices).

Example

〈

index− 1 succ− {2, 3},
index− 2 succ− {1, 4},
index− 3 succ− {1, 4, 5},
index− 4 succ− {2, 3, 6},
index− 5 succ− {3, 6},
index− 6 succ− {4, 5}

〉

The bipartite constraint holds since theNODES collection depicts a symmetric
graph with no cycle involving an odd number of vertices. The corresponding graph is
depicted by Figure5.87.

6

5

4

3

2

1

Figure 5.87: The bipartite graph associated with the example

Typical |NODES| > 2

Symmetry Items ofNODES arepermutable.

Algorithm The sketch of a filtering algorithm for thebipartite constraint is given in [131, page 91].
Beside enforcing the fact that the graph is symmetric, it checks that the subset of mandatory
vertices and arcs is bipartite and removes all potential arcs that would make the previous
graph non-bipartite.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

20061001 607

See also used in graph description:in set.

Keywords constraint arguments:constraint involving set variables.

constraint type: graph constraint.

filtering: DFS-bottleneck.

final graph structure: bipartite, symmetric.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

608 CLIQUE

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) in set(nodes2.index, nodes1.succ)

Graph class • SYMMETRIC

• BIPARTITE

Graph model Part (A) of Figure5.88shows the initial graph from which we start. It is derived from the
set associated with each vertex. Each set describes the potential valuesof thesucc attribute
of a given vertex. Part (B) of Figure5.88gives the final graph associated with theExample
slot.

NODES

1:1,{2,3,4}

2:2,{1,4} 3:3,{1,4,5}

4:4,{1,2,3,5,6}

5:5,{3,4,6}

6:6,{4,5}

1:1,{2,3}

2:2,{1,4} 3:3,{1,4,5}

4:4,{2,3,6} 5:5,{3,6}

6:6,{4,5}

(A) (B)

Figure 5.88: Initial and final graph of thebipartite set constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20061001 609

610 PREDEFINED

5.49 calendar

DESCRIPTION LINKS

Origin [25]

Constraint calendar(INSTANTS, MACHINES)

Type UNAVAILABILITIES : collection(low−int, up−int)

Arguments INSTANTS : collection

machine−dvar,
virtual−dvar,
ireal−dvar,
flagend−int

MACHINES : collection(id−int, cal− UNAVAILABILITIES)

Restrictions required(UNAVAILABILITIES, [low, up])
UNAVAILABILITIES.low ≤ UNAVAILABILITIES.up
required(INSTANTS, [machine, virtual, ireal, flagend])
in attr(INSTANTS, machine, MACHINES, id)
INSTANTS.flagend ≥ 0
INSTANTS.flagend ≤ 1
|MACHINES| > 0
required(MACHINES, [id, cal])
distinct(MACHINES, id)

Purpose

Makes the link between an universal calendar and resource dependent calendars. Given
a collection of machinesMACHINES where each machine is defined by its identifier
and its unavailability periods thecalendar constraint maps items of real and virtual
dates depending on the machine assignment as well as of the fact that weconsider start
(flagend = 0) or end (flagend = 1) times. Virtual dates on a given machinem do
not consider the unavailability periods onm, while real dates consider all time points.

Example

〈

machine− 1 virtual− 2 ireal− 3 flagend− 0,
machine− 1 virtual− 5 ireal− 6 flagend− 1,
machine− 2 virtual− 4 ireal− 5 flagend− 0,
machine− 2 virtual− 6 ireal− 9 flagend− 1,
machine− 3 virtual− 2 ireal− 2 flagend− 0,
machine− 3 virtual− 5 ireal− 5 flagend− 1,
machine− 4 virtual− 2 ireal− 2 flagend− 0,
machine− 4 virtual− 7 ireal− 9 flagend− 1

〉

,

〈
id− 1 cal− 〈low− 2 up− 2, low− 6 up− 7〉 ,
id− 2 cal− 〈low− 2 up− 2, low− 6 up− 7〉 ,
id− 3 cal− [],
id− 4 cal− 〈low− 3 up− 4〉

〉

Figure 5.89 illustrates the example. It present four machines with their respective

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20061014 611

unavailability periods (in grey) as well as four tasks (in blue and pink). Each item of the
INSTANTS collection corresponds to the start or to the end of one of the previous four
tasks. Thecalendar constraint holds since:

• The real date 3 (INSTANTS[1].ireal = 3) associated with the start
(INSTANTS[1].flagend = 0) of task (a) in the universal time corresponds to the vir-
tual date2 (INSTANTS[1].virtual = 2) on machine1 (INSTANTS[1].machine =
1).

• The real date 6 (INSTANTS[2].ireal = 6) associated with the end
(INSTANTS[2].flagend = 1) of task (a) in the universal time corresponds to the vir-
tual date5 (INSTANTS[2].virtual = 5) on machine1 (INSTANTS[2].machine =
1).

• The real date 5 (INSTANTS[3].ireal = 5) associated with the start
(INSTANTS[3].flagend = 0) of task (b) in the universal time corresponds to the vir-
tual date4 (INSTANTS[3].virtual = 4) on machine2 (INSTANTS[3].machine =
2).

• The real date 9 (INSTANTS[4].ireal = 9) associated with the end
(INSTANTS[4].flagend = 1) of task (b) in the universal time corresponds to the vir-
tual date6 (INSTANTS[4].virtual = 6) on machine2 (INSTANTS[4].machine =
2).

• The real date 2 (INSTANTS[5].ireal = 2) associated with the start
(INSTANTS[5].flagend = 0) of task (c) in the universal time corresponds to the vir-
tual date2 (INSTANTS[5].virtual = 2) on machine3 (INSTANTS[5].machine =
3).

• The real date 5 (INSTANTS[6].ireal = 5) associated with the end
(INSTANTS[6].flagend = 1) of task (c) in the universal time corresponds to the vir-
tual date5 (INSTANTS[6].virtual = 5) on machine3 (INSTANTS[6].machine =
3).

• The real date 2 (INSTANTS[7].ireal = 2) associated with the start
(INSTANTS[7].flagend = 0) of task (d) in the universal time corresponds to the vir-
tual date2 (INSTANTS[7].virtual = 2) on machine4 (INSTANTS[7].machine =
4).

• The real date 9 (INSTANTS[8].ireal = 9) associated with the end
(INSTANTS[8].flagend = 1) of task (d) in the universal time corresponds to the vir-
tual date7 (INSTANTS[8].virtual = 7) on machine4 (INSTANTS[8].machine =
4).

Typical |INSTANTS| > 1
|MACHINES| > 1

Symmetries • Items ofINSTANTS arepermutable.

• Items ofMACHINES arepermutable.

Arg. properties
Contractiblewrt. INSTANTS.

Usage Thecalendar constraint is used as achannelling constraintin resource scheduling prob-
lems where resources have unavailability periods that can preempt the execution of a task.
In this context two time coordinates systems are used:

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

612 PREDEFINED

• A first coordinate system, so called thevirtual coordinate system, ignores all unavail-
ability periods on the different resources. All resource constraints are stated within
this virtual coordinate system.

• A second coordinate system, so called thereal coordinate system, corresponds to the
real time. All temporal constraints (e.g., precedence constraints) are stated within
this real coordinate system.

In this context, each task has avirtual origin, a virtual duration, a virtual end, a real
origin, a real duration, a real endand thecalendar constraint links together the vir-
tual origin and the real origin as well as the virtual end and the real end. The vir-
tual duration (i.e., the real duration plus the sum of the unavailability periods crossed
by the task) is linked to the virtual end and the virtual origin through an equalitycon-
straint on the difference between the virtual end and the virtual origin. The real du-
ration is linked in a similar way to the real end and the real origin. The keyword
scheduling with machine choice, calendars and preemptionprovides a concrete example of
resource scheduling problem using thecalendar constraint.

Reformulation The calendar constraint can be reformulated into two generalisedcase constraints
(i.e., two case constraints augmented with linear constraints). Part (A) (respectively
Part (B)) of Figure5.90provides the dag that allows mapping the virtual start and real start
(respectively the virtual end and real end) of a task. This dag can be computed directly
from the arguments of thecalendar constraint:

1. We create an initial root node labelled bym and we partition the set of machines into
classes of consecutive machines that all share exactly the same unavailability periods.
For each such class we create an arc from the root node to a new nodevs labelled
by the corresponding interval of consecutive machines identifiers. InPart (A) this
corresponds to nodem and its three outgoing arcs respectively labelled by intervals
[1, 2], [3, 3] and[4, 4].

2. For each class of consecutive machines found previously, we label in increasing order
each timepoint that is not part of an unavailability period. We create an arcfrom the
corresponding nodevs for each maximum interval of available timepoints to a new
node labelled byrs. In Part (A) this translate to:

• For the class corresponding to machines1 and2 we create three outgoing arcs
labelled by the time intervals[1, 1], [2, 4] and[5, 6].

98

7

7

6

6

6

6

m
ac

hi
ne

s

time9876

3

4

3

2

1

1 2 3

3

5

5

5

5

4

4

4

4

3

3

2

2

2

21

1

1

1

54

d

b

a

c

Figure 5.89: Four machines with their unavailability periods as well as four tasks as-
signed to these machines (virtual dates mentioned in theExampleslot use a bold font)

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

20061014 613

• For the class corresponding to machine3 we create the outgoing arc labelled by
time interval[1, 9].

• For the class corresponding to machine4 we create the two outgoing arcs la-
belled by the time intervals[1, 2] and[3, 7].

3. For each class of consecutive machines and for each maximum interval [i, j] of avail-
able timepoints previously computed, we find out the number of unavailabletime-
points bi on the same class of machines that are located before the virtual datei.
We create an outgoing arc from the corresponding noders to a new node labelled
by true (there is one singletrue node for the full dag). This arc is labelled by the
interval [i + bi, j + bi] and by the linear constraintrs = vs + bi. In Part (A) this
translate to:

• For the class corresponding to machines1 and2 and for eachrs node associated
with the time intervals[1, 1], [2, 4] and[5, 6] we respectively create an outgoing
arc labelled by intervals[1, 1], [3, 5] and [8, 9]. To each of these arcs we also
respectively associate the linear constraintsrs = vs+0 (+0 since on machines
1 and2 there is no unavailability period before the virtual date1), rs = vs + 1
(+1 since on machines1 and2 there is one single unavailable timepoint before
the virtual date2) andrs = vs+3 (+3 since on machines1 and2 there is three
unavailable timepoints before the virtual date5).

• For the class corresponding to machine3 and for thers node associated with
the time interval[1, 9] we create the outgoing arc labelled by time interval[1, 9]
and byrs = vs+0 (i.e., since their is no unavailability period at all on machine
3).

• For the class corresponding to machine4 and for eachrs node associated with
the time intervals[1, 2] and[3, 7] we respectively create an outgoing arc labelled
by [1, 2] and [5, 9]. To each of these arcs we also respectively associate the
linear constraintsrs = vs+0 (+0 since on machine4 there is no unavailability
period before the virtual date1) andrs = vs + 2 (+2 since on machine4 there
is two unavailable timepoints before the virtual date3).

Thecalendar constraint can also be reformulated into a conjunction of reified constraints.
This is done by generating, for each pair of items(I,M) of theINSTANTS andMACHINES
collections, a set of reified constraints expressing:

• The link between the real and the virtual dates under the hypothesis that themachine

attribute of itemI is assigned to the value of theid attribute of itemM. More pre-
cisely, we generate one reified constraint for each available time intervalon machine
id.

• The fact that a real date should not be located within an unavailability periodof its
corresponding machine.

Operationally, this leads to the following cases:

1. When machineid hasno unavailability at allwe state an equality constraint between
the real and virtual dates.

2. When the real date is locatedbefore the first unavailability periodwe also state an
equality constraint between the real and virtual dates.

3. When the real date is locatedbetween two consecutive unavailability periodswe
state:

614 PREDEFINED

re=ve

3..3 4..4

1..9

1..9

re

5..9

re

8..9

re

3..5

re

1..2

re

1..9

re

1..1

ve

rs=vs+2

ve

rs=vs

ve

rs=vs

m

rs=vs+3

true

(B) linking the machine attribute, the virtual end

 and the real end of a task

(A) linking the machine attribute, the virtual start

 and the real start of a task

rs=vs+1

rs

rs=vs

rs

3..7

rs

1..9

rs

5..6

rs

2..4

rs

1..1

true

1..2

vs

4..4

vs

3..3

vs

1..2

m

6..91..39..94..61..2

4..71..36..63..51..2

re=ve+2re=vere=vere=ve+3re=ve+1

1..2

Figure 5.90: The two generalisedcase constraints for respectively mapping (1) the
virtual start and real start of a task corresponding to theExampleslot as well as (2) the
virtual end and real end; dags were generated under the hypothesis that the virtual and
real dates are located in[1, 9].

20061014 615

• An equality constraint between the real date and the virtual date plus the sum
of all unavailabilities located before the real date.

• An implication between the fact that the real date belongs to the first unavail-
ability period (among the two consecutive unavailability periods) and the fact
that the real date is not assigned to the machine that contains the unavailability
period.

4. When the real date is locatedafter the last unavailability periodwe state:

• An equality constraint between the real date and the virtual date plus the sum
of all unavailabilities.

• An implication between the fact that the real date belongs to the last unavail-
ability period and the fact that the real date is not assigned to the machine that
contains the unavailability period.

As an example consider again consider the instance given in theExample slot. For the
start of taska (i.e., the first item〈machine− 1 virtual− 2 ireal− 2 flagend− 0〉 of
collectionINSTANTS), we generate the following reified constraints, where equivalences of
the formtrue ⇔ true are shown in bold:

• (if taska is assigned on machine 1)
⋆ before[2, 2]: 1 = 1 ∧ 3 < 2 ⇔ 1 = 1 ∧ 3 = 2
⋆ between[2, 2] and[6, 7]: 1 = 1 ∧ 3 > 2 ∧ 3 < 6 ⇔ 1 = 1 ∧ 3 = 2 + 1

⋆ after[6, 7]: 1 = 1 ∧ 3 > 7 ⇔ 1 = 1 ∧ 3 = 2 + 3
⋆ do not cross[2, 2], [6, 7]: 3 ∈ [2, 2] ⇒ 1 6= 1, 3 ∈ [6, 7] ⇔ 1 6= 1

• (if taska is assigned on machine 2)
⋆ before[2, 2]: 1 = 2 ∧ 3 < 2 ⇔ 1 = 2 ∧ 3 = 2
⋆ between[2, 2] and[6, 7]: 1 = 2 ∧ 3 > 2 ∧ 3 < 6 ⇔ 1 = 2 ∧ 3 = 2 + 1
⋆ after[6, 7]: 1 = 2 ∧ 3 > 7 ⇔ 1 = 2 ∧ 3 = 2 + 3
⋆ do not cross[2, 2], [6, 7]: 3 ∈ [2, 2] ⇒ 1 6= 2, 3 ∈ [6, 7] ⇔ 1 6= 2

• (if taska is assigned on machine 3)
⋆ no unavailability: 1 = 3 ⇔ 1 = 3 ∧ 3 = 2

• (if taska is assigned on machine 4)
⋆ before[3, 4]: 1 = 4 ∧ 3 < 3 ⇔ 1 = 4 ∧ 3 = 2
⋆ after[3, 4]: 1 = 4 ∧ 3 > 4 ⇔ 1 = 4 ∧ 3 = 2 + 2
⋆ do not cross[3, 4]: 3 ∈ [3, 4] ⇒ 1 6= 4

616 PREDEFINED

For theend of taska (i.e., the second item〈machine−1 virtual−5 ireal−6 flagend−
1〉 of collectionINSTANTS), we generate the following reified constraints:

• (if taska is assigned on machine 1)
⋆ before[2, 2]: 1 = 1 ∧ 6 < 3 ⇔ 1 = 1 ∧ 6 = 5
⋆ between[2, 2] and[6, 7]: 1 = 1 ∧ 6 > 3 ∧ 6 < 7 ⇔ 1 = 1 ∧ 6 = 5 + 1

⋆ after[6, 7]: 1 = 1 ∧ 6 > 8 ⇔ 1 = 1 ∧ 6 = 5 + 3
⋆ do not cross[2, 2], [6, 7]: 6 ∈ [3, 3] ⇒ 1 6= 1, 6 ∈ [7, 8] ⇒ 1 6= 1

• (if taska is assigned on machine 2)
⋆ before[2, 2]: 1 = 2 ∧ 6 < 3 ⇔ 1 = 2 ∧ 6 = 5
⋆ between[2, 2] and[6, 7]: 1 = 2 ∧ 6 > 3 ∧ 6 < 7 ⇔ 1 = 2 ∧ 6 = 5 + 1
⋆ after[6, 7]: 1 = 2 ∧ 6 > 8 ⇔ 1 = 2 ∧ 6 = 5 + 3
⋆ do not cross[2, 2], [6, 7]: 6 ∈ [3, 3] ⇒ 1 6= 2, 6 ∈ [7, 8] ⇒ 1 6= 2

• (if taska is assigned on machine 3)
⋆ no unavailability: 1 = 3 ⇔ 1 = 3 ∧ 6 = 5

• (if taska is assigned on machine 4)
⋆ before[3, 4]: 1 = 4 ∧ 6 < 4 ⇔ 1 = 4 ∧ 6 = 5
⋆ after[3, 4]: 1 = 4 ∧ 6 > 5 ⇔ 1 = 4 ∧ 6 = 5 + 2
⋆ do not cross[3, 4]: 6 ∈ [4, 5] ⇒ 1 6= 4

For thestart of taskb (i.e., the third item〈machine−2 virtual−4 ireal−5 flagend−
0〉 of collectionINSTANTS), we generate the following reified constraints:

• (if taskb is assigned on machine 1)
⋆ before[2, 2]: 2 = 1 ∧ 5 < 2 ⇔ 2 = 1 ∧ 5 = 4
⋆ between[2, 2] and[6, 7]: 2 = 1 ∧ 5 > 2 ∧ 5 < 6 ⇔ 2 = 1 ∧ 5 = 4 + 1
⋆ after[6, 7]: 2 = 1 ∧ 5 > 7 ⇔ 2 = 1 ∧ 5 = 4 + 3
⋆ do not cross[2, 2], [6, 7]: 5 ∈ [2, 2] ⇒ 2 6= 1, 5 ∈ [6, 7] ⇒ 2 6= 1

• (if taskb is assigned on machine 2)
⋆ before[2, 2]: 2 = 2 ∧ 5 < 2 ⇔ 2 = 2 ∧ 5 = 4
⋆ between[2, 2] and[6, 7]: 2 = 2 ∧ 5 > 2 ∧ 5 < 6 ⇔ 2 = 2 ∧ 5 = 4 + 1

⋆ after[6, 7]: 2 = 2 ∧ 5 > 7 ⇔ 2 = 2 ∧ 5 = 4 + 3
⋆ do not cross[2, 2], [6, 7]: 5 ∈ [2, 2] ⇒ 2 6= 2, 5 ∈ [6, 7] ⇒ 2 6= 2

• (if taskb is assigned on machine 3)
⋆ no unavailability: 2 = 3 ⇔ 2 = 3 ∧ 5 = 4

• (if taskb is assigned on machine 4)
⋆ before[3, 4]: 2 = 4 ∧ 5 < 3 ⇔ 2 = 4 ∧ 5 = 4
⋆ after[3, 4]: 2 = 4 ∧ 5 > 4 ⇔ 2 = 4 ∧ 5 = 4 + 2
⋆ do not cross[3, 4]: 5 ∈ [3, 4] ⇒ 2 6= 4

20061014 617

For theend of taskb (i.e., the fourth item〈machine−2 virtual−6 ireal−9 flagend−
1〉 of collectionINSTANTS), we generate the following reified constraints:

• (if taskb is assigned on machine 1)
⋆ before[2, 2]: 2 = 1 ∧ 9 < 3 ⇔ 2 = 1 ∧ 9 = 6
⋆ between[2, 2] and[6, 7]: 2 = 1 ∧ 9 > 3 ∧ 9 < 7 ⇔ 2 = 1 ∧ 9 = 6 + 1
⋆ after[6, 7]: 2 = 1 ∧ 9 > 8 ⇔ 2 = 1 ∧ 9 = 6 + 3
⋆ do not cross[2, 2], [6, 7]: 9 ∈ [3, 3] ⇒ 2 6= 1, 9 ∈ [7, 8] ⇒ 2 6= 1

• (if taskb is assigned on machine 2)
⋆ before[2, 2]: 2 = 2 ∧ 9 < 3 ⇔ 2 = 2 ∧ 9 = 6
⋆ between[2, 2] and[6, 7]: 2 = 2 ∧ 9 > 3 ∧ 9 < 7 ⇔ 2 = 2 ∧ 9 = 6 + 1
⋆ after[6, 7]: 2 = 2 ∧ 9 > 8 ⇔ 2 = 2 ∧ 9 = 6 + 3

⋆ do not cross[2, 2], [6, 7]: 9 ∈ [3, 3] ⇒ 2 6= 2, 9 ∈ [7, 8] ⇒ 2 6= 2

• (if taskb is assigned on machine 3)
⋆ no unavailability: 2 = 3 ⇔ 2 = 3 ∧ 9 = 6

• (if taskb is assigned on machine 4)
⋆ before[3, 4]: 2 = 4 ∧ 9 < 4 ⇔ 2 = 4 ∧ 9 = 6
⋆ after[3, 4]: 2 = 4 ∧ 9 > 5 ⇔ 2 = 4 ∧ 9 = 6 + 2
⋆ do not cross[3, 4]: 9 ∈ [4, 5] ⇒ 2 6= 4

For thestart of taskc (i.e., the fifth item〈machine−3 virtual−2 ireal−2 flagend−0〉
of collectionINSTANTS), we generate the following reified constraints:

• (if taskc is assigned on machine 1)
⋆ before[2, 2]: 3 = 1 ∧ 2 < 2 ⇔ 3 = 1 ∧ 2 = 2
⋆ between[2, 2] and[6, 7]: 3 = 1 ∧ 2 > 2 ∧ 2 < 6 ⇔ 3 = 1 ∧ 2 = 2 + 1
⋆ after[6, 7]: 3 = 1 ∧ 2 > 7 ⇔ 3 = 1 ∧ 2 = 2 + 3
⋆ do not cross[2, 2], [6, 7]: 2 ∈ [2, 2] ⇒ 3 6= 1, 2 ∈ [6, 7] ⇒ 3 6= 1

• (if taskc is assigned on machine 2)
⋆ before[2, 2]: 3 = 2 ∧ 2 < 2 ⇔ 3 = 2 ∧ 2 = 2
⋆ between[2, 2] and[6, 7]: 3 = 2 ∧ 2 > 2 ∧ 2 < 6 ⇔ 3 = 2 ∧ 2 = 2 + 1
⋆ after[6, 7]: 3 = 2 ∧ 2 > 7 ⇔ 3 = 2 ∧ 2 = 2 + 3
⋆ do not cross[2, 2], [6, 7]: 2 ∈ [2, 2] ⇒ 3 6= 2, 2 ∈ [6, 7] ⇒ 3 6= 2

• (if taskc is assigned on machine 3)
⋆ no unavailability: 3 = 3 ⇔ 3 = 3 ∧ 2 = 2

• (if taskc is assigned on machine 4)
⋆ before[3, 4]: 3 = 4 ∧ 2 < 3 ⇔ 3 = 4 ∧ 2 = 2
⋆ after[3, 4]: 3 = 4 ∧ 2 > 4 ⇔ 3 = 4 ∧ 2 = 2 + 2
⋆ do not cross[3, 4]: 2 ∈ [3, 4] ⇒ 3 6= 4

618 PREDEFINED

For theend of taskc (i.e., the sixth item〈machine−3 virtual−5 ireal−5 flagend−1〉
of collectionINSTANTS), we generate the following reified constraints:

• (if taskc is assigned on machine 1)
⋆ before[2, 2]: 3 = 1 ∧ 5 < 3 ⇔ 3 = 1 ∧ 5 = 5
⋆ between[2, 2] and[6, 7]: 3 = 1 ∧ 5 > 3 ∧ 5 < 7 ⇔ 3 = 1 ∧ 5 = 5 + 1
⋆ after[6, 7]: 3 = 1 ∧ 5 > 8 ⇔ 3 = 1 ∧ 5 = 5 + 3
⋆ do not cross[2, 2], [6, 7]: 5 ∈ [3..3] ⇒ 3 6= 1, 5 ∈ [7..8] ⇒ 3 6= 1

• (if taskc is assigned on machine 2)
⋆ before[2, 2]: 3 = 2 ∧ 5 < 3 ⇔ 3 = 2 ∧ 5 = 5
⋆ between[2, 2] and[6, 7]: 3 = 2 ∧ 5 > 3 ∧ 5 < 7 ⇔ 3 = 2 ∧ 5 = 5 + 1
⋆ after[6, 7]: 3 = 2 ∧ 5 > 8 ⇔ 3 = 2 ∧ 5 = 5 + 3
⋆ do not cross[2, 2], [6, 7]: 5 ∈ [3..3] ⇒ 3 6= 2, 5 ∈ [7..8] ⇒ 3 6= 2

• (if taskc is assigned on machine 3)
⋆ no unavailability: 3 = 3 ⇔ 3 = 3 ∧ 5 = 5

• (if taskc is assigned on machine 4)
⋆ before[3, 4]: 3 = 4 ∧ 5 < 4 ⇔ 3 = 4 ∧ 5 = 5
⋆ after[3, 4]: 3 = 4 ∧ 5 > 5 ⇔ 3 = 4 ∧ 5 = 5 + 2
⋆ do not cross[3, 4]: 5 ∈ [4..5] ⇒ 3 6= 4

For the start of taskd (i.e., the seventh item〈machine − 4 virtual − 2 ireal −
2 flagend− 0〉 of collectionINSTANTS), we generate the following reified constraints:

• (if taskd is assigned on machine 1)
⋆ before[2, 2]: 4 = 1 ∧ 2 < 2 ⇔ 4 = 1 ∧ 2 = 2
⋆ between[2, 2] and[6, 7]: 4 = 1 ∧ 2 > 2 ∧ 2 < 6 ⇔ 4 = 1 ∧ 2 = 2 + 1
⋆ after[6, 7]: 4 = 1 ∧ 2 > 7 ⇔ 4 = 1 ∧ 2 = 2 + 3
⋆ do not cross[2, 2], [6, 7]: 2 ∈ [2, 2] ⇒ 4 6= 1, 2 ∈ [6, 7] ⇒ 4 6= 1

• (if taskd is assigned on machine 2)
⋆ before[2, 2]: 4 = 2 ∧ 2 < 2 ⇔ 4 = 2 ∧ 2 = 2
⋆ between[2, 2] and[6, 7]: 4 = 2 ∧ 2 > 2 ∧ 2 < 6 ⇔ 4 = 2 ∧ 2 = 2 + 1
⋆ after[6, 7]: 4 = 2 ∧ 2 > 7 ⇔ 4 = 2 ∧ 2 = 2 + 3
⋆ do not cross[2, 2], [6, 7]: 2 ∈ [2, 2] ⇒ 4 6= 2, 2 ∈ [6, 7] ⇒ 4 6= 2

• (if taskd is assigned on machine 3)
⋆ no unavailability: 4 = 3 ⇔ 4 = 3 ∧ 2 = 2

• (if taskd assigned on machine 4)
⋆ before[3, 4]: 4 = 4 ∧ 2 < 3 ⇔ 4 = 4 ∧ 2 = 2

⋆ after[3, 4]: 4 = 4 ∧ 2 > 4 ⇔ 4 = 4 ∧ 2 = 2 + 2
⋆ do not cross[3, 4]: 2 ∈ [3, 4] ⇒ 4 6= 4

20061014 619

For theend of taskd (i.e., the eighth item〈machine−4 virtual−7 ireal−9 flagend−
1〉 of collectionINSTANTS), we generate the following reified constraints:

• (if taskd is assigned on machine 1)
⋆ before[2, 2]: 4 = 1 ∧ 9 < 3 ⇔ 4 = 1 ∧ 9 = 7
⋆ between[2, 2] and[6, 7]: 4 = 1 ∧ 9 > 3 ∧ 9 < 7 ⇔ 4 = 1 ∧ 9 = 7 + 1
⋆ after[6, 7]: 4 = 1 ∧ 9 > 8 ⇔ 4 = 1 ∧ 9 = 7 + 3
⋆ do not cross[2, 2], [6, 7]: 9 ∈ [3, 3] ⇒ 4 6= 1, 9 ∈ [7, 8] ⇒ 4 6= 1

• (if taskd is assigned on machine 2)
⋆ before[2, 2]: 4 = 2 ∧ 9 < 3 ⇔ 4 = 2 ∧ 9 = 7
⋆ between[2, 2] and[6, 7]: 4 = 2 ∧ 9 > 3 ∧ 9 < 7 ⇔ 4 = 2 ∧ 9 = 7 + 1
⋆ after[6, 7]: 4 = 2 ∧ 9 > 8 ⇔ 4 = 2 ∧ 9 = 7 + 3
⋆ do not cross[2, 2], [6, 7]: 9 ∈ [3, 3] ⇒ 4 6= 2, 9 ∈ [7, 8] ⇒ 4 6= 2

• (if taskd is assigned on machine 3)
⋆ no unavailability: 4 = 3 ⇔ 4 = 3 ∧ 9 = 7

• (if taskd is assigned on machine 4)
⋆ before[3, 4]: 4 = 4 ∧ 9 < 4 ⇔ 4 = 4 ∧ 9 = 7
⋆ after[3, 4]: 4 = 4 ∧ 9 > 5 ⇔ 4 = 4 ∧ 9 = 7 + 2

⋆ do not cross[3, 4]: 9 ∈ [4, 5] ⇒ 4 6= 4

See also common keyword: cumulative (scheduling constraint),
cumulatives (scheduling with machine choice, calendars and preemption),
diffn (multi-site employee scheduling with calendar constraints,
scheduling with machine choice, calendars and preemption),
disjunctive (scheduling constraint),
geost (multi-site employee scheduling with calendar constraints,
scheduling with machine choice, calendars and preemption).

Keywords constraint type: predefined constraint, temporal constraint, scheduling constraint.

modelling: channelling constraint, multi-site employee scheduling with calendar constraints,
scheduling with machine choice, calendars and preemption, assignment dimension.

modelling exercises: multi-site employee scheduling with calendar constraints,
scheduling with machine choice, calendars and preemption.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

620 MAX ID,PRODUCT

5.50 cardinality atleast

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromglobal cardinality.

Constraint cardinality atleast(ATLEAST, VARIABLES, VALUES)

Arguments ATLEAST : dvar

VARIABLES : collection(var−dvar)
VALUES : collection(val−int)

Restrictions ATLEAST ≥ 0
ATLEAST ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose ATLEAST is the minimum number of time that a value ofVALUES is taken by the variables
of the collectionVARIABLES.

Example (1, 〈3, 3, 8〉 , 〈3, 8〉)

In this example, values3 and 8 are respectively used2, and 1 times. The
cardinality atleast constraint holds since its first argumentATLEAST = 1 is
assigned to the minimum number of time that values3 and 8 occur in the collection
〈3, 3, 8〉.

Typical ATLEAST > 0
ATLEAST < |VARIABLES|
|VARIABLES| > 1
|VALUES| > 0
|VARIABLES| > |VALUES|

Symmetries • Items ofVARIABLES arepermutable.

• Items ofVALUES arepermutable.

• An occurrence of a value ofVARIABLES.var that does not belong toVALUES.val
can bereplacedby any other value that also does not belong toVALUES.val.

• All occurrences of two distinct values inVARIABLES.var or VALUES.val can be
swapped; all occurrences of a value inVARIABLES.var or VALUES.val can be
renamedto any unused value.

Arg. properties
Functional dependency: ATLEAST determined byVARIABLES andVALUES.

Usage An application of thecardinality atleast constraint is to enforce a minimum use of
values.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

20030820 621

Remark This is a restricted form of a variant of anamong constraint and of the
global cardinality constraint. In the originalglobal cardinality constraint, one
specifies for each value its minimum and maximum number of occurrences.

Algorithm Seeglobal cardinality [322].

See also generalisation: global cardinality (singlecount variable replaced by an individ-
ual count variable for each value).

Keywords application area: assignment.

characteristic of a constraint: automaton, automaton with array of counters.

constraint arguments:pure functional dependency.

constraint type: value constraint.

filtering: arc-consistency.

final graph structure: acyclic, bipartite, no loop.

modelling: functional dependency, at least.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

622 MAX ID,PRODUCT

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var 6= values.val

Graph property(ies) MAX ID= |VARIABLES| − ATLEAST

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model Using directly the graph propertyMIN ID = ATLEAST, and replacing the disequality of
the arc constraint by an equality does not work since it ignores values that are not assigned
to any variable. This comes from the fact that isolated vertices are removed from the final
graph.

Parts (A) and (B) of Figure5.91 respectively show the initial and final graph associated
with the Example slot. Since we use theMAX ID graph property, the vertex with the
maximum number of predecessor (i.e., namely two predecessors) isstressed with a dou-
ble circle. As a consequence the first argumentATLEAST of thecardinality atleast

constraint is assigned to the total number of variables3 minus2.

VARIABLES

VALUES

1

12

2 3

MAX_ID=2

1:3

2:8

2:3 3:8

1:3

(A) (B)

Figure 5.91: Initial and final graph of thecardinality atleast constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 623

Automaton Figure5.92depicts the automaton associated with thecardinality atleast constraint.
To each variableVARi of the collectionVARIABLES corresponds a0-1 signature variable
Si. The following signature constraint linksVARi andSi: VARi ∈ VALUES ⇔ Si.

M>=ATLEAST

{C[_]=0}

iin(VAR ,VALUES),

{C[VAR]=C[VAR]+1}i i
not_in(VAR ,VALUES)i

s:
minimum_except_0(M,C)

Figure 5.92: Automaton of thecardinality atleast constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

624 MAX ID,PRODUCT

5.51 cardinality atmost

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromglobal cardinality.

Constraint cardinality atmost(ATMOST, VARIABLES, VALUES)

Arguments ATMOST : dvar

VARIABLES : collection(var−dvar)
VALUES : collection(val−int)

Restrictions ATMOST ≥ 0
ATMOST ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose ATMOST is the maximum number of occurrences of each value ofVALUES within the
variables of the collectionVARIABLES.

Example
(

2, 〈2, 1, 7, 1, 2〉 ,
〈5, 7, 2, 9〉

)

In this example, values5, 7, 2 and 9 occur respectively0, 1, 2 and 0 times within
the collection〈2, 1, 7, 1, 2〉. As a consequence, thecardinality atmost constraint
holds since its first argumentATMOST is assigned to the maximum number of occurrences
2.

Typical ATMOST > 0
ATMOST < |VARIABLES|
|VARIABLES| > 1
|VALUES| > 0
|VARIABLES| > |VALUES|

Symmetries • Items ofVARIABLES arepermutable.

• Items ofVALUES arepermutable.

• An occurrence of a value ofVARIABLES.var that does not belong toVALUES.val
can bereplacedby any other value that also does not belong toVALUES.val.

• All occurrences of two distinct values inVARIABLES.var or VALUES.val can be
swapped; all occurrences of a value inVARIABLES.var or VALUES.val can be
renamedto any unused value.

Arg. properties
Functional dependency: ATMOST determined byVARIABLES andVALUES.

Usage An application of thecardinality atmost constraint is to enforce a maximum use of
values.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

20030820 625

Remark This is a restricted form of a variant of theamong constraint and of the
global cardinality constraint. In the originalglobal cardinality constraint, one
specifies for each value its minimum and maximum number of occurrences.

Algorithm Seeglobal cardinality [322].

See also generalisation: global cardinality (singlecount variable replaced by an individ-
ual count variable for each value), multi inter distance (window of size1 replaced
by window ofDIST consecutive values).

implied by: among.

Keywords application area: assignment.

characteristic of a constraint: automaton, automaton with array of counters.

constraint arguments:pure functional dependency.

constraint type: value constraint.

filtering: arc-consistency.

final graph structure: acyclic, bipartite, no loop.

modelling: at most, functional dependency.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

626 MAX ID,PRODUCT

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) MAX ID= ATMOST

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model Parts (A) and (B) of Figure5.93 respectively show the initial and final graph associated
with theExampleslot. Since we use theMAX ID graph property, the vertex that has the
maximum number of predecessor is stressed with a double circle.

VARIABLES

VALUES

1

1234

2345

MAX_ID=2

1:2

3:2

3:7

2:7

5:2

(A) (B)

Figure 5.93: Initial and final graph of thecardinality atmost constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 627

Automaton Figure5.94depicts the automaton associated with thecardinality atmost constraint.
To each variableVARi of the collectionVARIABLES corresponds a0-1 signature variable
Si. The following signature constraint linksVARi andSi: VARi ∈ VALUES ⇔ Si.

arith(C,<=,ATMOST)

{C[_]=0}

iin(VAR ,VALUES),

{C[VAR]=C[VAR]+1}i i
not_in(VAR ,VALUES)i

s:

Figure 5.94: Automaton of thecardinality atmost constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

628 MAX ID,PRODUCT

5.52 cardinality atmost partition

DESCRIPTION LINKS GRAPH

Origin Derived fromglobal cardinality.

Constraint cardinality atmost partition(ATMOST, VARIABLES, PARTITIONS)

Type VALUES : collection(val−int)

Arguments ATMOST : dvar

VARIABLES : collection(var−dvar)
PARTITIONS : collection(p− VALUES)

Restrictions |VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)
ATMOST ≥ 0
ATMOST ≤ |VARIABLES|
required(VARIABLES, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose
ATMOST is the maximum number of time that values of a same partition ofPARTITIONS

are taken by the variables of the collectionVARIABLES.

Example

2,

〈

var− 2,
var− 3,
var− 7,
var− 1,
var− 6,
var− 0

〉

,

〈

p− 〈1, 3〉 ,
p− 〈4〉 ,
p− 〈2, 6〉

〉

In this example, two variables of the collectionVARIABLES = 〈2, 3, 7, 1, 6, 0〉 are
assigned values of the first partition, no variable is assigned a value of thesecond partition,
and finally two variables are assigned values of the last partition. As a consequence, the
cardinality atmost partition constraint holds since its first argumentATMOST is
assigned to the maximum number of occurrences2.

Typical ATMOST > 0
ATMOST < |VARIABLES|
|VARIABLES| > 1
|VARIABLES| > |PARTITIONS|

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20030820 629

Symmetries • Items ofVARIABLES arepermutable.

• Items ofPARTITIONS arepermutable.

• Items ofPARTITIONS.p arepermutable.

Arg. properties
Functional dependency: ATMOST determined byVARIABLES andPARTITIONS.

See also generalisation: global cardinality (single count variable replaced by an indi-
vidual count variable for each value andvariable replaced byvariable ∈
partition).

used in graph description:in.

Keywords characteristic of a constraint: partition.

constraint arguments:pure functional dependency.

constraint type: value constraint.

filtering: arc-consistency.

final graph structure: acyclic, bipartite, no loop.

modelling: at most, functional dependency.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

630 MAX ID,PRODUCT

Arc input(s) VARIABLES PARTITIONS

Arc generator PRODUCT 7→collection(variables, partitions)

Arc arity 2

Arc constraint(s) in(variables.var, partitions.p)

Graph property(ies) MAX ID= ATMOST

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model Parts (A) and (B) of Figure5.95 respectively show the initial and final graph associated
with the Example slot. Since we use theMAX ID graph property, a vertex with the
maximum number of predecessor is stressed with a double circle.

VARIABLES

PARTITIONS

1

1 23

2 3456

MAX_ID=2

1:2

3:2
 6

2:3

1:1
 3

4:15:6

(A) (B)

Figure 5.95: Initial and final graph of thecardinality atmost partition con-
straint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 631

632 NARC,PATH ; AUTOMATON

5.53 change

DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint change(NCHANGE, VARIABLES, CTR)

Synonyms nbchanges, similarity.

Arguments NCHANGE : dvar

VARIABLES : collection(var−dvar)
CTR : atom

Restrictions NCHANGE ≥ 0
NCHANGE < |VARIABLES|
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose NCHANGE is the number of times that constraintCTR holds on consecutive variables of
the collectionVARIABLES.

Example (3, 〈4, 4, 3, 4, 1〉 , 6=)
(1, 〈1, 2, 4, 3, 7〉 , >)

In the first example the changes are located between values4 and 3, 3 and 4, 4 and
1. Consequently, the correspondingchange constraint holds since its first argument
NCHANGE is fixed to value3.

In the second example the unique change occurs between values4 and3. Consequently,
the correspondingchange constraint holds since its first argumentNCHANGE is fixed to1.

Typical NCHANGE > 0
|VARIABLES| > 1
range(VARIABLES.var) > 1
CTR ∈ [6=]

Symmetry One and the same constant can beaddedto thevar attribute of all items ofVARIABLES.

Arg. properties
• Functional dependency: NCHANGE determined byVARIABLES andCTR.

• Contractiblewrt. VARIABLES whenCTR ∈ [6=, <,≥, >,≤] andNCHANGE = 0.

• Contractiblewrt. VARIABLES when CTR ∈ [=, <,≥, >,≤] and NCHANGE =
|VARIABLES| − 1.

Usage This constraint can be used in the context of timetabling problems in order toput an upper
limit on the number of changes of job types during a given period.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

20000128 633

Remark A similar constraint appears in [283, page 338] under the name ofsimilarity constraint.
The difference consists of replacing the arithmetic constraintCTR by a binary constraint.
When CTR is equal to6= this constraint is callednbchanges in [380].

Algorithm A first incomplete algorithm is described in [29]. The sketch of a filtering algorithm for the
conjunction of thechange and thestretch constraints based ondynamic programming
achievingarc-consistencyis mentioned by Lars Hellsten in [191, page 56].

Reformulation The change constraint can be reformulated with theseq bin constraint [290] that we
now introduce. GivenN a domain variable,X a sequence of domain variables, andC

and B two binary constraints,seq bin(N, X, C, B) holds if (1) N is equal to the number
of C-stretches in the sequenceX, and (2)B holds on any pair of consecutive variables in
X. A C-stretch is a generalisation of the notion of stretch introduced by G. Pesant[285],
where the equality constraint is made explicit by replacing it by a binary constraintC, i.e., a
C-stretch is a maximal length subsequence ofX for which the binary constraintC is satis-
fied on consecutive variables.change(NCHANGE, VARIABLES, CTR) can be reformulated
asN = N1− 1 ∧ seq bin(N1, X,¬ CTR , true), wheretrue is the universal constraint.

Used in pattern.

See also common keyword: change partition, circular change (number of changesin a
sequence ofvariables with respect to abinary constraint), cyclic change,
cyclic change joker (number of changes), smooth (number of changesin a sequence
of variables with respect to abinary constraint).

generalisation: change pair (variable replaced by pair of variables),
change vectors (variable replaced byvector).

shift of concept:distance change, longest change.

Keywords characteristic of a constraint: automaton, automaton with counters,
non-deterministic automaton.

constraint arguments:pure functional dependency.

constraint network structure: sliding cyclic(1) constraint network(2),
sliding cyclic(1) constraint network(3), Berge-acyclic constraint network.

constraint type: timetabling constraint.

filtering: dynamic programming.

final graph structure: acyclic, bipartite, no loop.

modelling: number of changes, functional dependency.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

634 NARC,PATH ; AUTOMATON

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) NARC= NCHANGE

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model Since we are only interested by the constraints linking two consecutive items of the collec-
tion VARIABLES we usePATH to generate the arcs of the initial graph.

Parts (A) and (B) of Figure5.96 respectively show the initial and final graph of the first
example of theExample slot. Since we use theNARC graph property, the arcs of the
final graph are stressed in bold.

VARIABLES

1

2

3

4

5

NARC=3

2:4

3:3

4:4

5:1

(A) (B)

Figure 5.96: Initial and final graph of thechange constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 635

Automaton Figure5.97depicts a first automaton that only accepts all the solutions of thechange con-
straint. This automaton uses a counter in order to record the number of satisfied constraints
of the formVARi CTR VARi+1 already encountered. To each pair of consecutive variables
(VARi, VARi+1) of the collectionVARIABLES corresponds a0-1 signature variableSi. The
following signature constraint linksVARi, VARi+1 andSi: VARi CTR VARi+1 ⇔ Si.

NCHANGE=C

{C=0}

i+1iVAR not CTR VARVAR CTR VAR ,i+1i
{C=C+1}

s:

Figure 5.97: Automaton (with counter) of thechange constraint

n−1Q =s

0C =0 1C

1Q

1
VAR

1S

2
VAR

2S

n
VAR

3
VAR

3S

2Q

2C

n−1S

n−1
VAR

n−1C =NCHANGE

Q =s0

Figure 5.98: Hypergraph of the reformulation corresponding to the automaton (with
counter) of thechange constraint

Since the reformulation associated with the previous automaton is notBerge-acyclic, we
now describe a second counter free automaton that also only accepts allthe solutions of
thechange constraint. Without loss of generality, assume that the collection of variables
VARIABLES contains at least two variables (i.e.,|VARIABLES| ≥ 2). Let n andD respec-
tively denote the number of variables of the collectionVARIABLES, and the union of the
domains of the variables ofVARIABLES. Clearly, the maximum number of changes (i.e., the
number of times the constraintVARi CTR VARi+1 (1 ≤ i < n) holds) cannot exceed the
quantitym = min(n − 1, NCHANGE). The(m + 1) · |D| + 2 states of the automaton that
only accepts all the solutions of thechange constraint are defined in the following way:

• We have an initial state labelled bysI .

• We havem · |D| intermediate states labelled bysij (i ∈ D, j ∈ [0,m]). The first
subscripti of statesij corresponds to the value currently encountered. The second
subscriptj denotes the number of already encountered satisfied constraints of the
form VARi CTR VARi+1 from the initial statesI to the statesij .

• We have a final state labelled bysF .

Four classes of transitions are respectively defined in the following way:

1. There is a transition, labelled byi from the initial statesI to the statesi0, (i ∈ D).

2. There is a transition, labelled byj, from every statesij , (i ∈ D, j ∈ [0,m]), to the
final statesF .

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

636 NARC,PATH ; AUTOMATON

3. ∀i ∈ D, ∀j ∈ [0,m], ∀k ∈ D ∩ {k | i ¬ CTR k} there is a transition labelled byk
from sij to skj (i.e., the counterj does not change for valuesk such that constraint
i CTR k does not hold).

4. ∀i ∈ D, ∀j ∈ [0,m − 1], ∀k ∈ D r {k | i ¬ CTR k} there is a transition labelled
by k from sij to skj+1 (i.e., the counterj is incremented by+1 for valuesk such
that constrainti CTR k holds).

We have|D| transitions of type1, |D| · (m+ 1) transitions of type2, and at least|D|2 ·m
transitions of types3 and4. Since the maximum value ofm is equal ton− 1, in the worst
case we have at least|D|2 · (n− 1) transitions. This leads to a worst case time complexity
of O(|D|2 · n2) if we use Pesant’s algorithm for filtering theregular constraint [286].

Figure5.99depicts the corresponding counter free non deterministic automaton associated
with thechange constraint under the hypothesis that (1) all variables ofVARIABLES are
assigned a value in{0, 1, 2, 3}, (2) |VARIABLES| is equal to4, and (3) CTR is equal to6=.

20000128 637

00

3

1

0

3210

0 1 2 3

0

33
32

22
1

1
1

0

00

1 2 3

NCHANGE

01 11 21
s
31

s
03 13

0 0

0
1

1
1

2 2
2 3

3 3

s
23 33

0 1 2 3

0 1 2 3

The sequence of variables

33
32

22
1

1
1

0

00

is passed to the automaton
321 VAR4VARVARVAR

F
s

I
s

ss

sss
12

s

sss

ssss

322202

302010

2

Figure 5.99: Counter free non deterministic automaton of the
change(NCHANGE, 〈VAR1, VAR2, VAR3, VAR4〉, 6=) constraint assumingVARi ∈ [0, 3]
(1 ≤ i ≤ 3), with initial statesI and final statesF

638 MAX NCC,MIN NCC,NARC,NCC,PATH ; AUTOMATON

5.54 changecontinuity

DESCRIPTION LINKS GRAPH AUTOMATON

Origin N. Beldiceanu

Constraint change continuity

NB PERIOD CHANGE,
NB PERIOD CONTINUITY,
MIN SIZE CHANGE,
MAX SIZE CHANGE,
MIN SIZE CONTINUITY,
MAX SIZE CONTINUITY,
NB CHANGE,
NB CONTINUITY,
VARIABLES,
CTR

Arguments NB PERIOD CHANGE : dvar

NB PERIOD CONTINUITY : dvar

MIN SIZE CHANGE : dvar

MAX SIZE CHANGE : dvar

MIN SIZE CONTINUITY : dvar

MAX SIZE CONTINUITY : dvar

NB CHANGE : dvar

NB CONTINUITY : dvar

VARIABLES : collection(var−dvar)
CTR : atom

Restrictions NB PERIOD CHANGE ≥ 0
NB PERIOD CONTINUITY ≥ 0
MIN SIZE CHANGE ≥ 0
MAX SIZE CHANGE ≥ MIN SIZE CHANGE

MIN SIZE CONTINUITY ≥ 0
MAX SIZE CONTINUITY ≥ MIN SIZE CONTINUITY

NB CHANGE ≥ 0
NB CONTINUITY ≥ 0
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

20000128 639

Purpose

On the one hand a change is defined by the fact that constraint
VARIABLES[i].var CTR VARIABLES[i+ 1].var holds.
On the other hand acontinuity is defined by the fact that constraint
VARIABLES[i].var CTR VARIABLES[i+ 1].var does not hold.
A period of changeon variables

VARIABLES[i].var, VARIABLES[i+ 1].var, . . . , VARIABLES[j].var (i < j)

is defined by the fact that all constraintsVARIABLES[k].var CTR VARIABLES[k+1].var
hold fork ∈ [i, j − 1].
A period of continuityon variables

VARIABLES[i].var, VARIABLES[i+ 1].var, . . . , VARIABLES[j].var (i < j)

is defined by the fact that all constraintsVARIABLES[k].var CTR VARIABLES[k+1].var
do not hold fork ∈ [i, j − 1].
The constraintchange continuity holds if and only if:

• NB PERIOD CHANGE is equal to the number of periods of change,

• NB PERIOD CONTINUITY is equal to the number of periods of continuity,

• MIN SIZE CHANGE is equal to the number of variables of the smallest period of
change,

• MAX SIZE CHANGE is equal to the number of variables of the largest period of
change,

• MIN SIZE CONTINUITY is equal to the number of variables of the smallest period
of continuity,

• MAX SIZE CONTINUITY is equal to the number of variables of the largest period
of continuity,

• NB CHANGE is equal to the total number of changes,

• NB CONTINUITY is equal to the total number of continuities.

Example

3, 2, 2, 4, 2, 4, 6, 4,

〈

var− 1,
var− 3,
var− 1,
var− 8,
var− 8,
var− 4,
var− 7,
var− 7,
var− 7,
var− 7,
var− 2

〉

, 6=

Figure 5.100 makes clear the different parameters that are associated with the given
example for the collectionVARIABLES = 〈1, 3, 1, 8, 8, 4, 7, 7, 7, 7, 2〉. We place character
| for representing a change and a blank for a continuity. On top of the solution we
represent the different periods of change, while below we show the different periods of
continuity. Thechange continuity constraint holds since:

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

640 MAX NCC,MIN NCC,NARC,NCC,PATH ; AUTOMATON

• Its number of periods of changeNB PERIOD CHANGE is equal to3 (i.e., the3 periods
depicted on top of Figure5.100),

• Its number of periods of continuityNB PERIOD CONTINUITY is equal to2 (i.e., the2
periods depicted below Figure5.100),

• The number of variables of its smallest period of changeMIN SIZE CHANGE is equal
to 2 (i.e., the number of variables involved in the third period of change7 2 depicted
on top of Figure5.100),

• The number of variables of the largest period of changeMAX SIZE CHANGE is equal
to 4 (i.e., the number of variables involved in the first period of change1 3 1 8
depicted on top of Figure5.100),

• The number of variables of the smallest period of continuityMIN SIZE CONTINUITY

is equal to2 (i.e., the number of variables involved in the first period8 8 depicted
below Figure5.100),

• The number of variables of the largest period of continuityMAX SIZE CONTINUITY

is equal to4 (i.e., the number of variables involved in the second period7 7 7 7
depicted below Figure5.100),

• The total number of changesNB CHANGE is equal to6 (i.e., the number of occurrences
of character| in Figure5.100),

• The total number of continuitiesNB CONTINUITY is equal to4.

1|3|1|8 8|4|7 7 7 7|2

<−−−−−> <−−−> <−>

 <−> <−−−−−>

Figure 5.100: Periods of changes and periods of continuities

Typical NB PERIOD CHANGE > 0
NB PERIOD CONTINUITY > 0
MIN SIZE CHANGE > 0
MIN SIZE CONTINUITY > 0
NB CHANGE > 0
NB CONTINUITY > 0
|VARIABLES| > 1
range(VARIABLES.var) > 1
CTR ∈ [6=]

Symmetry One and the same constant can beaddedto thevar attribute of all items ofVARIABLES.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

20000128 641

Arg. properties
• Functional dependency: NB PERIOD CHANGE determined byVARIABLES andCTR.

• Functional dependency: NB PERIOD CONTINUITY determined byVARIABLES and
CTR.

• Functional dependency: MIN SIZE CHANGE determined byVARIABLES andCTR.

• Functional dependency: MAX SIZE CHANGE determined byVARIABLES andCTR.

• Functional dependency: MIN SIZE CONTINUITY determined byVARIABLES and
CTR.

• Functional dependency: MAX SIZE CONTINUITY determined byVARIABLES and
CTR.

• Functional dependency: NB CHANGE determined byVARIABLES andCTR.

• Functional dependency: NB CONTINUITY determined byVARIABLES andCTR.

Remark If the variables of the collectionVARIABLES have to take distinct values between1 and the
total number of variables, we have what is called a permutation. In this case, if we choose
the binary constraint<, thenMAX SIZE CHANGE gives the size of the longest run of the
permutation; Arun is a maximal increasing contiguous subsequence in a permutation.

See also common keyword: group, group skip isolated item,
stretch path (timetabling constraint).

Keywords characteristic of a constraint: automaton, automaton with counters.

combinatorial object: sequence, run of a permutation, permutation.

constraint network structure: sliding cyclic(1) constraint network(2),
sliding cyclic(1) constraint network(3).

constraint type: timetabling constraint.

final graph structure: connected component, apartition, acyclic, bipartite, no loop.

miscellaneous:obscure.

modelling: functional dependency.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

642 MAX NCC,MIN NCC,NARC,NCC,PATH ; AUTOMATON

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) • NCC= NB PERIOD CHANGE

• MIN NCC= MIN SIZE CHANGE

• MAX NCC= MAX SIZE CHANGE

• NARC= NB CHANGE

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var¬ CTR variables2.var

Graph property(ies) • NCC= NB PERIOD CONTINUITY

• MIN NCC= MIN SIZE CONTINUITY

• MAX NCC= MAX SIZE CONTINUITY

• NARC= NB CONTINUITY

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model We use two graph constraints to respectively catch the constraints on the period of
changes and of the period of continuities. In both case each period corresponds to a
connected componentof the final graph.

Parts (A) and (B) of Figure5.101respectively show the initial and final graph associated
with the first graph constraint of theExampleslot.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 643

VARIABLES

1

2

3

4

5

6

7

8

9

10

11

NCC=3
MIN_NCC=2
MAX_NCC=4

NARC=5

MIN_NCC MAX_NCC

10:7

11:2

1:1

2:3

3:1

4:8

5:8

6:4

(A) (B)

Figure 5.101: Initial and final graph of thechange continuity constraint

644 MAX NCC,MIN NCC,NARC,NCC,PATH ; AUTOMATON

Automaton Figures5.102 , 5.103 , 5.106 , 5.107 , 5.110 , 5.111 and 5.114 depict the automata
associated with the different graph parameters of thechange continuity constraint.
For the automata that respectively computeNB PERIOD CHANGE, NB PERIOD CONTINUITY

MIN SIZE CHANGE, MIN SIZE CONTINUITY MAX SIZE CHANGE, MAX SIZE CONTINUITY

NB CHANGE andNB CONTINUITY we have a0-1 signature variableSi for each pair of con-
secutive variables(VARi, VARi+1) of the collectionVARIABLES. The following signature
constraint linksVARi, VARi+1 andSi: VARi CTR VARi+1 ⇔ Si.

s i i+1

VAR not CTR VARi i+1

VAR CTR VAR ,i i+1

VAR CTR VARi i+1 $i

t:
NB_PERIOD_CHANGE=C

{C=C+1}

$

{C=0}

VAR not CTR VAR

Figure 5.102: Automaton for theNB PERIOD CHANGE parameter of the
change continuity constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20000128 645

s i i+1

VAR CTR VARi i+1

VAR not CTR VAR ,i i+1

VAR not CTR VARi i+1 $i

t:

{C=C+1}

$

NB_PERIOD_CONTINUITY=C

{C=0}

VAR CTR VAR

Figure 5.103: Automaton for theNB PERIOD CONTINUITY parameter of the
change continuity constraint

0

C =00 C1

Q1

VAR
1

S1

VAR
2

S2

VAR
nVAR

3

S3

Q2

C2

Sn−1

VAR
n−1

Q =tn−1

C =NB_PERIOD_CHANGEn−1

Q =s

Figure 5.104: Hypergraph of the reformulation corresponding to the automaton of the
NB PERIOD CHANGE parameter of thechange continuity constraint

0

C =00 C1

Q1

VAR
1

S1

VAR
2

S2

VAR
nVAR

3

S3

Q2

C2

Sn−1

VAR
n−1

Q =tn−1

C =NB_PERIOD_CONTINUITYn−1

Q =s

Figure 5.105: Hypergraph of the reformulation corresponding to the automaton of the
NB PERIOD CONTINUITY parameter of thechange continuity constraint

646 MAX NCC,MIN NCC,NARC,NCC,PATH ; AUTOMATON

{D=2}

VAR not CTR VAR ,
$

i i+1VAR not CTR VAR

i i+1VAR not CTR VAR i i+1VAR CTR VAR ,
{D=2}

i i+1VAR CTR VAR ,i i+1VAR CTR VAR ,

i i+1VAR CTR VAR ,

i i+1VAR not CTR VAR

j

MIN_SIZE_CHANGE=C
t:

{C=D}

k

$

{C=0,D=1}

s

{C=min(C,D)}

{C=D}
$, {C=min(C,D)}

$,

{D=D+1}
i

{D=D+1} i i+1

Figure 5.106: Automaton for theMIN SIZE CHANGE parameter of the
change continuity constraint

{D=D+1} $

i i+1VAR CTR VAR ,

i i+1VAR not CTR VAR

i i+1VAR CTR VAR

i i+1VAR not CTR VAR ,

i i+1VAR CTR VAR

i i+1VAR CTR VAR , i i+1VAR not CTR VAR ,i i+1VAR not CTR VAR ,
j

t:

k

$

{C=0,D=1}

s

$,
$,

i

{C=D}

{C=min(C,D)}

{D=2}

{D=D+1}

{D=2}

{C=D}

{C=min(C,D)}

MIN_SIZE_CONTINUITY=C

Figure 5.107: Automaton for theMIN SIZE CONTINUITY parameter of the
change continuity constraint

1 VAR
2

S2

VAR
nVAR

3

S3

Q2

C2

Sn−1

VAR
n−1

Q =s0

C =00 C1

Q1

S1

D =10 D1 D2

Q =tn−1

Dn−1

C =MIN_SIZE_CHANGEn−1

VAR

Figure 5.108: Hypergraph of the reformulation corresponding to the automaton of the
MIN SIZE CHANGE parameter of thechange continuity constraint

20000128 647

1 VAR
2

S2

VAR
nVAR

3

S3

Q2

C2

Sn−1

VAR
n−1

Q =s0

C =00 C1

Q1

S1

D =10 D1 D2

Q =tn−1

Dn−1

C =MIN_SIZE_CONTINUITYn−1

VAR

Figure 5.109: Hypergraph of the reformulation corresponding to the automaton of the
MIN SIZE CONTINUITY parameter of thechange continuity constraint

{C=0,D=1}

VAR not CTR VAR , i i+1VAR CTR VAR ,

i i+1VAR CTR VAR ,
i i+1VAR not CTR VAR

t:
MAX_SIZE_CHANGE=C

s

i

$,

$

{D=D+1}

{D=D+1}{C=max(C,D),D=1}

{C=max(C,D)}

i i+1

Figure 5.110: Automaton for theMAX SIZE CHANGE parameter of the
change continuity constraint

{C=max(C,D),D=1}

VAR CTR VAR

i i+1VAR not CTR VAR ,

i i+1VAR not CTR VAR ,

i i+1VAR CTR VAR ,

t:

s

i

$,

$

{C=0,D=1}

{D=D+1}

{C=max(C,D)}

{D=D+1}

MAX_SIZE_CONTINUITY=C

i i+1

Figure 5.111: Automaton for theMAX SIZE CONTINUITY parameter of the
change continuity constraint

648 MAX NCC,MIN NCC,NARC,NCC,PATH ; AUTOMATON

1 VAR
2

S2

VAR
nVAR

3

S3

Q2

C2

Sn−1

VAR
n−1

Q =s0

C =00 C1

Q1

S1

D1 D2

Q =tn−1

Dn−1D =00

C =MAX_SIZE_CHANGEn−1

VAR

Figure 5.112: Hypergraph of the reformulation corresponding to the automaton of the
MAX SIZE CHANGE parameter of thechange continuity constraint

1 VAR
2

S2

VAR
nVAR

3

S3

Q2

C2

Sn−1

VAR
n−1

Q =s0

C =00 C1

Q1

S1

D1 D2

Q =tn−1

Dn−1D =00

C =MAX_SIZE_CONTINUITYn−1

VAR

Figure 5.113: Hypergraph of the reformulation corresponding to the automaton of the
MAX SIZE CONTINUITY parameter of thechange continuity constraint

{C=0}

i i+1 VAR CTR VAR
i i+1VAR CTR VAR ,

i i+1
{C=C+1}

VAR not CTR VAR ,
i i+1

{C=C+1}

$

t:
NB_CHANGE=C

$

t:
NB_CONTINUITY=C

s s

{C=0}

VAR not CTR VAR

Figure 5.114: Automata for theNB CHANGE andNB CONTINUITY parameters of the
change continuity constraint

20000128 649

0

C =00 C1

Q1

VAR
1

S1

VAR
2

S2

VAR
nVAR

3

S3

Q2

C2

Sn−1

VAR
n−1

Q =tn−1

C =NB_CHANGEn−1

Q =s

Figure 5.115: Hypergraph of the reformulation corresponding to the automaton of the
NB CHANGE parameter of thechange continuity constraint

0

C =00 C1

Q1

VAR
1

S1

VAR
2

S2

VAR
nVAR

3

S3

Q2

C2

Sn−1

VAR
n−1

Q =tn−1

C =NB_CONTINUITYn−1

Q =s

Figure 5.116: Hypergraph of the reformulation corresponding to the automaton of the
NB CONTINUITY parameter of thechange continuity constraint

650 NARC,PATH ; AUTOMATON

5.55 changepair

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromchange.

Constraint change pair(NCHANGE, PAIRS, CTRX, CTRY)

Arguments NCHANGE : dvar

PAIRS : collection(x−dvar, y−dvar)
CTRX : atom

CTRY : atom

Restrictions NCHANGE ≥ 0
NCHANGE < |PAIRS|
required(PAIRS, [x, y])
CTRX ∈ [=, 6=, <,≥, >,≤]
CTRY ∈ [=, 6=, <,≥, >,≤]

Purpose
NCHANGE is the number of times that the following disjunction holds:(X1 CTRXX2) ∨
(Y1 CTRY Y2), where(X1, Y1) and(X2, Y2) correspond to consecutive pairs of variables
of the collectionPAIRS.

Example

3,

〈

x− 3 y− 5,
x− 3 y− 7,
x− 3 y− 7,
x− 3 y− 8,
x− 3 y− 4,
x− 3 y− 7,
x− 1 y− 3,
x− 1 y− 6,
x− 1 y− 6,
x− 3 y− 7

〉

, 6=, >

In the example we have the following3 changes:

• One change between pairsx− 3 y− 8 andx− 3 y− 4 since3 6= 3 ∨ 8 > 4,

• One change between pairsx− 3 y− 7 andx− 1 y− 3 since3 6= 1 ∨ 7 > 3,

• One change between pairsx− 1 y− 6 andx− 3 y− 7 since1 6= 3 ∨ 6 > 7.

Consequently thechange pair constraint holds since its first argumentNCHANGE is as-
signed value3.

Typical NCHANGE > 0
|PAIRS| > 1
range(PAIRS.x) > 1
range(PAIRS.y) > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20030820 651

Symmetries • One and the same constant can beaddedto thex attribute of all items ofPAIRS.

• One and the same constant can beaddedto they attribute of all items ofPAIRS.

Arg. properties
Functional dependency: NCHANGE determined byPAIRS, CTRX andCTRY.

Usage Here is a typical example where this constraint is useful. Assume we haveto produce a set
of cables. A given quality and a given cross-section that respectivelycorrespond to thex
andy attributes of the previous pairs of variables characterise each cable. The problem is
to sequence the different cables in order to minimise the number of times twoconsecutive
wire cablesC1 andC2 verify the following property:C1 andC2 do not have the same
quality or the cross section ofC1 is greater than the cross section ofC2.

See also generalisation:change vectors (pair of variables replaced byvector).

specialisation:change (pair of variables replaced byvariable).

Keywords characteristic of a constraint: pair, automaton, automaton with counters.

constraint arguments:pure functional dependency.

constraint network structure: sliding cyclic(2) constraint network(2).

constraint type: timetabling constraint.

final graph structure: acyclic, bipartite, no loop.

modelling: number of changes, functional dependency.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

652 NARC,PATH ; AUTOMATON

Arc input(s) PAIRS

Arc generator PATH 7→collection(pairs1, pairs2)

Arc arity 2

Arc constraint(s) pairs1.x CTRX pairs2.x ∨ pairs1.y CTRY pairs2.y

Graph property(ies) NARC= NCHANGE

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model Same aschange, except that each item has two attributesx andy.

Parts (A) and (B) of Figure5.117respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 653

PAIRS

1

2

3

4

5

6

7

8

9

10

NARC=3

4:3,8

5:3,4

6:3,7

7:1,3

9:1,6

10:3,7

(A) (B)

Figure 5.117: Initial and final graph of thechange pair constraint

654 NARC,PATH ; AUTOMATON

Automaton Figure5.118depicts the automaton associated with thechange pair constraint. To each
pair of consecutive pairs((Xi, Yi), (Xi+1, Yi+1)) of the collectionPAIRS corresponds a0-1
signature variableSi. The following signature constraint linksXi, Yi, Xi+1, Yi+1 andSi:
(Xi CTRX Xi+1) ∨ (Yi CTRY Yi+1) ⇔ Si.

s:
i i+1 i i+1

(X CTRX X) or (Y CTRY Y),i i+1 i i+1
{C=C+1}

{C=0}

NCHANGE=C
(X not CTRX X) and (Y not CTRY Y)

Figure 5.118: Automaton of thechange pair constraint

n−1

Q =s

0C =0 1C

1Q

3S

2Q

2C

3
 X n−1

 X
n

 X

n
 Yn−1

 Y
3

 Y2
 Y1

 Y

2S

2
 X1

 X

1S

n−1C =NCHANGE

Q =sn−1

S

0

Figure 5.119: Hypergraph of the reformulation corresponding to the automaton of the
change pair constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20030820 655

656 NARC,PATH

5.56 changepartition

DESCRIPTION LINKS GRAPH

Origin Derived fromchange.

Constraint change partition(NCHANGE, VARIABLES, PARTITIONS)

Type VALUES : collection(val−int)

Arguments NCHANGE : dvar

VARIABLES : collection(var−dvar)
PARTITIONS : collection(p− VALUES)

Restrictions |VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)
NCHANGE ≥ 0
NCHANGE < |VARIABLES|
required(VARIABLES, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose
NCHANGE is the number of times that the following constraint holds:X andY do not
belong to the same partition of the collectionPARTITIONS, whereX andY correspond
to consecutive variables of the collectionVARIABLES.

Example

2,

〈

var− 6,
var− 6,
var− 2,
var− 1,
var− 3,
var− 3,
var− 1,
var− 6,
var− 2,
var− 2,
var− 2

〉

,

〈

p− 〈1, 3〉 ,
p− 〈4〉 ,
p− 〈2, 6〉

〉

In the example we have the following two changes:

• One change between values2 and1 (since2 and1 respectively belong to the third
and the first partition),

• One change between values1 and6 (since1 and6 respectively belong to the first
and the third partition).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20000128 657

Consequently thechange partition constraint holds since its first argumentNCHANGE is
assigned to2.

Typical NCHANGE > 0
|VARIABLES| > 1
range(VARIABLES.var) > 1
|VARIABLES| > |PARTITIONS|

Symmetries • Items ofVARIABLES can bereversed.

• Items ofPARTITIONS arepermutable.

• Items ofPARTITIONS.p arepermutable.

• An occurrence of a value ofVARIABLES.var can be replaced by any other value
that also belongs to the same partition ofPARTITIONS.

Arg. properties
Functional dependency: NCHANGE determined byVARIABLES andPARTITIONS.

Usage This constraint is useful for the following problem: Assume you have to produce a set of
orders, each order belonging to a given family. In the context of theExampleslot we have
three families that respectively correspond to values1, 3, to value4 and to values2, 6. We
would like to sequence the orders in such a way that we minimise the number of times two
consecutive orders do not belong to the same family.

Algorithm [29].

See also common keyword:change (number of changesin a sequence ofvariables with respect
to abinary constraint).

used in graph description:in same partition.

Keywords characteristic of a constraint: partition.

constraint arguments:pure functional dependency.

constraint type: timetabling constraint.

final graph structure: acyclic, bipartite, no loop.

modelling: number of changes, functional dependency.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

658 NARC,PATH

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) NARC= NCHANGE

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model Parts (A) and (B) of Figure5.120respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 659

VARIABLES

1

2

3

4

5

6

7

8

9

10

11

NARC=2

3:2

4:1

7:1

8:6

(A) (B)

Figure 5.120: Initial and final graph of thechange partition constraint

660 AUTOMATON

5.57 changevectors

DESCRIPTION LINKS

Origin Derived fromchange

Constraint change vectors(NCHANGE, VECTORS, CTRS)

Types VECTOR : collection(var−dvar)
CTR : atom

Arguments NCHANGE : dvar

VECTORS : collection(vec− VECTOR)
CTRS : collection(ctr− CTR)

Restrictions |VECTOR| ≥ 1
required(VECTOR, var)
CTR ∈ [=, 6=, <,≥, >,≤]
NCHANGE ≥ 0
NCHANGE < |VECTORS|
required(VECTORS, vec)
same size(VECTORS, vec)
required(CTRS, ctr)
|CTRS| = |VECTOR|

Purpose

Let us noteVECTOR1, VECTOR2, . . . , VECTORn the vectors of theVECTORS collection, and
d the number of components of each vector (all vectors have the same size). NCHANGE is
the number of times that the following disjunctions holds wherei ∈ [1, n− 1]

(VECTORi.vec[1] CTRS[1] VECTORi+1.vec[1]) ∨
(VECTORi.vec[2] CTRS[2] VECTORi+1.vec[2]) ∨
. ∨
(VECTORi.vec[d] CTRS[d] VECTORi+1.vec[d]).

Example

3,

〈

vec− 〈4, 0〉 ,
vec− 〈4, 0〉 ,
vec− 〈4, 5〉 ,
vec− 〈3, 4〉 ,
vec− 〈3, 4〉 ,
vec− 〈3, 4〉 ,
vec− 〈4, 0〉

〉

,

〈6=, 6=〉

In the example we have the following3 changes:

• One change between〈4, 0〉 and〈4, 5〉 since4 6= 4 ∨ 0 6= 5,

• One change between〈4, 5〉 and〈3, 4〉 since4 6= 3 ∨ 5 6= 4,

• One change between〈3, 4〉 and〈4, 0〉 since3 6= 4 ∨ 4 6= 0.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20110616 661

Consequently thechange vectors constraint holds since its first argumentNCHANGE is
assigned value3.

Typical CTR ∈ [6=]
|VECTOR| > 1
NCHANGE > 0
|VECTORS| > 1

Arg. properties
Functional dependency: NCHANGE determined byVECTORS andCTRS.

See also specialisation:change (vectorreplaced byvariable), change pair (vectorreplaced by
pair of variables).

Keywords characteristic of a constraint: automaton, automaton with counters, vector.

constraint arguments:pure functional dependency.

constraint network structure: Berge-acyclic constraint network.

modelling: number of changes, functional dependency.

Typical
Typical conditions on the arguments of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

662 MAX ID,MIN NSCC,CLIQUE

5.58 circuit

DESCRIPTION LINKS GRAPH

Origin [238]

Constraint circuit(NODES)

Synonyms atour, cycle.

Argument NODES : collection(index−int, succ−dvar)

Restrictions required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose Enforce to cover a digraphG described by theNODES collection with onecircuit visiting
once all vertices ofG.

Example

〈
index− 1 succ− 2,
index− 2 succ− 3,
index− 3 succ− 4,
index− 4 succ− 1

〉

Thecircuit constraint holds since itsNODES argument depicts the following Hamiltonian
circuit visiting successively the vertices1, 2, 3, 4 and1.

Typical |NODES| > 2

Symmetry Items ofNODES arepermutable.

Remark In the originalcircuit constraint ofCHIP theindex attribute was not explicitly present.
It was implicitly defined as the position of a variable in a list.

Within the context of linear programming [4] this constraint was introduced under the
nameatour. In the same context [198, page 380] provides continuous relaxations of the
circuit constraint.

Within the KOALOG constraint system this constraint is calledcycle.

Algorithm Since allsucc variables of theNODES collection have to take distinct values one can reuse
the algorithms associated with thealldifferent constraint. A second necessary condi-
tion is to have no more than one strongly connected component. Pruning for enforcing
this condition can be done by forcing allstrong bridgesto belong to the final solution,
since otherwise the strongly connected component would be broken apart. A third nec-
essary condition is that, if the graph is bipartite then the number of vertices ofeach class

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.cosytec.com

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

20030820 663

should be identical. Consequently if the number of vertices is odd (i.e.,|NODES| is odd)
the graph should not be bipartite. Further necessary conditions (useful when the graph is
sparse) combining the fact that we have a perfect matching and one single strongly con-
nected component can be found in [360]. These conditions forget about the orientation of
the arcs of the graph and characterise new required elementary chains. A typical pattern
involving four vertices is depicted by Figure5.121where we assume that:

• There is an elementary chain betweenc andd (depicted by a dashed edge),

• b has exactly3 neighbours.

In this context the edge betweena andb is mandatory in any covering (i.e., the arc froma
to b or the arc fromb to a) since otherwise a small circuit involvingb, c andd would be
created.

a
b

c

d

Figure 5.121: Reasoning about elementary chains and degrees: if we have an elemen-
tary chain betweenc andd and if b has3 neighbours then the edge(a, b) is mandatory.

When the graph is planar [200][127] one can also use as a necessary condition discovered
by Grinberg [184] for pruning.

Finally, another approach based an the notion of1-toughness [110] was proposed in [218]
and evaluated for small graphs (i.e., graphs with up to15 vertices).

Systems circuit in Gecode, circuit in JaCoP, circuit in SICStus.

See also common keyword: alldifferent (permutation), circuit cluster (graph constraint,
onesucc), path (graph partitioning constraint, onesucc),
tour (graph partitioning constraint, Hamiltonian).

generalisation:cycle (introduce a variable for the number of circuits).

implies: alldifferent.

implies (items to collection):lex alldifferent.

related: strongly connected.

Keywords combinatorial object: permutation.

constraint type: graph constraint, graph partitioning constraint.

filtering: linear programming, planarity test, strong bridge, DFS-bottleneck.

final graph structure: circuit, onesucc.

problems: Hamiltonian.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntGraph.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/Circuit.html
http://www.jacop.eu/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

664 MAX ID,MIN NSCC,CLIQUE

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • MIN NSCC= |NODES|
• MAX ID≤ 1

Graph class ONE SUCC

Graph model The first graph property enforces to have one single strongly connected component con-
taining |NODES| vertices. The second graph property imposes to only have circuits. Since
each vertex of the final graph has only one successor we do not needto use set variables
for representing the successors of a vertex.

Parts (A) and (B) of Figure5.122respectively show the initial and final graph associated
with theExampleslot. Thecircuit constraint holds since the final graph consists of one
circuit mentioning once every vertex of the initial graph.

NODES

1

2

3

4

MIN_NSCC=4,MAX_ID=1

MIN_NSCC

1:1,2

2:2,3

3:3,4

4:4,1

(A) (B)

Figure 5.122: Initial and final graph of thecircuit constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 665

666 NSCC,NTREE,CLIQUE ,ALL VERTICES

5.59 circuit cluster

DESCRIPTION LINKS GRAPH

Origin Inspired by [234].

Constraint circuit cluster(NCIRCUIT, NODES)

Arguments NCIRCUIT : dvar

NODES : collection(index−int, cluster−int, succ−dvar)

Restrictions NCIRCUIT ≥ 1
NCIRCUIT ≤ |NODES|
required(NODES, [index, cluster, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Consider a digraphG, described by theNODES collection, such that its vertices are parti-
tioned among several clusters.NCIRCUIT is the number of circuits containing more than
one vertex used for coveringG in such a way that eachclusteris visited by exactly one
circuit of length greater than1.

Example

1,

〈

index− 1 cluster− 1 succ− 1,
index− 2 cluster− 1 succ− 4,
index− 3 cluster− 2 succ− 3,
index− 4 cluster− 2 succ− 5,
index− 5 cluster− 3 succ− 8,
index− 6 cluster− 3 succ− 6,
index− 7 cluster− 3 succ− 7,
index− 8 cluster− 4 succ− 2,
index− 9 cluster− 4 succ− 9

〉

2,

〈

index− 1 cluster− 1 succ− 1,
index− 2 cluster− 1 succ− 4,
index− 3 cluster− 2 succ− 3,
index− 4 cluster− 2 succ− 2,
index− 5 cluster− 3 succ− 5,
index− 6 cluster− 3 succ− 9,
index− 7 cluster− 3 succ− 7,
index− 8 cluster− 4 succ− 8,
index− 9 cluster− 4 succ− 6

〉

Both examples involve9 vertices1, 2, . . . , 9 such that vertices1 and2 belong to cluster
number1, vertices3 and4 belong to cluster number2, vertices5, 6 and7 belong to cluster
number3, and vertices8 and9 belong to cluster number4.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20000128 667

The first example involves only one single circuit containing more than onevertex (i.e., see
in Figure5.123the circuit2 → 4 → 5 → 8 → 2). The correspondingcircuit cluster

constraint holds since exactly one vertex of each cluster (i.e., vertex2 for cluster1, vertex
4 for cluster2, vertex5 for cluster3, vertex8 for cluster4) belongs to this circuit.

The second example contains the two circuits2 → 4 → 2 and6 → 9 → 6 that both involve
more than one vertex. The correspondingcircuit cluster constraint holds since exactly
one vertex of each cluster (i.e., see in Figure5.124vertex2 in 2 → 4 → 2 for cluster1,
vertex4 in 2 → 4 → 2 for cluster2, vertex6 in 6 → 9 → 6 for cluster3, vertex9 in
6 → 9 → 6 for cluster4) belongs to these two circuits.

Typical NCIRCUIT < |NODES|
|NODES| > 2
range(NODES.cluster) > 1

Symmetry Items ofNODES arepermutable.

Usage A related abstraction in Operations Research was introduced in [234]. It was reported as
the Generalised Travelling Salesman Problem (GTSP). Thecircuit cluster constraint
differs from the GTSP because of the two following points:

• Each node of our graph belongs to one singlecluster,

• We do not constrain the number of circuits to be equal to1: The number of circuits
should be equal to one of the values of the domain of the variableNCIRCUIT.

See also common keyword: alldifferent (permutation), circuit, cycle (graph constraint,
onesucc).

used in graph description:alldifferent, nvalues.

Keywords combinatorial object: permutation.

constraint type: graph constraint.

final graph structure: strongly connected component, onesucc.

modelling: cluster.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

668 NSCC,NTREE,CLIQUE ,ALL VERTICES

CLUSTER 3

9

8

7

6 5

4

3

2

1

C
LU

S
T

E
R

 2

C
LU

S
T

E
R

 4

CLUSTER 1

Figure 5.123: Four clusters and a covering with one circuit corresponding to the first
example

C
LU

S
T

E
R

 4

1

2

3

4

56

7

8

9

CLUSTER 1

C
LU

S
T

E
R

 2

CLUSTER 3

Figure 5.124: The same clusters as in the first example and a covering with two circuits
corresponding to the second example

20000128 669

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • nodes1.succ 6= nodes1.index
• nodes1.succ = nodes2.index

Graph property(ies) • NTREE= 0
• NSCC= NCIRCUIT

Graph class ONE SUCC

Sets ALL VERTICES 7→
[

variables− col

(

VARIABLES−collection(var−dvar),
[item(var− NODES.cluster)]

)]

Constraint(s) on sets • alldifferent(variables)
• nvalues(variables,=, size(NODES, cluster))

Graph model In order to express the binary constraint linking two vertices one has to make explicit the
identifier of each vertex as well as theclusterto which belongs each vertex. This is why the
circuit cluster constraint considers objects that have the following three attributes:

• The attributeindex that is the identifier of a vertex.

• The attributecluster that is theclusterto which belongs a vertex.

• The attributesucc that is the unique successor of a vertex.

The partitioning of the clusters by different circuits is expressed in the following way:

• First note the conditionnodes1.succ 6= nodes1.index prevents the final graph
of containing any loop. Moreover the conditionnodes1.succ = nodes2.index
imposes no more than one successor for each vertex of the final graph.

• The graph propertyNTREE= 0 enforces that all vertices of the final graph belong
to one circuit.

• The graph propertyNSCC= NCIRCUIT express the fact that the number of strongly
connected components of the final graph is equal toNCIRCUIT.

• The constraintalldifferent(variables) on the setALL VERTICES (i.e., all the
vertices of the final graph) states that the cluster attributes of the vertices of the final
graph should be pairwise distinct. This concretely means that noclustershould be
visited more than once.

• The constraint nvalues(variables,=, size(NODES, cluster)) on the set
ALL VERTICES conveys the fact that the number of distinct values of the cluster
attribute of the vertices of the final graph should be equal to the total number of
clusters. This implies that eachclusteris visited at least one time.

Parts (A) and (B) of Figure5.125respectively show the initial and final graph associated
with the second example of theExample slot. Since we use theNSCC graph property,
we show the two strongly connected components of the final graph. Theyrespectively
correspond to the two circuits2 → 4 → 2 and6 → 9 → 6. Since all the vertices belongs
to a circuit we have thatNTREE = 0.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

670 NSCC,NTREE,CLIQUE ,ALL VERTICES

NODES

1

2

3

4

5

6

7

8

9 NTREE=0,NSCC=2

SCC#1 SCC#2

2:2,1,4

4:4,2,2

6:6,3,9

9:9,4,6

(A) (B)

Figure 5.125: Initial and final graph of thecircuit cluster constraint

20000128 671

672 NARC,CIRCUIT ; AUTOMATON

5.60 circular change

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromchange.

Constraint circular change(NCHANGE, VARIABLES, CTR)

Arguments NCHANGE : dvar

VARIABLES : collection(var−dvar)
CTR : atom

Restrictions NCHANGE ≥ 0
NCHANGE ≤ |VARIABLES|
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose
NCHANGE is the number of times thatCTR holds on consecutive variables of the collec-
tion VARIABLES. The last and the first variables of the collectionVARIABLES are also
considered to be consecutive.

Example (4, 〈4, 4, 3, 4, 1〉 , 6=)

In the example the changes within theVARIABLES = 〈4, 4, 3, 4, 1〉 collection are
located between values4 and3, 3 and4, 4 and1, and1 and4 (i.e., since the third argument
CTR of the circular change constraint is set to6=, we count one change for each
disequality constraint between two consecutive variables that holds). Consequently, the
correspondingcircular change constraint holds since its first argumentNCHANGE is
fixed to4.

Typical NCHANGE > 0
|VARIABLES| > 1
range(VARIABLES.var) > 1
CTR ∈ [6=]

Symmetries • Items ofVARIABLES can beshifted.

• One and the same constant can beaddedto the var attribute of all items of
VARIABLES.

Arg. properties
Functional dependency: NCHANGE determined byVARIABLES andCTR.

See also common keyword:change (number of changes).

Keywords characteristic of a constraint: cyclic, automaton, automaton with counters.

constraint arguments:pure functional dependency.

constraint network structure: circular sliding cyclic(1) constraint network(2).

constraint type: timetabling constraint.

modelling: number of changes, functional dependency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 673

Arc input(s) VARIABLES

Arc generator CIRCUIT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) NARC= NCHANGE

Graph model Since we are also interested in the constraint that links the last and the first variable we use
the arc generatorCIRCUIT to produce the arcs of the initial graph.

Parts (A) and (B) of Figure5.126respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

VARIABLES

1

2

3

4

5

NARC=4

2:4

3:3

4:4

5:1

1:4

(A) (B)

Figure 5.126: Initial and final graph of thecircular change constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

674 NARC,CIRCUIT ; AUTOMATON

Automaton Figure 5.127 depicts the automaton associated with thecircular change constraint.
To each pair of consecutive variables(VARi, VAR(i mod |VARIABLES|)+1) of the collection
VARIABLES corresponds a0-1 signature variableSi. The following signature constraint
links VARi, VAR(i mod |VARIABLES|)+1 andSi: VARi CTR VAR(i mod |VARIABLES|)+1 ⇔ Si.

NCHANGE=C

{C=0}

i+1iVAR not CTR VARi+1VAR CTR VARi
{C=C+1}

s:

Figure 5.127: Automaton of thecircular change constraint

n

C =NCHANGE

1
VAR

nS

0Q =s

0C =0 1C

1Q

1
VAR

1S

2
VAR

2S

n
VAR

n−1S

n−1
VAR

3
VAR

3S

2Q

2C

n−1Q

n−1C

Q =s

n

Figure 5.128: Hypergraph of the reformulation corresponding to the automaton of the
circular change constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20030820 675

676 AUTOMATON

5.61 clauseand

DESCRIPTION LINKS AUTOMATON

Origin Logic

Constraint clause and(POSVARS, NEGVARS, VAR)

Synonym clause.

Arguments POSVARS : collection(var−dvar)
NEGVARS : collection(var−dvar)
VAR : dvar

Restrictions |POSVARS|+ |NEGVARS| > 0
required(POSVARS, var)
POSVARS.var ≥ 0
POSVARS.var ≤ 1
required(NEGVARS, var)
NEGVARS.var ≥ 0
NEGVARS.var ≤ 1
VAR ≥ 0
VAR ≤ 1

Purpose
Given a first collection of0-1 variablesPOSVARS = U1, U2, . . . , Up, a second collection
of 0-1 variablesNEGVARS = V1, V2, . . . , Vn, and a variableVAR, enforceVAR = (U1 ∧
U2 ∧ . . . ∧ Up) ∧ (¬V1 ∧ ¬V2 ∧ . . . ∧ ¬Vn).

Example (〈1, 0〉 , 〈0〉 , 0)

Typical |POSVARS|+ |NEGVARS| > 1

Symmetries • Items ofPOSVARS arepermutable.

• Items ofNEGVARS arepermutable.

Arg. properties
• Extensiblewrt. POSVARS whenVAR = 0.

• Extensiblewrt. NEGVARS whenVAR = 0.

Remark Theclause or constraint is calledclause in Gecode(http://www.gecode.org/).

Systems reifiedAnd in Choco, clause in Choco, clause in Gecode.

See also common keyword:and, clause or (Boolean constraint).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.gecode.org/

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelBool.html
http://www.gecode.org/

See also
Related constraints grouped by semantics links.

20090416 677

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: Boolean constraint.

filtering: arc-consistency.

Keywords
Related keywords grouped by meta-keywords.

678 AUTOMATON

Automaton Figure5.129depicts the automaton associated with theclause and constraint:

• To the argumentVAR of the clause and constraint corresponds the first signature
variable.

• To each variable of the argumentPOSVARS corresponds a signature variable.

• Finally, to each variableVARi of the argumentNEGVARS corresponds a signature vari-
able that is the negation ofVARi.

VAR=0

i

i
NVAR =0

i
NVAR =0

i
NVAR =0

NVAR =1
i

PVAR =1
i

PVAR =0
i

PVAR =1
i

i
PVAR =0

PVAR =1
i

s

i j

k

VAR=1

NVAR =1

Figure 5.129: Automaton of theclause and constraint (PVARi andNVARi respectively
denote variables ofPOSVARS andNEGVARS)

VAR

Q =s 1Q

n
VAR

1
VAR

k
jQ =n+10

Figure 5.130: Hypergraph of the reformulation corresponding to the automaton of the
clause and constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20090416 679

680 AUTOMATON

5.62 clauseor

DESCRIPTION LINKS AUTOMATON

Origin Logic

Constraint clause or(POSVARS, NEGVARS, VAR)

Synonym clause.

Arguments POSVARS : collection(var−dvar)
NEGVARS : collection(var−dvar)
VAR : dvar

Restrictions |POSVARS|+ |NEGVARS| > 0
required(POSVARS, var)
POSVARS.var ≥ 0
POSVARS.var ≤ 1
required(NEGVARS, var)
NEGVARS.var ≥ 0
NEGVARS.var ≤ 1
VAR ≥ 0
VAR ≤ 1

Purpose
Given a first collection of0-1 variablesPOSVARS = U1, U2, . . . , Up, a second collection
of 0-1 variablesNEGVARS = V1, V2, . . . , Vn, and a variableVAR, enforceVAR = (U1 ∨
U2 ∨ . . . ∨ Up) ∨ (¬V1 ∨ ¬V2 ∨ . . . ∨ ¬Vn).

Example (〈0, 0〉 , 〈0〉 , 1)

Typical |POSVARS|+ |NEGVARS| > 1

Symmetries • Items ofPOSVARS arepermutable.

• Items ofNEGVARS arepermutable.

Arg. properties
• Extensiblewrt. POSVARS whenVAR = 1.

• Extensiblewrt. NEGVARS whenVAR = 1.

Remark Theclause or constraint is calledclause in Gecode(http://www.gecode.org/).

Systems reifiedOr in Choco, clause in Choco, clause in Gecode.

See also common keyword:clause and, or (Boolean constraint).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.gecode.org/

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelBool.html
http://www.gecode.org/

See also
Related constraints grouped by semantics links.

20090415 681

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: Boolean constraint.

filtering: arc-consistency.

modelling: disjunction.

Keywords
Related keywords grouped by meta-keywords.

682 AUTOMATON

Automaton Figure5.131depicts the automaton associated with theclause or constraint:

• To the argumentVAR of the clause or constraint corresponds the first signature
variable.

• To each variable of the argumentPOSVARS corresponds a signature variable.

• Finally, to each variableVARi of the argumentNEGVARS corresponds a signature vari-
able that is the negation ofVARi.

s

PVAR =0

NVAR =1
i

i
NVAR =1

PVAR =0
i

i
NVAR =0

PVAR =1
i

i
PVAR =1

NVAR =0
i

i
PVAR =0

NVAR =1
i j i

VAR=0VAR=1

k

i

Figure 5.131: Automaton of theclause or constraint (PVARi andNVARi respectively
denote variables ofPOSVARS andNEGVARS)

VAR

Q =s 1Q

n
VAR

1
VAR

k

i
Q =n+10

Figure 5.132: Hypergraph of the reformulation corresponding to the automaton of the
clause or constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20090415 683

684 NARC,NVERTEX,CLIQUE(6=)

5.63 clique

DESCRIPTION LINKS GRAPH

Origin [146]

Constraint clique(SIZE CLIQUE, NODES)

Arguments SIZE CLIQUE : dvar

NODES : collection(index−int, succ−svar)

Restrictions SIZE CLIQUE ≥ 0
SIZE CLIQUE ≤ |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Consider a digraphG described by theNODES collection: to theith item of theNODES
collection corresponds theith vertex ofG; To each valuej of the ith succ variable
corresponds an arc from theith vertex to thejth vertex. Select a subsetS of the vertices
of G that forms a clique of sizeSIZE CLIQUE (i.e., there is an arc between each pair of
distinct vertices ofS).

Example

3,

〈

index− 1 succ− ∅,
index− 2 succ− {3, 5},
index− 3 succ− {2, 5},
index− 4 succ− ∅,
index− 5 succ− {2, 3}

〉

The clique constraint holds since theNODES collection depicts a clique involving
3 vertices (namely vertices2, 3 and5) and since its first argumentSIZE CLIQUE is set to
the number of vertices of this clique.

Typical SIZE CLIQUE ≥ 2
SIZE CLIQUE < |NODES|
|NODES| > 2

Symmetry Items ofNODES arepermutable.

Arg. properties
Functional dependency: SIZE CLIQUE determined byNODES.

Algorithm [146], [327, 328]. The algorithm for finding maximum cliques in an undirected graph
of C. Bron and J. Kerbosch [83] was adapted by J.-C. Régin to the context of constraint
programming in his papers.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

20030820 685

See also common keyword: link set to booleans (constraint involving set variables, can be
used for channelling).

used in graph description:in set.

Keywords constraint arguments:constraint involving set variables.

constraint type: graph constraint.

final graph structure: symmetric.

modelling: functional dependency.

problems: maximum clique.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

686 NARC,NVERTEX,CLIQUE(6=)

Arc input(s) NODES

Arc generator CLIQUE (6=) 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) in set(nodes2.index, nodes1.succ)

Graph property(ies) • NARC= SIZE CLIQUE ∗ SIZE CLIQUE− SIZE CLIQUE

• NVERTEX= SIZE CLIQUE

Graph class SYMMETRIC

Graph model Note the use ofset variablesfor modelling the fact that the vertices of the final graph have
more than one successor: The successor variable associated with each vertex contains the
successors of the corresponding vertex.

Part (A) of Figure5.133shows the initial graph from which we start. It is derived from
the set associated with each vertex. Each set describes the potential values of thesucc
attribute of a given vertex. Part (B) of Figure5.133gives the final graph associated with
theExampleslot. Since we both use theNARC andNVERTEX graph properties, the
arcs and the vertices of the final graph are stressed in bold. The final graph corresponds to
a clique containing three vertices.

NODES

1:1,{2,4}

2:2,{1,3,5}

4:4,{1,5}3:3,{2,5}

5:5,{2,3,4}

NARC=6,NVERTEX=3

2:2,{3,5}

3:3,{2,5}

5:5,{2,3}

(A) (B)

Figure 5.133: Initial and final graph of theclique set constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 687

688 PREDEFINED

5.64 coloredmatrix

DESCRIPTION LINKS

Origin KOALOG

Constraint colored matrix(C, L, K, MATRIX, CPROJ, LPROJ)

Synonyms coloured matrix, cardinality matrix, card matrix.

Arguments C : int

L : int

K : int

MATRIX : collection(column−int, line−int, var−dvar)
CPROJ : collection(column−int, val−int, nocc−dvar)
LPROJ : collection(line−int, val−int, nocc−dvar)

Restrictions C ≥ 0
L ≥ 0
K ≥ 0
required(MATRIX, [column, line, var])
increasing seq(MATRIX, [column, line])
|MATRIX| = C ∗ L+ C+ L+ 1
MATRIX.column ≥ 0
MATRIX.column ≤ C

MATRIX.line ≥ 0
MATRIX.line ≤ L

MATRIX.var ≥ 0
MATRIX.var ≤ K

required(CPROJ, [column, val, nocc])
increasing seq(CPROJ, [column, val])
|CPROJ| = C ∗ K+ C+ K+ 1
CPROJ.column ≥ 0
CPROJ.column ≤ C

CPROJ.val ≥ 0
CPROJ.val ≤ K

required(LPROJ, [line, val, nocc])
increasing seq(LPROJ, [line, val])
|LPROJ| = L ∗ K+ L+ K+ 1
LPROJ.line ≥ 0
LPROJ.line ≤ L

LPROJ.val ≥ 0
LPROJ.val ≤ K

Purpose
Given a matrix of domain variables, imposes aglobal cardinality constraint involv-
ing cardinality variables on each column and each row of the matrix.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

20031017 689

Example

1, 2, 4,

〈

column− 0 line− 0 var− 3,
column− 0 line− 1 var− 1,
column− 0 line− 2 var− 3,
column− 1 line− 0 var− 4,
column− 1 line− 1 var− 4,
column− 1 line− 2 var− 3

〉

,

〈

column− 0 val− 0 nocc− 0,
column− 0 val− 1 nocc− 1,
column− 0 val− 2 nocc− 0,
column− 0 val− 3 nocc− 2,
column− 0 val− 4 nocc− 0,
column− 1 val− 0 nocc− 0,
column− 1 val− 1 nocc− 0,
column− 1 val− 2 nocc− 0,
column− 1 val− 3 nocc− 1,
column− 1 val− 4 nocc− 2

〉

,

〈

line− 0 val− 0 nocc− 0,
line− 0 val− 1 nocc− 0,
line− 0 val− 2 nocc− 0,
line− 0 val− 3 nocc− 1,
line− 0 val− 4 nocc− 1,
line− 1 val− 0 nocc− 0,
line− 1 val− 1 nocc− 1,
line− 1 val− 2 nocc− 0,
line− 1 val− 3 nocc− 0,
line− 1 val− 4 nocc− 1,
line− 2 val− 0 nocc− 0,
line− 2 val− 1 nocc− 0,
line− 2 val− 2 nocc− 0,
line− 2 val− 3 nocc− 2,
line− 2 val− 4 nocc− 0

〉

Typical C ≥ 1
L ≥ 1
K ≥ 1
range(MATRIX.var) > 1

Arg. properties
• Functional dependency: CPROJ.nocc determined byC, L andK.

• Functional dependency: LPROJ.nocc determined byC, L andK.

Remark Within [330] thecolored matrix constraint is calledcardinality matrix.

Algorithm The filtering algorithm described in [330] is based on network flow and does not achieve
arc-consistency in general. However, when the number of values is restricted to two, the al-
gorithm [330] achievesarc-consistencyon the variables of the matrix. This corresponds in
fact to a generalisation of the problem called ”Matrices composed of 0’s and 1’s” presented
by Ford and Fulkerson [209].

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

690 PREDEFINED

See also common keyword:k alldifferent (system of constraints).

part of system of constraints:global cardinality.

related to a common problem:same (matrix reconstruction problem).

Keywords constraint arguments:pure functional dependency.

constraint type: system of constraints, predefined constraint, timetabling constraint.

modelling: functional dependency, matrix, matrix model.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20031017 691

692 NARC,SELF ;PRODUCT , SUCC

5.65 colouredcumulative

DESCRIPTION LINKS GRAPH

Origin Derived fromcumulative andnvalues.

Constraint coloured cumulative(TASKS, LIMIT)

Synonym colored cumulative.

Arguments TASKS : collection

origin−dvar,
duration−dvar,
end−dvar,
colour−dvar

LIMIT : int

Restrictions require at least(2, TASKS, [origin, duration, end])
required(TASKS, colour)
TASKS.duration ≥ 0
TASKS.origin ≤ TASKS.end
LIMIT ≥ 0

Purpose

Consider the setT of tasks described by theTASKS collection. The
coloured cumulative constraint enforces that, at each point in time, the number of
distinct colours of the set of tasks that overlap that point, does not exceed a given limit.
A task overlaps a pointi if and only if (1) its origin is less than or equal toi, and
(2) its end is strictly greater thani. For each task ofT it also imposes the constraint
origin+ duration = end.

Example

〈

origin− 1 duration− 2 end− 3 colour− 1,
origin− 2 duration− 9 end− 11 colour− 2,
origin− 3 duration− 10 end− 13 colour− 3,
origin− 6 duration− 6 end− 12 colour− 2,
origin− 7 duration− 2 end− 9 colour− 3

〉

, 2

Figure 5.134 shows the solution associated with the example. Each rectangle of the
figure corresponds to a task of thecoloured cumulative constraint. Tasks that have
their colour attribute set to1, 2 and3 are respectively coloured in yellow, blue and pink.
Thecoloured cumulative constraint holds since at each point in time we do not have
more thanLIMIT = 2 distinct colours.

Typical |TASKS| > 1
range(TASKS.origin) > 1
range(TASKS.duration) > 1
range(TASKS.end) > 1
range(TASKS.colour) > 1
LIMIT <nval(TASKS.colour)

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20000128 693

Symmetries • Items ofTASKS arepermutable.

• One and the same constant can beaddedto theorigin andend attributes of all
items ofTASKS.

• All occurrences of two distinct values ofTASKS.colour can beswapped; all oc-
currences of a value ofTASKS.colour can berenamedto any unused value.

• LIMIT can beincreased.

Arg. properties
Contractiblewrt. TASKS.

Usage Useful for scheduling problems where a machine can only proceed in parallel a maxi-
mum number of tasks of distinct type. This condition cannot be modelled bythe classical
cumulative constraint.

Reformulation The coloured cumulative constraint can be expressed in term of a set of reified con-
straints and of|TASKS| nvalue constraints:

1. For each pair of tasksTASKS[i], TASKS[j] (i, j ∈ [1, |TASKS|]) of the TASKS col-
lection we create a variableCij which is set to the colour of taskTASKS[j] if task
TASKS[j] overlaps the origin attribute of taskTASKS[i], and to the colour of task
TASKS[i] otherwise:

• If i = j:

– Cij = TASKS[i].colour.

• If i 6= j:

– Cij = TASKS[i].colour ∨ Cij = TASKS[j].colour.

– ((TASKS[j].origin ≤ TASKS[i].origin ∧
TASKS[j].end > TASKS[i].origin) ∧ (Cij = TASKS[j].colour)) ∨

((TASKS[j].origin > TASKS[i].origin ∨
TASKS[j].end ≤ TASKS[i].origin) ∧ (Cij = TASKS[i].colour))

2. For each taskTASKS[i] (i ∈ [1, |TASKS|]) we create a variableNi which gives the
number of distinct colours associated with the tasks that overlap the origin of task
TASKS[i] (TASKS[i] overlaps its own origin) and we imposeNi to not exceed the
maximum number of distinct coloursLIMIT allowed at each instant:

• Ni ≥ 1 ∧Ni ≤ LIMIT.

• nvalue(Ni, 〈Ci1, Ci2, . . . , Ci|TASKS|〉).

6 7 8 9 10 11 12 time

< 3

4 5

5

3

2

1

4

1 2 3

Figure 5.134: A coloured cumulative solution with at most two distinct colours in
parallel

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

694 NARC,SELF ;PRODUCT , SUCC

See also assignment dimension added:coloured cumulatives.

common keyword:cumulative, track (resource constraint).

implied by: cumulative.

related: nvalue.

specialisation:disjoint tasks (a colour is assigned to each collection of tasks of con-
straintdisjoint tasks and a limit of one single colour is enforced).

used in graph description:nvalues.

Keywords characteristic of a constraint: coloured.

constraint type: scheduling constraint, resource constraint, temporal constraint.

filtering: compulsory part.

modelling: number of distinct values, zero-duration task.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20000128 695

Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin+ tasks.duration = tasks.end

Graph property(ies) NARC= |TASKS|

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.duration > 0
• tasks2.origin ≤ tasks1.origin
• tasks1.origin < tasks2.end

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Sets SUCC 7→

source,

variables− col

(

VARIABLES−collection(var−dvar),
[item(var− TASKS.colour)]

)

Constraint(s) on sets nvalues(variables,≤, LIMIT)

Graph model Same ascumulative, except that we use another constraint for computing the resource
consumption at each time point.

Parts (A) and (B) of Figure5.135 respectively show the initial and final graph associ-
ated with the second graph constraint of theExample slot. On the one hand, each source
vertex of the final graph can be interpreted as a time point. On the other hand the suc-
cessors of a source vertex correspond to those tasks that overlap that time point. The
coloured cumulative constraint holds since for each successor setS of the final graph
the number of distinct colours of the tasks inS does not exceed theLIMIT 2.

Signature SinceTASKS is the maximum number of vertices of the final graph of the first graph con-
straint we can rewriteNARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify
NARC toNARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

696 NARC,SELF ;PRODUCT , SUCC

(A)

TASKS

TASKS

1

12 345

2345

(B)

TASKS

TASKS

1:1,2,3,1

1:1,2,3,1

2:2,9,11,2

2:2,9,11,2

3:3,10,13,3

3:3,10,13,3

4:6,6,12,2

4:6,6,12,2

5:7,2,9,3

5:7,2,9,3

Figure 5.135: Initial and final graph of thecoloured cumulative constraint

20000128 697

698 NARC,SELF ;PRODUCT , ∀, SUCC

5.66 colouredcumulatives

DESCRIPTION LINKS GRAPH

Origin Derived fromcumulatives andnvalues.

Constraint coloured cumulatives(TASKS, MACHINES)

Synonym colored cumulatives.

Arguments TASKS : collection

machine−dvar,
origin−dvar,
duration−dvar,
end−dvar,
colour−dvar

MACHINES : collection(id−int, capacity−int)

Restrictions required(TASKS, [machine, colour])
require at least(2, TASKS, [origin, duration, end])
TASKS.duration ≥ 0
TASKS.origin ≤ TASKS.end
required(MACHINES, [id, capacity])
distinct(MACHINES, id)
MACHINES.capacity ≥ 0

Purpose

Consider a set T of tasks described by theTASKS collection. The
coloured cumulatives constraint enforces for each machinem of the MACHINES

collection the following condition: at each point in timep, the numbers of distinct
colours of the set of tasks that both overlap that pointp and are assigned to machine
m does not exceed the capacity of machinem. A task overlaps a pointi if and only if
(1) its origin is less than or equal toi, and (2) its end is strictly greater thani. It also
imposes for each task ofT the constraintorigin+ duration = end.

Example

〈

machine− 1 origin− 6 duration− 6 end− 12 colour− 1,
machine− 1 origin− 2 duration− 9 end− 11 colour− 2,
machine− 2 origin− 7 duration− 3 end− 10 colour− 2,
machine− 1 origin− 1 duration− 2 end− 3 colour− 1,
machine− 2 origin− 4 duration− 5 end− 9 colour− 2,
machine− 1 origin− 3 duration− 10 end− 13 colour− 1

〉

,

〈id− 1 capacity− 2, id− 2 capacity− 1〉

Figure 5.136 shows the solution associated with the example. Each rectangle of the
figure corresponds to a task of thecoloured cumulatives constraint. Tasks that have
their colour attribute set to1 and 2 are respectively coloured in blue and pink. The
coloured cumulatives constraint holds since for machine 1 we have at most two
distinct colours in parallel (which is the maximum capacity for machine 1), while for
machine 2 we have no more than one single colour in parallel (which is actually the
maximum capacity for machine 2).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20000128 699

Typical |TASKS| > 1
range(TASKS.machine) > 1
range(TASKS.origin) > 1
range(TASKS.duration) > 1
range(TASKS.end) > 1
range(TASKS.colour) > 1
TASKS.duration > 0
|MACHINES| > 1
MACHINES.capacity > 0
MACHINES.capacity <nval(TASKS.colour)
|TASKS| > |MACHINES|

Symmetries • Items ofTASKS arepermutable.

• Items ofMACHINES arepermutable.

• MACHINES.capacity can beincreased.

• All occurrences of two distinct values inTASKS.machine or MACHINES.id can be
swapped; all occurrences of a value inTASKS.machine or MACHINES.id can be
renamedto any unused value.

Arg. properties
Contractiblewrt. TASKS.

Usage Useful for scheduling problems where several machines are available and where you have
to assign each task to a specific machine. In addition each machine can onlyproceed in
parallel a maximum number of tasks of distinct types.

Reformulation Thecoloured cumulatives constraint can be expressed in term of a set of reified con-
straints and of|TASKS| nvalue constraints:

1. For each pair of tasksTASKS[i], TASKS[j] (i, j ∈ [1, |TASKS|]) of theTASKS collec-
tion we create a variableCij which is set to the colour of taskTASKS[j] if both tasks
are assigned to the same machine and if taskTASKS[j] overlaps the origin attribute
of taskTASKS[i], and to the colour of taskTASKS[i] otherwise:

• If i = j:

– Cij = TASKS[i].colour.

< 3

7 8 9 10 11 12 time

m
ac

hi
ne

 1
m

ac
hi

ne
 2

< 2

6

3

2 3 4 5

5

6

2

4

1

1

Figure 5.136: Assignment of the tasks on the two machines

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

700 NARC,SELF ;PRODUCT , ∀, SUCC

• If i 6= j:

– Cij = TASKS[i].colour ∨ Cij = TASKS[j].colour.

– ((TASKS[j].machine = TASKS[i].machine ∧
TASKS[j].origin ≤ TASKS[i].origin ∧
TASKS[j].end > TASKS[i].origin) ∧ (Cij = TASKS[j].colour)) ∨

((TASKS[j].machine 6= TASKS[i].machine ∨
TASKS[j].origin > TASKS[i].origin ∨
TASKS[j].end ≤ TASKS[i].origin) ∧ (Cij = TASKS[i].colour))

2. For each taskTASKS[i] (i ∈ [1, |TASKS|]) we create a variableNi which gives the
number of distinct colours associated with the tasks that both are assignedto the same
machine as taskTASKS[i] and overlap the origin of taskTASKS[i] (TASKS[i] overlaps
its own origin) and we imposeNi to not exceed the maximum number of distinct
coloursLIMIT allowed at each instant:

• Ni ≥ 1 ∧Ni ≤ LIMIT.

• nvalue(Ni, 〈Ci1, Ci2, . . . , Ci|TASKS|〉).

See also assignment dimension removed:coloured cumulative (machine attribute removed),
cumulative (machine attribute removed and number of distinctcolours replaced by
sum oftask heights).

common keyword:cumulative, cumulatives (resource constraint).

related: nvalue.

used in graph description:nvalues.

Keywords characteristic of a constraint: coloured.

constraint type: scheduling constraint, resource constraint, temporal constraint.

filtering: compulsory part.

modelling: number of distinct values, assignment dimension, zero-duration task.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20000128 701

Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin+ tasks.duration = tasks.end

Graph property(ies) NARC= |TASKS|

For all items ofMACHINES:

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.machine = MACHINES.id
• tasks1.machine = tasks2.machine
• tasks1.duration > 0
• tasks2.origin ≤ tasks1.origin
• tasks1.origin < tasks2.end

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Sets SUCC 7→

source,

variables− col

(

VARIABLES−collection(var−dvar),
[item(var− TASKS.colour)]

)

Constraint(s) on sets nvalues(variables,≤, MACHINES.capacity)

Graph model Parts (A) and (B) of Figure5.137respectively shows the initial and final graph associated
with machines 1 and 2 involved in theExample slot. On the one hand, each source vertex
of the final graph can be interpreted as a time pointp on a specific machinem. On the
other hand the successors of a source vertex correspond to those tasks that both overlap
that time pointp and are assigned to machinem. Thecoloured cumulatives constraint
holds since for each successor setS of the final graph the number of distinct colours in
S does not exceed the capacity of the machine corresponding to the time point associated
with S.

Signature SinceTASKS is the maximum number of vertices of the final graph of the first graph con-
straint we can rewriteNARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify
NARC toNARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

702 NARC,SELF ;PRODUCT , ∀, SUCC

(A)

TASKS

TASKS

1

1234 56

2 3456

(B)

MACHINES:1 MACHINES:2

1:1,6,6,12,1

1:1,6,6,12,1 6:1,3,10,13,1

2:1,2,9,11,2

2:1,2,9,11,2 4:1,1,2,3,1

4:1,1,2,3,16:1,3,10,13,1 3:2,7,3,10,2

3:2,7,3,10,25:2,4,5,9,2

5:2,4,5,9,2

Figure 5.137: Initial and final graph of thecoloured cumulatives constraint

20000128 703

704 NSINK,NSOURCE,PRODUCT

5.67 common

DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint common(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2)

Arguments NCOMMON1 : dvar

NCOMMON2 : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions NCOMMON1 ≥ 0
NCOMMON1 ≤ |VARIABLES1|
NCOMMON2 ≥ 0
NCOMMON2 ≤ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose

NCOMMON1 is the number of variables of the collection of variablesVARIABLES1 taking
a value inVARIABLES2.
NCOMMON2 is the number of variables of the collection of variablesVARIABLES2 taking
a value inVARIABLES1.

Example

3, 4, 〈1, 9, 1, 5〉 ,

〈

var− 2,
var− 1,
var− 9,
var− 9,
var− 6,
var− 9

〉

Thecommon constraint holds since:

• Its first argumentNCOMMON1 = 3 corresponds to the number of values of the collec-
tion 〈1, 9, 1, 5〉 that occur within〈2, 1, 9, 9, 6, 9〉.

• Its second argumentNCOMMON2 = 4 corresponds to the number of values of the
collection〈2, 1, 9, 9, 6, 9〉 that occur within〈1, 9, 1, 5〉.

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
|VARIABLES2| > 1
range(VARIABLES2.var) > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20000128 705

Symmetries • Arguments are permutable w.r.t. permutation (NCOMMON1, NCOMMON2)
(VARIABLES1, VARIABLES2).

• Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• All occurrences of two distinct values inVARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value inVARIABLES1.var or
VARIABLES2.var can berenamedto any unused value.

Arg. properties
• Functional dependency: NCOMMON1 determined by VARIABLES1 and

VARIABLES2.

• Functional dependency: NCOMMON2 determined by VARIABLES1 and
VARIABLES2.

Remark It was shown in [66] that, finding out whether thecommon constraint has a solution or not
is NP-hard. This was achieved by reduction from3-SAT.

See also common keyword: alldifferent on intersection, nvalue on intersection,
same intersection (constraint on the intersection).

generalisation: common interval (variable replaced by variable/constant),
common modulo (variable replaced by variable mod constant),
common partition (variable replaced byvariable ∈ partition).

related: among var, roots.

root concept:among.

specialisation:uses (NCOMMON2=|VARIABLES2|).

Keywords complexity: 3-SAT.

constraint arguments: constraint between two collections of variables,
pure functional dependency.

constraint type: constraint on the intersection.

final graph structure: acyclic, bipartite, no loop.

modelling: functional dependency.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

706 NSINK,NSOURCE,PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • NSOURCE= NCOMMON1

• NSINK= NCOMMON2

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model Parts (A) and (B) of Figure5.138respectively show the initial and final graph associated
with the Example slot. Since we use theNSOURCE andNSINK graph properties,
the source and sink vertices of the final graph are stressed with a doublecircle. Since
the final graph has only3 sources and4 sinks the variablesNCOMMON1 andNCOMMON2 are
respectively equal to3 and4. Note that all the vertices corresponding to the variables that
take values5, 2 or 6 were removed from the final graph since there is no arc for which the
associated equality constraint holds.

VARIABLES1

VARIABLES2

1

1234 56

234

NSOURCE=3,NSINK=4

1:1

2:1

2:9

3:9 4:9 6:9

3:1

(A) (B)

Figure 5.138: Initial and final graph of thecommon constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 707

708 NSINK,NSOURCE,PRODUCT

5.68 commoninterval

DESCRIPTION LINKS GRAPH

Origin Derived fromcommon.

Constraint common interval

NCOMMON1,
NCOMMON2,
VARIABLES1,
VARIABLES2,
SIZE INTERVAL

Arguments NCOMMON1 : dvar

NCOMMON2 : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
SIZE INTERVAL : int

Restrictions NCOMMON1 ≥ 0
NCOMMON1 ≤ |VARIABLES1|
NCOMMON2 ≥ 0
NCOMMON2 ≤ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
SIZE INTERVAL > 0

Purpose

NCOMMON1 is the number of variables of the collection of variablesVARIABLES1
taking a value in one of the intervals derived from the values assigned to the
variables of the collectionVARIABLES2: To each valuev assigned to a vari-
able of the collectionVARIABLES2 we associate the interval[SIZE INTERVAL ·
⌊v/SIZE INTERVAL⌋, SIZE INTERVAL · ⌊v/SIZE INTERVAL⌋+ SIZE INTERVAL− 1].
NCOMMON2 is the number of variables of the collection of variablesVARIABLES2
taking a value in one of the intervals derived from the values assigned to the
variables of the collectionVARIABLES1: To each valuev assigned to a vari-
able of the collectionVARIABLES1 we associate the interval[SIZE INTERVAL ·
⌊v/SIZE INTERVAL⌋, SIZE INTERVAL · ⌊v/SIZE INTERVAL⌋+ SIZE INTERVAL− 1].

Example

3, 2, 〈8, 6, 6, 0〉 ,

〈

var− 7,
var− 3,
var− 3,
var− 3,
var− 3,
var− 7

〉

, 3

In the example, the last argumentSIZE INTERVAL = 3 defines the following fam-
ily of intervals [3 · k, 3 · k + 2], wherek is an integer. As a consequence the items of

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20030820 709

collection 〈8, 6, 6, 0〉 respectively correspond to intervals[6, 8], [6, 8], [6, 8] and [0, 2].
Similarly the items of collection〈7, 3, 3, 3, 3, 7〉 respectively correspond to intervals[6, 8],
[3, 5], [3, 5], [3, 5], [3, 5], [6, 8]. Thecommon interval constraint holds since:

• Its first argumentNCOMMON1 = 3 is the number of intervals associated with the
items of collection〈8, 6, 6, 0〉 that also correspond to intervals associated with
〈7, 3, 3, 3, 3, 7〉.

• Its second argumentNCOMMON2 = 2 is the number of intervals associated with the
items of collection〈7, 3, 3, 3, 3, 7〉 that also correspond to intervals associated with
〈8, 6, 6, 0〉.

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
|VARIABLES2| > 1
range(VARIABLES2.var) > 1
SIZE INTERVAL > 1
SIZE INTERVAL <range(VARIABLES1.var)
SIZE INTERVAL <range(VARIABLES2.var)

Symmetries • Arguments are permutable w.r.t. permutation (NCOMMON1, NCOMMON2)
(VARIABLES1, VARIABLES2) (SIZE INTERVAL).

• Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• An occurrence of a value ofVARIABLES1.var that belongs to thek-th interval, of
sizeSIZE INTERVAL, can bereplacedby any other value of the same interval.

• An occurrence of a value ofVARIABLES2.var that belongs to thek-th interval, of
sizeSIZE INTERVAL, can bereplacedby any other value of the same interval.

Arg. properties
• Functional dependency: NCOMMON1 determined byVARIABLES1, VARIABLES2

andSIZE INTERVAL.

• Functional dependency: NCOMMON2 determined byVARIABLES1, VARIABLES2

andSIZE INTERVAL.

See also specialisation:common (variable/constant replaced byvariable).

Keywords constraint arguments: constraint between two collections of variables,
pure functional dependency.

final graph structure: acyclic, bipartite, no loop.

modelling: interval, functional dependency.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

710 NSINK,NSOURCE,PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL = variables2.var/SIZE INTERVAL

Graph property(ies) • NSOURCE= NCOMMON1

• NSINK= NCOMMON2

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model Parts (A) and (B) of Figure5.139respectively show the initial and final graph associated
with theExampleslot. Since we use theNSOURCE andNSINK graph properties, the
source and sink vertices of the final graph are stressed with a double circle. Since the graph
has only3 sources and2 sinks the variablesNCOMMON1 andNCOMMON2 are respectively
equal to3 and2. Note that the vertices corresponding to the variables that take values0
or 3 were removed from the final graph since there is no arc for which the associated arc
constraint holds.

VARIABLES1

VARIABLES2

1

1234 56

234

NSOURCE=3,NSINK=2

1:8

1:7 6:7

2:6 3:6

(A) (B)

Figure 5.139: Initial and final graph of thecommon interval constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 711

712 NSINK,NSOURCE,PRODUCT

5.69 commonmodulo

DESCRIPTION LINKS GRAPH

Origin Derived fromcommon.

Constraint common modulo(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2, M)

Arguments NCOMMON1 : dvar

NCOMMON2 : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
M : int

Restrictions NCOMMON1 ≥ 0
NCOMMON1 ≤ |VARIABLES1|
NCOMMON2 ≥ 0
NCOMMON2 ≤ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
M > 0

Purpose

NCOMMON1 is the number of variables of the collection of variablesVARIABLES1 taking
a value situated in an equivalence class (congruence modulo a fixed numberM) derived
from the values assigned to the variables ofVARIABLES2 and fromM.
NCOMMON2 is the number of variables of the collection of variablesVARIABLES2 taking
a value situated in an equivalence class (congruence modulo a fixed numberM) derived
from the values assigned to the variables ofVARIABLES1 and fromM.

Example

3, 4, 〈0, 4, 0, 8〉 ,

〈

var− 7,
var− 5,
var− 4,
var− 9,
var− 2,
var− 4

〉

, 5

In the example, the last argumentM = 5 defines the equivalence classesa ≡ 0
(mod 5), a ≡ 1 (mod 5), a ≡ 2 (mod 5), a ≡ 3 (mod 5), anda ≡ 4 (mod 5)
wherea is an integer. As a consequence the items of collection〈0, 4, 0, 8〉 respectively
correspond to the equivalence classesa ≡ 0 (mod 5), a ≡ 4 (mod 5), a ≡ 0 (mod 5),
and a ≡ 3 (mod 5). Similarly the items of collection〈7, 5, 4, 9, 2, 4〉 respectively
correspond to the equivalence classesa ≡ 2 (mod 5), a ≡ 0 (mod 5), a ≡ 4 (mod 5),
a ≡ 4 (mod 5), a ≡ 2 (mod 5), anda ≡ 4 (mod 5). Thecommon modulo constraint
holds since:

• Its first argumentNCOMMON1 = 3 is the number of equivalence classes associated
with the items of collection〈0, 4, 0, 8〉 that also correspond to equivalence classes
associated with〈7, 5, 4, 9, 2, 4〉.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20030820 713

• Its second argumentNCOMMON2 = 4 is the number of equivalence classes associ-
ated with the items of collection〈7, 5, 4, 9, 2, 4〉 that also correspond to equivalence
classes associated with〈0, 4, 0, 8〉.

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
|VARIABLES2| > 1
range(VARIABLES2.var) > 1
M > 1
M <maxval(VARIABLES1.var)
M <maxval(VARIABLES2.var)

Symmetries • Arguments are permutable w.r.t. permutation (NCOMMON1, NCOMMON2)
(VARIABLES1, VARIABLES2) (M).

• Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• An occurrence of a valueu of VARIABLES1.var can bereplacedby any other
valuev such thatv is congruent tou moduloM.

• An occurrence of a valueu of VARIABLES2.var can bereplacedby any other
valuev such thatv is congruent tou moduloM.

Arg. properties
• Functional dependency: NCOMMON1 determined byVARIABLES1, VARIABLES2

andM.

• Functional dependency: NCOMMON2 determined byVARIABLES1, VARIABLES2

andM.

See also specialisation:common (variablemod constant replaced byvariable).

Keywords characteristic of a constraint: modulo.

constraint arguments: constraint between two collections of variables,
pure functional dependency.

final graph structure: acyclic, bipartite, no loop.

modelling: functional dependency.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

714 NSINK,NSOURCE,PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.varmod M = variables2.varmod M

Graph property(ies) • NSOURCE= NCOMMON1

• NSINK= NCOMMON2

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model Parts (A) and (B) of Figure5.140respectively show the initial and final graph associated
with theExampleslot. Since we use theNSOURCE andNSINK graph properties, the
source and sink vertices of the final graph are stressed with a double circle. Since the graph
has only3 sources and4 sinks the variablesNCOMMON1 andNCOMMON2 are respectively
equal to3 and4. Note that the vertices corresponding to the variables that take values8, 7
or 2 were removed from the final graph since there is no arc for which the associated arc
constraint holds.

VARIABLES1

VARIABLES2

1

1234 56

234

NSOURCE=3,NSINK=4

1:0

2:5

2:4

3:4 4:9 6:4

3:0

(A) (B)

Figure 5.140: Initial and final graph of thecommon modulo constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 715

716 NSINK,NSOURCE,PRODUCT

5.70 commonpartition

DESCRIPTION LINKS GRAPH

Origin Derived fromcommon.

Constraint common partition

NCOMMON1,
NCOMMON2,
VARIABLES1,
VARIABLES2,
PARTITIONS

Type VALUES : collection(val−int)

Arguments NCOMMON1 : dvar

NCOMMON2 : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
PARTITIONS : collection(p− VALUES)

Restrictions |VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)
NCOMMON1 ≥ 0
NCOMMON1 ≤ |VARIABLES1|
NCOMMON2 ≥ 0
NCOMMON2 ≤ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose

NCOMMON1 is the number of variables of theVARIABLES1 collection taking a value in
a partition derived from the values assigned to the variables ofVARIABLES2 and from
PARTITIONS.
NCOMMON2 is the number of variables of theVARIABLES2 collection taking a value in
a partition derived from the values assigned to the variables ofVARIABLES1 and from
PARTITIONS.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

20030820 717

Example

3, 4, 〈2, 3, 6, 0〉 ,

〈

var− 0,
var− 6,
var− 3,
var− 3,
var− 7,
var− 1

〉

,

〈

p− 〈1, 3〉 ,
p− 〈4〉 ,
p− 〈2, 6〉

〉

In the example, the last argumentPARTITIONS defines the partitionsp − 〈1, 3〉,
p − 〈4〉 andp − 〈2, 6〉. As a consequence the first three items of collection〈2, 3, 6, 0〉
respectively correspond to the partitionsp − 〈2, 6〉, p − 〈1, 3〉, andp − 〈2, 6〉. Similarly
the items of collection〈0, 6, 3, 3, 7, 1〉 (from which we remove items0 and7 since they do
not belong to any partition) respectively correspond to the partitionsp− 〈2, 6〉, p− 〈1, 3〉,
p− 〈1, 3〉, andp− 〈1, 3〉. Thecommon partition constraint holds since:

• Its first argumentNCOMMON1 = 3 is the number of partitions associated with the
items of collection〈2, 3, 6, 0〉 that also correspond to partitions associated with
〈0, 6, 3, 3, 7, 1〉.

• Its second argumentNCOMMON2 = 4 is the number of partitions associated with the
items of collection〈0, 6, 3, 3, 7, 1〉 that also correspond to partitions associated with
〈2, 3, 6, 0〉.

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
|VARIABLES2| > 1
range(VARIABLES2.var) > 1
|VARIABLES1| > |PARTITIONS|
|VARIABLES2| > |PARTITIONS|

Symmetries • Arguments are permutable w.r.t. permutation (NCOMMON1, NCOMMON2)
(VARIABLES1, VARIABLES2) (PARTITIONS).

• Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• Items ofPARTITIONS arepermutable.

• Items ofPARTITIONS.p arepermutable.

• An occurrence of a value ofVARIABLES1.var can be replaced by any other value
that also belongs to the same partition ofPARTITIONS.

• An occurrence of a value ofVARIABLES2.var can be replaced by any other value
that also belongs to the same partition ofPARTITIONS.

Arg. properties
• Functional dependency: NCOMMON1 determined byVARIABLES1, VARIABLES2

andPARTITIONS.

• Functional dependency: NCOMMON2 determined byVARIABLES1, VARIABLES2

andPARTITIONS.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

718 NSINK,NSOURCE,PRODUCT

See also specialisation:common (variable ∈ partition replaced byvariable).

used in graph description:in same partition.

Keywords characteristic of a constraint: partition.

constraint arguments: constraint between two collections of variables,
pure functional dependency.

final graph structure: acyclic, bipartite, no loop.

modelling: functional dependency.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 719

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) • NSOURCE= NCOMMON1

• NSINK= NCOMMON2

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model Parts (A) and (B) of Figure5.141respectively show the initial and final graph associated
with theExampleslot. Since we use theNSOURCE andNSINK graph properties, the
source and sink vertices of the final graph are stressed with a double circle. Since the graph
has only3 sources and4 sinks the variablesNCOMMON1 andNCOMMON2 are respectively
equal to3 and4. Note that the vertices corresponding to the variables that take values
0 or 7 were removed from the final graph since there is no arc for which the associated
in same partition constraint holds.

VARIABLES1

VARIABLES2

1

1234 56

234

NSOURCE=3,NSINK=4

1:2

2:6

2:3

3:3 4:3 6:1

3:6

(A) (B)

Figure 5.141: Initial and final graph of thecommon partition constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

720 PREDEFINED

5.71 compareand count

DESCRIPTION LINKS

Origin Generalisediscrepancy

Constraint compare and count(VARIABLES1, VARIABLES2, COMPARE, COUNT, LIMIT)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
COMPARE : atom

COUNT : atom

LIMIT : dvar

Restrictions |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
COMPARE ∈ [=, 6=, <,≥, >,≤]
COUNT ∈ [=, 6=, <,≥, >,≤]
LIMIT ≥ 0

Purpose
Enforce the condition
(

∑|VARIABLES1|
i=1 VARIABLES1[i].var COMPARE VARIABLES2[i].var

)

COUNT LIMIT.

Example
(

〈4, 5, 5, 4, 5〉 ,
〈4, 2, 5, 1, 5〉 ,=,≤, 3

)

The compare and count constraint holds since no more thanLIMIT = 3 pairs of
variables are equal, i.e., the first, third and fifth pairs.

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1
COMPARE ∈ [=]
COUNT ∈ [=, <,≥, >,≤]
LIMIT > 0
LIMIT < |VARIABLES1|

Arg. properties
• Contractiblewrt. VARIABLES1 andVARIABLES2 (remove items from same posi-

tion) whenCOUNT ∈ [<,≤].

• Extensiblewrt. VARIABLES1 andVARIABLES2 (add items at same position) when
COUNT ∈ [≥, >].

See also common keyword:count (counting constraint).

Keywords constraint type: predefined constraint, counting constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20110628 721

722 AUTOMATON

5.72 condlex cost

DESCRIPTION LINKS AUTOMATON

Origin Inspired by [412].

Constraint cond lex cost(VECTOR, PREFERENCE TABLE, COST)

Type TUPLE OF VALS : collection(val−int)

Arguments VECTOR : collection(var−dvar)
PREFERENCE TABLE : collection(tuple− TUPLE OF VALS)
COST : dvar

Restrictions |TUPLE OF VALS| ≥ 1
required(TUPLE OF VALS, val)
required(VECTOR, var)
|VECTOR| = |TUPLE OF VALS|
required(PREFERENCE TABLE, tuple)
same size(PREFERENCE TABLE, tuple)
distinct(PREFERENCE TABLE, [])
in relation(VECTOR, PREFERENCE TABLE)
COST ≥ 1
COST ≤ |PREFERENCE TABLE|

Purpose VECTOR is assigned to theCOSTth item of the collectionPREFERENCE TABLE.

Example

〈0, 1〉 ,
〈

tuple− 〈1, 0〉 ,
tuple− 〈0, 1〉 ,
tuple− 〈0, 0〉 ,
tuple− 〈1, 1〉

〉

, 2

The cond lex cost constraint holds sinceVECTOR is assigned to the second item
of the collectionPREFERENCE TABLE.

Typical |TUPLE OF VALS| > 1
|VECTOR| > 1
|PREFERENCE TABLE| > 1

Symmetries • Items ofVECTOR andPREFERENCE TABLE.tuple arepermutable(same permuta-
tion used).

• All occurrences of two distinct tuples of values inVECTOR or
PREFERENCE TABLE.tuple can be swapped; all occurrences of a tuple of
values inVECTOR or PREFERENCE TABLE.tuple can berenamedto any unused
tuple of values.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20060416 723

Usage We consider an example taken from [412] were a customer has to decide among va-
cations. There are two seasons when he can travel (spring and summer) and two
locationsNaples and Helsinki. Furthermore assume that location is more impor-
tant than season and the preferred period of the year depends on the selected loca-
tion. The travel preferences of a customer are explicitly defined by stating the prefer-
ences ordering among the possible tuples of values〈Naples, spring〉, 〈Naples, summer〉,
〈Helsinki, spring〉 and 〈Helsinki, summer〉. For instance we may state within
the preference tablePREFERENCE TABLE of the cond lex cost constraint the prefer-
ence ordering〈Naples, spring〉 ≻ 〈Helsinki, summer〉 ≻ 〈Helsinki, spring〉 ≻
〈Naples, summer〉, which denotes the fact that our customer prefersNaples in thespring
andHelsinki in thesummer, and a vacation inspring is preferred oversummer. Finally
a solution minimising the cost variableCOST will match the preferences stated by our cus-
tomer.

See also attached to cost variant:in relation (COST parameter removed).

common keyword: cond lex greater, cond lex greatereq, cond lex less,
cond lex lesseq (preferences).

specialisation:element (tuple of variables replaced by singlevariable).

Keywords characteristic of a constraint: vector, automaton, automaton without counters,
reified automaton constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

filtering: arc-consistency, cost filtering constraint.

modelling: preferences.

symmetry: lexicographic order.

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

724 AUTOMATON

Automaton Figure 5.142depicts the automaton associated withcond lex lesseq constraint. Let
VARk denote thevar attribute of thekth item of theVECTOR collection. Figure5.143
depicts the reformulation of thecond lex cost constraint.

4

s

t

4 5

1 2

3 6

0

10

10 1

3 2 1

Figure 5.142: Automaton of thecond lex cost constraint given in the example

COST

Q1 1Q1 =s 0 Q1 n
Q1 =t n+1

VAR
2 VAR

nVAR
1

Figure 5.143: Hypergraph of the reformulation corresponding to the automaton of the
cond lex cost constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20060416 725

726 AUTOMATON

5.73 condlex greater

DESCRIPTION LINKS AUTOMATON

Origin Inspired by [412].

Constraint cond lex greater(VECTOR1, VECTOR2, PREFERENCE TABLE)

Type TUPLE OF VALS : collection(val−int)

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)
PREFERENCE TABLE : collection(tuple− TUPLE OF VALS)

Restrictions |TUPLE OF VALS| ≥ 1
required(TUPLE OF VALS, val)
required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|
|VECTOR1| = |TUPLE OF VALS|
required(PREFERENCE TABLE, tuple)
same size(PREFERENCE TABLE, tuple)
distinct(PREFERENCE TABLE, [])
in relation(VECTOR1, PREFERENCE TABLE)
in relation(VECTOR2, PREFERENCE TABLE)

Purpose VECTOR1 and VECTOR2 are both assigned to theIth and Jth items of the collection
PREFERENCE TABLE such thatI > J.

Example

〈0, 0〉 ,
〈1, 0〉 ,
〈

tuple− 〈1, 0〉 ,
tuple− 〈0, 1〉 ,
tuple− 〈0, 0〉 ,
tuple− 〈1, 1〉

〉

The cond lex greater constraint holds sinceVECTOR1 and VECTOR2 are respec-
tively assigned to the third and first items of the collectionPREFERENCE TABLE.

Typical |TUPLE OF VALS| > 1
|VECTOR1| > 1
|VECTOR2| > 1
|PREFERENCE TABLE| > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20060430 727

Symmetries • Items of VECTOR1, VECTOR2 and PREFERENCE TABLE.tuple are permutable
(same permutation used).

• All occurrences of two distinct tuples of values inVECTOR1, VECTOR2 or
PREFERENCE TABLE.tuple can beswapped; all occurrences of a tuple of val-
ues inVECTOR1, VECTOR2 or PREFERENCE TABLE.tuple can berenamedto any
unused tuple of values.

Usage Seecond lex cost.

See also common keyword: cond lex cost, cond lex greatereq, cond lex less,
cond lex lesseq (preferences), lex greater (lexicographic order).

implies: cond lex greatereq.

Keywords characteristic of a constraint: vector, automaton.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

filtering: arc-consistency.

modelling: preferences.

symmetry: lexicographic order.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

728 AUTOMATON

Automaton Figure 5.144 depicts the automaton associated with the preference table of the
cond lex greater constraint given in the example. LetVAR1k andVAR2k respectively
be thevar attributes of thekth items of theVECTOR1 and theVECTOR2 collections. Fig-
ure5.145depicts the reformulation of thecond lex greater constraint. This reformula-
tion uses:

• Two occurrences of the automaton depicted by Figure5.144for computing the posi-
tionsI andJ within the preference table corresponding toVECTOR1 andVECTOR2.

• The binary constraintI > J.

4

s

t

4 5

1 2

3 6

0

10

10 1

3 2 1

Figure 5.144: Automaton associated with the preference table of the
cond lex greater constraint given in the example

I

VAR2
 n

VAR2
 1 VAR2

 2

VAR1
 2 VAR1

 nVAR1
 1

Q1 1Q1 =s 0 Q1 n
Q1 =t n+1

Q2 1Q2 =s 0 Q2 n
Q2 =t n+1

J

Figure 5.145: Hypergraph of the reformulation corresponding to the
cond lex greater constraint: it uses two occurrences of the automaton of
Figure5.144and the constraintI > J

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20060430 729

730 AUTOMATON

5.74 condlex greatereq

DESCRIPTION LINKS AUTOMATON

Origin Inspired by [412].

Constraint cond lex greatereq(VECTOR1, VECTOR2, PREFERENCE TABLE)

Type TUPLE OF VALS : collection(val−int)

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)
PREFERENCE TABLE : collection(tuple− TUPLE OF VALS)

Restrictions |TUPLE OF VALS| ≥ 1
required(TUPLE OF VALS, val)
required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|
|VECTOR1| = |TUPLE OF VALS|
required(PREFERENCE TABLE, tuple)
same size(PREFERENCE TABLE, tuple)
distinct(PREFERENCE TABLE, [])
in relation(VECTOR1, PREFERENCE TABLE)
in relation(VECTOR2, PREFERENCE TABLE)

Purpose VECTOR1 and VECTOR2 are both assigned to theIth and Jth items of the collection
PREFERENCE TABLE such thatI ≥ J.

Example

〈0, 0〉 ,
〈1, 0〉 ,
〈

tuple− 〈1, 0〉 ,
tuple− 〈0, 1〉 ,
tuple− 〈0, 0〉 ,
tuple− 〈1, 1〉

〉

Thecond lex greatereq constraint holds sinceVECTOR1 andVECTOR2 are respectively
assigned to the third and first items of the collectionPREFERENCE TABLE.

Typical |TUPLE OF VALS| > 1
|VECTOR1| > 1
|VECTOR2| > 1
|PREFERENCE TABLE| > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20060416 731

Symmetries • Items of VECTOR1, VECTOR2 and PREFERENCE TABLE.tuple are permutable
(same permutation used).

• All occurrences of two distinct tuples of values inVECTOR1, VECTOR2 or
PREFERENCE TABLE.tuple can beswapped; all occurrences of a tuple of val-
ues inVECTOR1, VECTOR2 or PREFERENCE TABLE.tuple can berenamedto any
unused tuple of values.

Usage Seecond lex cost.

See also common keyword: cond lex cost, cond lex greater, cond lex less,
cond lex lesseq (preferences), lex greatereq (lexicographic order).

implied by: cond lex greater.

Keywords characteristic of a constraint: vector, automaton.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

filtering: arc-consistency.

modelling: preferences.

symmetry: lexicographic order.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

732 AUTOMATON

Automaton Figure 5.146 depicts the automaton associated with the preference table of the
cond lex greatereq constraint given in the example. LetVAR1k and VAR2k respec-
tively be thevar attributes of thekth items of theVECTOR1 and theVECTOR2 collections.
Figure5.147depicts the reformulation of thecond lex greatereq constraint. This refor-
mulation uses:

• Two occurrences of the automaton depicted by Figure5.146for computing the posi-
tionsI andJ within the preference table corresponding toVECTOR1 andVECTOR2.

• The binary constraintI ≥ J.

4

s

t

4 5

1 2

3 6

0

10

10 1

3 2 1

Figure 5.146: Automaton associated with the preference table of the
cond lex greatereq constraint given in the example

I

VAR2
 n

VAR2
 1 VAR2

 2

VAR1
 2 VAR1

 nVAR1
 1

Q1 1Q1 =s 0 Q1 n
Q1 =t n+1

Q2 1Q2 =s 0 Q2 n
Q2 =t n+1

J

Figure 5.147: Hypergraph of the reformulation corresponding to the
cond lex greatereq constraint: it uses two occurrences of the automaton of
Figure5.146and the constraintI ≥ J

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20060416 733

734 AUTOMATON

5.75 condlex less

DESCRIPTION LINKS AUTOMATON

Origin Inspired by [412].

Constraint cond lex less(VECTOR1, VECTOR2, PREFERENCE TABLE)

Type TUPLE OF VALS : collection(val−int)

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)
PREFERENCE TABLE : collection(tuple− TUPLE OF VALS)

Restrictions |TUPLE OF VALS| ≥ 1
required(TUPLE OF VALS, val)
required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|
|VECTOR1| = |TUPLE OF VALS|
required(PREFERENCE TABLE, tuple)
same size(PREFERENCE TABLE, tuple)
distinct(PREFERENCE TABLE, [])
in relation(VECTOR1, PREFERENCE TABLE)
in relation(VECTOR2, PREFERENCE TABLE)

Purpose VECTOR1 and VECTOR2 are both assigned to theIth and Jth items of the collection
PREFERENCE TABLE such thatI < J.

Example

〈1, 0〉 ,
〈0, 0〉 ,
〈

tuple− 〈1, 0〉 ,
tuple− 〈0, 1〉 ,
tuple− 〈0, 0〉 ,
tuple− 〈1, 1〉

〉

The cond lex less constraint holds sinceVECTOR1 and VECTOR2 are respectively
assigned to the first and third items of the collectionPREFERENCE TABLE.

Typical |TUPLE OF VALS| > 1
|VECTOR1| > 1
|VECTOR2| > 1
|PREFERENCE TABLE| > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20060430 735

Symmetries • Items of VECTOR1, VECTOR2 and PREFERENCE TABLE.tuple are permutable
(same permutation used).

• All occurrences of two distinct tuples of values inVECTOR1, VECTOR2 or
PREFERENCE TABLE.tuple can beswapped; all occurrences of a tuple of val-
ues inVECTOR1, VECTOR2 or PREFERENCE TABLE.tuple can berenamedto any
unused tuple of values.

Usage Seecond lex cost.

See also common keyword: cond lex cost, cond lex greater, cond lex greatereq,
cond lex lesseq (preferences), lex less (lexicographic order).

implies: cond lex lesseq.

Keywords characteristic of a constraint: vector, automaton.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

filtering: arc-consistency.

modelling: preferences.

symmetry: lexicographic order.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

736 AUTOMATON

Automaton Figure 5.148 depicts the automaton associated with the preference table of the
cond lex less constraint given in the example. LetVAR1k andVAR2k respectively be
the var attributes of thekth items of theVECTOR1 and theVECTOR2 collections. Fig-
ure5.149depicts the reformulation of thecond lex less constraint. This reformulation
uses:

• Two occurrences of the automaton depicted by Figure5.148for computing the posi-
tionsI andJ within the preference table corresponding toVECTOR1 andVECTOR2.

• The binary constraintI < J.

4

s

t

4 5

1 2

3 6

0

10

10 1

3 2 1

Figure 5.148: Automaton associated with the preference table of thecond lex less

constraint given in the example

I

VAR2
 n

VAR2
 1 VAR2

 2

VAR1
 2 VAR1

 nVAR1
 1

Q1 1Q1 =s 0 Q1 n
Q1 =t n+1

Q2 1Q2 =s 0 Q2 n
Q2 =t n+1

J

Figure 5.149: Hypergraph of the reformulation corresponding to thecond lex less

constraint: it uses two occurrences of the automaton of Figure5.148and the constraint
I < J

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20060430 737

738 AUTOMATON

5.76 condlex lesseq

DESCRIPTION LINKS AUTOMATON

Origin Inspired by [412].

Constraint cond lex lesseq(VECTOR1, VECTOR2, PREFERENCE TABLE)

Type TUPLE OF VALS : collection(val−int)

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)
PREFERENCE TABLE : collection(tuple− TUPLE OF VALS)

Restrictions |TUPLE OF VALS| ≥ 1
required(TUPLE OF VALS, val)
required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|
|VECTOR1| = |TUPLE OF VALS|
required(PREFERENCE TABLE, tuple)
same size(PREFERENCE TABLE, tuple)
distinct(PREFERENCE TABLE, [])
in relation(VECTOR1, PREFERENCE TABLE)
in relation(VECTOR2, PREFERENCE TABLE)

Purpose VECTOR1 and VECTOR2 are both assigned to theIth and Jth items of the collection
PREFERENCE TABLE such thatI ≤ J.

Example

〈1, 0〉 ,
〈0, 0〉 ,
〈

tuple− 〈1, 0〉 ,
tuple− 〈0, 1〉 ,
tuple− 〈0, 0〉 ,
tuple− 〈1, 1〉

〉

The cond lex lesseq constraint holds sinceVECTOR1 and VECTOR2 are respectively
assigned to the first and third items of the collectionPREFERENCE TABLE.

Typical |TUPLE OF VALS| > 1
|VECTOR1| > 1
|VECTOR2| > 1
|PREFERENCE TABLE| > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20060416 739

Symmetries • Items of VECTOR1, VECTOR2 and PREFERENCE TABLE.tuple are permutable
(same permutation used).

• All occurrences of two distinct tuples of values inVECTOR1, VECTOR2 or
PREFERENCE TABLE.tuple can beswapped; all occurrences of a tuple of val-
ues inVECTOR1, VECTOR2 or PREFERENCE TABLE.tuple can berenamedto any
unused tuple of values.

Usage Seecond lex cost.

See also common keyword: cond lex cost, cond lex greater, cond lex greatereq,
cond lex less (preferences), lex lesseq (lexicographic order).

implied by: cond lex less.

Keywords characteristic of a constraint: vector, automaton.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

filtering: arc-consistency.

modelling: preferences.

symmetry: lexicographic order.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

740 AUTOMATON

Automaton Figure 5.150 depicts the automaton associated with the preference table of the
cond lex lesseq constraint given in the example. LetVAR1k andVAR2k respectively
be thevar attributes of thekth items of theVECTOR1 and theVECTOR2 collections. Fig-
ure5.151depicts the reformulation of thecond lex lesseq constraint. This reformula-
tion uses:

• Two occurrences of the automaton depicted by Figure5.150for computing the posi-
tionsI andJ within the preference table corresponding toVECTOR1 andVECTOR2.

• The binary constraintI ≤ J.

4

s

t

4 5

1 2

3 6

0

10

10 1

3 2 1

Figure 5.150: Automaton associated with the preference table of the
cond lex lesseq constraint given in the example

I

VAR2
 n

VAR2
 1 VAR2

 2

VAR1
 2 VAR1

 nVAR1
 1

Q1 1Q1 =s 0 Q1 n
Q1 =t n+1

Q2 1Q2 =s 0 Q2 n
Q2 =t n+1

J

Figure 5.151: Hypergraph of the reformulation corresponding to the
cond lex lesseq constraint: it uses two occurrences of the automaton of Fig-
ure5.150and the constraintI ≤ J

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20060416 741

742 NSCC,GRID([SIZE1, SIZE2, SIZE3])

5.77 connectpoints

DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint connect points(SIZE1, SIZE2, SIZE3, NGROUP, POINTS)

Arguments SIZE1 : int

SIZE2 : int

SIZE3 : int

NGROUP : dvar

POINTS : collection(p−dvar)

Restrictions SIZE1 > 0
SIZE2 > 0
SIZE3 > 0
NGROUP ≥ 0
NGROUP ≤ |POINTS|
SIZE1 ∗ SIZE2 ∗ SIZE3 = |POINTS|
required(POINTS, p)

Purpose On a3-dimensional grid of variables, number of groups, where a group consists of a
connected set of variables that all have a same value distinct from0.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

20000128 743

Example

8, 4, 2, 2,

〈

p− 0, p− 0,
p− 1, p− 1,
p− 0, p− 2,
p− 0, p− 0,
p− 0, p− 0,
p− 0, p− 1,
p− 0, p− 2,
p− 0, p− 0,
p− 0, p− 0,
p− 0, p− 1,
p− 1, p− 1,
p− 1, p− 1,
p− 0, p− 2,
p− 0, p− 1,
p− 0, p− 2,
p− 0, p− 0,
p− 0, p− 0,
p− 0, p− 0,
p− 0, p− 0,
p− 0, p− 0,
p− 0, p− 0,
p− 0, p− 0,
p− 0, p− 2,
p− 0, p− 0,
p− 0, p− 2,
p− 2, p− 2,
p− 2, p− 2,
p− 0, p− 0,
p− 0, p− 2,
p− 0, p− 0,
p− 0, p− 2,
p− 0, p− 0

〉

Figure5.152corresponds to the solution where we describe separately each layer ofthe
grid. Theconnect points constraint holds since we have two groups (NGROUP = 2): a
first one for the variables of thePOINTS collection assigned to value1, and a second one
for the variables assigned to value2.

0

0

0

0 0

0

0

0 0

0

0 0

000

0

0 0 0

0 0 00 0

0

0

0

0 0 0

0 0 0

0

0

00

0

0

0

0

00 22

2

21 1

1

1

1

1 1 1 1

2

2 2 2 2

2

2

2

Figure 5.152: The two layers of the solution

Example
One or several examples of ground solutions of the constraint.

744 NSCC,GRID([SIZE1, SIZE2, SIZE3])

Typical SIZE1 > 1
SIZE2 > 1
NGROUP > 0
NGROUP < |POINTS|
|POINTS| > 3

Symmetry All occurrences of two distinct values ofPOINTS.p that are both different from0 can be
swapped; all occurrences of a value ofPOINTS.p that is different from0 can berenamed
to any unused value that is also different from0.

Arg. properties
Functional dependency: NGROUP determined bySIZE1, SIZE2, SIZE3 andPOINTS.

Usage Wiring problems [361], [424].

Algorithm Since the graph corresponding to the3-dimensional grid is symmetric one could certainly
use as a starting point the filtering algorithm associated with thenumber of connected
componentsgraph property described in [50] (see the paragraphs “EstimatingNCC” and
“EstimatingNCC”). One may also try to take advantage of the fact that the considered
initial graph is a grid in order to simplify the previous filtering algorithm.

Keywords characteristic of a constraint: joker value.

final graph structure: strongly connected component, symmetric.

geometry:geometrical constraint.

modelling: functional dependency.

problems: channel routing.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Keywords
Related keywords grouped by meta-keywords.

20000128 745

Arc input(s) POINTS

Arc generator GRID([SIZE1, SIZE2, SIZE3]) 7→
collection(points1, points2)

Arc arity 2

Arc constraint(s) • points1.p 6= 0
• points1.p = points2.p

Graph property(ies) NSCC= NGROUP

Graph class SYMMETRIC

Graph model Figure5.153gives the initial graph constructed by theGRID arc generator associated with
theExampleslot.

Figure 5.153: Graph generated byGRID([8,4,2])

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

746 NCC,CLIQUE

5.78 connected

DESCRIPTION LINKS GRAPH

Origin [131]

Constraint connected(NODES)

Argument NODES : collection(index−int, succ−svar)

Restrictions required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose
Consider a digraphG described by theNODES collection. Select a subset of arcs ofG so
that the corresponding graph is symmetric (i.e., if there is an arc fromi to j, there is also
an arc fromj to i) and connected (i.e., there is a path between any pair of vertices ofG).

Example

〈

index− 1 succ− {1, 2, 3},
index− 2 succ− {1, 3},
index− 3 succ− {1, 2, 4},
index− 4 succ− {3, 5, 6},
index− 5 succ− {4},
index− 6 succ− {4}

〉

The connected constraint holds since theNODES collection depicts a symmetric
graph involving one single connected component.

Typical |NODES| > 1

Symmetry Items ofNODES arepermutable.

Algorithm A filtering algorithm for theconnected constraint is sketched in [131, page 88]. Beside
the pruning associated with the fact that the final graph is symmetric, it is based on the fact
that all bridges and cutvertices on a path between two vertices that should for sure belong
to the final graph should also belong to the final graph.

See also common keyword:symmetric (symmetric).

implies: strongly connected.

used in graph description:in set.

Keywords constraint arguments:constraint involving set variables.

constraint type: graph constraint.

final graph structure: connected component, symmetric.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20061001 747

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) in set(nodes2.index, nodes1.succ)

Graph property(ies) NCC= 1

Graph class SYMMETRIC

Graph model Part (A) of Figure5.154shows the initial graph from which we start. It is derived from
the set associated with each vertex. Each set describes the potential values of thesucc
attribute of a given vertex. Part (B) of Figure5.154gives the final graph associated with
theExampleslot.

NODES

1:1,{1,2,3,4}

2:2,{1,3}

3:3,{1,2,4}

4:4,{1,3,5,6}

5:5,{4,6}

6:6,{4}

1:1,{1,2,3}

2:2,{1,3}

3:3,{1,2,4}

4:4,{3,5,6}

5:5,{4} 6:6,{4}

(A) (B)

Figure 5.154: Initial and final graph of theconnected set constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

748 AUTOMATON

5.79 consecutivegroups of ones

DESCRIPTION LINKS AUTOMATON

Origin Derived fromgroup

Constraint consecutive groups of ones(GROUP SIZES, VARIABLES)

Arguments GROUP SIZES : collection(nb−int)
VARIABLES : collection(var−dvar)

Restrictions required(GROUP SIZES, nb)
|GROUP SIZES| ≥ 1
GROUP SIZES.nb ≥ 1
GROUP SIZES.nb ≤ |VARIABLES|
required(VARIABLES, var)
|VARIABLES| ≥ 2 ∗ |GROUP SIZES| − 1
|VARIABLES| ≥sum(GROUP SIZES.nb) + |GROUP SIZES| − 1
VARIABLES.var ≥ 0
VARIABLES.var ≤ 1

Purpose

In order to define the meaning of theconsecutive groups of ones constraint, we
first introduce the notions ofstretchandspan. Let n be the number of variables of the
collectionVARIABLES and letm be the number of items of the collectionGROUP SIZES.
LetXi, . . . , Xj (1 ≤ i ≤ j ≤ n) be consecutive variables of the collection of variables
VARIABLES such that the following conditions apply:

• All variablesXi, . . . , Xj are assigned value1,

• i = 1 orXi−1 6= 1,

• j = n orXj+1 6= 1.

We call such a set of variables astretch. Thespanof the stretch is equal toj− i+1. We
now define the condition enforced by theconsecutive groups of ones constraint.

All variables of theVARIABLES collection should be assigned value0 or 1. In addi-
tion there is|GROUP SIZES| successive stretches of respective spanGROUP SIZES[1].nb,
GROUP SIZES[2].nb, . . . , GROUP SIZES[m].nb.

Example

〈2, 1〉 ,

〈

var− 1,
var− 1,
var− 0,
var− 0,
var− 0,
var− 1,
var− 0

〉

The consecutive groups of ones constraint holds since the sequence1 1 0 0 0 1 0

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20091227 749

contains a first stretch (i.e., a maximum sequence of1) of span2 and a second stretch of
span1.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetry Items ofGROUP SIZES andVARIABLES aresimultaneously reversable.

Usage The consecutive groups of ones constraint can be used in order to model the
logigrapheproblem.

See also root concept:group.

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint network structure: Berge-acyclic constraint network.

filtering: arc-consistency.

modelling exercises:logigraphe.

puzzles:logigraphe.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

750 AUTOMATON

Automaton Figure5.155depicts the automaton associated with theconsecutive groups of ones

constraint. To each variableVARi of the collectionVARIABLES corresponds a signature
variable that is equal toVARi. There is no signature constraint.

ss
32

ss
10

s iVAR =0

iVAR =0

iVAR =1 VAR =1i

iVAR =0

VAR =1i

iVAR =0

4

Figure 5.155: Automaton of theconsecutive groups of ones constraint of theEx-
ampleslot

Q =s

2
VAR

1

Q1 4 4

4
VAR

Q =s0 0

VAR

Figure 5.156: Hypergraph of the reformulation corresponding to the automaton of the
consecutive groups of ones constraint of theExample slot

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20091227 751

752 PREDEFINED

5.80 consecutivevalues

DESCRIPTION LINKS

Origin Derived fromalldifferent consecutive values.

Constraint consecutive values(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restriction required(VARIABLES, var)

Purpose
Constraint the difference between the largest and the smallest values oftheVARIABLES
collection to be equal to the number of distinct values assigned to the variables of the
VARIABLES collection minus one (i.e., there is no holes at all within the used values).

Example (〈5, 4, 3, 5〉)

The consecutive values constraint holds since all values between value3 and
value5 are effectively used.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetries • Items ofVARIABLES arepermutable.

• One and the same constant can beaddedto the var attribute of all items of
VARIABLES.

See also implied by: all equal, alldifferent consecutive values, global contiguity.

used in reformulation: nvalue.

Keywords characteristic of a constraint: sort based reformulation.

constraint type: value constraint, predefined constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20100106 753

754 LOGIC

5.81 containssboxes

DESCRIPTION LINKS LOGIC

Origin Geometry, derived from [318]

Constraint contains sboxes(K, DIMS, OBJECTS, SBOXES)

Synonym contains.

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)

Arguments K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−int, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− POSITIVES)

Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
K > 0
DIMS ≥ 0
DIMS < K

increasing seq(OBJECTS, [oid])
required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
|SBOXES| ≥ 1
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
do not overlap(SBOXES)

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

20070622 755

Purpose

Holds if, for each pair of objects(Oi, Oj), i < j, Oi containsOj with respect to a set
of dimensions depicted byDIMS. Oi andOj are objects that take a shape among a set
of shapes. Eachshapeis defined as a finite set of shifted boxes, where each shifted box
is described by a box in aK-dimensional space at a given offset (from the origin of the
shape) with given sizes. More precisely, ashifted boxis an entity defined by its shape
id sid, shift offsett, and sizesl. Then, a shape is defined as the union of shifted boxes
sharing the same shape id. Anobject is an entity defined by its unique object identifier
oid, shape idsid and originx.
An objectOi containsan objectOj with respect to a set of dimensions depicted byDIMS

if and only if, for all shifted boxessj associated withOj , there exists a shifted boxsi of
Oi such thatsi containssj . A shifted boxsi containsa shifted boxsj if and only if, for
all dimensionsd ∈ DIMS, (1) the start ofsi in dimensiond is strictly less than the start
of sj in dimensiond and (2) the end ofsj in dimensiond is strictly less than the end of
si in dimensiond.

Example

2, {0, 1},
〈

oid− 1 sid− 1 x− 〈1, 1〉 ,
oid− 2 sid− 2 x− 〈2, 2〉 ,
oid− 3 sid− 3 x− 〈3, 3〉

〉

,

〈

sid− 1 t− 〈0, 0〉 l− 〈5, 5〉 ,
sid− 2 t− 〈0, 0〉 l− 〈3, 3〉 ,
sid− 3 t− 〈0, 0〉 l− 〈1, 1〉

〉

Figure 5.157 shows the objects of the example. SinceO1 contains bothO2 and
O3, and sinceO2 containsO3, thecontains sboxes constraint holds.

S1

S2

first object
(A) Shape of the (B) Shapes of the

1

2 53

contains both O2 and O3, and O2 contains O3
(D) Three objects O1, O2 and O3, where O1

S3

41

second object
(C) Shape of the

third object

6

5

4

3

2

O1

O3

O2

Figure 5.157: The three objects of the example

Typical |OBJECTS| > 1

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

756 LOGIC

Symmetries • Items ofSBOXES arepermutable.

• Items ofOBJECTS.x, SBOXES.t andSBOXES.l arepermutable(same permutation
used).

Arg. properties
Suffix-contractiblewrt. OBJECTS.

Remark One of the eight relations of theRegion Connection Calculus[318]. The constraint
contains sboxes is a restriction of the original relation since it requires that each shifted
box of an object is contained by one shifted box of the other object.

See also common keyword: coveredby sboxes, covers sboxes,
disjoint sboxes, equal sboxes, inside sboxes, meet sboxes (rcc8),
non overlap sboxes (geometrical constraint,logic), overlap sboxes (rcc8).

Keywords constraint type: logic.

geometry:geometrical constraint, rcc8.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20070622 757

Logic
• origin(O1, S1, D)

def
= O1.x(D) + S1.t(D)

• end(O1, S1, D)
def
= O1.x(D) + S1.t(D) + S1.l(D)

• contains sboxes(Dims, O1, S1, O2, S2)
def
=

∀D ∈ Dims

∧

origin(O1, S1, D) <
origin(O2, S2, D)

,

end(O2, S2, D) <
end(O1, S1, D)

• contains objects(Dims, O1, O2)
def
=

∀S1 ∈ sboxes([O1.sid])
∃S2 ∈ sboxes

([

O2.sid
])

contains sboxes

Dims,
O1,
S1,
O2,
S2

• all contains(Dims, OIDS)
def
=

∀O1 ∈ objects(OIDS)
∀O2 ∈ objects(OIDS)

O1.oid <
O2.oid

⇒

contains objects

Dims,
O1,
O2

• all contains(DIMENSIONS, OIDS)

Logic
Explicit description in terms of first order logic formulae of the meaning of the constraint.

758 NARC,PRODUCT

5.82 correspondence

DESCRIPTION LINKS GRAPH

Origin Derived fromsort permutation by removing the sorting condition.

Constraint correspondence(FROM, PERMUTATION, TO)

Arguments FROM : collection(from−dvar)
PERMUTATION : collection(var−dvar)
TO : collection(tvar−dvar)

Restrictions |PERMUTATION| = |FROM|
|PERMUTATION| = |TO|
PERMUTATION.var ≥ 1
PERMUTATION.var ≤ |PERMUTATION|
alldifferent(PERMUTATION)
required(FROM, from)
required(PERMUTATION, var)
required(TO, tvar)

Purpose
The variables of collectionFROM correspond to the variables of collectionTO according to
the permutationPERMUTATION (i.e.,FROM[i].from = TO[PERMUTATION[i].var].tvar).

Example

〈

from− 1,
from− 9,
from− 1,
from− 5,
from− 2,
from− 1

〉

,

〈

var− 6,
var− 1,
var− 3,
var− 5,
var− 4,
var− 2

〉

,

〈

tvar− 9,
tvar− 1,
tvar− 1,
tvar− 2,
tvar− 5,
tvar− 1

〉

As illustrated by Figure5.158, thecorrespondence constraint holds since:

• The first item FROM[1].from = 1 of collection FROM corresponds to the
PERMUTATION[1].var = 6th item of collectionTO.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20030820 759

• The second itemFROM[2].from = 9 of collection FROM corresponds to the
PERMUTATION[2].var = 1th item of collectionTO.

• The third item FROM[3].from = 1 of collection FROM corresponds to the
PERMUTATION[3].var = 3th item of collectionTO.

• The fourth item FROM[4].from = 5 of collection FROM corresponds to the
PERMUTATION[4].var = 5th item of collectionTO.

• The fifth item FROM[5].from = 2 of collection FROM corresponds to the
PERMUTATION[5].var = 4th item of collectionTO.

• The sixth item FROM[6].from = 1 of collection FROM corresponds to the
PERMUTATION[6].var = 2th item of collectionTO.

PERMUTATION

1

9

1

5

2

1

6

1

3

5

4

2

9

1

1

2

5

1

TOFROM

Figure 5.158: Illustration of the correspondence between the items of theFROM and the
TO collections according to the permutation defined by the items of thePERMUTATION
collection

Typical |FROM| > 1
range(FROM.from) > 1

Symmetry All occurrences of two distinct values inFROM.from or TO.tvar can beswapped; all
occurrences of a value inFROM.from or TO.tvar can berenamedto any unused value.

Remark Similar to thesame constraint except that we also provide the permutation that allows to
go from the items of collectionFROM to the items of collectionTO.

See also implied by: sort permutation.

specialisation:same (PERMUTATION parameter removed).

Keywords characteristic of a constraint: derived collection.

combinatorial object: permutation.

constraint arguments:constraint between three collections of variables.

final graph structure: acyclic, bipartite, no loop.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

760 NARC,PRODUCT

Derived Collection

col

(

FROM PERMUTATION−collection(from−dvar, var−dvar),
[item(from− FROM.from, var− PERMUTATION.var)]

)

Arc input(s) FROM PERMUTATION TO

Arc generator PRODUCT 7→collection(from permutation, to)

Arc arity 2

Arc constraint(s) • from permutation.from = to.tvar
• from permutation.var = to.key

Graph property(ies) NARC= |PERMUTATION|
Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model Parts (A) and (B) of Figure5.159respectively show the initial and final graph associated
with theExampleslot. In both graphs the source vertices correspond to the derived collec-
tion FROM PERMUTATION, while the sink vertices correspond to the collectionTO. Since the
final graph contains exactly|PERMUTATION| arcs thecorrespondence constraint holds.
As we use theNARC graph property, the arcs of the final graph are stressed in bold.

Signature Because of the second conditionfrom permutation.var = to.key of the arc constraint
and since both, thevar attributes of the collectionFROM PERMUTATION and thekey at-
tributes of the collectionTO are all-distinct, the final graph contains at most|PERMUTATION|
arcs. Therefore we can rewrite the graph propertyNARC = |PERMUTATION| to NARC

≥ |PERMUTATION|. This leads to simplifyNARC toNARC.

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 761

(A)

FROM_PERMUTATION

TO

1

1234 56

2 3456

(B) NARC=6

1:1,6

6:1

2:9,1

1:9

3:1,3

3:1

4:5,5

5:5

5:2,4

4:2

6:1,2

2:1

Figure 5.159: Initial and final graph of thecorrespondence constraint

762 NARC,SELF ; AUTOMATON

5.83 count

DESCRIPTION LINKS GRAPH AUTOMATON

Origin [94]

Constraint count(VALUE, VARIABLES, RELOP, LIMIT)

Synonyms occurencemax, occurencemin, occurrence.

Arguments VALUE : int

VARIABLES : collection(var−dvar)
RELOP : atom

LIMIT : dvar

Restrictions required(VARIABLES, var)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose LetN be the number of variables of theVARIABLES collection assigned to valueVALUE;
Enforce conditionN RELOP LIMIT to hold.

Example
(

5, 〈4, 5, 5, 4, 5〉 ,≥, 2
)

The count constraint holds since valueVALUE = 5 occurs3 times within the items
of the collectionVARIABLES = 〈4, 5, 5, 4, 5〉, which is greater than or equal to (RELOP is
set to≥) LIMIT = 2.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
RELOP ∈ [=, <,≥, >,≤]
LIMIT > 0
LIMIT < |VARIABLES|

Symmetries • Items ofVARIABLES arepermutable.

• An occurrence of a value ofVARIABLES.var that is different fromVALUE can be
replacedby any other value that is also different fromVALUE.

Arg. properties
• Contractiblewrt. VARIABLES whenRELOP ∈ [<,≤].

• Extensiblewrt. VARIABLES whenRELOP ∈ [≥, >].

• Aggregate: VALUE(id), VARIABLES(union), RELOP(id), LIMIT(+) when
RELOP ∈ [<,≤,≥, >].

Remark Similar to theamong constraint. Both, inJaCoP (http://www.jacop.eu/) and in
MiniZinc (http://www.g12.cs.mu.oz.au/minizinc/) RELOP is implicitly set to=.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.jacop.eu/
http://www.g12.cs.mu.oz.au/minizinc/

20000128 763

Reformulation The count(VALUE, VARIABLES, RELOP , LIMIT) constraint can be expressed in term of
the conjunctionamong(N, VARIABLES, 〈VALUE〉) ∧ N RELOP LIMIT.

Systems occurence in Choco, count in Gecode, count in JaCoP, count in MiniZinc ,
count in SICStus.

See also assignment dimension added: assign and counts (variable=VALUE replaced by
variable ∈ VALUES andassignment dimensionintroduced).

common keyword: among (value constraint,counting constraint),
arith (value constraint), compare and count (counting constraint),
global cardinality, max nvalue, min nvalue (value constraint,counting constraint),
nvalue (counting constraint).

generalisation:counts (variable=VALUE replaced byvariable ∈ VALUES).

related: roots.

used in reformulation: among.

Keywords characteristic of a constraint: automaton, automaton with counters.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: value constraint, counting constraint.

filtering: arc-consistency.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntCount.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/Count.html
http://www.jacop.eu/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#count
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

764 NARC,SELF ; AUTOMATON

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUE

Graph property(ies) NARC RELOP LIMIT

Graph model Parts (A) and (B) of Figure5.160respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the loops of the final
graph are stressed in bold.

VARIABLES

12345

NARC=3

2:5 3:5 5:5

(A) (B)

Figure 5.160: Initial and final graph of thecount constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 765

Automaton Figure5.161depicts the automaton associated with thecount constraint. To each variable
VARi of the collectionVARIABLES corresponds a0-1 signature variableSi. The following
signature constraint linksVARi andSi: VARi = VALUE ⇔ Si.

{C=0}

i
VAR = VALUEi
{C=C+1} C RELOP LIMIT

s:
VAR <> VALUE

Figure 5.161: Automaton of thecount constraint

Q =s

C =00

Q =s0

Sn

VAR
n

S2

VAR
2

Q1

S1

VAR
1

C1 C RELOP LIMITn

n

Figure 5.162: Hypergraph of the reformulation corresponding to the automaton of the
count constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

766 NARC,PRODUCT ; AUTOMATON

5.84 counts

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromcount.

Constraint counts(VALUES, VARIABLES, RELOP, LIMIT)

Arguments VALUES : collection(val−int)
VARIABLES : collection(var−dvar)
RELOP : atom

LIMIT : dvar

Restrictions required(VALUES, val)
distinct(VALUES, val)
required(VARIABLES, var)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose LetN be the number of variables of theVARIABLES collection assigned to a value of the
VALUES collection. Enforce conditionN RELOP LIMIT to hold.

Example

〈1, 3, 4, 9〉 ,

〈

var− 4,
var− 5,
var− 5,
var− 4,
var− 1,
var− 5

〉

,=, 3

Values 1, 3, 4 and 9 of the VALUES collection are assigned to3 items of the
VARIABLES = 〈4, 5, 5, 4, 1, 5〉 collection. Thecounts constraint holds since this
number is in fact equal (RELOP is set to=) to the last argument of thecounts constraint.

Typical |VALUES| > 1
|VARIABLES| > 1
range(VARIABLES.var) > 1
|VARIABLES| > |VALUES|
RELOP ∈ [=, <,≥, >,≤]
LIMIT > 0
LIMIT < |VARIABLES|

Symmetries • Items ofVALUES arepermutable.

• Items ofVARIABLES arepermutable.

• An occurrence of a value ofVARIABLES.var that belongs toVALUES.val (resp.
does not belong toVALUES.val) can bereplacedby any other value inVALUES.val
(resp. not inVALUES.val).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20030820 767

Arg. properties
• Contractiblewrt. VARIABLES whenRELOP ∈ [<,≤].

• Extensiblewrt. VARIABLES whenRELOP ∈ [≥, >].

• Aggregate: VALUES(sunion), VARIABLES(union), RELOP(id), LIMIT(+) when
RELOP ∈ [<,≤,≥, >].

Usage Used in the Constraint(s) on sets slot for defining some constraints like
assign and counts.

Reformulation Thecount(VALUES, VARIABLES, RELOP , LIMIT) constraint can be expressed in term of
the conjunctionamong(N, VARIABLES, VALUES) ∧ N RELOP LIMIT.

Systems count in Gecode.

Used in assign and counts.

See also assignment dimension added:assign and counts (assignment dimensionintroduced).

common keyword:among (value constraint,counting constraint).

specialisation:count (variable ∈ VALUES replaced byvariable=VALUE).

Keywords characteristic of a constraint: automaton, automaton with counters.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: value constraint, counting constraint.

filtering: arc-consistency.

final graph structure: acyclic, bipartite, no loop.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntCount.html
http://www.gecode.org/

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

768 NARC,PRODUCT ; AUTOMATON

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) NARC RELOP LIMIT

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model Because of the arc constraintvariables.var = values.val and since each domain vari-
able can take at most one value,NARC is the number of variables taking a value in the
VALUES collection.

Parts (A) and (B) of Figure5.163respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

VARIABLES

VALUES

1

1234

2 3456

NARC=3

1:4

3:4

4:4 5:1

1:1

(A) (B)

Figure 5.163: Initial and final graph of thecounts constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 769

Automaton Figure5.164depicts the automaton associated with thecounts constraint. To each vari-
ableVARi of the collectionVARIABLES corresponds a0-1 signature variableSi. The fol-
lowing signature constraint linksVARi andSi: VARi ∈ VALUES ⇔ Si.

C RELOP LIMIT
not_in(VAR ,VALUES)

{C=0}

{C=C+1}
iin(VAR ,VALUES), s:

i

Figure 5.164: Automaton of thecounts constraint

n

C

1
VAR

1S

1Q

2
VAR

2S

n
VAR

nS

0Q =s

0C =0
nC RELOP LIMIT

Q =s

1

Figure 5.165: Hypergraph of the reformulation corresponding to the automaton of the
counts constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

770 LOGIC

5.85 coveredbysboxes

DESCRIPTION LINKS LOGIC

Origin Geometry, derived from [318]

Constraint coveredby sboxes(K, DIMS, OBJECTS, SBOXES)

Synonym coveredby.

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)

Arguments K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−int, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− POSITIVES)

Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
K > 0
DIMS ≥ 0
DIMS < K

increasing seq(OBJECTS, [oid])
required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
required(SBOXES, [sid, t, l])
|SBOXES| ≥ 1
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
do not overlap(SBOXES)

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

20070622 771

Purpose

Holds if, for each pair of objects(Oi, Oj), i < j, Oi is covered byOj with respect to a
set of dimensions depicted byDIMS. Oi andOj are objects that take a shape among a set
of shapes. Eachshapeis defined as a finite set of shifted boxes, where each shifted box
is described by a box in aK-dimensional space at a given offset (from the origin of the
shape) with given sizes. More precisely, ashifted boxis an entity defined by its shape
id sid, shift offsett, and sizesl. Then, a shape is defined as the union of shifted boxes
sharing the same shape id. Anobject is an entity defined by its unique object identifier
oid, shape idsid and originx.
An objectOi is covered byan objectOj with respect to a set of dimensions depicted by
DIMS if and only if, for all shifted boxsi of Oi, there exists a shifted boxsj of Oj such
that:

• For all dimensionsd ∈ DIMS, (1) the start ofsj in dimensiond is less than or
equal to the start ofsi in dimensiond, and (2) the end ofsi in dimensiond is less
than or equal to the end ofsj in dimensiond.

• There exists a dimensiond where, (1) the start ofsj in dimensiond coincide with
the start ofsi in dimensiond, or (2) the end ofsj in dimensiond coincide with
the end ofsi in dimensiond.

Example

2, {0, 1},
〈

oid− 1 sid− 4 x− 〈2, 3〉 ,
oid− 2 sid− 2 x− 〈2, 2〉 ,
oid− 3 sid− 1 x− 〈1, 1〉

〉

,

〈

sid− 1 t− 〈0, 0〉 l− 〈3, 3〉 ,
sid− 1 t− 〈3, 0〉 l− 〈2, 2〉 ,
sid− 2 t− 〈0, 0〉 l− 〈2, 2〉 ,
sid− 2 t− 〈2, 0〉 l− 〈1, 1〉 ,
sid− 3 t− 〈0, 0〉 l− 〈2, 2〉 ,
sid− 3 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 4 t− 〈0, 0〉 l− 〈1, 1〉

〉

Figure 5.166 shows the objects of the example. SinceO1 is covered by bothO2

andO3, and sinceO2 is covered byO3, thecoveredby sboxes constraint holds.

Typical |OBJECTS| > 1

Symmetries • Items ofSBOXES arepermutable.

• Items ofOBJECTS.x, SBOXES.t andSBOXES.l arepermutable(same permutation
used).

Remark One of the eight relations of theRegion Connection Calculus[318]. The constraint
coveredby sboxes is a restriction of the original relation since it requires that each shifted
box of an object is covered by one shifted box of the other object.

See also common keyword: contains sboxes, covers sboxes,
disjoint sboxes, equal sboxes, inside sboxes, meet sboxes (rcc8),
non overlap sboxes (geometrical constraint,logic), overlap sboxes (rcc8).

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

772 LOGIC

Keywords constraint type: logic.

geometry:geometrical constraint, rcc8.

Keywords
Related keywords grouped by meta-keywords.

20070622 773

first object

5321

1

(D) Three objects O1, O2 and O3,

4

2

3

4

second object
(B) Shapes of the

S2

(A) Shape of the

and O2 is covered by O3
where O1 is covered by both O2 and O3,

S1
S4

S3

(C) Shape of the
third object

O3 O1

O2

Figure 5.166: The three objects of the example

774 LOGIC

Logic
• origin(O1, S1, D)

def
= O1.x(D) + S1.t(D)

• end(O1, S1, D)
def
= O1.x(D) + S1.t(D) + S1.l(D)

• coveredby sboxes(Dims, O1, S1, O2, S2)
def
=

∧

∀D ∈ Dims

∧

origin

O2,
S2,
D

 ≤

origin

O1,
S1,
D

,

end(O1, S1, D) ≤
end(O2, S2, D)

,

∃D ∈ Dims

∨

origin

O2,
S2,
D

 =

origin

O1,
S1,
D

,

end(O1, S1, D) =
end(O2, S2, D)

• coveredby objects(Dims, O1, O2)
def
=

∀S1 ∈ sboxes([O1.sid])
∃S2 ∈ sboxes

([

O2.sid
])

coveredby sboxes

Dims,
O1,
S1,
O2,
S2

• all coveredby(Dims, OIDS)
def
=

∀O1 ∈ objects(OIDS)
∀O2 ∈ objects(OIDS)

O1.oid <
O2.oid

⇒

coveredby objects

Dims,
O1,
O2

• all coveredby(DIMENSIONS, OIDS)

Logic
Explicit description in terms of first order logic formulae of the meaning of the constraint.

20070622 775

776 LOGIC

5.86 coverssboxes

DESCRIPTION LINKS LOGIC

Origin Geometry, derived from [318]

Constraint covers sboxes(K, DIMS, OBJECTS, SBOXES)

Synonym covers.

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)

Arguments K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−int, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− POSITIVES)

Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
K > 0
DIMS ≥ 0
DIMS < K

increasing seq(OBJECTS, [oid])
required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
|SBOXES| ≥ 1
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
do not overlap(SBOXES)

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

20070622 777

Purpose

Holds if, for each pair of objects(Oi, Oj), i < j, Oi coversOj with respect to a set
of dimensions depicted byDIMS. Oi andOj are objects that take a shape among a set
of shapes. Eachshapeis defined as a finite set of shifted boxes, where each shifted box
is described by a box in aK-dimensional space at a given offset (from the origin of the
shape) with given sizes. More precisely, ashifted boxis an entity defined by its shape
id sid, shift offsett, and sizesl. Then, a shape is defined as the union of shifted boxes
sharing the same shape id. Anobject is an entity defined by its unique object identifier
oid, shape idsid and originx.
An objectOi coversan objectOj with respect to a set of dimensions depicted byDIMS

if and only if, for all shifted boxsj of Oj , there exists a shifted boxsi of Oi such that:

• For all dimensionsd ∈ DIMS, (1) the start ofsi in dimensiond is less than or
equal to the start ofsj in dimensiond, and (2) the end ofsj in dimensiond is less
than or equal to the end ofsi in dimensiond.

• There exists a dimensiond where, (1) the start ofsi in dimensiond coincide with
the start ofsj in dimensiond, or (2) the end ofsi in dimensiond coincide with
the end ofsj in dimensiond.

Example

2, {0, 1},
〈

oid− 1 sid− 1 x− 〈1, 1〉 ,
oid− 2 sid− 2 x− 〈2, 2〉 ,
oid− 3 sid− 4 x− 〈2, 3〉

〉

,

〈

sid− 1 t− 〈0, 0〉 l− 〈3, 3〉 ,
sid− 1 t− 〈3, 0〉 l− 〈2, 2〉 ,
sid− 2 t− 〈0, 0〉 l− 〈2, 2〉 ,
sid− 2 t− 〈2, 0〉 l− 〈1, 1〉 ,
sid− 3 t− 〈0, 0〉 l− 〈2, 2〉 ,
sid− 3 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 4 t− 〈0, 0〉 l− 〈1, 1〉

〉

Figure 5.167 shows the objects of the example. SinceO1 covers bothO2 and O3,
and sinceO2 coversO3, thecovers sboxes constraint holds.

Typical |OBJECTS| > 1

Symmetries • Items ofSBOXES arepermutable.

• Items ofOBJECTS.x, SBOXES.t andSBOXES.l arepermutable(same permutation
used).

Arg. properties
Suffix-contractiblewrt. OBJECTS.

Remark One of the eight relations of theRegion Connection Calculus[318]. The constraint
covers sboxes is a relaxation of the original relation since it requires that each shifted
box of an object is covered by one shifted box of the other object.

See also common keyword: contains sboxes, coveredby sboxes,
disjoint sboxes, equal sboxes, inside sboxes, meet sboxes (rcc8),
non overlap sboxes (geometrical constraint,logic), overlap sboxes (rcc8).

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

778 LOGIC

Keywords constraint type: logic.

geometry:geometrical constraint, rcc8.

Keywords
Related keywords grouped by meta-keywords.

20070622 779

1 2 3 5

S3

covers both O2 and O3, and O2 covers O3
(D) Three objects O1, O2 and O3, where O1

S1
S2

S4

first object
(A) Shape of the (B) Shapes of the

second object
(C) Shape of the

third object

4

3

2

4

1

O2

O3O1

Figure 5.167: The three objects of the example

780 LOGIC

Logic
• origin(O1, S1, D)

def
= O1.x(D) + S1.t(D)

• end(O1, S1, D)
def
= O1.x(D) + S1.t(D) + S1.l(D)

• covers sboxes(Dims, O1, S1, O2, S2)
def
=

∧

∀D ∈ Dims

∧

origin(O1, S1, D) ≤
origin(O2, S2, D)

,

end(O2, S2, D) ≤
end(O1, S1, D)

,

∃D ∈ Dims

∨

origin(O1, S1, D) =
origin(O2, S2, D)

,

end(O1, S1, D) =
end(O2, S2, D)

• covers objects(Dims, O1, O2)
def
=

∀S2 ∈ sboxes([O2.sid])
∃S1 ∈ sboxes

([

O1.sid
])

covers sboxes

Dims,
O1,
S1,
O2,
S2

• all covers(Dims, OIDS)
def
=

∀O1 ∈ objects(OIDS)
∀O2 ∈ objects(OIDS)

O1.oid <
O2.oid

⇒

covers objects

Dims,
O1,
O2

• all covers(DIMENSIONS, OIDS)

Logic
Explicit description in terms of first order logic formulae of the meaning of the constraint.

20070622 781

782 NARC,CLIQUE(<)

5.87 crossing

DESCRIPTION LINKS GRAPH

Origin Inspired by [115].

Constraint crossing(NCROSS, SEGMENTS)

Arguments NCROSS : dvar

SEGMENTS : collection(ox−dvar, oy−dvar, ex−dvar, ey−dvar)

Restrictions NCROSS ≥ 0
NCROSS ≤ (|SEGMENTS| ∗ |SEGMENTS| − |SEGMENTS|)/2
required(SEGMENTS, [ox, oy, ex, ey])

Purpose
NCROSS is the number of line-segments intersections between the line-segments defined
by theSEGMENTS collection. Each line-segment is defined by the coordinates(ox, oy)
and(ex, ey) of its two extremities.

Example

3,

〈
ox− 1 oy− 4 ex− 9 ey− 2,
ox− 1 oy− 1 ex− 3 ey− 5,
ox− 3 oy− 2 ex− 7 ey− 4,
ox− 9 oy− 1 ex− 9 ey− 4

〉

Figure5.168provides a picture of the example with the corresponding four line-segments
of the SEGMENTS collection. Thecrossing constraint holds since its first argument
NCROSS is set to3, which is actually the number of line-segments intersections.

S1
1

2

3

4

5

1 2 3 4 5 6 7 8 9

S3

S2

S4

Figure 5.168: Intersection between line-segments

Typical |SEGMENTS| > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

20000128 783

Symmetries • Items ofSEGMENTS arepermutable.

• Attributes ofSEGMENTS arepermutablew.r.t. permutation(ox, oy) (ex, ey) (per-
mutation applied to all items).

• One and the same constant can beaddedto theox andex attributes of all items of
SEGMENTS.

• One and the same constant can beaddedto theoy andey attributes of all items of
SEGMENTS.

Arg. properties
Functional dependency: NCROSS determined bySEGMENTS.

See also common keyword:graph crossing, two layer edge crossing (line-segments intersection).

Keywords constraint arguments:pure functional dependency.

final graph structure: acyclic, no loop.

geometry:geometrical constraint, line-segments intersection.

modelling: functional dependency.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

784 NARC,CLIQUE(<)

Arc input(s) SEGMENTS

Arc generator CLIQUE (<) 7→collection(s1, s2)

Arc arity 2

Arc constraint(s) • max(s1.ox, s1.ex) ≥ min(s2.ox, s2.ex)
• max(s2.ox, s2.ex) ≥ min(s1.ox, s1.ex)
• max(s1.oy, s1.ey) ≥ min(s2.oy, s2.ey)
• max(s2.oy, s2.ey) ≥ min(s1.oy, s1.ey)

• ∨

(s2.ox− s1.ex) ∗ (s1.ey− s1.oy)−∏

(

s1.ex− s1.ox,
s2.oy− s1.ey

)

= 0,

(s2.ex− s1.ex) ∗ (s2.oy− s1.oy)−∏

(

s2.ox− s1.ox,
s2.ey− s1.ey

)

= 0,

sign

(

(s2.ox− s1.ex) ∗ (s1.ey− s1.oy)−
(s1.ex− s1.ox) ∗ (s2.oy− s1.ey)

)

6=

sign

(

(s2.ex− s1.ex) ∗ (s2.oy− s1.oy)−
(s2.ox− s1.ox) ∗ (s2.ey− s1.ey)

)

Graph property(ies) NARC= NCROSS

Graph class • ACYCLIC

• NO LOOP

Graph model Each line-segment is described by thex andy coordinates of its two extremities. In the
arc generator we use the restriction< in order to generate one single arc for each pair
of segments. This is required, since otherwise we would count more thanonce a given
line-segments intersection.

Parts (A) and (B) of Figure5.169respectively show the initial and final graph associated
with theExampleslot. Since we use theNARC graph property, the arcs of the final graph
are stressed in bold. An arc constraint expresses the fact the two line-segments intersect. It
is taken from [115, page 889]. Each arc of the final graph corresponds to a line-segments
intersection.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 785

SEGMENTS

1

2

3

4

NARC=3

1:1,4,9,2

2:1,1,3,5 3:3,2,7,4 4:9,1,9,4

(A) (B)

Figure 5.169: Initial and final graph of thecrossing constraint

786 NARC,SELF ;PRODUCT , SUCC

5.88 cumulative

DESCRIPTION LINKS GRAPH AUTOMATON

Origin [1]

Constraint cumulative(TASKS, LIMIT)

Synonym cumulative max.

Arguments TASKS : collection

origin−dvar,
duration−dvar,
end−dvar,
height−dvar

LIMIT : int

Restrictions require at least(2, TASKS, [origin, duration, end])
required(TASKS, height)
TASKS.duration ≥ 0
TASKS.origin ≤ TASKS.end
TASKS.height ≥ 0
LIMIT ≥ 0

Purpose

Cumulative scheduling constraint or scheduling under resource constraints. Consider a
setT of tasks described by theTASKS collection. Thecumulative constraint enforces
that at each point in time, the cumulated height of the set of tasks that overlap that point,
does not exceed a given limit. A task overlaps a pointi if and only if (1) its origin is less
than or equal toi, and (2) its end is strictly greater thani. It also imposes for each task
of T the constraintorigin+ duration = end.

Example

〈

origin− 1 duration− 3 end− 4 height− 1,
origin− 2 duration− 9 end− 11 height− 2,
origin− 3 duration− 10 end− 13 height− 1,
origin− 6 duration− 6 end− 12 height− 1,
origin− 7 duration− 2 end− 9 height− 3

〉

, 8

Figure 5.170 shows the cumulated profile associated with the example. To each
task of thecumulative constraint corresponds a set of rectangles coloured with the
same colour: the sum of the lengths of the rectangles corresponds to the duration of
the task, while the height of the rectangles (i.e., all the rectangles associated with a
task have the same height) corresponds to the resource consumption ofthe task. The
cumulative constraint holds since at each point in time we do not have a cumulated
resource consumption strictly greater than the upper limit8 enforced by the last argument
of thecumulative constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20000128 787

Typical |TASKS| > 1
range(TASKS.origin) > 1
range(TASKS.duration) > 1
range(TASKS.end) > 1
range(TASKS.height) > 1
TASKS.duration > 0
TASKS.height > 0
LIMIT <sum(TASKS.height)

Symmetries • Items ofTASKS arepermutable.

• TASKS.duration can bedecreasedto any value≥ 0.

• TASKS.height can bedecreasedto any value≥ 0.

• One and the same constant can beaddedto theorigin andend attributes of all
items ofTASKS.

• LIMIT can beincreased.

Arg. properties
Contractiblewrt. TASKS.

Remark In the originalcumulative constraint ofCHIP theLIMIT parameter was a domain vari-
able corresponding to themaximum peak of the resource consumption profile. Given a fixed
time frame, this variable could be used as a cost in order to directly minimise the maximum
resource consumption peak. Fixing this variable is potentially dangerous since it imposes
the maximum peakto be equal to a given target value.

Some systems like Ilog CP Optimizer also assume that a zero-duration task overlaps a point
i if and only if (1) its origin is less than or equal toi, and (2) its end is greater than or equal
to i. Under this definition, the height of a zero-duration task is also taken into account in
the resource consumption profile.

Note that the concept of cumulative isdifferent from the concept of rectangles
non-overlapping even if, most of the time, each task of a ground solutionof acumulative
constraint is simply drawn as a single rectangle. As illustrated by Figure5.211, this is
in fact not always possible (i.e., some rectangles may need to be broken apart). In fact
the cumulative constraint is only a necessary condition for rectangles non-overlapping

time6 7 8 9 10 11 12

< 9

am
ou

nt
 o

f r
es

ou
rc

e

1

1 4

4

1 2 3 4 5

3

5

3

2

1

Figure 5.170: Resource consumption profile

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.cosytec.com

788 NARC,SELF ;PRODUCT , SUCC

(see Figure5.210and the corresponding explanation in theAlgorithm slot of thediffn
constraint).

In MiniZinc (http://www.g12.cs.mu.oz.au/minizinc/) the tasks ofcumulative
constraint have noend attribute.

Algorithm The first filtering algorithms were related to the notion ofcompulsory partof a task [232].
They compute a cumulated resource profile of all thecompulsory partsof the tasks and
prune the origins of the tasks with respect to this profile in order to not exceed the resource
capacity. These methods are sometimes calledtime tabling. Even if these methods are quite
local, i.e., a task has a non-empty compulsory part only when the difference between its
latest start and its earliest start is strictly less than its duration, it scales well and is therefore
widely used. Later on, more global algorithms4 based on the resource consumption of
the tasks on specific intervals were introduced [141, 98, 246]. A popular variant, called
edge finding, considers only specific intervals [264]. An efficient implementation of edge
finding inO(kn log n), wherek is the number of distinct task heights andn is the number
of tasks, based on a specific data structure, so called acumulativeΦ-tree[410], is provided
in [409]. When the number of distinct task heightsk is not small, a usually almost faster
implementation inO(n2) is described in [212]. A O(n2 log n) filtering algorithm based
on tasks that can not be the earliest (or not be the latest) is described in [354].

Within the context of linear programming, the reference [199] provides a relaxation of the
cumulative constraint.

A necessary condition for thecumulative constraint is obtained by stating a
disjunctive constraint on a subset of tasksT such that, for each pair of tasks ofT ,
the sum of the two corresponding minimum heights is strictly greater thanLIMIT. This can
be done by applying the following procedure:

• Let h be the smallest minimum height strictly greater than⌊ LIMIT

2
⌋ of the tasks of the

cumulative constraint. If no such task exists then the procedure is stopped without
stating anydisjunctive constraint.

• Let Th denote the set of tasks of thecumulative constraint for which the minimum
height is greater than or equal toh. By construction, the tasks ofTh cannot overlap.
But we can eventually add one more task as shown by the next step.

• When it exists, we can add one task that does not belong toTh and such that its
minimum height is strictly greater thanLIMIT− h. Again, by construction, this task
cannot overlap all the tasks ofTh.

When the tasks are involved in severalcumulative constraints more sophisticated meth-
ods are available for extractingdisjunctive constraints [16, 15].

In the context where, both the duration and height of all the tasks are fixed, [35] provides
two kinds of additional filtering algorithms that are specially useful when theslackσ (i.e.,
the difference between the available space and the sum of the surfaces of the tasks) is very
small:

• The first one introduces bounds for the so calledcumulative longest hole problem.
Given an integerǫ that does not exceed the resource limit, and a subset of tasks
T ′ for which the resource consumption is a mostǫ, the cumulative longest hole

4Even if these more global algorithms usually can prune more early in the search tree, these algorithms
do not catch all deductions derived from the cumulated resource profile of compulsory parts.

http://www.g12.cs.mu.oz.au/minizinc/

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

20000128 789

problem is to find the largest integerlmax ǫ
σ(T ′) such that there is a cumulative

placement of maximum heightǫ involving a subset of tasks ofT ′ where, on one
interval[i, i+ lmax ǫ

σ(T ′)−1] of the cumulative profile, the area of the empty space
does not exceedσ.

• The second one useddynamic programmingfor filtering so calledbalancing knap-
sack constraints. When the slack is0, such constraints express that the total height
of tasks ending at instanti must equal the total height of tasks starting at instanti.
Such constraints can be generalized to non-zero slack.

Systems cumulativeMax in Choco, cumulative in Gecode, cumulative in JaCoP,
cumulative in MiniZinc , cumulative in SICStus.

See also assignment dimension added:coloured cumulatives (sum oftask heights replaced
by number of distinctcolours, assignment dimensionadded), cumulatives (negative
heights allowed andassignment dimensionadded).

common keyword: calendar (scheduling constraint),
coloured cumulative (resource constraint, sum of task heights replaced
by number of distinct values), coloured cumulatives (resource constraint),
cumulative convex (resource constraint, task defined by a set ofpoints),
cumulative product (resource constraint, sum oftask heights replaced by product
of task heights), cumulative with level of priority (resource constraint, a
cumulative constraint for each set oftasks having a priority less than or equal to a
given threshold).

generalisation:cumulative two d (task replaced byrectangle with aheight).

implied by: diffn (cumulative is a neccessary condition for each dimension of the
diffn constraint).

implies: coloured cumulative.

related: lex chain less, lex chain lesseq (lexicographic ordering on the origins of
tasks, rectangles, . . .), ordered global cardinality (controlling the shape of the
cumulative profile for breaking symmetry).

soft variant: soft cumulative.

specialisation:atmost (task replaced byvariable), bin packing (all tasks have a
duration of 1 and a fixedheight), disjunctive (all tasks have aheight of 1),
multi inter distance (all tasks have the sameduration equal toDIST and the same
height equal to1).

used in graph description:sum ctr.

Keywords characteristic of a constraint: core, automaton, automaton with array of counters.

complexity: sequencing with release times and deadlines.

constraint type: scheduling constraint, resource constraint, temporal constraint.

filtering: linear programming, dynamic programming, compulsory part,
cumulative longest hole problems, Phi-tree.

modelling: zero-duration task.

problems: producer-consumer.

puzzles:squared squares.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntScheduling.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/Cumulative.html
http://www.jacop.eu/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#cumulative
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

790 NARC,SELF ;PRODUCT , SUCC

Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin+ tasks.duration = tasks.end

Graph property(ies) NARC= |TASKS|

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.duration > 0
• tasks2.origin ≤ tasks1.origin
• tasks1.origin < tasks2.end

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Sets SUCC 7→

source,

variables− col

(

VARIABLES−collection(var−dvar),
[item(var− TASKS.height)]

)

Constraint(s) on sets sum ctr(variables,≤, LIMIT)

Graph model The first graph constraint enforces for each task the link between its origin, its duration and
its end. The second graph constraint makes sure, for each time pointt corresponding to
the start of a task, that the cumulated heights of the tasks that overlapt does not exceed the
limit of the resource.

Parts (A) and (B) of Figure5.171respectively show the initial and final graph associated
with the second graph constraint of theExampleslot. On the one hand, each source vertex
of the final graph can be interpreted as a time point. On the other hand the successors of
a source vertex correspond to those tasks that overlap that time point. The cumulative

constraint holds since for each successor setS of the final graph the sum of the heights of
the tasks inS does not exceed the limitLIMIT = 8.

Signature SinceTASKS is the maximum number of vertices of the final graph of the first graph con-
straint we can rewriteNARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify
NARC to NARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20000128 791

(A)

TASKS

TASKS

1

12 345

2345

(B)

TASKS

TASKS

1:1,3,4,1

1:1,3,4,1

2:2,9,11,2

2:2,9,11,2

3:3,10,13,1

3:3,10,13,1

4:6,6,12,1

4:6,6,12,1

5:7,2,9,3

5:7,2,9,3

Figure 5.171: Initial and final graph of thecumulative constraint

792 NARC,SELF ;PRODUCT , SUCC

Automaton Figure5.172depicts the automaton associated with thecumulative constraint. To each
item of the collectionTASKS corresponds a signature variableSi that is equal to1.

arith_sliding(C,<=,LIMIT)

i i i

{C[ORI]=C[ORI]+HEIGHT ,i i i

1,

{C[_]=0}

s:

{C[END]=C[END]−HEIGHT }

Figure 5.172: Automaton of thecumulative constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20000128 793

794 NARC,SELF ;PRODUCT , SUCC

5.89 cumulativeconvex

DESCRIPTION LINKS GRAPH

Origin Derived fromcumulative

Constraint cumulative convex(TASKS, LIMIT)

Type POINTS : collection(var−dvar)

Arguments TASKS : collection(points− POINTS, height−dvar)
LIMIT : int

Restrictions required(POINTS, var)
|POINTS| > 0
required(TASKS, [points, height])
TASKS.height ≥ 0
LIMIT ≥ 0

Purpose

Cumulative scheduling constraint or scheduling under resource constraints. Consider a
setT of tasks described by theTASKS collection where each task is defined by:

• A set of distinct pointsdepicting the time interval where the task is actually run-
ning: the smallest and largest coordinates of these points respectively give the
first and last instant of that time interval.

• A height that depicts the resource consumption used by the task from its first
instant to its last instant.

Thecumulative convex constraint enforces that, at each point in time, the cumulated
height of the set of tasks that overlap that point, does not exceed a given limit. A task
overlaps a pointi if and only if (1) its origin is less than or equal toi, and (2) its end is
strictly greater thani.

Example

〈

points− 〈2, 1, 5〉 height− 1,
points− 〈4, 5, 7〉 height− 2,

points−
〈

var− 14,
var− 13,
var− 9,
var− 11,
var− 10

〉

height− 2

〉

, 3

Figure 5.173 shows the cumulated profile associated with the example. To each set
of points defining a task corresponds a rectangle. The height of each rectangle represents
the resource consumption of the associated task. Thecumulative convex constraint
holds since at each point in time we do not have a cumulated resource consumption strictly
greater than the upper limit3 enforced by the last argument of thecumulative convex

constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20050817 795

Typical |TASKS| > 1
TASKS.height > 0
LIMIT <sum(TASKS.height)

Symmetries • Items ofTASKS arepermutable.

• Items ofTASKS.points arepermutable.

• TASKS.height can bedecreasedto any value≥ 0.

• LIMIT can beincreased.

Arg. properties
Contractiblewrt. TASKS.

Usage A natural use of thecumulative convex constraint corresponds to problems where a task
is defined as the convex hull of a set of distinct pointsP1, . . . , Pn that are not initially
fixed. Note that, by explicitly introducing a startS and an endE variables, and by using a
minimum(S, 〈var− P1, . . . , var− Pn〉) and amaximum(E, 〈var− P1, . . . , var− Pn〉)
constraints, one could replace thecumulative convex constraint by acumulative con-
straint. However this hinders propagation.

As a concrete example of use of thecumulative convex constraint we present a
constraint model for a well-known pattern-sequencing problem [153] (also known to
be equivalent to the graph pathwidth [244] problem) that is based on one single
cumulative convex constraint. Thepattern sequencing problemcan be described as
follows: Given a0-1 matrix in which each columnj (1 ≤ j ≤ p) corresponds to a prod-
uct required by the customers and each rowi (1 ≤ i ≤ c) corresponds to the order of a
particular customer (The entrycij is equal to1 if and only if customeri has ordered some
quantity of productj.), the objective is to find a permutation of the products such that the
maximum number of open orders at any point in the sequence is minimised. Orderi is open
at pointk in the production sequence if there is a product required in orderi that appears
at or before positionk in the sequence and also a product that appears at or after positionk
in the sequence.

Before giving the constraint model, let us first provide an instance of the pattern-sequencing
problem. Consider the matrixM1 depicted by part (A1) of Fig.5.174. Part (A2) gives its
correspondingcumulatedmatrix M2 obtained by setting to1 each0 of M1 that is both
preceded and followed by a1. Part (A3) depicts the corresponding solution in term of
the cumulative convex constraint: to each row of the matrixM1 corresponds a task

am
ou

nt
 o

f r
es

ou
rc

e

6 7 8 9 10 11 12 13 14 15 time

< 4

21 3 4 5

1

0

2
3

Figure 5.173: Points, tasks and corresponding resource consumption profile

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

796 NARC,SELF ;PRODUCT , SUCC

498765

10

10

1
0
1

0
1
0

0
0000

00000
1

1
11111

2
PPPPPP

3PPP

1 498765

00
0

2
PPPPPP

3PPP
1

11
11

0
0000
0000

11
1

1111111

1 4987652
PPPPPP

3PPP

0
000000
000000

00

111
11

1111111

1 2 9
P

8
P

7
P

6
P

5
P

4
P

3PPP

1 2 9
P

8
P

7
P

6
P

5
P

4
P

3PPP
11

11
11

0
0000
0000

111
11

1111111

1 2 9
P

8
P

7
P

6
P

5
P

4
P

3PPP

(A4)

(A3)

1

(B1)

(B2)

(B3)

(B4)

(A2)

(A1)

Figure 5.174: An input matrix for the pattern sequencing problem (A1), its correspond-
ing cumulated matrix (A2), a view in term of tasks (A3) and thecorresponding cumu-
lative profile (A4). A second matrix (A2) where column 4 of (A1) is put at rightmost
position

20050817 797

defined as the convex hull of the different1 located on that row. Finally part (A4) gives
the cumulated profile associated with part (A3), namely the number of1 in each column
of M2. The cost3 of this solution is equal to the maximum number of1 in the columns
of thecumulatedmatrixM2. As shown by parts (B1-B4), we can get a lower cost of2 by
pushing the fourth column to the rightmost position.

The idea of the model is to associate to each row (i.e., customer)i of thecumulatedmatrix
a stack taskthat starts at the first1 on row i and ends at the last1 of row i (i.e., the task
corresponds to the convex hull of the different1 located on rowi). Then the cost of a
solution is simply the maximum height on the corresponding cumulated profile.

For each columnj of the 0-1 matrix initially given there is a variableVj ranging from
1 to the number of columnsp. The value ofVj gives the position of columnj in a so-
lution. We put all the stack tasks in acumulative convex constraint, telling that each
stack task uses one unit of the resource during all it execution. Since wewant to have the
same model for different limits on the maximum number of open stacks, and since all vari-
ablesV1, V2, . . . , Vp have to be distinct, we have an extra dummy task characterised as the
convex hull ofV1, V2, . . . , Vp. This extra dummy task has a heightH that has to be max-
imised. For the matrix depicted by (A1) of Fig.5.174we pass to thecumulative convex

constraint the following collection of tasks:

〈
points− 〈P1, P2, P3, P4, P6, P7, P9〉 height− 1,
points− 〈P2, P5〉 height− 1,
points− 〈P4, P7, P8〉 height− 1,
points− 〈P1, P2, P3, P4, P5, P6, P7, P8, P9〉 height− 0

〉

Algorithm A first natural way to handle thecumulative convex constraint is to accumulate the
compulsory part[232] of the different tasks in a profile and to prune according to this pro-
file. We give the main ideas for computing thecompulsory partof a task and for pruning a
task according to the profile of compulsory parts.

Compulsory part of a task Given a taskT characterised as the convex hull of a set of
distinct pointsP1, P2, . . . , Pk thecompulsory partof T corresponds to the, possibly empty,
interval[sT , eT] where:

• sT is the largest valuev such that, when all variablesP1, P2, . . . , Pk are greater than
or equal tov, all variablesP1, P2, . . . , Pk can still take distinct values.

• eT is the smallest valuev such that, when all variablesP1, P2, . . . , Pk are less than
or equal tov, all variablesP1, P2, . . . , Pk can still take distinct values.

Pruning according to the profile of compulsory parts Given two instantsi andj (i < j)
and a taskT characterised as the convex hull of a set of distinct pointsP1, P2, . . . , Pk, as-
sume thatT cannot overlapi and j since this would lead exceedingLIMIT, the second
argument of thecumulative convex constraint. Furthermore assume that, when all vari-
ablesP1, P2, . . . , Pk are both greater thani and less thanj, all variablesP1, P2, . . . , Pk

cannot take distinct values. Then all values of[i+1, j− 1] can be removed from variables
P1, P2, . . . , Pk.

See also common keyword:cumulative (resource constraint).

used in graph description:alldifferent, between min max, sum ctr.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

798 NARC,SELF ;PRODUCT , SUCC

Keywords characteristic of a constraint: convex.

constraint type: scheduling constraint, resource constraint, temporal constraint.

filtering: compulsory part.

problems: pattern sequencing.

Keywords
Related keywords grouped by meta-keywords.

20050817 799

Derived Collection

col

(

INSTANTS−collection(instant−dvar),
[item(instant− TASKS.points.var)]

)

Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) alldifferent(tasks.points)

Graph property(ies) NARC= |TASKS|

Arc input(s) INSTANTS TASKS

Arc generator PRODUCT 7→collection(instants, tasks)

Arc arity 2

Arc constraint(s) between min max(instants.instant, tasks.points)

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Sets SUCC 7→

source,

variables− col

(

VARIABLES−collection(var−dvar),
[item(var− TASKS.height)]

)

Constraint(s) on sets sum ctr(variables,≤, LIMIT)

Graph model The first graph constraint enforces for each task that the set of points defining its time
interval are all distinct. The second graph constraint makes sure for each time pointt, that
the cumulated heights of the tasks that overlapt does not exceed the limit of the resource.

Parts (A) and (B) of Figure5.175respectively show the initial and final graph associated
with the second graph constraint of theExampleslot. On the one hand, each source vertex
of the final graph can be interpreted as a time point corresponding to a point used in the
definitions of the different tasks. On the other hand, the successors ofa source vertex corre-
spond to those tasks that overlap a given time point. Thecumulative convex constraint
holds since, for each successor setS of the final graph, the sum of the heights of the tasks
in S does not exceed the limitLIMIT = 3.

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

800 NARC,SELF ;PRODUCT , SUCC

(A)

INSTANTS

TASKS

1

1 23

234567 891011

(B)

INSTANTS

TASKS

1:2

1:2
 1
 5

2:13:5

2:4
 5
 7

4:45:56:77:14

3:14
 13
 9

 11
 10

8:139:9 10:1111:10

Figure 5.175: Initial and final graph of thecumulative convex constraint

20050817 801

802 NARC,SELF ;PRODUCT , SUCC

5.90 cumulativeproduct

DESCRIPTION LINKS GRAPH

Origin Derived fromcumulative.

Constraint cumulative product(TASKS, LIMIT)

Arguments TASKS : collection

origin−dvar,
duration−dvar,
end−dvar,
height−dvar

LIMIT : int

Restrictions require at least(2, TASKS, [origin, duration, end])
required(TASKS, height)
TASKS.duration ≥ 0
TASKS.origin ≤ TASKS.end
TASKS.height ≥ 1
LIMIT ≥ 0

Purpose

Consider a setT of tasks described by theTASKS collection. Thecumulative product

constraint enforces that at each point in time, the product of the heightsof the set of tasks
that overlap that point, does not exceed a given limit. A task overlaps a point i if and
only if (1) its origin is less than or equal toi, and (2) its end is strictly greater thani. It
also imposes for each task ofT the constraintorigin+ duration = end.

Example

〈

origin− 1 duration− 3 end− 4 height− 1,
origin− 2 duration− 9 end− 11 height− 2,
origin− 3 duration− 10 end− 13 height− 1,
origin− 6 duration− 6 end− 12 height− 1,
origin− 7 duration− 2 end− 9 height− 3

〉

, 6

Figure 5.176 shows the solution associated with the example. To each task of the
cumulative product constraint corresponds a set of rectangles coloured with the same
colour: the sum of the lengths of the rectangles corresponds to the duration of the task,
while the height of the rectangles (i.e., all the rectangles associated with a task have the
same height) corresponds to the height of the task. The profile corresponding to the
product of the heights of the tasks that overlap a given point is depicted by a thick red
line. Thecumulative product constraint holds since at each point in time the product
of the heights of the tasks that overlap that point is not strictly greater than the upper limit
6 enforced by the last argument of thecumulative product constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20030820 803

Typical |TASKS| > 1
range(TASKS.origin) > 1
range(TASKS.duration) > 1
range(TASKS.end) > 1
range(TASKS.height) > 1
TASKS.duration > 0
LIMIT <prod(TASKS.height)

Symmetries • Items ofTASKS arepermutable.

• TASKS.height can bedecreasedto any value≥ 0.

• One and the same constant can beaddedto theorigin andend attributes of all
items ofTASKS.

• LIMIT can beincreased.

Arg. properties
Contractiblewrt. TASKS.

Reformulation The cumulative product constraint can be expressed in term of a set of reified con-
straints and of|TASKS| constraints of the formh1 · h2 · . . . · h|TASKS| ≤ l:

1. For each pair of tasksTASKS[i], TASKS[j] (i, j ∈ [1, |TASKS|]) of the TASKS col-
lection we create a variableHij which is set to the height of taskTASKS[j] if task
TASKS[j] overlaps the origin attribute of taskTASKS[i], and to1 otherwise:

• If i = j:
– Hij = TASKS[i].height.

• If i 6= j:
– Hij = TASKS[j].height ∨Hij = 1.
– ((TASKS[j].origin ≤ TASKS[i].origin ∧

TASKS[j].end > TASKS[i].origin) ∧ (Hij = TASKS[j].height)) ∨
((TASKS[j].origin > TASKS[i].origin ∨
TASKS[j].end ≤ TASKS[i].origin) ∧ (Hij = 1))

2. For each taskTASKS[i] (i ∈ [1, |TASKS|]) we impose a constraint of the formHi1 ·
Hi2 · . . . ·Hi|TASKS| ≤ LIMIT.

See also common keyword:cumulative (resource constraint).

used in graph description:product ctr.

6 7 8 9 10 11 12 time

5

31

1

1

4

4

1 2 3 4 5

3
2

Figure 5.176: Solution of thecumulative product constraint

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

804 NARC,SELF ;PRODUCT , SUCC

Keywords characteristic of a constraint: product.

constraint type: scheduling constraint, resource constraint, temporal constraint.

filtering: compulsory part.

modelling: zero-duration task.

Keywords
Related keywords grouped by meta-keywords.

20030820 805

Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin+ tasks.duration = tasks.end

Graph property(ies) NARC= |TASKS|

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.duration > 0
• tasks2.origin ≤ tasks1.origin
• tasks1.origin < tasks2.end

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Sets SUCC 7→

source,

variables− col

(

VARIABLES−collection(var−dvar),
[item(var− ITEMS.height)]

)

Constraint(s) on sets product ctr(variables,≤, LIMIT)

Graph model Parts (A) and (B) of Figure5.177 respectively show the initial and final graph associ-
ated with the second graph constraint of theExample slot. On the one hand, each source
vertex of the final graph can be interpreted as a time point. On the other hand the suc-
cessors of a source vertex correspond to those tasks that overlap that time point. The
cumulative product constraint holds since for each successor setS of the final graph
the product of the heights of the tasks inS does not exceed the limitLIMIT = 6.

Signature SinceTASKS is the maximum number of vertices of the final graph of the first graph con-
straint we can rewriteNARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify
NARC toNARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

806 NARC,SELF ;PRODUCT , SUCC

(A)

TASKS

TASKS

1

12 345

2345

(B)

TASKS

TASKS

1:1,3,4,1

1:1,3,4,1

2:2,9,11,2

2:2,9,11,2

3:3,10,13,1

3:3,10,13,1

4:6,6,12,1

4:6,6,12,1

5:7,2,9,3

5:7,2,9,3

Figure 5.177: Initial and final graph of thecumulative product constraint

20030820 807

808 PREDEFINED

5.91 cumulativetwo d

DESCRIPTION LINKS

Origin Inspired bycumulative anddiffn.

Constraint cumulative two d(RECTANGLES, LIMIT)

Arguments RECTANGLES : collection

start1−dvar,
size1−dvar,
last1−dvar,
start2−dvar,
size2−dvar,
last2−dvar,
height−dvar

LIMIT : int

Restrictions require at least(2, RECTANGLES, [start1, size1, last1])
require at least(2, RECTANGLES, [start2, size2, last2])
required(RECTANGLES, height)
RECTANGLES.size1 ≥ 0
RECTANGLES.size2 ≥ 0
RECTANGLES.height ≥ 0
LIMIT ≥ 0

Purpose
Consider a setR of rectangles described by theRECTANGLES collection. Enforces that
at each point of the plane, the cumulated height of the set of rectangles that overlap that
point, does not exceed a given limit.

Example

〈
start1− 1 size1− 4 last1− 4 start2− 3 size2− 3 last2− 5 height− 4,
start1− 3 size1− 2 last1− 4 start2− 1 size2− 2 last2− 2 height− 2,
start1− 1 size1− 2 last1− 2 start2− 1 size2− 2 last2− 2 height− 3,
start1− 4 size1− 1 last1− 4 start2− 1 size2− 1 last2− 1 height− 1

〉

, 4

Part (A) of Figure5.178 shows the4 parallelepipeds of height4, 2, 3 and 1 associ-
ated with the items of theRECTANGLES collection (parallelepipeds since each rectangle
also has a height). Part (B) gives the corresponding cumulated 2-dimensional profile,
where each number is the cumulated height of all the rectangles that contain the corre-
sponding region. Thecumulative two d constraint holds since the highest peak of the
cumulated 2-dimensional profile does not exceed the upper limit4 imposed by the last
argument of thecumulative two d constraint.

Typical |RECTANGLES| > 1
RECTANGLES.size1 > 0
RECTANGLES.size2 > 0
RECTANGLES.height > 0
LIMIT <sum(RECTANGLES.height)

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20000128 809

Symmetries • Items ofRECTANGLES arepermutable.

• Attributes ofRECTANGLES arepermutablew.r.t. permutation(start1, start2)
(size1, size2) (last1, last2) (height) (permutation applied to all items).

• RECTANGLES.height can bedecreasedto any value≥ 0.

• One and the same constant can beaddedto thestart1 andlast1 attributes of all
items ofRECTANGLES.

• One and the same constant can beaddedto thestart2 andlast2 attributes of all
items ofRECTANGLES.

• LIMIT can beincreased.

Arg. properties
Contractiblewrt. RECTANGLES.

Usage Thecumulative two d constraint is a necessary condition for thediffn constraint in3
dimensions (i.e., the placement of parallelepipeds in such a way that theydo not pairwise
overlap and that each parallelepiped has his sides parallel to the sides of the placement
space).

Algorithm A first natural way to handle this constraint would be to accumulate the
compulsory part[232] of the different rectangles in aquadtree[346]. To each leave of the
quadtree we associate the cumulated height of the rectangles containing thecorresponding
region.

Systems geost in Choco.

See also related: diffn (cumulative two d is a necessary condition fordiffn: forget one di-
mension when the number of dimensions is equal to3).

specialisation: bin packing (square of size1 with a height replaced bytask of
duration 1), cumulative (rectangle with a height replaced bytask with same
height).

Keywords characteristic of a constraint: derived collection.

constraint type: predefined constraint.

filtering: quadtree, compulsory part.

1 2 3 4

2

3

4

5

1

(B)(A)

2
3

4

3

1

4

<5

3
2

Figure 5.178: Two representations of a 2-dimensional cumulated profile

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

810 PREDEFINED

geometry:geometrical constraint.

20000128 811

812 NARC,SELF ;PRODUCT , ∀, SUCC

5.92 cumulativewith level of priority

DESCRIPTION LINKS GRAPH

Origin H. Simonis

Constraint cumulative with level of priority(TASKS, PRIORITIES)

Arguments TASKS : collection

priority−int,
origin−dvar,
duration−dvar,
end−dvar,
height−dvar

PRIORITIES : collection(id−int, capacity−int)

Restrictions required(TASKS, [priority, height])
require at least(2, TASKS, [origin, duration, end])
TASKS.priority ≥ 1
TASKS.priority ≤ |PRIORITIES|
TASKS.duration ≥ 0
TASKS.origin ≤ TASKS.end
TASKS.height ≥ 0
required(PRIORITIES, [id, capacity])
PRIORITIES.id ≥ 1
PRIORITIES.id ≤ |PRIORITIES|
increasing seq(PRIORITIES, id)
increasing seq(PRIORITIES, capacity)

Purpose

Consider a setT of tasks described by theTASKS collection where each task has
a given priority chosen in the range[1, PRIORITIES]. Let Ti denote the subset of
tasks ofT that all have a priority less than or equal toi. For each setTi, the
cumulative with level of priority constraint enforces that at each point in time,
the cumulated height of the set of tasks that overlap that point, does not exceed a given
limit. A task overlaps a pointi if and only if (1) its origin is less than or equal toi,
and (2) its end is strictly greater thani. Finally, it also imposes for each task ofT the
constraintorigin+ duration = end.

Example

〈

priority− 1 origin− 1 duration− 2 end− 3 height− 1,
priority− 1 origin− 2 duration− 3 end− 5 height− 1,
priority− 1 origin− 5 duration− 2 end− 7 height− 2,
priority− 2 origin− 3 duration− 2 end− 5 height− 2,
priority− 2 origin− 6 duration− 3 end− 9 height− 1

〉

,

〈id− 1 capacity− 2, id− 2 capacity− 3〉

Figure 5.179 shows the cumulated profile associated with both levels of priority.
To each task of thecumulative with level of priority constraint corresponds a set
of rectangles containing the same number (i.e., the position of the task withintheTASKS
collection): the sum of the lengths of the rectangles corresponds to the duration of the

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20040530 813

task, while the height of the rectangles (i.e., all the rectangles associatedwith a task have
the same height) corresponds to the resource consumption of the task. Tasks that have a
priority of 1 are coloured in pink, while tasks that have a priority of2 are coloured in blue.
Thecumulative with level of priority constraint holds since:

• At each point in time the cumulated resource consumption profile of the tasks of
priority 1 does not exceed the upper capacity2 enforced by the first item of the
PRIORITIES collection.

• At each point in time the cumulated resource consumption profile of the tasks of
priority 1 and2 does not exceed the upper capacity3 enforced by the second item of
thePRIORITIES collection.

< 4 (priorities 1 and 2)

< 3 (priority 1)

6 7 8 9 time

am
ou

nt
 o

f r
es

ou
rc

e

5

2 3 4 5

1

2

2
3

4
5

1

Figure 5.179: Resource consumption profile according to both levels of priority

Typical |TASKS| > 1
range(TASKS.priority) > 1
range(TASKS.origin) > 1
range(TASKS.duration) > 1
range(TASKS.end) > 1
range(TASKS.height) > 1
TASKS.duration > 0
TASKS.height > 0
|PRIORITIES| > 1
PRIORITIES.capacity > 0
PRIORITIES.capacity <sum(TASKS.height)
|TASKS| > |PRIORITIES|

Symmetries • Items ofTASKS arepermutable.

• TASKS.priority can beincreasedto any value≤ |PRIORITIES|.
• TASKS.height can bedecreasedto any value≥ 0.

• One and the same constant can beaddedto theorigin andend attributes of all
items ofTASKS.

• PRIORITIES.capacity can beincreased.

Arg. properties
Contractiblewrt. TASKS.

Usage Thecumulative with level of priority constraint was suggested by problems from
the telecommunication area where one has to ensure different levels of quality of service.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

814 NARC,SELF ;PRODUCT , ∀, SUCC

For this purpose the capacity of a transmission link is splitted so that a given percentage
is reserved to each level. In addition we have that, if the capacities allocated tolevels
1, 2, . . . , i is not completely used, then leveli+1 can use the corresponding spare capacity.

Remark The cumulative with level of priority constraint can be modelled by a con-
junction of cumulative constraints. As shown by the next example, the consis-
tency for all variables of thecumulative constraints does not implies consistency for
the correspondingcumulative with level of priority constraint. The following
cumulative with level of priority constraint

〈

priority− 1 origin− o1 duration− 2 height− 2,
priority− 1 origin− o2 duration− 2 height− 1,
priority− 2 origin− o3 duration− 1 height− 3

〉

,

〈

id− 1 capacity− 2,
id− 2 capacity− 3

〉

where the domains ofo1, o2 and o3 are respectively equal to{1, 2, 3}, {1, 2, 3} and
{1, 2, 3, 4} corresponds to the following conjunction ofcumulative constraints

cumulative

(〈

origin− o1 duration− 2 height− 2,
origin− o2 duration− 2 height− 1

〉

, 2

)

cumulative

〈

origin− o1 duration− 2 height− 2,
origin− o2 duration− 2 height− 1,
origin− o3 duration− 1 height− 3

〉

, 3

Even if thecumulative constraint could achievearc-consistency, the previous conjunction
of cumulative constraints would not detect the fact that there is no solution.

See also common keyword:cumulative (resource constraint).

used in graph description:sum ctr.

Keywords characteristic of a constraint: derived collection.

constraint type: scheduling constraint, resource constraint, temporal constraint.

modelling: zero-duration task.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20040530 815

Derived Collection

col

TIME POINTS−collection(idp−int, duration−dvar, point−dvar),

item

idp− TASKS.priority,
duration− TASKS.duration,
point− TASKS.origin

 ,

item

idp− TASKS.priority,
duration− TASKS.duration,
point− TASKS.end

Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin+ tasks.duration = tasks.end

Graph property(ies) NARC= |TASKS|

For all items ofPRIORITIES:

Arc input(s) TIME POINTS TASKS

Arc generator PRODUCT 7→collection(time points, tasks)

Arc arity 2

Arc constraint(s) • time points.idp = PRIORITIES.id
• time points.idp ≥ tasks.priority
• time points.duration > 0
• tasks.origin ≤ time points.point
• time points.point < tasks.end

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Sets SUCC 7→

source,

variables− col

(

VARIABLES−collection(var−dvar),
[item(var− TASKS.height)]

)

Constraint(s) on sets sum ctr(variables,≤, PRIORITIES.capacity)

Graph model Within the context of the second graph constraint, part (A) of Figure5.180 shows the
initial graphs associated with priorities1 and 2 of the Example slot. Part (B) of Fig-
ure 5.180shows the corresponding final graphs associated with priorities1 and 2. On
the one hand, each source vertex of the final graph can be interpretedas a time pointp.
On the other hand the successors of a source vertex correspond to those tasks that both
overlap that time pointp and have a priority less than or equal to a given level. The
cumulative with level of priority constraint holds since for each successor setS
of the final graph the sum of the height of the tasks inS is less than or equal to the capacity
associated with a given level of priority.

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

816 NARC,SELF ;PRODUCT , ∀, SUCC

(A)

TIME_POINTS

TASKS

1

123456 7

234 5678

(B)

PRIORITIES:1 PRIORITIES:2

1:1,2,1

1:1,1,2,3,1

2:1,2,3

2:1,2,3,5,1

3:1,3,24:1,3,5

3:1,5,2,7,2

5:1,2,5 6:2,2,3

4:1,2,3,5,1 6:2,3,2,5,2

7:2,2,5

5:1,5,2,7,2

8:2,3,6

7:2,6,3,9,1

Figure 5.180: Initial and final graph of thecumulative with level of priority

constraint

20040530 817

Signature SinceTASKS is the maximum number of vertices of the final graph of the first graph con-
straint we can rewriteNARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify
NARC toNARC.

Signature
Provides some explanations about the graph based signature of the constraint.

818 NARC,SELF ;PRODUCT , ∀, SUCC

5.93 cumulatives

DESCRIPTION LINKS GRAPH

Origin [32]

Constraint cumulatives(TASKS, MACHINES, CTR)

Arguments TASKS : collection

machine−dvar,
origin−dvar,
duration−dvar,
end−dvar,
height−dvar

MACHINES : collection(id−int, capacity−int)
CTR : atom

Restrictions required(TASKS, [machine, height])
require at least(2, TASKS, [origin, duration, end])
in attr(TASKS, machine, MACHINES, id)
TASKS.duration ≥ 0
TASKS.origin ≤ TASKS.end
|MACHINES| > 0
required(MACHINES, [id, capacity])
distinct(MACHINES, id)
CTR ∈ [≤,≥]

Purpose

Consider a setT of tasks described by theTASKS collection. WhenCTR is equal to
≤ (respectively≥), thecumulatives constraint enforces the following condition for
each machinem: At each point in time, where at least one task assigned on machine
m is present, the cumulated height of the set of tasks that both overlap that point and
are assigned to machinem should be less than or equal to (respectively greater than or
equal to) the capacity associated with machinem. A task overlaps a pointi if and only
if (1) its origin is less than or equal toi, and (2) its end is strictly greater thani. It also
imposes for each task ofT the constraintorigin+ duration = end.

Example

〈

machine− 1 origin− 2 duration− 2 end− 4 height−−2,
machine− 1 origin− 1 duration− 4 end− 5 height− 1,
machine− 1 origin− 4 duration− 2 end− 6 height−−1,
machine− 1 origin− 2 duration− 3 end− 5 height− 2,
machine− 1 origin− 5 duration− 2 end− 7 height− 2,
machine− 2 origin− 3 duration− 2 end− 5 height−−1,
machine− 2 origin− 1 duration− 4 end− 5 height− 1

〉

,

〈id− 1 capacity− 0, id− 2 capacity− 0〉 ,≥

Figure 5.181 shows with a thick line the cumulated profile on the two machines de-
scribed by theMACHINES collection. Within this profile a task with a positive (respectively
negative) height is represented by a pink (respectively blue) rectangle, where the length
of the rectangle corresponds to the duration of the task. Thecumulatives constraint

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20000128 819

holds since, both on machines1 and2, we have that at each point in time the cumulated
resource consumption is greater than or equal to the limit0 enforced by the last argument
(i.e., the attributecapacity of the items of theMACHINES collection) of thecumulatives
constraint (i.e., we have a limit of0 both on machines1 and2).

2

4 5

1
5

0

−1m
ac

hi
ne

 2

2

1

0

−1

−2

m
ac

hi
ne

 1

6

7

resource consumption

1 2 3 4 5 6
time

>=0

1 2 3 4 5 6
time

>=0

1
3

4

resource consumption

Figure 5.181: Resource consumption profile on the differentmachines

Typical |TASKS| > 1
range(TASKS.machine) > 1
range(TASKS.origin) > 1
range(TASKS.duration) > 1
range(TASKS.end) > 1
range(TASKS.height) > 1
TASKS.duration > 0
TASKS.height 6= 0
|MACHINES| > 1
MACHINES.capacity <sum(TASKS.height)
|TASKS| > |MACHINES|

Symmetries • Items ofTASKS arepermutable.

• Items ofMACHINES arepermutable.

• All occurrences of two distinct values inTASKS.machine or MACHINES.id can be
swapped; all occurrences of a value inTASKS.machine or MACHINES.id can be
renamedto any unused value.

Arg. properties
Contractiblewrt. TASKS whenRELOP ∈ [≤] andminval(TASKS.height) ≥ 0.

Usage As shown in theExampleslot, thecumulatives constraint is useful for covering problems
where different demand profiles have to be covered by a set of tasks. This is modelled in
the following way:

• To each demand profile is associated a given machinem and a set of tasks for which
all attributes (machine, origin, duration, end, height) are fixed; moreover the
machine attribute is fixed tom and theheight attribute is strictly negative. For each
machinem the cumulated profile of all the previous tasks constitutes the demand
profile to cover.

• To each task that can be used to cover the demand is associated a task forwhich the
height attribute is a positive integer; theheight attribute describes the amount of

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

820 NARC,SELF ;PRODUCT , ∀, SUCC

demand that can be covered by the task at each instant during its execution (between
its origin and itsend) on the demand profile associated with themachine attribute.

• In order to express the fact that each demand profile should completelybe covered,
we set thecapacity attribute of each machine to0. We can also relax the constraint
by setting thecapacity attribute to a negative number that specifies the maximum
allowed uncovered demand at each instant.

The demand profiles might also not be completely fixed in advance.

When all the heights of the tasks are non-negative, one other possible use of the
cumulatives constraint is to enforce to reach a minimum level of resource consumption.
This is imposed on those time points that are overlapped by at least one task.

By introducing a dummy task of height0, of origin the minimum origin of all the tasks and
of end the maximum end of all the tasks, this can also be imposed between thefirst and the
last utilisation of the resource.

Finally thecumulatives constraint is also useful for scheduling problems where several
cumulativemachines are available and where you have to assign each task on a specific
machine.

Algorithm Three filtering algorithms for this constraint are described in [32].

Systems cumulatives in Gecode, cumulatives in SICStus.

See also assignment dimension removed:cumulative (negativeheights not allowed).

common keyword: calendar (scheduling constraint),
coloured cumulatives (resource constraint).

generalisation:diffn (task with machine assignment andorigin attributes replaced
byorthotope).

used in graph description:sum ctr.

Keywords application area: workload covering.

characteristic of a constraint: derived collection.

complexity: sequencing with release times and deadlines.

constraint type: scheduling constraint, resource constraint, temporal constraint,
timetabling constraint.

filtering: compulsory part, sweep.

modelling: assignment dimension, assignment to the same set of values,
scheduling with machine choice, calendars and preemption, zero-duration task.

modelling exercises: assignment to the same set of values,
scheduling with machine choice, calendars and preemption.

problems: producer-consumer, demand profile.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntScheduling.html
http://www.gecode.org/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20000128 821

Derived Collection

col

TIME POINTS−collection(idm−int, duration−dvar, point−dvar),

item

idm− TASKS.machine,
duration− TASKS.duration,
point− TASKS.origin

 ,

item

idm− TASKS.machine,
duration− TASKS.duration,
point− TASKS.end

Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin+ tasks.duration = tasks.end

Graph property(ies) NARC= |TASKS|

For all items ofMACHINES:

Arc input(s) TIME POINTS TASKS

Arc generator PRODUCT 7→collection(time points, tasks)

Arc arity 2

Arc constraint(s) • time points.idm = MACHINES.id
• time points.idm = tasks.machine
• time points.duration > 0
• tasks.origin ≤ time points.point
• time points.point < tasks.end

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Sets SUCC 7→

source,

variables− col

(

VARIABLES−collection(var−dvar),
[item(var− TASKS.height)]

)

Constraint(s) on sets sum ctr(variables, CTR, MACHINES.capacity)

Graph model Within the context of the second graph constraint, part (A) of Figure5.182shows the initial
graphs associated with machines1 and2 of the Example slot. Part (B) of Figure5.182
shows the corresponding final graphs associated with machines1 and2. On the one hand,
each source vertex of the final graph can be interpreted as a time pointp on a specific
machinem. On the other hand the successors of a source vertex correspond to those tasks
that both overlap that time pointp and are assigned to machinem. Since they do not have
any successors we have eliminated those vertices corresponding to the end of the last three
tasks of theTASKS collection. Thecumulatives constraint holds since for each successor
setS of the final graph the sum of the height of the tasks inS is greater than or equal to
the capacity of the machine corresponding to the time point associated withS.

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

822 NARC,SELF ;PRODUCT , ∀, SUCC

(A)

TIME_POINTS

TASKS

1

123456 7

2345678910 11121314

(B)

MACHINES:1 MACHINES:2

1:1,2,2

1:1,2,2,4,-22:1,1,4,5,1 4:1,2,3,5,2

2:1,2,4

3:1,4,2,6,-1

3:1,4,14:1,4,5

5:1,5,2,7,2

5:1,2,46:1,2,6 7:1,3,28:1,3,59:1,2,5 11:2,2,3

6:2,3,2,5,-17:2,1,4,5,1

13:2,4,1

Figure 5.182: Initial and final graph of thecumulatives constraint

20000128 823

Signature SinceNARC is the maximum number of vertices of the final graph of the first graph
constraint we can rewriteNARC= |TASKS| toNARC≥ |TASKS|. This leads to simplify
NARC toNARC.

Signature
Provides some explanations about the graph based signature of the constraint.

824 MAX NSCC,NVERTEX,CLIQUE

5.94 cutset

DESCRIPTION LINKS GRAPH

Origin [143]

Constraint cutset(SIZE CUTSET, NODES)

Arguments SIZE CUTSET : dvar

NODES : collection(index−int, succ−sint, bool−dvar)

Restrictions SIZE CUTSET ≥ 0
SIZE CUTSET ≤ |NODES|
required(NODES, [index, succ, bool])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.bool ≥ 0
NODES.bool ≤ 1

Purpose
Consider a digraphG with n vertices described by theNODES collection. Enforces that
the subset of kept vertices of cardinalityn− SIZE CUTSET and their corresponding arcs
form a graph withoutcircuit.

Example

1,

〈
index− 1 succ− {2, 3, 4} bool− 1,
index− 2 succ− {3} bool− 1,
index− 3 succ− {4} bool− 1,
index− 4 succ− {1} bool− 0

〉

The cutset constraint holds since the vertices of theNODES collection for which
thebool attribute is set to1 correspond to a graph without circuit and since exactly one
(SIZE CUTSET = 1) vertex has itsbool attribute set to0.

Typical SIZE CUTSET > 0
SIZE CUTSET ≤ |NODES|
|NODES| > 1

Symmetry Items ofNODES arepermutable.

Usage The article [143] introducing thecutset constraint mentions applications from various
areas such thatdeadlock breakingor program verification.

Remark The undirected version of the cutset constraint corresponds to the
minimum feedback vertex setproblem.

Algorithm The filtering algorithm presented in [143] uses graph reduction techniques inspired from
Levy and Low [242] as well as from Lloyd, Soffa and Wang [245].

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

20030820 825

Keywords application area: deadlock breaking, program verification.

constraint type: graph constraint.

final graph structure: circuit, directed acyclic graph, acyclic, no loop.

problems: minimum feedback vertex set.

Keywords
Related keywords grouped by meta-keywords.

826 MAX NSCC,NVERTEX,CLIQUE

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • in set(nodes2.index, nodes1.succ)
• nodes1.bool = 1
• nodes2.bool = 1

Graph property(ies) • MAX NSCC≤ 1
• NVERTEX= |NODES| − SIZE CUTSET

Graph class • ACYCLIC

• NO LOOP

Graph model We use a set of integers for representing the successors of each vertex. Because of the arc
constraint, all arcs such that thebool attribute of one extremity is equal to0 are elimi-
nated; Therefore all vertices for which thebool attribute is equal to 0 are also eliminated
(since they will correspond to isolated vertices). The graph propertyMAX NSCC ≤ 1
enforces the size of the largest strongly connected component to not exceed1; Therefore,
the final graph can’t contain anycircuit.

Part (A) of Figure5.183shows the initial graph from which we have chosen to start. It is
derived from the set associated with each vertex. Each set describesthe potential values of
thesucc attribute of a given vertex. Part (B) of Figure5.183gives the final graph associated
with theExample slot. Since we use theNVERTEX graph property, the vertices of the
final graph are stressed in bold. Thecutset constraint holds since the final graph does not
contain anycircuit and since the number of removed verticesSIZE CUTSET is equal to1.

NODES

1:1,{2,3,4}

2:2,{3}

3:3,{4}

4:4,{1}

MAX_NSCC=1,NVERTEX=3

1:1,{2,3,4},1

2:2,{3},1

3:3,{4},1

(A) (B)

Figure 5.183: Initial and final graph of thecutset set constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 827

828 NCC,NTREE,CLIQUE

5.95 cycle

DESCRIPTION LINKS GRAPH

Origin [39]

Constraint cycle(NCYCLE, NODES)

Arguments NCYCLE : dvar

NODES : collection(index−int, succ−dvar)

Restrictions NCYCLE ≥ 1
NCYCLE ≤ |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Consider a digraphG described by theNODES collection.NCYCLE is equal to the number
of circuits for coveringG in such a way that each vertex ofG belongs to one single
circuit. NCYCLE can also be interpreted as the number ofcyclesof the permutation
associated with the successor variables of theNODES collection.

Example

2,

〈

index− 1 succ− 2,
index− 2 succ− 1,
index− 3 succ− 5,
index− 4 succ− 3,
index− 5 succ− 4

〉

In this example we have the following2 (NCYCLE = 2) cycles: 1 → 2 → 1 and
3 → 5 → 4 → 3. Consequently, thecycle constraint holds.

Typical NCYCLE < |NODES|
|NODES| > 2

Symmetry Items ofNODES arepermutable.

Arg. properties
Functional dependency: NCYCLE determined byNODES.

Usage The PhD thesis of́Eric Bourreau [79] mentions the following applications of extensions of
thecycle constraint:

• The balancedEuler knightproblem where one tries to cover a rectangular chessboard
of sizeN ·M byC knights that all have to visit between2 · ⌊⌊(N ·M)/C⌋/2⌋ and
2 · ⌈⌈(N · M)/C⌉/2⌉ distinct locations. For some values ofN , M andC there

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

20000128 829

does not exist any solution to the previous problem. This is for instance thecase
whenN = M = C = 6. Figure5.184depicts the graph associated with the6 × 6
chessboard as well as examples of balanced solutions with respectively1, 2, 3, 4 and
5 knights.

• Somepick-up deliveryproblems where a fleet of vehicles has to transport a set of
orders. Each order is characterised by its initial location, its final destination and its
weight. In addition one also has to take into account the capacity of the different
vehicles.

(8, 8, 10 and 10 moves)

Graph of potential moves
of a 6 X 6 chessboard

1 knight 2 knights

3 knights
(12, 12 and 12 moves)

4 knights 5 knights
(6, 6, 8, 8 and 8 moves)

(36 moves) (18 and 18 moves)

Figure 5.184: Graph of potential moves of the6 × 6 chessboard and corresponding
balanced tours

Remark In the originalcycle constraint ofCHIP theindex attribute was not explicitly present. It
was implicitly defined as the position of a variable in a list.

In an early version of theCHIP there was a constraint namedcircuit that, from a declar-
ative point of view, was equivalent tocycle(1, NODES). In ALICE [238] the circuit

constraint was also present.

Given a complete digraph ofn vertices as well as an unrestricted number of circuits
NCYCLE, the total number of solutions of the correspondingcycle constraint corresponds
to the sequenceA000142of the On-Line Encyclopedia of Integer Sequences [370]. Given
a complete digraph ofn vertices as well as a fixed number of circuitsNCYCLE between1
andn, the total number of solutions of the correspondingcycle constraint corresponds to
the so calledStirling number of first kind.

Algorithm Since allsucc variables have to take distinct values one can reuse the algorithms associated
with thealldifferent constraint. A second necessary condition is to have no more than

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.cosytec.com
http://www.cosytec.com
http://oeis.org/A000142

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

830 NCC,NTREE,CLIQUE

NCYCLE strongly connected components. Pruning for enforcing this condition, as soon as
we haveNCYCLE strongly connected components, can be done by forcing allstrong bridges
to belong to the final solution, since otherwise we would have more thanNCYCLE strongly
connected components. Since all the vertices of acircuit belong to the same strongly
connected component an arc going from one strongly connected component to another
strongly connected component has to be removed.

Reformulation Let n ands1, s2, . . . , sn respectively denotes the number of vertices (i.e.,|NODES|) and
the successor variables associated with vertices1, 2, . . . , n. Thecycle constraint can be
reformulated as a conjunction of onealldifferent constraint,n · (n − 1) element

constraints,n minimum constraints, and onenvalue constraint.

• First, we state analldifferent〈s1, s2, . . . , sn〉 constraint for enforcing distinct
values to be assigned to the successor variables.

• Second, the key idea is to extract for each vertexi (with i ∈ [1, n]) all the vertices
that belong to the same cycle. This is done by stating a conjunction ofn−1 element
constraints of the form:
element(i, 〈s1, s2, . . . , sn〉, si,1),
element(si,1, 〈s1, s2, . . . , sn〉, si,2),
. . .
element(si,n−2, 〈s1, s2, . . . , sn〉, si,n−1).

Then, using aminimum(mi, 〈i, si,1, si,2, . . . , si,n−1〉) constraint, we get a unique
representative for the cycle containing vertexi.

• Third, using anvalue(NCYCLE, 〈m1,m2, . . . ,mn〉) constraint, we get the number
of distinct cycles.

See also common keyword:alldifferent (permutation),
circuit cluster (graph constraint, onesucc),
cycle card on path (permutation,graph partitioning constraint),
cycle or accessibility (graph constraint),
cycle resource (graph partitioning constraint),
derangement (permutation),
graph crossing (graph constraint,graph partitioning constraint),
inverse (permutation),
map (graph partitioning constraint),
symmetric alldifferent (permutation),
tour (graph constraint),
tree (graph partitioning constraint).

implies: alldifferent.

related: balance cycle (counting number of cycles versus controlling how balanced the
cycles are).

specialisation:circuit (NCYCLE set to1).

used in reformulation: alldifferent, element, minimum, nvalue.

Keywords characteristic of a constraint: core.

combinatorial object: permutation.

constraint arguments:business rules.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20000128 831

constraint type: graph constraint, graph partitioning constraint.

filtering: strong bridge, DFS-bottleneck.

final graph structure: circuit, connected component, strongly connected component,
onesucc.

modelling: cycle, functional dependency.

problems: pick-up delivery.

puzzles:Euler knight.

832 NCC,NTREE,CLIQUE

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • NTREE= 0
• NCC= NCYCLE

Graph class ONE SUCC

Graph model From the restrictions and from the arc constraint, we deduce that we havea bijection from
the successor variables to the values of interval[1, |NODES|]. With no explicit restrictions it
would have been impossible to derive this property.

In order to express the binary constraint that links two vertices one has tomake explicit the
identifier of the vertices. This is why thecycle constraint considers objects that have two
attributes:

• One fixed attributeindex that is the identifier of the vertex,

• One variable attributesucc that is the successor of the vertex.

The graph propertyNTREE = 0 is used in order to avoid having vertices that both do
not belong to acircuit and have at least one successor located on acircuit. This concretely
means that all vertices of the final graph should belong to acircuit.

Parts (A) and (B) of Figure5.185respectively show the initial and final graph associated
with theExampleslot. Since we use theNCC graph property, we show the two connected
components of the final graph. The constraint holds since all the vertices belong to acircuit
(i.e.,NTREE = 0) and sinceNCYCLE = NCC = 2.

NODES

1

2

3

4

5

NTREE=0,NCC=2

CC#1 CC#2

1:1,2

2:2,1

3:3,5

5:5,4

4:4,3

(A) (B)

Figure 5.185: Initial and final graph of thecycle constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 833

834 NCC,NTREE,CLIQUE ,PATH LENGTH

5.96 cyclecard on path

DESCRIPTION LINKS GRAPH

Origin CHIP

Constraint cycle card on path(NCYCLE, NODES, ATLEAST, ATMOST, PATH LEN, VALUES)

Arguments NCYCLE : dvar

NODES : collection(index−int, succ−dvar, colour−dvar)
ATLEAST : int

ATMOST : int

PATH LEN : int

VALUES : collection(val−int)

Restrictions NCYCLE ≥ 1
NCYCLE ≤ |NODES|
required(NODES, [index, succ, colour])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|
ATLEAST ≥ 0
ATLEAST ≤ PATH LEN

ATMOST ≥ ATLEAST

PATH LEN ≥ 0
|VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)

Purpose

Consider a digraphG described by theNODES collection. NCYCLE is the number of
circuits for coveringG in such a way that each vertex belongs to one single circuit. In
addition the following constraint must also hold: on each set ofPATH LEN consecutive
distinct vertices of each final circuit, the number of vertices for which theattribute colour
takes his value in the collection of valuesVALUES should be located within the range
[ATLEAST, ATMOST].

Example

2,

〈

index− 1 succ− 7 colour− 2,
index− 2 succ− 4 colour− 3,
index− 3 succ− 8 colour− 2,
index− 4 succ− 9 colour− 1,
index− 5 succ− 1 colour− 2,
index− 6 succ− 2 colour− 1,
index− 7 succ− 5 colour− 1,
index− 8 succ− 6 colour− 1,
index− 9 succ− 3 colour− 1

〉

, 1, 2, 3,

〈1〉

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20000128 835

The constraintcycle card on path holds since the vertices of theNODES collec-
tion correspond to a set of disjoint circuits and since, for each set of3 (i.e.,PATH LEN = 3)
consecutive vertices, colour1 (i.e., the value provided by theVALUES collection) occurs at
least once (i.e.,ATLEAST = 1) and at most twice (i.e.,ATMOST = 2).

Typical |NODES| > 2
NCYCLE < |NODES|
ATLEAST < PATH LEN

ATMOST > 0
PATH LEN > 1
|NODES| > |VALUES|
ATLEAST > 0 ∨ ATMOST < PATH LEN

Symmetries • Items ofNODES arepermutable.

• An occurrence of a value ofNODES.colour that belongs toVALUES.val (resp.
does not belong toVALUES.val) can bereplacedby any other value inVALUES.val
(resp. not inVALUES.val).

• ATLEAST can bedecreasedto any value≥ 0.

• ATMOST can beincreased.

• Items ofVALUES arepermutable.

Usage Assume that the vertices ofG are partitioned into the following two categories:

• Clients to visit.

• Depots where one can reload a vehicle.

Using thecycle card on path constraint we can express a constraint like: after visiting
three consecutive clients we should visit a depot. This is typically not possible with the
atmost constraint since we do not know in advance the set of variables involvedin the
atmost constraint.

Remark This constraint is a special case of thesequence parameter of thecycle constraint of
CHIP [79, pages 121–128].

See also common keyword:cycle (graph partitioning constraint).

used in graph description:among low up.

Keywords characteristic of a constraint: coloured.

combinatorial object: sequence.

constraint type: graph constraint, graph partitioning constraint,
sliding sequence constraint.

final graph structure: connected component, onesucc.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.cosytec.com

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

836 NCC,NTREE,CLIQUE ,PATH LENGTH

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • NTREE= 0
• NCC= NCYCLE

Graph class ONE SUCC

Sets PATH LENGTH(PATH LEN) 7→
[

variables− col

(

VARIABLES−collection(var−dvar),
[item(var− NODES.colour)]

)]

Constraint(s) on sets among low up(ATLEAST, ATMOST, variables, VALUES)

Graph model Parts (A) and (B) of Figure5.186 respectively show the initial and final graph associ-
ated with theExample slot. Since we use theNCC graph property, we show the two
connected componentsof the final graph. The constraintcycle card on path holds since
all the vertices belong to a circuit (i.e.,NTREE = 0) and since for each set of three con-
secutive vertices, colour1 occurs at least once and at most twice (i.e., theamong low up

constraint holds).

NODES

1

2

3

4

5

6

7

8

9

NTREE=0,NCC=2

CC#1 CC#2

1:1,7,2

7:7,5,1

5:5,1,2

2:2,4,3

4:4,9,1

3:3,8,2

8:8,6,1

9:9,3,1

6:6,2,1

(A) (B)

Figure 5.186: Initial and final graph of thecycle card on path constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 837

838 NCC,NTREE,CLIQUE ;NVERTEX,CLIQUE ,PRED

5.97 cycleor accessibility

DESCRIPTION LINKS GRAPH

Origin Inspired by [226].

Constraint cycle or accessibility(MAXDIST, NCYCLE, NODES)

Arguments MAXDIST : int

NCYCLE : dvar

NODES : collection(index−int, succ−dvar, x−int, y−int)

Restrictions MAXDIST ≥ 0
NCYCLE ≥ 1
NCYCLE ≤ |NODES|
required(NODES, [index, succ, x, y])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 0
NODES.succ ≤ |NODES|
NODES.x ≥ 0
NODES.y ≥ 0

Purpose

Consider a digraphG described by theNODES collection. Cover a subset of the vertices
of G by a set of vertex-disjoint circuits in such a way that the following propertyholds:
for each uncovered vertexv1 of G there exists at least one covered vertexv2 of G such
that the Manhattan distance betweenv1 andv2 is less than or equal toMAXDIST.

Example

3, 2,

〈

index− 1 succ− 6 x− 4 y− 5,
index− 2 succ− 0 x− 9 y− 1,
index− 3 succ− 0 x− 2 y− 4,
index− 4 succ− 1 x− 2 y− 6,
index− 5 succ− 5 x− 7 y− 2,
index− 6 succ− 4 x− 4 y− 7,
index− 7 succ− 0 x− 6 y− 4

〉

Figure 5.187 represents the solution associated with the example. The covered ver-
tices are coloured in blue, while the links starting from the uncovered vertices are dashed.
Thecycle or accessibility constraint holds since:

• In the solution we haveNCYCLE = 2 disjoint circuits.

• All the 3 uncovered nodes are located at a distance that does not exceedMAXDIST = 3
from at least one covered node.

Typical MAXDIST > 0
NCYCLE < |NODES|
|NODES| > 2

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20000128 839

Symmetries • Items ofNODES arepermutable.

• Attributes ofNODES arepermutablew.r.t. permutation(index) (succ) (x, y) (per-
mutation applied to all items).

• One and the same constant can beaddedto thex attribute of all items ofNODES.

• One and the same constant can beaddedto they attribute of all items ofNODES.

Arg. properties
Functional dependency: NCYCLE determined byNODES.

Remark This kind of facilities location problem is described in [226, pages 187–189] pages. In ad-
dition to our example they also mention the cost problem that is usually a trade-off between
the vertices that are directly covered by circuits and the others.

See also common keyword:cycle (graph constraint).

used in graph description:nvalues except 0.

Keywords constraint type: graph constraint.

final graph structure: strongly connected component.

geometry:geometrical constraint.

modelling: functional dependency.

problems: facilities location problem.

4

7

6

5

3

2

1

987654321

1

5

7

2

6

3

4

Figure 5.187: Final graph associated with the facilities location problem

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

840 NCC,NTREE,CLIQUE ;NVERTEX,CLIQUE ,PRED

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • NTREE= 0
• NCC= NCYCLE

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s)
∨

nodes1.succ = nodes2.index,

∧

nodes1.succ = 0,
nodes2.succ 6= 0,
abs(nodes1.x− nodes2.x) + abs(nodes1.y− nodes2.y) ≤ MAXDIST

Graph property(ies) NVERTEX= |NODES|
Sets PRED 7→

variables− col

(

VARIABLES−collection(var−dvar),
[item(var− NODES.succ)]

)

,

destination

Constraint(s) on sets nvalues except 0(variables,=, 1)

Graph model For each vertexv we have introduced the following attributes:

• index: the label associated withv,

• succ: if v is not covered by a circuit then 0; Ifv is covered by a circuit then index of
the successor ofv.

• x: thex-coordinate ofv,

• y: they-coordinate ofv.

The first graph constraint enforces all vertices, which have a non-zero successor, to form a
set ofNCYCLE vertex-disjoint circuits.

The final graph associated with the second graph constraint contains twotypes of arcs:

• The arcs belonging to one circuit (i.e.,nodes1.succ = nodes2.index),

• The arcs between one vertexv1 that does not belong to any circuit
(i.e.,nodes1.succ = 0) and one vertexv2 located on a circuit (i.e.,nodes2.succ 6=
0) such that the Manhattan distance betweenv1 and v2 is less than or equal to
MAXDIST.

In order to specify the fact that each vertex is involved in at least one arc we
use the graph propertyNVERTEX = |NODES|. Finally the dynamic constraint
nvalues except 0(variables,=, 1) expresses the fact that, for each vertexv, there is
exactly one predecessor ofv that belongs to a circuit.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 841

Parts (A) and (B) of Figure5.188respectively show the initial and final graph associated
with the second graph constraint of theExampleslot.

NODES

1

2

3

4

5

6

7

NVERTEX=7

1:1,6,4,5

6:6,4,4,7

4:4,1,2,6

2:2,0,9,1

5:5,5,7,2

3:3,0,2,4 7:7,0,6,4

(A) (B)

Figure 5.188: Initial and final graph of thecycle or accessibility constraint

Signature Since|NODES| is the maximum number of vertices of the final graph associated with the
second graph constraint we can rewriteNVERTEX = |NODES| to NVERTEX ≥
|NODES|. This leads to simplifyNVERTEX toNVERTEX.

Signature
Provides some explanations about the graph based signature of the constraint.

842 NCC,NTREE,NVERTEX,CLIQUE ;NVERTEX,CLIQUE , ∀

5.98 cycleresource

DESCRIPTION LINKS GRAPH

Origin CHIP

Constraint cycle resource(RESOURCE, TASK)

Arguments RESOURCE : collection(id−int, first task−dvar, nb task−dvar)
TASK : collection(id−int, next task−dvar, resource−dvar)

Restrictions required(RESOURCE, [id, first task, nb task])
RESOURCE.id ≥ 1
RESOURCE.id ≤ |RESOURCE|
distinct(RESOURCE, id)
RESOURCE.first task ≥ 1
RESOURCE.first task ≤ |RESOURCE|+ |TASK|
RESOURCE.nb task ≥ 0
RESOURCE.nb task ≤ |TASK|
required(TASK, [id, next task, resource])
TASK.id > |RESOURCE|
TASK.id ≤ |RESOURCE|+ |TASK|
distinct(TASK, id)
TASK.next task ≥ 1
TASK.next task ≤ |RESOURCE|+ |TASK|
TASK.resource ≥ 1
TASK.resource ≤ |RESOURCE|

Purpose

Consider a digraphG defined as follows:

• To each item of theRESOURCE andTASK collections corresponds one vertex ofG.
A vertex that was generated from an item of theRESOURCE (respectivelyTASK)
collection is called aresourcevertex (respectivelytaskvertex).

• There is an arc from a resource vertexr to a task vertext if t ∈
RESOURCE[r].first task.

• There is an arc from a task vertext to a resource vertexr if r ∈
TASK[t].next task.

• There is an arc from a task vertext1 to a task vertext2 if t2 ∈
TASK[t1].next task.

• There is no arc between two resource vertices.

Enforce to coverG in such a way that each vertex belongs to one single circuit. Each
circuit is made up from one singleresourcevertex and zero, one or moretaskvertices.
For each resource-vertex a domain variable indicates how many task-vertices belong to
the corresponding circuit. For each task a domain variable provides the identifier of the
resource that can effectively handle that task.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

20030820 843

Example

〈

id− 1 first task− 5 nb task− 3,
id− 2 first task− 2 nb task− 0,
id− 3 first task− 8 nb task− 2

〉

,

〈

id− 4 next task− 7 resource− 1,
id− 5 next task− 4 resource− 1,
id− 6 next task− 3 resource− 3,
id− 7 next task− 1 resource− 1,
id− 8 next task− 6 resource− 3

〉

The cycle resource constraint holds since the graph corresponding to the vertices
described by its arguments consists of the following3 disjoint circuits:

• The first circuit involves theresourcevertex1 as well as thetaskvertices5, 4 and7.

• The second circuit is limited to theresourcevertex2.

• Finally the third circuit is made up from the remaining vertices, namely theresource
vertex3 and thetaskvertices8 and6.

Typical |RESOURCE| > 1
|TASK| > 1
|TASK| > |RESOURCE|

Symmetries • Items ofRESOURCE arepermutable.

• Items ofTASK arepermutable.

• All occurrences of two distinct values inRESOURCE.id or TASK.resource can be
swapped.

Usage This constraint is useful for some vehicles routing problem where the number of locations
to visit depends of the vehicle type that is effectively used. The resource attribute allows
expressing various constraints such as:

• The compatibility or incompatibility between tasks and vehicles,

• The fact that certain tasks should be performed by the same vehicle,

• The preassignment of certain tasks to a given vehicle.

Remark This constraint could be expressed with thecycle constraint ofCHIP by using the follow-
ing optional parameters:

• Theresource nodeparameter [79, page 97],

• Thecircuit weightparameter [79, page 101],

• Thenameparameter [79, page 104].

See also common keyword:cycle (graph partitioning constraint).

Keywords characteristic of a constraint: derived collection.

constraint type: graph constraint, resource constraint, graph partitioning constraint.

final graph structure: connected component, strongly connected component.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.cosytec.com

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

844 NCC,NTREE,NVERTEX,CLIQUE ;NVERTEX,CLIQUE , ∀

Derived Collection

col

RESOURCE TASK−collection(index−int, succ−dvar, name−dvar),

item

index− RESOURCE.id,
succ− RESOURCE.first task,
name− RESOURCE.id

 ,

item

index− TASK.id,
succ− TASK.next task,
name− TASK.resource

Arc input(s) RESOURCE TASK

Arc generator CLIQUE 7→collection(resource task1, resource task2)

Arc arity 2

Arc constraint(s) • resource task1.succ = resource task2.index
• resource task1.name = resource task2.name

Graph property(ies) • NTREE= 0
• NCC= |RESOURCE|
• NVERTEX= |RESOURCE|+ |TASK|

Graph class ONE SUCC

For all items ofRESOURCE:

Arc input(s) RESOURCE TASK

Arc generator CLIQUE 7→collection(resource task1, resource task2)

Arc arity 2

Arc constraint(s) • resource task1.succ = resource task2.index
• resource task1.name = resource task2.name
• resource task1.name = RESOURCE.id

Graph property(ies) NVERTEX= RESOURCE.nb task+ 1

Graph model The graph model of thecycle resource constraint illustrates the following points:

• How to differentiate the constraint on the length of a circuit according to a resource
that is assigned to a circuit? This is achieved by introducing a collection of resources
and by asking a different graph property for each item of that collection.

• How to introduce the concept of name that corresponds to the resourcethat handles
a given task? This is done by adding to the arc constraint associated with thecycle

constraint the condition that the name variables of two consecutive vertices should
be equal.

Part (A) of Figure5.189shows the initial graphs (of the second graph constraint) associated
with resources1, 2 and3 of theExample slot. Part (B) of Figure5.189shows the corre-
sponding final graphs (of the second graph constraint) associated withresources1, 2 and3.
Since we use theNVERTEX graph property, the vertices of the final graphs are stressed
in bold. To each resource corresponds a circuit of respectively3, 0 and2 task-vertices.

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 845

Signature Since the initial graph of the first graph constraint contains|RESOURCE| + |TASK| ver-
tices, the corresponding final graph cannot have more than|RESOURCE| + |TASK| vertices.
Therefore we can rewrite the graph propertyNVERTEX = |RESOURCE| + |TASK| to
NVERTEX ≥ |RESOURCE|+ |TASK| and simplifyNVERTEX toNVERTEX.

Signature
Provides some explanations about the graph based signature of the constraint.

846 NCC,NTREE,NVERTEX,CLIQUE ;NVERTEX,CLIQUE , ∀

RESOURCE_TASK

1

2

3

4

5

6

7

8

1:NVERTEX=4
2:NVERTEX=1
3:NVERTEX=3

RESOURCE:1 RESOURCE:2 RESOURCE:3

1:1,5,1

5:5,4,1

4:4,7,1

7:7,1,1

2:2,2,2 3:3,8,3

8:8,6,3

6:6,3,3

(A) (B)

Figure 5.189: Initial and final graph of thecycle resource constraint

20030820 847

848 NARC,PATH ; AUTOMATON

5.99 cyclicchange

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromchange.

Constraint cyclic change(NCHANGE, CYCLE LENGTH, VARIABLES, CTR)

Arguments NCHANGE : dvar

CYCLE LENGTH : int

VARIABLES : collection(var−dvar)
CTR : atom

Restrictions NCHANGE ≥ 0
NCHANGE < |VARIABLES|
CYCLE LENGTH > 0
required(VARIABLES, var)
VARIABLES.var ≥ 0
VARIABLES.var < CYCLE LENGTH

CTR ∈ [=, 6=, <,≥, >,≤]

Purpose
NCHANGE is the number of times that constraint((X + 1) mod CYCLE LENGTH) CTR Y
holds;X andY correspond to consecutive variables of the collectionVARIABLES.

Example
(

2, 4, 〈3, 0, 2, 3, 1〉 , 6=
)

Since CTR is set to 6= and sinceCYCLE LENGTH is set to 4, a change between two
consecutive itemsX andY of theVARIABLES collection corresponds to the fact that the
condition((X + 1) mod 4) 6= Y holds. Consequently, thecyclic change constraint
holds since we have the two following changes (i.e.,NCHANGE = 2) within 〈3, 0, 2, 3, 1〉:

• A first change between the consecutive values0 and2,

• A second change between the consecutive values3 and1.

However, the sequence3 0 does not correspond to a change since(3 + 1) mod 4 is equal
to 0.

Typical NCHANGE > 0
|VARIABLES| > 1
range(VARIABLES.var) > 1
CTR ∈ [6=]

Symmetry Items ofVARIABLES can beshifted.

Arg. properties
Functional dependency: NCHANGE determined byCYCLE LENGTH, VARIABLES andCTR.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

20000128 849

Usage This constraint may be used for personnelcyclic timetabling problems where each person
has to work according to cycles. In this context each variable of theVARIABLES collection
corresponds to the type of work a person performs on a specific day.Because of some
perturbation (e.g., illness, unavailability, variation of the workload) it is in practice not
reasonable to ask for perfectcyclic solutions. One alternative is to use thecyclic change

constraint and to ask for solutions where one tries to minimise the number ofcycle breaks
(i.e., the variableNCHANGE).

See also common keyword:change, cyclic change joker (number of changes).

implies: cyclic change joker.

Keywords characteristic of a constraint: cyclic, automaton, automaton with counters.

constraint arguments:pure functional dependency.

constraint network structure: sliding cyclic(1) constraint network(2).

constraint type: timetabling constraint.

final graph structure: acyclic, bipartite, no loop.

modelling: number of changes, functional dependency.

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

850 NARC,PATH ; AUTOMATON

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) (variables1.var+ 1) mod CYCLE LENGTH CTR variables2.var

Graph property(ies) NARC= NCHANGE

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model Parts (A) and (B) of Figure5.190respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

VARIABLES

1

2

3

4

5

NARC=2

2:0

3:2

4:3

5:1

(A) (B)

Figure 5.190: Initial and final graph of thecyclic change constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 851

Automaton Figure5.191depicts the automaton associated with thecyclic change constraint. To
each pair of consecutive variables(VARi, VARi+1) of the collectionVARIABLES corresponds
a 0-1 signature variableSi. The following signature constraint linksVARi, VARi+1 andSi:
((VARi + 1) mod CYCLE LENGTH) CTR VARi+1 ⇔ Si.

s: i i+1

{C=0}

(VAR +1)mod CYCLE_LENGTH CTR VAR ,i i+1
{C=C+1} NCHANGE=C

(VAR +1)mod CYCLE_LENGTH not CTR VAR

Figure 5.191: Automaton of thecyclic change constraint

Q =s

C =NCHANGE

n−1
VAR

n−1S

2C

2Q

3S

3
VAR n

VAR

2S

2
VAR

1S

1
VAR

1Q

1C0C =0

0Q =s n−1

n−1

Figure 5.192: Hypergraph of the reformulation corresponding to the automaton of the
cyclic change constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

852 NARC,PATH ; AUTOMATON

5.100 cyclicchangejoker

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromcyclic change.

Constraint cyclic change joker(NCHANGE, CYCLE LENGTH, VARIABLES, CTR)

Arguments NCHANGE : dvar

CYCLE LENGTH : int

VARIABLES : collection(var−dvar)
CTR : atom

Restrictions NCHANGE ≥ 0
NCHANGE < |VARIABLES|
CYCLE LENGTH > 0
required(VARIABLES, var)
VARIABLES.var ≥ 0
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

NCHANGE is the number of times that the following constraint holds:

((X + 1) mod CYCLE LENGTH) CTR Y ∧X < CYCLE LENGTH ∧ Y < CYCLE LENGTH

X andY correspond to consecutive variables of the collectionVARIABLES.

Example

2, 4,

〈

var− 3,
var− 0,
var− 2,
var− 4,
var− 4,
var− 4,
var− 3,
var− 1,
var− 4

〉

, 6=

Since CTR is set to 6= and sinceCYCLE LENGTH is set to 4, a change between two
consecutive itemsX and Y of the VARIABLES collection corresponds to the fact that
the condition((X + 1) mod 4) 6= Y ∧ X < 4 ∧ Y < 4 holds. Consequently,
the cyclic change joker constraint holds since we have the two following changes
(i.e.,NCHANGE = 2) within 〈3, 0, 2, 4, 4, 4, 3, 1, 4〉:

• A first change between0 and2,

• A second change between3 and1.

But when the joker value4 is involved, there is no change. This is why no change is counted
between values2 and4, between4 and4 and between1 and4.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20000128 853

Typical NCHANGE > 0
CYCLE LENGTH > 1
|VARIABLES| > 1
range(VARIABLES.var) > 1
maxval(VARIABLES.var) ≥ CYCLE LENGTH

CTR ∈ [6=]

Symmetry Items ofVARIABLES can beshifted.

Arg. properties
Functional dependency: NCHANGE determined byCYCLE LENGTH, VARIABLES andCTR.

Usage The cyclic change joker constraint can be used in the same context as the
cyclic change constraint with the additional feature: in our example codes0 to 3 corre-
spond to different type of activities (i.e., working the morning, the afternoon or the night)
and code4 represents a holiday. We want to express the fact that we do not countany
change for two consecutive daysd1, d2 such thatd1 or d2 is a holiday.

See also common keyword:change, cyclic change (number of changes).

implied by: cyclic change.

Keywords characteristic of a constraint: cyclic, joker value, automaton, automaton with counters.

constraint arguments:pure functional dependency.

constraint network structure: sliding cyclic(1) constraint network(2).

constraint type: timetabling constraint.

final graph structure: acyclic, bipartite, no loop.

modelling: number of changes, functional dependency.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

854 NARC,PATH ; AUTOMATON

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • (variables1.var+ 1) mod CYCLE LENGTH CTR variables2.var
• variables1.var < CYCLE LENGTH

• variables2.var < CYCLE LENGTH

Graph property(ies) NARC= NCHANGE

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model The joker valuesare those values that are greater than or equal toCYCLE LENGTH. We do
not count any change for those arc constraints involving at least one variable taking a joker
value.

Parts (A) and (B) of Figure5.193respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

VARIABLES

1

2

3

4

5

6

7

8

9

NARC=2

2:0

3:2

7:3

8:1

(A) (B)

Figure 5.193: Initial and final graph of thecyclic change joker constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 855

Automaton Figure5.194depicts the automaton associated with thecyclic change joker constraint.
To each pair of consecutive variables(VARi, VARi+1) of the collectionVARIABLES corre-
sponds a0-1 signature variableSi. The following signature constraint linksVARi, VARi+1

andSi:

(((VARi + 1) mod CYCLE LENGTH) CTR VARi+1 ∧
(VARi < CYCLE LENGTH) ∧ (VARi+1 < CYCLE LENGTH)) ⇔ Si.

s:

{C=0}

(VAR +1)mod CYCLE_LENGTH not CTR VAR ori i+1
VAR >=CYCLE_LENGTH ori

i+1VAR >=CYCLE_LENGTH

(VAR +1)mod CYCLE_LENGTH CTR VAR andi i+1
VAR <CYCLE_LENGTH andi

i+1VAR <CYCLE_LENGTH,

{C=C+1}

NCHANGE=C

Figure 5.194: Automaton of thecyclic change joker constraint

n−1Q =s

0C =0 1C

1Q

1
VAR

1S

2
VAR

2S

n
VAR

3
VAR

3S

2Q

2C

n−1S

n−1
VAR

n−1C =NCHANGE

Q =s0

Figure 5.195: Hypergraph of the reformulation corresponding to the automaton of the
cyclic change joker constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

856 NARC,SELF ;MAX NSCC,CLIQUE

5.101 dag

DESCRIPTION LINKS GRAPH

Origin [131]

Constraint dag(NODES)

Argument NODES : collection(index−int, succ−svar)

Restrictions required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose
Consider a digraphG described by theNODES collection. Select a subset of arcs ofG so
that the corresponding graph does not contain any circuit.

Example

〈

index− 1 succ− {2, 4},
index− 2 succ− {3, 4},
index− 3 succ− ∅,
index− 4 succ− ∅,
index− 5 succ− {6},
index− 6 succ− ∅

〉

Thedag constraint holds since theNODES collection depicts a graph without circuit.

Typical |NODES| > 2

Symmetry Items ofNODES arepermutable.

Algorithm A filtering algorithm for thedag constraint is given in [131, page 90]. It removes potential
arcs that would create a circuit of mandatory arcs.

See also used in graph description:in set.

Keywords constraint arguments:constraint involving set variables.

constraint type: graph constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20061001 857

Arc input(s) NODES

Arc generator SELF 7→collection(nodes)

Arc arity 1

Arc constraint(s) in set(nodes.key, nodes.succ)

Graph property(ies) NARC= 0

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) in set(nodes2.index, nodes1.succ)

Graph property(ies) MAX NSCC≤ 1

Graph model The first graph constraint removes the loop of each vertex. The second graph constraint
forbids the creation of circuits involving more than one vertex.

Part (A) of Figure5.196shows the initial graph associated with the second graph constraint
of theExample slot. This initial graph from which we start is derived from the set asso-
ciated with each vertex. Each set describes the potential values of thesucc attribute of a
given vertex. Part (B) of Figure5.196gives the final graph associated with theExample
slot.

NODES

1:1,{2,4}

2:2,{3,4}

4:4,{1}

3:3,{2,4}

5:5,{6}

6:6,{5}

1:1,{2,4}

2:2,{3,4}

4:4,{} 3:3,{}

5:5,{6}

6:6,{}

(A) (B)

Figure 5.196: Initial and final graph of thedag set constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

858 NARC,PATH ; AUTOMATON

5.102 decreasing

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Inspired byincreasing.

Constraint decreasing(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restriction required(VARIABLES, var)

Purpose The variables of the collectionVARIABLES are decreasing.

Example (〈8, 4, 1, 1〉)

Thedecreasing constraint holds since8 ≥ 4 ≥ 1 ≥ 1.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetry One and the same constant can beaddedto thevar attribute of all items ofVARIABLES.

Arg. properties
Contractiblewrt. VARIABLES.

Systems increasingNValue in Choco, rel in Gecode, decreasing in MiniZinc .

See also common keyword:strictly increasing (order constraint).

comparison swapped:increasing.

implied by: all equal, strictly decreasing.

implies: no peak, no valley.

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint network structure: sliding cyclic(1) constraint network(1).

constraint type: decomposition, order constraint.

filtering: arc-consistency.

final graph structure: acyclic, bipartite, no loop.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#decreasing
http://www.g12.cs.mu.oz.au/minizinc/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20040814 859

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var ≥ variables2.var

Graph property(ies) NARC= |VARIABLES| − 1

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model Parts (A) and (B) of Figure5.197respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

VARIABLES

1

2

3

4

NARC=3

1:8

2:4

3:1

4:1

(A) (B)

Figure 5.197: Initial and final graph of thedecreasing constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

860 NARC,PATH ; AUTOMATON

Automaton Figure5.198depicts the automaton associated with thedecreasing constraint. To each
pair of consecutive variables(VARi, VARi+1) of the collectionVARIABLES corresponds a
0-1 signature variableSi. The following signature constraint linksVARi, VARi+1 andSi:
VARi ≥ VARi+1 ⇔ Si.

VAR >=VARi i+1s

Figure 5.198: Automaton of thedecreasing constraint

n−1

VAR
2

VAR

2S

n
VAR

3
VAR

3S

2Q

n−1S

n−1
VAR

1S

1Q0Q =s Q =s

1

Figure 5.199: Hypergraph of the reformulation corresponding to the automaton of the
decreasing constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20040814 861

862 AUTOMATON

5.103 deepestvalley

DESCRIPTION LINKS AUTOMATON

Origin Derived fromvalley.

Constraint deepest valley(DEPTH, VARIABLES)

Arguments DEPTH : dvar

VARIABLES : collection(var−dvar)

Restrictions DEPTH ≥ 0
VARIABLES.var ≥ 0
required(VARIABLES, var)

Purpose

A variableVk (1 < k < m) of the sequence of variablesVARIABLES = V1, . . . , Vm

is a valley if and only if there exists ani (1 < i ≤ k) such thatVi−1 > Vi and
Vi = Vi+1 = . . . = Vk andVk < Vk+1. DEPTH is the minimum value of the valley
variables. If no such variable existsDEPTH is equal to the default valueMAXINT.

Example

2,

〈

var− 5,
var− 3,
var− 4,
var− 8,
var− 8,
var− 2,
var− 7,
var− 1

〉

The deepest valley constraint holds since2 is the deepest valley of the sequence
5 3 4 8 8 2 7 1.

11

1 5 6 7 8

2

3

4

5

6

43

7

8

Values

Variables 2

5

2

4

3

8 8

7

Figure 5.200: The sequence and its deepest valley

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20040530 863

Typical DEPTH ≤maxval(VARIABLES.var)
|VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetry Items ofVARIABLES can bereversed.

See also common keyword:highest peak, valley (sequence).

Keywords characteristic of a constraint: maxint, automaton, automaton with counters.

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(2).

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

864 AUTOMATON

Automaton Figure5.201depicts the automaton associated with thedeepest valley constraint. To
each pair of consecutive variables(VARi, VARi+1) of the collectionVARIABLES corresponds
a signature variableSi. The following signature constraint linksVARi, VARi+1 andSi:

VARi < VARi+1 ⇔ Si = 0 ∧ VARi = VARi+1 ⇔ Si = 1 ∧ VARi > VARi+1 ⇔ Si = 2.

{C=maxint}

i i+1

VAR > VARi+1i

VAR < VAR ,

{C=min(C,VAR)}i

i+1i

DEPTH=C

s:

DEPTH=C

u:
VAR > VARi+1i i+1iVAR = VAR

i+1iVAR = VARVAR < VAR

Figure 5.201: Automaton of thedeepest valley constraint

n−1

C

1Q

1
VAR

1S

2
VAR

2S

n
VAR

3
VAR

3S

2Q

2C

n−1S

n−1
VAR

0Q =s

0C =maxint C =DEPTHn−1

u

s
Q =

1

Figure 5.202: Hypergraph of the reformulation corresponding to the automaton of the
deepest valley constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20040530 865

866 NTREE,CLIQUE

5.104 derangement

DESCRIPTION LINKS GRAPH

Origin Derived fromcycle.

Constraint derangement(NODES)

Argument NODES : collection(index−int, succ−dvar)

Restrictions |NODES| > 1
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose
Enforce to have a permutation with no cycle of length one. The permutation isdepicted
by thesucc attribute of theNODES collection.

Example

〈

index− 1 succ− 2,
index− 2 succ− 1,
index− 3 succ− 5,
index− 4 succ− 3,
index− 5 succ− 4

〉

In the permutation of the example we have the following2 cycles: 1 → 2 → 1
and3 → 5 → 4 → 3. Since these cycles have both a length strictly greater than one the
correspondingderangement constraint holds.

Typical |NODES| > 2

Symmetries • Items ofNODES arepermutable.

• Attributes ofNODES arepermutablew.r.t. permutation(index, succ) (permuta-
tion applied to all items).

Remark A special case of thecycle [39] constraint.

See also common keyword:alldifferent, cycle (permutation).

implies (items to collection):lex alldifferent.

Keywords characteristic of a constraint: sort based reformulation.

combinatorial object: permutation.

constraint type: graph constraint.

filtering: arc-consistency.

final graph structure: onesucc.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20000128 867

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • nodes1.succ = nodes2.index
• nodes1.succ 6= nodes1.index

Graph property(ies) NTREE= 0

Graph class ONE SUCC

Graph model Parts (A) and (B) of Figure5.203respectively show the initial and final graph associated
with theExample slot. Thederangement constraint holds since the final graph does not
contain any vertex that does not belong to a circuit (i.e.,NTREE = 0).

NODES

1

2

3

4

5

NTREE=0

1:1,2

2:2,1

3:3,5

5:5,4

4:4,3

(A) (B)

Figure 5.203: Initial and final graph of thederangement constraint

In order to express the binary constraint that links two vertices of theNODES collection
one has to make explicit the index value of the vertices. This is why thederangement

constraint considers objects that have two attributes:

• One fixed attributeindex that is the identifier of the vertex,

• One variable attributesucc that is the successor of the vertex.

Forbidding cycles of length one is achieved by the second condition of the arc constraint.

Signature Since0 is the smallest possible value ofNTREE we can rewrite the graph property
NTREE = 0 to NTREE ≤ 0. This leads to simplifyNTREE toNTREE.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

868 NARC,PRODUCT (=); AUTOMATON

5.105 differ from at least k pos

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Inspired by [164].

Constraint differ from at least k pos(K, VECTOR1, VECTOR2)

Type VECTOR : collection(var−dvar)

Arguments K : int

VECTOR1 : VECTOR

VECTOR2 : VECTOR

Restrictions |VECTOR| ≥ 1
required(VECTOR, var)
K ≥ 0
K ≤ |VECTOR1|
|VECTOR1| = |VECTOR2|

Purpose Enforce two vectorsVECTOR1 andVECTOR2 to differ from at leastK positions.

Example
(

2, 〈2, 5, 2, 0〉 ,
〈3, 6, 2, 1〉

)

The differ from at least k pos constraint holds since the first and second vec-
tors differ from3 positions, which is greater than or equal toK = 2.

Typical K > 0
|VECTOR1| > 1

Symmetries • Arguments arepermutablew.r.t. permutation(K) (VECTOR1, VECTOR2).

• K can bedecreasedto any value≥ 0.

• Items ofVECTOR1 andVECTOR2 arepermutable(same permutation used).

Arg. properties
Extensiblewrt. VARIABLES1 andVARIABLES2 (add items at same position).

Remark Used in theArc constraint(s) slot of theall differ from at least k pos constraint.

Used in all differ from at least k pos.

See also system of constraints:all differ from at least k pos.

Keywords characteristic of a constraint: vector, automaton, automaton with counters.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: value constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 869

Arc input(s) VECTOR1 VECTOR2

Arc generator PRODUCT (=) 7→collection(vector1, vector2)

Arc arity 2

Arc constraint(s) vector1.var 6= vector2.var

Graph property(ies) NARC≥ K

Graph model Parts (A) and (B) of Figure5.204respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

VECTOR1

VECTOR2

1

1

2

2

3

3

4

4

NARC=3

1:2

1:3

2:5

2:6

4:0

4:1

(A) (B)

Figure 5.204: Initial and final graph of thediffer from at least k pos constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

870 NARC,PRODUCT (=); AUTOMATON

Automaton Figure5.205depicts the automaton associated with thediffer from at least k pos

constraint. LetVAR1i andVAR2i be theith variables of theVECTOR1 andVECTOR2 collec-
tions. To each pair of variables(VAR1i, VAR2i) corresponds a signature variableSi. The
following signature constraint linksVAR1i, VAR2i andSi: VAR1i = VAR2i ⇔ Si.

C>=K{C=C+1}

{C=0}

VAR1=VAR2
s:VAR1<>VAR2,

Figure 5.205: Automaton of thediffer from at least k pos constraint

n

C

1S

1Q

2S nS

0Q =s

0C =0

 n
VAR2

 2
VAR2 1

VAR2

 1
VAR1

 2
VAR1

 n
VAR1

nC >=K

Q =s

1

Figure 5.206: Hypergraph of the reformulation corresponding to the automaton of the
differ from at least k pos constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20030820 871

872 NARC,SELF ;NARC,CLIQUE(6=)

5.106 diffn

DESCRIPTION LINKS GRAPH

Origin [39]

Constraint diffn(ORTHOTOPES)

Synonyms disjoint, disjoint1, disjoint2, diff2.

Type ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)

Argument ORTHOTOPES : collection(orth− ORTHOTOPE)

Restrictions |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end
required(ORTHOTOPES, orth)
same size(ORTHOTOPES, orth)

Purpose
Generalised multi-dimensional non-overlapping constraint: Holds if, foreach pair of
orthotopes(O1, O2), O1 andO2 do not overlap. Twoorthotopesdo not overlap if there
exists at least one dimension where their projections do not overlap.

Example

〈

orth−
〈

ori− 2 siz− 2 end− 4,
ori− 1 siz− 3 end− 4

〉

,

orth−
〈

ori− 4 siz− 4 end− 8,
ori− 3 siz− 3 end− 6

〉

,

orth−
〈

ori− 9 siz− 2 end− 11,
ori− 4 siz− 3 end− 7

〉

〉

Figure 5.207 represents the respective position of the three rectangles of the exam-
ple. The coordinates of the leftmost lowest corner of each rectangle are stressed in bold.
Thediffn constraint holds since the three rectangles do not overlap.

54321

1

6

5

4

3

2

109876

R1

R3

R2

Figure 5.207: The three rectangles of the example

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20000128 873

Typical |ORTHOTOPE| > 1
ORTHOTOPE.siz > 0
|ORTHOTOPES| > 1

Symmetries • Items ofORTHOTOPES arepermutable.

• Items ofORTHOTOPES.orth arepermutable(same permutation used).

• ORTHOTOPES.orth.siz can bedecreasedto any value≥ 0.

• One and the same constant can beaddedto theori andend attributes of all items
of ORTHOTOPES.orth.

Arg. properties
Contractiblewrt. ORTHOTOPES.

Usage The diffn constraint occurs in placement and scheduling problems. It was for instance
used for scheduling problems where one has to both assign each non-preemptive task to a
resource and fix its origin so that two tasks, which are assigned to the sameresource, do not
overlap. When the resource is a set of persons to which non-preemptive tasks have to be
assigned this corresponds to so calledtimetabling problems. A second practical application
from the area of the design of memory-dominated embedded systems [378] can be found
in [379]. Together with arithmetic andcumulative constraints, thediffn constraint was
used in [377] for packing more complex shapes such as angles. Figure5.208illustrates the
angle packing problem on an instance involving10 angles taken from [377].

1 2 3 4 5 6 7 8 9

9

5

6

7

8

1

2

3

4

A6
A9

A10

A2 A1

A5A4

A7

A3

A8

Figure 5.208: A solution for the angle packing problem of items A1 = [2, 4, 3, 1],
A2 = [2, 2, 1, 3], A3 = [1, 3, 3, 2], A4 = [2, 1, 4, 3], A5 = [1, 7, 2, 2], A6 = [1, 2, 5, 5],
A7 = [6, 2, 2, 3], A8 = [4, 2, 2, 1], A9 = [3, 1, 1, 4], A10 = [3, 2, 1, 1].

One other packing problem attributed to S. Golomb is to find the smallest square that can
contain the set of consecutive squares from1× 1 up ton× n so that these squares do not
overlap each other (see thesmallest rectangle areaproblem).

Remark When we have segments (respectively rectangles) thediffn constraint is referenced under
the namedisjoint1 (respectivelydisjoint2) in SICStus Prolog[94]. When we have
rectangles thediffn constraint is also calleddiff2 in JaCoP. In MiniZinc (http://

www.g12.cs.mu.oz.au/minizinc/) thediffn constraint considers only rectangles.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.sics.se/sicstus/
http://www.jacop.eu/
http://www.g12.cs.mu.oz.au/minizinc/

874 NARC,SELF ;NARC,CLIQUE(6=)

It was shown in [381, page 137] that, finding out whether a non-overlapping constraint
between a set of rectangles has a solution or not is NP-hard. This was achieved by reduction
from sequencing with release times and deadlines.

In the two-dimensional case, when rectangles heights are all equal to one and when rect-
angles starts in the first dimension are all fixed, thediffn constraint can be rewritten as
a k alldifferent constraint corresponding to a system ofalldifferent constraints
derived from the maximum cliques of the corresponding interval graph.

Algorithm Checking whether adiffn constraint for which all variables are fixed is satisfied or
not is related to theKlee’s measure problem: given a collection of axis-aligned mul-
ti-dimensional boxes, how quickly can one compute the volume of their union. Then the
diffn constraint holds if the volume of the union is equal to the sum of the volumes of the
different boxes.

A first possible method for filtering is to useconstructive disjunction. The idea is to try
out each alternative of a disjunction (e.g., given twoorthotopeso1 ando2 that should not
overlap, we successively assume for each dimension thato1 finishes beforeo2, and that
o2 finishes beforeo1) and to remove values that were pruned in all alternatives. For the
two-dimensional case ofdiffn a second possible solution used in [341] is to represent
explicitly the two-dimensional domain of the origin of each rectangle by aquadtree[346]
and to accumulate all forbidden regions within this data structure. As for conventional
domain variables, a failure occurs when a two-dimensional domain get empty. A third
possible filtering algorithm based onsweepis described in [31].

The thesis of J. Nelissen [272] considers the case where all rectangles have the same
size and can be rotated from90 degrees (i.e., thepallet loadingproblem.). For the
n-dimensional case ofdiffn a filtering algorithm handling the fact that two objects do
not overlap is given in [42].

Figure 5.209: A hard instance from [272, page 165]: A solution for packing99 rectan-
gles of size5× 9 into a rectangle of size86× 52

Extensions of the non-overlapping constraint to polygons and to more complex shapes
are respectively described in [42] and in [336]. Specialised propagation algorithms for
thesquared squaresproblem [80] (based on the fact that no waste is permitted) are given
in [167] and in [166].

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

20000128 875

Thecumulative constraint can be used as anecessary conditionfor thediffn constraint.
Figure5.210illustrates this point for the two-dimensional case. A first (respectively sec-
ond) cumulative constraint is obtained by forgetting they-coordinate (respectively the
x-coordinate) of the origin of each rectangle occurring in adiffn constraint. Parts (B)
and (C) respectively depict the cumulated profiles associated with the projection of the
rectangles depicted by part (A) on thex andy axes.

The cumulative constraint is a necessarybut not sufficient conditionfor the
two-dimensional case of thediffn constraint. Figure5.211illustrates this point on an
example taken from [73] where one has to place the8 rectangles R1, R2, R3, R4, R5, R6,
R7, R8 of respective size5× 2, 8× 2, 6× 1, 5× 1, 2× 1, 3× 1, 2× 2 and1× 2 in a big
rectangle of size12 × 4. As shown by Figure5.211there is a cumulative solution where
R8 is splitted in two parts but M. Hujter proves in [203] that there is no solution where no
rectangle is split.

y

1

1 2 3 4 5 6 7 8 9 10

2

3

4

5

6

R2 R3R1

1

1 2 3 4 5 6 7 8 9 10

2

3

4

5

6

R2
R3

R1

R1

R3

1 3 5 6 7 8 10

2

3

5

6

R1

R2

R3

4 9

4

1

2

(C) (A)

(B)

x

x

y

Figure 5.210: Looking from the perspective of thecumulative constraint in a two-di-
mensional rectangles placement problem

4

8 9 10 11 12

1

2

3

1 2 3 4 5 6 7

R1
R3

R8
R2

R5
R7

R4

R8

R6

Figure 5.211: Illustrating the necessary but not sufficientplacement condition

In the context ofn parallelepipeds that have to be packed [172, 243] within a box of sizes
X × Y ×Z one can proceed as follows for stating threecumulative constraints. Theith

876 NARC,SELF ;NARC,CLIQUE(6=)

(i ∈ [1, n]) parallelepiped is described by the following attributes:

• ox i, oy i, oz i (i ∈ [1, n]) the coordinates of its origin on thex, y andz-axes.

• sx i, sy i, sz i (i ∈ [1, n]) its sizes on thex, y andz-axes.

• px i, py i, pz i (i ∈ [1, n]) the surfaces of its projections on the planesyz, xz, andxy
respectively equal tosy isz i, sx isz i, andsx isy i.

• vi its volume (equal tosx isy isz i).

For the placement ofn parallelepipeds we get the following necessary conditions that re-
spectively correspond to threecumulative constraints on the planesyz, xz, andxy:

∀i ∈ [1, X] :
∑

j|oxj≤i≤oxj+sxj−1 px j ≤ Y Z

∀i ∈ [1, Y] :
∑

j|oyj≤i≤oyj+syj−1 pyj ≤ XZ

∀i ∈ [1, Z] :
∑

j|ozj≤i≤ozj+szj−1 pz j ≤ XY

Reformulation Based on the fact that two orthotopes do not overlap if there exists at least one dimen-
sion where their projections do not overlap one can reformulate thediffn(ORTHOTOPES)
constraint as a disjunction of inequalities between the origin and the end attributes. In ad-
dition one has to link the origin, the size and the end attributes of each orthotopein each
dimension.

If we consider the example described in theExampleslot we get the following reformula-
tion:

• 4 = 2+2 (link between the origin, size and end in dimension1 of the first orthotope),

• 4 = 1+3 (link between the origin, size and end in dimension2 of the first orthotope),

• 8 = 4 + 4 (link between the origin, size and end in dimension1 of the second
orthotope),

• 6 = 3 + 3 (link between the origin, size and end in dimension2 of the second
orthotope),

• 11 = 9 + 2 (link between the origin, size and end in dimension1 of the third
orthotope),

• 7 = 4+3 (link between the origin, size and end in dimension2 of the third orthotope),

• 4 ≤ 4 ∨ 8 ≤ 2 ∨ 4 ≤ 3 ∨ 6 ≤ 1 (non-overlapping between the first and second
orthotopes),

• 4 ≤ 9 ∨ 11 ≤ 2 ∨ 4 ≤ 4 ∨ 7 ≤ 1 (non-overlapping between the first and third
orthotopes),

• 8 ≤ 9 ∨ 11 ≤ 4 ∨ 6 ≤ 4 ∨ 7 ≤ 3 (non-overlapping between the second and third
orthotopes).

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

20000128 877

Systems geost in Choco, nooverlap in Gecode, diff2 in JaCoP, diff in JaCoP,
disjoint in JaCoP, disjointconditional in JaCoP, diffn in MiniZinc .

Used in diffn column, diffn include, place in pyramid.

See also common keyword:calendar (multi-site employee scheduling with calendar constraints,
scheduling with machine choice, calendars and preemption), diffn column,
diffn include (geometrical constraint,orthotope), geost, geost time,
non overlap sboxes (geometrical constraint,non-overlapping),
visible (geometrical constraint).

implied by: orths are connected.

implies: cumulative (implies onecumulative constraint for each dimension).

related: cumulative two d (cumulative two d is a necessary condition fordiffn:
forget one dimension when the number of dimensions is equal to3), lex chain less,
lex chain lesseq (lexicographic ordering on the origins oftasks, rectangles, . . .),
two orth column, two orth include.

specialisation:all min dist (orthotope replaced byline segment, of same length),
alldifferent (orthotope replaced by variable), cumulatives (orthotope
replaced by task with machine assignment and origin attributes),
disjunctive (orthotope replaced by task of heigth 1), k alldifferent (when
rectangles heights are all equal to1 and rectangles starts in the first dimension are all
fixed), lex alldifferent (orthotope replaced byvector).

used in graph description:orth link ori siz end, two orth do not overlap.

Keywords application area: floor planning problem.

characteristic of a constraint: core.

combinatorial object: pentomino.

complexity: sequencing with release times and deadlines.

constraint arguments:business rules.

constraint type: decomposition, timetabling constraint, relaxation.

filtering: Klee measure problem, sweep, quadtree, compulsory part,
constructive disjunction, SAT.

geometry:geometrical constraint, orthotope, polygon, non-overlapping.

heuristics: heuristics for two-dimensional rectangle placement problems.

modelling: disjunction, assignment dimension, assignment to the same set of values,
assigning and scheduling tasks that run in parallel, relaxation dimension,
sequence dependent set-up, multi-site employee scheduling with calendar constraints,
scheduling with machine choice, calendars and preemption.

modelling exercises: assignment to the same set of values,
assigning and scheduling tasks that run in parallel, relaxation dimension,
sequence dependent set-up, multi-site employee scheduling with calendar constraints,
scheduling with machine choice, calendars and preemption.

problems: strip packing, two-dimensional orthogonal packing, pallet loading.

puzzles: squared squares, packing almost squares, Partridge,
pentomino, Shikaku, smallest square for packing consecutive dominoes,

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntGeoPacking.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/Diff2.html
http://www.jacop.eu/
http://jacopapi.osolpro.com/JaCoP/constraints/Diff.html
http://www.jacop.eu/
http://jacopapi.osolpro.com/JaCoP/constraints/Disjoint.html
http://www.jacop.eu/
http://jacopapi.osolpro.com/JaCoP/constraints/DisjointConditional.html
http://www.jacop.eu/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#diffn
http://www.g12.cs.mu.oz.au/minizinc/

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

878 NARC,SELF ;NARC,CLIQUE(6=)

smallest square for packing rectangles with distinct sizes, smallest rectangle area,
Conway packing problem.

20000128 879

Arc input(s) ORTHOTOPES

Arc generator SELF 7→collection(orthotopes)

Arc arity 1

Arc constraint(s) orth link ori siz end(orthotopes.orth)

Graph property(ies) NARC= |ORTHOTOPES|

Arc input(s) ORTHOTOPES

Arc generator CLIQUE(6=) 7→collection(orthotopes1, orthotopes2)

Arc arity 2

Arc constraint(s) two orth do not overlap(orthotopes1.orth, orthotopes2.orth)

Graph property(ies) NARC= |ORTHOTOPES| ∗ |ORTHOTOPES| − |ORTHOTOPES|

Graph model Thediffn constraint is expressed by using two graph constraints:

• The first graph constraint enforces for each dimension and for each orthotopethe link
between the correspondingori, siz andend attributes.

• The second graph constraint imposes each pair of distinctorthotopesto not overlap.

Parts (A) and (B) of Figure5.212respectively show the initial and final graph associated
with the second graph constraint of theExample slot. Since we use theNARC graph
property, the arcs of the final graph are stressed in bold.

ORTHOTOPES

1

2

3

NARC=6

1:2,2,4
 1,3,4

2:4,4,8
 3,3,6

3:9,2,11
 4,3,7

(A) (B)

Figure 5.212: Initial and final graph of thediffn constraint

Signature Since|ORTHOTOPES| is the maximum number of vertices of the final graph of the first graph
constraint we can rewriteNARC = |ORTHOTOPES| to NARC ≥ |ORTHOTOPES|. This
leads to simplifyNARC toNARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

880 NARC,SELF ;NARC,CLIQUE(6=)

Since we use theCLIQUE(6=) arc generator on theORTHOTOPES collection,
|ORTHOTOPES| · |ORTHOTOPES| − |ORTHOTOPES| is the maximum number of vertices
of the final graph of the second graph constraint. Therefore we can rewrite NARC

= |ORTHOTOPES| · |ORTHOTOPES| − |ORTHOTOPES| to NARC ≥ |ORTHOTOPES| ·
|ORTHOTOPES| − |ORTHOTOPES|. Again, this leads to simplifyNARC toNARC.

20000128 881

882 NARC,CLIQUE(<)

5.107 diffn column

DESCRIPTION LINKS GRAPH

Origin CHIP: option guillotine cut (column) ofdiffn.

Constraint diffn column(ORTHOTOPES, DIM)

Type ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)

Arguments ORTHOTOPES : collection(orth− ORTHOTOPE)
DIM : int

Restrictions |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end
required(ORTHOTOPES, orth)
same size(ORTHOTOPES, orth)
DIM > 0
DIM ≤ |ORTHOTOPE|
diffn(ORTHOTOPES)

Purpose

Extension of the generalised multi-dimensional non-overlappingdiffn constraint. Holds
if, for each pair oforthotopes(O1, O2) the following conditions hold:

• O1 andO2 do not overlap. Twoorthotopesdo not overlap if there exists at least
one dimension where their projections do not overlap.

• Let P1 andP2 respectively denote the projections ofO1 andO2 in dimension
DIM. If P1 andP2 overlap then the size of their intersection is equal to the size of
O1 in dimensionDIM, as well as to the size ofO2 in dimensionDIM.

Example

〈

orth−
〈

ori− 1 siz− 3 end− 4,
ori− 3 siz− 2 end− 5

〉

,

orth−
〈

ori− 9 siz− 1 end− 10,
ori− 4 siz− 3 end− 7

〉

,

orth−
〈

ori− 4 siz− 2 end− 6,
ori− 3 siz− 4 end− 7

〉

,

orth−
〈

ori− 1 siz− 3 end− 4,
ori− 6 siz− 1 end− 7

〉

,

orth−
〈

ori− 6 siz− 2 end− 8,
ori− 1 siz− 4 end− 5

〉

,

orth−
〈

ori− 10 siz− 1 end− 11,
ori− 1 siz− 1 end− 2

〉

,

orth−
〈

ori− 9 siz− 1 end− 10,
ori− 1 siz− 1 end− 2

〉

,

orth−
〈

ori− 6 siz− 2 end− 8,
ori− 6 siz− 1 end− 7

〉

〉

, 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20030820 883

Figure 5.213 represents the respective position of the eight rectangles of the exam-
ple. The coordinates of the leftmost lowest corner of each rectangle are stressed in bold.
Thediffn column constraint holds since (1) the eight rectangles do not overlap and since
(2) when their projection in dimensionDIM = 1 overlap the size of their intersection is
equal to the size of the corresponding rectangles in dimensionDIM = 1.

8

2

5

1

6

1062

1

3 4 5 7 9

3

4

R6

R3

R1
R5

R2
R4

dimension 1

di
m

en
si

on
 2

R7

R8

Figure 5.213: Eight non-overlapping rectangles such that,for each pair of rectangles
Ri, Rj (1 ≤ i < j ≤ 12), if the projections in dimension1 of rectanglesRi andRj

intersect then the size of their intersection is equal to thesize ofRi in dimension1 and
to the size ofRj in dimension1

Typical |ORTHOTOPE| > 1
ORTHOTOPE.siz > 0
|ORTHOTOPES| > 1

Symmetries • Items ofORTHOTOPES arepermutable.

• One and the same constant can beaddedto theori andend attributes of all items
of ORTHOTOPES.orth.

Arg. properties
Contractiblewrt. ORTHOTOPES.

See also common keyword: diffn (geometrical constraint,orthotope),
diffn include (geometrical constraint,orthotope,positioning constraint).

implies: diffn include.

used in graph description:two orth column.

Keywords constraint type: decomposition.

geometry:geometrical constraint, positioning constraint, orthotope, guillotine cut.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

884 NARC,CLIQUE(<)

Arc input(s) ORTHOTOPES

Arc generator CLIQUE (<) 7→collection(orthotopes1, orthotopes2)

Arc arity 2

Arc constraint(s) two orth column(orthotopes1.orth, orthotopes2.orth, DIM)

Graph property(ies) NARC= |ORTHOTOPES| ∗ (|ORTHOTOPES| − 1)/2

Graph model Since showing all items produces too big graphs, parts (A) and (B) of Figure5.214respec-
tively show the initial and final graph associated with the first three items of the Example
slot. Since we use theNARC graph property, the arcs of the final graph are stressed in
bold.

ORTHOTOPES

1

2

3

NARC=3

1:1,3,4
 3,2,5

2:9,1,10
 4,3,7

3:4,2,6
 3,4,7

(A) (B)

Figure 5.214: Initial and final graph of thediffn column constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 885

886 NARC,CLIQUE(<)

5.108 diffn include

DESCRIPTION LINKS GRAPH

Origin CHIP: option guillotine cut (include) ofdiffn.

Constraint diffn include(ORTHOTOPES, DIM)

Type ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)

Arguments ORTHOTOPES : collection(orth− ORTHOTOPE)
DIM : int

Restrictions |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end
required(ORTHOTOPES, orth)
same size(ORTHOTOPES, orth)
DIM > 0
DIM ≤ |ORTHOTOPE|
diffn(ORTHOTOPES)

Purpose

Extension of the generalised multi-dimensional non-overlappingdiffn constraint. Holds
if, for each pair oforthotopes(O1, O2) the following conditions hold:

• O1 andO2 do not overlap. Twoorthotopesdo not overlap if there exists at least
one dimension where their projections do not overlap.

• Let P1 andP2 respectively denote the projections ofO1 andO2 in dimension
DIM. If P1 andP2 overlap then, eitherP1 is included inP2, eitherP2 is included
in P1.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

20030820 887

Example

〈

orth−
〈

ori− 8 siz− 1 end− 9,
ori− 4 siz− 1 end− 5

〉

,

orth−
〈

ori− 9 siz− 1 end− 10,
ori− 4 siz− 3 end− 7

〉

,

orth−
〈

ori− 6 siz− 3 end− 9,
ori− 5 siz− 2 end− 7

〉

,

orth−
〈

ori− 1 siz− 3 end− 4,
ori− 6 siz− 1 end− 7

〉

,

orth−
〈

ori− 4 siz− 2 end− 6,
ori− 3 siz− 4 end− 7

〉

,

orth−
〈

ori− 6 siz− 4 end− 10,
ori− 1 siz− 1 end− 2

〉

,

orth−
〈

ori− 10 siz− 1 end− 11,
ori− 1 siz− 1 end− 2

〉

,

orth−
〈

ori− 6 siz− 5 end− 11,
ori− 2 siz− 2 end− 4

〉

,

orth−
〈

ori− 6 siz− 2 end− 8,
ori− 4 siz− 1 end− 5

〉

,

orth−
〈

ori− 1 siz− 5 end− 6,
ori− 1 siz− 2 end− 3

〉

,

orth−
〈

ori− 1 siz− 3 end− 4,
ori− 3 siz− 2 end− 5

〉

,

orth−
〈

ori− 1 siz− 2 end− 3,
ori− 5 siz− 1 end− 6

〉

〉

, 1

Figure 5.215 represents the respective position of the twelve rectangles of the ex-
ample. The coordinates of the leftmost lowest corner of each rectangleare stressed in
bold. Thediffn include constraint holds since (1) the twelve rectangles do not overlap
and since (2) when their projection in dimensionDIM = 1 overlap one of the projections is
included within the other one.

1

6

5

2

10862

1

3 4 5 7 9

3

4
R11

R10

R2

R9

R8

R7R6

R5

R4

R1

dimension 1

di
m

en
si

on
 2

R3
R12

Figure 5.215: Twelve non-overlapping rectangles such that, for each pair of rectangles
Ri, Rj (1 ≤ i < j ≤ 12), if the projections in dimension1 of rectanglesRi andRj

intersect then one of the projections is included within theother projection

Example
One or several examples of ground solutions of the constraint.

888 NARC,CLIQUE(<)

Typical |ORTHOTOPE| > 1
ORTHOTOPE.siz > 0
|ORTHOTOPES| > 1

Symmetries • Items ofORTHOTOPES arepermutable.

• One and the same constant can beaddedto theori andend attributes of all items
of ORTHOTOPES.orth.

Arg. properties
Contractiblewrt. ORTHOTOPES.

See also common keyword: diffn (geometrical constraint,orthotope),
diffn column (geometrical constraint,orthotope,positioning constraint).

implied by: diffn column.

used in graph description:two orth column.

Keywords constraint type: decomposition.

geometry:geometrical constraint, positioning constraint, orthotope.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 889

Arc input(s) ORTHOTOPES

Arc generator CLIQUE(<) 7→collection(orthotopes1, orthotopes2)

Arc arity 2

Arc constraint(s) two orth include(orthotopes1.orth, orthotopes2.orth, DIM)

Graph property(ies) NARC= |ORTHOTOPES| ∗ (|ORTHOTOPES| − 1)/2

Graph model Since showing all items produces too big graphs, parts (A) and (B) of Figure5.216respec-
tively show the initial and final graph associated with the first three items of the Example
slot. Since we use theNARC graph property, the arcs of the final graph are stressed in
bold.

ORTHOTOPES

1

2

3

NARC=3

1:8,1,9
 4,1,5

2:9,1,10
 4,3,7

3:6,3,9
 5,2,7

(A) (B)

Figure 5.216: Initial and final graph of thediffn include constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

890 NARC,SELF

5.109 discrepancy

DESCRIPTION LINKS GRAPH

Origin [157] and [398]

Constraint discrepancy(VARIABLES, K)

Arguments VARIABLES : collection(var−dvar, bad−sint)
K : int

Restrictions required(VARIABLES, var)
required(VARIABLES, bad)
K ≥ 0
K ≤ |VARIABLES|

Purpose
K is the number of variables of the collectionVARIABLES that take their value in their
respective sets of bad values.

Example

〈

var− 4 bad− {1, 4, 6},
var− 5 bad− {0, 1},
var− 5 bad− {1, 6, 9},
var− 4 bad− {1, 4},
var− 1 bad− ∅

〉

, 2

The discrepancy constraint holds since exactlyK = 2 variables (i.e., the first and
fourth variables) of theVARIABLES collection take their value within their respective sets
of bad values.

Typical |VARIABLES| > 1
K < |VARIABLES|

Symmetries • Items ofVARIABLES arepermutable.

• All occurrences of two distinct values inVARIABLES.var or VARIABLES.bad can
beswapped; all occurrences of a value inVARIABLES.var or VARIABLES.bad can
berenamedto any unused value.

Arg. properties
• Functional dependency: K determined byVARIABLES.

• Aggregate: VARIABLES(union), K(+).

Remark Limited discrepancy searchwas first introduced by M. L. Ginsberg and W. D. Harvey as
a search technique in [178]. Later on, discrepancy based filtering was presented in the
PhD thesis of F. Focacci [157, pages 171–172]. Finally thediscrepancy constraint was
explicitly defined in the PhD thesis of W.-J. van Hoeve [398, page 104].

See also common keyword:among (counting constraint).

used in graph description:in set.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

20050506 891

Keywords constraint arguments:pure functional dependency.

constraint type: value constraint, counting constraint.

filtering: arc-consistency.

heuristics: heuristics, limited discrepancy search.

modelling: functional dependency.

Keywords
Related keywords grouped by meta-keywords.

892 NARC,SELF

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) in set(variables.var, variables.bad)

Graph property(ies) NARC= K

Graph model The arc constraint corresponds to the constraint
in set(variables.var, variables.bad) defined in this catalogue. We employ
the SELF arc generator in order to produce an initial graph with a single loop on each
vertex.

Parts (A) and (B) of Figure5.217respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the loops of the final
graph are stressed in bold.

VARIABLES

12345

NARC=2

1:4,{1,4,6} 4:4,{1,4}

(A) (B)

Figure 5.217: Initial and final graph of thediscrepancy constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20050506 893

894 NARC,CLIQUE(6=)

5.110 disj

DESCRIPTION LINKS GRAPH

Origin [267]

Constraint disj(TASKS)

Argument TASKS : collection

start−dvar,
duration−dvar,
before−svar,
position−dvar

Restrictions required(TASKS, [start, duration, before, position])
TASKS.duration ≥ 1
TASKS.position ≥ 0
TASKS.position < |TASKS|

Purpose

All the tasks of the collectionTASKS should not overlap. For a given taskt the attributes
before andposition respectively correspond to the set of tasks starting before taskt
(assuming that the first task is labelled by1) and to the position of taskt (assuming that
the first task has position0).

Example

〈
start− 1 duration− 3 before− ∅ position− 0,
start− 9 duration− 1 before− {1, 3, 4} position− 3,
start− 7 duration− 2 before− {1, 4} position− 2,
start− 4 duration− 1 before− {1} position− 1

〉

Figure 5.218 shows the tasks of the example. Since these tasks do not overlap the
disj constraint holds.

109876
time

241

54321

3

Figure 5.218: Tasks

Typical |TASKS| > 1

Symmetries • One and the same constant can beaddedto thestart attribute of all items of
TASKS.

• TASKS.duration can bedecreasedto any value≥ 1.

Usage Thedisj constraint was originally applied [267] to solve theopen-shopproblem.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

20070527 895

Remark This constraint is similar to thedisjunctive constraint. In addition to thestart and the
duration attributes of a taskt, thedisj constraint introduces a set variablebefore that
represents the set of tasks that end before the start of taskt as well as a domain variable
position that gives the absolute order of taskt in the resource. Since it assumes that
the first task has position0 we have that, for a given taskt, the number of elements of its
before attribute is equal to the value of itsposition attribute.

Algorithm The main idea of the algorithm is to apply in a systematic way shaving on theposition

attribute of a task. It is implemented inGecode[353].

See also common keyword:disjunctive (scheduling constraint).

used in graph description:in set.

Keywords complexity: sequencing with release times and deadlines.

constraint arguments:constraint involving set variables.

constraint type: scheduling constraint, resource constraint, decomposition.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

http://www.gecode.org/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

896 NARC,CLIQUE(6=)

Arc input(s) TASKS

Arc generator CLIQUE (6=) 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • ∨

(

tasks1.start+ tasks1.duration ≤ tasks2.start,
tasks2.start+ tasks2.duration ≤ tasks1.start

)

• tasks1.start+ tasks1.duration ≤ tasks2.start ⇔
in set(tasks1.key, tasks2.before)

• tasks1.start+ tasks1.duration ≤ tasks2.start ⇔
tasks1.position < tasks2.position

Graph property(ies) NARC= |TASKS| ∗ |TASKS| − |TASKS|

Graph model We generate acliquewith a non-overlapping constraint between each pair of distinct tasks
and state that the number of arcs of the final graph should be equal to thenumber of arcs
of the initial graph. For two taskst1 and t2, the three conditions of the arc constraint
respectively correspond to:

• The fact thatt1 ends before the start oft2 or thatt2 ends before the start oft1.

• The equivalence between the fact thatt1 ends before the start oft2 and the fact that
the identifier of taskt1 belongs to thebefore attribute of taskt2.

• The equivalence between the fact thatt1 ends before the start oft2 and the fact that
theposition attribute of taskt1 is strictly less than theposition attribute of task
t2.

Parts (A) and (B) of Figure5.219respectively show the initial and final graph associated
with the Example slot. Thedisj constraint holds since all the arcs of the initial graph
belong to the final graph: all the non-overlapping constraints holds.

TASKS

1

2

3

4

NARC=12

1:1,3,{},0

2:9,1,{1,3,4},3

3:7,2,{1,4},2

4:4,1,{1},1

(A) (B)

Figure 5.219: Initial and final graph of thedisj constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20070527 897

898 NARC,PRODUCT

5.111 disjoint

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromalldifferent.

Constraint disjoint(VARIABLES1, VARIABLES2)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose
Each variable of the collectionVARIABLES1 should take a value that is distinct from all
the values assigned to the variables of the collectionVARIABLES2.

Example

〈1, 9, 1, 5〉 ,

〈

var− 2,
var− 7,
var− 7,
var− 0,
var− 6,
var− 8

〉

In this example, values1, 5, 9 are used by the variables ofVARIABLES1 and values
0, 2, 6, 7, 8 by the variables ofVARIABLES2. Since there is no intersection between the
two previous sets of values thedisjoint constraint holds.

Typical |VARIABLES1| > 1
|VARIABLES2| > 1

Symmetries • Arguments arepermutablew.r.t. permutation(VARIABLES1, VARIABLES2).

• Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• An occurrence of a value ofVARIABLES1.var can bereplacedby any value of
VARIABLES1.var.

• An occurrence of a value ofVARIABLES2.var can bereplacedby any value of
VARIABLES2.var.

• All occurrences of two distinct values inVARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value inVARIABLES1.var or
VARIABLES2.var can berenamedto any unused value.

Arg. properties
• Contractiblewrt. VARIABLES1.

• Contractiblewrt. VARIABLES2.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

20000315 899

Remark Despite the fact that this is not an uncommon constraint, it can not be modelled in a compact
way neither with adisequalityconstraint (i.e., two given variables have to take distinct
values) nor with thealldifferent constraint. Thedisjoint constraint can bee seen as a
special case of thecommon(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2) constraint
whereNCOMMON1 andNCOMMON2 are both set to0.

MiniZinc (http://www.g12.cs.mu.oz.au/minizinc/) has adisjoint constraint
between two set variables rather than between two collections of variables.

Algorithm Let us note:

• n1 the minimum number of distinct values taken by the variables of the collection
VARIABLES1.

• n2 the minimum number of distinct values taken by the variables of the collection
VARIABLES2.

• n12 the maximum number of distinct values taken by the union of the variables of
VARIABLES1 andVARIABLES2.

One invariant to maintain for thedisjoint constraint isn1 + n2 ≤ n12. A lower bound
of n1 andn2 can be obtained by using the algorithms provided in [26, 38]. An exact upper
bound ofn12 can be computed by using abipartite matchingalgorithm.

Used in k disjoint.

See also generalisation:disjoint tasks (variable replaced bytask).

implies: alldifferent on intersection, lex different.

system of constraints:k disjoint.

Keywords characteristic of a constraint: disequality, automaton, automaton with array of counters.

constraint type: value constraint.

filtering: bipartite matching.

modelling: empty intersection.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.g12.cs.mu.oz.au/minizinc/

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

900 NARC,PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NARC= 0

Graph model PRODUCT is used in order to generate the arcs of the graph between all variables of
VARIABLES1 and all variables ofVARIABLES2. Since we use the graph propertyNARC

= 0 the final graph will be empty. Figure5.220shows the initial graph associated with the
Exampleslot. Since we use theNARC = 0 graph property the final graph is empty.

VARIABLES1

VARIABLES2

1

1234 56

234

Figure 5.220: Initial graph of thedisjoint constraint (the final graph is empty)

Signature Since0 is the smallest number of arcs of the final graph we can rewriteNARC = 0 to
NARC ≤ 0. This leads to simplifyNARC toNARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20000315 901

Automaton Figure5.221depicts the automaton associated with thedisjoint constraint. To each
variableVAR1i of the collectionVARIABLES1 corresponds a signature variableSi that is
equal to0. To each variableVAR2i of the collectionVARIABLES2 corresponds a signature
variableSi+|VARIABLES1| that is equal to1.

{C[_]=0,D[_]=0}

arith_or(C,D,<,1)

t:
{D[VAR2]=D[VAR2]+1}
1,

i i

{D[VAR2]=D[VAR2]+1}
1,

i i

i i{C[VAR1]=C[VAR1]+1}
0,

s

Figure 5.221: Automaton of thedisjoint constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

902 LOGIC

5.112 disjoint sboxes

DESCRIPTION LINKS LOGIC

Origin Geometry, derived from [318]

Constraint disjoint sboxes(K, DIMS, OBJECTS, SBOXES)

Synonym disjoint.

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)

Arguments K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−int, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− POSITIVES)

Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
K > 0
DIMS ≥ 0
DIMS < K

increasing seq(OBJECTS, [oid])
required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
|SBOXES| ≥ 1
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
do not overlap(SBOXES)

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

20070622 903

Purpose

Holds if, for each pair of objects(Oi, Oj), i 6= j, Oi andOj are disjoint with respect to
a set of dimensions depicted byDIMS. Oi andOj are objects that take a shape among a
set of shapes. Eachshapeis defined as a finite set of shifted boxes, where each shifted
box is described by a box in aK-dimensional space at a given offset (from the origin of
the shape) with given sizes. More precisely, ashifted boxis an entity defined by its shape
id sid, shift offsett, and sizesl. Then, a shape is defined as the union of shifted boxes
sharing the same shape id. Anobject is an entity defined by its unique object identifier
oid, shape idsid and originx.
Two objectsOi and objectOj aredisjoint with respect to a set of dimensions depicted
by DIMS if and only if for all shifted boxsi associated withOi and for all shifted boxsj
associated withOj there exists at least one dimensiond ∈ DIMS such that (1) the origin
of si in dimensiond is strictly greater than the end ofsj in dimensiond, or (2) the origin
of sj in dimensiond is strictly greater than the end ofsi in dimensiond.

Example

2, {0, 1},
〈

oid− 1 sid− 1 x− 〈1, 1〉 ,
oid− 2 sid− 2 x− 〈4, 1〉 ,
oid− 3 sid− 4 x− 〈2, 4〉

〉

,

〈

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 ,
sid− 2 t− 〈0, 0〉 l− 〈1, 1〉 ,
sid− 2 t− 〈1, 0〉 l− 〈1, 3〉 ,
sid− 2 t− 〈0, 2〉 l− 〈1, 1〉 ,
sid− 3 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 3 t− 〈0, 1〉 l− 〈1, 1〉 ,
sid− 3 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 4 t− 〈0, 0〉 l− 〈1, 1〉

〉

Figure 5.222 shows the objects of the example. Since these objects are pairwise
disjoint thedisjoint sboxes constraint holds.

Typical |OBJECTS| > 1

Symmetries • Items ofOBJECTS arepermutable.

• Items ofSBOXES arepermutable.

• SBOXES.l.v can bedecreasedto any value≥ 1.

Arg. properties
Suffix-contractiblewrt. OBJECTS.

Remark One of the eight relations of theRegion Connection Calculus[318]. Unlike the
non overlap sboxes constraint, which just prevents objects from overlapping, the
disjoint sboxes constraint in addition enforces that borders and corners of objects are
not directly in contact.

See also common keyword: contains sboxes, coveredby sboxes,
covers sboxes, equal sboxes, inside sboxes, meet sboxes (rcc8),
non overlap sboxes (geometrical constraint,logic), overlap sboxes (rcc8).

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

904 LOGIC

Keywords constraint type: logic.

geometry:geometrical constraint, rcc8.

Keywords
Related keywords grouped by meta-keywords.

20070622 905

S1

2

4

1 2 3 4 5

3

O1 O2

O3

(D) Three mutually disjoint objects

third object
(C) Shape of the

second object
(B) Shapes of the(A) Shape of the

first object

S3

S4

S2

1

Figure 5.222: The three mutually disjoint objects of the example

906 LOGIC

Logic
• origin(O1, S1, D)

def
= O1.x(D) + S1.t(D)

• end(O1, S1, D)
def
= O1.x(D) + S1.t(D) + S1.l(D)

• disjoint sboxes(Dims, O1, S1, O2, S2)
def
=

∃D ∈ Dims

∨

origin(O1, S1, D) >
end(O2, S2, D)

,

origin(O2, S2, D) >
end(O1, S1, D)

• disjoint objects(Dims, O1, O2)
def
=

∀S1 ∈ sboxes([O1.sid])
∀S2 ∈ sboxes

([

O2.sid
])

disjoint sboxes

Dims,
O1,
S1,
O2,
S2

• all disjoint(Dims, OIDS)
def
=

∀O1 ∈ objects(OIDS)
∀O2 ∈ objects(OIDS)

O1.oid <
O2.oid

⇒

disjoint objects

Dims,
O1,
O2

• all disjoint(DIMENSIONS, OIDS)

Logic
Explicit description in terms of first order logic formulae of the meaning of the constraint.

20070622 907

908 NARC,SELF ;NARC,PRODUCT

5.113 disjoint tasks

DESCRIPTION LINKS GRAPH

Origin Derived fromdisjoint.

Constraint disjoint tasks(TASKS1, TASKS2)

Arguments TASKS1 : collection(origin−dvar, duration−dvar, end−dvar)
TASKS2 : collection(origin−dvar, duration−dvar, end−dvar)

Restrictions require at least(2, TASKS1, [origin, duration, end])
TASKS1.duration ≥ 0
TASKS1.origin ≤ TASKS1.end
require at least(2, TASKS2, [origin, duration, end])
TASKS2.duration ≥ 0
TASKS2.origin ≤ TASKS2.end

Purpose
Each task of the collectionTASKS1 should not overlap any task of the collectionTASKS2.
Two tasks overlap if they have an intersection that is strictly greater than zero.

Example

〈

origin− 6 duration− 5 end− 11,
origin− 8 duration− 2 end− 10

〉

,

〈

origin− 2 duration− 2 end− 4,
origin− 3 duration− 3 end− 6,
origin− 12 duration− 1 end− 13

〉

Figure 5.223 displays the two groups of tasks (i.e., the tasks ofTASKS1 and the
tasks ofTASKS2). Since no task of the first group overlaps any task of the second group,
thedisjoint tasks constraint holds.

TASKS2

3 4 5 9 112 6 7 8 10 12

1

5

2

3

4

TASKS1

1

Figure 5.223: Fixed tasks of thedisjoint tasks constraint

Typical |TASKS1| > 1
TASKS1.duration > 0
|TASKS2| > 1
TASKS2.duration > 0

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20030820 909

Symmetries • Arguments arepermutablew.r.t. permutation(TASKS1, TASKS2).

• Items ofTASKS1 arepermutable.

• Items ofTASKS2 arepermutable.

• One and the same constant can beaddedto theorigin andend attributes of all
items ofTASKS1 andTASKS2.

Arg. properties
• Contractiblewrt. TASKS1.

• Contractiblewrt. TASKS2.

Remark Despite the fact that this is not an uncommon constraint, it cannot be modelled in a com-
pact way with one singlecumulative constraint. But it can be expressed by using the
coloured cumulative constraint: We assign a first colour to the tasks ofTASKS1 as well
as a second distinct colour to the tasks ofTASKS2. Finally we set up a limit of1 for the
maximum number of distinct colours allowed at each time point.

Reformulation Thedisjoint tasks constraint can be expressed in term of|TASKS1| · |TASKS2| reified
constraints. For each taskTASKS1[i] (i ∈ [1, |TASKS1|]) and for each taskTASKS2[j]
(j ∈ [1, |TASKS2|]) we generate a reified constraint of the formTASKS1[i].end ≤
TASKS2[j].origin ∨ TASKS2[j].end ≤ TASKS1[i].origin. In addition we also state for
each task an arithmetic constraint that states that the end of a task is equal tothe sum of its
origin and its duration.

Systems disjoint in Choco.

See also generalisation:coloured cumulative (tasks colours and limit on maximum number of
colours in parallel are explicitly given).

specialisation:disjoint (task replaced byvariable).

Keywords constraint type: scheduling constraint, temporal constraint.

geometry:non-overlapping.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

910 NARC,SELF ;NARC,PRODUCT

Arc input(s) TASKS1

Arc generator SELF 7→collection(tasks1)

Arc arity 1

Arc constraint(s) tasks1.origin+ tasks1.duration = tasks1.end

Graph property(ies) NARC= |TASKS1|

Arc input(s) TASKS2

Arc generator SELF 7→collection(tasks2)

Arc arity 1

Arc constraint(s) tasks2.origin+ tasks2.duration = tasks2.end

Graph property(ies) NARC= |TASKS2|

Arc input(s) TASKS1 TASKS2

Arc generator PRODUCT 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.duration > 0
• tasks2.duration > 0
• tasks1.origin < tasks2.end
• tasks2.origin < tasks1.end

Graph property(ies) NARC= 0

Graph model PRODUCT is used in order to generate the arcs of the graph between all the tasks of the
collectionTASKS1 and all tasks of the collectionTASKS2. The first two graph constraints
respectively enforce for each task ofTASKS1 andTASKS2 the fact that the end of a task
is equal to the sum of its origin and its duration. The arc constraint of the thirdgraph
constraint depicts the fact that two tasks overlap. Therefore, since weuse the graph property
NARC = 0 the final graph associated with the third graph constraint will be empty and
no task ofTASKS1 will overlap any task ofTASKS2. Figure5.224shows the initial graph of
the third graph constraint associated with theExampleslot. Because of the graph property
NARC = 0 the corresponding final graph is empty.

Signature SinceTASKS1 is the maximum number of arcs of the final graph associated with the first
graph constraint we can rewriteNARC = |TASKS1|. This leads to simplifyNARC to
NARC.

We can apply a similar remark for the second graph constraint.

Finally, since0 is the smallest number of arcs of the final graph we can rewriteNARC =
0 toNARC ≤ 0. This leads to simplifyNARC toNARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 911

TASKS1

TASKS2

1

1 23

2

Figure 5.224: Initial graph of thedisjoint tasks constraint (the final graph is empty)

912 NARC,CLIQUE(<)

5.114 disjunctive

DESCRIPTION LINKS GRAPH

Origin [86]

Constraint disjunctive(TASKS)

Synonym one machine.

Argument TASKS : collection(origin−dvar, duration−dvar)

Restrictions required(TASKS, [origin, duration])
TASKS.duration ≥ 0

Purpose
All the tasks of the collectionTASKS that have a duration strictly greater than0 should
not overlap.

Example

〈
origin− 1 duration− 3,
origin− 2 duration− 0,
origin− 7 duration− 2,
origin− 4 duration− 1

〉

Figure 5.225 shows the tasks with non-zero duration of the example. Since these
tasks do not overlap thedisjunctive constraint holds.

time
6 7 8 9 105

31

1 2 3 4

4

Figure 5.225: Tasks with non-zero duration

Typical |TASKS| > 1
TASKS.duration ≥ 1

Symmetries • Items ofTASKS arepermutable.

• TASKS.duration can bedecreasedto any value≥ 0.

• One and the same constant can beaddedto theorigin attribute of all items of
TASKS.

Arg. properties
Contractiblewrt. TASKS.

Remark Some systems like Ilog CP Optimizer also imposes that zero duration tasks donot overlap
non-zero duration tasks.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

20050506 913

A soft version of this constraint, under the hypothesis that all durations are fixed, was
presented by P. Baptisteet al. in [17]. In this context the goal was to perform as many tasks
as possible within their respective due-dates.

When all tasks have the same (fixed) duration thedisjunctive constraint can be re-
formulated as anall min dist constraint for which a filtering algorithm achieving
bound-consistencyis available [10].

Within the context of linear programming [198, page 386] provides several relaxations of
thedisjunctive constraint.

Some solvers use in a pre-processing phase, while stating precedenceand cumulative con-
straints,an algorithm for automatically extracting large cliques[83] from a set of tasks that
should not pairwise overlap (i.e., two tasksti andtj can not overlap either, becauseti ends
before the start oftj , either because the sum of resource consumption ofti andtj exceeds
the capacity of a cumulative resource that both tasks use) in order to statedisjunctive

constraints.

Algorithm We have four main families of methods for handling thedisjunctive constraint:

• Methods based on thecompulsory part[232] of the tasks (also called time-tabling
methods). These methods determine the time slots which for sure are occupied by
a given task, an propagate back this information to the attributes of each task (i.e.,
the origin and the duration). Because of their simplicity, these methods havebeen
originally used for handling thedisjunctive constraint. Even if they propagate
less than the other methods they can in practice handle a large number of tasks. To
our best knowledge no efficient incremental algorithm devoted to this problem was
published up to now (i.e., September 2006).

• Methods based onconstructive disjunction. The idea is to try out each alternative of
a disjunction (e.g., given two taskst1 andt2 that should not overlap, we successively
assume thatt1 finishes beforet2, and thatt2 finishes beforet1) and to remove values
that were pruned in both alternatives.

• Methods based onedge-finding. Given a set of tasksT , edge-finding determines that
some task must, can, or cannot execute first or last inT . Efficient edge-finding algo-
rithms for handling thedisjunctive constraint were originally described in [87, 88]
and more recently in [407, 284].

• Methods that, for any taskt, consider the maximal number of tasks that can end up
before the start of taskt as well as the maximal number of tasks that can start after
the end of taskt [416].

All these methods are usually used for adjusting the minimum and maximum values of
the variables of thedisjunctive constraint. However some systems use these methods
for pruning the full domain of the variables. Finally,Jackson priority rule[207] provides
a necessary condition [88] for the disjunctive constraint. Given a set of tasksT , it
consists to progressively schedule all tasks ofT in the following way:

• It assigns to the first possible time point (i.e., the earliest start of all tasks of T) the
available task with minimal latest end. In this context, available means a task for
which the earliest start is less than or equal to the considered time point.

• It continues by considering the next time point until all the tasks are completely
scheduled.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

914 NARC,CLIQUE(<)

Systems disjunctive in Choco, unary in Gecode.

See also common keyword: calendar, disj, disjunctive or same end,
disjunctive or same start (scheduling constraint).

generalisation:cumulative (task heights andresource limit are not necessarly all
equal to1), diffn (task of heigth 1 replaced byorthotope).

implied by: precedence.

implies: disjunctive or same end, disjunctive or same start.

specialisation: all min dist (line segment replaced by line segment, of same
length), alldifferent (task replaced byvariable).

Keywords characteristic of a constraint: core, sort based reformulation.

complexity: sequencing with release times and deadlines.

constraint type: scheduling constraint, resource constraint, decomposition.

filtering: compulsory part, constructive disjunction, Phi-tree.

modelling: disjunction, sequence dependent set-up, zero-duration task.

modelling exercises:sequence dependent set-up.

problems: maximum clique.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntScheduling.html
http://www.gecode.org/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20050506 915

Arc input(s) TASKS

Arc generator CLIQUE(<) 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s)
∨

tasks1.duration = 0,
tasks2.duration = 0,
tasks1.origin+ tasks1.duration ≤ tasks2.origin,
tasks2.origin+ tasks2.duration ≤ tasks1.origin

Graph property(ies) NARC= |TASKS| ∗ (|TASKS| − 1)/2

Graph model We generate acliquewith a non-overlapping constraint between each pair of distinct tasks
and state that the number of arcs of the final graph should be equal to thenumber of arcs
of the initial graph.

Parts (A) and (B) of Figure5.226respectively show the initial and final graph associated
with theExample slot. Thedisjunctive constraint holds since all the arcs of the initial
graph belong to the final graph: all the non-overlapping constraints holds.

TASKS

1

2

3

4

NARC=6

1:1,3

2:2,0

3:7,2

4:4,1

(A) (B)

Figure 5.226: Initial and final graph of thedisjunctive constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

916 NARC,CLIQUE(<)

5.115 disjunctiveor sameend

DESCRIPTION LINKS GRAPH

Origin Scheduling.

Constraint disjunctive or same end(TASKS)

Synonyms same end or disjunctive, non overlap or same end,
same end or non overlap.

Argument TASKS : collection(origin−dvar, duration−dvar)

Restrictions required(TASKS, [origin, duration])
TASKS.duration ≥ 0

Purpose

All pairs of tasks of the collectionTASKS that have a duration strictly greater than0
should either not overlap either have the same end, i.e.∀i ∈ [1, |TASKS|], ∀j ∈ [i +
1, |TASKS|] : TASKS[i].duration = 0∨TASKS[j].duration = 0∨TASKS[i].origin+
TASKS[i].duration ≤ TASKS[j].origin∨ TASKS[j].origin+ TASKS[j].duration ≤
TASKS[i].origin ∨ TASKS[i].origin + TASKS[i].duration = TASKS[j].origin +
TASKS[j].duration.

Example

〈

origin− 4 duration− 3,
origin− 7 duration− 2,
origin− 5 duration− 2

〉

Since the ends of the first and third tasks coincide, and since the second task does
neither overlap the first task nor the third task, thedisjunctive or same end constraint
holds.

Typical |TASKS| > 1
TASKS.duration ≥ 1

Symmetries • Items ofTASKS arepermutable.

• TASKS.duration can bedecreasedto any value≥ 0.

• One and the same constant can beaddedto theorigin attribute of all items of
TASKS.

Arg. properties
Contractiblewrt. TASKS.

See also common keyword:disjunctive, disjunctive or same start (scheduling constraint).

implied by: disjunctive.

Keywords constraint type: scheduling constraint, resource constraint, decomposition.

modelling: disjunction, zero-duration task.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20120205 917

Arc input(s) TASKS

Arc generator CLIQUE(<) 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s)
∨

tasks1.duration = 0,
tasks2.duration = 0,
tasks1.origin+ tasks1.duration ≤ tasks2.origin,
tasks2.origin+ tasks2.duration ≤ tasks1.origin,
tasks1.origin+ tasks1.duration =
tasks2.origin+ tasks2.duration

Graph property(ies) NARC= |TASKS| ∗ (|TASKS| − 1)/2

Graph model We generate acliquewith a non-overlapping constraint or a same end constraint between
each pair of distinct tasks and state that the number of arcs of the final graph should be
equal to the number of arcs of the initial graph.

Parts (A) and (B) of Figure5.227respectively show the initial and final graph associated
with theExampleslot. Thedisjunctive or same end constraint holds since all the arcs
of the initial graph belong to the final graph.

TASKS

1

2

3

NARC=3

1:4,3

2:7,2

3:5,2

(A) (B)

Figure 5.227: Initial and final graph of thedisjunctive or same end constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

918 NARC,CLIQUE(<)

5.116 disjunctiveor samestart

DESCRIPTION LINKS GRAPH

Origin Scheduling.

Constraint disjunctive or same start(TASKS)

Synonyms same start or disjunctive, non overlap or same start,
same start or non overlap.

Argument TASKS : collection(origin−dvar, duration−dvar)

Restrictions required(TASKS, [origin, duration])
TASKS.duration ≥ 0

Purpose

All pairs of tasks of the collectionTASKS that have a duration strictly greater than0
should either not overlap either have the same start, i.e.∀i ∈ [1, |TASKS|], ∀j ∈ [i +
1, |TASKS|] : TASKS[i].duration = 0∨TASKS[j].duration = 0∨TASKS[i].origin+
TASKS[i].duration ≤ TASKS[j].origin∨ TASKS[j].origin+ TASKS[j].duration ≤
TASKS[i].origin ∨ TASKS[i].origin = TASKS[j].origin.

Example

〈

origin− 4 duration− 3,
origin− 7 duration− 2,
origin− 4 duration− 1

〉

Since the starts of the first and third tasks coincide, and since the second task does
neither overlap the first task nor the third task, thedisjunctive or same start

constraint holds.

Typical |TASKS| > 1
TASKS.duration ≥ 1

Symmetries • Items ofTASKS arepermutable.

• TASKS.duration can bedecreasedto any value≥ 0.

• One and the same constant can beaddedto theorigin attribute of all items of
TASKS.

Arg. properties
Contractiblewrt. TASKS.

See also common keyword:disjunctive, disjunctive or same end (scheduling constraint).

implied by: disjunctive.

Keywords constraint type: scheduling constraint, resource constraint, decomposition.

modelling: disjunction, zero-duration task.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20120205 919

Arc input(s) TASKS

Arc generator CLIQUE(<) 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s)
∨

tasks1.duration = 0,
tasks2.duration = 0,
tasks1.origin+ tasks1.duration ≤ tasks2.origin,
tasks2.origin+ tasks2.duration ≤ tasks1.origin,
tasks1.origin = tasks2.origin

Graph property(ies) NARC= |TASKS| ∗ (|TASKS| − 1)/2

Graph model We generate acliquewith a non-overlapping constraint or a same start constraint between
each pair of distinct tasks and state that the number of arcs of the final graph should be
equal to the number of arcs of the initial graph.

Parts (A) and (B) of Figure5.228respectively show the initial and final graph associated
with theExample slot. Thedisjunctive or same start constraint holds since all the
arcs of the initial graph belong to the final graph.

TASKS

1

2

3

NARC=3

1:4,3

2:7,2

3:4,1

(A) (B)

Figure 5.228: Initial and final graph of thedisjunctive or same start constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

920 PREDEFINED

5.117 distance

DESCRIPTION LINKS

Origin Arithmetic constraint.

Constraint distance(X, Y, Z)

Arguments X : dvar

Y : dvar

Z : dvar

Restriction Z ≥ 0

Purpose Enforce the fact thatZ is equal to|X− Y|.

Example (5, 7, 2)

Thedistance constraint holds since2 = |5− 7|.

Typical Z > 0

Symmetry Arguments arepermutablew.r.t. permutation(X, Y) (Z).

Arg. properties
Functional dependency: Z determined byX andY.

Systems distanceEQ in Choco, distance in JaCoP, distance2 in JaCoP.

See also implies: leq cst.

related: all min dist (fixed minimum distance between all pairs of variables of a collec-
tion of variables), smooth.

Keywords constraint arguments: ternary constraint, pure functional dependency.

constraint type: arithmetic constraint, predefined constraint.

modelling: functional dependency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://jacopapi.osolpro.com/JaCoP/constraints/Distance.html
http://www.jacop.eu/
http://jacopapi.osolpro.com/JaCoP/constraints/Distance2.html
http://www.jacop.eu/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20090416 921

922 DISTANCE,CLIQUE(6=)

5.118 distancebetween

DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint distance between(DIST, VARIABLES1, VARIABLES2, CTR)

Synonym distance.

Arguments DIST : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
CTR : atom

Restrictions DIST ≥ 0
DIST ≤ |VARIABLES1| ∗ |VARIABLES2| − |VARIABLES1|
required(VARIABLES1, var)
required(VARIABLES2, var)
|VARIABLES1| = |VARIABLES2|
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

Let Ui and Vi be respectively theith and jth variables(i 6= j) of the collection
VARIABLES1. In a similar way, letXi andYi be respectively theith andjth variables
(i 6= j) of the collectionVARIABLES2. DIST is equal to the number of times one of the
following mutually incompatible conditions are true:

• Ui CTR Vi holds andXi CTR Yi does not hold,

• Xi CTR Yi holds andUi CTR Vi does not hold.

Example
(

2, 〈3, 4, 6, 2, 4〉 ,
〈2, 6, 9, 3, 6〉 , <

)

The distance between constraint holds since the followingDIST = 2 conditions
are verified:

• VARIABLES1[4].var = 2 < VARIABLES1[1].var = 3 ∧
VARIABLES2[4].var = 3 ≥ VARIABLES2[1].var = 2

• VARIABLES2[1].var = 2 < VARIABLES2[4].var = 3 ∧
VARIABLES1[1].var = 3 ≥ VARIABLES1[4].var = 2

Typical DIST > 0
DIST < |VARIABLES1| ∗ |VARIABLES2| − |VARIABLES1|
|VARIABLES1| > 1
CTR ∈ [=, 6=]

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20000128 923

Symmetries • Arguments are permutable w.r.t. permutation (DIST)
(VARIABLES1, VARIABLES2) (CTR).

• Items ofVARIABLES1 andVARIABLES2 arepermutable(same permutation used).

• One and the same constant can beaddedto the var attribute of all items of
VARIABLES1.

• One and the same constant can beaddedto the var attribute of all items of
VARIABLES2.

Arg. properties
Functional dependency: DIST determined byVARIABLES1, VARIABLES2 andCTR.

Usage Measure the distance between two sequences in term of the number of constraint changes.
This should be put in contrast to the number of value changes that is sometimes superficial.

See also common keyword:distance change (proximity constraint).

Keywords constraint arguments:pure functional dependency.

constraint type: proximity constraint.

modelling: functional dependency.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

924 DISTANCE,CLIQUE(6=)

Arc input(s) VARIABLES1/ VARIABLES2

Arc generator CLIQUE (6=) 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) DISTANCE= DIST

Graph model Within theArc input(s) slot, the character / indicates that we generate two distinct graphs.
The graph propertyDISTANCE measures the distance between two digraphsG1 and
G2. This distance is defined as the sum of the following quantities:

• The number of arcs ofG1 that do not belong toG2,

• The number of arcs ofG2 that do not belong toG1.

Part (A) of Figure5.229gives the final graph associated with the sequencevar-3,var-
4,var-6,var-2,var-4 (i.e., the second argument of the constraint of theExample slot),
while part (B) shows the final graph corresponding tovar-2,var-6,var-9,var-3,var-6
(i.e., the third argument of the constraint of theExampleslot). The two arc constraints that
differ from one graph to the other are marked by a dotted line. Thedistance between

constraint holds since between sequencevar-3,var-4,var-6,var-2,var-4 and sequence
var-2,var-6,var-9,var-3,var-6 there areDIST = 2 changes that respectively correspond
to:

• Within the final graph associated with sequencevar-3,var-4,var-6,var-2,var-4 the
arc 4 → 1 (i.e., values2 → 3) does not occur in the final graph associated with
var-2,var-6,var-9,var-3,var-6,

• Within the final graph associated with sequencevar-2,var-6,var-9,var-3,var-6 the
arc 1 → 4 (i.e., values2 → 3) does not occur in the final graph associated with
var-3,var-4,var-6,var-2,var-4.

4:2

1:3

2:4

3:6

5:4

1:2

4:3

2:6

3:9

5:6

(A) (B)

Figure 5.229: Final graphs of thedistance between constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 925

926 DISTANCE,PATH ; AUTOMATON

5.119 distancechange

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromchange.

Constraint distance change(DIST, VARIABLES1, VARIABLES2, CTR)

Synonym distance.

Arguments DIST : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
CTR : atom

Restrictions DIST ≥ 0
DIST < |VARIABLES1|
required(VARIABLES1, var)
required(VARIABLES2, var)
|VARIABLES1| = |VARIABLES2|
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

DIST is equal to the number of times one of the following two conditions is true(1 ≤
i < n):

• VARIABLES1[i].var CTR VARIABLES1[i+ 1].var holds and
VARIABLES2[i].var CTR VARIABLES2[i+ 1].var does not hold,

• VARIABLES2[i].var CTR VARIABLES2[i+ 1].var holds and
VARIABLES1[i].var CTR VARIABLES1[i+ 1].var does not hold.

Example
(

1, 〈3, 3, 1, 2, 2〉 ,
〈4, 4, 3, 3, 3〉 , 6=

)

The distance change constraint holds since the following condition (DIST = 1)

is verified:

{

VARIABLES1[3].var = 1 6= VARIABLES1[4].var = 2 ∧
VARIABLES2[3].var = 3 = VARIABLES1[4].var = 3

.

Typical DIST > 0
|VARIABLES1| > 1
CTR ∈ [=, 6=]

Symmetries • Arguments are permutable w.r.t. permutation (DIST)
(VARIABLES1, VARIABLES2) (CTR).

• One and the same constant can beaddedto the var attribute of all items of
VARIABLES1.

• One and the same constant can beaddedto the var attribute of all items of
VARIABLES2.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20000128 927

Arg. properties
Functional dependency: DIST determined byVARIABLES1, VARIABLES2 andCTR.

Usage Measure the distance between two sequences according to thechange constraint.

Remark We measure that distance with respect to a given constraint and not according to the fact
that the variables are assigned distinct values.

See also common keyword:distance between (proximity constraint).

root concept:change.

Keywords characteristic of a constraint: automaton, automaton with counters.

constraint arguments:pure functional dependency.

constraint network structure: sliding cyclic(2) constraint network(2).

constraint type: proximity constraint.

modelling: functional dependency.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

928 DISTANCE,PATH ; AUTOMATON

Arc input(s) VARIABLES1/ VARIABLES2

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) DISTANCE= DIST

Graph model Within theArc input(s) slot, the character / indicates that we generate two distinct graphs.
The graph propertyDISTANCE measures the distance between two digraphsG1 andG2.
This distance is defined as the sum of the following quantities:

• The number of arcs ofG1 that do not belong toG2,

• The number of arcs ofG2 that do not belong toG1.

Part (A) of Figure5.230gives the final graph associated with the sequencevar-3,var-
3,var-1,var-2,var-2 (i.e., the second argument of the constraint of theExample slot),
while part (B) shows the final graph corresponding tovar-4,var-4,var-3,var-3,var-3
(i.e., the third argument of the constraint of theExample slot). Since arc3 → 4 be-
longs to the first final graph but not to the second one, the distance between the two final
graphs is equal to1.

3:1

4:2

2:3
2:4

3:3

(A) (B)

Figure 5.230: Final graphs of thedistance change constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 929

Automaton Figure 5.231 depicts the automaton associated with thedistance change constraint.
Let (VAR1i, VAR1i+1) and (VAR2i, VAR2i+1) respectively be theith pairs of consec-
utive variables of the collectionsVARIABLES1 and VARIABLES2. To each quadruple
(VAR1i, VAR1i+1, VAR2i, VAR2i+1) corresponds a0-1 signature variableSi. The follow-
ing signature constraint links these variables:

((VAR1i = VAR1i+1) ∧ (VAR2i 6= VAR2i+1)) ∨
((VAR1i 6= VAR1i+1) ∧ (VAR2i = VAR2i+1)) ⇔ Si.

s:

{C=0}

(VAR1 CTR VAR1 and VAR2 not CTR VAR2) ori i+1 i i+1

(VAR1 not CTR VAR1 and VAR2 CTR VAR2),

{C=C+1}

i i+1 i i+1

(VAR1 not CTR VAR1 or VAR2 CTR VAR2) andi i+1 i i+1

(VAR1 CTR VAR1 or VAR2 not CTR VAR2)i i+1 i i+1
DIST=C

Figure 5.231: Automaton of thedistance change constraint

n−1

Q =s

0C =0 1C

1Q

3S

2Q

2C

 3
 VAR1

 3
 VAR2

2S1S

 1
 VAR2

 1
 VAR1

 2
 VAR1

 2
 VAR2

 n−1
 VAR1

 n−1
 VAR2

 n
 VAR1

 n
 VAR2

n−1C =DIST

Q =sn−1

S

0

Figure 5.232: Hypergraph of the reformulation corresponding to the automaton of the
distance change constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

930 PREDEFINED

5.120 divisible

DESCRIPTION LINKS

Origin Arithmetic.

Constraint divisible(Q, D)

Synonym div.

Arguments Q : dvar

D : dvar

Restrictions Q ≥ 0
D > 0

Purpose Enforce the fact that the first variableQ is divisible by the second variableD.

Example (12, 4)

Thedivisible constraint holds since12 is divisible by4.

Typical Q > 1
D < Q

See also implies: divisible or, same sign.

Keywords constraint arguments:binary constraint.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20110612 931

932 PREDEFINED

5.121 divisibleor

DESCRIPTION LINKS

Origin Arithmetic.

Constraint divisible or(C, D)

Synonym div or.

Arguments C : dvar

D : dvar

Restrictions C > 0
D > 0

Purpose
Enforce the fact that the first variableC is divisible by the second variableD, or thatD is
divisible byC.

Example (4, 12)

Thedivisible or constraint holds since12 is divisible by4.

See also implied by: divisible.

Keywords constraint arguments:binary constraint.

constraint type: predefined constraint, arithmetic constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20120212 933

934 PREDEFINED

5.122 domreachability

DESCRIPTION LINKS

Origin [310]

Constraint dom reachability

SOURCE,
FLOW GRAPH,
DOMINATOR GRAPH,
TRANSITIVE CLOSURE GRAPH

Arguments SOURCE : int

FLOW GRAPH : collection(index−int, succ−svar)
DOMINATOR GRAPH : collection(index−int, succ−sint)
TRANSITIVE CLOSURE GRAPH : collection(index−int, succ−svar)

Restrictions SOURCE ≥ 1
SOURCE ≤ |FLOW GRAPH|
required(FLOW GRAPH, [index, succ])
FLOW GRAPH.index ≥ 1
FLOW GRAPH.index ≤ |FLOW GRAPH|
FLOW GRAPH.succ ≥ 1
FLOW GRAPH.succ ≤ |FLOW GRAPH|
distinct(FLOW GRAPH, index)
required(DOMINATOR GRAPH, [index, succ])
|DOMINATOR GRAPH| = |FLOW GRAPH|
DOMINATOR GRAPH.index ≥ 1
DOMINATOR GRAPH.index ≤ |DOMINATOR GRAPH|
DOMINATOR GRAPH.succ ≥ 1
DOMINATOR GRAPH.succ ≤ |DOMINATOR GRAPH|
distinct(DOMINATOR GRAPH, index)
required(TRANSITIVE CLOSURE GRAPH, [index, succ])
|TRANSITIVE CLOSURE GRAPH| = |FLOW GRAPH|
TRANSITIVE CLOSURE GRAPH.index ≥ 1
TRANSITIVE CLOSURE GRAPH.index ≤ |TRANSITIVE CLOSURE GRAPH|
TRANSITIVE CLOSURE GRAPH.succ ≥ 1
TRANSITIVE CLOSURE GRAPH.succ ≤ |TRANSITIVE CLOSURE GRAPH|
distinct(TRANSITIVE CLOSURE GRAPH, index)

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

20061011 935

Purpose

Let FLOW GRAPH, DOMINATOR GRAPH and TRANSITIVE CLOSURE GRAPH be three di-
rected graphs respectively called theflow graph, thedominance graphand thetransitive
closure graphwhich all have the same vertices. In addition letSOURCE denote a vertex of
the flow graph called thesource node(not necessarily a vertex with no incoming arcs).
Thedom reachability constraint holds if and only if the flow graph (and its source
node) verifies:

• The dominance relation expressed by the dominance graph (i.e., if there is an arc
(i, j) in the dominance graph then, within the flow graph, all the paths from the
source node toj containi; note that when there is no path from the source node
to j then any node dominatesj).

• The transitive relation expressed by the transitive closure graph (i.e.,if there is an
arc(i, j) in the transitive closure graph then there is also a path fromi to j in the
flow graph).

Example

1,

〈
index− 1 succ− {2},
index− 2 succ− {3, 4},
index− 3 succ− ∅,
index− 4 succ− ∅

〉

,

〈
index− 1 succ− {2, 3, 4},
index− 2 succ− {3, 4},
index− 3 succ− ∅,
index− 4 succ− ∅

〉

,

〈
index− 1 succ− {1, 2, 3, 4},
index− 2 succ− {2, 3, 4},
index− 3 succ− {3},
index− 4 succ− {4}

〉

The flow graph, the dominance graph and the transitive closure graph correspond-
ing to the second, third and fourth arguments of thedom reachability constraint are
respectively depicted by parts (A), (B) and (C) of Figure5.233. Thedom reachability

holds since the following conditions hold.

• The dominance relation expressed by the dominance graph is verified:

– Since(1, 2) belongs to the dominance graph all the paths from1 to 2 in the flow
graph pass through1.

– Since(1, 3) belongs to the dominance graph all the paths from1 to 3 in the flow
graph pass through1.

– Since(1, 4) belongs to the dominance graph all the paths from1 to 4 in the flow
graph pass through1.

– Since(2, 3) belongs to the dominance graph all the paths from1 to 3 in the flow
graph pass through2.

– Since(2, 4) belongs to the dominance graph all the paths from1 to 4 in the flow
graph pass through2.

• The graph depicted by the fourth argument of thedom reachability constraint
(i.e., TRANSITIVE CLOSURE GRAPH) is the transitive closure of the graph depicted
by the second argument (i.e.,FLOW GRAPH).

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

936 PREDEFINED

Typical |FLOW GRAPH| > 2

Symmetries • Items ofFLOW GRAPH arepermutable.

• Items ofDOMINATOR GRAPH arepermutable.

• Items ofTRANSITIVE CLOSURE GRAPH arepermutable.

Usage Thedom reachability constraint was introduced in order to solve reachability problems
(e.g., disjoint paths, simple path with mandatory nodes).

Remark Within the namedom reachability, dom stands fordomination. In the context of path
problemsSOURCE refers to the start of the path we want to build.

Algorithm It was shown in [308] that, finding out wether adom reachability constraint has a solu-
tion or not is NP-hard. This was achieved by reduction todisjoint pathsproblem [169].

The first implementation [309] of the dom reachability constraint was done in
Mozart [114]. Later on, a second implemention [308] was done inGecode[353]. Both
implementations consist of the following two parts:

• Algorithms [342] for maintaining the lower bound of the transitive closure graph.

• Algorithms for maintaining the upper bound of the transitive closure graph, while
respecting the dominance constraints [177].

See also common keyword:path, path from to (path).

Keywords combinatorial object: path.

constraint arguments:constraint involving set variables.

constraint type: predefined constraint, graph constraint.

(A)

1

43

2

(B)

1

43

2

(C)

1

43

2

Figure 5.233: (A) Flow graph, (B) dominance graph and (C) transitive closure graph
of theExample slot (taken from [308, page 40])

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

http://www.mozart-oz.org/
http://www.gecode.org/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20061011 937

938 PREDEFINED

5.123 domain

DESCRIPTION LINKS

Origin Domain definition.

Constraint domain(VARIABLES, LOW, UP)

Synonym dom.

Arguments VARIABLES : collection(var−dvar)
LOW : int

UP : int

Restrictions required(VARIABLES, var)
LOW ≤ UP

Purpose
Enforce all the variables of the collectionVARIABLES to take a value within the interval
[LOW, UP].

Example (〈2, 8, 2〉 , 1, 9)

The domain constraint holds since all the values2, 8 and 2 of its first argument are
greater than or equal to its second argumentLOW = 1 and less than or equal to its third
argumentUP = 9.

Typical |VARIABLES| > 1
LOW < UP

Symmetries • Items ofVARIABLES arepermutable.

• An occurrence of a value ofVARIABLES.var can bereplacedby any other value
in [LOW, UP].

• LOW can bedecreased.

• UP can beincreased.

• One and the same constant can beaddedto the var attribute of all items of
VARIABLES as well as toLOW andUP.

Arg. properties
Contractiblewrt. VARIABLES.

Remark Thedomain constraint is calleddom in Gecode(http://www.gecode.org/).

Reformulation The domain(〈var − V1, var − V2, . . . , var − V|VARIABLES|〉, LOW, UP) constraint can be
expressed in term of the conjunction
V1 ≥ LOW ∧ V1 ≤ UP,
V2 ≥ LOW ∧ V2 ≤ UP,
.
V|VARIABLES| ≥ LOW ∧ V|VARIABLES| ≤ UP.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.gecode.org/

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

20070821 939

Systems member in Choco, dom in Gecode, domain in SICStus.

See also common keyword:in, in interval (domain definition).

uses in its reformulation: tree range.

Keywords constraint type: predefined constraint, value constraint.

modelling: interval, domain definition.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntDomain.html
http://www.gecode.org/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

940 NARC,PRODUCT ; AUTOMATON

5.124 domainconstraint

DESCRIPTION LINKS GRAPH AUTOMATON

Origin [319]

Constraint domain constraint(VAR, VALUES)

Synonym domain.

Arguments VAR : dvar

VALUES : collection(var01−dvar, value−int)

Restrictions required(VALUES, [var01, value])
VALUES.var01 ≥ 0
VALUES.var01 ≤ 1
distinct(VALUES, value)

Purpose
Make the link between a domain variableVAR and those0-1 variables that are associated
with each potential value ofVAR: The0-1 variable associated with the value that is taken
by variableVAR is equal to1, while the remaining0-1 variables are all equal to0.

Example

5,

〈
var01− 0 value− 9,
var01− 1 value− 5,
var01− 0 value− 2,
var01− 0 value− 7

〉

The domain constraint holds sinceVAR = 5 is set to the value corresponding to
the0-1 variable set to1, while the other0-1 variables are all set to0.

Typical |VALUES| > 1

Symmetry Items ofVALUES arepermutable.

Usage This constraint is used in order to make the link between a formulation using finite domain
constraints and a formulation exploiting0-1 variables.

Reformulation Thedomain constraint(VAR,
〈var01−B1 value− v1,
var01−B2 value− v2,
. .
var01−B|VALUES| value− v|VALUES|〉)

constraint can be expressed in term of the following reified constraint(VAR = v1 ∧ B1 =
1) ∨ (VAR = v2 ∧B2 = 1) ∨ . . . ∨ (VAR = v|VALUES| ∧B|VALUES| = 1).

Systems domainChanneling in Choco, channel in Gecode, in in SICStus, in set in
SICStus.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Usage
Typical usage of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntChannel.html
http://www.gecode.org/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://www.sics.se/sicstus/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://www.sics.se/sicstus/

20030820 941

See also common keyword:link set to booleans (channelling constraint).

related: roots.

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint, derived collection.

constraint network structure: centered cyclic(1) constraint network(1).

constraint type: decomposition.

filtering: linear programming, arc-consistency.

modelling: channelling constraint, domain channel, Boolean channel.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

942 NARC,PRODUCT ; AUTOMATON

Derived Collection

col

(

VALUE−collection(var01−int, value−dvar),
[item(var01− 1, value− VAR)]

)

Arc input(s) VALUE VALUES

Arc generator PRODUCT 7→collection(value, values)

Arc arity 2

Arc constraint(s) value.value = values.value ⇔ values.var01 = 1

Graph property(ies) NARC= |VALUES|

Graph model Thedomain constraint constraint is modelled with the following bipartite graph:

• The first class of vertices corresponds to one single vertex containing the domain
variable.

• The second class of vertices contains one vertex for each item of the collection
VALUES.

PRODUCT is used in order to generate the arcs of the graph. In our context it takesa
collection with one single item〈var01− 1 value− VAR〉 and the collectionVALUES.

The arc constraint between the variableVAR and one potential valuev expresses the fol-
lowing:

• If the 0-1 variable associated withv is equal to1, VAR is equal tov.

• Otherwise, if the0-1 variable associated withv is equal to0, VAR is not equal tov.

Since all arc constraints should hold the final graph contains exactly|VALUES| arcs.

Parts (A) and (B) of Figure5.234respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

VALUE

VALUES

1

1234

NARC=4

1:1,5

1:0,9 2:1,5 3:0,2 4:0,7

(A) (B)

Figure 5.234: Initial and final graph of thedomain constraint constraint

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 943

Signature Since the number of arcs of the initial graph is equal toVALUES the maximum number of
arcs of the final graph is also equal toVALUES. Therefore we can rewrite the graph property
NARC= |VALUES| toNARC≥ |VALUES|. This leads to simplifyNARC toNARC.

Signature
Provides some explanations about the graph based signature of the constraint.

944 NARC,PRODUCT ; AUTOMATON

Automaton Figure5.235depicts the automaton associated with thedomain constraint constraint.
Let VAR01i and VALUEi respectively be thevar01 and thevalue attributes of theith

item of theVALUES collection. To each triple(VAR, VAR01i, VALUEi) corresponds a0-1
signature variableSi as well as the following signature constraint:((VAR = VALUEi) ⇔
VAR01i) ⇔ Si.

iVAR=VALUE <=> VAR01 =1is

Figure 5.235: Automaton of thedomain constraint constraint

VAR

 2
VAR01

 1
VAR01

1S 2S

 n
VAR01

0Q =s 1Q

nS

Q =sn

Figure 5.236: Hypergraph of the reformulation corresponding to the automaton of the
domain constraint constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20030820 945

946 NARC,PRODUCT ; AUTOMATON

5.125 elem

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromelement.

Constraint elem(ITEM, TABLE)

Usual name element

Synonyms nth, array.

Arguments ITEM : collection(index−dvar, value−dvar)
TABLE : collection(index−int, value−dvar)

Restrictions required(ITEM, [index, value])
ITEM.index ≥ 1
ITEM.index ≤ |TABLE|
|ITEM| = 1
|TABLE| > 0
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose ITEM is equal to one of the entries of the tableTABLE.

Example

〈index− 3 value− 2〉 ,
〈

index− 1 value− 6,
index− 2 value− 9,
index− 3 value− 2,
index− 4 value− 9

〉

The elem constraint holds since its first argumentITEM corresponds to the third
item of theTABLE collection.

Typical |TABLE| > 1
range(TABLE.value) > 1

Symmetries • Items ofTABLE arepermutable.

• All occurrences of two distinct values inITEM.value or TABLE.value can be
swapped; all occurrences of a value inITEM.value or TABLE.value can be
renamedto any unused value.

Arg. properties
Functional dependency: ITEM.value determined byITEM.index andTABLE.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

20030820 947

Usage Makes the link between the discrete decision variableINDEX and the variableVALUE ac-
cording to a given table of valuesTABLE. We now give five typical uses of theelem
constraint.

1. In some problems we may have torepresent a functiony = f(x) (with x ∈ [1,m]).
In this context we generate the followingelem constraint whereINDEX is a domain
variable taking is values in{1, 2, . . . ,m}:

elem

〈

index− x value− y
〉

,

〈

index− 1 value− f(1),
index− 2 value− f(2),

...
index−m value− f(m)

〉

26

1 2 3 4

1

2

3

4

5

6

7

8

9

x

y

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

27

28

25

Figure 5.237:y = x3 (1 ≤ x ≤ 3)

As an example, consider the problem of finding the smallest integer that can be de-
composed in two different ways in the sum of two cubes [187]. Theelem constraint
can be used for representing the functiony = x3 (Figure5.237). The unique solution
1729 = 123 + 13 = 103 + 93 can be obtained by the following set of constraints:

Usage
Typical usage of the constraint.

948 NARC,PRODUCT ; AUTOMATON

elem(〈index− x1 value− y1〉,
〈index− 1 value− 1, index− 2 value− 8, . . . , index− 20 value− 8000〉)

elem(〈index− x2 value− y2〉,
〈index− 1 value− 1, index− 2 value− 8, . . . , index− 20 value− 8000〉)

elem(〈index− x3 value− y3〉,
〈index− 1 value− 1, index− 2 value− 8, . . . , index− 20 value− 8000〉)

elem(〈index− x4 value− y4〉,
〈index− 1 value− 1, index− 2 value− 8, . . . , index− 20 value− 8000〉)

y1 + y2 = y3 + y4
x1 < x2

x3 < x4

x1 < x3

The last three inequalities constraints in the conjunction are used for breaking sym-
metries. The constraintsx1 < x2 andx3 < x4 respectively order the pairs of
variables(x1, x2) and (x3, x4) from which the sumsx3

1 + x3
2 and x3

3 + x3
4 are

generated. Finally the inequalityx1 < x3 enforces a lexicographic ordering between
the two pairs of variables(x1, x2) and(x3, x4).

2. In some optimisation problems a classical use of theelem constraint consistsex-
pressing the link between a discrete choice and its corresponding cost. For each
discrete choice we create anelem constraint of the form:

elem

〈

index− Choice value− Cost
〉

,

〈

index− 1 value− Cost1,
index− 2 value− Cost2,

...
index−m value− Costm

〉

where:

• Choice is a domain variable that indicates which alternative will be finally
selected,

• Cost is a domain variable that corresponds to the cost of the decision associated
with the value of theChoice variable,

• Cost1, Cost2, . . . , Costm are the respective costs associated with the alterna-
tives1, 2, . . . ,m.

3. In some problems we need to express a disjunction of the formVAR = VAR1∨VAR =
VAR2 ∨ · · · ∨ VAR = VARn. This can be directly reformulated as the following
elem constraint, whereINDEX is a domain variable taking its value in the finite set
{1, 2, . . . , n} and where theTABLE argument corresponds to the domain variables
VAR1, VAR2, . . . , VARn:

elem

〈

index− INDEX value− VAR
〉

,

〈

index− 1 value− VAR1,
index− 2 value− VAR2,

...
index− n value− VARn

〉

4. In some scheduling problems the duration of a task depends on the machine where
the task will be assigned in final schedule. In this case we generate for each task an
elem constraint of the following form:

20030820 949

elem

〈

index− Machine value− Duration
〉

,

〈

index− 1 value− Dur1,
index− 2 value− Dur2,

...
index−m value− Durm

〉

where:

• Machine is a domain variable that indicates the resource to which the task will
be assigned,

• Duration is a domain variable that corresponds to the duration of the task,

• Dur1, Dur2, . . . , Durm are the respective duration of the task according to the
hypothesis that it runs on machine1, 2 orm.

elem(<index−Machine value−Duration>, <index−1 value−4, index−2 value−6, index−3 value−4>)

Dur =4

1

2

3
Machine

machine

time

1

2

3

Dur =6

Dur =4

5 6 71 2 3 4

Figure 5.238: A task for which the duration depends on the machine to which it is
assigned (e.g., ifMachine = 1 thenDuration = Dur1 = 4, if Machine = 2 then
Duration = Dur2 = 6, if Machine = 3 thenDuration = Dur3 = 4)

Figure5.238illustrates this particular use of theelem constraint for modelling that a
task has a duration of4, 6 and4 when we respectively assign it on machines1, 2 and
3.

5. In some vehicle routing problems we typically use theelem constraint to express
the distance between locationi and the next location visited by a vehicle. For this
purpose we generate for each locationi anelem constraint of the form:

elem

〈

index− Nexti value− distancei
〉

,

〈

index− 1 value− Disti1 ,
index− 2 value− Disti2 ,

...
index−m value− Distim

〉

where:

• Nexti is a domain variable that gives the index of the location the vehicle will
visit just after locationi,

• distancei is a domain variable that corresponds to the distance between loca-
tion i and the location the vehicle will visit just after,

• Disti1 , Disti2 , . . . , Distim are the respective distances between locationi
and locations1, 2, . . . ,m.

950 NARC,PRODUCT ; AUTOMATON

An other example where the table argument corresponds to domain variables is described
in the keyword entryassignment to the same set of values.

Remark Originally, the parameters of the elem constraint had the form
element(INDEX, TABLE, VALUE), where INDEX and VALUE were two domain vari-
ables andTABLE was a list of non-negative integers.

Within some systems (e.g.,Gecode), the index of the first entry of the tableTABLE corre-
sponds to0 rather than to1.

When the first entry of the tableTABLE corresponds to a valuep that is different from
1 we can still use theelem constraint. We use the reformulationI = J − p + 1 ∧
elem(〈index− I value− V 〉, TABLE), whereI andJ are domain variables respectively
ranging from1 to |TABLE| and fromp to p+ |TABLE| − 1.

Systems nth in Choco, element in Gecode, element in JaCoP, element in SICStus.

See also common keyword: elem from to, element matrix, element product,
element sparse (array constraint), elements sparse,
stage element (data constraint).

implied by: element.

implies: element (single item replaced by two variables), element greatereq,
element lesseq.

system of constraints:elements.

uses in its reformulation: elements alldifferent.

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint arguments:pure functional dependency.

constraint network structure: centered cyclic(2) constraint network(1).

constraint type: data constraint.

filtering: arc-consistency.

heuristics: labelling by increasing cost, regret based heuristics.

modelling: array constraint, table, functional dependency, variable indexing,
variable subscript, disjunction, assignment to the same set of values,
sequence dependent set-up.

modelling exercises: assignment to the same set of values, sequence dependent set-up,
zebra puzzle.

puzzles:zebra puzzle.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.gecode.org/

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntElement.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/Element.html
http://www.jacop.eu/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 951

Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→collection(item, table)

Arc arity 2

Arc constraint(s) • item.index = table.index
• item.value = table.value

Graph property(ies) NARC= 1

Graph model We regroup theINDEX and VALUE parameters of the originalelement constraint
element(INDEX, TABLE, VALUE) into the parameterITEM. We also make explicit the dif-
ferent indices of the tableTABLE.

Parts (A) and (B) of Figure5.239respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the unique arc of the
final graph is stressed in bold.

ITEM

TABLE

1

1234

NARC=1

1:3,2

3:3,2

(A) (B)

Figure 5.239: Initial and final graph of theelem constraint

Signature Since all theindex attributes ofTABLE are distinct and because of the first condition of
the arc constraint the final graph cannot have more than one arc. Therefore we can rewrite
NARC = 1 toNARC ≥ 1 and simplifyNARC toNARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

952 NARC,PRODUCT ; AUTOMATON

Automaton Figure5.240depicts the automaton associated with theelem constraint. LetINDEX and
VALUE respectively be theindex and thevalue attributes of the unique item of theITEM
collection. LetINDEXi andVALUEi respectively be theindex and thevalue attributes
of item i of the TABLE collection. To each quadruple(INDEX, VALUE, INDEXi, VALUEi)
corresponds a0-1 signature variableSi as well as the following signature constraint:
((INDEX = INDEXi) ∧ (VALUE = VALUEi)) ⇔ Si.

t

iITEM_INDEX<>TABLE_INDEX or ITEM_VALUE<>TABLE_VALUE

ITEM_INDEX<>TABLE_INDEX or ITEM_VALUE<>TABLE_VALUE ii

iiITEM_INDEX=TABLE_INDEX and ITEM_VALUE=TABLE_VALUE

ITEM_INDEX=TABLE_INDEX and ITEM_VALUE=TABLE_VALUEi i

s i

Figure 5.240: Automaton of theelem constraint

ITEM_VALUE

1Q =s0

S1

TABLE_VALUE
 n

Q =tn

Sn

TABLE_VALUE
 1

TABLE_VALUE
 2

S2

ITEM_INDEX

Q

Figure 5.241: Hypergraph of the reformulation corresponding to the automaton of the
elem constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20030820 953

954 AUTOMATON

5.126 elemfrom to

DESCRIPTION LINKS AUTOMATON

Origin Derived fromelem.

Constraint elem from to(ITEM, TABLE)

Synonym element from to.

Arguments ITEM : collection

from−dvar,
cst from−int,
to−dvar,
cst to−int,
value−dvar

TABLE : collection(index−int, value−dvar)

Restrictions required(ITEM, [from, cst from, to, cst to, value])
ITEM.from ≥ 1
ITEM.from ≤ |TABLE|
ITEM.to ≥ 1
ITEM.to ≤ |TABLE|
ITEM.from ≤ ITEM.to
|ITEM| = 1
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
increasing seq(TABLE, [index])

Purpose

Let FROM, CST FROM, TO, CST TO, VALUE respectively denote the attributes
ITEM[1].from, ITEM[1].cst from, ITEM[1].to, ITEM[1].cst to, ITEM[1].value of the
unique item of theITEM collection.
Beside imposing the fact thatFROM ≤ TO and that bothFROM andTO are assigned a
value in [1, |TABLE|], the elem from to constraint enforces the following condition:
All entries of theTABLE collection from positionmax(1, FROM+ CST FROM) to position
min(|TABLE|, TO + CST TO) are equal toVALUE. Whenmax(1, FROM + CST FROM) is
strictly greater thanmin(|TABLE|, TO + CST TO) the constraint holds no matter what
value is assigned toVALUE.

Example

〈from− 1 cst from− 1 to− 4 cst to−−1 value− 2〉 ,

〈

index− 1 value− 6,
index− 2 value− 2,
index− 3 value− 2,
index− 4 value− 9,
index− 5 value− 9

〉

The elem from to constraint holds since all entries between positionmax(1, FROM +
CST FROM) = max(1, 1 + 1) = 2 and positionmin(|TABLE|, TO + CST TO) =
min(5, 4− 1) = 3 are equal to2.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20091115 955

Typical ITEM.cst from ≥ 0
ITEM.cst from ≤ 1
ITEM.cst to ≥ −1
ITEM.cst to ≤ 1
|TABLE| > 1
range(TABLE.value) > 1

Symmetry All occurrences of two distinct values inITEM.value or TABLE.value can beswapped;
all occurrences of a value inITEM.value or TABLE.value can berenamedto any unused
value.

Usage Given an arrayt[1..n] of integers (i.e., an array of integers for which the entries are defined
between1 andn), theelem from to constraint is for instance useful for encoding expres-
sions of the form∃i ∈ [1, n], ∀j ∈ [i + 1, n] | t[i] = 0. Note that, when the interval
[i + 1, n] is empty, the condition∀j ∈ [i + 1, n] | t[i] = 0 is satisfied andi is equal ton.
This example is encoded by using anelem from to constraint and by respectively setting:

• FROM to i, wherei is a variable that is assigned a value from interval[1, n],

• CST FROM to constant1,

• TO to n, the index of the last entry of the arrayt[1..n],

• CST TO to constant0,

• VALUE to 0, the value we are looking for.

• TABLE to the array of integerst[1..n].

Finally, note thatj is not used at all.

See also common keyword:elem, element (array constraint).

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint type: data constraint.

filtering: arc-consistency.

modelling: array constraint, table, variable indexing, variable subscript.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

956 AUTOMATON

Automaton Figure5.242depicts the automaton associated with theelem from to constraint.

Let us first introduce some notations:

• Let n denote the number of items of theTABLE collection.

• Let INDEXi andVALUEi respectively be theindex and thevalue attributes of theith

item of theTABLE collection.

• Let FROM, CST FROM, TO, CST TO, VALUE respectively denote the attributes
ITEM[1].from, ITEM[1].cst from, ITEM[1].to, ITEM[1].cst to, ITEM[1].value of
the unique item of theITEM collection.

• Let IN be a shortcut for condition1 ≤ FROM ∧ FROM ≤ TO ∧ TO ≤ n.

• Let F and T respectively denote the quantitiesmax(1, FROM + CST FROM) and
min(|TABLE|, TO+ CST TO).

To each septuple(FROM, TO, F, T, VALUE, INDEXi, VALUEi) corresponds a signature variable
Si as well as the following signature constraint:

(IN ∧ F > T) ⇔ Si = 0 ∧
(IN ∧ F ≤ T ∧ F > INDEXi) ⇔ Si = 1 ∧
(IN ∧ F ≤ T ∧ T < INDEXi) ⇔ Si = 2 ∧
(IN ∧ F ≤ T ∧ F ≤ INDEXi ∧ INDEXi ≤ T ∧ VALUE = VALUEi) ⇔ Si = 3 ∧
(IN ∧ F ≤ T ∧ F ≤ INDEXi ∧ INDEXi ≤ T ∧ VALUE 6= VALUEi) ⇔ Si = 4

.

i iINDEX =<T and VALUE<>VALUE

iWITHIN and F=<T and F=<INDEX and

WITHIN and F=<T and T<INDEX iWITHIN and F=<T and F>INDEX i

s

WITHIN and F>T

Figure 5.242: Automaton of theelem from to constraint

n

S2 Sn

Q1Q =s0

S1

 n 2 1 VALUEVALUEVALUE

VALUE
TO

FROM

Q =s

Figure 5.243: Hypergraph of the reformulation corresponding to the automaton of the
elem from to constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20091115 957

958 NARC,PRODUCT ; AUTOMATON

5.127 element

DESCRIPTION LINKS GRAPH AUTOMATON

Origin [393]

Constraint element(INDEX, TABLE, VALUE)

Synonyms nth, element var, array.

Arguments INDEX : dvar

TABLE : collection(value−dvar)
VALUE : dvar

Restrictions INDEX ≥ 1
INDEX ≤ |TABLE|
|TABLE| > 0
required(TABLE, value)

Purpose VALUE is equal to theINDEXth item ofTABLE.

Example (3, 〈6, 9, 2, 9〉 , 2)

The element constraint holds since its third argumentVALUE = 2 is equal to the
3th (INDEX = 3) item of the collection〈6, 9, 2, 9〉.

Typical |TABLE| > 1
range(TABLE.value) > 1

Symmetry All occurrences of two distinct values inTABLE.value or VALUE can beswapped; all
occurrences of a value inTABLE.value or VALUE can berenamedto any unused value.

Arg. properties
• Functional dependency: VALUE determined byINDEX andTABLE.

• Suffix-extensiblewrt. TABLE.

Usage SeeUsageslof of elem.

Remark In the originalelement constraint ofCHIP theindex attribute was not explicitly present
in the table of values. It was implicitly defined as the position of a value in the previous
table.

Within some systems (e.g.,Gecode), the index of the first entry of the tableTABLE corre-
sponds to0 rather than to1.

When the first entry of the tableTABLE corresponds to a valuep that is different from1
we can still use theelement constraint. We use the reformulationI = J − p + 1 ∧

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.cosytec.com
http://www.gecode.org/

20000128 959

element(I, TABLE, V), whereI andJ are domain variables respectively ranging from1
to |TABLE| and fromp to p+ |TABLE| − 1.

Theelement constraint is callednth in Choco (http://choco.sourceforge.net/).
It is also sometimes calledelement var when the second argument corresponds to a table
of variables.

Thecase constraint [94] is a generalisation of theelement constraint, where the table is
replaced by a directedacyclicgraph describing the set of solutions.

Systems nth in Choco, element in Gecode, element in JaCoP, element in MiniZinc ,
element in SICStus.

See also common keyword: elem from to, element greatereq, element lesseq,
element matrix, element product, element sparse (array constraint), elementn,
elements sparse, in relation, stage element, sum (data constraint).

generalisation:cond lex cost (variable replaced bytuple of variables).

implied by: elem.

implies: elem.

related: twin ((pairs linked by an element with the same table)).

system of constraints:elements.

uses in its reformulation: cycle, elements alldifferent, sort permutation,
tree range, tree resource.

Keywords characteristic of a constraint: core, automaton, automaton without counters,
reified automaton constraint, derived collection.

constraint arguments:pure functional dependency.

constraint network structure: centered cyclic(2) constraint network(1).

constraint type: data constraint.

filtering: arc-consistency.

heuristics: labelling by increasing cost, regret based heuristics.

modelling: array constraint, table, functional dependency, variable indexing,
variable subscript, disjunction, assignment to the same set of values,
sequence dependent set-up.

modelling exercises: assignment to the same set of values, sequence dependent set-up,
zebra puzzle.

puzzles:zebra puzzle.

http://choco.emn.fr/

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntElement.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/Element.html
http://www.jacop.eu/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#element
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

960 NARC,PRODUCT ; AUTOMATON

Derived Collection

col

(

ITEM−collection(index−dvar, value−dvar),
[item(index− INDEX, value− VALUE)]

)

Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→collection(item, table)

Arc arity 2

Arc constraint(s) • item.index = table.key
• item.value = table.value

Graph property(ies) NARC= 1

Graph model The originalelement constraint with three arguments. We use the derived collectionITEM

for putting together theINDEX andVALUE parameters of theelement constraint. Within the
arc constraint we use the implicit attributekey that associates to each item of a collection
its position within the collection.

Parts (A) and (B) of Figure5.244respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the unique arc of the
final graph is stressed in bold.

ITEM

TABLE

1

1234

NARC=1

1:3,2

3:2

(A) (B)

Figure 5.244: Initial and final graph of theelement constraint

Signature Because of the first condition of the arc constraint the final graph cannot have more than
one arc. Therefore we can rewriteNARC = 1 to NARC ≥ 1 and simplifyNARC to
NARC.

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20000128 961

Automaton Figure 5.245 depicts the automaton associated with theelement constraint. Let
VALUEi be the value attribute of item i of the TABLE collection. To each triple
(INDEX, VALUE, VALUEi) corresponds a0-1 signature variableSi as well as the following
signature constraint:(INDEX = i ∧ VALUE = VALUEi) ⇔ Si.

s

iINDEX=TABLE_KEY and VALUE=TABLE_VALUE

INDEX<>TABLE_KEY or VALUE<>TABLE_VALUE ii

INDEX=TABLE_KEY and VALUE=TABLE_VALUEi i

i iINDEX<>TABLE_KEY or VALUE<>TABLE_VALUE

t

i

Figure 5.245: Automaton of theelement constraint

VALUE

1Q =s0

S1

TABLE_VALUE
 n

Q =tn

Sn

TABLE_VALUE
 1

TABLE_VALUE
 2

S2

INDEX

Q

Figure 5.246: Hypergraph of the reformulation corresponding to the automaton of the
element constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

962 NARC,PRODUCT ; AUTOMATON

5.128 elementgreatereq

DESCRIPTION LINKS GRAPH AUTOMATON

Origin [281]

Constraint element greatereq(ITEM, TABLE)

Arguments ITEM : collection(index−dvar, value−dvar)
TABLE : collection(index−int, value−int)

Restrictions required(ITEM, [index, value])
ITEM.index ≥ 1
ITEM.index ≤ |TABLE|
|ITEM| = 1
|TABLE| > 0
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose ITEM[1].value is greater than or equal to one of the entries (i.e., thevalue attribute) of
the tableTABLE.

Example

〈index− 1 value− 8〉 ,
〈

index− 1 value− 6,
index− 2 value− 9,
index− 3 value− 2,
index− 4 value− 9

〉

The element greatereq constraint holds sinceITEM[1].value = 8 is greater
than or equal toTABLE[ITEM[1].index].value = TABLE[1].value = 6.

Typical |TABLE| > 1
range(TABLE.value) > 1

Symmetries • Items ofTABLE arepermutable.

• All occurrences of two distinct values inITEM.value or TABLE.value can be
swapped; all occurrences of a value inITEM.value or TABLE.value can be
renamedto any unused value.

Usage Used for modelling variable subscripts in linear constraints [281].

Reformulation By introducing an extra variableVAL, theelement greatereq(〈index−INDEX value−
VALUE〉, TABLE) constraint can be expressed in term of anelem(〈index−INDEX value−
VAL〉, TABLE) constraint and of an inequality constraintVALUE ≥ VAL.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

20030820 963

See also common keyword:element, element lesseq, element product (array constraint).

implied by: elem.

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint arguments:binary constraint.

constraint network structure: centered cyclic(2) constraint network(1).

constraint type: data constraint.

filtering: linear programming, arc-consistency.

modelling: array constraint, table, variable subscript, variable indexing.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

964 NARC,PRODUCT ; AUTOMATON

Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→collection(item, table)

Arc arity 2

Arc constraint(s) • item.index = table.index
• item.value ≥ table.value

Graph property(ies) NARC= 1

Graph model Similar to theelement constraint except that theequalityconstraint of the second condi-
tion of the arc constraint is replaced by agreater than or equal toconstraint.

Parts (A) and (B) of Figure5.247respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the unique arc of the
final graph is stressed in bold.

ITEM

TABLE

1

1234

NARC=1

1:1,8

1:1,6

(A) (B)

Figure 5.247: Initial and final graph of theelement greatereq constraint

Signature Since all theindex attributes ofTABLE are distinct and because of the first arc constraint
the final graph cannot have more than one arc. Therefore we can rewrite NARC = 1 to
NARC ≥ 1 and simplifyNARC toNARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 965

Automaton Figure 5.248 depicts the automaton associated with theelement greatereq con-
straint. LetINDEX andVALUE respectively be theindex and thevalue attributes of the
unique item of theITEM collection. LetINDEXi andVALUEi respectively be theindex
and thevalue attributes of theith item of theTABLE collection. To each quadruple
(INDEX, VALUE, INDEXi, VALUEi) corresponds a0-1 signature variableSi as well as the
following signature constraint:((INDEX = INDEXi) ∧ (VALUE ≥ VALUEi)) ⇔ Si.

s

iITEM_INDEX=TABLE_INDEX and ITEM_VALUE>=TABLE_VALUE

iiITEM_INDEX<>TABLE_INDEX or ITEM_VALUE<TABLE_VALUE

ITEM_INDEX=TABLE_INDEX and ITEM_VALUE>=TABLE_VALUEi i

ITEM_INDEX<>TABLE_INDEX or ITEM_VALUE<TABLE_VALUEi i

t

i

Figure 5.248: Automaton of theelement greatereq constraint

ITEM_VALUE

1Q =s0

S1

TABLE_VALUE
 n

Q =tn

Sn

TABLE_VALUE
 1

TABLE_VALUE
 2

S2

ITEM_INDEX

Q

Figure 5.249: Hypergraph of the reformulation corresponding to the automaton of the
element greatereq constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

966 NARC,PRODUCT ; AUTOMATON

5.129 elementlesseq

DESCRIPTION LINKS GRAPH AUTOMATON

Origin [281]

Constraint element lesseq(ITEM, TABLE)

Arguments ITEM : collection(index−dvar, value−dvar)
TABLE : collection(index−int, value−int)

Restrictions required(ITEM, [index, value])
ITEM.index ≥ 1
ITEM.index ≤ |TABLE|
|ITEM| = 1
|TABLE| > 0
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose ITEM[1].value is less than or equal to one of the entries (i.e., thevalue attribute) of the
tableTABLE.

Example

〈index− 3 value− 1〉 ,
〈

index− 1 value− 6,
index− 2 value− 9,
index− 3 value− 2,
index− 4 value− 9

〉

The element lesseq constraint holds sinceITEM[1].value = 1 is less than or
equal toTABLE[ITEM[1].index].value = TABLE[3].value = 2.

Typical |TABLE| > 1
range(TABLE.value) > 1

Symmetries • Items ofTABLE arepermutable.

• All occurrences of two distinct values inITEM.value or TABLE.value can be
swapped; all occurrences of a value inITEM.value or TABLE.value can be
renamedto any unused value.

Usage Used for modelling variable subscripts in linear constraints [281].

Reformulation By introducing an extra variableVAL, theelement lesseq(〈index − INDEX value −
VALUE〉, TABLE) constraint can be expressed in term of anelem(〈index−INDEX value−
VAL〉, TABLE) constraint and of an inequality constraintVALUE ≤ VAL.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

20030820 967

See also common keyword: element, element greatereq,
element product (array constraint).

implied by: elem.

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint arguments:binary constraint.

constraint network structure: centered cyclic(2) constraint network(1).

constraint type: data constraint.

filtering: linear programming, arc-consistency.

modelling: array constraint, table, variable subscript, variable indexing.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

968 NARC,PRODUCT ; AUTOMATON

Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→collection(item, table)

Arc arity 2

Arc constraint(s) • item.index = table.index
• item.value ≤ table.value

Graph property(ies) NARC= 1

Graph model Similar to theelement constraint except that theequalityconstraint of the second condi-
tion of the arc constraint is replaced by aless than or equal toconstraint.

Parts (A) and (B) of Figure5.250respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the unique arc of the
final graph is stressed in bold.

ITEM

TABLE

1

1234

NARC=1

1:3,1

3:3,2

(A) (B)

Figure 5.250: Initial and final graph of theelement lesseq constraint

Signature Since all theindex attributes ofTABLE are distinct and because of the first arc constraint
the final graph cannot have more than one arc. Therefore we can rewrite NARC = 1 to
NARC ≥ 1 and simplifyNARC toNARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 969

Automaton Figure 5.251 depicts the automaton associated with theelement lesseq constraint.
Let INDEX andVALUE respectively be theindex and thevalue attributes of the unique
item of the ITEM collection. LetINDEXi and VALUEi respectively be theindex and
the value attributes of theith item of the TABLE collection. To each quadruple
(INDEX, VALUE, INDEXi, VALUEi) corresponds a0-1 signature variableSi as well as the
following signature constraint:((INDEX = INDEXi) ∧ (VALUE ≤ VALUEi)) ⇔ Si.

s

ii

ITEM_INDEX<>TABLE_INDEX or ITEM_VALUE>TABLE_VALUE ii

i iITEM_INDEX=TABLE_INDEX and ITEM_VALUE<=TABLE_VALUE

i iITEM_INDEX<>TABLE_INDEX or ITEM_VALUE>TABLE_VALUE

t

ITEM_INDEX=TABLE_INDEX and ITEM_VALUE<=TABLE_VALUE

Figure 5.251: Automaton of theelement lesseq constraint

ITEM_VALUE

1Q =s0

S1

TABLE_VALUE
 n

Q =tn

Sn

TABLE_VALUE
 1

TABLE_VALUE
 2

S2

ITEM_INDEX

Q

Figure 5.252: Hypergraph of the reformulation corresponding to the automaton of the
element lesseq constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

970 NARC,PRODUCT ; AUTOMATON

5.130 elementmatrix

DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint element matrix(MAX I, MAX J, INDEX I, INDEX J, MATRIX, VALUE)

Synonyms elem matrix, matrix.

Arguments MAX I : int

MAX J : int

INDEX I : dvar

INDEX J : dvar

MATRIX : collection(i−int, j−int, v−int)
VALUE : dvar

Restrictions MAX I ≥ 1
MAX J ≥ 1
INDEX I ≥ 1
INDEX I ≤ MAX I

INDEX J ≥ 1
INDEX J ≤ MAX J

required(MATRIX, [i, j, v])
increasing seq(MATRIX, [i, j])
MATRIX.i ≥ 1
MATRIX.i ≤ MAX I

MATRIX.j ≥ 1
MATRIX.j ≤ MAX J

|MATRIX| = MAX I ∗ MAX J

Purpose
The MATRIX collection corresponds to the two-dimensional matrix
MATRIX[1..MAX I, 1..MAX J]. VALUE is equal to the entryMATRIX[INDEX I, INDEX J] of
the previous matrix.

Example

4, 3, 1, 3,

〈

i− 1 j− 1 v− 4,
i− 1 j− 2 v− 1,
i− 1 j− 3 v− 7,
i− 2 j− 1 v− 1,
i− 2 j− 2 v− 0,
i− 2 j− 3 v− 8,
i− 3 j− 1 v− 3,
i− 3 j− 2 v− 2,
i− 3 j− 3 v− 1,
i− 4 j− 1 v− 0,
i− 4 j− 2 v− 0,
i− 4 j− 3 v− 6

〉

, 7

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20031101 971

Theelement matrix constraint holds since its last argumentVALUE = 7 is equal to thev
attribute of thekth item of theMATRIX collection such thatMATRIX[k].i = INDEX I = 1
andMATRIX[k].j = INDEX J = 3.

Typical MAX I > 1
MAX J > 1
|MATRIX| > 3
maxval(MATRIX.i) > 1
maxval(MATRIX.j) > 1
range(MATRIX.v) > 1

Symmetry All occurrences of two distinct values inMATRIX.v or VALUE can beswapped; all occur-
rences of a value inMATRIX.v or VALUE can berenamedto any unused value.

Reformulation The element matrix(MAX I, MAX J, INDEX I, INDEX J, MATRIX, VALUE) constraint can
be expressed in term ofMAX I element(INDEX J, LINEi, VARi) (i ∈ [1, MAX I]),
where LINEi corresponds to thei-th line of the matrix MATRIX and of one
element(INDEX I, 〈VAR1, VAR2, . . . , VARMAX I〉, VALUE) constraint.

If we consider theExampleslot we get the followingelement constraints:

• element(3, 〈4, 1, 7〉, 7),
• element(3, 〈1, 0, 8〉, 8),
• element(3, 〈3, 2, 1〉, 1),
• element(3, 〈0, 0, 6〉, 6),
• element(1, 〈7, 8, 1, 6〉, 7).

Systems nth in Choco, element in Gecode.

See also common keyword:elem, element (array constraint).

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint, derived collection.

constraint arguments: ternary constraint.

constraint network structure: centered cyclic(3) constraint network(1).

constraint type: data constraint.

filtering: arc-consistency.

modelling: array constraint, matrix.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelMiniModel.html
http://www.gecode.org/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

972 NARC,PRODUCT ; AUTOMATON

Derived Collection

col

(

ITEM−collection(index i−dvar, index j−dvar, value−dvar),
[item(index i− INDEX I, index j− INDEX J, value− VALUE)]

)

Arc input(s) ITEM MATRIX

Arc generator PRODUCT 7→collection(item, matrix)

Arc arity 2

Arc constraint(s) • item.index i = matrix.i
• item.index j = matrix.j
• item.value = matrix.v

Graph property(ies) NARC= 1

Graph model Similar to theelement constraint except that the arc constraint is updated according to the
fact that we have a two-dimensional matrix.

Parts (A) and (B) of Figure5.253respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the unique arc of the
final graph is stressed in bold.

(A)

ITEM

MATRIX

1

123456789101112

(B) NARC=1

1:1,3,7

3:1,3,7

Figure 5.253: Initial and final graph of theelement matrix constraint

Signature Because of the first condition of the arc constraint the final graph cannot have more than
one arc. Therefore we can rewriteNARC = 1 to NARC ≥ 1 and simplifyNARC to
NARC.

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20031101 973

Automaton Figure5.254depicts the automaton associated with theelement matrix constraint. Let
Ik, Jk andVk respectively be thei, thej and thev kth attributes of theMATRIX collec-
tion. To each sextuple(INDEX I, INDEX J, VALUE, Ik, Jk, Vk) corresponds a0-1 signature
variableSk as well as the following signature constraint:((INDEX I = Ik) ∧ (INDEX J =
Jk) ∧ (VALUE = Vk)) ⇔ Sk.

t

i,j i,j i,j

INDEX_I<>MATRIX_I or INDEX_J<>MATRIX_J or VALUE<>MATRIX_VALUE
i,j i,j i,j

i,j i,j i,j
INDEX_I=MATRIX_I and INDEX_J=MATRIX_J and VALUE=MATRIX_VALUE

i,j i,j i,j
INDEX_I<>MATRIX_I or INDEX_J<>MATRIX_J or VALUE<>MATRIX_VALUEs

INDEX_I=MATRIX_I and INDEX_J=MATRIX_J and VALUE=MATRIX_VALUE

Figure 5.254: Automaton of theelement matrix constraint

VALUE

2

Q1Q =s0

S1

MATRIX_I
 1,1

MATRIX_J
 1,1

MATRIX_V
 1,1

MATRIX_I
 n,m

MATRIX_V
 n,m

MATRIX_J
 n,mMATRIX_J

 1,2

MATRIX_I
 1,2

MATRIX_V
 1,2

Sn.m

Q =tn.m

INDEX_I
INDEX_J

S

Figure 5.255: Hypergraph of the reformulation corresponding to the automaton of the
element matrix constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

974 NARC,PRODUCT

5.131 elementproduct

DESCRIPTION LINKS GRAPH

Origin [280]

Constraint element product(Y, TABLE, X, Z)

Synonym element.

Arguments Y : dvar

TABLE : collection(value−int)
X : dvar

Z : dvar

Restrictions Y ≥ 1
Y ≤ |TABLE|
X ≥ 0
Z ≥ 0
required(TABLE, value)
TABLE.value ≥ 0

Purpose Z is equal to theYth item ofTABLE multiplied byX.

Example (3, 〈6, 9, 2, 9〉 , 5, 10)

The element product constraint holds since its fourth argumentZ = 10 is equal
to the3th (Y = 3) item of the collection〈6, 9, 2, 9〉 multiplied byX = 5.

Typical X > 0
Z > 0
|TABLE| > 1
range(TABLE.value) > 1
TABLE.value > 0

Arg. properties
• Functional dependency: Z determined byY, TABLE andX.

• Suffix-extensiblewrt. TABLE.

Usage Theelement product constraint was originally used inconfiguration problems[280]. In
this context,Z denotes the cost of buyingX units of typeY at costTABLE[Y].value.

Reformulation By introducing an extra variableVAL, theelement product(Y, TABLE, X, Z) constraint can
be expressed in term of anelement(Y, TABLE, VAL) constraint and of a product constraint
Z = VAL · X.

See also common keyword: elem, element, element greatereq,
element lesseq (array constraint).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

20051229 975

Keywords application area: configuration problem.

constraint arguments:pure functional dependency.

constraint type: data constraint.

modelling: array constraint, table, functional dependency, variable subscript.

Keywords
Related keywords grouped by meta-keywords.

976 NARC,PRODUCT

Derived Collection

col

(

ITEM−collection(y−dvar, x−dvar, z−dvar),
[item(y− Y, x− X, z− Z)]

)

Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→collection(item, table)

Arc arity 2

Arc constraint(s) • item.y = table.key
• item.z = item.x ∗ table.value

Graph property(ies) NARC= 1

Graph model We use the derived collectionITEM for putting together theY, theX andZ parameters of the
element product constraint. Within the arc constraint we use the implicit attributekey

that associates to each item of a collection its position within the collection.

Parts (A) and (B) of Figure5.256respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the unique arc of the
final graph is stressed in bold.

ITEM

TABLE

1

1234

NARC=1

1:3,5,10

3:2

(A) (B)

Figure 5.256: Initial and final graph of theelement product constraint

Signature Because of the first condition of the arc constraint the final graph cannot have more than
one arc. Therefore we can rewriteNARC = 1 to NARC ≥ 1 and simplifyNARC to
NARC.

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20051229 977

978 NARC,PRODUCT ; AUTOMATON

5.132 elementsparse

DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint element sparse(ITEM, TABLE, DEFAULT)

Usual name element

Arguments ITEM : collection(index−dvar, value−dvar)
TABLE : collection(index−int, value−int)
DEFAULT : int

Restrictions required(ITEM, [index, value])
ITEM.index ≥ 1
|ITEM| = 1
|TABLE| > 0
required(TABLE, [index, value])
TABLE.index ≥ 1
distinct(TABLE, index)

Purpose
ITEM[1].value is equal to one of the entries of the tableTABLE or to the default value
DEFAULT if the entryITEM[1].index does not exist inTABLE.

Example

〈index− 2 value− 5〉 ,
〈

index− 1 value− 6,
index− 2 value− 5,
index− 4 value− 2,
index− 8 value− 9

〉

, 5

The element sparse constraint holds since its first argumentITEM corresponds to
the second item of theTABLE collection.

Typical |TABLE| > 1
range(TABLE.value) > 1

Symmetries • Items ofTABLE arepermutable.

• All occurrences of two distinct values inITEM.value, TABLE.value or DEFAULT
can beswapped; all occurrences of a value inITEM.value, TABLE.value or
DEFAULT can berenamedto any unused value.

Usage A sometimes more compact form of theelement constraint: we are not obliged to specify
explicitly the table entries that correspond to the specified default value. This can some-
times reduce drastically memory utilisation.

Remark The original constraint ofCHIP had an additional parameterSIZE giving the maximum
value ofITEM.index.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.cosytec.com

20030820 979

Reformulation Let I and V respectively denoteITEM[1].index and ITEM[1].value. The
element sparse(ITEM, TABLE, DEFAULT) constraint can be expressed in term of a rei-
fied constraint of the form:
((I = TABLE[1].index ∧ V = TABLE[1].value) ∨
(I = TABLE[2].index ∧ V = TABLE[2].value) ∨
. . .
(I = TABLE[|TABLE|].index ∧ V = TABLE[TABLE|].value)) ∨
((I 6= TABLE[1].index) ∧
(I 6= TABLE[2].index) ∧
. . .
(I 6= TABLE[|TABLE|].index) ∧
(V = DEFAULT)).

See also common keyword:elem, element (array constraint), elements sparse (sparse table).

implies: elements sparse.

system of constraints:elements sparse.

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint, derived collection.

constraint arguments:binary constraint.

constraint network structure: centered cyclic(2) constraint network(1).

constraint type: data constraint.

filtering: arc-consistency.

modelling: array constraint, table, sparse table, sparse functional dependency,
variable indexing.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

980 NARC,PRODUCT ; AUTOMATON

Derived Collections

col

(

DEF−collection(index−int, value−int),
[item(index− 0, value− DEFAULT)]

)

col

TABLE DEF−collection(index−dvar, value−dvar),
[

item(index− TABLE.index, value− TABLE.value),
item(index− DEF.index, value− DEF.value)

]

Arc input(s) ITEM TABLE DEF

Arc generator PRODUCT 7→collection(item, table def)

Arc arity 2

Arc constraint(s) • item.value = table def.value
• item.index = table def.index ∨ table def.index = 0

Graph property(ies) NARC≥ 1

Graph model The final graph has between one and two arc constraints: it has two arcswhen the default
valueDEFAULT occurs also in the tableTABLE; otherwise it has only one arc.

Parts (A) and (B) of Figure5.257respectively show the initial and final graph associated
with theExampleslot. Since we use theNARC graph property the arcs of the final graph
are outline with thick lines.

ITEM

TABLE_DEF

1

12345

NARC=2

1:2,5

1:0,5 3:2,5

(A) (B)

Figure 5.257: Initial and final graph of theelement sparse constraint

Derived Collections
Declarations of new collections that are derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 981

Automaton Figure 5.258 depicts the automaton associated with theelement sparse constraint.
Let INDEX andVALUE respectively be theindex and thevalue attributes of the unique
item of the ITEM collection. LetINDEXi and VALUEi respectively be theindex and
the value attributes of theith item of the TABLE collection. To each quintuple
(INDEX, VALUE, DEFAULT, INDEXi, VALUEi) corresponds a signature variableSi as well as
the following signature constraint:

(INDEX 6= INDEXi ∧ VALUE 6= DEFAULT) ⇔ Si = 0 ∧
(INDEX = INDEXi ∧ VALUE = VALUEi) ⇔ Si = 1 ∧
(INDEX 6= INDEXi ∧ VALUE = DEFAULT) ⇔ Si = 2

.

i

ITEM_VALUE=DEFAULT
i

ITEM_INDEX=TABLE_INDEX and

ITEM_VALUE=TABLE_VALUE
i

i

ITEM_VALUE<>DEFAULT
iITEM_INDEX<>TABLE_INDEX and

i

i
ITEM_VALUE=TABLE_VALUE

ITEM_INDEX=TABLE_INDEX and

i
ITEM_VALUE=DEFAULT

ITEM_INDEX<>TABLE_INDEX andITEM_INDEX<>TABLE_INDEX andi
ITEM_VALUE<>DEFAULT

i

i
ITEM_VALUE=TABLE_VALUE

ITEM_INDEX=TABLE_INDEX and

s

t

d
ITEM_INDEX<>TABLE_INDEX and

ITEM_VALUE=DEFAULT

ITEM_INDEX<>TABLE_INDEX and

Figure 5.258: Automaton of theelement sparse constraint

ITEM_VALUE

S

0Q =s 1Q

 n
TABLE_VALUE

nS

 1
TABLE_VALUE

 2
TABLE_VALUE

2S

t

d
Q =n

ITEM_INDEX

1

Figure 5.259: Hypergraph of the reformulation corresponding to the automaton of the
element sparse constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

982 AUTOMATON

5.133 elementn

DESCRIPTION LINKS AUTOMATON

Origin P. Flener

Constraint elementn(INDEX, TABLE, ENTRIES)

Arguments INDEX : dvar

TABLE : collection(value−int)
ENTRIES : collection(entry−dvar)

Restrictions INDEX ≥ 1
INDEX ≤ |TABLE| − |ENTRIES|+ 1
|TABLE| > 0
|ENTRIES| > 0
|TABLE| ≥ |ENTRIES|
required(TABLE, value)
required(ENTRIES, entry)

Purpose ∀i ∈ [1, |ENTRIES|] : ENTRIES[i].entry = TABLE[INDEX+ i− 1].value

Example
(

3, 〈6, 9, 2, 9〉 ,
〈2, 9〉

)

The elementn constraint holds since its third argumentENTRIES = 〈2, 9〉 is set to the
subsequence starting at the third (i.e.,INDEX = 3) item of the tableTABLE = 〈6, 9, 2, 9〉.

Typical |TABLE| > 1
range(TABLE.value) > 1
|ENTRIES| > 1

Symmetry All occurrences of two distinct values inTABLE.value or ENTRIES.entry can be
swapped; all occurrences of a value inTABLE.value or ENTRIES.entry can berenamed
to any unused value.

Arg. properties
Suffix-extensiblewrt. TABLE.

Usage The elementn constraint is useful for extracting of subsequence of fixed length from a
given sequence.

Reformulation Let I1 = INDEX, I2 = INDEX + 1, . . . , I|ENTRIES| = INDEX + |ENTRIES| − 1. The
elementn(INDEX, TABLE, 〈entry−E1, entry−E2, . . . , entry−E|ENTRIES|〉) constraint
can be expressed in term of a conjunction of|ENTRIES| element constraints of the form:
element(I1, TABLE, E1),
element(I2, TABLE, E2),
. . .
element(INDEX+ |ENTRIES| − 1, TABLE, E|ENTRIES|).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

20061004 983

See also common keyword:element (data constraint).

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: data constraint, sliding sequence constraint.

filtering: arc-consistency.

modelling: table.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

984 AUTOMATON

Automaton Figure5.260depicts the automaton associated with theelementn constraint of theEx-
ample slot. LetI andEk respectively denote theINDEX argument and theentry attribute
of thekth item of theENTRIES collection. Figure5.261depicts the reformulation of the
elementn constraint.

I=2

1

2E =2

E =91

E =92

s

t

2 6

1 53

4

I=1 I=3

E =2

E =9

1

2

E =6

Figure 5.260: Automaton of theelementn constraint given in the example

2

Q =s Q

I E1

 0 1 Q

E

 2 3Q =t

Figure 5.261: Hypergraph of the reformulation corresponding to the automaton of the
elementn constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20061004 985

986 NARC,PRODUCT

5.134 elements

DESCRIPTION LINKS GRAPH

Origin Derived fromelement.

Constraint elements(ITEMS, TABLE)

Arguments ITEMS : collection(index−dvar, value−dvar)
TABLE : collection(index−int, value−dvar)

Restrictions required(ITEMS, [index, value])
ITEMS.index ≥ 1
ITEMS.index ≤ |TABLE|
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose All the items ofITEMS should be equal to one of the entries of the tableTABLE.

Example

〈index− 4 value− 9, index− 1 value− 6〉 ,
〈

index− 1 value− 6,
index− 2 value− 9,
index− 3 value− 2,
index− 4 value− 9

〉

The elements constraint holds since each item of its first argumentITEMS corre-
sponds to an item of theTABLE collection: the first item〈index− 4 value− 9〉 of ITEMS
corresponds to the fourth item ofTABLE, while the second item〈index − 1 value − 6〉
of ITEMS corresponds to the first item ofTABLE.

Typical |ITEMS| > 1
range(ITEMS.index) > 1
|TABLE| > 1
range(TABLE.value) > 1

Symmetries • Items ofITEMS arepermutable.

• Items ofTABLE arepermutable.

• All occurrences of two distinct values inITEMS.value or TABLE.value can be
swapped; all occurrences of a value inITEMS.value or TABLE.value can be
renamedto any unused value.

Arg. properties
Functional dependency: ITEMS.value determined byITEMS.index andTABLE.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

20030820 987

Usage Used for replacing severalelement constraints sharing exactly the same table by one single
constraint.

Reformulation The elements(〈index − I1 value − V1, index − I2 value − V2, . . . , index −
I|ITEMS| value − V|ITEMS|〉, TABLE) constraint can be expressed in term of a conjunction
of |ITEMS| elem constraints of the form:
elem(〈index− I1 value− V1〉, TABLE),
elem(〈index− I2 value− V2〉, TABLE),
. . .
elem(〈index− I|ITEMS| value− V|ITEMS|〉, TABLE).

See also implied by: elements alldifferent.

part of system of constraints:elem, element.

Keywords constraint arguments:pure functional dependency.

constraint type: data constraint, system of constraints.

filtering: arc-consistency.

modelling: table, shared table, functional dependency.

Usage
Typical usage of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

988 NARC,PRODUCT

Arc input(s) ITEMS TABLE

Arc generator PRODUCT 7→collection(items, table)

Arc arity 2

Arc constraint(s) • items.index = table.index
• items.value = table.value

Graph property(ies) NARC= |ITEMS|

Graph model Parts (A) and (B) of Figure5.262respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

ITEMS

TABLE

1

1234

2

NARC=2

1:4,9

4:4,9

2:1,6

1:1,6

(A) (B)

Figure 5.262: Initial and final graph of theelements constraint

Signature Since all theindex attributes ofTABLE collection are distinct and because of the first
conditionitems.index = table.index of the arc constraint, a source vertex of the final
graph can have at most one successor. Therefore|ITEMS| is the maximum number of arcs
of the final graph and we can rewriteNARC = |ITEMS| to NARC ≥ |ITEMS|. So we
can simplifyNARC toNARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 989

990 NVERTEX,PRODUCT

5.135 elementsalldifferent

DESCRIPTION LINKS GRAPH

Origin Derived fromelements andalldifferent.

Constraint elements alldifferent(ITEMS, TABLE)

Synonyms elements alldiff, elements alldistinct.

Arguments ITEMS : collection(index−dvar, value−dvar)
TABLE : collection(index−int, value−dvar)

Restrictions required(ITEMS, [index, value])
ITEMS.index ≥ 1
ITEMS.index ≤ |TABLE|
|ITEMS| = |TABLE|
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose All the items of theITEMS collection should be equal to one of the entries of the table
TABLE and all the variablesITEMS.index should take distinct values.

Example

〈
index− 2 value− 9,
index− 1 value− 6,
index− 4 value− 9,
index− 3 value− 2

〉

,

〈
index− 1 value− 6,
index− 2 value− 9,
index− 3 value− 2,
index− 4 value− 9

〉

The elements alldifferent constraint holds since, as depicted by Figure5.263,
there is a one to one correspondence between the items of theITEMS collection and the
items of theTABLE collection.

TABLE

index−2
index−3
index−4

value−6
value−9
value−2
value−9

index−2 value−9
index−1
index−4
index−3

value−6
value−9
value−2

ITEMS

index−1

Figure 5.263: Illustration of the one to one correspondencebetween the items ofITEMS
and the items ofTABLE

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20030820 991

Typical |ITEMS| > 1
range(ITEMS.value) > 1
|TABLE| > 1
range(TABLE.value) > 1

Symmetries • Arguments arepermutablew.r.t. permutation(ITEMS, TABLE).

• Items ofITEMS arepermutable.

• Items ofTABLE arepermutable.

• All occurrences of two distinct values inITEMS.value or TABLE.value can be
swapped; all occurrences of a value inITEMS.value or TABLE.value can be
renamedto any unused value.

Arg. properties
Functional dependency: ITEMS.value determined byITEMS.index andTABLE.

Usage Used for replacing by one singleelements alldifferent constraint analldifferent
and a set ofelement constraints having the following structure:

• The union of the index variables of theelement constraints is equal to the set of
variables of thealldifferent constraint.

• All the element constraints share exactly the same table.

For instance, the constraint given in theExample slot is equivalent to the conjunction of
the following set of constraints:

alldifferent(〈var− 2, var− 1, var− 4, var− 3〉)

element

〈

index− 2 value− 9
〉

,

〈
index− 1 value− 6,
index− 2 value− 9,
index− 3 value− 2,
index− 4 value− 9

〉

element

〈

index− 1 value− 6
〉

,

〈
index− 1 value− 6,
index− 2 value− 9,
index− 3 value− 2,
index− 4 value− 9

〉

element

〈

index− 3 value− 2
〉

,

〈
index− 1 value− 6,
index− 2 value− 9,
index− 3 value− 2,
index− 4 value− 9

〉

element

〈

index− 4 value− 9
〉

,

〈
index− 1 value− 6,
index− 2 value− 9,
index− 3 value− 2,
index− 4 value− 9

〉

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

992 NVERTEX,PRODUCT

As a practical example of utilisation of theelements alldifferent constraint we show
how to model the link between a permutation consisting of one single cycle andits ex-
panded form. For instance, to the permutation3, 6, 5, 2, 4, 1 corresponds the sequence
3 5 4 2 6 1. Let us noteS1, S2, S3, S4, S5, S6 the permutation andV1V2V3V4V5V6 its
expanded form (see Figure5.264).

The constraint:

elements alldifferent

〈

index− V1 value− V2,
index− V2 value− V3,
index− V3 value− V4,
index− V4 value− V5,
index− V5 value− V6,
index− V6 value− V1

〉

,

〈

index− 1 value− S1,
index− 2 value− S2,
index− 3 value− S3,
index− 4 value− S4,
index− 5 value− S5,
index− 6 value− S6

〉

models the fact thatS1, S2, S3, S4, S5, S6 corresponds to a permutation with one sin-
gle cycle. It also expresses the link between the variablesS1, S2, S3, S4, S5, S6 and
V1, V2, V3, V4, V5, V6.

11S 1

3 5

4

26

3=5 5=4

2=66=1

1=3 2=5 3=4 4=2 5=6 6=1
4=2

V V V V

S

V

53 4 2 6

S S

SS

V

=3

Figure 5.264: Two representations of a permutation containing one single cycle

Reformulation The elements alldifferent(〈index − I1 value − V1, index − I2 value −
V2, . . . , index − I|ITEMS| value − V|ITEMS|〉, TABLE) constraint can be expressed in term
of a conjunction of|ITEMS| elem constraints and of onealldifferent constraint of the
form:
elem(〈index− I1 value− V1〉, TABLE),
elem(〈index− I2 value− V2〉, TABLE),
. . .
elem(〈index− I|ITEMS| value− V|ITEMS|〉, TABLE),
alldifferent(〈I1, I2, . . . , I|ITEMS|〉).

See also implies: elements.

used in reformulation: alldifferent, elem, element.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

20030820 993

Keywords characteristic of a constraint: disequality.

combinatorial object: permutation.

constraint type: data constraint.

modelling: array constraint, table, functional dependency.

Keywords
Related keywords grouped by meta-keywords.

994 NVERTEX,PRODUCT

Arc input(s) ITEMS TABLE

Arc generator PRODUCT 7→collection(items, table)

Arc arity 2

Arc constraint(s) • items.index = table.index
• items.value = table.value

Graph property(ies) NVERTEX= |ITEMS|+ |TABLE|

Graph model The fact that all variablesITEMS.index are pairwise different is derived from the conjunc-
tions of the following facts:

• From the graph propertyNVERTEX = |ITEMS| + |TABLE| it follows that all
vertices of the initial graph belong also to the final graph,

• A vertexv belongs to the final graph if there is at least one constraint involvingv that
holds,

• From the first conditionitems.index = table.index of the arc constraint, and
from the restrictiondistinct(TABLE.index) it follows: for all verticesv generated
from the collectionITEMS at most one constraint involvingv holds.

Parts (A) and (B) of Figure5.265respectively show the initial and final graph associated
with theExample slot. Since we use theNVERTEX graph property, the vertices of the
final graph are stressed in bold.

ITEMS

TABLE

1

1234

234

NVERTEX=8

1:2,9

2:2,9

2:1,6

1:1,6

3:4,9

4:4,9

4:3,2

3:3,2

(A) (B)

Figure 5.265: Initial and final graph of theelements alldifferent constraint

Signature Since the final graph cannot have more than|ITEMS| + |TABLE| vertices one can simplify
NVERTEX to NVERTEX.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 995

996 NSOURCE,PRODUCT

5.136 elementssparse

DESCRIPTION LINKS GRAPH

Origin Derived fromelement sparse.

Constraint elements sparse(ITEMS, TABLE, DEFAULT)

Arguments ITEMS : collection(index−dvar, value−dvar)
TABLE : collection(index−int, value−int)
DEFAULT : int

Restrictions required(ITEMS, [index, value])
ITEMS.index ≥ 1
required(TABLE, [index, value])
TABLE.index ≥ 1
distinct(TABLE, index)

Purpose
All the items ofITEMS should be equal to one of the entries of the tableTABLE or to the
default valueDEFAULT if the entryITEMS.index does not occurs among the values of
the index attribute of theTABLE collection.

Example

〈

index− 8 value− 9,
index− 3 value− 5,
index− 2 value− 5

〉

,

〈
index− 1 value− 6,
index− 2 value− 5,
index− 4 value− 2,
index− 8 value− 9

〉

, 5

Theelements sparse constraint holds since:

• The first and third items (items〈index−8 value−9〉 and〈index−2 value−5〉)
of its ITEMS collection respectively correspond to the fourth and second item of its
TABLE collection.

• The index attribute of the second item of itsITEMS collection (i.e., value3) does
not correspond to any index of theTABLE collection. Therefore thevalue attribute
of the second item of theITEMS collection is set the the default value5 given by the
last argument of theelements sparse constraint.

Typical |ITEMS| > 1
range(ITEMS.value) > 1
|TABLE| > 1
range(TABLE.value) > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20030820 997

Symmetries • Items ofITEMS arepermutable.

• Items ofTABLE arepermutable.

• All occurrences of two distinct values inITEMS.value, TABLE.value or DEFAULT
can beswapped; all occurrences of a value inITEMS.value, TABLE.value or
DEFAULT can berenamedto any unused value.

Usage Used for replacing severalelement constraints sharing exactly the same sparse table by
one single constraint.

Reformulation Let Ik and Vk respectively denoteITEMS[k].index and ITEMS[k].value (k ∈
[1, |ITEMS|[]). The elements sparse(ITEMS, TABLE, DEFAULT) constraint can be ex-
pressed in term of|ITEMS|[reified constraints of the form:
((Ik = TABLE[1].index ∧ Vk = TABLE[1].value) ∨
(Ik = TABLE[2].index ∧ Vk = TABLE[2].value) ∨
. . .
(Ik = TABLE[|TABLE|].index ∧ Vk = TABLE[TABLE|].value)) ∨
((Ik 6= TABLE[1].index) ∧
(Ik 6= TABLE[2].index) ∧
. . .
(Ik 6= TABLE[|TABLE|].index) ∧
(Vk = DEFAULT)).

See also common keyword:elem, element (data constraint), element sparse (sparse table).

implied by: element sparse.

part of system of constraints:element sparse.

Keywords characteristic of a constraint: derived collection.

constraint type: data constraint, system of constraints.

filtering: arc-consistency.

modelling: table, shared table, sparse table, sparse functional dependency.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

998 NSOURCE,PRODUCT

Derived Collections

col

(

DEF−collection(index−int, value−int),
[item(index− 0, value− DEFAULT)]

)

col

TABLE DEF−collection(index−dvar, value−dvar),
[

item(index− TABLE.index, value− TABLE.index),
item(index− DEF.index, value− DEF.value)

]

Arc input(s) ITEMS TABLE DEF

Arc generator PRODUCT 7→collection(items, table def)

Arc arity 2

Arc constraint(s) • items.value = table def.value
• items.index = table def.index ∨ table def.index = 0

Graph property(ies) NSOURCE= |ITEMS|

Graph model An item of theITEMS collection may have up to two successors (see for instance the third
item of theITEMS collection of theExample slot). Therefore we use the graph property
NSOURCE = |ITEMS| for enforcing the fact that each item of theITEMS collection has
at least one successor.

Parts (A) and (B) of Figure5.266respectively show the initial and final graph associated
with theExample slot. Since we use theNSOURCE graph property, the vertices of the
final graph are drawn with a double circle.

ITEMS

TABLE_DEF

1

12 345

2 3

NSOURCE=3

1:8,9

4:8,9

2:3,5

5:0,5

3:2,5

2:2,5

(A) (B)

Figure 5.266: Initial and final graph of theelements sparse constraint

Signature On the one hand note thatITEMS is equal to the number of sources of the initial graph. On
the other hand note that, in the initial graph, all the vertices that are not sources correspond
to sinks. Since isolated vertices are eliminated from the final graph the sinksof the ini-
tial graph cannot become sources of the final graph. Therefore themaximum number of
sources of the final graph is equal toITEMS. We can rewriteNSOURCE = |ITEMS| to
NSOURCE ≥ |ITEMS| and simplifyNSOURCE toNSOURCE.

Derived Collections
Declarations of new collections that are derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 999

1000 PREDEFINED

5.137 eq

DESCRIPTION LINKS

Origin Arithmetic.

Constraint eq(VAR1, VAR2)

Synonym xeqy.

Arguments VAR1 : dvar

VAR2 : dvar

Restriction

Purpose Enforce the fact that two variables are equal.

Example (8, 8)

Theeq constraint holds since8 is equal to8.

Symmetries • Arguments arepermutablew.r.t. permutation(VAR1, VAR2).

• All occurrences of a value inVAR1 or VAR2 can berenamedto any unused value.

Arg. properties
• Functional dependency: VAR2 determined byVAR1.

• Functional dependency: VAR1 determined byVAR2.

Systems eq in Choco, rel in Gecode, xeqy in JaCoP, #= in SICStus.

See also common keyword:gt, lt (binary constraint,arithmetic constraint).

generalisation: all equal (equality between more than two variables),
eq cst (constant added), eq set (variable replaced byset variable).

implies: abs value, geq, leq, same sign.

negation:neq.

Keywords constraint arguments:binary constraint, pure functional dependency.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.

modelling: functional dependency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/XeqY.html
http://www.jacop.eu/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20070821 1001

1002 PREDEFINED

5.138 eqcst

DESCRIPTION LINKS

Origin Arithmetic.

Constraint eq cst(VAR1, VAR2, CST2)

Arguments VAR1 : dvar

VAR2 : dvar

CST2 : int

Purpose Enforce the fact that the first variable is equal to the sum of the second variable and the
constant.

Example (8, 2, 6)

Theeq cst constraint holds since8 is equal to2 + 6.

Typical CST2 6= 0

Symmetries • Arguments arepermutablew.r.t. permutation(VAR1) (VAR2, CST2).

• One and the same constant can beaddedto VAR1 andVAR2.

• One and the same constant can beaddedto VAR1 andCST2.

Arg. properties
• Functional dependency: VAR1 determined byVAR2 andCST2.

• Functional dependency: VAR2 determined byVAR1 andCST2.

• Functional dependency: CST2 determined byVAR1 andVAR2.

See also implies: geq cst, leq cst.

negation:neq cst.

specialisation:eq (constant set to0).

Keywords constraint arguments:binary constraint, pure functional dependency.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.

modelling: functional dependency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20090923 1003

1004 PREDEFINED

5.139 eqset

DESCRIPTION LINKS

Origin Used for definingalldifferent between sets.

Constraint eq set(SET1, SET2)

Arguments SET1 : svar

SET2 : svar

Purpose Constraint the setSET1 to be equal to the setSET2.

Example ({3, 5}, {3, 5})

Symmetries • Arguments arepermutablew.r.t. permutation(SET1, SET2).

• All occurrences of a value inSET1 or SET2 can berenamedto any unused value.

Systems eq in Choco, rel in Gecode.

Used in alldifferent between sets.

See also specialisation:eq (set variable replaced byvariable).

Keywords characteristic of a constraint: equality.

constraint arguments:binary constraint, constraint involving set variables.

constraint type: predefined constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelSetRel.html
http://www.gecode.org/

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 1005

1006 LOGIC

5.140 equalsboxes

DESCRIPTION LINKS LOGIC

Origin Geometry, derived from [318]

Constraint equal sboxes(K, DIMS, OBJECTS, SBOXES)

Synonym equal.

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)

Arguments K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−int, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− POSITIVES)

Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
K > 0
DIMS ≥ 0
DIMS < K

increasing seq(OBJECTS, [oid])
required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
|SBOXES| ≥ 1
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
do not overlap(SBOXES)

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

20070622 1007

Purpose

Holds if, for each pair of objects(Oi, Oj), i 6= j, Oi andOj coincide exactly with
respect to a set of dimensions depicted byDIMS. Oi andOj are objects that take a shape
among a set of shapes. Eachshapeis defined as a finite set of shifted boxes, where each
shifted box is described by a box in aK-dimensional space at a given offset (from the
origin of the shape) with given sizes. More precisely, ashifted boxis an entity defined
by its shape idsid, shift offsett, and sizesl. Then, a shape is defined as the union
of shifted boxes sharing the same shape id. Anobject is an entity defined by its unique
object identifieroid, shape idsid and originx.
Two objectsOi and objectOj areequalwith respect to a set of dimensions depicted by
DIMS if and only if, for all shifted boxsi associated withOi there exists a shifted boxsj
such that, for all dimensionsd ∈ DIMS, (1) the origins ofsi andsj coincide and, (2) the
ends ofsi andsj also coincide.

Example

2, {0, 1},
〈

oid− 1 sid− 2 x− 〈4, 1〉 ,
oid− 2 sid− 2 x− 〈4, 1〉 ,
oid− 3 sid− 2 x− 〈4, 1〉

〉

,

〈

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 ,
sid− 2 t− 〈0, 0〉 l− 〈1, 1〉 ,
sid− 2 t− 〈1, 0〉 l− 〈1, 3〉 ,
sid− 2 t− 〈0, 2〉 l− 〈1, 1〉 ,
sid− 3 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 3 t− 〈0, 1〉 l− 〈1, 1〉 ,
sid− 3 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 4 t− 〈0, 0〉 l− 〈1, 1〉

〉

Figure5.267shows the objects of the example. Since these objects coincide exactly the
equal sboxes constraint holds.

1

2

2

1

S1

3 4

S2 S3

5

3

O1

O2

O3

S4

(A) Possible shapes

(D) Three objects which exactly coincide

4

Figure 5.267: The three mutually coinciding objects of the example

Typical |OBJECTS| > 1

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

1008 LOGIC

Symmetries • Items ofOBJECTS arepermutable.

• Items ofSBOXES arepermutable.

• Items ofOBJECTS.x, SBOXES.t andSBOXES.l arepermutable(same permutation
used).

Arg. properties
Suffix-contractiblewrt. OBJECTS.

Remark One of the eight relations of theRegion Connection Calculus[318]. The constraint
equal sboxes is a restriction of the original relation since it requires to have exactly the
same partition between the different objects.

See also common keyword: contains sboxes, coveredby sboxes,
covers sboxes, disjoint sboxes, inside sboxes, meet sboxes (rcc8),
non overlap sboxes (geometrical constraint,logic), overlap sboxes (rcc8).

Keywords constraint type: logic.

geometry:geometrical constraint, rcc8.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20070622 1009

Logic
• origin(O1, S1, D)

def
= O1.x(D) + S1.t(D)

• end(O1, S1, D)
def
= O1.x(D) + S1.t(D) + S1.l(D)

• equal sboxes(Dims, O1, S1, O2, S2)
def
=

∀D ∈ Dims

∧

origin(O1, S1, D) =
origin(O2, S2, D)

,

end(O1, S1, D) =
end(O2, S2, D)

• equal objects(Dims, O1, O2)
def
=

∀S1 ∈ sboxes([O1.sid])
∃S2 ∈ sboxes

([

O2.sid
])

equal sboxes

Dims,
O1,
S1,
O2,
S2

• all equal(Dims, OIDS)
def
=

∀O1 ∈ objects(OIDS)
∀O2 ∈ objects(OIDS)

O1.oid =
O2.oid− 1

⇒

equal objects

Dims,
O1,
O2

• all equal(DIMENSIONS, OIDS)

Logic
Explicit description in terms of first order logic formulae of the meaning of the constraint.

1010 AUTOMATON

5.141 equivalent

DESCRIPTION LINKS AUTOMATON

Origin Logic

Constraint equivalent(VAR, VARIABLES)

Synonym eq.

Arguments VAR : dvar

VARIABLES : collection(var−dvar)

Restrictions VAR ≥ 0
VAR ≤ 1
|VARIABLES| = 2
required(VARIABLES, var)
VARIABLES.var ≥ 0
VARIABLES.var ≤ 1

Purpose
Let VARIABLES be a collection of0-1 variablesVAR1, VAR2. EnforceVAR = (VAR1 ⇔
VAR2).

Example (1, 〈0, 0〉)
(0, 〈0, 1〉)
(0, 〈1, 0〉)
(1, 〈1, 1〉)

Symmetries • Items ofVARIABLES arepermutable.

• All occurrences of0 in VAR and inVARIABLES.var can be set to1.

Arg. properties
Functional dependency: VAR determined byVARIABLES.

Systems ifOnlyIf in Choco, rel in Gecode, eqbool in JaCoP, #<=> in SICStus.

See also common keyword:and, imply, nand, nor, or, xor (Boolean constraint).

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint arguments:pure functional dependency.

constraint network structure: Berge-acyclic constraint network.

constraint type: Boolean constraint.

filtering: arc-consistency.

modelling: functional dependency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelBool.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/EqBool.html
http://www.jacop.eu/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20051226 1011

Automaton Figure5.268depicts the automaton associated with theequivalent constraint. To the
first argumentVAR of theequivalent constraint corresponds the first signature variable.
To each variableVARi of the second argumentVARIABLES of theequivalent constraint
corresponds the next signature variable. There is no signature constraint.

j

VAR =0
2

VAR =1

1
VAR =1

1
VAR =1

1
VAR =0

1
VAR =0

s

t

k l

VAR=0 VAR=1

i

2

Figure 5.268: Automaton of theequivalent constraint

VAR
1

Q1Q =s0

VAR
2

Q =t3Q2

VAR

Figure 5.269: Hypergraph of the reformulation corresponding to the automaton of the
equivalent constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1012 NARC,SELF ; AUTOMATON

5.142 exactly

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromatleast andatmost.

Constraint exactly(N, VARIABLES, VALUE)

Synonym count.

Arguments N : int

VARIABLES : collection(var−dvar)
VALUE : int

Restrictions N ≥ 0
N ≤ |VARIABLES|
required(VARIABLES, var)

Purpose ExactlyN variables of theVARIABLES collection are assigned valueVALUE.

Example (2, 〈4, 2, 4, 5〉 , 4)

The exactly constraint holds since exactlyN = 2 variables of theVARIABLES =
〈4, 2, 4, 5〉 collection are assigned valueVALUE = 4.

Typical N > 0
N < |VARIABLES|
|VARIABLES| > 1

Symmetries • Items ofVARIABLES arepermutable.

• An occurrence of a value ofVARIABLES.var that is different fromVALUE can be
replacedby any other value that is also different fromVALUE.

Arg. properties
• Functional dependency: N determined byVARIABLES andVALUE.

• Aggregate: N(+), VARIABLES(union), VALUE(id).

Systems occurence in Choco, count in Gecode, exactly in Gecode, count in JaCoP,
exactly in MiniZinc , count in SICStus.

See also generalisation:among (constant replaced byvariable andvalue replaced bylist of
values).

implies: atleast (= N replaced by≥ N), atmost (= N replaced by≤ N).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntCount.html
http://www.gecode.org/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelMiniModelIntAlias.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/Count.html
http://www.jacop.eu/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#exactly
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

20040807 1013

Keywords characteristic of a constraint: automaton, automaton with counters.

constraint arguments:pure functional dependency.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: value constraint, counting constraint.

filtering: arc-consistency.

modelling: functional dependency.

Keywords
Related keywords grouped by meta-keywords.

1014 NARC,SELF ; AUTOMATON

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUE

Graph property(ies) NARC= N

Graph model Since each arc constraint involves only one vertex (VALUE is fixed), we employ theSELF
arc generator in order to produce a graph with a single loop on each vertex.

Parts (A) and (B) of Figure5.270respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the loops of the final
graph are stressed in bold. Theexactly constraint holds since exactly two variables are
assigned value4.

VARIABLES

1234

NARC=2

1:4 3:4

(A) (B)

Figure 5.270: Initial and final graph of theexactly constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20040807 1015

Automaton Figure 5.271 depicts the automaton associated with theexactly constraint. To each
variableVARi of the collectionVARIABLES corresponds a0-1 signature variableSi. The
following signature constraint linksVARi andSi: VARi = VALUE ⇔ Si.

N=C

{C=0}

VAR =VALUE,
i

{C=C+1}
VAR <>VALUE

i
s:

Figure 5.271: Automaton of theexactly constraint

n

C =N1C

1
VAR

1S

1Q

2
VAR

2S

n
VAR

nS

0Q =s

0C =0

Q =s

n

Figure 5.272: Hypergraph of the reformulation corresponding to the automaton of the
exactly constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1016 PREDEFINED

5.143 gcd

DESCRIPTION LINKS

Origin [126]

Constraint gcd(X, Y, Z)

Arguments X : dvar

Y : dvar

Z : dvar

Restrictions X > 0
Y > 0
Z > 0

Purpose Enforce the fact thatZ is the greatest common divisor ofX andY.

Example (24, 60, 12)

Thegcd constraint holds since12 is the greatest common divisor of24 and60.

Typical X > 1
Y > 1

Symmetry Arguments arepermutablew.r.t. permutation(X, Y) (Z).

Arg. properties
Functional dependency: X determined byY andZ.

Algorithm In [126] a filtering algorithm for thegcd constraint was automatically derived from the
Euclidian algorithm by using constructive disjunction andabstract interpretationin order
to approximate the behaviour of the while loop of the Euclidian algorithm.

See also common keyword:power (abstract interpretation).

Keywords constraint arguments: ternary constraint, pure functional dependency.

constraint type: arithmetic constraint, predefined constraint.

filtering: abstract interpretation.

modelling: functional dependency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20070930 1017

1018 PREDEFINED

5.144 geost

DESCRIPTION LINKS

Origin Generalisation ofdiffn.

Constraint geost(K, OBJECTS, SBOXES)

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)

Arguments K : int

OBJECTS : collection(oid−int, sid−dvar, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− POSITIVES)

Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
K > 0
required(OBJECTS, [oid, sid, x])
distinct(OBJECTS, oid)
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
|SBOXES| ≥ 1
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
do not overlap(SBOXES)

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

20060919 1019

Purpose

Holds if, for each pair of objects(Oi, Oj), i < j, Oi andOj do not overlap with respect
to a set of dimensions{1, 2, . . . , K}. Oi andOj are objects that take a shape among a set
of shapes. Eachshapeis defined as a finite set of shifted boxes, where each shifted box
is described by a box in aK-dimensional space at a given offset (from the origin of the
shape) with given sizes. More precisely, ashifted boxis an entity defined by its shape
id sid, shift offsett, and sizesl. Then, a shape is defined as the union of shifted boxes
sharing the same shape id. Anobject is an entity defined by its unique object identifier
oid, shape idsid and originx.
An object Oi does not overlapan objectOj with respect to the set of dimensions
{1, 2, . . . , K} if and only if for all shifted boxsi associated withOi and for all shifted
boxsj associated withOj there exists a dimensiond ∈ {1, 2, . . . , K} such that the start
of si in dimensiond is greater than or equal to the end ofsj in dimensiond, or the start
of sj in dimensiond is greater than or equal to the end ofsi in dimensiond.

Example

2,

〈

oid− 1 sid− 1 x− 〈1, 2〉 ,
oid− 2 sid− 5 x− 〈2, 1〉 ,
oid− 3 sid− 8 x− 〈4, 1〉

〉

,

〈

sid− 1 t− 〈0, 0〉 l− 〈2, 1〉 ,
sid− 1 t− 〈0, 1〉 l− 〈1, 2〉 ,
sid− 1 t− 〈1, 2〉 l− 〈3, 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 2 t− 〈0, 1〉 l− 〈1, 3〉 ,
sid− 2 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 3 t− 〈0, 0〉 l− 〈2, 1〉 ,
sid− 3 t− 〈1, 1〉 l− 〈1, 2〉 ,
sid− 3 t− 〈−2, 2〉 l− 〈3, 1〉 ,
sid− 4 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 4 t− 〈0, 1〉 l− 〈1, 1〉 ,
sid− 4 t− 〈2, 1〉 l− 〈1, 3〉 ,
sid− 5 t− 〈0, 0〉 l− 〈2, 1〉 ,
sid− 5 t− 〈1, 1〉 l− 〈1, 1〉 ,
sid− 5 t− 〈0, 2〉 l− 〈2, 1〉 ,
sid− 6 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 6 t− 〈0, 1〉 l− 〈1, 1〉 ,
sid− 6 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 7 t− 〈0, 0〉 l− 〈3, 2〉 ,
sid− 8 t− 〈0, 0〉 l− 〈2, 3〉

〉

Parts (A), (B) and (C) of Figure5.273 respectively represent the potential shapes
associated with the three objects of the example. Part (D) shows the positionof the three
objects of the example, where the first, second and third objects were respectively assigned
shapes1, 5 and8. The coordinates of the leftmost lowest corner of each object are stressed
in bold. Thegeost constraint holds since the three objects do not overlap (i.e., see part (D)
if Figure5.273).

Typical |OBJECTS| > 1

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

1020 PREDEFINED

1

1 4

2

3

4

532

S1

S8

S5

A possible placement where

object 2 is assigned shape S5 and

object 1 is assigned shape S1 and

(D)

object 3 is assigned shape S8

S2 S4

S1 S3

S6

S5

S7

P
ot

en
tia

l s
ha

pe
s

fo
r

th
e

fir
st

 o
bj

ec
t

(A) (B)P
ot

en
tia

l s
ha

pe
s

fo
r

th
e

se
co

nd
 o

bj
ec

t

P
ot

en
tia

l s
ha

pe
s

fo
r

th
e

th
ird

 o
bj

ec
t

(C)

S8

Figure 5.273: The three objects of the example

20060919 1021

Symmetries • Items ofOBJECTS arepermutable.

• Items ofSBOXES arepermutable.

• Items ofOBJECTS.x, SBOXES.t andSBOXES.l arepermutable(same permutation
used).

• SBOXES.l.v can bedecreasedto any value≥ 1.

Usage Thegeost constraint allows to model directly a large number of placement problems.

Remark In the two-dimensional case, when rectangles heights are all equal to one and when rect-
angles starts in the first dimension are all fixed, thegeost constraint can be rewritten as
a k alldifferent constraint corresponding to a system ofalldifferent constraints
derived from the maximum cliques of the corresponding interval graph.

Algorithm A sweep-basedfiltering algorithm for this constraint is described in [36]. Unlike previous
sweep filtering algorithms which move a line for finding a feasible position forthe origin of
an object, this algorithm performs a recursive traversal of the multidimensional placement
space. It explores all points of the domain of the origin of the object under focus, one by
one, in increasing lexicographic order, until a point is found that is not infeasible for any
non-overlapping constraints. To make the search efficient, instead of moving each time
to the successor point, the search is arranged so that it skips points that are known to be
infeasible for some non-overlapping constraint.

Within the context of breaking symmetries six different ways of integratingwithin geost

a chain of lexicographical ordering constraints likelex chain less for enforcing a lexi-
cographic ordering on the origin coordinates of identical objects, are described in [2].

Systems geost in Choco, geost in JaCoP, geost in SICStus.

See also common keyword:calendar (multi-site employee scheduling with calendar constraints,
scheduling with machine choice, calendars and preemption),
diffn (geometrical constraint,non-overlapping),
lex chain less, lex chain lesseq (symmetry),
non overlap sboxes (geometrical constraint,non-overlapping),
visible (geometrical constraint,sweep).

generalisation: geost time (temporal dimension added to geometrical

dimensions).

specialisation:k alldifferent (when rectangles heights are all equal to1 and rectan-
gles starts in the first dimension are all fixed), lex alldifferent (object replaced by
vector).

Keywords application area: floor planning problem.

combinatorial object: pentomino.

constraint arguments:business rules.

constraint type: logic, decomposition, timetabling constraint, predefined constraint,
relaxation.

filtering: sweep.

geometry:geometrical constraint, non-overlapping.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://jacopapi.osolpro.com/JaCoP/constraints/geost/Geost.html
http://www.jacop.eu/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1022 PREDEFINED

heuristics: heuristics for two-dimensional rectangle placement problems.

modelling: multi-site employee scheduling with calendar constraints,
scheduling with machine choice, calendars and preemption, disjunction,
assignment dimension, assigning and scheduling tasks that run in parallel,
assignment to the same set of values, relaxation dimension.

modelling exercises: multi-site employee scheduling with calendar constraints,
scheduling with machine choice, calendars and preemption,
assigning and scheduling tasks that run in parallel, assignment to the same set of values,
relaxation dimension.

problems: strip packing, two-dimensional orthogonal packing, pallet loading.

puzzles: squared squares, packing almost squares, Partridge,
pentomino, Shikaku, smallest square for packing consecutive dominoes,
smallest square for packing rectangles with distinct sizes, smallest rectangle area,
Conway packing problem.

symmetry: symmetry.

20060919 1023

1024 PREDEFINED

5.145 geosttime

DESCRIPTION LINKS

Origin Generalisation ofdiffn.

Constraint geost time(K, DIMS, OBJECTS, SBOXES)

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)

Arguments K : int

DIMS : sint

OBJECTS : collection

oid−int,
sid−dvar,
x− VARIABLES,
start−dvar,
duration−dvar,
end−dvar

SBOXES : collection(sid−int, t− INTEGERS, l− POSITIVES)

Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
K ≥ 0
DIMS ≥ 0
DIMS < K

distinct(OBJECTS, oid)
required(OBJECTS, [oid, sid, x])
require at least(2, OBJECTS, [start, duration, end])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
OBJECTS.duration ≥ 0
|SBOXES| ≥ 1
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
do not overlap(SBOXES)

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

20060919 1025

Purpose

Holds if (1) the difference between the end in time and the start in time of eachobject is
equal to its duration in time, and if (2) for each pair of objects(Oi, Oj), i < j, Oi and
Oj do not overlap with respect to a set of dimensions depicted byDIMS as well as to the
time axis.Oi andOj are objects that take a shape among a set of shapes. Eachshapeis
defined as a finite set of shifted boxes, where each shifted box is described by a box in
a K-dimensional space at a given offset (from the origin of the shape) with given sizes.
More precisely, ashifted boxis an entity defined by its shape idsid, shift offsett, and
sizesl. Then, a shape is defined as the union of shifted boxes sharing the sameshape
id. An object is an entity defined by its unique object identifieroid, shape idsid and
origin x.
An objectOi does not overlapan objectOj with respect to a set of dimensions depicted
by DIMS as well as to the time axis if and only if:

• The start in time ofOi is greater than or equal to the end in time ofOj .

• The start in time ofOj is greater than or equal to the end in time ofOi.

• For all shifted boxsi associated withOi and for all shifted boxsj associated
with Oj there exists a dimensiond ∈ DIMS such that the start ofsi in dimension
d is greater than or equal to the end ofsj in dimensiond, or the start ofsj in
dimensiond is greater than or equal to the end ofsi in dimensiond.

Example

2, {0, 1},
〈

oid− 1 sid− 1 x− 〈1, 2〉 start− 0 duration− 1 end− 1,
oid− 2 sid− 5 x− 〈2, 1〉 start− 0 duration− 1 end− 1,
oid− 3 sid− 8 x− 〈4, 1〉 start− 0 duration− 1 end− 1

〉

,

〈

sid− 1 t− 〈0, 0〉 l− 〈2, 1〉 ,
sid− 1 t− 〈0, 1〉 l− 〈1, 2〉 ,
sid− 1 t− 〈1, 2〉 l− 〈3, 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 2 t− 〈0, 1〉 l− 〈1, 3〉 ,
sid− 2 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 3 t− 〈0, 0〉 l− 〈2, 1〉 ,
sid− 3 t− 〈1, 1〉 l− 〈1, 2〉 ,
sid− 3 t− 〈−2, 2〉 l− 〈3, 1〉 ,
sid− 4 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 4 t− 〈0, 1〉 l− 〈1, 1〉 ,
sid− 4 t− 〈2, 1〉 l− 〈1, 3〉 ,
sid− 5 t− 〈0, 0〉 l− 〈2, 1〉 ,
sid− 5 t− 〈1, 1〉 l− 〈1, 1〉 ,
sid− 5 t− 〈0, 2〉 l− 〈2, 1〉 ,
sid− 6 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 6 t− 〈0, 1〉 l− 〈1, 1〉 ,
sid− 6 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 7 t− 〈0, 0〉 l− 〈3, 2〉 ,
sid− 8 t− 〈0, 0〉 l− 〈2, 3〉

〉

Parts (A), (B) and (C) of Figure5.274 respectively represent the potential shapes
associated with the three objects of the example. Part (D) shows the positionof the three
objects of the example, where the first, second and third objects were respectively assigned
shapes1, 5 and8. The coordinates of the leftmost lowest corner of each object are stressed

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

1026 PREDEFINED

in bold. Thegeost time constraint holds since the three objects do not overlap: even if
the time intervals associated with each object overlap (i.e., they are in factidentical), their
corresponding shapes do not overlap (i.e., see part (D) if Figure5.274).

1

1 4

2

3

4

532

S1

S8

S5

A possible placement where

object 2 is assigned shape S5 and

object 1 is assigned shape S1 and

(D)

object 3 is assigned shape S8

S2 S4

S1 S3

S6

S5

S7

P
ot

en
tia

l s
ha

pe
s

fo
r

th
e

fir
st

 o
bj

ec
t

(A) (B)P
ot

en
tia

l s
ha

pe
s

fo
r

th
e

se
co

nd
 o

bj
ec

t

P
ot

en
tia

l s
ha

pe
s

fo
r

th
e

th
ird

 o
bj

ec
t

(C)

S8

Figure 5.274: The three objects of the example

Typical |OBJECTS| > 1

Symmetries • Items ofOBJECTS arepermutable.

• Items ofSBOXES arepermutable.

• Items ofOBJECTS.x, SBOXES.t andSBOXES.l arepermutable(same permutation
used).

• SBOXES.l.v can bedecreasedto any value≥ 1.

• One and the same constant can beaddedto thestart andend attributes of all
items ofOBJECTS.

Usage The geost time constraint allows to model directly a large number of placement prob-
lems. Figure5.275sketches ten typical use of thegeost time constraint:

• The first case (A) corresponds to a non-overlapping constraint among three segments.

• The second, third and fourth cases (B,C,D) correspond to a non-overlapping con-
straint between rectangles where (B) and (C) are special cases where the sizes of all
rectangles in the second dimension are equal to1; this can be interpreted as ama-
chine assignment problemwhere each rectangle corresponds to a non-pre-emptive

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

20060919 1027

task that has to be placed in time and assigned to a specific machine so that notwo
tasks assigned to the same machine overlap in time. In Part (B) the durationof each
task is fixed, while in Part (C) the duration depends on the machine to which the task
is actually assigned. This dependence can be expressed by theelement constraint,
which specifies the dependence between the shape variable and the assignment vari-
able of each task.

• The fifth case (E) corresponds to a non-overlapping constraint between rectangles
where each rectangle can have two orientations. This is achieved by associating with
each rectangle two shapes of respective sizesl · h andh · l. Since their orientation is
not initially fixed, anelement lesseq constraint can be used for enforcing the three
rectangles to be included within the bounding box defined by the origin’s coordinates
1, 1 and sizes8, 3.

• The sixth case (F) corresponds to a non-overlapping constraint between more com-
plex objects where each object is described by a given set of rectangles.

• The seventh case (G) describes a rectangle placement problem whereone has to first
assign each rectangle to a strip so that all rectangles that are assigned to the same
strip do not overlap.

• The eighth case (H) corresponds to a non-overlapping constraint between paral-
lelepipeds.

• The ninth case (I) can be interpreted as a non-overlapping constraint between paral-
lelepipeds that are assigned to the same container. The first dimension corresponds
to the identifier of the container, while the next three dimensions are associated with
the position of a parallelepiped inside a container.

• Finally the tenth case (J) describes a rectangle placement problem over three consec-
utive time-slots: rectangles assigned to the same time-slot should not overlap in time.
We initially start with the three rectangles1, 2 and3. Rectangle3 is no more present
at instant2 (the arrow↓ within rectangle3 at time1 indicates that rectangle3 will
disappear at the next time-point), while rectangle4 appears at instant2 (the arrow↑
within rectangle4 at time2 denotes the fact that the rectangle4 appears at instant2).
Finally rectangle2 disappears at instant3 and is replaced by rectangle5.

Algorithm A sweep-basedfiltering algorithm for this constraint is described in [36]. Unlike previous
sweep filtering algorithms which move a line for finding a feasible position forthe origin of
an object, this algorithm performs a recursive traversal of the multidimensional placement
space. It explores all points of the domain of the origin of the object under focus, one by
one, in increasing lexicographic order, until a point is found that is not infeasible for any
non-overlapping constraints. To make the search efficient, instead of moving each time
to the successor point, the search is arranged so that it skips points that are known to be
infeasible for some non-overlapping constraint.

Systems geost in Choco, geost in JaCoP.

See also common keyword:diffn, non overlap sboxes (geometrical constraint,non-overlapping),
visible (geometrical constraint,sweep).

specialisation:geost (temporal dimension removed).

Keywords constraint type: decomposition, timetabling constraint, predefined constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://jacopapi.osolpro.com/JaCoP/constraints/geost/Geost.html
http://www.jacop.eu/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1028 PREDEFINED

(A)

(D)

(J)

(I)

(H)

(G)

(F)

(E)

2

1

(B)

(C)

3

1
3

1 2 3 4 5 7 86

1

2

3

1

2

3

1 2 3 4 5 7 86

2
1

3

2

1

1 2 3 4 5 7 86
1

2

3

1 2 3 4 5 7 86
1

2

3

31

23

2

1
6 8754321

1 3

1 2 3 4 5 7 86
1

2

3 2

1 2 3 4 5 7 86

2 31

2

3

3

2

4

time=3time=2time=1

321321321

4

3

2

1

5

4
3

2

111

321

21

3

2

1

1

3
2

132

2 3

1

5

1
3

2 5
4

3
2

154321

4

3

2

1

2

1
3

2

1
2

Figure 5.275: Ten typical examples of use of thegeost time constraint (ground in-
stances)

20060919 1029

filtering: sweep.

geometry:geometrical constraint, non-overlapping.

modelling: assignment dimension, assignment to the same set of values,
assigning and scheduling tasks that run in parallel, disjunction.

modelling exercises: assignment to the same set of values,
assigning and scheduling tasks that run in parallel.

1030 PREDEFINED

5.146 geq

DESCRIPTION LINKS

Origin Arithmetic.

Constraint geq(VAR1, VAR2)

Synonyms rel, xgteqy.

Arguments VAR1 : dvar

VAR2 : dvar

Purpose Enforce the fact that the first variable is greater than or equal to the second variable.

Example (8, 1)

Thegeq constraint holds since8 is greater than or equal to1.

Typical VAR1 > VAR2

Symmetries • VAR1 can be replaced by any value≥ VAR2.

• VAR2 can be replaced by any value≤ VAR1.

Systems geq in Choco, rel in Gecode, xgteqy in JaCoP, #>= in SICStus.

See also common keyword:neq (binary constraint,arithmetic constraint).

generalisation:geq cst (constant added).

implied by: abs value, eq, gt, sign of.

implies (if swap arguments):leq.

negation:lt.

Keywords constraint arguments:binary constraint.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/XgteqY.html
http://www.jacop.eu/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20070821 1031

1032 PREDEFINED

5.147 geqcst

DESCRIPTION LINKS

Origin Arithmetic.

Constraint geq cst(VAR1, VAR2, CST2)

Arguments VAR1 : dvar

VAR2 : dvar

CST2 : int

Purpose Enforce the fact that the first variable is greater than or equal to the sumof the second
variable and the constant.

Example (8, 1, 7)

Thegeq cst constraint holds since8 is greater than or equal to1 + 7.

Typical CST2 6= 0
VAR1 > VAR2+ CST2

Symmetries • Arguments arepermutablew.r.t. permutation(VAR1) (VAR2, CST2).

• VAR1 can be replaced by any value≥ VAR2+ CST2.

• VAR2 can be replaced by any value≤ VAR1− CST2.

• CST2 can be replaced by any value≤ VAR1− VAR2.

See also common keyword:leq cst (binary constraint,arithmetic constraint).

implied by: eq cst.

specialisation:geq (constant set to0).

Keywords constraint arguments:binary constraint.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20090912 1033

1034 NVERTEX,SELF , ∀

5.148 globalcardinality

DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHARME [278]

Constraint global cardinality(VARIABLES, VALUES)

Synonyms count, distribute, distribution, gcc, card var gcc, egcc,
extended global cardinality.

Arguments VARIABLES : collection(var−dvar)
VALUES : collection(val−int, noccurrence−dvar)

Restrictions required(VARIABLES, var)
required(VALUES, [val, noccurrence])
distinct(VALUES, val)
VALUES.noccurrence ≥ 0
VALUES.noccurrence ≤ |VARIABLES|

Purpose
Each valueVALUES[i].val (with i ∈ [1, |VALUES|]) should be taken by exactly
VALUES[i].noccurrence variables of theVARIABLES collection.

Example

〈3, 3, 8, 6〉 ,
〈

val− 3 noccurrence− 2,
val− 5 noccurrence− 0,
val− 6 noccurrence− 1

〉

The global cardinality constraint holds since values3, 5 and 6 respectively oc-
cur2, 0 and1 times within the collection〈3, 3, 8, 6〉 and since no constraint was specified
for value8.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VALUES| > 1
|VARIABLES| ≥ |VALUES|
in attr(VARIABLES, var, VALUES, val)

Symmetries • Items ofVARIABLES arepermutable.

• Items ofVALUES arepermutable.

• An occurrence of a value ofVARIABLES.var that does not belong toVALUES.val
can bereplacedby any other value that also does not belong toVALUES.val.

• All occurrences of two distinct values inVARIABLES.var or VALUES.val can be
swapped; all occurrences of a value inVARIABLES.var or VALUES.val can be
renamedto any unused value.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20030820 1035

Arg. properties
• Functional dependency: VALUES.noccurrence determined byVARIABLES and

VALUES.val.

• Contractiblewrt. VALUES.

Usage We show how to use theglobal cardinality constraint in order to model the
magic seriesproblem [390, page 155] with one singleglobal cardinality constraint.
A non-empty finite seriesS = (s0, s1, . . . , sn) is magic if and only if there aresi oc-
currences ofi in S for each integeri ranging from 0 ton. This leads to the following
model:

global cardinality

〈

var− s0, var− s1, . . . , var− sn
〉

,

〈

val− 0 noccurrence− s0,
val− 1 noccurrence− s1,

...
val− n noccurrence− sn

〉

Remark This is a generalised form of the originalglobal cardinality constraint: in the origi-
nalglobal cardinality constraint [322], one specifies for each value its minimum and
maximum number of occurrences (i.e., seeglobal cardinality low up). Here we give
for each valuev a domain variable that indicates how many time valuev is effectively
used. By setting the minimum and maximum values of this variable to the appropriate con-
stants we can express the same thing as in the originalglobal cardinality constraint.
However, as shown in themagic seriesproblem, we can also use this variable in other con-
straints. By reduction from3-SAT, Claude-Guy Quimper shows in [311] that it is NP-hard
to achievearc-consistencyfor the count variables.

A last difference with the originalglobal cardinality constraint comes from the fact
that there is no constraint on the values that are not explicitly mentioned in theVALUES

collection. In the originalglobal cardinality these values could not be assigned to the
variables of theVARIABLES collection. However allowing values that are not mentioned
in VALUES to be assigned to variables ofVARIABLES can potentially avoid mentioning a
huge number of unconstrained values in theVALUES collection, and as a side effect, pre-
vent eventually5 generating a dense graph (i.e., seeDFS-bottleneck) for the corresponding
underlyingflow model).

Within [78] the global cardinality constraint is calleddistribution. Within [330]
the global cardinality constraint is calledcard var gcc. Within [66] the
global cardinality constraint is calledegcc or rgcc. This later case corresponds to
the fact that some variables are duplicated within theVARIABLES collection.

The global cardinality constraint can be seen as a system (i.e., a conjunction) of
among constraints.

When all count variables (i.e., the variablesVALUES[i].noccurrence with
i ∈ [1, |VALUES|]) do not occur in any other constraints of the problem,
it may be operationally more efficient to replace theglobal cardinality

constraint by a global cardinality low up constraint where each count
variable VALUES[i].noccurrence is replaced by the corresponding interval
[VALUES[i].noccurrence, VALUES[i].noccurrence]. This stands for two reasons:

5 Of course one could also, while generating a flow model, detectall unconstrained values in order to
generate one single vertex in the flow model for the set of unconstrained values.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

1036 NVERTEX,SELF , ∀

• First, by using a global cardinality low up constraint rather than a
global cardinality constraint, we avoid the filtering algorithm related to the
count variables.

• Second, unlike theglobal cardinality constraint where we need to fix all its vari-
ables to getentailment, theglobal cardinality low up constraint can beentailed
before all its variables get fixed. As a result, this potentially avoid unnecessary calls
to its filtering algorithm.

An implicit necessary condition inferred by double counting with the
global cardinality constraint is depicted by the following expression:

|VARIABLES|
∑

i=1

VARIABLES[i].var =

|VALUES|
∑

i=1

VALUES[i].noccurrence · VALUES[i].val

Within [297, pages 50–51] the previous condition where terms involving identical variables
are grouped together (i.e., rule 5 of MALICE [296]) is mentioned as a crucial deduction
rule for theautorefproblem.

W.-J. van Hoeveet al. present two soft versions of theglobal cardinality constraint
in [399].

In MiniZinc (http://www.g12.cs.mu.oz.au/minizinc/) there is also adistribute
constraint where theval attribute is not necessarily initially fixed and where a same value
may occur more than once. Their is also aglobal cardinality closed constraint
where all variables must be assigned a value from theval attribute.

Algorithm A flow algorithm that handles the originalglobal cardinality constraint is described
in [322]. The two approaches that were used to designbound-consistencyalgorithms for
alldifferent were generalised for theglobal cardinality constraint. The algorithm
in [314] identifiesHall intervalsand the one in [215] exploits convexity to achieve a fast
implementation of the flow-basedarc-consistencyalgorithm. The later algorithm can also
computebound-consistencyfor the count variables [216, 213]. An improved algorithm for
achievingarc-consistencyis described in [313].

Systems globalCardinality in Choco, count in Gecode, gcc in JaCoP,
global cardinality in MiniZinc , global cardinality in SICStus.

See also common keyword:count, max nvalue, min nvalue (value constraint,counting constraint),
nvalue (counting constraint),
open global cardinality low up (assignment,counting constraint).

cost variant: global cardinality with costs (cost associated with each
variable,value pair).

implied by: global cardinality with costs (forget about cost),
same and global cardinality (conjoinsame andglobal cardinality).

part of system of constraints:among.

related: roots, sliding card skip0 (counting constraintof a set of values on maximal
sequences).

shift of concept: global cardinality no loop (assignment of avariable to its posi-
tion is ignored), ordered global cardinality (restrictions are done on nested sets of
values, all starting from first value), symmetric cardinality, symmetric gcc.

http://www.g12.cs.mu.oz.au/minizinc/

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntCount.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/GCC.html
http://www.jacop.eu/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#global_cardinality
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

20030820 1037

soft variant: open global cardinality (a set variable defines the set of variables
that are actually considered).

specialisation: alldifferent (each value should occur at most
once), cardinality atleast, cardinality atmost (individual
count variable for each value replaced by single count variable),
cardinality atmost partition (individual count variable for each value re-
placed by singlecount variable andvariable ∈ partition replaced byvariable),
global cardinality low up (variable replaced byfixed interval).

system of constraints:colored matrix (oneglobal cardinality constraint for each
row and eachcolumn of amatrix of variables).

uses in its reformulation: tree range, tree resource.

Keywords application area: assignment.

characteristic of a constraint: core, automaton, automaton with array of counters.

complexity: 3-SAT.

constraint arguments:pure functional dependency.

constraint type: value constraint, counting constraint, system of constraints.

filtering: Hall interval, bound-consistency, flow, duplicated variables, DFS-bottleneck.

modelling: functional dependency.

modelling exercises:magic series.

puzzles:magic series, autoref.

Keywords
Related keywords grouped by meta-keywords.

1038 NVERTEX,SELF , ∀

For all items ofVALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUES.val

Graph property(ies) NVERTEX= VALUES.noccurrence

Graph model Since we want to express one unary constraint for each value we use the “For all items of
VALUES” iterator. Part (A) of Figure5.276shows the initial graphs associated with each
value3, 5 and6 of theVALUES collection of theExample slot. Part (B) of Figure5.276
shows the two corresponding final graphs respectively associated withvalues3 and6 that
are both assigned to the variables of theVARIABLES collection (since value5 is not assigned
to any variable of theVARIABLES collection the final graph associated with value5 is
empty). Since we use theNVERTEX graph property, the vertices of the final graphs are
stressed in bold.

VARIABLES

1234

3:NVERTEX=2, 5:NVERTEX=0, 6:NVERTEX=1

VALUES:3 VALUES:6

1:32:3 4:6

(A) (B)

Figure 5.276: Initial and final graph of theglobal cardinality constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1039

Automaton Figure5.277depicts the automaton associated with theglobal cardinality constraint.
To each item of the collectionVARIABLES corresponds a signature variableSi that is equal
to 0. To each item of the collectionVALUES corresponds a signature variableSi+|VARIABLES|

that is equal to1.

s

t:
arith(C,=,0)

i i i{c[VAL]=c[VAL]−NOCCURRENCE }
1,

i i{c[VAR]=c[VAR]+1}
0,

1,
{c[VAL]=c[VAL]−NOCCURRENCE }i i i

{C[_]=0}

Figure 5.277: Automaton of theglobal cardinality constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1040 NVERTEX,SELF , ∀

5.149 globalcardinality low up

DESCRIPTION LINKS GRAPH

Origin Used for definingsliding distribution.

Constraint global cardinality low up(VARIABLES, VALUES)

Synonyms gcc low up, gcc.

Arguments VARIABLES : collection(var−dvar)
VALUES : collection(val−int, omin−int, omax−int)

Restrictions required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, omin, omax])
distinct(VALUES, val)
VALUES.omin ≥ 0
VALUES.omax ≤ |VARIABLES|
VALUES.omin ≤ VALUES.omax

Purpose
Each valueVALUES[i].val (1 ≤ i ≤ |VALUES|) should be taken by at least
VALUES[i].omin and at mostVALUES[i].omax variables of theVARIABLES collection.

Example

〈3, 3, 8, 6〉 ,
〈

val− 3 omin− 2 omax− 3,
val− 5 omin− 0 omax− 1,
val− 6 omin− 1 omax− 2

〉

The global cardinality low up constraint holds since values3, 5 and 6 are re-
spectively used2 (2 ≤ 2 ≤ 3), 0 (0 ≤ 0 ≤ 1) and1 (1 ≤ 1 ≤ 2) times within the
collection〈3, 3, 8, 6〉 and since no constraint was specified for value8.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VALUES| > 1
VALUES.omin ≤ |VARIABLES|
VALUES.omax > 0
VALUES.omax < |VARIABLES|
|VARIABLES| > |VALUES|
in attr(VARIABLES, var, VALUES, val)

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20031008 1041

Symmetries • Items ofVARIABLES arepermutable.

• An occurrence of a value ofVARIABLES.var that does not belong toVALUES.val
can bereplacedby any other value that also does not belong toVALUES.val.

• Items ofVALUES arepermutable.

• VALUES.omin can bedecreasedto any value≥ 0.

• VALUES.omax can beincreasedto any value≤ |VARIABLES|.
• All occurrences of two distinct values inVARIABLES.var or VALUES.val can be

swapped; all occurrences of a value inVARIABLES.var or VALUES.val can be
renamedto any unused value.

Arg. properties
Contractiblewrt. VALUES.

Remark Within the context of linear programming [198, page 376] provides relaxations of the
global cardinality low up constraint.

In MiniZinc (http://www.g12.cs.mu.oz.au/minizinc/) there is also a
global cardinality low up closed constraint where all variables must be as-
signed a value from theval attribute.

Algorithm A filtering algorithm achievingarc-consistencyfor the global cardinality low up

constraint is given in [322].

The global cardinality low up constraint isentailedif and only if for each valuev
equal toVALUES[i].val (with 1 ≤ i ≤ |VALUES|) the following two conditions hold:

1. The number of variables of theVARIABLES collection assigned valuev is greater
than or equal toVALUES[i].omin.

2. The number of variables of theVARIABLES collection that can potentially be assigned
valuev is less than or equal toVALUES[i].omax.

Reformulation A reformulation of theglobal cardinality low up, involving linear constraints,
preserving bound-consistencywas introduced in [67]. For each potential in-
terval [l, u] of consecutive values this model uses|VARIABLES| 0-1 variables
B1,l,u, B2,l,u, . . . , B|VARIABLES|,l,u for modelling the fact that each variable of the collec-
tion VARIABLES is assigned a value within interval[l, u] (i.e., ∀i ∈ [1, |VARIABLES|] :
Bi,l,u ⇔ l ≤ VARIABLES[i].var ∧ VARIABLES[i].var ≤ u), as well as one domain vari-
ableCl,u for counting how many values of[l, u] are assigned to variables ofVARIABLES
(i.e. Cl,u = B1,l,u + B2,l,u + . . . + B|VARIABLES|,l,u). The lower and upper bounds of
variableCl,u are respectively initially set with respect to the minimum and maximum
number of possible occurrences of the values of interval[l, u]. Finally, assuming thats
is the smallest value that can be assigned to the variables ofVARIABLES, the constraint
Cs,u = Cs,k + Ck+1,u is stated for eachk ∈ [s, u− 1].

Systems globalCardinality in Choco, global cardinality low up in MiniZinc .

Used in sliding distribution.

See also common keyword:open global cardinality (assignment,counting constraint).

generalisation:global cardinality (fixed interval replaced byvariable).

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.g12.cs.mu.oz.au/minizinc/

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#global_cardinality_low_up
http://www.g12.cs.mu.oz.au/minizinc/

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

1042 NVERTEX,SELF , ∀

implied by: increasing global cardinality (a global cardinality low up con-
straint where thevariables are increasing), same and global cardinality low up.

related: ordered global cardinality (restrictions are done on nested sets of values,
all starting from first value).

shift of concept: global cardinality low up no loop (assignment of avariable to
its position is ignored).

soft variant: open global cardinality low up (a set variable defines the set of
variables that are actually considered).

specialisation:alldifferent (each value should occur at most once).

system of constraints: sliding distribution (one global cardinality low up

constraint for each sliding sequence ofSEQ consecutivevariables).

Keywords application area: assignment.

constraint type: value constraint, counting constraint.

filtering: flow, arc-consistency, bound-consistency, DFS-bottleneck, entailment.

Keywords
Related keywords grouped by meta-keywords.

20031008 1043

For all items ofVALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUES.val

Graph property(ies) • NVERTEX≥ VALUES.omin
• NVERTEX≤ VALUES.omax

Graph model Since we want to express one unary constraint for each value we use the “For all items of
VALUES” iterator. Part (A) of Figure5.278shows the initial graphs associated with each
value3, 5 and6 of theVALUES collection of theExample slot. Part (B) of Figure5.278
shows the two corresponding final graphs respectively associated withvalues3 and6 that
are both assigned to the variables of theVARIABLES collection (since value5 is not assigned
to any variable of theVARIABLES collection the final graph associated with value5 is
empty). Since we use theNVERTEX graph property, the vertices of the final graphs are
stressed in bold.

VARIABLES

1234

3:NVERTEX=2, 5:NVERTEX=0, 6:NVERTEX=1

VALUES:3 VALUES:6

1:32:3 4:6

(A) (B)

Figure 5.278: Initial and final graph of theglobal cardinality low up constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1044 NVERTEX,SELF , ∀;NARC,SELF

5.150 globalcardinality low up no loop

DESCRIPTION LINKS GRAPH

Origin Derived fromglobal cardinality low up andtree.

Constraint global cardinality low up no loop

MINLOOP,
MAXLOOP,
VARIABLES,
VALUES

Synonym gcc low up no loop.

Arguments MINLOOP : int

MAXLOOP : int

VARIABLES : collection(var−dvar)
VALUES : collection(val−int, omin−int, omax−int)

Restrictions MINLOOP ≥ 0
MINLOOP ≤ MAXLOOP

MAXLOOP ≤ |VARIABLES|
required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, omin, omax])
distinct(VALUES, val)
VALUES.omin ≥ 0
VALUES.omax ≤ |VARIABLES|
VALUES.omin ≤ VALUES.omax

Purpose

VALUES[i].omin (1 ≤ i ≤ |VALUES|) is less than or equal to the number of vari-
ablesVARIABLES[j].var (j 6= i, 1 ≤ j ≤ |VARIABLES|) that are assigned value
VALUES[i].val.
VALUES[i].omax (1 ≤ i ≤ |VALUES|) is greater than or equal to the number of vari-
ablesVARIABLES[j].var (j 6= i, 1 ≤ j ≤ |VARIABLES|) that are assigned value
VALUES[i].val.
The number of assignments of the formVARIABLES[i].var = i (i ∈ [1, |VARIABLES|])
is greater than or equal toMINLOOP and less than or equal toMAXLOOP.

Example

1, 1, 〈1, 1, 8, 6〉 ,
〈

val− 1 omin− 1 omax− 1,
val− 5 omin− 0 omax− 0,
val− 6 omin− 1 omax− 2

〉

Theglobal cardinality low up no loop constraint holds since:

• Values 1, 5 and 6 are respectively assigned to the set of variables
{VARIABLES[2].var} (i.e., omin = 1 ≤ 1 ≤ omax = 1), {} (i.e., omin = 0 ≤

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20051218 1045

0 ≤ omax = 0) and{VARIABLES[4].var} (i.e., omin = 1 ≤ 1 ≤ omax = 2).
Note that, due to the definition of the constraint, the fact thatVARIABLES[1].var is
assigned to1 is not counted.

• In addition the number of assignments of the formVARIABLES[i].var = i (i ∈ [1, 4])
is greater than or equal toMINLOOP = 1 and less than or equal toMAXLOOP = 1.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VALUES| > 1
VALUES.omin ≤ |VARIABLES|
VALUES.omax > 0
VALUES.omax < |VARIABLES|
|VARIABLES| > |VALUES|

Symmetries • Items ofVALUES arepermutable.

• VALUES.omin can bedecreasedto any value≥ 0.

• VALUES.omax can beincreasedto any value≤ |VARIABLES|.

Usage Within the context of thetree constraint theglobal cardinality low up no loop

constraint allows to model a minimum and maximum degree constraint on each vertex
of our trees.

Algorithm The flow algorithm that handles the originalglobal cardinality constraint [322] can
be adapted to the context of theglobal cardinality low up no loop constraint. This
is done by creating an extravaluenode representing the loops corresponding to the roots
of the trees.

See also generalisation: global cardinality no loop (fixed interval replaced by
variable).

implied by: same and global cardinality low up.

related: tree (graph partitioning by a set of trees with degree restrictions).

root concept:global cardinality low up (assignment of avariable to its position is
ignored).

Keywords constraint type: value constraint.

filtering: flow.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1046 NVERTEX,SELF , ∀;NARC,SELF

For all items ofVALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) • variables.var = VALUES.val
• variables.key 6= VALUES.val

Graph property(ies) • NVERTEX≥ VALUES.omin
• NVERTEX≤ VALUES.omax

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = variables.key

Graph property(ies) • NARC≥ MINLOOP

• NARC≤ MAXLOOP

Graph model Since, within the context of the first graph constraint, we want to expressone unary con-
straint for each value we use the “For all items ofVALUES” iterator. Part (A) of Figure5.279
shows the initial graphs associated with each value1, 5 and6 of theVALUES collection of
theExample slot. Part (B) of Figure5.279shows the two corresponding final graphs re-
spectively associated with values1 and6 that are both assigned to the variables of the
VARIABLES collection (since value5 is not assigned to any variable of theVARIABLES col-
lection the final graph associated with value5 is empty). Since we use theNVERTEX

graph property, the vertices of the final graphs are stressed in bold.

VARIABLES

1234

1:NVERTEX=1, 5:NVERTEX=0, 6:NVERTEX=1

VALUES:1 VALUES:6

2:1 4:6

(A) (B)

Figure 5.279: Initial and final graph of theglobal cardinality low up no loop

constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20051218 1047

1048 NVERTEX,SELF , ∀;NARC,SELF

5.151 globalcardinality no loop

DESCRIPTION LINKS GRAPH

Origin Derived fromglobal cardinality andtree.

Constraint global cardinality no loop(NLOOP, VARIABLES, VALUES)

Synonym gcc no loop.

Arguments NLOOP : dvar

VARIABLES : collection(var−dvar)
VALUES : collection(val−int, noccurrence−dvar)

Restrictions NLOOP ≥ 0
NLOOP ≤ |VARIABLES|
required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, noccurrence])
distinct(VALUES, val)
VALUES.noccurrence ≥ 0
VALUES.noccurrence ≤ |VARIABLES|

Purpose

VALUES[i].noccurrence (1 ≤ i ≤ |VALUES|) is equal to the number of vari-
ablesVARIABLES[j].var (j 6= i, 1 ≤ j ≤ |VARIABLES|) that are assigned value
VALUES[i].val.
The number of assignments of the formVARIABLES[i].var = i (i ∈ [1, |VARIABLES|])
is equal toNLOOP.

Example

1, 〈1, 1, 8, 6〉 ,
〈

val− 1 noccurrence− 1,
val− 5 noccurrence− 0,
val− 6 noccurrence− 1

〉

Theglobal cardinality no loop constraint holds since:

• Values 1, 5 and 6 are respectively assigned to the set of variables
{VARIABLES[2].var} (i.e.,1 occurrence of value1), {} (i.e., no occurrence of value
5) and{VARIABLES[4].var} (i.e., 1 occurrence of value6). Note that, due to the
definition of the constraint, the fact thatVARIABLES[1].var is assigned to1 is not
counted.

• In addition the number of assignments of the formVARIABLES[i].var = i (i ∈ [1, 4])
is equal toNLOOP = 1.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VALUES| > 1
|VARIABLES| > |VALUES|

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20051104 1049

Symmetry Items ofVALUES arepermutable.

Arg. properties
• Functional dependency: NLOOP determined byVARIABLES.

• Functional dependency: VALUES.noccurrence determined byVARIABLES and
VALUES.val.

Usage Within the context of thetree constraint theglobal cardinality no loop constraint
allows to model a minimum and maximum degree constraint on each vertex of our trees.

Algorithm The flow algorithm that handles the originalglobal cardinality constraint [322] can
be adapted to the context of theglobal cardinality no loop constraint. This is done
by creating an extravaluenode representing the loops corresponding to the roots of the
trees.

See also related: tree (graph partitioning by a set of trees with degree restrictions).

root concept: global cardinality (assignment of avariable to its position is ig-
nored).

specialisation: global cardinality low up no loop (variable replaced byfixed
interval).

Keywords constraint arguments:pure functional dependency.

constraint type: value constraint.

filtering: flow.

modelling: functional dependency.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1050 NVERTEX,SELF , ∀;NARC,SELF

For all items ofVALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) • variables.var = VALUES.val
• variables.key 6= VALUES.val

Graph property(ies) NVERTEX= VALUES.noccurrence

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = variables.key

Graph property(ies) NARC= NLOOP

Graph model Since, within the context of the first graph constraint, we want to expressone unary con-
straint for each value we use the “For all items ofVALUES” iterator. Part (A) of Figure5.280
shows the initial graphs associated with each value1, 5 and6 of theVALUES collection of
theExample slot. Part (B) of Figure5.280shows the two corresponding final graphs re-
spectively associated with values1 and6 that are both assigned to the variables of the
VARIABLES collection (since value5 is not assigned to any variable of theVARIABLES col-
lection the final graph associated with value5 is empty). Since we use theNVERTEX

graph property, the vertices of the final graphs are stressed in bold.

VARIABLES

1234

1:NVERTEX=1, 5:NVERTEX=0, 6:NVERTEX=1

VALUES:1 VALUES:6

2:1 4:6

(A) (B)

Figure 5.280: Initial and final graph of theglobal cardinality no loop constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20051104 1051

1052 NVERTEX,SELF , ∀;SUM WEIGHT ARC,PRODUCT

5.152 globalcardinality with costs

DESCRIPTION LINKS GRAPH

Origin [324]

Constraint global cardinality with costs(VARIABLES, VALUES, MATRIX, COST)

Synonyms gccc, cost gcc.

Arguments VARIABLES : collection(var−dvar)
VALUES : collection(val−int, noccurrence−dvar)
MATRIX : collection(i−int, j−int, c−int)
COST : dvar

Restrictions required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, noccurrence])
distinct(VALUES, val)
VALUES.noccurrence ≥ 0
VALUES.noccurrence ≤ |VARIABLES|
required(MATRIX, [i, j, c])
increasing seq(MATRIX, [i, j])
MATRIX.i ≥ 1
MATRIX.i ≤ |VARIABLES|
MATRIX.j ≥ 1
MATRIX.j ≤ |VALUES|
|MATRIX| = |VARIABLES| ∗ |VALUES|

Purpose

Each valueVALUES[i].val should be taken by exactlyVALUES[i].noccurrence vari-
ables of theVARIABLES collection. In addition theCOST of an assignmentis equal to
the sum of the elementary costs associated with the fact that we assign variable i of the
VARIABLES collection to thejth value of theVALUES collection. These elementary costs
are given by theMATRIX collection.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

20030820 1053

Example

〈3, 3, 3, 6〉 ,
〈

val− 3 noccurrence− 3,
val− 5 noccurrence− 0,
val− 6 noccurrence− 1

〉

,

〈

i− 1 j− 1 c− 4,
i− 1 j− 2 c− 1,
i− 1 j− 3 c− 7,
i− 2 j− 1 c− 1,
i− 2 j− 2 c− 0,
i− 2 j− 3 c− 8,
i− 3 j− 1 c− 3,
i− 3 j− 2 c− 2,
i− 3 j− 3 c− 1,
i− 4 j− 1 c− 0,
i− 4 j− 2 c− 0,
i− 4 j− 3 c− 6

〉

, 14

Theglobal cardinality with costs constraint holds since:

• Values3, 5 and6 respectively occur3, 0 and1 times within the collection〈3, 3, 3, 6〉.
• TheCOST argument corresponds to the sum of the costs respectively associatedwith

the first, second, third and fourth items of〈3, 3, 3, 6〉, namely4, 1, 3 and6.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VALUES| > 1
range(VALUES.noccurrence) > 1
range(MATRIX.c) > 1
|VARIABLES| > |VALUES|

Arg. properties
• Functional dependency: VALUES.noccurrence determined byVARIABLES.

• Functional dependency: COST determined byVARIABLES, VALUES andMATRIX.

Usage A classical utilisationof theglobal cardinality with costs constraint corresponds
to the followingassignmentproblem. We have a set of personsP as well as a set of jobs
J to perform. Each job requires a number of persons restricted to a specified interval. In
addition each personp has to be assigned to one specific job taken from a subsetJp of J .
There is a costCpj associated with the fact that personp is assigned to jobj. The previous
problem is modelled with one singleglobal cardinality with costs constraint where
the persons and the jobs respectively correspond to the items of theVARIABLES andVALUES
collection.

Theglobal cardinality with costs constraint can also be used for modelling a con-
junctionalldifferent(X1, X2, . . . , Xn) andα1 · X1 + α2 · X2 + · · · + αn · Xn = COST.
For this purpose we set the domain of thenoccurrence variables to{0, 1} and the cost
attributec of a variableXi and one of its potential valuej to αi · j. In practice this can be
used for themagic squaresand themagic hexagonproblems where all theαi are set to1.

Algorithm A filtering algorithm achieving arc-consistencyindependently on each side (i.e.,
the greater than or equal toside and theless than or equal toside) of the

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

1054 NVERTEX,SELF , ∀;SUM WEIGHT ARC,PRODUCT

global cardinality with costs constraint is described in [324, 326]. This algorithm
assumes for each value a fixed minimum and maximum number of occurrences. If we
rather have occurrence variables, theReformulation slot explains how to also obtain some
propagation from the cost variable back to the occurrence variables.

Reformulation Let n and m respectively denote the number of items of theVARIABLES
and of the VALUES collections. Let v1, v2, . . . , vm denote the values
VALUES[1].val, VALUES[2].val, . . . , VALUES[m].val. In addition let LINE i (with
i ∈ [1, n]) denote the values〈MATRIX[m · (i − 1) + 1].c, MATRIX[m · (i − 1) +
2].c, . . . , MATRIX[m · i].c〉, i.e., linei of the matrixMATRIX.

By introducing 2 · n auxiliary variables U1, U2, . . . , Un and C1, C2, . . . , Cn,
the global cardinality with costs(VARIABLES, VALUES, MATRIX, COST)
constraint can be expressed in term of the conjunction of one
global cardinality(VARIABLES, VALUES) constraint, 2 · n element constraints
and one arithmetic constraintsum ctr.

For each variableVi (with i ∈ [1, |VARIABLES|]) of the VARIABLES collection a
first element(Ui, 〈v1, v2, . . . , vm〉, Vi) constraint provides the correspondence between
the variableVi and the index of the valueUi to which it is assigned. A second
element(Ui,LINE i, Ci) links the previous indexUi to the costCi variable associated
with variableVi. Finally the total costCOST is equal to the sumC1 + C2 + · · ·+ Cn.

In the context of theExampleslot we get the following conjunction of constraints:
global cardinality(〈3, 3, 3, 6〉,

〈val− 3 noccurrence− 3,
val− 5 noccurrence− 0,
val− 6 noccurrence− 1〉),

element(1, 〈3, 5, 6〉, 3),
element(1, 〈3, 5, 6〉, 3),
element(1, 〈3, 5, 6〉, 3),
element(3, 〈3, 5, 6〉, 6),
element(1, 〈4, 1, 7〉, 4),
element(1, 〈1, 0, 8〉, 1),
element(1, 〈3, 2, 1〉, 3),
element(3, 〈0, 0, 6〉, 6),
14 = 4 + 1 + 3 + 6.

We now show how to add implied constraints that can also propagate from thecost variable
back to the occurrence variables. LetO1, O2, . . . , Om respectively denote the variables
VALUES[1].noccurrence, VALUES[2].noccurrence, . . . , VALUES[m].noccurrence.
The idea is to get for each valuevi (with i ∈ [1,m]) an idea of its minimum and maximum
contribution in the total costCOST that is linked to the number of times it is assigned
to a variables ofVARIABLES. E.g., if valuevi (with i ∈ [1,m]) is used twice, then the
corresponding minimum (respectively maximum) contribution in the total cost COST will
be at least equal to the sum of the two smallest (respectively largest) costs attached to
row i. Let Di (with i ∈ [1,m]) denotes the contribution that stems from the variables
of VARIABLES that are assigned valuevi. For each valuevi (with i ∈ [1,m]) we create
oneelement constraint for linkingOi + 1 to the corresponding minimum contribution
LOW i. The table of thatelement constraint hasn + 1 entries, where entryj (with
j ∈ [0, n]) corresponds to the sum of thejth smallest entries of rowi of the cost matrix
MATRIX. Similarly we create for each valuevi (with i ∈ [1,m]) oneelement constraint
for linking Oi + 1 to the corresponding maximum contributionUP i. The table of that

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

20030820 1055

element constraint also hasn + 1 entries, where entryj (with j ∈ [0, n]) corresponds to
the sum of thejth largest entries of rowi of the cost matrixMATRIX.

In the context of the cost matrix of theExample slot we get the following conjunction of
implied constraints:

COST = D1 +D2 +D3,
n = O1 +O2 +O3,
P1 = O1 + 1,
P2 = O2 + 1,
P3 = O3 + 1,
element(P1, 〈0, 0, 1, 4, 8〉,LOW 1),
element(P2, 〈0, 0, 0, 1, 3〉,LOW 2),
element(P3, 〈0, 1, 7, 14, 22〉,LOW 3),
element(P1, 〈0, 4, 7, 8, 8〉,UP1),
element(P2, 〈0, 2, 3, 3, 3〉,UP2),
element(P3, 〈0, 8, 15, 21, 22〉,UP3),
LOW 1 ≤ D1, D1 ≤ UP1,
LOW 2 ≤ D2, D2 ≤ UP2,
LOW 3 ≤ D3, D3 ≤ UP3.

Systems global cardinality in SICStus.

See also attached to cost variant: global cardinality (cost associated with each
variable,value pair removed).

common keyword:minimum weight alldifferent (cost filtering constraint,weighted assignment),
sum of weights of distinct values, weighted partial alldiff (weighted assignment).

implies: global cardinality.

Keywords application area: assignment.

constraint arguments:pure functional dependency.

filtering: cost filtering constraint.

heuristics: regret based heuristics, regret based heuristics in matrix problems.

modelling: cost matrix, scalar product, functional dependency.

problems: weighted assignment.

puzzles:magic square, magic hexagon.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1056 NVERTEX,SELF , ∀;SUM WEIGHT ARC,PRODUCT

For all items ofVALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUES.val

Graph property(ies) NVERTEX= VALUES.noccurrence

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) SUM WEIGHT ARC
(

MATRIX[(variables.key− 1) ∗ |VALUES|+ values.key].c
)

= COST

Graph model The first graph constraint enforces each value of theVALUES collection to be taken by a spe-
cific number of variables of theVARIABLES collection. It is identical to the graph constraint
used in theglobal cardinality constraint. The second graph constraint expresses that
the COST variable is equal to the sum of the elementary costs associated with each vari-
able-valueassignment. All these elementary costs are recorded in theMATRIX collection.
More precisely, the costcij is recorded in the attributec of the((i− 1) · |VALUES)|+ j)th

entry of theMATRIX collection. This is ensured by theincreasing restriction that enforces
the fact that the items of theMATRIX collection are sorted in lexicographically increasing
order according to attributesi andj.

Parts (A) and (B) of Figure5.281respectively show the initial and final graph associated
with the second graph constraint of theExampleslot.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1057

VARIABLES

VALUES

1

1 23

234

SUM_WEIGHT_ARC=4+1+3+6=14

1:3

1:3,3

4

2:3

1

3:3

3

4:6

3:6,1

6

(A) (B)

Figure 5.281: Initial and final graph of theglobal cardinality with costs con-
straint

1058 NCC,PATH ,LOOP ; AUTOMATON

5.153 globalcontiguity

DESCRIPTION LINKS GRAPH AUTOMATON

Origin [252]

Constraint global contiguity(VARIABLES)

Synonym contiguity.

Argument VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
VARIABLES.var ≥ 0
VARIABLES.var ≤ 1

Purpose
Enforce all variables of theVARIABLES collection to be assigned value0 or 1. In addi-
tion, all variables assigned to value1 appear contiguously.

Example (〈0, 1, 1, 0〉)

The global contiguity constraint holds since the sequence0 1 1 0 contains no
more than one group of contiguous1.

Typical |VARIABLES| > 2
range(VARIABLES.var) > 1

Symmetry Items ofVARIABLES can bereversed.

Arg. properties
Contractiblewrt. VARIABLES.

Usage The article [252] introducing this constraint refers to hardware configuration problems.

Algorithm A filtering algorithm for this constraint is described in [252].

See also common keyword:group, inflexion (sequence).

implies: consecutive values, multi global contiguity, no valley.

related: roots.

Keywords characteristic of a constraint: convex, automaton, automaton without counters,
reified automaton constraint.

combinatorial object: sequence.

constraint network structure: Berge-acyclic constraint network.

filtering: arc-consistency.

final graph structure: connected component.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 1059

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)
LOOP 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var = variables2.var
• variables1.var = 1

Graph property(ies) NCC≤ 1

Graph model Eachconnected componentof the final graph corresponds to one set of contiguous variables
that all take value1.

Parts (A) and (B) of Figure5.282respectively show the initial and final graph associated
with the Example slot. Theglobal contiguity constraint holds since the final graph
does not contain more than oneconnected component. This connected componentcorre-
sponds to2 contiguous variables that are both assigned to1.

VARIABLES

1

2

3

4

NCC=1

CC#1

2:1

3:1

(A) (B)

Figure 5.282: Initial and final graph of theglobal contiguity constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1060 NCC,PATH ,LOOP ; AUTOMATON

Automaton Figure5.283depicts the automaton associated with theglobal contiguity constraint.
To each variableVARi of the collectionVARIABLES corresponds a signature variable that is
equal toVARi. There is no signature constraint.

s

i

VAR =0i

VAR =1i

VAR =1i

VAR =0i

m

z

VAR =0

Figure 5.283: Automaton of theglobal contiguity constraint

Q =mQ1Q =s0

VAR
1 VAR

2
VAR

n

n

s

z

Figure 5.284: Hypergraph of the reformulation corresponding to the automaton of the
global contiguity constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20030820 1061

1062 MAX NSCC,CLIQUE

5.154 golomb

DESCRIPTION LINKS GRAPH

Origin Inspired by [181].

Constraint golomb(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
VARIABLES.var ≥ 0
strictly increasing(VARIABLES)

Purpose
Given a strictly increasing sequenceX1, X2, . . . , Xn, enforce all differencesXi −Xj

between two variablesXi andXj (i > j) to be distinct.

Example (〈0, 1, 4, 6〉)

Figure 5.285 gives a graphical interpretation of the solution given in the example in
term of a graph: each vertex corresponds to a value of〈0, 1, 4, 6〉, while each arc depicts a
difference between two values. Thegolomb constraint holds since one can note that these
differences1, 4, 6, 3, 5, 2 are all-distinct.

0

3

4 4

6 2

1

1

6

5

Figure 5.285: Graphical representation of the solution 0,1,4,6

Typical |VARIABLES| > 2

Symmetry One and the same constant can beaddedto thevar attribute of all items ofVARIABLES.

Arg. properties
Contractiblewrt. VARIABLES.

Usage This constraint refers to the Golomb ruler problem. We quote the definition from [359]:
“A Golomb ruler is a set of integers (marks)a1 < · · · < ak such that all the differences
ai − aj (i > j) are distinct”.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

20000128 1063

Remark Different constraints models for the Golomb ruler problem were presented in [371].

Algorithm At a first glance, one could think that, because it looks so similar to thealldifferent

constraint, we could have a perfect polynomial filtering algorithm. However this is not true
since one retrieves thesamevariable in different vertices of the graph. This leads to the fact
that one has incompatible arcs in the bipartite graph (the two classes of vertices correspond
to the pair of variables and to the fact that the difference between two pairsof variables
takes a specific value). However one can still reuse a similar filtering algorithm as for the
alldifferent constraint, but this will not lead to perfect pruning.

See also common keyword:alldifferent (all different).

implies: strictly increasing.

Keywords characteristic of a constraint: disequality, difference, all different, derived collection.

puzzles:Golomb ruler.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1064 MAX NSCC,CLIQUE

Derived Collection

col

(

PAIRS−collection(x−dvar, y−dvar),
[> −item(x− VARIABLES.var, y− VARIABLES.var)]

)

Arc input(s) PAIRS

Arc generator CLIQUE 7→collection(pairs1, pairs2)

Arc arity 2

Arc constraint(s) pairs1.y− pairs1.x = pairs2.y− pairs2.x

Graph property(ies) MAX NSCC≤ 1

Graph model When applied on the collection of items〈VAR1, VAR2, VAR3, VAR4〉, the gen-
erator of derived collection generates the following collection of items:
〈VAR2 VAR1, VAR3 VAR1, VAR3 VAR2, VAR4 VAR1, VAR4 VAR2, VAR4 VAR3〉. Note
that we use a binary arc constraint between two vertices and that this binary constraint
involves four variables.

Parts (A) and (B) of Figure5.286respectively show the initial and final graph associated
with theExample slot. Since we use theMAX NSCC graph property we show one of
the largest strongly connected component of the final graph. The constraint holds since all
the strongly connected components have at most one vertex: the differences1, 2, 3, 4, 5, 6
that one can construct from the values0, 1, 4, 6 assigned to the variables of theVARIABLES
collection are all-distinct.

(A)

PAIRS

1

2

3

4

5

6

(B) MAX_NSCC=1

MAX_NSCC

1:1,0 2:4,0 3:4,1 4:6,0 5:6,1 6:6,4

Figure 5.286: Initial and final graph of thegolomb constraint

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 1065

1066 NARC,CLIQUE(<)

5.155 graphcrossing

DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint graph crossing(NCROSS, NODES)

Synonyms crossing, ncross.

Arguments NCROSS : dvar

NODES : collection(succ−dvar, x−int, y−int)

Restrictions NCROSS ≥ 0
required(NODES, [succ, x, y])
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose
NCROSS is the number of proper intersections between line-segments, where each line-
segment is an arc of the directed graph defined by the arc linking a node and its unique
successor.

Example

2,

〈

succ− 1 x− 4 y− 7,
succ− 1 x− 2 y− 5,
succ− 1 x− 7 y− 6,
succ− 2 x− 1 y− 2,
succ− 3 x− 2 y− 2,
succ− 2 x− 5 y− 3,
succ− 3 x− 8 y− 2,
succ− 9 x− 6 y− 2,
succ− 10 x− 10 y− 6,
succ− 8 x− 10 y− 1

〉

Figure 5.287 shows the line-segments associated with theNODES collection. One
can note the following line-segments intersection:

• Arcs8 → 9 and7 → 3 cross,

• Arcs5 → 3 and6 → 2 cross also.

Consequently, thegraph crossing constraint holds since its first argumentNCROSS is set
to 2.

Typical |NODES| > 1
range(NODES.succ) > 1
range(NODES.x) > 1
range(NODES.y) > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20000128 1067

Symmetries • Attributes ofNODES arepermutablew.r.t. permutation(succ) (x, y) (permutation
applied to all items).

• One and the same constant can beaddedto thex attribute of all items ofNODES.

• One and the same constant can beaddedto they attribute of all items ofNODES.

Arg. properties
Functional dependency: NCROSS determined byNODES.

Usage This is a general crossing constraint that can be used in conjunction with one graph covering
constraint such ascycle, tree or map. In many practical problems ones want not only to
cover a graph with specific patterns but also to avoid too much crossing between the arcs
of the final graph.

Remark We did not give a specific crossing constraint for each graph covering constraint. We feel
that it is better to start first with a more general constraint before going inthe specificity of
the pattern that is used for covering the graph.

See also common keyword:crossing (line-segments intersection),
cycle, map, tree (graph constraint,graph partitioning constraint),
two layer edge crossing (line-segments intersection).

Keywords constraint arguments:pure functional dependency.

constraint type: graph constraint, graph partitioning constraint.

geometry:geometrical constraint, line-segments intersection.

modelling: functional dependency.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1068 NARC,CLIQUE(<)

1

x

y

2 3 4 5 6 7 8 9 10 111

1

2

3

4

5

6

7

4 5

6

8

7

10

93

2

Figure 5.287: A graph covering with 2 line-segments intersections

20000128 1069

Arc input(s) NODES

Arc generator CLIQUE(<) 7→collection(n1, n2)

Arc arity 2

Arc constraint(s) • max(n1.x, NODES[n1.succ].x) ≥ min(n2.x, NODES[n2.succ].x)
• max(n2.x, NODES[n2.succ].x) ≥ min(n1.x, NODES[n1.succ].x)
• max(n1.y, NODES[n1.succ].y) ≥ min(n2.y, NODES[n2.succ].y)
• max(n2.y, NODES[n2.succ].y) ≥ min(n1.y, NODES[n1.succ].y)

• (n2.x− NODES[n1.succ].x) ∗ (NODES[n1.succ].y− n1.y)−
(NODES[n1.succ].x− n1.x) ∗ (n2.y− NODES[n1.succ].y)

6= 0

• (NODES[n2.succ].x− NODES[n1.succ].x) ∗ (n2.y− n1.y)−
(n2.x− n1.x) ∗ (NODES[n2.succ].y− NODES[n1.succ].y)

6= 0

• sign

(

(n2.x− NODES[n1.succ].x) ∗ (NODES[n1.succ].y− n1.y)−
(NODES[n1.succ].x− n1.x) ∗ (n2.y− NODES[n1.succ].y)

)

6=

sign

(

(NODES[n2.succ].x− NODES[n1.succ].x) ∗ (n2.y− n1.y)−
(n2.x− n1.x) ∗ (NODES[n2.succ].y− NODES[n1.succ].y)

)

Graph property(ies) NARC= NCROSS

Graph model Each node is described by its coordinatesx andy, and by its successorsucc in the final cov-
ering. Note that the co-ordinates are initially fixed. We use the arc generator CLIQUE (<)
in order to avoid counting twice the same line-segment crossing.

Parts (A) and (B) of Figure5.288respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold. Each arc of the final graph correspondsto a proper intersection
between two line-segments.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1070 NARC,CLIQUE(<)

(A)

NODES

1

2

3

4

5

6

7

8

9

10

(B) NARC=2

5:3,2,2

6:2,5,3

7:3,8,2

8:9,6,2

Figure 5.288: Initial and final graph of thegraph crossing constraint

20000128 1071

1072 PREDEFINED

5.156 graphisomorphism

DESCRIPTION LINKS

Origin [258]

Constraint graph isomorphism(NODES PATTERN, NODES TARGET, FUNCTION)

Arguments NODES PATTERN : collection(index−int, succ−sint)
NODES TARGET : collection(index−int, succ−sint)
FUNCTION : collection(image−dvar)

Restrictions required(NODES PATTERN, [index, succ])
NODES PATTERN.index ≥ 1
NODES PATTERN.index ≤ |NODES PATTERN|
distinct(NODES PATTERN, index)
NODES PATTERN.succ ≥ 1
NODES PATTERN.succ ≤ |NODES PATTERN|
required(NODES TARGET, [index, succ])
NODES TARGET.index ≥ 1
NODES TARGET.index ≤ |NODES TARGET|
distinct(NODES TARGET, index)
NODES TARGET.succ ≥ 1
NODES TARGET.succ ≤ |NODES TARGET|
|NODES TARGET| = |NODES PATTERN|
required(FUNCTION, [image])
FUNCTION.image ≥ 1
FUNCTION.image ≤ |NODES TARGET|
distinct(FUNCTION, image)
|FUNCTION| = |NODES PATTERN|

Purpose

Given two directed graphsPATTERN andTARGET enforce a one to one correspondence,
defined by the functionFUNCTION, between the vertices of the graphPATTERN and the
vertices of the graphTARGET so that:

1. if there is an arc fromu to v in the graphPATTERN, then there is also an arc from
the image ofu to the image ofv in the graphTARGET,

2. if there is no arc fromu to v in the graphPATTERN, then there is also no arc from
the image ofu to the image ofv in the graphTARGET.

Both, thePATTERN andTARGET are fixed, and the vertices of both graphs are respectively
defined by the two collections of verticesNODES PATTERN andNODES TARGET.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

20090822 1073

Example

〈
index− 1 succ− {2, 4},
index− 2 succ− {1, 3, 4},
index− 3 succ− ∅,
index− 4 succ− ∅

〉

,

〈
index− 1 succ− ∅,
index− 2 succ− {1, 3, 4},
index− 3 succ− ∅,
index− 4 succ− {1, 2}

〉

,

〈4, 2, 3, 1〉

Figure 5.289 gives the pattern (see Part (A)) and target graph (see Part (B)) ofthe
Example slot as well as the one to one correspondence (see Part (C)) betweenthe pattern
graph and the target graph. Thegraph isomorphism constraint since the pattern and
target graphs have the same number of vertices and arcs and since:

• To the arc from vertex1 to vertex4 in the pattern graph corresponds the arc from
vertex4 to 1 in the target graph.

• To the arc from vertex1 to vertex2 in the pattern graph corresponds the arc from
vertex4 to 2 in the target graph.

• To the arc from vertex2 to vertex1 in the pattern graph corresponds the arc from
vertex2 to 4 in the target graph.

• To the arc from vertex2 to vertex4 in the pattern graph corresponds the arc from
vertex2 to 1 in the target graph.

• To the arc from vertex2 to vertex3 in the pattern graph corresponds the arc from
vertex2 to 3 in the target graph.

Typical |NODES PATTERN| > 1

Symmetries • Items ofNODES PATTERN arepermutable.

• Items ofNODES TARGET arepermutable.

Algorithm A constraint approach is described in [373].

See also related: subgraph isomorphism.

Keywords constraint arguments:constraint involving set variables.

constraint type: predefined constraint, graph constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1074 PREDEFINED

(C)

(B)(A)

3

3

1 2

1 4

2 3

1 2

4 3 1 4

2

4

Figure 5.289: (A) The pattern graph, (B) the target graph and(C) the correspondence
between the vertices of the pattern graph and the vertices ofthe target graph

20090822 1075

1076MAX NCC,MIN NCC,NCC,NVERTEX,PATH ,LOOP ;MAX NCC,MIN NCC,PATH ,LOOP ; AUTOMATON

5.157 group

DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint group

NGROUP,
MIN SIZE,
MAX SIZE,
MIN DIST,
MAX DIST,
NVAL,
VARIABLES,
VALUES

Arguments NGROUP : dvar

MIN SIZE : dvar

MAX SIZE : dvar

MIN DIST : dvar

MAX DIST : dvar

NVAL : dvar

VARIABLES : collection(var−dvar)
VALUES : collection(val−int)

Restrictions NGROUP ≥ 0
MIN SIZE ≥ 0
MAX SIZE ≥ MIN SIZE

MIN DIST ≥ 0
MAX DIST ≥ MIN DIST

MAX DIST ≤ |VARIABLES|
NVAL ≥ MAX SIZE

NVAL ≥ NGROUP

NVAL ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

20000128 1077

Purpose

Let n be the number of variables of the collectionVARIABLES. Let Xi, Xi+1, . . . , Xj

(1 ≤ i ≤ j ≤ n) be consecutive variables of the collection of variablesVARIABLES

such that all the following conditions simultaneously apply:

• All variablesXi, . . . , Xj take their value in the set of valuesVALUES,

• i = 1 orXi−1 does not take a value inVALUES,

• j = n orXj+1 does not take a value inVALUES.

We call such a set of variables agroup. The constraintgroup is true if all the following
conditions hold:

• There are exactlyNGROUP groups of variables,

• MIN SIZE is the number of variables of the smallest group,

• MAX SIZE is the number of variables of the largest group,

• MIN DIST is the minimum number of variables between two consecutive groups
or between one border and one group,

• MAX DIST is the maximum number of variables between two consecutive groups
or between one border and one group,

• NVAL is the number of variables that take their value in the set of valuesVALUES.

Example

2, 1, 2, 2, 4, 3,

〈

var− 2,
var− 8,
var− 1,
var− 7,
var− 4,
var− 5,
var− 1,
var− 1,
var− 1

〉

,

〈0, 2, 4, 6, 8〉

Given the fact that groups are formed by even values in{0, 2, 4, 6, 8} (i.e., values
expressed by theVALUES collection), thegroup constraint holds since:

• Its first argument,NGROUP, is set to value2 since the sequence2 8 1 7 4 5 1 1 1
contains two groups of even values (i.e., group2 8 and group4).

• Its second argument,MIN SIZE, is set to value1 since the smallest group of even
values involves only one single value (i.e., value4).

• Its third argument,MAX SIZE, is set to value2 since the largest group of even values
involves two values (i.e., group2 8).

• Its fourth argument,MIN DIST, is set to value2 since the smallest group of odd values
involves two values (i.e., group1 7).

• Its fifth argument,MAX DIST, is set to value4 since the largest group of odd values
involves four values (i.e., group5 1 1 1).

• Its sixth argument,NVAL, is set to value3 since the total number of even values of
the sequence2 8 1 7 4 5 1 1 1 is equal to3 (i.e., values2, 8 and4).

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

1078MAX NCC,MIN NCC,NCC,NVERTEX,PATH ,LOOP ;MAX NCC,MIN NCC,PATH ,LOOP ; AUTOMATON

Typical NGROUP > 0
MIN SIZE > 0
MAX SIZE > MIN SIZE

MIN DIST > 0
MAX DIST > MIN DIST

MAX DIST < |VARIABLES|
NVAL > MAX SIZE

NVAL > NGROUP

NVAL < |VARIABLES|
|VARIABLES| > 1
range(VARIABLES.var) > 1
|VALUES| > 0
|VARIABLES| > |VALUES|

Symmetries • Items ofVARIABLES can bereversed.

• Items ofVALUES arepermutable.

• An occurrence of a value ofVARIABLES.var that belongs toVALUES.val (resp.
does not belong toVALUES.val) can bereplacedby any other value inVALUES.val
(resp. not inVALUES.val).

Arg. properties
• Functional dependency: NGROUP determined byVARIABLES andVALUES.

• Functional dependency: MIN SIZE determined byVARIABLES andVALUES.

• Functional dependency: MAX SIZE determined byVARIABLES andVALUES.

• Functional dependency: MIN DIST determined byVARIABLES andVALUES.

• Functional dependency: MAX DIST determined byVARIABLES andVALUES.

• Functional dependency: NVAL determined byVARIABLES andVALUES.

Usage A typical use of thegroup constraint in the context of timetabling is as follow: The value
of theith variable of theVARIABLES collection corresponds to the type of shift (i.e., night,
morning, afternoon, rest) performed by a specific person on dayi. A complete period of
work is represented by the variables of theVARIABLES collection. In this context thegroup
constraint expresses for a person:

• The number of periods of consecutive night-shift during a complete period of work.

• The total number of night-shift during a complete period of work.

• The maximum number of allowed consecutive night-shift.

• The minimum number of days, which do not correspond to a night-shift, between
two consecutive sequences of night-shift.

Remark For this constraint we use the possibility to express directly more than one constraint on
the parameters of the final graph we want to obtain. For more propagation, it is crucial
to keep this in one single constraint, since strong relations relate the different parameters
of a graph. This constraint is very similar to thegroup constraint introduced inCHIP ,
except that here, theMIN DIST andMAX DIST constraints apply also for the two borders:
we cannot start or end with a group ofk consecutive variables that take their values outside
VALUES and such thatk is less thanMIN DIST or k is greater thanMAX DIST.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.cosytec.com

20000128 1079

See also common keyword:change continuity (timetabling constraint,sequence),
global contiguity (sequence),
group skip isolated item (timetabling constraint,sequence),
multi global contiguity (sequence),
pattern, stretch circuit (timetabling constraint),
stretch path (timetabling constraint,sequence).

shift of concept:consecutive groups of ones.

used in graph description:in, not in.

Keywords characteristic of a constraint: automaton, automaton with counters.

combinatorial object: sequence.

constraint network structure: alpha-acyclic constraint network(2),
alpha-acyclic constraint network(3).

constraint type: timetabling constraint.

final graph structure: connected component, vpartition, consecutive loops are connected.

miscellaneous:obscure.

modelling: functional dependency.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1080MAX NCC,MIN NCC,NCC,NVERTEX,PATH ,LOOP ;MAX NCC,MIN NCC,PATH ,LOOP ; AUTOMATON

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)
LOOP 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • in(variables1.var, VALUES)
• in(variables2.var, VALUES)

Graph property(ies) • NCC= NGROUP

• MIN NCC= MIN SIZE

• MAX NCC= MAX SIZE

• NVERTEX= NVAL

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)
LOOP 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • not in(variables1.var, VALUES)
• not in(variables2.var, VALUES)

Graph property(ies) • MIN NCC= MIN DIST

• MAX NCC= MAX DIST

Graph model We use two graph constraints for modelling thegroup constraint: a first one for specifying
the constraints onNGROUP, MIN SIZE, MAX SIZE andNVAL, and a second one for stating
the constraints onMIN DIST andMAX DIST. In order to generate the initial graph related to
the first graph constraint we use:

• The arc generatorsPATH andLOOP ,

• The binary constraintvariables1.var ∈ VALUES ∧ variables2.var ∈ VALUES.

On the first graph constraint of theExample slot this produces an initial graph de-
picted in part (A) of Figure5.290. We usePATH LOOP and the binary constraint
variables1.var ∈ VALUES ∧ variables2.var ∈ VALUES in order to catch the two
following situations:

• A binary constraint has to be used in order to get the notion of group:Consecutive
variables that take their value inVALUES.

• If we only usePATH then we would lose the groups that are composed from one
single variable since the predecessor and the successor arc would be destroyed; this
is why we use also theLOOP arc generator.

Part (B) of Figure5.290 shows the final graph associated with the first graph con-
straint of the Example slot. Since we use theNVERTEX graph property, the
vertices of the final graph are stressed in bold. In addition, since we usethe
MIN NCC and theMAX NCC graph properties, we also show the smallest and
largestconnected componentsof the final graph.

Thegroup constraint of theExampleslot holds since:

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 1081

VARIABLES

1

2

3

4

5

6

7

8

9

NCC=2
MIN_NCC=1
MAX_NCC=2
NVERTEX=3

MIN_NCC MAX_NCC

5:4 1:2

2:8

(A) (B)

Figure 5.290: Initial and final graph of thegroup constraint

1082MAX NCC,MIN NCC,NCC,NVERTEX,PATH ,LOOP ;MAX NCC,MIN NCC,PATH ,LOOP ; AUTOMATON

• The final graph of the first graph constraint has twoconnected components. There-
fore the number of groupsNGROUP is equal to two.

• The number of vertices of the smallestconnected componentof the final graph of the
first graph constraint is equal to1. ThereforeMIN SIZE is equal to1.

• The number of vertices of the largestconnected componentof the final graph of the
first graph constraint is equal to2. ThereforeMAX SIZE is equal to2.

• The number of vertices of the smallestconnected componentof the final graph of the
second graph constraint is equal to2. ThereforeMIN DIST is equal to2.

• The number of vertices of the largestconnected componentof the final graph of the
second graph constraint is equal to4. ThereforeMAX DIST is equal to4.

• The number of vertices of the final graph of the first graph constraintis equal to three.
ThereforeNVAL is equal to3.

20000128 1083

Automaton Figures5.291, 5.293, 5.294, 5.296, 5.297and5.299depict the different automata asso-
ciated with thegroup constraint. For the automata that respectively computeNGROUP,
MIN SIZE, MAX SIZE, MIN DIST, MAX DIST andNVAL we have a0-1 signature variableSi
for each variableVARi of the collectionVARIABLES. The following signature constraint
links VARi andSi: VARi ∈ VALUES ⇔ Si.

{C=0}

i

in(VAR ,VALUES)i

not_in(VAR ,VALUES)i
in(VAR ,VALUES),i
{C=C+1}

i

$

$

NGROUP=C
t:

s

not_in(VAR ,VALUES)

Figure 5.291: Automaton for theNGROUP parameter of thegroup constraint

1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

C =NGROUPn
C

Figure 5.292: Hypergraph of the reformulation corresponding to the automaton of the
NGROUP parameter of thegroup constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1084MAX NCC,MIN NCC,NCC,NVERTEX,PATH ,LOOP ;MAX NCC,MIN NCC,PATH ,LOOP ; AUTOMATON

s

not_in(VAR ,VALUES)

inot_in(VAR ,VALUES),

iin(VAR ,VALUES),

iin(VAR ,VALUES),

inot_in(VAR ,VALUES) $
i j

MIN_SIZE=C
t:

k

{C=|VARIABLES|}

{C=min(C,D)}

{D=1} $
{C=min(C,D)}
$,

{D=D+1}

in(VAR ,VALUES),

{C=0,D=1}

i

Figure 5.293: Automaton for theMIN SIZE parameter of thegroup constraint

s
not_in(VAR ,VALUES), iin(VAR ,VALUES),

MAX_SIZE=C
t:

{D=D+1}{C=max(C,D),D=0}

$,
{C=max(C,D)}

{C=0,D=0}

i

Figure 5.294: Automaton for theMAX SIZE parameter of thegroup constraint

1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0 Q =tn

D1 Dn

C1C =00 C =MIN_SIZEn

D =10

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0 Q =tn

D1 Dn

C1C =00

D =00

C =MAX_SIZEn

VAR

Figure 5.295: Hypergraphs of the reformulations corresponding to the automata of the
MIN SIZE andMAX SIZE parameters of thegroup constraint

20000128 1085

s
i

i

i

i

i $j

t:

k

$
{C=min(C,D)}
$,

MIN_DIST=C

in(VAR ,VALUES),

in(VAR ,VALUES)

in(VAR ,VALUES)

not_in(VAR ,VALUES),

{C=|VARIABLES|}

not_in(VAR ,VALUES),
{D=D+1}

not_in(VAR ,VALUES),

{D=1}

{C=min(C,D)}

{C=0,D=1}

i

Figure 5.296: Automaton for theMIN DIST parameter of thegroup constraint

s
{C=max(C,D),D=0}

in(VAR ,VALUES), i

t:

{D=D+1}

$,
{C=max(C,D)}

MAX_DIST=C

not_in(VAR ,VALUES),

{C=0,D=0}

i

Figure 5.297: Automaton for theMAX DIST parameter of thegroup constraint

1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0 Q =tn

D1 Dn

C1C =00

D =10

C =MIN_DISTn

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0 Q =tn

D1 Dn

C1C =00

D =00

C =MAX_DISTn

VAR

Figure 5.298: Hypergraphs of the reformulations corresponding to the automata of the
MIN DIST andMAX DIST parameters of thegroup constraint

1086MAX NCC,MIN NCC,NCC,NVERTEX,PATH ,LOOP ;MAX NCC,MIN NCC,PATH ,LOOP ; AUTOMATON

si
{C=C+1}

$

t:

not_in(VAR ,VALUES)i

NVAL=C

{C=0}

in(VAR ,VALUES),

Figure 5.299: Automaton for theNVAL parameter of thegroup constraint

1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

C =NVALn
C

Figure 5.300: Hypergraph of the reformulation corresponding to the automaton of the
NVAL parameter of thegroup constraint

20000128 1087

1088 MAX NSCC,MIN NSCC,NSCC,NVERTEX,CHAIN ; AUTOMATON

5.158 groupskip isolated item

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromgroup.

Constraint group skip isolated item

NGROUP,
MIN SIZE,
MAX SIZE,
NVAL,
VARIABLES,
VALUES

Arguments NGROUP : dvar

MIN SIZE : dvar

MAX SIZE : dvar

NVAL : dvar

VARIABLES : collection(var−dvar)
VALUES : collection(val−int)

Restrictions NGROUP ≥ 0
MIN SIZE ≥ 0
MAX SIZE ≥ MIN SIZE

NVAL ≥ MAX SIZE

NVAL ≥ NGROUP

NVAL ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose

Let n be the number of variables of the collectionVARIABLES. Let Xi, Xi+1, . . . , Xj

(1 ≤ i < j ≤ n) be consecutive variables of the collection of variablesVARIABLES

such that the following conditions apply:

• All variablesXi, . . . , Xj take their value in the set of valuesVALUES,

• i = 1 orXi−1 does not take a value inVALUES,

• j = n orXj+1 does not take a value inVALUES.

We call such a set of variables agroup. The constraintgroup skip isolated item is
true if all the following conditions hold:

• There are exactlyNGROUP groups of variables,

• The number of variables of the smallest group isMIN SIZE,

• The number of variables of the largest group isMAX SIZE,

• The number of variables that take their value in the set of valuesVALUES is equal
to NVAL.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

20000128 1089

Example

1, 2, 2, 3,

〈

var− 2,
var− 8,
var− 1,
var− 7,
var− 4,
var− 5,
var− 1,
var− 1,
var− 1

〉

,

〈0, 2, 4, 6, 8〉

Given the fact that groups are formed by even values in{0, 2, 4, 6, 8} (i.e., values
expressed by theVALUES collection), and the fact that isolated even values are ignored, the
group skip isolated item constraint holds since:

• Its first argument,NGROUP, is set to value1 since the sequence2 8 1 7 4 5 1 1 1 con-
tains only one group of even values involving more than one even value (i.e., group
2 8).

• Its second and third arguments,MIN SIZE andMAX SIZE, are both set to2 since
the only group of even values with more than one even value involves two values
(i.e., group2 8).

• The fourth argument,NVAL, is fixed to2 since it corresponds to the total number of
even values belonging to groups involving more than one even value (i.e., value4 is
discarded since it is an isolated even value of the sequence2 8 1 7 4 5 1 1 1).

Typical NGROUP > 0
MIN SIZE > 0
NVAL > MAX SIZE

NVAL > NGROUP

NVAL < |VARIABLES|
|VARIABLES| > 1
range(VARIABLES.var) > 1
|VALUES| > 0
|VARIABLES| > |VALUES|

Symmetries • Items ofVARIABLES can bereversed.

• Items ofVALUES arepermutable.

• An occurrence of a value ofVARIABLES.var that belongs toVALUES.val (resp.
does not belong toVALUES.val) can bereplacedby any other value inVALUES.val
(resp. not inVALUES.val).

Arg. properties
• Functional dependency: NGROUP determined byVARIABLES andVALUES.

• Functional dependency: MIN SIZE determined byVARIABLES andVALUES.

• Functional dependency: MAX SIZE determined byVARIABLES andVALUES.

• Functional dependency: NVAL determined byVARIABLES andVALUES.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

1090 MAX NSCC,MIN NSCC,NSCC,NVERTEX,CHAIN ; AUTOMATON

Usage This constraint is useful in order to specify rules about how rest daysshould be allocated
to a person during a period ofn consecutive days. In this caseVALUES are the codes for the
rest days (perhaps one single value) andVARIABLES corresponds to the amount of work
done duringn consecutive days. We can then express a rule like: in a month one should
have at least4 periods of at least2 rest days (isolated rest days are not counted as rest
periods).

See also common keyword: change continuity, group,
stretch path (timetabling constraint,sequence).

used in graph description:in.

Keywords characteristic of a constraint: automaton, automaton with counters.

combinatorial object: sequence.

constraint network structure: alpha-acyclic constraint network(2),
alpha-acyclic constraint network(3).

constraint type: timetabling constraint.

final graph structure: strongly connected component.

miscellaneous:obscure.

modelling: functional dependency.

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20000128 1091

Arc input(s) VARIABLES

Arc generator CHAIN 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • in(variables1.var, VALUES)
• in(variables2.var, VALUES)

Graph property(ies) • NSCC= NGROUP

• MIN NSCC= MIN SIZE

• MAX NSCC= MAX SIZE

• NVERTEX= NVAL

Graph model We use theCHAIN arc generator in order to produce the initial graph. In the context of the
Exampleslot, this creates the graph depicted in part (A) of Figure5.301. We useCHAIN

together with the arc constraintvariables1.var ∈ VALUES∧variables2.var ∈ VALUES

in order to skip the isolated variables that take a value inVALUES that we do not want
to count as a group. This is why, on the example, value4 is not counted as a group.
Part (B) of Figure5.301shows the final graph associated with theExample slot. The
group skip isolated item constraint of theExampleslot holds since:

• The final graph contains one strongly connected component. Therefore the number
of groups is equal to one.

• The unique strongly connected component of the final graph contains two vertices.
ThereforeMIN SIZE andMAX SIZE are both equal to2.

• The number of vertices of the final graph is equal to two. ThereforeNVAL is equal to
2.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1092 MAX NSCC,MIN NSCC,NSCC,NVERTEX,CHAIN ; AUTOMATON

VARIABLES

1

2

3

4

5

6

7

8

9

NSCC=1
MIN_NSCC=2
MAX_NSCC=2
NVERTEX=2

SCC#1

1:2

2:8

(A) (B)

Figure 5.301: Initial and final graph of thegroup skip isolated item constraint

20000128 1093

Automaton Figures5.302, 5.304, 5.305 and 5.307 depict the different automata associated with
thegroup skip isolated item constraint. For the automata that respectively compute
NGROUP, MIN SIZE, MAX SIZE andNVAL we have a0-1 signature variableSi for each vari-
ableVARi of the collectionVARIABLES. The following signature constraint linksVARi and
Si: VARi ∈ VALUES ⇔ Si.

s

i

j

not_in(VAR ,VALUES)

$

not_in(VAR ,VALUES)

$

not_in(VAR ,VALUES)

t:
NGROUP=C

i

i

i

in(VAR ,VALUES)i

{C=C+1}

in(VAR ,VALUES),i

in(VAR ,VALUES)i

$

{C=0}

Figure 5.302: Automaton for the NGROUP parameter of the
group skip isolated item constraint

1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

C =NGROUPn
C

Figure 5.303: Hypergraph of the reformulation corresponding to the automaton of the
NGROUP parameter of thegroup skip isolated item constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1094 MAX NSCC,MIN NSCC,NSCC,NVERTEX,CHAIN ; AUTOMATON

{C=0,D=2}

m

inot_in(VAR ,VALUES)

inot_in(VAR ,VALUES)

iin(VAR ,VALUES),

iin(VAR ,VALUES),{D=2}

inot_in(VAR ,VALUES)

iin(VAR ,VALUES),{D=D+1}

iin(VAR ,VALUES)

inot_in(VAR ,VALUES)

inot_in(VAR ,VALUES),

iin(VAR ,VALUES),{C=|VARIABLES}

j

l

$

$

$

$

k

$,{C=min(C,D}

{C=min(C,D)}

MIN_SIZE=C
t:

s

Figure 5.304: Automaton for the MIN SIZE parameter of the
group skip isolated item constraint

20000128 1095

{C=0,D=0}

MAX_SIZE=C
t:

inot_in(VAR ,VALUES),

inot_in(VAR ,VALUES)

iin(VAR ,VALUES),

iin(VAR ,VALUES),
i

{C=max(C,D)}

$

$,{C=max(C,D)}

{D=D+1}

{D=1}

s

Figure 5.305: Automaton for the MAX SIZE parameter of the
group skip isolated item constraint

1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0 Q =tn

D1 Dn

C1C =00 C =MIN_SIZEn

D =20

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0 Q =tn

D1 Dn

C1C =00

D =00

C =MAX_SIZEn

VAR

Figure 5.306: Hypergraphs of the reformulations corresponding to the automata of the
MIN SIZE andMAX SIZE parameters of thegroup skip isolated item constraint

1096 MAX NSCC,MIN NSCC,NSCC,NVERTEX,CHAIN ; AUTOMATON

si
{C=C+1}

$

t:

not_in(VAR ,VALUES)i

NVAL=C

{C=0}

in(VAR ,VALUES),

Figure 5.307: Automaton for theNVAL parameter of thegroup skip isolated item

constraint

1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

C =NVALn
C

Figure 5.308: Hypergraph of the reformulation corresponding to the automaton of the
NVAL parameter of thegroup skip isolated item constraint

20000128 1097

1098 PREDEFINED

5.159 gt

DESCRIPTION LINKS

Origin Arithmetic.

Constraint gt(VAR1, VAR2)

Synonyms rel, xgty.

Arguments VAR1 : dvar

VAR2 : dvar

Purpose Enforce the fact that the first variable is strictly greater than the second variable.

Example (8, 1)

Thegt constraint holds since8 is strictly greater than1.

Symmetries • VAR1 can be replaced by any value> VAR2.

• VAR2 can be replaced by any value< VAR1.

Systems gt in Choco, rel in Gecode, xgty in JaCoP, #> in SICStus.

See also common keyword:eq (binary constraint,arithmetic constraint).

implies: geq, neq.

implies (if swap arguments):lt.

negation:leq.

Keywords constraint arguments:binary constraint.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/XgtY.html
http://www.jacop.eu/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20070821 1099

1100 AUTOMATON

5.160 highestpeak

DESCRIPTION LINKS AUTOMATON

Origin Derived frompeak.

Constraint highest peak(HEIGHT, VARIABLES)

Arguments HEIGHT : dvar

VARIABLES : collection(var−dvar)

Restrictions HEIGHT ≥ 0
VARIABLES.var ≥ 0
required(VARIABLES, var)

Purpose

A variableVk (1 < k < m) of the sequence of variablesVARIABLES = V1, . . . , Vm is a
peakif and only if there exists ani (1 < i ≤ k) such thatVi−1 < Vi andVi = Vi+1 =
. . . = Vk andVk > Vk+1. HEIGHT is the maximum value of the peak variables. If no
such variable existsHEIGHT is equal to 0.

Example

8,

〈

var− 1,
var− 1,
var− 4,
var− 8,
var− 6,
var− 2,
var− 7,
var− 1

〉

The highest peak constraint holds since8 is the maximum peak of the sequence
1 1 4 8 6 2 7 1.

11

1 5 6 7 8

2

3

4

5

6

43

7

8

1 1

Values

Variables 2

8

4

6

2

7

Figure 5.309: The sequence and its highest peak

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20040530 1101

Typical HEIGHT > 0
|VARIABLES| > 2
range(VARIABLES.var) > 1

Symmetry Items ofVARIABLES can bereversed.

See also common keyword:deepest valley, peak (sequence).

Keywords characteristic of a constraint: automaton, automaton with counters.

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(2).

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1102 AUTOMATON

Automaton Figure5.310depicts the automaton associated with thehighest peak constraint. To each
pair of consecutive variables(VARi, VARi+1) of the collectionVARIABLES corresponds a
signature variableSi. The following signature constraint linksVARi, VARi+1 andSi:

VARi > VARi+1 ⇔ Si = 0 ∧ VARi = VARi+1 ⇔ Si = 1 ∧ VARi < VARi+1 ⇔ Si = 2.

i

iVAR = VAR

i+1iVAR > VAR

VAR < VARi+1i i+1iVAR = VAR

{C=0}

HEIGHT=C

s:

HEIGHT=C

u:

i+1iVAR < VAR

VAR > VAR ,i i+1
{C=max(C,VAR)}

i+1

Figure 5.310: Automaton of thehighest peak constraint

n−1

VAR

1S

2
VAR

n
VAR

3
VAR

3S n−1S

n−1
VAR

0Q =s

0C =0 1C

1Q

2S

2Q

2C C =HEIGHTn−1

u

s
Q =

1

Figure 5.311: Hypergraph of the reformulation corresponding to the automaton of the
highest peak constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20040530 1103

1104 AUTOMATON

5.161 imply

DESCRIPTION LINKS AUTOMATON

Origin Logic

Constraint imply(VAR, VARIABLES)

Synonyms rel, ifthen.

Arguments VAR : dvar

VARIABLES : collection(var−dvar)

Restrictions VAR ≥ 0
VAR ≤ 1
|VARIABLES| = 2
required(VARIABLES, var)
VARIABLES.var ≥ 0
VARIABLES.var ≤ 1

Purpose
Let VARIABLES be a collection of0-1 variablesVAR1, VAR2. EnforceVAR = (VAR1 ⇒
VAR2).

Example (1, 〈0, 0〉)
(1, 〈0, 1〉)
(0, 〈1, 0〉)
(1, 〈1, 1〉)

Symmetry All occurrences of0 in VAR and inVARIABLES.var can be set to1.

Arg. properties
Functional dependency: VAR determined byVARIABLES.

Systems reifiedLeftImp in Choco, rel in Gecode, ifthenbool in JaCoP, #=> in
SICStus.

See also common keyword:and, equivalent, nand, nor, or, xor (Boolean constraint).

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint arguments:pure functional dependency.

constraint network structure: Berge-acyclic constraint network.

constraint type: Boolean constraint.

filtering: arc-consistency.

modelling: functional dependency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelBool.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/IfThenBool.html
http://www.jacop.eu/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20051226 1105

Automaton Figure 5.312depicts the automaton associated with theimply constraint. To the first
argumentVAR of the imply constraint corresponds the first signature variable. To each
variableVARi of the second argumentVARIABLES of theimply constraint corresponds the
next signature variable. There is no signature constraint.

1
VAR =0

1

VAR =0
2

VAR =1
1

VAR =1
2

2
VAR =0,1

l

VAR=0 VAR=1

k

ji

t

VAR =1

s

Figure 5.312: Automaton of theimply constraint

VAR
1

Q1Q =s0

VAR
2

Q =t3Q2

VAR

Figure 5.313: Hypergraph of the reformulation corresponding to the automaton of the
imply constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1106 NARC,PRODUCT ; AUTOMATON

5.162 in

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Domain definition.

Constraint in(VAR, VALUES)

Synonyms dom, in set, member.

Arguments VAR : dvar

VALUES : collection(val−int)

Restrictions |VALUES| > 0
required(VALUES, val)
distinct(VALUES, val)

Purpose Enforce the domain variableVAR to take a value within the values described by the
VALUES collection.

Example (3, 〈1, 3〉)

The in constraint holds since its first argumentVAR = 3 occurs within the collec-
tion of valuesVALUES = 〈1, 3〉.

Typical |VALUES| > 1

Symmetries • Items ofVALUES arepermutable.

• VAR can besetto any value ofVALUES.val.

• One and the same constant can beaddedto VAR as well as to theval attribute of
all items ofVALUES.

Arg. properties
Extensiblewrt. VALUES.

Remark Entailment occurs immediately after posting this constraint.

The in constraint is calleddom in Gecode(http://www.gecode.org/), andmember
in MiniZinc (http://www.g12.cs.mu.oz.au/minizinc/). In MiniZinc the val at-
tribute is not necessarily fixed, i.e. it can be a domain variable.

Systems member in Choco, rel in Gecode, dom in Gecode, in in JaCoP, member in MiniZinc ,
in in SICStus, in set in SICStus.

Used in among, cardinality atmost partition, group, group skip isolated item,
in same partition, open among.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.gecode.org/
http://www.g12.cs.mu.oz.au/minizinc/
http://www.g12.cs.mu.oz.au/minizinc/

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelSetRel.html
http://www.gecode.org/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntDomain.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/In.html
http://www.jacop.eu/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#member
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://www.sics.se/sicstus/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://www.sics.se/sicstus/

Used in
List of constraints that use this constraint in their description.

20030820 1107

See also common keyword: domain (domain definition), in interval, in same partition,
in set (value constraint).

implied by: maximum, minimum.

implies: between min max.

negation:not in.

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint, derived collection.

constraint arguments:unary constraint.

constraint network structure: centered cyclic(1) constraint network(1).

constraint type: value constraint.

filtering: arc-consistency.

modelling: included, domain definition.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1108 NARC,PRODUCT ; AUTOMATON

Derived Collection
col(VARIABLES−collection(var−dvar), [item(var− VAR)])

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) NARC= 1

Graph model Parts (A) and (B) of Figure5.314respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the unique arc of the
final graph is stressed in bold.

VARIABLES

VALUES

1

12

NARC=1

1:3

2:3

(A) (B)

Figure 5.314: Initial and final graph of thein constraint

Signature Since all theval attributes of theVALUES collection are distinct and because of the arc con-
straintvariables.var = values.val the final graph contains at most one arc. Therefore
we can rewriteNARC = 1 toNARC ≥ 1 and simplifyNARC toNARC.

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1109

Automaton Figure5.315depicts the automaton associated with thein constraint. LetVALi be theval
attribute of theith item of theVALUES collection. To each pair(VAR, VALi) corresponds a
0-1 signature variableSi as well as the following signature constraint:VAR = VALi ⇔ Si.

t

i

iVAR=VAL

iVAR<>VAL

s VAR<>VAL

Figure 5.315: Automaton of thein constraint

n
Q1Q =s0

 S
1 S

2
 S

n

VAR

Q =t

Figure 5.316: Hypergraph of the reformulation corresponding to the automaton of the
in constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1110 NARC,PRODUCT ; AUTOMATON

5.163 in interval

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Domain definition.

Constraint in interval(VAR, LOW, UP)

Synonyms dom, in.

Arguments VAR : dvar

LOW : int

UP : int

Restriction LOW ≤ UP

Purpose Enforce the domain variableVAR to take a value within the interval[LOW, UP].

Example (3, 2, 5)

The in interval constraint holds since its first argumentVAR = 3 is greater than
or equal to its second argumentLOW = 2 and less than or equal to its third argument
UP = 5.

Typical LOW < UP

VAR > LOW

VAR < UP

Symmetries • LOW can bedecreased.

• UP can beincreased.

• An occurrence of a value ofVAR can bereplacedby any other value in[LOW, UP].

• One and the same constant can beaddedto VAR, LOW andUP.

Remark Entailment occurs immediately after posting this constraint.

Thein interval constraint is referenced under the namedom in Gecode.

Systems member in Choco, dom in Gecode, in in JaCoP, in in SICStus.

See also common keyword:domain, in (domain definition).

generalisation: in interval reified (reified version), in intervals (single interval
replaced by a set of intervals), in set (interval replaced by set variable).

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint, derived collection.

constraint arguments:unary constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.gecode.org/

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntDomain.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/In.html
http://www.jacop.eu/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20060317 1111

constraint network structure: Berge-acyclic constraint network.

constraint type: value constraint.

filtering: arc-consistency.

modelling: interval, domain definition.

1112 NARC,PRODUCT ; AUTOMATON

Derived Collections
col(VARIABLE−collection(var−dvar), [item(var− VAR)])

col

(

INTERVAL−collection(low−int, up−int),
[item(low− LOW, up− UP)]

)

Arc input(s) VARIABLE INTERVAL

Arc generator PRODUCT 7→collection(variable, interval)

Arc arity 2

Arc constraint(s) • variable.var ≥ interval.low
• variable.var ≤ interval.up

Graph property(ies) NARC= 1

Graph model Parts (A) and (B) of Figure5.317respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the unique arc of the
final graph is stressed in bold.

VARIABLE

INTERVAL

1

1

NARC=1

1:3

1:2,5

(A) (B)

Figure 5.317: Initial and final graph of thein interval constraint

Derived Collections
Declarations of new collections that are derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20060317 1113

Automaton Figure5.318depicts the automaton associated with thein interval constraint. We have
one single0-1 signature variableS as well as the following signature constraint:VAR ≥
LOW ∧ VAR ≤ UP ⇔ S.

s

t

VAR>=LOW and VAR<=UP

Figure 5.318: Automaton of thein interval constraint

 S

1Q =s0

VAR

Q =t

Figure 5.319: Hypergraph of the reformulation corresponding to the automaton of the
in interval constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1114 PREDEFINED

5.164 in interval reified

DESCRIPTION LINKS

Origin Reified version ofin interval.

Constraint in interval reified(VAR, LOW, UP, B)

Synonyms dom reified, in reified.

Arguments VAR : dvar

LOW : int

UP : int

B : dvar

Restrictions LOW ≤ UP

B ≥ 0
B ≤ 1

Purpose Enforce the following equivalence,VAR ∈ [LOW, UP] ⇔ B.

Example (3, 2, 5, 1)

Thein interval reified constraint holds since:

• Its first argumentVAR = 3 is greater than or equal to its second argumentLOW = 2
and less than or equal to its third argumentUP = 5 (i.e.,3 ∈ [2, 5]).

• The corresponding Boolean variableB is set to1 since condition3 ∈ [2, 5] holds.

Typical VAR 6= LOW

VAR 6= UP

LOW < UP

Symmetries • An occurrence of a value ofVAR that belongs to[LOW, UP] (resp. does not belong to
[LOW, UP]) can bereplacedby any other value in[LOW, UP]) (resp. not in[LOW, UP]).

• One and the same constant can beaddedto VAR, LOW andUP.

Reformulation Thein interval reified constraint can be reformulated in terms of linear constraints.
For convenience, we renameVAR to x, LOW to l, UP to u, andB to y. The constraint is
decomposed into the following conjunction of constraints:

x ≥ l ⇔ y1,

x ≤ u ⇔ y2,

y1 ∧ y2 ⇔ y .

We show how to encode these constraints with linear inequalities. The first constraint,
i.e.,x ≥ l ⇔ y1 is encoded by posting one of the following three constraints:

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

20100916 1115

a) if x ≥ l : y1 = 1,
b) if x < l : y1 = 0,
c) otherwise: x ≥ (l − x) · y1 + x ∧ x ≤ (x− l + 1) · y1 + l − 1.

On the one hand, cases a) and b) correspond to situations where one can fix y1, no matter
what value will be assigned tox. On the other hand, in case c),y1 can take both values
0 or 1 depending on the value assigned tox. As shown by Figure5.320, all possible
solutions for the pair of variables(x, y1) satisfy the following two linear inequalitiesx ≥
(l − x) · y1 + x andx ≤ (x− l + 1) · y1 + l − 1. The first inequality discards all points
that are above the line that goes through the two extreme solution points(x, 0) and(l, 1),
while the second one removes all points that are below the line that goes through the two
extreme solution points(l − 1, 0) and(x, 1).

x

y1

x ≥ l ⇔ y1

x l − 1 l 0

1

x

x =
(l −

x)
· y1

+ x

x = (x− l + 1) · y1 +
l − 1

b infeasible points

bc feasible points

bc bc

bc bc bc bc bc bcb b

b b b b b b

Figure 5.320: Illustration of the reformulation of the reified constraintx ≥ l ⇔ y1
with two linear inequalities

The second constraint, i.e.,x ≤ u ⇔ y2 is encoded by posting one of the following three
constraints:

d) if x ≤ u : y2 = 1,
e) if x > u : y2 = 0,
f) otherwise: x ≤ (u− x) · y2 + x ∧ x ≥ (x− u− 1) · y2 + u+ 1.

On the one hand, cases d) and e) correspond to situations where one can fix y2, no matter
what value will be assigned tox. On the other hand, in case f),y2 can take both value0 or 1
depending on the value assigned tox. As shown by Figure5.321, all possible solutions for
the pair of variables(x, y2) satisfy the following two linear inequalitiesx ≤ (u−x)·y2+x
andx ≥ (x−u− 1) · y2 +u+1. The first inequality discards all points that are above the
line that goes through the two extreme solution points(x, 0) and(u, 1), while the second
one removes all points that are below the line that goes through the two extreme solution
points(u+ 1, 0) and(x, 1).

1116 PREDEFINED

The third constraint, i.e.,y1 ∧ y2 ⇔ y is encoded as:

g) y ≥ y1 + y2 − 1,
h) y ≤ y1,
i) y ≤ y2.

Case g) handles the implicationy1 ∧ y2 ⇒ y, while cases h) and i) take care of the other
sidey ⇒ y1 ∧ y2.

See also specialisation:in interval.

uses in its reformulation: alldifferent (bound consistency preserving reformulation).

Keywords characteristic of a constraint: reified constraint.

constraint arguments:binary constraint.

constraint type: predefined constraint, value constraint.

filtering: arc-consistency.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20100916 1117

x

y2

x ≤ u ⇔ y2

x u u+ 10

1

x

x = (u− x) · y
2 + x

x = (x− u− 1) · y2 + u+ 1

b infeasible points

bc feasible points

bc bc bc bc bc bc

bc bcb b b b b b

b b

Figure 5.321: Illustration of the reformulation of the reified constraintx ≤ u ⇔ y2
with two linear inequalities

1118 PREDEFINED

5.165 in intervals

DESCRIPTION LINKS

Origin Domain definition.

Constraint in intervals(VAR, INTERVALS)

Synonym in.

Arguments VAR : dvar

INTERVALS : collection(low−int, up−int)

Restrictions required(INTERVALS, [low, up])
INTERVALS.low ≤ INTERVALS.up
|INTERVALS| > 0

Purpose Enforce the domain variableVAR to take a value within one of the intervals specified by
the collection of intervalsINTERVALS.

Example

 5,

〈

low− 1 up− 1,
low− 3 up− 5,
low− 8 up− 8

〉

The in intervals constraint holds since its first argumentVAR = 5 belongs to
the second intervals of the collection of intervalsINTERVALS.

Typical |INTERVALS| > 1

Symmetries • Items ofINTERVALS arepermutable.

• INTERVALS.low can bedecreased.

• INTERVALS.up can beincreased.

• One and the same constant can beaddedto VAR as well as to thelow andup
attributes of all items ofINTERVALS.

Arg. properties
Extensiblewrt. INTERVALS.

Remark Entailment occurs immediately after posting this constraint.

Systems dom in Gecode, in in JaCoP, in in SICStus.

See also specialisation:in interval (set of intervals replaced by single interval).

Keywords constraint arguments:unary constraint.

constraint type: value constraint, predefined constraint.

filtering: arc-consistency.

modelling: interval, domain definition.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntDomain.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/In.html
http://www.jacop.eu/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20080610 1119

1120 NARC,PRODUCT

5.166 in relation

DESCRIPTION LINKS GRAPH

Origin Constraint explicitly defined by tuples of values.

Constraint in relation(VARIABLES, TUPLES OF VALS)

Synonyms case, extension, extensional, extensional support,
extensional supportva, extensional supportmdd, extensional supportstr,
feastupleac, table.

Types TUPLE OF VARS : collection(var−dvar)
TUPLE OF VALS : collection(val−int)

Arguments VARIABLES : TUPLE OF VARS

TUPLES OF VALS : collection(tuple− TUPLE OF VALS)

Restrictions required(TUPLE OF VARS, var)
|TUPLE OF VARS| ≥ 1
|TUPLE OF VALS| ≥ 1
|TUPLE OF VALS| = |VARIABLES|
required(TUPLE OF VALS, val)
required(TUPLES OF VALS, tuple)

Purpose
Enforce the tuple of variablesVARIABLES to take its value out of a set of tuples of values
TUPLES OF VALS. Thevalueof a tuple of variables〈V1, V2, . . . , Vn〉 is a tuple of values
〈U1, U2, . . . , Un〉 if and only if V1 = U1 ∧ V2 = U2 ∧ · · · ∧ Vn = Un.

Example

〈5, 3, 3〉 ,
〈

tuple− 〈5, 2, 3〉 ,
tuple− 〈5, 2, 6〉 ,
tuple− 〈5, 3, 3〉

〉

The in relation constraint holds since its first argument〈5, 3, 3〉 corresponds to
the third item of the collection of tuplesTUPLES OF VALS.

Typical |TUPLE OF VARS| > 1

Symmetries • Items ofTUPLES OF VALS arepermutable.

• Items ofVARIABLES andTUPLES OF VALS.tuple arepermutable(same permu-
tation used).

• All occurrences of two distinct tuples of values inVARIABLES or
TUPLES OF VALS.tuple can beswapped; all occurrences of a tuple of val-
ues inVARIABLES or TUPLES OF VALS.tuple can berenamedto any unused
tuple of values.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20030820 1121

Arg. properties
Extensiblewrt. TUPLES OF VALS.

Usage Quite often some constraints cannot be easily expressed, neither by a formula, nor by a
regular pattern. In this case one has to define the constraint by specifying in extension the
combinations of allowed values.

Remark Thein relation constraint is calledextensional support in JaCoP (http://www.

jacop.eu/). Within SICStus Prologthe constraint can be applied to more than one single
tuple of variables and is calledtable. Within [78] this constraint is calledextension.

The in relation constraint is calledtable in MiniZinc (http://www.g12.cs.mu.

oz.au/minizinc/).

Systems feasPairAC in Choco, infeasPairAC in Choco, relationPairAC in Choco,
feasTupleAC in Choco, infeasTupleAC in Choco, relationTupleAC
in Choco, extensional in Gecode, extensionalsupportVA in JaCoP,
extensionalsupportMDD in JaCoP, extensionalsupportSTR in JaCoP,
table in MiniZinc , case in SICStus, relation in SICStus, table in SICStus.

Used in cond lex cost, cond lex greater, cond lex greatereq, cond lex less,
cond lex lesseq.

See also common keyword:element (data constraint).

cost variant: cond lex cost (COST parameter added).

used in graph description:vec eq tuple.

Keywords characteristic of a constraint: tuple, derived collection.

combinatorial object: relation.

constraint type: data constraint, extension.

filtering: arc-consistency.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.jacop.eu/
http://www.sics.se/sicstus/
http://www.g12.cs.mu.oz.au/minizinc/

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntExt.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/ExtensionalSupportVA.html
http://www.jacop.eu/
http://jacopapi.osolpro.com/JaCoP/constraints/ExtensionalSupportMDD.html
http://www.jacop.eu/
http://jacopapi.osolpro.com/JaCoP/constraints/ExtensionalSupportSTR.html
http://www.jacop.eu/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#table
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1122 NARC,PRODUCT

Derived Collection

col

(

TUPLES OF VARS−collection(vec− TUPLE OF VARS),
[item(vec− VARIABLES)]

)

Arc input(s) TUPLES OF VARS TUPLES OF VALS

Arc generator PRODUCT 7→collection(tuples of vars, tuples of vals)

Arc arity 2

Arc constraint(s) vec eq tuple(tuples of vars.vec, tuples of vals.tuple)

Graph property(ies) NARC≥ 1

Graph model Parts (A) and (B) of Figure5.322respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the unique arc of the
final graph is stressed in bold.

TUPLES_OF_VARS

TUPLES_OF_VALS

1

123

NARC=1

1:5
 3
 3

3:5
 3
 3

(A) (B)

Figure 5.322: Initial and final graph of thein relation constraint

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1123

1124 NSINK,NSOURCE,PRODUCT ; AUTOMATON

5.167 in samepartition

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Used for defining several entries of this catalog.

Constraint in same partition(VAR1, VAR2, PARTITIONS)

Type VALUES : collection(val−int)

Arguments VAR1 : dvar

VAR2 : dvar

PARTITIONS : collection(p− VALUES)

Restrictions |VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose
EnforceVAR1 andVAR2 to be respectively assigned to valuesv1 andv2 that both belong
to a same partition of the collectionPARTITIONS.

Example

 6, 2,

〈

p− 〈1, 3〉 ,
p− 〈4〉 ,
p− 〈2, 6〉

〉

Thein same partition constraint holds since its first and second argumentsVAR1 = 6
andVAR2 = 2 both belong to the third partition〈2, 6〉 of its third argumentPARTITIONS.

Typical VAR1 6= VAR2

Symmetries • Arguments arepermutablew.r.t. permutation(VAR1, VAR2) (PARTITIONS).

• Items ofPARTITIONS arepermutable.

• Items ofPARTITIONS.p arepermutable.

Arg. properties
Extensiblewrt. PARTITIONS.

Used in alldifferent partition, balance partition, change partition,
common partition, nclass, same partition, soft same partition var,
soft used by partition var, used by partition.

See also common keyword:alldifferent partition (partition), in (value constraint).

used in graph description:in.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

20030820 1125

Keywords characteristic of a constraint: partition, automaton, automaton without counters,
reified automaton constraint, derived collection.

constraint arguments:binary constraint.

constraint network structure: centered cyclic(2) constraint network(1).

constraint type: value constraint.

filtering: arc-consistency.

Keywords
Related keywords grouped by meta-keywords.

1126 NSINK,NSOURCE,PRODUCT ; AUTOMATON

Derived Collection

col

(

VARIABLES−collection(var−dvar),
[item(var− VAR1), item(var− VAR2)]

)

Arc input(s) VARIABLES PARTITIONS

Arc generator PRODUCT 7→collection(variables, partitions)

Arc arity 2

Arc constraint(s) in(variables.var, partitions.p)

Graph property(ies) • NSOURCE= 2
• NSINK= 1

Graph model VAR1 andVAR2 are put together in the derived collectionVARIABLES. Since bothVAR1 and
VAR2 should take their value in one of the partition depicted by thePARTITIONS collection,
the final graph should have two sources corresponding respectivelyto VAR1 and VAR2.
Since two, possibly distinct, values should be assigned toVAR1 andVAR2 and since these
values belong to the same partitionp the final graph should only have one sink. This sink
corresponds in fact to partitionp.

Parts (A) and (B) of Figure5.323respectively show the initial and final graph associated
with theExample slot. Since we both use theNSOURCE andNSINK graph proper-
ties, the source and sink vertices of the final graph are shown with a double circle.

VARIABLES

PARTITIONS

1

1 23

2

NSOURCE=2,NSINK=1

1:6

3:2
 6

2:2

(A) (B)

Figure 5.323: Initial and final graph of thein same partition constraint

Signature Note that the sinks of the initial graph cannot become sources of the finalgraph since
isolated vertices are eliminated from the final graph. Since the final graphcontains two
sources it also includes one arc between a source and a sink. Therefore the minimum
number of sinks of the final graph is equal to one. So we can rewriteNSINK = 1 to
NSINK ≥ 1 and simplifyNSINK toNSINK.

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1127

Automaton Figure5.324depicts the automaton associated with thein same partition constraint.
Let VALUESi be thep attribute of theith item of thePARTITIONS collection. To each triple
(VAR1, VAR2, VALUESi) corresponds a0-1 signature variableSi as well as the following
signature constraint:((VAR1 ∈ VALUESi) ∧ (VAR2 ∈ VALUESi)) ⇔ Si.

t

in(VAR1,VALUES) and in(VAR2,VALUES) i

inot_in(VAR1,VALUES) or not_in(VAR2,VALUES) i

iin(VAR1,VALUES) and in(VAR2,VALUES)i

inot_in(VAR1,VALUES) or not_in(VAR2,VALUES)is

i

Figure 5.324: Automaton of thein same partition constraint

n
Q1Q =s0

 S
1 S

2
 S

n

VAR1

VAR2

Q =t

Figure 5.325: Hypergraph of the reformulation corresponding to the automaton of the
in same partition constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1128 PREDEFINED

5.168 in set

DESCRIPTION LINKS

Origin Used for defining constraints with set variables.

Constraint in set(VAL, SET)

Synonyms dom, member.

Arguments VAL : dvar

SET : svar

Purpose Constraint variableVAL to belong to setSET.

Example (3, {1, 3})

Remark WhenSET is fixed thein set constraint is referenced under the namedom in Gecode.

Systems member in Choco, rel in Gecode, dom in Gecode.

Used in bipartite, clique, connected, cutset, dag, discrepancy, disj, inverse set,
k cut, link set to booleans, open alldifferent, open among, open atleast,
open atmost, open global cardinality, open global cardinality low up,
path from to, proper forest, roots, strongly connected, sum, sum set,
symmetric, symmetric cardinality, symmetric gcc, tour.

See also common keyword:in (value constraint).

specialisation:in interval (set variable replaced by fixed interval).

Keywords constraint arguments:constraint involving set variables.

constraint type: predefined constraint, value constraint.

modelling: included.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.gecode.org/

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelSetRel.html
http://www.gecode.org/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntDomain.html
http://www.gecode.org/

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 1129

1130 PREDEFINED

5.169 incomparable

DESCRIPTION LINKS

Origin Inspired by incomparable rectangles.

Constraint incomparable(VECTOR1, VECTOR2)

Synonym incomparables.

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)

Restrictions required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| ≥ 1
|VECTOR2| ≥ 1
|VECTOR1| = |VECTOR2|

Purpose

Enforce that when the components ofVECTOR1 and VECTOR2 are ordered, and re-
spectively denoted bySVECTOR1 andSVECTOR2, we neither haveSVECTOR1[i].var ≤
SVECTOR2[i].var (for all i ∈ [1, |SVECTOR1|]) nor have SVECTOR2[i].var ≤
SVECTOR1[i].var (for all i ∈ [1, |SVECTOR1|]).

Example (〈16, 2〉 , 〈4, 11〉)

Theincomparable constraint holds since16 > 4 and2 < 11.

Typical |VECTOR1| > 1

Used in all incomparable.

See also system of constraints:all incomparable.

Keywords characteristic of a constraint: vector.

constraint type: predefined constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20120202 1131

1132 NARC,PATH ; AUTOMATON

5.170 increasing

DESCRIPTION LINKS GRAPH AUTOMATON

Origin KOALOG

Constraint increasing(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restriction required(VARIABLES, var)

Purpose The variables of the collectionVARIABLES are increasing.

Example (〈1, 1, 4, 8〉)

Theincreasing constraint holds since1 ≤ 1 ≤ 4 ≤ 8.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetry One and the same constant can beaddedto thevar attribute of all items ofVARIABLES.

Arg. properties
Contractiblewrt. VARIABLES.

Systems increasingNValue in Choco, rel in Gecode, increasing in MiniZinc .

Used in increasing global cardinality, increasing nvalue, increasing sum.

See also common keyword:precedence, strictly decreasing (order constraint).

comparison swapped:decreasing.

implied by: all equal, increasing global cardinality,
increasing nvalue (remove NVAL parameter from increasing nvalue),
increasing sum (remove SUM parameter from increasing sum),
strictly increasing.

implies: no peak, no valley.

uses in its reformulation: sort permutation.

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint network structure: sliding cyclic(1) constraint network(1).

constraint type: decomposition, order constraint.

filtering: arc-consistency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#increasing
http://www.g12.cs.mu.oz.au/minizinc/

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20040814 1133

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var ≤ variables2.var

Graph property(ies) NARC= |VARIABLES| − 1

Graph model Parts (A) and (B) of Figure5.326respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

VARIABLES

1

2

3

4

NARC=3

1:1

2:1

3:4

4:8

(A) (B)

Figure 5.326: Initial and final graph of theincreasing constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1134 NARC,PATH ; AUTOMATON

Automaton Figure5.327depicts the automaton associated with theincreasing constraint. To each
pair of consecutive variables(VARi, VARi+1) of the collectionVARIABLES corresponds a
0-1 signature variableSi. The following signature constraint linksVARi, VARi+1 andSi:
VARi ≤ VARi+1 ⇔ Si.

s VAR <=VARi i+1

Figure 5.327: Automaton of theincreasing constraint

Q =s

1S

1Q0Q =s

n−1
VAR

n−1S

2Q

3S

3
VAR n

VAR

2S

2
VAR1

VAR

n−1

Figure 5.328: Hypergraph of the reformulation corresponding to the automaton of the
increasing constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20040814 1135

1136 NVERTEX,SELF , ∀; AUTOMATON

5.171 increasingglobal cardinality

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Conjoinglobal cardinality low up andincreasing.

Constraint increasing global cardinality(VARIABLES, VALUES)

Synonyms increasing global cardinality low up, increasing gcc,
increasing gcc low up.

Arguments VARIABLES : collection(var−dvar)
VALUES : collection(val−int, omin−int, omax−int)

Restrictions required(VARIABLES, var)
increasing(VARIABLES)
|VALUES| > 0
required(VALUES, [val, omin, omax])
distinct(VALUES, val)
VALUES.omin ≥ 0
VALUES.omax ≤ |VARIABLES|
VALUES.omin ≤ VALUES.omax

Purpose
The variables of the collectionVARIABLES are increasing. In addition, each value
VALUES[i].val (1 ≤ i ≤ |VALUES|) should be taken by at leastVALUES[i].omin and
at mostVALUES[i].omax variables of theVARIABLES collection.

Example

〈3, 3, 6, 8〉 ,
〈

val− 3 omin− 2 omax− 3,
val− 5 omin− 0 omax− 1,
val− 6 omin− 1 omax− 2

〉

Theincreasing global cardinality constraint holds since:

• The values of the collection〈3, 3, 6, 8〉 are sorted in increasing order.

• Values3, 5 and6 are respectively used2 (2 ≤ 2 ≤ 3), 0 (0 ≤ 0 ≤ 1) and1
(1 ≤ 1 ≤ 2) times within the collection〈3, 3, 6, 8〉 and since no constraint was
specified for value8.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VALUES| > 1
VALUES.omin ≤ |VARIABLES|
VALUES.omax > 0
VALUES.omax ≤ |VARIABLES|
|VARIABLES| > |VALUES|

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20091015 1137

Symmetry Items ofVALUES arepermutable.

Usage This constraint can be used in order to break symmetry in the context of the follow-
ing pattern. We have a matrixM of variables with the same constraint on each row
and aglobal cardinality low up constraint on each column. Beside lexicographi-
cally ordering the rows ofM with a lex chain lesseq constraint, one can also state a
increasing global cardinality on the first column ofM in order to improve propa-
gation on the corresponding variables.

Reformulation The increasing global cardinality constraint can be expressed in term of a con-
junction of aglobal cardinality low up and anincreasing constraints. Even if we
achievearc-consistencyon these two constraints this hinders propagation as shown by the
following small example.

We have two variablesX andY (X ≤ Y), which both take their values in the set{2, 3}.
In addition, assume that the minimum number of occurrences of values0, 1 and2 are re-
spectively equal to0, 1 and1. Similarly assume that, the maximum number of occurrences
of values0, 1 and2 are respectively equal to1, 1 and2. The reformulation does not reduce
the domain of variablesX, Y in any way, while the automaton described in theAutomaton
slot fixesX to 2 andY to 3.

See also implies: global cardinality low up, increasing.

related: ordered global cardinality.

Keywords application area: assignment.

characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: value constraint, order constraint.

filtering: arc-consistency.

symmetry: symmetry, matrix symmetry.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Usage
Typical usage of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1138 NVERTEX,SELF , ∀; AUTOMATON

For all items ofVALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUES.val

Graph property(ies) • NVERTEX≥ VALUES.omin
• NVERTEX≤ VALUES.omax

Graph model Since we want to express one unary constraint for each value we use the “For all items of
VALUES” iterator. Part (A) of Figure5.329shows the initial graphs associated with each
value3, 5 and6 of theVALUES collection of theExample slot. Part (B) of Figure5.329
shows the two corresponding final graphs respectively associated withvalues3 and6 that
are both assigned to the variables of theVARIABLES collection (since value5 is not assigned
to any variable of theVARIABLES collection the final graph associated with value5 is
empty). Since we use theNVERTEX graph property, the vertices of the final graphs are
stressed in bold.

VARIABLES

1234

3:NVERTEX=2, 5:NVERTEX=0, 6:NVERTEX=1

VALUES:3 VALUES:6

1:32:3 3:6

(A) (B)

Figure 5.329: Initial and final graph of theincreasing global cardinality con-
straint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20091015 1139

Automaton A first systematic approach for creating an automaton that only recognises the solutions of
theincreasing global cardinality constraint could be to:

• First, create an automaton that recognises the solutions of theincreasing con-
straint.

• Second, create an automaton that recognises the solutions of the
global cardinality low up constraint.

• Third, make the product of the two previous automata and minimise the resulting
automaton.

However this approach is not going to scale well in practice since the automaton associated
with theglobal cardinality low up constraint may have a too big size. Therefore we
propose an approach where we directly construct in one single step the automaton that only
recognises the solutions of theincreasing global cardinality constraint. Note that
we do not have any formal proof that the resulting automaton is always minimum.

Without loss of generality, we assume that:

• All items of theVALUES collection are sorted in increasing value on the attributeval.

• All the potential values of the variables of theVARIABLES collection are included
within the set of values of the collectionVALUES (i.e., theval attribute).6

Before defining the states of the automaton, we first need to introduce the following notion.
A valueVALUES[v].val is constrained by its maximum number of occurrencesif and only if
VALUES[v].omax ≤ 1∨ VALUES[v].omax < |VARIABLES| −∑|VALUES|

u=1,u 6=v VALUES[u].omin.7

LetV denote the set of constrained values (i.e., their indexes within the collectionVALUES)
by their respective maximum number of occurrences.

After determining the setV, theomax attribute of each potential value is normalised in the
following way:

• For an unconstrained valueVALUES[v].val we reset VALUES[v].omax to
max(1, VALUES[v].omin).

• For a constrained valueVALUES[v].val we resetVALUES[v].omax to 1 if its current
value is smaller than1.

We are now in position to introduce the states of the automaton.

The1 +
∑|VALUES|

v=1,v∈V VALUES[v].omax +
∑|VALUES|

v=1,v/∈V VALUES[v].omin states of the automa-
ton that only accepts solutions of theincreasing global cardinality constraint are
defined in the following way:

• For thevth item of the collectionVALUES we have:

– If v ∈ V, VALUES[v].omax states labelled bysvo (1 ≤ o ≤ VALUES[v].omax).

– If v /∈ V, VALUES[v].omin states labelled bysvo (1 ≤ o ≤ VALUES[v].omin).

• We have an initial state labelled bys00.

6If this is not the case, we can include these values within theVALUES collection and set their minimum
and maximum number of occurrences to0 and|VARIABLES| −

∑|VALUES|
v=1 VALUES[v].omin.

7WhenVALUES[v].omax ≤ 1 we cannot reduce the number of states related to valueVALUES[v].val and
we therefore consider that we are in the constrained case.

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1140 NVERTEX,SELF , ∀; AUTOMATON

Terminal states correspond to those statessvo such that, both (1)o is greater than or
equal toVALUES[v].omin, and (2) there is no value itemVALUES[w] (w > v) such that
VALUES[w].omin > 0. Transitions are defined in the following way:

• There is an arc, labelled byVALUES[v].val, from the initial states00 to every state
sv1 whereVALUES[v] is an item for which all valuesVALUES[u].val strictly less than
VALUES[v].val verify the conditionVALUES[u].omin = 0.

• For each valueVALUES[v].val constrained by its maximum number of occurrences
(i.e., v ∈ V), there is an arc, labelled byVALUES[v].val, from the statesvk to the
statesvk+1 for all k in [1, VALUES[v].omax− 1].

• For each valueVALUES[v].val unconstrained by its maximum number of occurrences
(i.e., v /∈ V), there is an arc, labelled byVALUES[v].val, from the statesvk to the
statesvk+1 for all k in [1, VALUES[v].omin − 1]. There is also a loop, labelled by
VALUES[v].val, from statesvk to the statesvk for k = VALUES[v].omin.

• For each valueVALUES[v].val constrained by its maximum number of occurrences
(i.e., v ∈ V), there is an arc, labelled byVALUES[w].val, from statesvk to state
sw1 (v < w) for all k in [VALUES[v].omin, VALUES[v].omax] and for allw such that
∀u ∈ [v + 1, w − 1] : VALUES[u].omin = 0.

• For each valueVALUES[v].val unconstrained by its maximum number of occurrences
(i.e.,v /∈ V), there is an arc, labelled byVALUES[w].val, from statesvk to statesw1

(v < w) for k = VALUES[v].omin and for allw such that∀u ∈ [v + 1, w − 1] :
VALUES[u].omin = 0.

Figure 5.330 depicts the automaton associated with the
increasing global cardinality constraint of theExample slot. For this pur-
pose we assume without loss of generality that we have four decision variables that all
take their potential values within interval[3, 8]. Consequently, values4, 7 and 8 are
first added to the items of theVALUES collection. Both values3 and6 are unconstrained
by their respective maximum number of occurrences. Therefore their omax attributes
are respectively reduced to2 and1. All other values, namely values4, 5, 7 and8, are
constrained values. Theincreasing global cardinality constraint holds since the
corresponding sequence of visited states,s00 s11 s12 s41 s61, ends up in a terminal state
(i.e., terminal states are depicted by thick circles in the figure). Note that non initial states
are first indexed by the position of an item within theVALUES collection, and not by the
value itself (e.g., withins12 the1 designates value3). For instance states11 depicts the
fact that the automaton has already recognised one single occurrenceof value3, while s12
corresponds to the fact that the automaton has already seen at least twooccurrences of
value3.8

8The at least comes from the loop on states12.

20091015 1141

00
s

8

6

3

6

6

5

8

7

6

4

5

3

61

3

s

s
51

41
s

s
11

s
12

s
21

s
31

Figure 5.330: Automaton of theincreasing global cardinality constraint of the
Example slot: the path corresponding to the solution〈3, 3, 6, 8〉 is depicted by thick
arcs

1142 NSCC,CLIQUE ; AUTOMATON

5.172 increasingnvalue

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Conjoinnvalue andincreasing.

Constraint increasing nvalue(NVAL, VARIABLES)

Arguments NVAL : dvar

VARIABLES : collection(var−dvar)

Restrictions NVAL ≥ min(1, |VARIABLES|)
NVAL ≤ |VARIABLES|
required(VARIABLES, var)
increasing(VARIABLES)

Purpose
The variables of the collectionVARIABLES are increasing. In addition,NVAL is the num-
ber of distinct values taken by the variables of the collectionVARIABLES.

Example (2, 〈6, 6, 8, 8, 8〉)

The increasing nvalue constraint (see Figure5.331 for a graphical representa-
tion) holds since:

• The values of the collection〈6, 6, 8, 8, 8〉 are sorted in increasing order.

• NVAL = 2 is set to the number of distinct values occurring within the collection
〈6, 6, 8, 8, 8〉.

Variables 3 4 521

value
first

value
second

4

5

6

7

8

Values

6 6

88 8

Figure 5.331: The solution associated with the example

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetry One and the same constant can beaddedto thevar attribute of all items ofVARIABLES.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

20091104 1143

Arg. properties
Functional dependency: NVAL determined byVARIABLES.

Algorithm A complete filtering algorithm in a linear time complexity over the sum of the domainsizes
is described in [43].

Reformulation Theincreasing nvalue constraint can be expressed in term of a conjunction of anvalue

and anincreasing constraints (i.e., a chain of non strict inequality constraints on adjacent
variables of the collectionVARIABLES). But as shown by the following example,V1 ∈
[1, 2], V2 ∈ [1, 2], V1 ≤ V2, nvalue(2, 〈V1, V2〉), this hinders propagation (i.e., the unique
solutionV1 = 1, V2 = 2 is not directly obtained after stating all the previous constraints).

A better reformulation achievingarc-consistencyuses theseq bin constraint [290] that
we now introduce. GivenN a domain variable,X a sequence of domain variables, and
C andB two binary constraints,seq bin(N, X, C, B) holds if (1)N is equal to the number
of C-stretches in the sequenceX, and (2)B holds on any pair of consecutive variables in
X. A C-stretch is a generalisation of the notion of stretch introduced by G. Pesant[285],
where the equality constraint is made explicit by replacing it by a binary constraintC, i.e., a
C-stretch is a maximal length subsequence ofX for which the binary constraintC is satisfied
on consecutive variables.increasing nvalue(NVAL, VARIABLES) can be reformulated
asseq bin(NVAL, VARIABLES,=,≤).

Systems increasingNValue in Choco.

See also implies: increasing (removeNVAL parameter fromincreasing nvalue), nvalue.

related: increasing nvalue chain.

shift of concept: ordered nvector (variable replaced byvector and≤ replaced by
lex lesseq).

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: counting constraint, value partitioning constraint, order constraint.

filtering: arc-consistency.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes, number of distinct values,
functional dependency.

symmetry: symmetry.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1144 NSCC,CLIQUE ; AUTOMATON

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC= NVAL

Graph class EQUIVALENCE

Graph model Parts (A) and (B) of Figure5.332respectively show the initial and final graph associated
with the Example slot. Since we use theNSCC graph property we show the different
strongly connected components of the final graph. Each strongly connected component
corresponds to a value that is assigned to some variables of theVARIABLES collection. The
2 following values6 and8 are used by the variables of theVARIABLES collection.

VARIABLES

1

2

3

4

5

NSCC=2

SCC#1 SCC#2

1:6

2:6

3:8

4:8

5:8

(A) (B)

Figure 5.332: Initial and final graph of theincreasing nvalue constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20091104 1145

Automaton A first systematic approach for creating an automaton that only recognises the solutions of
theincreasing nvalue constraint could be to:

• First, create an automaton that recognises the solutions of theincreasing con-
straint.

• Second, create an automaton that recognises the solutions of thenvalue constraint.

• Third, make the product of the two previous automata and minimise the resulting
automaton.

However this approach is not going to scale well in practice since the automaton associated
with thenvalue constraint has a too big size. Therefore we propose an approach where
we directly construct in one single step the automaton that only recognises the solutions of
theincreasing nvalue constraint. Note that we do not have any formal proof that the
resulting automaton is always minimum.

Without loss of generality, assume that the collection of variablesVARIABLES contains at
least one variable (i.e.,|VARIABLES| ≥ 1). Let l, m, n, min andmax respectively de-
note the minimum and maximum possible value of variableNVAL, the number of variables
of the collectionVARIABLES, the smallest value that can be assigned to the variables of
VARIABLES, and the largest value that can be assigned to the variables ofVARIABLES. Let
s = max − min + 1 denote the total number of potential values. Clearly, the maximum
number of distinct values that can be assigned to the variables of the collection VARIABLES

cannot exceed the quantityd = min(m,n, s). The s·(s+1)
2

− (s−d)·(s−d+1)
2

+ 1 states
of the automaton that only accepts solutions of theincreasing nvalue constraint can be
defined in the following way:

• We have an initial state labelled bys00.

• We haves·(s+1)
2

− (s−d)·(s−d+1)
2

states labelled bysij (1 ≤ i ≤ d, i ≤ j ≤ s). The
first indexi of a statesij corresponds to the number of distinct values already en-
countered, while the second indexj denotes the the current value (i.e., more precisely
the index of the current value, where the minimum value has index1).

Terminal states depend on the possible values of variableNVAL and correspond to those
statessij such thati is a possible value for variableNVAL. Note that we assume no further
restriction on the domain ofNVAL (otherwise the set of terminal states needs to be reduced
in order to reflect the current set of possible values ofNVAL). Three classes of transitions
are respectively defined in the following way:

1. There is a transition, labelled bymin + j − 1, from the initial states00 to the state
s1j (1 ≤ j ≤ s).

2. There is a loop, labelled bymin + j − 1 for every statesij (1 ≤ i ≤ d, i ≤ j ≤ s).

3. ∀i ∈ [1, d−1], ∀j ∈ [i, s], ∀k ∈ [j+1, s] there is a transition labelled bymin+k−1
from sij to si+1k.

We respectively haves transitions of class 1,s·(s+1)
2

− (s−d)·(s−d+1)
2

transitions of class

2, and(s−1)·s·(s+1)
6

− (s−d)·(s−d+1)·(s−d+2)
6

transitions of class 3.

Note that all statessij such thati+ s− j < l can be discarded since they do not allow to
reach the minimum number of distinct values requiredl.

Part (A) of Figure5.333depicts the automaton associated with theincreasing nvalue

constraint of theExample slot. For this purpose, we assume that variableNVAL

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1146 NSCC,CLIQUE ; AUTOMATON

is fixed to value2 and that variables of the collectionVARIABLES take their val-
ues within interval[6, 8]. Part (B) of Figure5.333 represents the simplified automa-
ton where all states that do not allow to reach a terminal state were removed. The
increasing global cardinality constraint holds since the corresponding sequence of
visited states,s00 s11 s11 s23 s23 s23, ends up in a terminal state (i.e., terminal states are
depicted by thick circles in the figure).

s

23

2212

1100

22

2313

12

1100

(B)(A)

6

77

8

8

6

7 7

88

7

8

7

6

8

88

7 7

6

s

ss

ss

ss

ss

s

Figure 5.333: Automaton – Part A – and simplified automaton – Part B – of the
increasing nvalue constraint of theExample slot: the path corresponding to the
solution〈6, 6, 8, 8, 8〉 is depicted by thick arcs

20091104 1147

1148 NARC,PATH ;NARC,PATH

5.173 increasingnvalue chain

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromincreasing nvalue.

Constraint increasing nvalue chain(NVAL, VARIABLES)

Arguments NVAL : dvar

VARIABLES : collection(b−dvar, var−dvar)

Restrictions NVAL ≥ min(1, |VARIABLES|)
NVAL ≤ |VARIABLES|
required(VARIABLES, [b, var])
VARIABLES.b ≥ 0
VARIABLES.b ≤ 1

Purpose

For each consecutive pair of itemsVARIABLES[i], VARIABLES[i + 1] (1 ≤ i <
|VARIABLES|) of theVARIABLES collection at least one of the following conditions hold:

1. VARIABLES[i+ 1].b = 0,

2. VARIABLES[i].var ≤ VARIABLES[i+ 1].var.

In addition,NVAL is equal to number of pairs of variablesVARIABLES[i], VARIABLES[i+
1] (1 ≤ i < |VARIABLES|) plus one, which verify at least one of the following condi-
tions:

1. VARIABLES[i+ 1].b = 0,

2. VARIABLES[i].var < VARIABLES[i+ 1].var.

Note thatVARIABLES[1].b is not referenced at all in the previous definition (i.e., its value
does not influence at all the values assigned to the other variables).

Example

6,

〈

b− 0 var− 2,
b− 1 var− 4,
b− 1 var− 4,
b− 1 var− 4,
b− 0 var− 4,
b− 1 var− 8,
b− 0 var− 1,
b− 0 var− 7,
b− 1 var− 7

〉

Theincreasing nvalue chain constraint holds since:

1. The conditionVARIABLES[i + 1].b = 0 ∨ VARIABLES[i].var ≤ VARIABLES[i +
1].var holds for every pair of adjacent items of theVARIABLES collection:

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20091118 1149

• For the pair (VARIABLES[1].var, VARIABLES[2].var) we have
VARIABLES[1].var ≤ VARIABLES[2].var (2 ≤ 4).

• For the pair (VARIABLES[2].var, VARIABLES[3].var) we have
VARIABLES[2].var ≤ VARIABLES[3].var (4 ≤ 4).

• For the pair (VARIABLES[3].var, VARIABLES[4].var) we have
VARIABLES[3].var ≤ VARIABLES[4].var (4 ≤ 4).

• For the pair (VARIABLES[4].var, VARIABLES[5].var) we have
VARIABLES[5].b = 0.

• For the pair (VARIABLES[5].var, VARIABLES[6].var) we have
VARIABLES[5].var ≤ VARIABLES[6].var (4 ≤ 8).

• For the pair (VARIABLES[6].var, VARIABLES[7].var) we have
VARIABLES[7].b = 0.

• For the pair (VARIABLES[7].var, VARIABLES[8].var) we have
VARIABLES[8].b = 0.

• For the pair (VARIABLES[8].var, VARIABLES[9].var) we have
VARIABLES[8].var ≤ VARIABLES[9].var (7 ≤ 7).

2. NVAL is equal to number of pairs of variablesVARIABLES[i], VARIABLES[i + 1]
(1 ≤ i < |VARIABLES|) plus one which verify at leastVARIABLES[i + 1].b =
0∨ VARIABLES[i].var < VARIABLES[i+1].var. Beside theplus one, the following
five pairs contribute for1 in NVAL:

• For the pair (VARIABLES[1].var, VARIABLES[2].var) we have
VARIABLES[1].var ≤ VARIABLES[2].var (2 < 4).

• For the pair (VARIABLES[4].var, VARIABLES[5].var) we have
VARIABLES[5].b = 0.

• For the pair (VARIABLES[5].var, VARIABLES[6].var) we have
VARIABLES[5].var ≤ VARIABLES[6].var (4 < 8).

• For the pair (VARIABLES[6].var, VARIABLES[7].var) we have
VARIABLES[7].b = 0.

• For the pair (VARIABLES[7].var, VARIABLES[8].var) we have
VARIABLES[8].b = 0.

Typical |VARIABLES| > 1
range(VARIABLES.b) > 1
range(VARIABLES.var) > 1

See also related: increasing nvalue, nvalue, ordered nvector.

Keywords constraint type: counting constraint, order constraint.

modelling: number of distinct values.

Typical
Typical conditions on the arguments of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1150 NARC,PATH ;NARC,PATH

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables2.b = 0 ∨ variables1.var ≤ variables2.var

Graph property(ies) NARC= |VARIABLES| − 1

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables2.b = 0 ∨ variables1.var < variables2.var

Graph property(ies) NARC= NVAL− 1

Graph model Parts (A) and (B) of Figure5.334respectively show the initial and final graph associated
with the second graph constraint of theExample slot. Since we use theNARC graph
property the arcs of the final graph are stressed in bold.

VARIABLES

1

2

3

4

5

6

7

8

9
NARC=5

1:0,2

2:1,4

4:1,4

5:0,4

6:1,8

7:0,1

8:0,7

(A) (B)

Figure 5.334: Initial and final graph of theincreasing nvalue chain constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20091118 1151

Automaton

Without loss of generality, assume that the collectionVARIABLES contains at least one
variable (i.e.,|VARIABLES| ≥ 1). Let l, m, n, min andmax respectively denote the mini-
mum and maximum possible value of variableNVAL, the number of items of the collection
VARIABLES, the smallest value that can be assigned toVARIABLES[i].var (1 ≤ i ≤ n),
and the largest value that can be assigned toVARIABLES[i].var (1 ≤ i ≤ n). Let
s = max − min + 1 denote the total number of potential values. Clearly, the maximum
value ofNVAL cannot exceed the quantityd = min(m,n). The states of the automaton that
only accepts solutions of theincreasing nvalue chain constraint can be defined in the
following way:

• We have an initial state labelled bys00.

• We haved · s states labelled bysij (1 ≤ i ≤ d, 1 ≤ j ≤ s).

Terminal states depend on the possible values of variableNVAL and correspond to those
statessij such thati is a possible value for variableNVAL. Note that we assume no further
restriction on the domain ofNVAL (otherwise the set of terminal states needs to be reduced
in order to reflect the current set of possible values ofNVAL).

Transitions of the automaton are labelled by a pair of values(α, β) and correspond to
a condition of the formVARIABLES[i].b = α ∧ VARIABLES[i].var = β, (1 ≤ i ≤
n). Characters∗ and + respectively represent all values in{0, 1} and all values in
{min,min + 1, . . . ,max}. Four classes of transitions are respectively defined in the
following way:

1. There is a transition, labelled by the pair(∗,min + j − 1), from the initial states00
to the states1j (1 ≤ j ≤ s). We use the∗ character sinceVARIABLES[1].b is not use
at all in the definition of theincreasing nvalue chain constraint.

2. There is a loop, labelled by the pair(1,min + j − 1) for every statesij (1 ≤ i ≤
d, 1 ≤ j ≤ s).

3. ∀i ∈ [1, d − 1], ∀j ∈ [1, s], ∀k ∈ [j + 1, s] there is a transition labelled by the pair
(1,min + k − 1) from sij to si+1k.

4. ∀i ∈ [1, d − 1], ∀j ∈ [1, s] there is a transition labelled by the pair(0,+) from sij
to si+1 1.

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1152 NARC,PATH ;NARC,PATH

1,8

1,8

1,7

0,+

0,+

0,+

*,8

*,7

*,6
1,6

1,7

1,8

1,8

1,7

s

1,6

21

22
s

s
00 11

s

23
s

12
s

s
13

Figure 5.335: Automaton of theincreasing nvalue chain constraint under the hy-
pothesis that all variables are assigned a value in{6, 7, 8} and thatNVAL is equal to2.
The character * on a transition corresponds to a0 or to a1 and the + corresponds to a
6, 7 or 8.

20091118 1153

1154 PREDEFINED

5.174 increasingsum

DESCRIPTION LINKS

Origin Conjoinincreasing andsum ctr.

Constraint increasing sum(VARIABLES, S)

Synonyms increasing sum ctr, increasing sum eq.

Arguments VARIABLES : collection(var−dvar)
S : dvar

Restrictions required(VARIABLES, var)
increasing(VARIABLES)

Purpose The variables of the collectionVARIABLES are increasing. In addition,S is the sum of
the variables of the collectionVARIABLES.

Example (〈3, 3, 6, 8〉 , 20)

Theincreasing sum constraint holds since:

• The values of the collection〈3, 3, 6, 8〉 are sorted in increasing order.

• S = 20 is set to the sum〈3 + 3 + 6 + 8〉.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Usage Theincreasing sum constraint can be used for breaking some symmetries in bin packing
problems. Given a set ofn bins with the same maximum capacity, and a set of items each of
them with a specific height, the problem is to pack all items in the bins. To break symmetry
we order bins by increasing use. This is done by introducing a variablexi (0 ≤ i < n)
for each bini giving its use, i.e., the sum of items heights assigned to bini, and by posting
the following increasing sum(〈x0, x1, . . . , xn−1〉, s) wheres denotes the sum of the
heights of all the items to pack.

Algorithm A linear time filtering algorithm achievingbound-consistencyfor the increasing sum

constraint is described in [293]. This algorithm was motivated by the fact that achieving
bound-consistencyon the inequality constraints and on the sum constraint independently
hinders propagation, as illustrated by the following small example, where the maximum
value ofx1 is not reduced to2: x1 ∈ [1, 3], x2 ∈ [2, 5], s ∈ [5, 6], x1 < x2, x1 + x2 = s.

Given anincreasing sum(〈x0, x1, . . . , xn−1〉, s) constraint, thebound-consistencyal-
gorithm consists of three phases:

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

20110617 1155

1. A normalisation phase adjusts the minimum and maximum value of variables
x0, x1, . . . , xn−1 with respect to the chain of inequalitiesx0 ≤ x1 ≤ . . . ≤ xn−1.
A forward phase adjusts the minimum value ofx1, x2, . . . , xn−1 (i.e., xi+1 ≥
xi), while a backward phase adjusts the maximum value ofxn−2, xn−1, . . . , x0

(i.e.,xi−1 ≤ xi).

2. A phase restricts the minimum and maximum value of the sum variables with respect
to the chain of inequalitiesx0 ≤ x1 ≤ . . . ≤ xn−1 (i.e., s ≥ ∑

0≤i<n xi and
s ≤ ∑

0≤i<n xi).

3. A final phase reduces the minimum and maximum value of variables
x0, x1, . . . , xn−1 both from the bounds ofs and from the chain of inequalities.
Without loss of generality we now focus on the pruning of the maximum valueof
variablesx0, x1, . . . , xn−1. For this purpose we first need to introduce the notion
of last intersecting index of a variablexi, denoted bylast i. This corresponds to
the greatest index in[i + 1, n − 1] such thatxi > xlasti , or i if no such inte-
ger exists. Then the increase of the minimum value ofs whenxi is equal toxi is
equal to

∑

k∈[i,lasti]
(xi − xk). When this increase exceeds the available margin,

i.e.s−∑

0≤i<n xi, we update the maximum value ofxi.

We illustrate a part of the final phase on the following example
increasing sum(〈x0, x1, x2, x3, x4, x5〉, s), wherex0 ∈ [2, 6], x1 ∈ [4, 7], x2 ∈ [4, 7],
x3 ∈ [5, 7], x4 ∈ [6, 9], x5 ∈ [7, 9] ands ∈ [28, 29]. Observe that the domains are
consistent with the first two phases of the algorithm, since,

1. the minimum (and maximum) values of variablesx0, x1, x2, x3, x4, x5 are increas-
ing,

2. the sum of the minimum of the variablesx0, x1, x2, x3, x4, x5, i.e.,28 is less than
or equal to the maximum value ofs,

3. the sum of the maximum of the variablesx0, x1, x2, x3, x4, x5, i.e., 45 is greater
than or equal to the minimum value ofs.

Now, assume we want to know the increase of the minimum value ofs whenx0 is set to its
maximum value6. First we compute the last intersecting index of variablex0. Sincex4 is
the last variable for which the minimum value is less than or equal to maximum value ofx0

we havelast0 = 4. The increase is equal to
∑

k∈[0,4](x0−xk) = (6−2)+(6−4)+(6−
4)+ (6− 5)+ (6− 6) = 9. Since it exceeds the margin29− (2+4+4+5+6+7) = 1
we have to reduce the maximum value ofx0. How to do this incrementally is described
in [293].

See also common keyword:sum ctr (sum).

implies: increasing.

Keywords characteristic of a constraint: sum.

constraint type: predefined constraint, order constraint, arithmetic constraint.

filtering: bound-consistency.

symmetry: symmetry.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1156 PRODUCT , ∀, SUCC

5.175 indexedsum

DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint indexed sum(ITEMS, TABLE)

Arguments ITEMS : collection(index−dvar, weight−dvar)
TABLE : collection(index−int, summation−dvar)

Restrictions |ITEMS| > 0
|TABLE| > 0
required(ITEMS, [index, weight])
ITEMS.index ≥ 1
ITEMS.index ≤ |TABLE|
required(TABLE, [index, summation])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
increasing seq(TABLE, index)

Purpose

Given several items of the collectionITEMS (each of them having a specific fixedindex
as well as aweight that may be negative or positive), and a tableTABLE (each entry of
TABLE corresponding to asummation variable), assign each item to an entry ofTABLE

so that the sum of the weights of the items assigned to that entry is equal to the corre-
spondingsummation variable.

Example

〈

index− 3 weight−−4,
index− 1 weight− 6,
index− 3 weight− 1

〉

,

〈

index− 1 summation− 6,
index− 2 summation− 0,
index− 3 summation−−3

〉

The indexed sum constraint holds since the summation variables associated with
each entry ofTABLE are equal to the sum of the weights of the items assigned to the
corresponding entry:

• TABLE[1].summation = ITEMS[2].weight = 6 (since TABLE[1].index =
ITEMS[2].index = 1),

• TABLE[2].summation = 0 (sinceTABLE[2].index = 2 does not occur as a value of
theindex attribute of an item ofITEMS),

• TABLE[3].summation = ITEMS[1].weight + ITEMS[3].weight = −4 + 1 = −3
(sinceTABLE[3].index = ITEMS[1].index = ITEMS[3].index = 3).

Typical |ITEMS| > 1
range(ITEMS.index) > 1
|TABLE| > 1
range(TABLE.summation) > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20040814 1157

Symmetries • Items ofITEMS arepermutable.

• Items ofTABLE arepermutable.

Reformulation Theindexed sum(ITEMS, TABLE) constraint can be expressed in term of a set of reified
constraints and of|TABLE| arithmetic constraints (i.e.,scalar product constraints).

1. For each itemITEMS[i] (i ∈ [1, |ITEMS|]) and for each table entryj (j ∈
[1, |TABLE|]) of TABLE we create a0-1 variableBij that will be set to1 if and only
if ITEMS[i].index is fixed toj (i.e.,Bij ⇔ ITEMS[i].index = j).

2. For each entryj of the tableTABLE, we impose the sumITEMS[1].weight · B1j +
ITEMS[2].weight · B2j + . . . + ITEMS[|ITEMS|].weight · B|ITEMS|j to be equal to
TABLE[j].summation.

See also specialisation:bin packing (negative contribution not allowed, effective use variable for
each bin replaced by an overall fixed capacity), bin packing capa (negative contribution
not allowed, effective use variable for each bin replaced by a fixed capacity for each bin).

used in graph description:sum ctr.

Keywords application area: assignment.

modelling: variable indexing, variable subscript.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1158 PRODUCT , ∀, SUCC

For all items ofTABLE:

Arc input(s) ITEMS TABLE

Arc generator PRODUCT 7→collection(items, table)

Arc arity 2

Arc constraint(s) items.index = table.index

Sets SUCC 7→

source,

variables− col

(

VARIABLES−collection(var−dvar),
[item(var− ITEMS.weight)]

)

Constraint(s) on sets sum ctr(variables,=, TABLE.summation)

Graph model We enforce thesum ctr constraint on the weight of the items that are assigned to the same
entry. Within the context of theExample slot, part (A) of Figure5.336shows the initial
graphs associated with entries1, 2 and3 (i.e., one initial graph for each item of theTABLE
collection). Part (B) of Figure5.336shows the corresponding final graphs associated with
entries1 and3. Each source vertex of the final graph can be interpreted as an item assigned
to a specific entry ofTABLE.

ITEMS

TABLE

1

1 23

2 3

TABLE:1 TABLE:3

2:1,6

1:1,6

1:3,-4

3:3,-3

3:3,1

(A) (B)

Figure 5.336: Initial and final graph of theindexed sum constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20040814 1159

1160 AUTOMATON

5.176 inflexion

DESCRIPTION LINKS AUTOMATON

Origin N. Beldiceanu

Constraint inflexion(N, VARIABLES)

Arguments N : dvar

VARIABLES : collection(var−dvar)

Restrictions N ≥ 0
N ≤ max(0, |VARIABLES| − 2)
required(VARIABLES, var)

Purpose

N is equal to the number of times that the following conjunctions of constraints hold:

• Xi CTRXi+1 ∧Xi 6= Xi+1,

• Xi+1 = Xi+2 ∧ · · · ∧Xj−2 = Xj−1,

• Xj−1 6= Xj ∧Xj−1 ¬CTRXj .

whereXk is thekth item of theVARIABLES collection and1 ≤ i, i+ 2 ≤ j, j ≤ n and
CTR is < or>.

Example

3,

〈

var− 1,
var− 1,
var− 4,
var− 8,
var− 8,
var− 2,
var− 7,
var− 1

〉

The inflexion constraint holds since the sequence1 1 4 8 8 2 7 1 contains three
inflexions peaks that respectively correspond to values8, 2 and7.

Typical N > 0
|VARIABLES| > 2
range(VARIABLES.var) > 1

Symmetries • Items ofVARIABLES can bereversed.

• One and the same constant can beaddedto the var attribute of all items of
VARIABLES.

Usage Useful for constraining the number ofinflexionsof a sequence of domain variables.

Remark Since the arity of the arc constraint is not fixed, theinflexion constraint cannot be cur-
rently described. However, this would not hold anymore if we were introducing a slot that
specifies how to merge adjacent vertices of the final graph.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

20000128 1161

See also common keyword:global contiguity, peak, valley (sequence).

Keywords characteristic of a constraint: automaton, automaton with counters.

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(2).

7

1

1 5 6 7 8

2

3

4

5

6

43

7

8

1

4

8 8

1

Values

Variables

1

2

2

Figure 5.337: The sequence1 1 4 8 8 2 7 1 and its three inflexions

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1162 AUTOMATON

Automaton Figure5.338depicts the automaton associated with theinflexion constraint. To each
pair of consecutive variables(VARi, VARi+1) of the collectionVARIABLES corresponds
a signature variableSi. The following signature constraint linksVARi, VARi+1 and Si:
(VARi > VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi < VARi+1 ⇔
Si = 2).

{C=0}

{C=C+1}
iVAR >VAR ,

i+1
{C=C+1}

iVAR <VAR ,i+1iVAR =VAR

i+1iVAR =VAR

i+1iVAR <VAR

i+1iVAR =VAR

i+1iVAR <VAR i+1iVAR >VAR

i+1iVAR >VAR

N=CN=C
j:i:

s:
N=C

i+1

Figure 5.338: Automaton of theinflexion constraint

n−1Q =s

0C =0 1C

1Q

1
VAR

1S

2
VAR

2S

n
VAR

3
VAR

n−1S

n−1
VAR

3S

2Q

2C n−1C =N

j
i
s

Q =0

Figure 5.339: Hypergraph of the reformulation corresponding to the automaton of the
inflexion constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20000128 1163

1164 LOGIC

5.177 insidesboxes

DESCRIPTION LINKS LOGIC

Origin Geometry, derived from [318]

Constraint inside sboxes(K, DIMS, OBJECTS, SBOXES)

Synonym inside.

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)

Arguments K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−int, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− POSITIVES)

Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
K > 0
DIMS ≥ 0
DIMS < K

increasing seq(OBJECTS, [oid])
required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
|SBOXES| ≥ 1
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
do not overlap(SBOXES)

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

20070622 1165

Purpose

Holds if, for each pair of objects(Oi, Oj), i < j, Oi is insideOj with respect to a set
of dimensions depicted byDIMS. Oi andOj are objects that take a shape among a set
of shapes. Eachshapeis defined as a finite set of shifted boxes, where each shifted box
is described by a box in aK-dimensional space at a given offset (from the origin of the
shape) with given sizes. More precisely, ashifted boxis an entity defined by its shape
id sid, shift offsett, and sizesl. Then, a shape is defined as the union of shifted boxes
sharing the same shape id. Anobject is an entity defined by its unique object identifier
oid, shape idsid and originx.
An objectOi is insidean objectOj with respect to a set of dimensions depicted byDIMS

if and only if, for all shifted boxessi associated withOi, there exists a shifted boxsj of
Oj such thatsj is insidesi. A shifted boxsj is insidea shifted boxsi if and only if, for
all dimensionsd ∈ DIMS, (1) the start ofsj in dimensiond is strictly less than the start
of si in dimensiond, and (2) the end ofsi in dimensiond is strictly less than the end of
sj in dimensiond.

Example

2, {0, 1},
〈

oid− 1 sid− 1 x− 〈3, 3〉 ,
oid− 2 sid− 2 x− 〈2, 2〉 ,
oid− 3 sid− 3 x− 〈1, 1〉

〉

,

〈

sid− 1 t− 〈0, 0〉 l− 〈1, 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈3, 3〉 ,
sid− 3 t− 〈0, 0〉 l− 〈5, 5〉

〉

Figure 5.340 shows the objects of the example. SinceO1 is insideO2 and O3, and
sinceO2 is also insideO3, theinside sboxes constraint holds.

(B) Shapes of the

S2

third object

S3

(A) Shape of the
first object

S1

(C) Shape of the

1

4

2

3

4

5

6

second object

521

is inside O2 and O3, and O2 is inside O3
(D) Three objects O1, O2 and O3, where O1

3

O3

O1

O2

Figure 5.340: The three objects of the example

Typical |OBJECTS| > 1

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

1166 LOGIC

Symmetries • Items ofSBOXES arepermutable.

• Items ofOBJECTS.x, SBOXES.t andSBOXES.l arepermutable(same permutation
used).

Arg. properties
Suffix-contractiblewrt. OBJECTS.

Remark One of the eight relations of theRegion Connection Calculus[318]. The constraint
inside sboxes is a restriction of the original relation since it requires that each box of
an object is contained by one box of the other object.

See also common keyword: contains sboxes, coveredby sboxes,
covers sboxes, disjoint sboxes, equal sboxes, meet sboxes (rcc8),
non overlap sboxes (geometrical constraint,logic), overlap sboxes (rcc8).

Keywords constraint type: logic.

geometry:geometrical constraint, rcc8.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20070622 1167

Logic
• origin(O1, S1, D)

def
= O1.x(D) + S1.t(D)

• end(O1, S1, D)
def
= O1.x(D) + S1.t(D) + S1.l(D)

• inside sboxes(Dims, O1, S1, O2, S2)
def
=

∀D ∈ Dims

∧

origin(O2, S2, D) <
origin(O1, S1, D)

,

end(O1, S1, D) <
end(O2, S2, D)

• inside objects(Dims, O1, O2)
def
=

∀S1 ∈ sboxes([O1.sid])
∃S2 ∈ sboxes

([

O2.sid
])

inside sboxes

Dims,
O1,
S1,
O2,
S2

• all inside(Dims, OIDS)
def
=

∀O1 ∈ objects(OIDS)
∀O2 ∈ objects(OIDS)

O1.oid <
O2.oid

⇒

inside objects

Dims,
O1,
O2

• all inside(DIMENSIONS, OIDS)

Logic
Explicit description in terms of first order logic formulae of the meaning of the constraint.

1168 AUTOMATON

5.178 int value precede

DESCRIPTION LINKS AUTOMATON

Origin [240]

Constraint int value precede(S, T, VARIABLES)

Synonyms precede, precedence, value precede.

Arguments S : int

T : int

VARIABLES : collection(var−dvar)

Restrictions S 6= T

required(VARIABLES, var)

Purpose
If valueT occurs in the collection of variablesVARIABLES then its first occurrence should
be preceded by an occurrence of valueS.

Example (0, 1, 〈4, 0, 6, 1, 0〉)

The int value precede constraint holds since the first occurrence of value0 pre-
cedes the first occurrence of value1.

Typical S < T

|VARIABLES| > 1
atleast(1, VARIABLES, S)
atleast(1, VARIABLES, T)

Symmetries • An occurrence of a value ofVARIABLES.var that is different fromS andT can be
replacedby any other value that is also different fromS andT.

• All occurrences of valuesS andT can beswappedin S, T andVARIABLES.var.

Arg. properties
• Suffix-contractiblewrt. VARIABLES.

• Aggregate: S(id), T(id), VARIABLES(union).

Algorithm A filtering algorithm for maintaining value precedence is presented in [240]. Its complexity
is linear to the number of variables of the collectionVARIABLES.

Systems precede in Gecode, value precede in MiniZinc .

See also generalisation: int value precede chain (sequence of 2 values replaced by
sequence of at least2 values), set value precede (sequence of domain variables
replaced bysequence of set variables).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntPrecede.html
http://www.gecode.org/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#value_precede
http://www.g12.cs.mu.oz.au/minizinc/

See also
Related constraints grouped by semantics links.

20041003 1169

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

filtering: arc-consistency.

symmetry: symmetry, indistinguishable values, value precedence.

Keywords
Related keywords grouped by meta-keywords.

1170 AUTOMATON

Automaton Figure5.341depicts the automaton associated with theint value precede constraint.
Let VARi be theith variable of theVARIABLES collection. To each triple(S, T, VARi) corre-
sponds a signature variableSi as well as the following signature constraint:(VARi = S ⇔
Si = 1) ∧ (VARi = T ⇔ Si = 2) ∧ (VARi 6= S ∧ VARi 6= T ⇔ Si = 3).

s

i

t

VAR <>S and VAR <>Ti i

i iVAR <>S and VAR <>T

iVAR =S

VAR =Ti

VAR =S

Figure 5.341: Automaton of theint value precede constraint

n

VAR
2

VAR1
VAR

0Q =s 1Q Q =
t

s

n

Figure 5.342: Hypergraph of the reformulation corresponding to the automaton of the
int value precede constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20041003 1171

1172 AUTOMATON

5.179 int value precedechain

DESCRIPTION LINKS AUTOMATON

Origin [240]

Constraint int value precede chain(VALUES, VARIABLES)

Synonyms precede, precedence, value precede chain.

Arguments VALUES : collection(var−int)
VARIABLES : collection(var−dvar)

Restrictions required(VALUES, var)
distinct(VALUES, var)
required(VARIABLES, var)

Purpose

Assumingn denotes the number of items of theVALUES collection, the following con-
dition holds for everyi ∈ [1, n − 1]: When it is defined, the first occurrence of the
(i + 1)th value of theVALUES collection should be preceded by the first occurrence of
theith value of theVALUES collection.

Example
(

〈4, 0, 1〉 ,
〈4, 0, 6, 1, 0〉

)

The int value precede chain constraint holds since within the sequence4, 0, 6,
1, 0:

• The first occurrence of value4 occurs before the first occurrence of value0.

• The first occurrence of value0 occurs before the first occurrence of value1.

Typical |VALUES| > 1
strictly increasing(VALUES)
|VARIABLES| > |VALUES|
range(VARIABLES.var) > 1
used by(VARIABLES, VALUES)

Symmetry An occurrence of a value ofVARIABLES.var that does not occur inVALUES.var can be
replaced by any other value that also does not occur inVALUES.var.

Arg. properties
• Contractiblewrt. VALUES.

• Suffix-contractiblewrt. VARIABLES.

• Aggregate: VALUES(id), VARIABLES(union).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

20041003 1173

Usage The int value precede chain constraint is useful for breaking symmetries in
graph colouringproblems. We set aint value precede chain constraint on all vari-
ablesV1, V2, . . . , Vn associated with the vertices of the graph to colour, where we state
that the first occurrence of colouri should be located before the first occurrence of colour
i+ 1 within the sequenceV1, V2, . . . , Vn.

Figure 5.343 illustrates the problem ofcolouring earth and marsfrom Thom Sulanke.
Part (A) of Figure5.343provides a solution where the first occurrence of each value ofi,
(i ∈ {1, 2, . . . , 8}) is located before the first occurrence of valuei + 1. This is obtained
by using the following constraints:

A 6= B, A 6= E, A 6= F, A 6= G, A 6= H, A 6= I, A 6= J, A 6= K,
B 6= A, B 6= C, B 6= F, B 6= G, B 6= H, B 6= I, B 6= J, B 6= K,
C 6= B, C 6= D, C 6= F, C 6= G, C 6= H, C 6= I, C 6= J, C 6= K,
D 6= C, D 6= E, D 6= F, D 6= G, D 6= H, D 6= I, D 6= J, D 6= K,
E 6= A, E 6= D, E 6= F, E 6= G, E 6= H, E 6= I, E 6= J, E 6= K,
F 6= A, F 6= B, F 6= C, F 6= D, F 6= E, F 6= G, F 6= H, F 6= I, F 6= J, F 6= K,
G 6= A, G 6= B, G 6= C, G 6= D, G 6= E, G 6= F, G 6= H, G 6= I, G 6= J, G 6= K,
H 6= A, H 6= B, H 6= C, H 6= D, H 6= E, H 6= F, H 6= G, H 6= I, H 6= J, H 6= K,
I 6= A, I 6= B, I 6= C, I 6= D, I 6= E, I 6= F, I 6= G, I 6= H, I 6= J, I 6= K,
J 6= A, J 6= B, J 6= C, J 6= D, J 6= E, J 6= F, J 6= G, J 6= H, J 6= I, J 6= K,
K 6= A, K 6= B, K 6= C, K 6= D, K 6= E, K 6= F, K 6= G, K 6= H, K 6= I, K 6= J,
int value precede chain(〈1, 2, 3, 4, 5, 6, 7, 8, 9〉 , 〈A, B, C, D, E, F, G, H, I, J, K〉).

Part (B) provides a symmetric solution where the value precedence constraints between
the pairs of values(1, 2), (2, 3), (4, 5), (7, 8) and(8, 9) are all violated (each violation is
depicted by a dashed curve).

Remark When we have more than one class of interchangeable values (i.e., a partition of inter-
changeable values) we can use oneint value precede chain constraint for breaking
value symmetry in each class of interchangeable values. However it wasshown in [414]
that enforcingarc-consistencyfor such a conjunction ofint value precede chain con-
straints is NP-hard.

Algorithm The 2004 reformulation [27] associated with the automaton of theAutoma-
ton slot achievesarc-consistencysince the corresponding constraint network is a
Berge-acyclic constraint network. Later on, another formulation into a sequence of ternary
sliding constraints was proposed by [413]. It also achievesarc-consistencyfor the same
reason.

Systems precede in Gecode, value precede chain in MiniZinc .

See also specialisation: int value precede (sequence of at least 2 values replaced by
sequence of 2 values).

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntPrecede.html
http://www.gecode.org/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#value_precede_chain
http://www.g12.cs.mu.oz.au/minizinc/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1174 AUTOMATON

A

VALUES:

(A)

VARIABLES: KJIHGFEDCA B

78961423535

98765432121

KJIHGFEDCA B

VALUES:

VARIABLES:

C
F

H

I
J

K A

B

D

E

G

BE

H

K

D C

I F

A

G

J

(B)

C
F

H

I
J

K

B

D

E

G

BE

H

K

D C

I F

A

G

J

Figure 5.343: Using theint value precede chain constraint for breaking symme-
tries in graph colouring problems; there is a curve between the first occurrence of value
v (1 ≤ v ≤ 8) in the sequence of variablesA, B, C, D, E, F, G, H, I, J, K, and the first oc-
currence of valuev+1 (a plain curve if the corresponding value precedence constraint
holds, a dashed curve otherwise)

20041003 1175

filtering: arc-consistency.

problems: graph colouring.

symmetry: symmetry, indistinguishable values, value precedence.

1176 AUTOMATON

Automaton Figure5.344depicts the automaton associated with theint value precede chain con-
straint. Letn andm respectively denote the number of variables of theVARIABLES col-
lection and the number of values of theVALUES collection. LetVARi be theith variable of
theVARIABLES collection. Letvalv (1 ≤ v ≤ m) denote thevth value of theVALUES
collection.

VAR =val or ... or VAR = val

VAR =val

s
m

m−1
s

s
2

1
s

s
0

not_in(VAR ,VALUES) i

 inot_in(VAR ,VALUES)

 inot_in(VAR ,VALUES)

 inot_in(VAR ,VALUES)

 inot_in(VAR ,VALUES)

i 1VAR =val

i 2VAR =val

i 3VAR =val

i 1VAR =val

i 1 i 2VAR =val or VAR =val

i 1 i m

i 1 i m−1

VAR =val or ... or VAR = val

i m

Figure 5.344: Automaton of theint value precede chain constraint

0
0

VAR
1 VAR

2
VAR

n

Q1
ms

...Q =n0Q =s
s

Figure 5.345: Hypergraph of the reformulation corresponding to the automaton of the
int value precede chain constraint

We now show how to construct such an automaton systematically. For this purpose let us
first introduce some notations:

• Without loss of generality we assume that we have at least two values (i.e., m ≥ 2).

• Let C be the set of values that can be potentially assigned to a variable
of the VARIABLES collection, but which do not belong to the values of the
VALUES collection (i.e.,C = (dom(VAR1) ∪ dom(VAR2) ∪ . . . ∪ dom(VARn) −
{val1, val2, . . . , valm} = {w1, w2, . . . , w|C|}.

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20041003 1177

The states and transitions of the automaton are respectively defined in the following way:

• We havem + 1 states labelleds0, s1, . . . , sm from whichs0 is the initial state. All
states are terminal states.

• We have the following three sets of transitions:

1. For allv ∈ [0,m − 1], a transition fromsv to sv+1 labelled by valuevalv+1.
Each transition of this type will be triggered on the first occurrence of value
valv+1 within the variables of theVARIABLES collection.

2. For allv ∈ [1,m] and for allw ∈ [1, v], a self loop onsv labelled by value
valw. Such transitions encode the fact that we stay in the same state as long as
we have a value that was already encountered.

3. If the setC is not empty, then for allv ∈ [0,m] a self loop onsv labelled by
the fact that we take a value not inVALUES (i.e., a value inC). This models the
fact that, encountering a value that does not belong to the set of values of the
VALUES collection, leaves us in the same state.

1178 PRODUCT , SUCC

5.180 interval and count

DESCRIPTION LINKS GRAPH AUTOMATON

Origin [119]

Constraint interval and count(ATMOST, COLOURS, TASKS, SIZE INTERVAL)

Arguments ATMOST : int

COLOURS : collection(val−int)
TASKS : collection(origin−dvar, colour−dvar)
SIZE INTERVAL : int

Restrictions ATMOST ≥ 0
required(COLOURS, val)
distinct(COLOURS, val)
required(TASKS, [origin, colour])
TASKS.origin ≥ 0
SIZE INTERVAL > 0

Purpose

First consider the set of tasks of theTASKS collection, where each task has a spe-
cific colour that may not be initially fixed. Then consider the intervals of the form
[k · SIZE INTERVAL, k · SIZE INTERVAL + SIZE INTERVAL − 1], wherek is an inte-
ger. Theinterval and count constraint enforces that, for each intervalIk previously
defined, the total number of tasks, which both are assigned toIk and take their colour in
COLOURS, does not exceed the limitATMOST.

Example

2, 〈4〉 ,
〈

origin− 1 colour− 4,
origin− 0 colour− 9,
origin− 10 colour− 4,
origin− 4 colour− 4

〉

, 5

Figure 5.346 shows the solution associated with the example. The constraint
interval and count holds since, for each interval, the number of tasks taking
colour4 does not exceed the limit2.

<3

11 12 13 14

<>4

=4

0 1 2 3 4 5 6 7 8 9 10

31

4

2

Figure 5.346: Solution with the use of each interval

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20000128 1179

Typical ATMOST > 0
ATMOST < |TASKS|
|COLOURS| > 0
|TASKS| > 1
range(TASKS.origin) > 1
range(TASKS.colour) > 1
SIZE INTERVAL > 1

Symmetries • ATMOST can beincreased.

• Items ofCOLOURS arepermutable.

• Items ofTASKS arepermutable.

• One and the same constant can beaddedto theorigin attribute of all items of
TASKS.

• An occurrence of a value ofTASKS.origin that belongs to thek-th interval, of
sizeSIZE INTERVAL, can bereplacedby any other value of the same interval.

• An occurrence of a value ofTASKS.colour that belongs toCOLOURS.val
(resp. does not belong toCOLOURS.val) can bereplacedby any other value in
COLOURS.val (resp. not inCOLOURS.val).

Arg. properties
• Contractiblewrt. COLOURS.

• Contractiblewrt. TASKS.

Usage This constraint was originally proposed for dealing with timetabling problems. In this
context the different intervals are interpreted as morning and afternoon periods of different
consecutive days. Each colour corresponds to a type of course (i.e., French, mathematics).
There is a restriction on the maximum number of courses of a given type each morning as
well as each afternoon.

Remark If we want to only consider intervals that correspond to the morning or to the afternoon we
could extend theinterval and count constraint in the following way:

• We introduce two extra parametersREST and QUOTIENT that correspond to non-
negative integers such thatREST is strictly less thanQUOTIENT,

• We add the following condition to the arc constraint:
(tasks1.origin/SIZE INTERVAL) ≡ REST(mod QUOTIENT)

Now, if we want to express a constraint on the morning intervals, we setREST to 0 and
QUOTIENT to 2.

Reformulation Let K denote the index of the last possible interval where the tasks can

be assigned: K = ⌊maxi∈[1,|TASKS|](TASKS[i].origin)+SIZE INTERVAL−1

SIZE INTERVAL
⌋. The

interval and count(ATMOST, COLOURS, TASKS, SIZE INTERVAL) constraint can
be expressed in term of a set of reified constraints and ofK arithmetic constraints
(i.e.,sum ctr constraints).

1. For each taskTASKS[i] (i ∈ [1, |TASKS|]) of theTASKS collection we create a0-1
variableBi that will be set to1 if and only if taskTASKS[i] takes a colour within the

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

1180 PRODUCT , SUCC

set of coloursCOLOURS:
Bi ⇔ TASKS[i].colour = COLOURS[1].val ∨

TASKS[i].colour = COLOURS[2].val ∨
. .
TASKS[i].colour = COLOURS[|COLOURS|].val.

2. For each taskTASKS[i] (i ∈ [1, |TASKS|]) and for each interval[k ·
SIZE INTERVAL, k ·SIZE INTERVAL+SIZE INTERVAL−1] (k ∈ [0,K]) we create
a0-1 variableBik that will be set to1 if and only if, both taskTASKS[i] takes a colour
within the set of coloursCOLOURS, and the origin of taskTASKS[i] is assigned within
interval[k · SIZE INTERVAL, k · SIZE INTERVAL+ SIZE INTERVAL− 1]:
Bik ⇔ Bi ∧

TASKS[i].origin ≥ k · SIZE INTERVAL ∧
TASKS[i].origin ≤ k · SIZE INTERVAL+ SIZE INTERVAL− 1

3. Finally, for each interval [k · SIZE INTERVAL, k · SIZE INTERVAL +
SIZE INTERVAL−1] (k ∈ [0,K]), we impose the sumB1k +B2k + . . .+B|TASKS|k

to not exceed the maximum allowed capacityATMOST.

See also assignment dimension removed:among low up (assignment dimensioncorresponding
to intervals is removed).

related: interval and sum (among low up constraint replaced bysum ctr).

used in graph description:among low up.

Keywords application area: assignment.

characteristic of a constraint: coloured, automaton, automaton with array of counters.

constraint type: timetabling constraint, resource constraint, temporal constraint.

modelling: assignment dimension, interval.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20000128 1181

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) tasks1.origin/SIZE INTERVAL = tasks2.origin/SIZE INTERVAL

Sets SUCC 7→

source,

variables− col

(

VARIABLES−collection(var−dvar),
[item(var− TASKS.colour)]

)

Constraint(s) on sets among low up(0, ATMOST, variables, COLOURS)

Graph model We use a bipartite graph where each class of vertices corresponds to thedifferent tasks of
theTASKS collection. There is an arc between two tasks if their origins belong to the same
interval. Finally we enforce anamong low up constraint on each setS of successors of the
different vertices of the final graph. This put a restriction on the maximum number of tasks
of S for which the colour attribute takes its value inCOLOURS.

Parts (A) and (B) of Figure5.347respectively show the initial and final graph associated
with theExampleslot. Each connected component of the final graph corresponds to items
that are all assigned to the same interval.

TASKS

TASKS

1

1234

234

TASKS

TASKS

1:1,4

1:1,4 2:0,94:4,4

2:0,93:10,4

3:10,4

4:4,4

(A) (B)

Figure 5.347: Initial and final graph of theinterval and count constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1182 PRODUCT , SUCC

Automaton Figure5.348depicts the automaton associated with theinterval and count constraint.
Let COLOURi be thecolour attribute of theith item of theTASKS collection. To each pair
(COLOURS, COLOURi) corresponds a signature variableSi as well as the following signature
constraint:COLOURi ∈ COLOURS ⇔ Si.

s:

{C[_]=0}

iin(COLOUR ,COLOURS),

i i{C[ORIGIN /SIZE_INTERVAL]=C[ORIGIN /SIZE_INTERVAL]+1} inot_in(COLOUR ,COLOURS) arith(C,<=,ATMOST)

Figure 5.348: Automaton of theinterval and count constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20000128 1183

1184 PRODUCT , SUCC

5.181 interval and sum

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromcumulative.

Constraint interval and sum(SIZE INTERVAL, TASKS, LIMIT)

Arguments SIZE INTERVAL : int

TASKS : collection(origin−dvar, height−dvar)
LIMIT : int

Restrictions SIZE INTERVAL > 0
required(TASKS, [origin, height])
TASKS.origin ≥ 0
TASKS.height ≥ 0
LIMIT ≥ 0

Purpose

A maximum resource capacity constraint: We have to fix the origins of a collection of
tasks in such a way that, for all the tasks that are allocated to the same interval, the sum
of the heights does not exceed a given capacity. All the intervals we consider have the
following form: [k ·SIZE INTERVAL, k ·SIZE INTERVAL+SIZE INTERVAL−1], where
k is an integer.

Example

5,

〈
origin− 1 height− 2,
origin− 10 height− 2,
origin− 10 height− 3,
origin− 4 height− 1

〉

, 5

Figure 5.349 shows the solution associated with the example. The constraint
interval and sum holds since the sum of the heights of the tasks that are located
in the same interval does not exceed the limit5. Each taskt is depicted by a rectangler
associated with the interval to which the taskt is assigned. The rectangler is labelled
with the position oft within the items of theTASKS collection. The origin of taskt is
represented by a small black square located within its corresponding rectangler. Finally,
the height of a rectangler is equal to the height of the taskt to which it corresponds.

4
2
3
4
5

1
1 2 3 4 5 6 7 8 9 10 11 12 13 140

<6

1

2

3

Figure 5.349: Solution showing for each interval the corresponding tasks

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20000128 1185

Typical SIZE INTERVAL > 1
|TASKS| > 1
range(TASKS.origin) > 1
range(TASKS.height) > 1
LIMIT <sum(TASKS.height)

Symmetries • Items ofTASKS arepermutable.

• One and the same constant can beaddedto theorigin attribute of all items of
TASKS.

• An occurrence of a value ofTASKS.origin that belongs to thek-th interval, of
sizeSIZE INTERVAL, can bereplacedby any other value of the same interval.

• TASKS.height can bedecreasedto any value≥ 0.

• LIMIT can beincreased.

Arg. properties
Contractiblewrt. TASKS.

Usage This constraint can be use for timetabling problems. In this context the different intervals
are interpreted as morning and afternoon periods of different consecutive days. We have
a capacity constraint for all tasks that are assigned to the same morning or afternoon of a
given day.

Reformulation Let K denote the index of the last possible interval where the tasks can

be assigned: K = ⌊maxi∈[1,|TASKS|](TASKS[i].origin)+SIZE INTERVAL−1

SIZE INTERVAL
⌋. The

interval and sum(SIZE INTERVAL, TASKS, LIMIT) constraint can be expressed in
term of a set of reified constraints and ofK arithmetic constraints (i.e.,scalar product

constraints).

1. For each taskTASKS[i] (i ∈ [1, |TASKS|]) and for each interval[k ·
SIZE INTERVAL, k ·SIZE INTERVAL+SIZE INTERVAL−1] (k ∈ [0,K]) we create
a0-1 variableBik that will be set to1 if and only if the origin of taskTASKS[i] is as-
signed within interval[k ·SIZE INTERVAL, k ·SIZE INTERVAL+SIZE INTERVAL−
1]:
Bik ⇔ TASKS[i].origin ≥ k · SIZE INTERVAL ∧

TASKS[i].origin ≤ k · SIZE INTERVAL+ SIZE INTERVAL− 1

2. Finally, for each interval [k · SIZE INTERVAL, k · SIZE INTERVAL +
SIZE INTERVAL − 1] (k ∈ [0,K]), we impose the sumTASKS[1].height ·
B1k + TASKS[2].height · B2k + . . . + TASKS[|TASKS|].height · B|TASKS|k to not
exceed the maximum allowed capacityLIMIT.

See also assignment dimension removed:sum ctr (assignment dimensioncorresponding to inter-
vals is removed).

related: interval and count (sum ctr constraint replaced byamong low up).

used in graph description:sum ctr.

Keywords application area: assignment.

characteristic of a constraint: automaton, automaton with array of counters.

constraint type: timetabling constraint, resource constraint, temporal constraint.

modelling: assignment dimension, interval.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1186 PRODUCT , SUCC

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) tasks1.origin/SIZE INTERVAL = tasks2.origin/SIZE INTERVAL

Sets SUCC 7→

source,

variables− col

(

VARIABLES−collection(var−dvar),
[item(var− TASKS.height)]

)

Constraint(s) on sets sum ctr(variables,≤, LIMIT)

Graph model We use a bipartite graph where each class of vertices corresponds to thedifferent tasks
of theTASKS collection. There is an arc between two tasks if their origins belong to the
same interval. Finally we enforce asum ctr constraint on each setS of successors of the
different vertices of the final graph. This put a restriction on the maximum value of the
sum of theheight attributes of the tasks ofS.

Parts (A) and (B) of Figure5.350respectively show the initial and final graph associated
with theExampleslot. Each connected component of the final graph corresponds to items
that are all assigned to the same interval.

TASKS

TASKS

1

1234

234

TASKS

TASKS

1:1,2

1:1,24:4,1

2:10,2

2:10,2 3:10,3

3:10,3 4:4,1

(A) (B)

Figure 5.350: Initial and final graph of theinterval and sum constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 1187

Automaton Figure5.351depicts the automaton associated with theinterval and sum constraint. To
each item of the collectionTASKS corresponds a signature variableSi that is equal to1.

arith(C,<=,LIMIT) {C[ORIGIN /SIZE_INTERVAL]=C[ORIGIN /SIZE_INTERVAL]+HEIGHT }

1,

{C[_]=0}

s:

i i i

Figure 5.351: Automaton of theinterval and sum constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1188 NARC,CLIQUE

5.182 inverse

DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint inverse(NODES)

Synonyms assignment, channel, inverse channeling.

Argument NODES : collection(index−int, succ−dvar, pred−dvar)

Restrictions required(NODES, [index, succ, pred])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|
NODES.pred ≥ 1
NODES.pred ≤ |NODES|

Purpose

Enforce each vertex of a digraph to have exactly one predecessor and one successor. In
addition the following two statements are equivalent:

1. The successor of theith node is thejth node.

2. The predecessor of thejth node is theith node.

Example

〈

index− 1 succ− 2 pred− 2,
index− 2 succ− 1 pred− 1,
index− 3 succ− 5 pred− 4,
index− 4 succ− 3 pred− 5,
index− 5 succ− 4 pred− 3

〉

Theinverse constraint holds since:

• NODES[1].succ = 2 ⇔ NODES[2].pred = 1,

• NODES[2].succ = 1 ⇔ NODES[1].pred = 2,

• NODES[3].succ = 5 ⇔ NODES[5].pred = 3,

• NODES[4].succ = 3 ⇔ NODES[3].pred = 4,

• NODES[5].succ = 4 ⇔ NODES[4].pred = 5.

Typical |NODES| > 1

Symmetries • Items ofNODES arepermutable.

• Attributes ofNODES arepermutablew.r.t. permutation(index) (succ, pred) (per-
mutation applied to all items).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20000128 1189

Arg. properties
• Functional dependency: NODES.succ determined by NODES.index and

NODES.pred.

• Functional dependency: NODES.pred determined by NODES.index and
NODES.succ.

Usage This constraint is used in order to make the link between the successor andthe predeces-
sor variables. This is sometimes required by specific heuristics that use both predecessor
and successor variables. In some problems, thesuccessor andpredecessor variables are
respectively interpreted ascolumnan row variables (i.e., we have a bijection between the
successor variables and their values). This is for instance the case in then-queens problem
(i.e., placen queens on an by n chessboard in such a way that no two queens are on the
same row, the same column or the same diagonal) when we use the followingmodel: to
each column of the chessboard we associate a variable that gives the row where the cor-
responding queen is located. Symmetrically, to each row of the chessboard we create a
variable that indicates the column where the associated queen is placed. Having these two
sets of variables, we can now write a heuristics that selects the column or therow for which
we have the fewest number of alternatives for placing a queen.

Remark In the originalinverse constraint ofCHIP theindex attribute was not explicitly present.
It was implicitly defined as the position of a variable in a list, the first position being 1.
This is also the case forSICStus Prolog, JaCoP and Gecodewhere the variables are
respectively indexed from1, 0 and0. Within SICStus PrologandJaCoP(http://www.

jacop.eu/), theinverse constraint is calledassignment. Within Gecode, it is called
channel (http://www.gecode.org/).

Algorithm We can reuse the filtering algorithm associated with thealldifferent constraint, both
for thesuccessor and thepredecessor variables. In addition, each time valuej is removed
from the ith successor variable, we have to remove valuei from the jth predecessor
variable. Similarly, each time valuei is removed from thejth successor variable, we have
also to remove valuej from theith predecessor variable.

Systems inverseChanneling in Choco, channel in Gecode, inverse in MiniZinc ,
assignment in SICStus.

See also common keyword:cycle, symmetric alldifferent (permutation).

generalisation:inverse offset (do not assume anymore that the smallest value of the
pred or succ attributes is equal to1), inverse set (domain variable replaced byset
variable), inverse within range (partial mapping between two collections of distinct
size).

implies (items to collection):lex alldifferent.

Keywords characteristic of a constraint: automaton, automaton with array of counters.

combinatorial object: permutation.

constraint arguments:pure functional dependency.

constraint type: graph constraint.

filtering: arc-consistency.

heuristics: heuristics.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.cosytec.com
http://www.sics.se/sicstus/
http://www.jacop.eu/
http://www.gecode.org/
http://www.sics.se/sicstus/
http://www.jacop.eu/
http://www.gecode.org/

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntChannel.html
http://www.gecode.org/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#inverse
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1190 NARC,CLIQUE

modelling: channelling constraint, permutation channel, dual model,
functional dependency.

modelling exercises:n-Amazon, zebra puzzle.

puzzles:n-Amazon, n-queen, zebra puzzle.

20000128 1191

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • nodes1.succ = nodes2.index
• nodes2.pred = nodes1.index

Graph property(ies) NARC= |NODES|

Graph model In order to express the binary constraint that links two vertices one has tomake explicit the
identifier of the vertices. This is why theinverse constraint considers objects that have
three attributes:

• One fixed attributeindex that is the identifier of the vertex,

• One variable attributesucc that is the successor of the vertex,

• One variable attributepred that is the predecessor of the vertex.

Parts (A) and (B) of Figure5.352respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

NODES

1

2

3

4

5

NARC=5

1:1,2,2

2:2,1,1

3:3,5,4

5:5,4,3

4:4,3,5

(A) (B)

Figure 5.352: Initial and final graph of theinverse constraint

Signature Since all theindex attributes of theNODES collection are distinct and because of the first
conditionnodes1.succ = nodes2.index of the arc constraint all the vertices of the final
graph have at most one predecessor.

Since all theindex attributes of theNODES collection are distinct and because of the second
conditionnodes2.pred = nodes1.index of the arc constraint all the vertices of the final
graph have at most one successor.

From the two previous remarks it follows that the final graph is made up from disjoint
paths and disjoint circuits. Therefore the maximum number of arcs of thefinal graph is

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

1192 NARC,CLIQUE

equal to its maximum number of verticesNODES. So we can rewrite the graph property
NARC = |NODES| toNARC ≥ |NODES| and simplifyNARC toNARC.

20000128 1193

Automaton Figure5.353depicts the automaton associated with theinverse constraint. To each item
of the collectionNODES corresponds a signature variableSi that is equal to1.

arith(C,=,0) {C[SUCC]=C[SUCC]+INDEX ,

 i i i C[INDEX]=C[INDEX]−PRED }

1,

{C[_]=0}

s:
i i i

Figure 5.353: Automaton of theinverse constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1194 NARC,CLIQUE

5.183 inverseoffset

DESCRIPTION LINKS GRAPH

Origin Gecode

Constraint inverse offset(SOFFSET, POFFSET, NODES)

Synonym channel.

Arguments SOFFSET : int

POFFSET : int

NODES : collection(index−int, succ−dvar, pred−dvar)

Restrictions required(NODES, [index, succ, pred])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1 + SOFFSET

NODES.succ ≤ |NODES|+ SOFFSET

NODES.pred ≥ 1 + POFFSET

NODES.pred ≤ |NODES|+ POFFSET

Purpose

Enforce each vertex of a digraph to have exactly one predecessor and one successor. In
addition the following two statements are equivalent:

1. The successor of theith node minusSOFFSET is equal toj.

2. The predecessor of thejth node minusPOFFSET is equal toi.

I.e.,NODES[i].succ− SOFFSET = j ⇔ NODES[j].pred−POFFSET = i.

Example

−1, 0,

〈

index− 1 succ− 4 pred− 3,
index− 2 succ− 2 pred− 5,
index− 3 succ− 0 pred− 2,
index− 4 succ− 6 pred− 8,
index− 5 succ− 1 pred− 1,
index− 6 succ− 7 pred− 7,
index− 7 succ− 5 pred− 4,
index− 8 succ− 3 pred− 6

〉

Theinverse offset constraint holds since:

• NODES[1].succ− (−1) = 5 ⇔ NODES[5].pred− 0 = 1,

• NODES[2].succ− (−1) = 3 ⇔ NODES[3].pred− 0 = 2,

• NODES[3].succ− (−1) = 1 ⇔ NODES[1].pred− 0 = 3,

• NODES[4].succ− (−1) = 7 ⇔ NODES[7].pred− 0 = 4,

• NODES[5].succ− (−1) = 2 ⇔ NODES[2].pred− 0 = 5.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20091404 1195

• NODES[6].succ− (−1) = 8 ⇔ NODES[8].pred− 0 = 6.

• NODES[7].succ− (−1) = 6 ⇔ NODES[6].pred− 0 = 7.

• NODES[8].succ− (−1) = 4 ⇔ NODES[4].pred− 0 = 8.

Figure5.354shows the board that can be associated with this example.

3

6

0

1

2

4

5

7

SSS6SSSSS 2 3 4 5 7 81

P1

P

P3

P4

P5

P6

P7

P8

2

3 61 2 4 5 7 8

Figure 5.354: Board associated with the example of theExample slot

Typical SOFFSET ≥ −1
SOFFSET ≤ 1
POFFSET ≥ −1
POFFSET ≤ 1
|NODES| > 1

Symmetry Items ofNODES arepermutable.

Arg. properties
• Functional dependency: NODES.succ determined by SOFFSET, POFFSET,

NODES.index andNODES.pred.

• Functional dependency: NODES.pred determined by SOFFSET, POFFSET,
NODES.index andNODES.succ.

Remark The inverse offset constraint is calledchannel in Gecode(http://www.gecode.

org/). Having two offsets was motivated by the fact that it is possible to declarearrays at
any position in the MiniZinc modelling language.

Systems inverseChanneling in Choco, channel in Gecode.

See also specialisation:inverse (assume thatSOFFSET andPOFFSET are both equal to0).

Keywords constraint arguments:pure functional dependency.

constraint type: graph constraint.

filtering: arc-consistency.

heuristics: heuristics.

modelling: channelling constraint, dual model, functional dependency.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.gecode.org/

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntChannel.html
http://www.gecode.org/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1196 NARC,CLIQUE

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • nodes1.succ− SOFFSET = nodes2.index
• nodes2.pred− POFFSET = nodes1.index

Graph property(ies) NARC= |NODES|

Graph model In order to express the binary constraint that links two vertices one has tomake explicit
the identifier of the vertices. This is why theinverse offset constraint considers objects
that have three attributes:

• One fixed attributeindex that is the identifier of the vertex,

• One variable attributesucc that is the successor of the vertex,

• One variable attributepred that is the predecessor of the vertex.

Parts (A) and (B) of Figure5.355respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

NODES

1

2

3

4

5

6

7

8

NARC=8

1:1,4,3

5:5,1,1

2:2,2,5

3:3,0,2

4:4,6,8

7:7,5,4

6:6,7,7

8:8,3,6

(A) (B)

Figure 5.355: Initial and final graph of theinverse offset constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20091404 1197

1198 NARC,PRODUCT

5.184 inverseset

DESCRIPTION LINKS GRAPH

Origin Derived frominverse.

Constraint inverse set(X, Y)

Arguments X : collection(index−int, set−svar)
Y : collection(index−int, set−svar)

Restrictions required(X, [index, set])
required(Y, [index, set])
increasing seq(X, index)
increasing seq(Y, index)
X.index ≥ 1
X.index ≤ |X|
Y.index ≥ 1
Y.index ≤ |Y|
X.set ≥ 1
X.set ≤ |Y|
Y.set ≥ 1
Y.set ≤ |X|

Purpose

The following two statements are equivalent:

1. Valuej belongs to the set variable of theith item of theX collection.

2. Valuei belongs to the set variable of thejth item of theY collection.

I.e.,j ∈ X[i] ⇔ i ∈ Y[j].

Example

〈
index− 1 set− {2, 4},
index− 2 set− {4},
index− 3 set− {1},
index− 4 set− {4}

〉

,

〈

index− 1 set− {3},
index− 2 set− {1},
index− 3 set− ∅,
index− 4 set− {1, 2, 4},
index− 5 set− ∅

〉

Theinverse set constraint holds since:

2 ∈ X[1].set ⇔ 1 ∈ Y[2].set, 4 ∈ X[1].set ⇔ 1 ∈ Y[4].set,
4 ∈ X[2].set ⇔ 2 ∈ Y[4].set,
1 ∈ X[3].set ⇔ 3 ∈ Y[1].set,
4 ∈ X[4].set ⇔ 4 ∈ Y[4].set.

Typical |X| > 1
|Y| > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20041211 1199

Symmetries • Arguments arepermutablew.r.t. permutation(X, Y).

• Items ofX arepermutable.

• Items ofY arepermutable.

Usage Theinverse set constraint can for instance be used in order to model problems where
one has to place items on a rectangular board in such a way that a column ora row can have
more than one item. We have one set variable for each row of the board;Its values are the
column indexes corresponding to the positions where an item is placed. Similarly we have
also one set variable for each column of the board; Its values are the row indexes corre-
sponding to the positions where an item is placed. Theinverse set constraint maintains
the link between the rows and the columns variables. Figure5.356shows the board that
can be associated with the example of theExampleslot.

2

{}

{}

{1}

{3}

{1,2,4}

{2,4} {4}{1}{4}

1

1

2 3 4

3

4

5

Figure 5.356: Board associated with the example of theExample slot

Systems inverseSet in Choco, inverse set in MiniZinc .

See also common keyword:inverse within range (channelling constraint).

specialisation:inverse (set variable replaced bydomain variable).

used in graph description:in set.

Keywords constraint arguments:constraint involving set variables.

modelling: channelling constraint, set channel, dual model.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#inverse_set
http://www.g12.cs.mu.oz.au/minizinc/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1200 NARC,PRODUCT

Arc input(s) X Y

Arc generator PRODUCT 7→collection(x, y)

Arc arity 2

Arc constraint(s) in set(y.index, x.set) ⇔in set(x.index, y.set)

Graph property(ies) NARC= |X| ∗ |Y|

Graph model Parts (A) and (B) of Figure5.357respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

X

Y

1

12 345

234

NARC=20

1:1,{2,4}

1:1,{3}2:2,{1} 3:3,{} 4:4,{1,2,4} 5:5,{}

2:2,{4}3:3,{1} 4:4,{4}

(A) (B)

Figure 5.357: Initial and final graph of theinverse set constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20041211 1201

1202 SYMMETRIC PRODUCT

5.185 inversewithin range

DESCRIPTION LINKS GRAPH

Origin Derived frominverse.

Constraint inverse within range(X, Y)

Synonyms inverse in range, inverse range.

Arguments X : collection(var−dvar)
Y : collection(var−dvar)

Restrictions required(X, var)
required(Y, var)

Purpose

If the ith variable of the collectionX is assigned toj and if j is greater than or equal to
1 and less than or equal to the number of items of the collectionY then thejth variable
of the collectionY is assigned toi.
Conversely, if thejth variable of the collectionY is assigned toi and if i is greater than
or equal to1 and less than or equal to the number of items of the collectionX then the
ith variable of the collectionX is assigned toj.

Example
(

〈9, 4, 2〉 ,
〈9, 3, 9, 2〉

)

Since the second item ofX is assigned to4, the fourth item ofY is assigned to2.
Similarly, since the third item ofX is assigned to2, the second item ofY is assigned to3.
Figure5.358illustrates the correspondence betweenX andY.

3

4

9

3

9

2

YX

9

4

2

1

2

3

1

2

Figure 5.358: Correspondence between the items ofX = 〈9, 4, 2〉 and the items of
Y = 〈9, 3, 9, 2〉

Typical |X| > 1
range(X.var) > 1
|Y| > 1
range(Y.var) > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20060517 1203

Symmetry Arguments arepermutablew.r.t. permutation(X, Y).

Usage Consider an integer valuem and a sequence ofn variablesS from which you have to select
a subsequenceS′ such that:

• All variables ofS′ have to be assigned to distinct values from[1,m],

• All variables not inS′ have to be assigned a value, not necessarily distinct, outside
[1,m].

As for theinverse constraint we may want to create explicitly avalue variablefor each
value in [1,m] in order to state some specific constraints on thevalue variablesor to use
a heuristics involving the original variables ofS as well as thevalue variables. The pur-
pose of theinverse within range constraint is to link the variables ofS with thevalue
variables.

See also common keyword:inverse set (channelling constraint).

specialisation:inverse (the2 collections have not necessarly the same number of items).

Keywords constraint type: graph constraint.

final graph structure: bipartite, no loop, symmetric.

heuristics: heuristics.

modelling: channelling constraint, dual model.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1204 SYMMETRIC PRODUCT

Arc input(s) X Y

Arc generator SYMMETRIC PRODUCT 7→collection(s1, s2)

Arc arity 2

Arc constraint(s) s1.var = s2.key

Graph class • BIPARTITE

• NO LOOP

• SYMMETRIC

20060517 1205

1206 AUTOMATON

5.186 ith pos different from 0

DESCRIPTION LINKS AUTOMATON

Origin N. Beldiceanu

Constraint ith pos different from 0(ITH, POS, VARIABLES)

Arguments ITH : int

POS : dvar

VARIABLES : collection(var−dvar)

Restrictions ITH ≥ 1
ITH ≤ |VARIABLES|
POS ≥ ITH

POS ≤ |VARIABLES|
required(VARIABLES, var)

Purpose POS is the position of theITHth non-zero item of the sequence of variablesVARIABLES.

Example (2, 4, 〈3, 0, 0, 8, 6〉)

The ith pos different from 0 constraint holds since4 corresponds to the posi-
tion of the2th non-zero item of the sequence3 0 0 8 6.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
atleast(1, VARIABLES, 0)

Symmetry An occurrence of a value ofVARIABLES.var that is different from0 can bereplacedby
any other value that is also different from0.

Arg. properties
Suffix-extensiblewrt. VARIABLES.

Keywords characteristic of a constraint: joker value, automaton, automaton with counters.

constraint network structure: alpha-acyclic constraint network(3).

constraint type: data constraint.

modelling: table.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Keywords
Related keywords grouped by meta-keywords.

20040811 1207

Automaton Figure5.359depicts the automaton associated with theith pos different from 0 con-
straint. To each variableVARi of the collectionVARIABLES corresponds a0-1 signature
variableSi. The following signature constraint linksVARi andSi: VARi = 0 ⇔ Si.

ITH=C,POS=D
iVAR <>0,

{if C<ITH then D=D+1}

VAR =0,i

{C=0,D=0}

s:

{if C<ITH then C=C+1,D=D+1}

Figure 5.359: Automaton of theith pos different from 0 constraint

n

C =ITH

nD =POS

1
VAR

1S

1Q

2
VAR

2S

n
VAR

nS

0Q =s

1C0C =0

0D =0 1D

Q =s

n

Figure 5.360: Hypergraph of the reformulation corresponding to the automaton of the
ith pos different from 0 constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1208 MAX NSCC,CLIQUE , ∀

5.187 k alldifferent

DESCRIPTION LINKS GRAPH

Origin [138]

Constraint k alldifferent(VARS)

Synonyms k alldiff, k alldistinct, some different.

Type X : collection(x−dvar)

Argument VARS : collection(vars− X)

Restrictions |X| ≥ 1
required(X, x)
required(VARS, vars)
|VARS| ≥ 1

Purpose
For each collection of variables depicted by an item ofVARS, enforce their corresponding
variables to take distinct values. Usually some variables occur in severalcollections.

Example

〈

vars−
〈

x− 5,
x− 6,
x− 0,
x− 9,
x− 3

〉

,

vars− 〈5, 6, 1, 2〉

〉

The k alldifferent constraint holds since all the values5, 6, 0, 9 and 3 are
distinct and since all the values5, 6, 1 and2 are distinct as well.

Typical |X| > 1
|VARS| > 1

Symmetries • Items ofVARS arepermutable.

• Items ofVARS.vars arepermutable.

• All occurrences of two distinct values ofVARS.vars.x can beswapped; all occur-
rences of a value ofVARS.vars.x can berenamedto any unused value.

Arg. properties
Contractiblewrt. VARS.

Usage Systems ofalldifferent constraints sharing variables occurs frequently in practice. We
give 4 typical problems that can be modelled by a combination ofalldifferent con-
straints as well as one problem where a system ofalldifferent constraints provides a
necessary condition.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

20050618 1209

• The graph colouringproblem is to colour with a restricted number of colours the
vertices of a given undirected graph in such a way that adjacent vertices are coloured
with distinct colours. The problem can be modelled by a system ofalldifferent

constraints. All the next problems can been seen as graph colouring problems where
the graphs have some specific structure.

• A Latin square of ordern is ann× n array in whichn distinct numbers in[1, n] are
arranged so that each number occurs once in each row and column. The problem is
to complete a partially filled Latin square. Part (A) of Figure5.361gives a partially
filled Latin square, while part (B) provides a possible completion.

(B)

1

1

3

3

1

1

1

1

4

4

4

4

3

3

3

3

2

2

2

2

(A)

Figure 5.361: A partially filled Latin square and a possible completion

• A Sudokuis a Latin square of order9× 9 such that the numbers in each major3× 3
block are distinct. As for the Latin square problem, the problem is to completea
partially filled board. Part (A) of Figure5.362gives a partially filled Sudoku board,
while part (B) provides a possible completion. A constraint programmingapproach
for solving Sudoku puzzles is depicted in [363]. It shows how to generate redundant
constraints as well as shaving [257] in order to find a solution without guessing.

(B)

2 6 8 1 2 6 8 17 4 9 3 5

3 7 8 6 3 7 8 61 5 2 9 4

4 5 7 4 5 78 9 6 1 2 3

5 1 7 9 5 1 7 98 2 4 6 3

3 9 5 1 3 9 5 16 7 8 2 4

4 3 2 5 4 3 2 59 1 6 7 8

1 3 2 1 3 29 4 8 6 5 7

5 2 4 9 5 2 4 96 7 1 3 8

3 8 4 6 3 8 4 62 5 7 9 1

(A)

Figure 5.362: A partially Sudoku square and a possible completion

• A task assignmentproblem consists to assign a given set of non-preemptive tasks,
which are fixed in time (i.e., the origin, duration and end of each task are fixed), to
a set of resources so that, tasks that are assigned to the same resource do not over-
lap in time. Each task can be assigned to a predefined set of resources.Problems
like aircraft stand allocation[129], [362] or air traffic flow management[19] corre-
spond to an example of a real-life taskassignmentproblem. Assignment of service
professionals[12] is yet another industrial example where professionals have to be

1210 MAX NSCC,CLIQUE , ∀

assigned positions in such a way that positions assigned to a given professional do
not overlap in time.

Part (A) of Figure5.363gives an example of taskassignmentproblem. For each task
we indicate the set of resources where it can potentially be assigned (i.e., the domain
of its assignmentvariable). For instance, task T1 can be assigned to resources1 or
2. Part (B) of Figure5.363gives the corresponding interval graph: We have one
vertex for each task and an edge between two tasks that overlap in time. Wehave a
system ofalldifferent constraints corresponding to the maximum cliques of the
interval graph (i.e.,{T1,T5,T8}, {T2,T5,T8}, {T2,T6}, {T3,T6,T9}, {T3,T7,T9},
{T4,T7,T9}). Finally, part (C) of Figure5.363provides a possible solution to the
taskassignmentproblem where tasks T1, T2, T9 are assigned to resource1, tasks
T3, T4, T8 are assigned to resource2, and tasks T5, T6, T7 are assigned to resource
3.

(C)

T1

T5

T2 T3 T4

T6 T7

{1,2} {1,2} {1,2}

T8

{1,2}

T9

{1,3}

{2,3}

{1,3}

{2,3} {1,2,3}
T1

T8

T5

T2

T7

T9

T4T3

T6

T1

T5

T6

T3

T7 T4

T8

T9

T2

INTERVAL GRAPHTASKS AND THEIR POTENTIAL ASSIGNMENT A VALID ASSIGNMENT

3

2

1

(A) (B)

Figure 5.363: A task assignment problem, its correspondinginterval graph and a pos-
sible solution

• The tree partitioning with precedencesproblem is to compute a vertex-partitioning
of a given digraphG in disjoint trees (i.e., a forest), so that a given set of precedences
holds. The problem can be modelled with atree precedence(NTREE, VERTICES)
constraint, whereNTREE is a domain variable specifying the numbers of trees in
the forest andVERTICES is a collection of the digraph’sn vertices. Each item
v ∈ VERTICES has the following attributes, which complete the description of the
digraph:

– index is an integer in[1, n] that can be interpreted as thelabel of v.

– father is a domain variable whose domain consists of elements (vertex label)
of [1, n]. It can be interpreted as theunique successorof v.

– preds is a possibly empty set of integers, its elements (vertex label) being in
[1, n]. It can be interpreted as themandatory ancestorsof v.

We model thetree precedence constraint by the digraphG = (V, E) in which the
vertices represent the elements ofVERTICES and the arcs represent the successors
relations between them. Formally,G is defined as follows:

– To the ith vertex (1 ≤ i ≤ n), VERTICES[i], of the VERTICES collection
corresponds a vertex ofV denoted byvi.

– For every pair of vertices(VERTICES[i],VERTICES[j]), wherei andj are not
necessarily distinct, there is an arc fromvi to vj in E .

20050618 1211

Thetree precedence constraint specifies that its associated digraphG should be
a forest that fulfils the precedence constraints. Formally a ground instance of a
tree precedence(NTREE, VERTICES) constraint is satisfied if and only if the fol-
lowing conditions hold:

1. ∀i ∈ [1, n] : VERTICES[i].index = i,

2. Its associated digraphG consists ofNTREE connected components,

3. Each connected component ofG does not contain any circuit involving more
than one vertex,

4. For every vertexVERTICES[i] such thatj ∈ VERTICES[i].preds there must be
an elementary path inG from VERTICES[j] to VERTICES[i].

We can build the following system ofalldifferent constraints that corresponds
to a necessary condition for thetree precedence constraint: To each vertexv of
G, which both has no predecessors and cannot be the root of a tree, wegenerate an
alldifferent constraint involving the father variables of those descendants ofv in
G that cannot be the root of a tree.

(B)

2

4

8

9

1

3

5

6

7

12

11

10

1 2

3

11

12

4

6 7 8

10

5 9

(A)

Figure 5.364: A set of precedences and a corresponding feasible tree

For the set of precedences depicted by part (A) of Figure5.3649, where we as-
sume thatVERTICES[12] is the only vertex that can be a root and whereFi de-
notes the father variable associated withVERTICES[i], we get the following system
of alldifferent constraints:

– alldifferent(〈F1, F3, F5, F6, F7, F10, F11〉),
– alldifferent(〈F2, F4, F7, F8, F9, F10, F11〉).

The variables of these twoalldifferent constraints respectively correspond
to the descendants of the two source vertices (i.e.,F1 and F2) of the prece-
dence graph depicted by part (A) of Figure5.364. On part (A) of Figure5.364
the descendants ofF1 and F2 are respectively depicted with a thick line and
a grey circle. Their intersection,{F7, F10, F11, F12}, from which we remove

9The number in a vertex gives the value of theindex attribute of the corresponding item.

1212 MAX NSCC,CLIQUE , ∀

F12 belong to the twoalldifferent constraints. In fact,F12 is not men-
tioned in the twoalldifferent constraints since its corresponding vertex is
the root of a tree. Part (B) of Figure5.364 gives a possible tree satisfying
all the precedences constraints expressed by part (A), where precedences are
depicted with a dotted line. It corresponds to the following ground solution:
tree precedence(〈 index− 1 father− 3 preds− {},

index− 2 father− 4 preds− {},
index− 3 father− 5 preds− {1},
index− 4 father− 8 preds− {2},
index− 5 father− 6 preds− {1},
index− 6 father− 7 preds− {3},
index− 7 father− 10 preds− {3, 4},
index− 8 father− 9 preds− {4},
index− 9 father− 7 preds− {2},
index− 10 father− 11 preds− {5, 6, 7},
index− 11 father− 12 preds− {7, 8, 9},
index− 12 father− 12 preds− {10, 11} 〉)

Remark It was shown in [139] that, finding out whether a system of twoalldifferent constraints
sharing some variables has a solution or not is NP-hard. This was achieved by reduction
from set packing.

A slight variation in the way of describing the arguments of thek alldifferent con-
straint appears in [337] under the name ofsome different: the set of disequalities is
described by a set of pairs of variables, where each pair corresponds to a disequality con-
straint between two given variables.

Within the context oflinear programming, a relaxation of thek alldifferent constraint
is provided in [7]. The special case wherek = 2 is discussed in [8].

Algorithm Even if there is no filtering algorithm for thek alldifferent constraint, one can enforce
redundant constraints for the following patterns:

• Within the context of graph colouring, one can state annvalue constraint for every
cycle of odd length of the graph to colour enforcing that the corresponding variables
have to be assigned to at least three distinct values.

• Within the context of Latin squares, one can state acolored matrix constraint
enforcing that each value is used exactly once in each row and column.

• Within the context of two alldifferent constraints
alldifferent(〈U1, . . . , Un, V1, . . . , Vm〉) and alldifferent(〈U1, . . . , Un,
W1, . . . ,Wm〉) where the domain of all variablesU1, . . . , Un, V1, . . . , Vm,
W1, . . . ,Wm is included in the interval [1, n + m], one can state a
same and global cardinality constraint stating that the variablesV1, . . . , Vm

should correspond to a permutation of the variablesW1, . . . ,Wm and that the
variablesV1, . . . , Vm should be assigned to distinct values.

• In the general case of two alldifferent constraints
alldifferent(〈U1, . . . , Un, V1, . . . , Vm〉) and alldifferent(〈U1, . . . , Un,
W1, . . . ,Wo〉), one can state annvalue constraint involving the variables
V1, . . . , Vm andW1, . . . ,Wo enforcing that these variables should not use more
than s − n distinct values, wheres denotes the cardinality of the union of the
domains of the variablesU1, . . . , Un, V1, . . . , Vm, W1, . . . ,Wo.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

20050618 1213

Several propagation rules for thek alldifferent constraint are also described in [235].

Reformulation Given twoalldifferent constraints that share some variables, a reformulation preserv-
ing bound-consistencywas introduced in [69]. This reformulation is based on an extension
of Hall’s theorem that is presented in the same paper.

See also common keyword:colored matrix (system of constraints).

generalisation:diffn, geost (tasks for which the start attribute is not fixed).

part of system of constraints:alldifferent.

related: nvalue (implied by two overlapping alldifferent),
same and global cardinality (implied by two overlappingalldifferent and
restriction on values).

Keywords application area: air traffic management, assignment.

characteristic of a constraint: all different, disequality.

combinatorial object: permutation, Latin square.

complexity: set packing.

constraint type: system of constraints, overlapping alldifferent, value constraint,
decomposition.

filtering: bound-consistency, duplicated variables.

problems: graph colouring.

puzzles:Sudoku.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1214 MAX NSCC,CLIQUE , ∀

For all items ofVARS:

Arc input(s) VARS.vars

Arc generator CLIQUE 7→collection(x1, x2)

Arc arity 2

Arc constraint(s) x1.x = x2.x

Graph property(ies) MAX NSCC≤ 1

Graph model For each collection of variables depicted by an item ofVARS we generate acliquewith an
equalityconstraint between each pair of vertices (including a vertex and itself) and state
that the size of the largest strongly connected component should not exceed one.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20050618 1215

1216 NCC,CLIQUE

5.188 k cut

DESCRIPTION LINKS GRAPH

Origin E. Althaus

Constraint k cut(K, NODES)

Arguments K : int

NODES : collection(index−int, succ−svar)

Restrictions K ≥ 1
K ≤ |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose
Select some arcs of a digraph in order to have at leastK connected components(an
isolated vertex, i.e. a vertex without any ingoing or outgoing arc, is counted as one
connected component).

Example

3,

〈

index− 1 succ− ∅,
index− 2 succ− {3, 5},
index− 3 succ− {5},
index− 4 succ− ∅,
index− 5 succ− {2, 3}

〉

The k cut constraint holds since the graph corresponding to theNODES collection
contains3 connected components (i.e., two connected components respectivelyinvolving
vertices1 and4 and a third connected component containing the remaining vertices2, 3
and5), and since the first argumentK enforces to have at least3 connected components.

Typical |NODES| > 1

Symmetries • K can bedecreasedto any value≥ 1.

• Items ofNODES arepermutable.

See also common keyword:link set to booleans (constraint involving set variables).

used in graph description:in set.

Keywords constraint arguments:constraint involving set variables.

constraint type: graph constraint.

filtering: linear programming.

final graph structure: connected component.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 1217

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.index = nodes2.index∨in set(nodes2.index, nodes1.succ)

Graph property(ies) NCC≥ K

Graph model nodes1.index = nodes2.index holds if nodes1 andnodes2 correspond to the same
vertex. It is used in order to enforce keeping all the vertices of the initial graph. This is
because an isolated vertex counts always as oneconnected component. Within the context
of theExample slot, part (A) of Figure5.365shows the initial graph from which we have
chosen to start. It is derived from the set associated with each vertex. Each set describes the
potential values of thesucc attribute of a given vertex. Part (B) of Figure5.365gives the
final graph associated with the example of theExample slot. Thek cut constraint holds
since we have at leastK = 3 connected componentsin the final graph.

NODES

1:1,{2,4}

2:2,{1,3,5}

4:4,{1,5}3:3,{2,5}

5:5,{2,3,4}

NCC=3

CC#1 CC#2 CC#3

1:1,{} 2:2,{3,5}

3:3,{5}

5:5,{2,3}

4:4,{}

(A) (B)

Figure 5.365: Initial and final graph of thek cut set constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1218 NARC,CLIQUE(<)

5.189 k disjoint

DESCRIPTION LINKS GRAPH

Origin Derived fromdisjoint

Constraint k disjoint(SETS)

Type VARIABLES : collection(var−dvar)

Argument SETS : collection(set− VARIABLES)

Restrictions required(VARIABLES, var)
|VARIABLES| ≥ 1
required(SETS, set)
|SETS| > 1

Purpose
Given|SETS| sets of domain variables, thek disjoint constraint enforces that no value
is assigned to more than one set.

Example

〈

set− 〈1, 9, 1, 5〉 ,

set−
〈

var− 2,
var− 7,
var− 7,
var− 0,
var− 6,
var− 8

〉

,

set− 〈4, 4, 3〉

〉

Thek disjoint constraint holds since:

• The set of values{1, 5, 9} and{0, 2, 6, 7, 8} respectively assigned to the variables
of the first and second collections have an empty intersection.

• The set of values{1, 5, 9} and{3, 4} respectively assigned to the variables of the
first and third collections have an empty intersection.

• The set of values{0, 2, 6, 7, 8} and{3, 4} respectively assigned to the variables of
the second and third collections have an empty intersection.

Typical |VARIABLES| > 1

Symmetries • Items ofSETS arepermutable.

• Items ofSETS.set arepermutable.

• An occurrence of a value ofVARIABLES.var can bereplacedby any value of
VARIABLES.var.

• All occurrences of two distinct values ofSETS.set.var can beswapped; all oc-
currences of a value ofSETS.set.var can berenamedto any unused value.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20050816 1219

Arg. properties
Contractiblewrt. SETS.

See also part of system of constraints:disjoint.

used in graph description:disjoint.

Keywords characteristic of a constraint: disequality.

constraint type: system of constraints, decomposition, value constraint.

modelling: empty intersection.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1220 NARC,CLIQUE(<)

Arc input(s) SETS

Arc generator CLIQUE (<) 7→collection(set1, set2)

Arc arity 2

Arc constraint(s) disjoint(set1.set, set2.set)

Graph property(ies) NARC= |SETS| ∗ (|SETS| − 1)/2

Graph model Parts (A) and (B) of Figure5.366respectively show the initial and final graph associated
with theExample slot. To each vertex corresponds a collection of variables, while to each
arc corresponds adisjoint constraint.

SETS

1

2

3

NARC=3

1:1
 9
 1
 5

2:2
 7
 7
 0
 6
 8

3:4
 4
 3

(A) (B)

Figure 5.366: Initial and final graph of thek disjoint constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20050816 1221

1222 NARC,PATH

5.190 k same

DESCRIPTION LINKS GRAPH

Origin [138]

Constraint k same(SETS)

Type VARIABLES : collection(var−dvar)

Argument SETS : collection(set− VARIABLES)

Restrictions required(VARIABLES, var)
|VARIABLES| ≥ 1
required(SETS, set)
|SETS| > 1
same size(SETS, set)

Purpose
Given |SETS| sets, each containing the same number of domain variables, thek same

constraint enforces that the multisets of values assigned to each set areall identical.

Example

〈

set−
〈

var− 1,
var− 9,
var− 1,
var− 5,
var− 2,
var− 1

〉

,

set−
〈

var− 9,
var− 1,
var− 1,
var− 1,
var− 2,
var− 5

〉

,

set−
〈

var− 5,
var− 2,
var− 1,
var− 1,
var− 9,
var− 1

〉

〉

Thek same constraint holds since:

• The first and second collections of variables are assigned to the same multiset.

• The second and third collections of variables are also assigned to the samemultiset.

Typical |VARIABLES| > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

20050808 1223

Symmetries • Items ofSETS arepermutable.

• Items ofSETS.set arepermutable.

• All occurrences of two distinct values ofSETS.set.var can beswapped; all oc-
currences of a value ofSETS.set.var can berenamedto any unused value.

Arg. properties
Contractiblewrt. SETS.

Remark It was shown in [138] that, finding out whether thek same constraint has a solution or not
is NP-hard when we have more than onesame constraint. This was achieved by reduction
from 3-dimensional-matchingin the context where we have2 same constraints.

See also common keyword: k same interval, k same modulo,
k same partition (system of constraints).

implies: k used by.

part of system of constraints:same.

used in graph description:same.

Keywords characteristic of a constraint: sort based reformulation.

combinatorial object: permutation, multiset.

complexity: 3-dimensional-matching.

constraint type: system of constraints, decomposition.

modelling: equality between multisets.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1224 NARC,PATH

Arc input(s) SETS

Arc generator PATH 7→collection(set1, set2)

Arc arity 2

Arc constraint(s) same(set1.set, set2.set)

Graph property(ies) NARC= |SETS| − 1

Graph model Parts (A) and (B) of Figure5.367respectively show the initial and final graph associated
with theExample slot. To each vertex corresponds a collection of variables, while to each
arc corresponds asame constraint.

SETS

1

2

3

NARC=2

1:1
 9
 1
 5
 2
 1

2:9
 1
 1
 1
 2
 5

3:5
 2
 1
 1
 9
 1

(A) (B)

Figure 5.367: Initial and final graph of thek same constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20050808 1225

1226 NARC,PATH

5.191 k sameinterval

DESCRIPTION LINKS GRAPH

Origin Derived fromsame interval and fromk same.

Constraint k same interval(SETS, SIZE INTERVAL)

Type VARIABLES : collection(var−dvar)

Arguments SETS : collection(set− VARIABLES)
SIZE INTERVAL : int

Restrictions required(VARIABLES, var)
|VARIABLES| ≥ 1
required(SETS, set)
|SETS| > 1
same size(SETS, set)
SIZE INTERVAL > 0

Purpose
Given a collection of|SETS| sets, each containing the same number of domain variables,
the k same interval constraint enforces asame interval constraint between each
pair of consecutive sets.

Example

〈

set−
〈

var− 1,
var− 1,
var− 6,
var− 0,
var− 1,
var− 7

〉

,

set−
〈

var− 8,
var− 8,
var− 0,
var− 0,
var− 1,
var− 2

〉

,

set−
〈

var− 2,
var− 1,
var− 1,
var− 2,
var− 6,
var− 6

〉

〉

, 3

In the example, the second argumentSIZE INTERVAL = 3 of the k same interval

constraint defines the following family of intervals[3 · k, 3 · k + 2], wherek is an integer.
Thek same interval constraint holds since:

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20050810 1227

• The first and second collections of variables are assigned4 values in the interval
[0, 2] as well as2 values in the interval[6, 8].

• The second and third collections of variables are also assigned4 values in the interval
[0, 2] as well as2 values in the interval[6, 8].

Typical |VARIABLES| > 1
SIZE INTERVAL > 1

Symmetries • Items ofSETS arepermutable.

• Items ofSETS.set arepermutable.

• An occurrence of a value ofSETS.set.var that belongs to thek-th interval, of size
SIZE INTERVAL, can bereplacedby any other value of the same interval.

Arg. properties
Contractiblewrt. SETS.

See also common keyword:k same (system of constraints).

implies: k used by interval.

part of system of constraints:same interval.

used in graph description:same interval.

Keywords characteristic of a constraint: sort based reformulation.

combinatorial object: permutation.

constraint type: system of constraints, decomposition.

modelling: interval.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1228 NARC,PATH

Arc input(s) SETS

Arc generator PATH 7→collection(set1, set2)

Arc arity 2

Arc constraint(s) same interval(set1.set, set2.set, SIZE INTERVAL)

Graph property(ies) NARC= |SETS| − 1

Graph model Parts (A) and (B) of Figure5.368respectively show the initial and final graph associated
with theExample slot. To each vertex corresponds a collection of variables, while to each
arc corresponds asame interval constraint.

SETS

1

2

3

NARC=2

1:1
 1
 6
 0
 1
 7

2:8
 8
 0
 0
 1
 2

3:2
 1
 1
 2
 6
 6

(A) (B)

Figure 5.368: Initial and final graph of thek same interval constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20050810 1229

1230 NARC,PATH

5.192 k samemodulo

DESCRIPTION LINKS GRAPH

Origin Derived fromsame modulo and fromk same.

Constraint k same modulo(SETS, M)

Type VARIABLES : collection(var−dvar)

Arguments SETS : collection(set− VARIABLES)
M : int

Restrictions required(VARIABLES, var)
|VARIABLES| ≥ 1
required(SETS, set)
|SETS| > 1
same size(SETS, set)
M > 0

Purpose
Given a collection of|SETS| sets, each containing the same number of domain variables,
thek same modulo constraint enforces asame modulo constraint between each pair of
consecutive sets.

Example

〈

set−
〈

var− 1,
var− 9,
var− 1,
var− 5,
var− 2,
var− 1

〉

,

set−
〈

var− 6,
var− 4,
var− 1,
var− 1,
var− 5,
var− 5

〉

,

set−
〈

var− 1,
var− 3,
var− 4,
var− 2,
var− 8,
var− 7

〉

〉

, 3

Thek same modulo constraint holds since:

• The first and second collections of variables are assigned1 value in{0, 3, . . . , 3 ·k},
3 values in{1, 4, . . . , 1 + 3 · k} and2 values in{2, 5, . . . , 2 + 3 · k}.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20050810 1231

• The second and third collections of variables are also assigned1 value in
{0, 3, . . . , 3 ·k}, 3 values in{1, 4, . . . , 1+3 ·k} and2 values in{2, 5, . . . , 2+3 ·k}.

Typical |VARIABLES| > 1
M > 1

Symmetries • Items ofSETS arepermutable.

• Items ofSETS.set arepermutable.

• An occurrence of a valueu of SETS.set.var can bereplacedby any other value
v such thatv is congruent tou moduloM.

Arg. properties
Contractiblewrt. SETS.

See also common keyword:k same (system of constraints).

implies: k used by modulo.

part of system of constraints:same modulo.

used in graph description:same modulo.

Keywords characteristic of a constraint: sort based reformulation, modulo.

combinatorial object: permutation.

constraint type: system of constraints, decomposition.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1232 NARC,PATH

Arc input(s) SETS

Arc generator PATH 7→collection(set1, set2)

Arc arity 2

Arc constraint(s) same modulo(set1.set, set2.set, M)

Graph property(ies) NARC= |SETS| − 1

Graph model Parts (A) and (B) of Figure5.369respectively show the initial and final graph associated
with theExample slot. To each vertex corresponds a collection of variables, while to each
arc corresponds asame modulo constraint.

SETS

1

2

3

NARC=2

1:1
 9
 1
 5
 2
 1

2:6
 4
 1
 1
 5
 5

3:1
 3
 4
 2
 8
 7

(A) (B)

Figure 5.369: Initial and final graph of thek same modulo constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20050810 1233

1234 NARC,PATH

5.193 k samepartition

DESCRIPTION LINKS GRAPH

Origin Derived fromsame partition and fromk same.

Constraint k same partition(SETS, PARTITIONS)

Types VARIABLES : collection(var−dvar)
VALUES : collection(val−int)

Arguments SETS : collection(set− VARIABLES)
PARTITIONS : collection(p− VALUES)

Restrictions required(VARIABLES, var)
|VARIABLES| ≥ 1
|VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)
required(SETS, set)
|SETS| > 1
same size(SETS, set)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose
Given a collection of|SETS| sets, each containing the same number of domain variables,
thek same partition constraint enforces asame partition constraint between each
pair of consecutive sets.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

20050810 1235

Example

〈

set−
〈

var− 1,
var− 2,
var− 6,
var− 3,
var− 1,
var− 2

〉

,

set−
〈

var− 6,
var− 6,
var− 2,
var− 3,
var− 1,
var− 3

〉

,

set−
〈

var− 2,
var− 2,
var− 2,
var− 1,
var− 1,
var− 1

〉

〉

,

〈

p− 〈1, 3〉 ,
p− 〈4〉 ,
p− 〈2, 6〉

〉

The first argumentSETS of the k same partition constraint corresponds to3 col-
lections of variables, while the second argumentPARTITIONS defines the3 sets of values
{1, 3}, {4} and{2, 6}. Thek same partition constraint holds since:

• The first and second collections of variables are assigned3 values in the{1, 3} as
well as3 values in{2, 6}.

• The second and third collections of variables are also assigned3 values in the{1, 3}
as well as3 values in{2, 6}.

Typical |VARIABLES| > 1

Symmetries • Items ofSETS arepermutable.

• Items ofSETS.set arepermutable.

• Items ofPARTITIONS arepermutable.

• Items ofPARTITIONS.p arepermutable.

• An occurrence of a value ofSETS.set.var can be replaced by any other value that
also belongs to the same partition ofPARTITIONS.

Arg. properties
Contractiblewrt. SETS.

See also common keyword:k same (system of constraints).

implies: k used by partition.

part of system of constraints:same partition.

used in graph description:same partition.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

1236 NARC,PATH

Keywords characteristic of a constraint: sort based reformulation, partition.

combinatorial object: permutation.

constraint type: system of constraints, decomposition.

Keywords
Related keywords grouped by meta-keywords.

20050810 1237

Arc input(s) SETS

Arc generator PATH 7→collection(set1, set2)

Arc arity 2

Arc constraint(s) same partition(set1.set, set2.set, PARTITIONS)

Graph property(ies) NARC= |SETS| − 1

Graph model Parts (A) and (B) of Figure5.370respectively show the initial and final graph associated
with theExample slot. To each vertex corresponds a collection of variables, while to each
arc corresponds asame partition constraint.

SETS

1

2

3

NARC=2

1:1
 2
 6
 3
 1
 2

2:6
 6
 2
 3
 1
 3

3:2
 2
 2
 1
 1
 1

(A) (B)

Figure 5.370: Initial and final graph of thek same partition constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1238 NARC,PATH

5.194 k usedby

DESCRIPTION LINKS GRAPH

Origin Derived fromused by

Constraint k used by(SETS)

Type VARIABLES : collection(var−dvar)

Argument SETS : collection(set− VARIABLES)

Restrictions required(VARIABLES, var)
|VARIABLES| ≥ 1
required(SETS, set)
|SETS| > 1
non increasing size(SETS, set)

Purpose
Given |SETS| sets of domain variables, thek used by constraint enforces aused by

constraint between each pair of consecutive sets.

Example

〈

set−
〈

var− 1,
var− 9,
var− 1,
var− 5,
var− 2,
var− 1

〉

,

set−
〈

var− 9,
var− 1,
var− 1,
var− 1,
var− 2,
var− 5

〉

,

set− 〈1, 1, 2, 5〉

〉

Thek used by constraint holds since:

• The multiset of values{{1, 1, 1, 2, 5, 9}} associated with the second collection of
variables is included into the multiset{{1, 1, 1, 2, 5, 9}} associated with the first
collection of variables.

• The multiset of values{{1, 1, 2, 5}} associated with the third collection of variables
is included into the multiset{{1, 1, 1, 2, 5, 9}} associated with the second collection
of variables.

Typical |VARIABLES| > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

20050814 1239

Symmetries • Items ofSETS arepermutable.

• Items ofSETS.set arepermutable.

• All occurrences of two distinct values ofSETS.set.var can beswapped; all oc-
currences of a value ofSETS.set.var can berenamedto any unused value.

Arg. properties
Contractiblewrt. SETS.

Remark Similarly to thek same constraint [138], finding out whether thek used by constraint has
a solution or not is NP-hard when we have more than oneused by constraint.

See also common keyword: k used by interval, k used by modulo,
k used by partition (system of constraints).

implied by: k same.

part of system of constraints:used by.

used in graph description:used by.

Keywords characteristic of a constraint: sort based reformulation.

combinatorial object: multiset.

constraint type: system of constraints, decomposition.

modelling: inclusion.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1240 NARC,PATH

Arc input(s) SETS

Arc generator PATH 7→collection(set1, set2)

Arc arity 2

Arc constraint(s) used by(set1.set, set2.set)

Graph property(ies) NARC= |SETS| − 1

Graph model Parts (A) and (B) of Figure5.371respectively show the initial and final graph associated
with theExample slot. To each vertex corresponds a collection of variables, while to each
arc corresponds aused by constraint.

SETS

1

2

3

NARC=2

1:1
 9
 1
 5
 2
 1

2:9
 1
 1
 1
 2
 5

3:1
 1
 2
 5

(A) (B)

Figure 5.371: Initial and final graph of thek used by constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20050814 1241

1242 NARC,PATH

5.195 k usedby interval

DESCRIPTION LINKS GRAPH

Origin Derived fromused by interval and fromk used by.

Constraint k used by interval(SETS, SIZE INTERVAL)

Type VARIABLES : collection(var−dvar)

Arguments SETS : collection(set− VARIABLES)
SIZE INTERVAL : int

Restrictions required(VARIABLES, var)
|VARIABLES| ≥ 1
required(SETS, set)
|SETS| > 1
non increasing size(SETS, set)
SIZE INTERVAL > 0

Purpose
Given |SETS| sets of domain variables, thek used by interval constraint enforces a
used by interval constraint between each pair of consecutive sets.

Example

〈

set−
〈

var− 1,
var− 1,
var− 1,
var− 8,
var− 6,
var− 2

〉

,

set− 〈1, 0, 7, 7〉 ,
set− 〈1, 2〉

〉

, 3

In the example, the second argumentSIZE INTERVAL = 3 defines the following family of
intervals[3 · k, 3 · k + 2], wherek is an integer. Consequently, thek used by interval

constraint holds since:

• The first collection of variables is assigned4 values in the interval[0, 2] as well as
2 values in the interval[6, 8], while the second collection of variables is assigned no
more values in the previous two intervals.

• The second collection of variables is assigned2 values in the interval[0, 2] as well
as2 values in the interval[6, 8], while the third collection of variables is assigned no
more values in the previous two intervals.

Typical |VARIABLES| > 1
SIZE INTERVAL > 0

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20050814 1243

Symmetries • Items ofSETS arepermutable.

• Items ofSETS.set arepermutable.

• An occurrence of a value ofSETS.set.var that belongs to thek-th interval, of size
SIZE INTERVAL, can bereplacedby any other value of the same interval.

Arg. properties
Contractiblewrt. SETS.

See also common keyword:k used by (system of constraints).

implied by: k same interval.

part of system of constraints:used by interval.

used in graph description:used by interval.

Keywords characteristic of a constraint: sort based reformulation.

constraint type: system of constraints, decomposition.

modelling: inclusion, interval.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1244 NARC,PATH

Arc input(s) SETS

Arc generator PATH 7→collection(set1, set2)

Arc arity 2

Arc constraint(s) used by interval(set1.set, set2.set, SIZE INTERVAL)

Graph property(ies) NARC= |SETS| − 1

Graph model Parts (A) and (B) of Figure5.372respectively show the initial and final graph associated
with theExample slot. To each vertex corresponds a collection of variables, while to each
arc corresponds aused by interval constraint.

SETS

1

2

3

NARC=2

1:1
 1
 1
 8
 6
 2

2:1
 0
 7
 7

3:1
 2

(A) (B)

Figure 5.372: Initial and final graph of thek used by interval constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20050814 1245

1246 NARC,PATH

5.196 k usedby modulo

DESCRIPTION LINKS GRAPH

Origin Derived fromused by modulo and fromk used by.

Constraint k used by modulo(SETS, M)

Type VARIABLES : collection(var−dvar)

Arguments SETS : collection(set− VARIABLES)
M : int

Restrictions required(VARIABLES, var)
|VARIABLES| ≥ 1
required(SETS, set)
|SETS| > 1
non increasing size(SETS, set)
M > 0

Purpose
Given |SETS| sets of domain variables, thek used by modulo constraint enforces a
used by modulo constraint between each pair of consecutive sets.

Example

〈

set−
〈

var− 1,
var− 9,
var− 4,
var− 5,
var− 2,
var− 1

〉

,

set− 〈7, 1, 2, 5〉 ,
set− 〈1, 1〉

〉

, 3

Thek used by modulo constraint holds since:

• The first collection of variables is assigned1 value in{0, 3, . . . , 3 · k}, 3 values in
{1, 4, . . . , 1+3 ·k} and2 values in{2, 5, . . . , 2+3 ·k}, while the second collection
of variables is assigned no more values in the previous three sets of values.

• The second collection of variables is assigned2 values in{0, 3, . . . , 3 · k} and2
values in{2, 5, . . . , 2 + 3 · k}, while the third collection of variables is assigned no
more values in the previous three sets of values.

Typical |VARIABLES| > 1
M > 1

Symmetries • Items ofSETS arepermutable.

• Items ofSETS.set arepermutable.

• An occurrence of a valueu of SETS.set.var can bereplacedby any other value
v such thatv is congruent tou moduloM.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20050814 1247

Arg. properties
Contractiblewrt. SETS.

See also common keyword:k used by (system of constraints).

implied by: k same modulo.

part of system of constraints:used by modulo.

used in graph description:used by modulo.

Keywords characteristic of a constraint: modulo, sort based reformulation.

constraint type: system of constraints, decomposition.

modelling: inclusion.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1248 NARC,PATH

Arc input(s) SETS

Arc generator PATH 7→collection(set1, set2)

Arc arity 2

Arc constraint(s) used by modulo(set1.set, set2.set, M)

Graph property(ies) NARC= |SETS| − 1

Graph model Parts (A) and (B) of Figure5.373respectively show the initial and final graph associated
with theExample slot. To each vertex corresponds a collection of variables, while to each
arc corresponds aused by modulo constraint.

SETS

1

2

3

NARC=2

1:1
 9
 4
 5
 2
 1

2:7
 1
 2
 5

3:1
 1

(A) (B)

Figure 5.373: Initial and final graph of thek used by modulo constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20050814 1249

1250 NARC,PATH

5.197 k usedby partition

DESCRIPTION LINKS GRAPH

Origin Derived fromused by partition and fromk used by.

Constraint k used by partition(SETS, PARTITIONS)

Types VARIABLES : collection(var−dvar)
VALUES : collection(val−int)

Arguments SETS : collection(set− VARIABLES)
PARTITIONS : collection(p− VALUES)

Restrictions required(VARIABLES, var)
|VARIABLES| ≥ 1
|VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)
required(SETS, set)
|SETS| > 1
non increasing size(SETS, set)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose
Given|SETS| sets of domain variables, thek used by partition constraint enforces a
used by partition constraint between each pair of consecutive sets.

Example

〈

set−
〈

var− 1,
var− 9,
var− 1,
var− 6,
var− 2,
var− 3

〉

,

set− 〈1, 3, 6, 6〉 ,
set− 〈2, 2〉

〉

,

〈

p− 〈1, 3〉 ,
p− 〈4〉 ,
p− 〈2, 6〉

〉

Thek used by partition constraint holds since:

• The first collection of variables is assigned3 values in{1, 3}, 0 value in{4} and2
values in{2, 6}, while the second collection of variables is assigned no more values
in the previous three sets of values.

• The second collection of variables is assigned2 values in{1, 3}, 0 value in{4} and
2 values in{2, 6}, while the third collection of variables is assigned no more values
in the previous three sets of values.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20050814 1251

Typical |VARIABLES| > 1

Symmetries • Items ofSETS arepermutable.

• Items ofSETS.set arepermutable.

• Items ofPARTITIONS arepermutable.

• Items ofPARTITIONS.p arepermutable.

• An occurrence of a value ofSETS.set.var can be replaced by any other value that
also belongs to the same partition ofPARTITIONS.

Arg. properties
Contractiblewrt. SETS.

See also common keyword:k used by (system of constraints).

implied by: k same partition.

part of system of constraints:used by partition.

used in graph description:used by partition.

Keywords characteristic of a constraint: partition, sort based reformulation.

constraint type: system of constraints, decomposition.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1252 NARC,PATH

Arc input(s) SETS

Arc generator PATH 7→collection(set1, set2)

Arc arity 2

Arc constraint(s) used by partition(set1.set, set2.set, PARTITIONS)

Graph property(ies) NARC= |SETS| − 1

Graph model Parts (A) and (B) of Figure5.374respectively show the initial and final graph associated
with theExample slot. To each vertex corresponds a collection of variables, while to each
arc corresponds aused by partition constraint.

SETS

1

2

3

NARC=2

1:1
 9
 1
 6
 2
 3

2:1
 3
 6
 6

3:2
 2

(A) (B)

Figure 5.374: Initial and final graph of thek used by partition constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20050814 1253

1254 AUTOMATON

5.198 lengthfirst sequence

DESCRIPTION LINKS AUTOMATON

Origin Inspired bystretch path

Constraint length first sequence(LEN, VARIABLES)

Arguments LEN : dvar

VARIABLES : collection(var−dvar)

Restrictions LEN ≥ 0
LEN ≤ |VARIABLES|
required(VARIABLES, var)

Purpose
LEN is the length of the maximum sequence of variables that take the same value that
contains the first variable of the collectionVARIABLES (or 0 if the collection is empty).

Example

3,

〈

var− 4,
var− 4,
var− 4,
var− 5,
var− 5,
var− 4

〉

The length first sequence constraint holds since the sequence associated with
the first value of the collectionVARIABLES = 〈4, 4, 4, 5, 5, 4〉 spans over three consecutive
variables.

Typical LEN < |VARIABLES|
|VARIABLES| > 1

Symmetry All occurrences of two distinct values ofVARIABLES.var can beswapped; all occur-
rences of a value ofVARIABLES.var can berenamedto any unused value.

Reformulation Without loss of generality let assume that the collectionVARIABLES = 〈V1, V2, . . . , Vn〉
has more than one variable. By introducing2 · n − 1 0-1 variables, the
length first sequence(LEN, VARIABLES) constraint can be expressed in term of2 ·
n−1 reified constraints and one arithmetic constraint (i.e., asum ctr constraint). We first
introducen− 1 variables that are respectively set to1 if and only if two given consecutive
variables of the collectionVARIABLES are equal:
B1,2 ⇔ V1 = V2,
B2,3 ⇔ V2 = V3,
.
Bn−1,n ⇔ Vn−1 = Vn.

We then introducen variablesA1, A2, . . . , An that are respectively associated to the differ-
ent sliding sequences starting on the first variable of the sequenceV1 V2 . . . Vn. Variable

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

20081123 1255

Ai is set to1 if and only if V1 = V2 = . . . = Vi:
A1 = 1,
A2 ⇔ B1,2 ∧A1,
A3 ⇔ B2,3 ∧A2,
.
An ⇔ Bn−1,n ∧An−1.

Finally we state the following arithmetic constraint:
LEN = A1 +A2 + . . .+An.

See also common keyword:length last sequence (counting constraint,sequence).

Keywords characteristic of a constraint: automaton, automaton with counters.

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(2).

constraint type: value constraint, counting constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1256 AUTOMATON

Automaton Figure5.375depicts the automaton associated with thelength first sequence con-
straint. To each pair of consecutive variables(VARi, VARi+1) of the collectionVARIABLES
corresponds a signature variableSi. The following signature constraint linksVARi, VARi+1

andSi: VARi = VARi+1 ⇔ Si.

iVAR <> VAR

VAR <> VARi i+1

VAR = VARi i+1
{C=C+1}

i+1iVAR = VAR

{C=1}

LEN=C

LEN=C
s:

i+1
t:

Figure 5.375: Automaton of thelength first sequence constraint when
|VARIABLES| ≥ 2

Q =s or t

C

2Q

3S

n−1
VAR

n−1S

3
VAR n

VAR

2S

2
VAR

1S

1
VAR

1Q

1C0C =0

0Q =s

n−1C =LEN

n−1

2

Figure 5.376: Hypergraph of the reformulation corresponding to the automaton of the
length first sequence constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20081123 1257

1258 AUTOMATON

5.199 lengthlast sequence

DESCRIPTION LINKS AUTOMATON

Origin Inspired bystretch path

Constraint length last sequence(LEN, VARIABLES)

Arguments LEN : dvar

VARIABLES : collection(var−dvar)

Restrictions LEN ≥ 0
LEN ≤ |VARIABLES|
required(VARIABLES, var)

Purpose
LEN is the length of the maximum sequence of variables that take the same value that
contains the last variable of the collectionVARIABLES (or 0 if the collection is empty).

Example

1,

〈

var− 4,
var− 4,
var− 4,
var− 5,
var− 5,
var− 4

〉

The length last sequence constraint holds since the sequence associated with
the last value of the collectionVARIABLES = 〈4, 4, 4, 5, 5, 4〉 spans over one single
variable.

Typical LEN < |VARIABLES|
|VARIABLES| > 1

Symmetry All occurrences of two distinct values ofVARIABLES.var can beswapped; all occur-
rences of a value ofVARIABLES.var can berenamedto any unused value.

Reformulation Without loss of generality let assume that the collectionVARIABLES = 〈V1, V2, . . . , Vn〉
has more than one variable. By introducing2 · n − 1 0-1 variables, the
length last sequence(LEN, VARIABLES) constraint can be expressed in term of2·n−1
reified constraints and one arithmetic constraint (i.e., asum ctr constraint). We first in-
troducen − 1 variables that are respectively set to1 if and only if two given consecutive
variables of the collectionVARIABLES are equal:
Bn−1,n ⇔ Vn−1 = Vn,
Bn−2,n−1 ⇔ Vn−2 = Vn−1,
. .
B1,2 ⇔ V1 = V2.

We then introducen variablesAn, An−1, . . . , A1 that are respectively associated to the
different sliding sequences ending on the last variable of the sequenceV1 V2 . . . Vn. Vari-
ableAi is set to1 if and only if Vn = Vn−1 = . . . = Vi:

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

20081123 1259

An = 1,
An−1 ⇔ Bn−1,n ∧An,
An−2 ⇔ Bn−2,n−1 ∧An−1,
. .
A1 ⇔ B1,2 ∧A2.

Finally we state the following arithmetic constraint:
LEN = An +An−1 + . . .+A1.

See also common keyword:length first sequence (counting constraint,sequence).

Keywords characteristic of a constraint: automaton, automaton with counters.

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(2).

constraint type: value constraint, counting constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1260 AUTOMATON

Automaton Figure 5.377 depicts the automaton associated with thelength last sequence con-
straint. To each pair of consecutive variables(VARi, VARi+1) of the collectionVARIABLES
corresponds a signature variableSi. The following signature constraint linksVARi, VARi+1

andSi: VARi = VARi+1 ⇔ Si.

s: i i+1i+1iVAR <> VAR

{C=1}

{C=1}

{C=C+1}LEN=C

VAR = VAR

Figure 5.377: Automaton of thelength last sequence constraint when
|VARIABLES| ≥ 2

n−1

2

Q2

S3

VAR
n−1

Sn−1

VAR
3

VAR
n

S2

VAR
2

S1

VAR
1

Q1

C1C =00

Q =s0 Q =s

n−1C =LENC

Figure 5.378: Hypergraph of the reformulation corresponding to the automaton of the
length last sequence constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20081123 1261

1262 PREDEFINED

5.200 leq

DESCRIPTION LINKS

Origin Arithmetic.

Constraint leq(VAR1, VAR2)

Synonyms rel, xlteqy.

Arguments VAR1 : dvar

VAR2 : dvar

Purpose Enforce the fact that the first variable is less than or equal to the secondvariable.

Example (1, 8)

Theleq constraint holds since1 is greater than or equal to8.

Typical VAR1 < VAR2

Symmetries • VAR1 can be replaced by any value≤ VAR2.

• VAR2 can be replaced by any value≥ VAR1.

Systems leq in Choco, rel in Gecode, xlteqy in JaCoP, #=< in SICStus.

See also common keyword:neq (binary constraint,arithmetic constraint).

generalisation:leq cst (constant added).

implied by: eq, lt.

implies (if swap arguments):geq.

negation:gt.

Keywords constraint arguments:binary constraint.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/XlteqY.html
http://www.jacop.eu/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20070821 1263

1264 PREDEFINED

5.201 leqcst

DESCRIPTION LINKS

Origin Arithmetic.

Constraint leq cst(VAR1, VAR2, CST2)

Arguments VAR1 : dvar

VAR2 : dvar

CST2 : int

Purpose Enforce the fact that the first variable is less than or equal to the sum of the second
variable and the constant.

Example (5, 2, 4)

Theleq cst constraint holds since5 is less than or equal to2 + 4.

Typical CST2 6= 0
VAR1 < VAR2+ CST2

Symmetries • Arguments arepermutablew.r.t. permutation(VAR1) (VAR2, CST2).

• VAR1 can be replaced by any value≤ VAR2+ CST2.

• VAR2 can be replaced by any value≥ VAR1− CST2.

• CST2 can be replaced by any value≥ VAR1− VAR2.

See also common keyword:geq cst (binary constraint,arithmetic constraint).

implied by: distance, eq cst.

specialisation:leq (constant set to0).

Keywords constraint arguments:binary constraint.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.

modelling exercises:metro.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20090912 1265

1266 PREDEFINED

5.202 lex2

DESCRIPTION LINKS

Origin [155]

Constraint lex2(MATRIX)

Synonyms double lex, row and column lex.

Type VECTOR : collection(var−dvar)

Argument MATRIX : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
required(VECTOR, var)
required(MATRIX, vec)
same size(MATRIX, vec)

Purpose
Given a matrix of domain variables, enforces that both adjacent rows,and adjacent
columns are lexicographically ordered (adjacent rows and adjacent columns can be
equal).

Example
(〈

vec− 〈2, 2, 3〉 ,
vec− 〈2, 3, 1〉

〉)

Thelex2 constraint holds since:

• The first row 〈2, 2, 3〉 is lexicographically less than or equal to the second row
〈2, 3, 1〉.

• The first column〈2, 2〉 is lexicographically less than or equal to the second column
〈2, 3〉.

• The second column〈2, 3〉 is lexicographically less than or equal to the third column
〈3, 1〉.

Typical |VECTOR| > 1
|MATRIX| > 1

Symmetry One and the same constant can beaddedto thevar attribute of all items ofMATRIX.vec.

Usage A symmetry-breakingconstraint.

Remark The idea of thissymmetry-breakingconstraint can already be found in the following articles
of A. Lubiw [248, 249].

In block designs you sometimes want repeated blocks, so using the non-strict order would
be required in this case.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

20031008 1267

Reformulation The lex2 constraint can be expressed as a conjunction of twolex chain lesseq con-
straints: A firstlex chain lesseq constraint on theMATRIX argument and a second
lex chain lesseq constraint on the transpose of theMATRIX argument.

Systems lex2 in MiniZinc .

See also common keyword:allperm, lex lesseq (matrix symmetry,lexicographic order).

implied by: strict lex2.

implies: lex chain lesseq.

part of system of constraints:lex chain lesseq.

Keywords constraint type: predefined constraint, system of constraints, order constraint.

modelling: matrix, matrix model.

symmetry: symmetry, matrix symmetry, lexicographic order.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#lex2
http://www.g12.cs.mu.oz.au/minizinc/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1268 NARC,CLIQUE(<)

5.203 lexalldifferent

DESCRIPTION LINKS GRAPH

Origin J. Pearson

Constraint lex alldifferent(VECTORS)

Synonyms lex alldiff, lex alldistinct, alldiff on tuples, alldifferent on tuples,
alldistinct on tuples.

Type VECTOR : collection(var−dvar)

Argument VECTORS : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
required(VECTOR, var)
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose
All the vectors of the collectionVECTORS are distinct. Two vectors(u1, u2, . . . , un) and
(v1, v2, . . . , vn) are distinct if and only if there existsi ∈ [1, n] such thatui 6= vi.

Example

〈

vec− 〈5, 2, 3〉 ,
vec− 〈5, 2, 6〉 ,
vec− 〈5, 3, 3〉

〉

Thelex alldifferent constraint holds since:

• The first vector〈5, 2, 3〉 and the second vector〈5, 2, 6〉 of the VECTORS collection
differ in their third component (i.e.,3 6= 6).

• The first vector〈5, 2, 3〉 and the third vector〈5, 3, 3〉 of theVECTORS collection differ
in their second component (i.e.,2 6= 3).

• The second vector〈5, 2, 6〉 and the third vector〈5, 3, 3〉 of theVECTORS collection
differ in their second and third components (i.e.,2 6= 3 and6 6= 3).

Typical |VECTOR| > 1
|VECTORS| > 1

Symmetries • Items ofVECTORS arepermutable.

• Items ofVECTORS.vec arepermutable(same permutation used).

• All occurrences of two distinct tuples of values ofVECTORS.vec can beswapped;
all occurrences of a tuple of values ofVECTORS.vec can berenamedto any unused
tuple of values.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20030820 1269

Arg. properties
• Contractiblewrt. VECTORS.

• Extensiblewrt. VECTORS.vec (add items at same position).

Usage When the vectors have two components, thelex alldifferent constraint allows to
directly enforcedifference constraints between pairs of variables. Such difference con-
straints occur for instance in block design problems (e.g., Steiner triples, Kirkman school-
girls problem). However, in all these problems a same variable may occur in more than one
pair of variables. Consequently,arc-consistencyis not achieved any more by the filtering
algorithm described in [315].

Algorithm A filtering algorithm achievingarc-consistencyfor the lex alldifferent constraint is
proposed by C.-G. Quimper and T. Walsh in [315] and a longer version is available in [316]
and in [317].

Reformulation The lex alldifferent(VECTORS) constraint can be expressed as a clique of
lex different constraints. By associating an-dimensional box for which all sizes are
equal to1, one can also express thelex alldifferent(VECTORS) constraint as adiffn
or ageost constraint. Enforcing all then-dimensional boxes to not overlap is equivalent
as enforcing all the vectors to be distinct. In the context of the multidimensional sweep
algorithm of thegeost constraint [36], it makes more sense to make a complete sweep
over the domain of each variable in order not to only restrict the minimum and maximum
value of each variable.

See also generalisation: diffn (vector replaced byorthotope), geost (vector replaced by
object).

implied by: lex chain less.

part of system of constraints:lex different.

specialisation:alldifferent (vector replaced byvariable).

used in graph description:lex different.

Keywords characteristic of a constraint: vector.

constraint type: system of constraints, decomposition.

filtering: bipartite matching, arc-consistency.

modelling: difference between pairs of variables.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1270 NARC,CLIQUE(<)

Arc input(s) VECTORS

Arc generator CLIQUE (<) 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) lex different(vectors1.vec, vectors2.vec)

Graph property(ies) NARC= |VECTORS| ∗ (|VECTORS| − 1)/2

Graph model Parts (A) and (B) of Figure5.379respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

VECTORS

1

2

3

NARC=3

1:5
 2
 3

2:5
 2
 6

3:5
 3
 3

(A) (B)

Figure 5.379: Initial and final graph of thelex alldifferent constraint

Signature Since we use theCLIQUE (<) arc generator on theVECTORS collection the number of arcs
of the initial graph is equal to|VECTORS|·(|VECTORS|−1)/2. For this reason we can rewrite
NARC = |VECTORS| · (|VECTORS|− 1)/2 toNARC ≥ |VECTORS| · (|VECTORS|− 1)/2
and simplifyNARC toNARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1271

1272 AUTOMATON

5.204 lexbetween

DESCRIPTION LINKS AUTOMATON

Origin [90]

Constraint lex between(LOWER BOUND, VECTOR, UPPER BOUND)

Synonym between.

Arguments LOWER BOUND : collection(var−int)
VECTOR : collection(var−dvar)
UPPER BOUND : collection(var−int)

Restrictions required(LOWER BOUND, var)
required(VECTOR, var)
required(UPPER BOUND, var)
|LOWER BOUND| = |VECTOR|
|UPPER BOUND| = |VECTOR|
lex lesseq(LOWER BOUND, VECTOR)
lex lesseq(VECTOR, UPPER BOUND)

Purpose
The vector VECTOR is lexicographically greater than or equal to the fixed vec-
tor LOWER BOUND and lexicographically smaller than or equal to the fixed vector
UPPER BOUND.

Example

〈5, 2, 3, 9〉 ,
〈5, 2, 6, 2〉 ,
〈5, 2, 6, 3〉

Thelex between constraint holds since:

• The vector VECTOR = 〈5, 2, 6, 2〉 is greater than or equal to the vector
LOWER BOUND = 〈5, 2, 3, 9〉.

• The vectorVECTOR = 〈5, 2, 6, 2〉 is less than or equal to the vectorUPPER BOUND =
〈5, 2, 6, 3〉.

Typical |LOWER BOUND| > 1
lex lesseq(LOWER BOUND, UPPER BOUND)

Symmetries • LOWER BOUND.var can bedecreased.

• UPPER BOUND.var can beincreased.

Arg. properties
Suffix-contractiblewrt. LOWER BOUND, VECTOR andUPPER BOUND (remove items from
same position).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

20030820 1273

Usage This constraint does usually not occur explicitly in practice. However it shows up indirectly
in the context of thelex chain less and thelex chain lesseq constraints: in order to
have a complete filtering algorithm for thelex chain less and thelex chain lesseq

constraints one has to come up with a complete filtering algorithm for thelex between

constraint. The reason is that thelex chain less as well as thelex chain lesseq con-
straints both compute feasible lower and upper bounds for each vector they mention. There-
fore one ends up with alex between constraint for each vector of thelex chain less

andlex chain lesseq constraints.

Algorithm [90].

Reformulation The lex between(LOWER BOUND, VECTORS, UPPER BOUND) constraint can
be expressed as the conjunctionlex lesseq(LOWER BOUND, VECTORS) ∧
lex lesseq(VECTORS, UPPER BOUND).

Systems lexChainEq in Choco, lex chain in SICStus.

See also common keyword: lex chain less, lex chain lesseq, lex greater,
lex greatereq, lex less (lexicographic order).

part of system of constraints:lex lesseq.

Keywords characteristic of a constraint: vector, automaton, automaton without counters,
reified automaton constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint, system of constraints.

filtering: arc-consistency.

symmetry: symmetry, lexicographic order.

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1274 AUTOMATON

Automaton Figure5.380depicts the automaton associated with thelex between constraint. LetLi, Vi
andUi respectively be thevar attributes of theith items of theLOWER BOUND, theVECTOR
and theUPPER BOUND collections. To each triple(Li, Vi, Ui) corresponds a signature vari-
ableSi as well as the following signature constraint:

(Li < Vi) ∧ (Vi < Ui) ⇔ Si = 0 ∧
(Li < Vi) ∧ (Vi = Ui) ⇔ Si = 1 ∧
(Li < Vi) ∧ (Vi > Ui) ⇔ Si = 2 ∧
(Li = Vi) ∧ (Vi < Ui) ⇔ Si = 3 ∧
(Li = Vi) ∧ (Vi = Ui) ⇔ Si = 4 ∧
(Li = Vi) ∧ (Vi > Ui) ⇔ Si = 5 ∧
(Li > Vi) ∧ (Vi < Ui) ⇔ Si = 6 ∧
(Li > Vi) ∧ (Vi = Ui) ⇔ Si = 7 ∧
(Li > Vi) ∧ (Vi > Ui) ⇔ Si = 8.

s

i iiL >V and V >U

i i iiL >V and V <U

i i iiL >V and V =U

L =V and V >Ui iii

L =V and V =Ui iii

i i iiL =V and V <U

i i iiL =V and V =U

i i iiL =V and V >U

L =V and V <Ui iii

L <V and V =Ui iii

L <V and V <Ui iii

L <V and V >Ui iii

i i iiL <V and V >U

i i iiL <V and V <U

i i iiL <V and V =U

i i iiL >V and V =U
i i iiL =V and V =U
i i iiL <V and V =U

i i iiL <V and V =U

i i iiL =V and V <U

i i iiL <V and V <U

i i iiL =V and V =U

i i i i

i i i i

i i i i
L =V and V <U

L >V and V <U

L <V and V <U

b

t

a

i

Figure 5.380: Automaton of thelex between constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20030820 1275

n
Q =s 1Q

n
 S2

 S1
 S

n
 V2

 V1
 V

s a
b tQ =0

Figure 5.381: Hypergraph of the reformulation corresponding to the automaton of the
lex between constraint

1276 NARC,PATH

5.205 lexchain less

DESCRIPTION LINKS GRAPH

Origin [90]

Constraint lex chain less(VECTORS)

Usual name lex chain

Type VECTOR : collection(var−dvar)

Argument VECTORS : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
required(VECTOR, var)
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose

For each pair of consecutive vectorsVECTORi andVECTORi+1 of the VECTORS collec-
tion we have thatVECTORi is lexicographically strictly less thanVECTORi+1. Given two
vectors,~X and~Y of n components,〈X0, . . . , Xn−1〉 and〈Y0, . . . , Yn−1〉, ~X is lexico-
graphically strictly less than~Y if and only ifX0 < Y0 orX0 = Y0 and〈X1, . . . , Xn−1〉
is lexicographically strictly less than〈Y1, . . . , Yn−1〉.

Example

〈

vec− 〈5, 2, 3, 9〉 ,
vec− 〈5, 2, 6, 2〉 ,
vec− 〈5, 2, 6, 3〉

〉

Thelex chain less constraint holds since:

• The first vector〈5, 2, 3, 9〉 of theVECTORS collection is lexicographically strictly less
than the second vector〈5, 2, 6, 2〉 of theVECTORS collection.

• The second vector〈5, 2, 6, 2〉 of theVECTORS collection is lexicographically strictly
less than the third vector〈5, 2, 6, 3〉 of theVECTORS collection.

Typical |VECTOR| > 1
|VECTORS| > 1

Arg. properties
• Contractiblewrt. VECTORS.

• Suffix-extensiblewrt. VECTORS.vec (add items at same position).

Usage This constraint was motivated for breaking symmetry: more precisely when one wants
to lexicographically order the consecutive columns of a matrix of decisionvariables. A
further motivation is that using a set of lexicographic ordering constraints between two
vectors does usually not allows to come up with a complete pruning.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

20030820 1277

Algorithm A filtering algorithm achievingarc-consistencyfor a chain of lexicographical ordering con-
straints is presented in [90].

Six different ways of integrating a chain of lexicographical ordering constraints within
non-overlapping constraints likediffn or geost and within their corresponding necessary
condition like thecumulative constraint are shown in [2].

Systems lexChain in Choco, lex chain in SICStus.

See also common keyword: geost (symmetry, lexicographic ordering on the origins
of tasks, rectangles, . . .), lex between, lex greater, lex greatereq,
lex lesseq (lexicographic order).

implied by: strict lex2.

implies: lex alldifferent, lex chain lesseq.

part of system of constraints:lex less.

related: cumulative, diffn (lexicographic ordering on the origins oftasks,
rectangles, . . .).

system of constraints:strict lex2.

used in graph description:lex less.

Keywords application area: floor planning problem.

characteristic of a constraint: vector.

constraint type: decomposition, order constraint, system of constraints.

filtering: arc-consistency.

heuristics: heuristics and lexicographical ordering.

modelling: degree of diversity of a set of solutions.

modelling exercises:degree of diversity of a set of solutions.

symmetry: symmetry, matrix symmetry, lexicographic order.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1278 NARC,PATH

Arc input(s) VECTORS

Arc generator PATH 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) lex less(vectors1.vec, vectors2.vec)

Graph property(ies) NARC= |VECTORS| − 1

Graph model Parts (A) and (B) of Figure5.382respectively show the initial and final graph associated
with theExampleslot. Since we use theNARC graph property, the arcs of the final graph
are stressed in bold. Thelex chain less constraint holds since all the arc constraints of
the initial graph are satisfied.

VECTORS

1

2

3

NARC=2

1:5
 2
 3
 9

2:5
 2
 6
 2

3:5
 2
 6
 3

(A) (B)

Figure 5.382: Initial and final graph of thelex chain less constraint

Signature Since we use thePATH arc generator on theVECTORS collection the number of arcs of
the initial graph is equal to|VECTORS| − 1. For this reason we can rewriteNARC =
|VECTORS| − 1 to NARC ≥ |VECTORS| − 1 and simplifyNARC toNARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1279

1280 NARC,PATH

5.206 lexchain lesseq

DESCRIPTION LINKS GRAPH

Origin [90]

Constraint lex chain lesseq(VECTORS)

Usual name lex chain

Type VECTOR : collection(var−dvar)

Argument VECTORS : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
required(VECTOR, var)
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose

For each pair of consecutive vectorsVECTORi andVECTORi+1 of theVECTORS collection
we have thatVECTORi is lexicographically less than or equal toVECTORi+1. Given two
vectors,~X and~Y of n components,〈X0, . . . , Xn−1〉 and〈Y0, . . . , Yn−1〉, ~X is lexico-
graphically less than or equal to~Y if and only if n = 0 or X0 < Y0 or X0 = Y0 and
〈X1, . . . , Xn−1〉 is lexicographically less than or equal to〈Y1, . . . , Yn−1〉.

Example

〈

vec− 〈5, 2, 3, 9〉 ,
vec− 〈5, 2, 6, 2〉 ,
vec− 〈5, 2, 6, 2〉

〉

Thelex chain lesseq constraint holds since:

• The first vector〈5, 2, 3, 9〉 of theVECTORS collection is lexicographically less than
or equal to the second vector〈5, 2, 6, 2〉 of theVECTORS collection.

• The second vector〈5, 2, 6, 2〉 of the VECTORS collection is lexicographically less
than or equal to the third vector〈5, 2, 6, 2〉 of theVECTORS collection.

Typical |VECTOR| > 1
|VECTORS| > 1

Arg. properties
• Contractiblewrt. VECTORS.

• Suffix-contractiblewrt. VECTORS.vec (remove items from same position).

Usage This constraint was motivated for breaking symmetry: more precisely when one wants
to lexicographically order the consecutive columns of a matrix of decisionvariables. A
further motivation is that using a set of lexicographic ordering constraints between two
vectors does usually not allows to come up with a complete pruning.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

20030820 1281

Algorithm A filtering algorithm achievingarc-consistencyfor a chain of lexicographical ordering con-
straints is presented in [90].

Six different ways of integrating a chain of lexicographical ordering constraints within
non-overlapping constraints likediffn or geost and within their corresponding necessary
condition like thecumulative constraint are shown in [2].

Systems lexChainEq in Choco, lex chain in SICStus.

See also common keyword: allperm (lexicographic order), geost (symmetry, lexicographic or-
dering on the origins oftasks, rectangles, . . .), lex between, lex greater,
lex greatereq, lex less (lexicographic order).

implied by: lex2 (columns lex ordering imposed by constraintlex2 removed),
lex chain less (non-strict order implied by strict order),
ordered atleast nvector (NVEC of constraintordered atleast nvector removed),
ordered atmost nvector (NVEC of constraintordered atmost nvector removed),
ordered nvector (NVEC of constraintordered nvector removed).

part of system of constraints:lex lesseq.

related: cumulative, diffn (lexicographic ordering on the origins oftasks,
rectangles, . . .).

system of constraints:lex2.

used in graph description:lex lesseq.

Keywords characteristic of a constraint: vector.

constraint type: system of constraints, decomposition, order constraint.

filtering: arc-consistency.

heuristics: heuristics and lexicographical ordering.

symmetry: symmetry, matrix symmetry, lexicographic order.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1282 NARC,PATH

Arc input(s) VECTORS

Arc generator PATH 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) lex lesseq(vectors1.vec, vectors2.vec)

Graph property(ies) NARC= |VECTORS| − 1

Graph model Parts (A) and (B) of Figure5.383respectively show the initial and final graph associated
with theExampleslot. Since we use theNARC graph property, the arcs of the final graph
are stressed in bold. Thelex chain lesseq constraint holds since all the arc constraints
of the initial graph are satisfied.

VECTORS

1

2

3

NARC=2

1:5
 2
 3
 9

2:5
 2
 6
 2

3:5
 2
 6
 2

(A) (B)

Figure 5.383: Initial and final graph of thelex chain lesseq constraint

Signature Since we use thePATH arc generator on theVECTORS collection the number of arcs of
the initial graph is equal to|VECTORS| − 1. For this reason we can rewriteNARC =
|VECTORS| − 1 to NARC ≥ |VECTORS| − 1 and simplifyNARC toNARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1283

1284 NARC,PRODUCT (=); AUTOMATON

5.207 lexdifferent

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Used for defininglex alldifferent.

Constraint lex different(VECTOR1, VECTOR2)

Synonyms different, diff.

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)

Restrictions required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| > 0
|VECTOR1| = |VECTOR2|

Purpose VectorsVECTOR1 andVECTOR2 differ in at least one component.

Example
(

〈5, 2, 7, 1〉 ,
〈5, 3, 7, 1〉

)

The lex different constraint holds sinceVECTOR1 = 〈5, 2, 7, 1〉 and VECTOR2 =
〈5, 3, 7, 1〉 differ in their second component.

Typical |VECTOR1| > 1
range(VECTOR1.var) > 1
range(VECTOR2.var) > 1

Symmetries • Arguments arepermutablew.r.t. permutation(VECTOR1, VECTOR2).

• Items ofVECTOR1 andVECTOR2 arepermutable(same permutation used).

Arg. properties
Extensiblewrt. VECTOR1 andVECTOR2 (add items at same position).

Reformulation The lex different(〈var − U1, var − U2, . . . , var − U|VECTOR1|〉, 〈var − V1, var −
V2, . . . , var − V|VECTOR2|〉) constraint can be expressed in term of the following disjunc-
tion of disequality constraintsU1 6= V1 ∨ U2 6= V2 ∨ . . . ∨ U|VECTOR1| 6= V|VECTOR2|.

Used in lex alldifferent, sort permutation.

See also common keyword:lex greatereq, lex lesseq (vector).

implied by: disjoint, lex greater, lex less.

negation:lex equal.

system of constraints:lex alldifferent.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

20030820 1285

Keywords characteristic of a constraint: vector, disequality, automaton,
automaton without counters, reified automaton constraint.

constraint network structure: Berge-acyclic constraint network.

filtering: arc-consistency.

Keywords
Related keywords grouped by meta-keywords.

1286 NARC,PRODUCT (=); AUTOMATON

Arc input(s) VECTOR1 VECTOR2

Arc generator PRODUCT (=) 7→collection(vector1, vector2)

Arc arity 2

Arc constraint(s) vector1.var 6= vector2.var

Graph property(ies) NARC≥ 1

Graph model Parts (A) and (B) of Figure5.384respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the unique arc of the
final graph is stressed in bold. It corresponds to a component wherethe two vectors differ.

VECTOR1

VECTOR2

1

1

2

2

3

3

4

4

NARC=1

2:2

2:3

(A) (B)

Figure 5.384: Initial and final graph of thelex different constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1287

Automaton Figure5.385depicts the automaton associated with thelex different constraint. Let
VAR1i andVAR2i respectively be thevar attributes of theith items of theVECTOR1 and the
VECTOR2 collections. To each pair(VAR1i, VAR2i) corresponds a0-1 signature variableSi
as well as the following signature constraint:VAR1i = VAR2i ⇔ Si.

s

iVAR1 <>VAR2

iiVAR1 = VAR2

VAR1 <>VAR2i i

VAR1 = VAR2i i

t

i

Figure 5.385: Automaton of thelex different constraint

n

VAR2
 1 VAR2

 2
VAR2

 n

VAR1
 1 VAR1

 2
VAR1

 n

Q1Q =s0

S1 S2 Sn

Q =t

Figure 5.386: Hypergraph of the reformulation corresponding to the automaton of the
lex different constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1288 NARC,PRODUCT (=); AUTOMATON

5.208 lexequal

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Initially introduced for definingnvector

Constraint lex equal(VECTOR1, VECTOR2)

Synonyms equal, eq.

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)

Restrictions required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

Purpose
VECTOR1 is equal to VECTOR2. Given two vectors, ~X and ~Y of n components,
〈X0, . . . , Xn−1〉 and 〈Y0, . . . , Yn−1〉, ~X is equal to ~Y if and only if n = 0 or
X0 = Y0 ∧X1 = Y1 ∧ . . . ∧Xn−1 = Yn−1.

Example
(

〈1, 9, 1, 5〉 ,
〈1, 9, 1, 5〉

)

The lex equal constraint holds since (1) the first component of the first vector is
equal to the first component of the second vector, (2) the second component of the first
vector is equal to the second component of the second vector, (3) the third component
of the first vector is equal to the third component of the second vector and (4) the fourth
component of the first vector is equal to the fourth component of the second vector.

Typical |VECTOR1| > 1
range(VECTOR1.var) > 1
range(VECTOR2.var) > 1

Symmetries • Arguments arepermutablew.r.t. permutation(VECTOR1, VECTOR2).

• Items ofVECTOR1 andVECTOR2 arepermutable(same permutation used).

Arg. properties
Contractiblewrt. VECTOR1 andVECTOR2 (remove items from same position).

Used in atleast nvector, atmost nvector, nvector, nvectors.

See also common keyword:nvector (vector).

implied by: vec eq tuple.

implies: lex greatereq, lex lesseq, same.

negation:lex different.

specialisation:vec eq tuple (variable replaced byinteger in second argument).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

20081220 1289

Keywords characteristic of a constraint: vector, automaton, automaton without counters,
reified automaton constraint.

constraint network structure: Berge-acyclic constraint network.

filtering: arc-consistency.

final graph structure: acyclic, bipartite, no loop.

Keywords
Related keywords grouped by meta-keywords.

1290 NARC,PRODUCT (=); AUTOMATON

Arc input(s) VECTOR1 VECTOR2

Arc generator PRODUCT (=) 7→collection(vector1, vector2)

Arc arity 2

Arc constraint(s) vector1.var = vector2.var

Graph property(ies) NARC= |VECTOR1|
Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model Parts (A) and (B) of Figure5.387respectively show the initial and final graphs associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

VECTOR1

VECTOR2

1

1

2

2

3

3

4

4

NARC=4

1:1

1:1

2:9

2:9

3:1

3:1

4:5

4:5

(A) (B)

Figure 5.387: Initial and final graph of thelex equal constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20081220 1291

Automaton Figure5.388depicts the automaton associated with thelex equal constraint. LetVAR1i
and VAR2i respectively be thevar attributes of theith items of theVECTOR1 and the
VECTOR2 collections. To each pair(VAR1i, VAR2i) corresponds a signature variableSi
as well as the following signature constraint:(VAR1i 6= VAR2i ⇔ Si = 0) ∧ (VAR1i =
VAR2i ⇔ Si = 1).

iiVAR1 =VAR2s

Figure 5.388: Automaton of thelex equal constraint

n

VAR2
 2

VAR2 1
VAR2

 1
VAR1

 2
VAR1

 n
VAR1

1Q0Q =s

1S 2S nS

Q =s

 n

Figure 5.389: Hypergraph of the reformulation corresponding to the automaton of the
lex equal constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1292 PATH FROM TO,PRODUCT (PATH ,VOID); AUTOMATON

5.209 lexgreater

DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint lex greater(VECTOR1, VECTOR2)

Synonyms lex, lex chain, rel, greater, gt.

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)

Restrictions required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

Purpose

VECTOR1 is lexicographically strictly greater thanVECTOR2. Given two vectors,~X
and~Y of n components,〈X0, . . . , Xn−1〉 and〈Y0, . . . , Yn−1〉, ~X is lexicographically
strictly greater than~Y if and only if X0 > Y0 or X0 = Y0 and〈X1, . . . , Xn−1〉 is
lexicographically strictly greater than〈Y1, . . . , Yn−1〉.

Example
(

〈5, 2, 7, 1〉 ,
〈5, 2, 6, 2〉

)

The lex greater constraint holds sinceVECTOR1 = 〈5, 2, 7, 1〉 is lexicographically
strictly greater thanVECTOR2 = 〈5, 2, 6, 2〉.

Typical |VECTOR1| > 1

Symmetries • VECTOR1.var can beincreased.

• VECTOR2.var can bedecreased.

Arg. properties
Suffix-extensiblewrt. VECTOR1 andVECTOR2 (add items at same position).

Remark A multiset orderingconstraint and its corresponding filtering algorithm are described
in [161].

Algorithm The first filtering algorithm maintainingarc-consistencyfor this constraint was presented
in [160]. A second filtering algorithm maintainingarc-consistencyand detecting entail-
ment in a more eager way, was given in [91]. This second algorithm was derived from a
deterministic finite automata. A third filtering algorithm extending the algorithm presented
in [160] detecting entailment is given in the PhD thesis of Z. Kızıltan [221, page 95]. The
previous thesis [221, pages 105–109] presents also a filtering algorithm handling the fact
that a given variable has more than one occurrence. Finally, T. Frühwirth shows how to
encode lexicographic ordering constraints within the context of CHR [162] in [163].

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

20030820 1293

Reformulation The following reformulations in term of arithmetic and/or logical expressions exist for
enforcing thelexicographically strictly greater thanconstraint. The first one converts~X
and~Y into numbers and post an inequality constraint. It assumes all components of ~X and
~Y to be within[0, a− 1]:

an−1Y0 + an−2Y1 + . . .+ a0Yn−1 < an−1X0 + an−2X1 + . . .+ a0Xn−1

Since the previous reformulation can only be used with small values ofn anda, W. Harvey
came up with the following alternative model that maintainsarc-consistency:

(Y0 < X0 + (Y1 < X1 + (. . .+ (Yn−1 < Xn−1 + 0) . . .))) = 1

Finally, the lexicographically strictly greater thanconstraint can be expressed as a con-
junction or a disjunction of constraints:

Y0 ≤ X0 ∧
(Y0 = X0) ⇒ Y1 ≤ X1 ∧

(Y0 = X0 ∧ Y1 = X1) ⇒ Y2 ≤ X2 ∧
...

(Y0 = X0 ∧ Y1 = X1 ∧ . . . ∧ Yn−2 = Xn−2) ⇒ Yn−1 < Xn−1

Y0 < X0 ∨
Y0 = X0 ∧ Y1 < X1 ∨

Y0 = X0 ∧ Y1 = X1 ∧ Y2 < X2 ∨
...

Y0 = X0 ∧ Y1 = X1 ∧ . . . ∧ Yn−2 = Xn−2 ∧ Yn−1 < Xn−1

When used separately, the two previous logical decompositions do not maintain
arc-consistency.

Systems lex in Choco, rel in Gecode, lex greater in MiniZinc , lex chain in SICStus.

See also common keyword: cond lex greater, lex between, lex chain less,
lex chain lesseq (lexicographic order).

implies: lex different, lex greatereq.

implies (if swap arguments):lex less.

negation:lex lesseq.

Keywords characteristic of a constraint: vector, automaton, automaton without counters,
reified automaton constraint, derived collection.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

filtering: duplicated variables, arc-consistency.

heuristics: heuristics and lexicographical ordering.

symmetry: symmetry, matrix symmetry, lexicographic order, multiset ordering.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#lex_greater
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1294 PATH FROM TO,PRODUCT (PATH ,VOID); AUTOMATON

Derived Collections

col

(

DESTINATION−collection(index−int, x−int, y−int),
[item(index− 0, x− 0, y− 0)]

)

col

(

COMPONENTS−collection(index−int, x−dvar, y−dvar),
[

item(index− VECTOR1.key, x− VECTOR1.var, y− VECTOR2.var)
]

)

Arc input(s) COMPONENTS DESTINATION

Arc generator PRODUCT (PATH ,VOID) 7→collection(item1, item2)

Arc arity 2

Arc constraint(s)
∨

(

item2.index > 0 ∧ item1.x = item1.y,
item2.index = 0 ∧ item1.x > item1.y

)

Graph property(ies) PATH FROM TO(index, 1, 0) = 1

Graph model Parts (A) and (B) of Figure5.390respectively show the initial and final graph associated
with theExample slot. Since we use thePATH FROM TO graph property we show
the following information on the final graph:

• The vertices, which respectively correspond to the start and the end ofthe required
path, are stressed in bold.

• The arcs on the required path are also stressed in bold.

COMPONENTS

DESTINATION

1

2

1

3

4

PATH_FROM_TO(index,1,0)=1

COMPONENTS

DESTINATION

1:1,5,5

2:2,2,2

3:3,7,6

1:0,0,0

(A) (B)

Figure 5.390: Initial and final graph of thelex greater constraint

The vertices of the initial graph are generated in the following way:

• We create a vertexci for each pair of components that both have the same indexi.

• We create an additional dummy vertex calledd.

The arcs of the initial graph are generated in the following way:

Derived Collections
Declarations of new collections that are derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1295

• We create an arc betweenci and d. We associate to this arc the arc constraint
item1.x > item2.y.

• We create an arc betweenci andci+1. We associate to this arc the arc constraint
item1.x = item2.y.

Thelex greater constraint holds when there exist a path fromc1 to d. This path can be
interpreted as a sequence ofequalityconstraints on the prefix of both vectors, immediately
followed by agreater thanconstraint.

Signature Since the maximum value returned by the graph propertyPATH FROM TO

is equal to 1 we can rewritePATH FROM TO(index, 1, 0) = 1 to
PATH FROM TO(index, 1, 0) ≥ 1. Therefore we simplifyPATH FROM TO

toPATH FROM TO.

Signature
Provides some explanations about the graph based signature of the constraint.

1296 PATH FROM TO,PRODUCT (PATH ,VOID); AUTOMATON

Automaton Figure 5.391 depicts the automaton associated with thelex greater constraint. Let
VAR1i andVAR2i respectively be thevar attributes of theith items of theVECTOR1 and the
VECTOR2 collections. To each pair(VAR1i, VAR2i) corresponds a signature variableSi as
well as the following signature constraint:(VAR1i < VAR2i ⇔ Si = 1) ∧ (VAR1i =
VAR2i ⇔ Si = 2) ∧ (VAR1i > VAR2i ⇔ Si = 3).

s

iVAR1 < VAR2 VAR1 > VAR2i i

iiVAR1 =VAR2

iiVAR1 > VAR2

VAR1 =VAR2i i

ti

Figure 5.391: Automaton of thelex greater constraint

n

VAR2
 1 VAR2

 2
VAR2

 n

VAR1
 1 VAR1

 2
VAR1

 n

Q1Q =s0

S1 S2 Sn

Q =t

Figure 5.392: Hypergraph of the reformulation corresponding to the automaton of the
lex greater constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20030820 1297

1298 PATH FROM TO,PRODUCT (PATH ,VOID); AUTOMATON

5.210 lexgreatereq

DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint lex greatereq(VECTOR1, VECTOR2)

Synonyms lexeq, lex chain, rel, greatereq, geq, lex geq.

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)

Restrictions required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

Purpose

VECTOR1 is lexicographically greater than or equal toVECTOR2. Given two vectors,
~X and ~Y of n components,〈X0, . . . , Xn−1〉 and〈Y0, . . . , Yn−1〉, ~X is lexicographi-
cally greater than or equal to~Y if and only if n = 0 or X0 > Y0 or X0 = Y0 and
〈X1, . . . , Xn−1〉 is lexicographically greater than or equal to〈Y1, . . . , Yn−1〉.

Example
(

〈5, 2, 8, 9〉 ,
〈5, 2, 6, 2〉

)

(

〈5, 2, 3, 9〉 ,
〈5, 2, 3, 9〉

)

The lex greatereq constraints associated with the first and second examples hold
since:

• Within the first exampleVECTOR1 = 〈5, 2, 8, 9〉 is lexicographically greater than or
equal toVECTOR2 = 〈5, 2, 6, 2〉.

• Within the second exampleVECTOR1 = 〈5, 2, 3, 9〉 is lexicographically greater than
or equal toVECTOR2 = 〈5, 2, 3, 9〉.

Typical |VECTOR1| > 1

Symmetries • VECTOR1.var can beincreased.

• VECTOR2.var can bedecreased.

Arg. properties
Suffix-contractiblewrt. VECTOR1 andVECTOR2 (remove items from same position).

Remark A multiset orderingconstraint and its corresponding filtering algorithm are described
in [161].

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

20030820 1299

Algorithm The first filtering algorithm maintainingarc-consistencyfor this constraint was presented
in [160]. A second filtering algorithm maintainingarc-consistencyand detecting entail-
ment in a more eager way, was given in [91]. This second algorithm was derived from a
deterministic finite automata. A third filtering algorithm extending the algorithm presented
in [160] detecting entailment is given in the PhD thesis of Z. Kızıltan [221, page 95]. The
previous thesis [221, pages 105–109] presents also a filtering algorithm handling the fact
that a given variable has more than one occurrence. Finally, T. Frühwirth shows how to
encode lexicographic ordering constraints within the context of CHR [162] in [163].

Reformulation The following reformulations in term of arithmetic and/or logical expressions exist for
enforcing thelexicographically greater than or equal toconstraint. The first one converts
~X and~Y into numbers and post an inequality constraint. It assumes all components of ~X
and~Y to be within[0, a− 1]:

an−1Y0 + an−2Y1 + . . .+ a0Yn−1 ≤ an−1X0 + an−2X1 + . . .+ a0Xn−1

Since the previous reformulation can only be used with small values ofn anda, W. Harvey
came up with the following alternative model that maintainsarc-consistency:

(Y0 < X0 + (Y1 < X1 + (. . .+ (Yn−1 < Xn−1 + 1) . . .))) = 1

Finally, the lexicographically greater than or equal toconstraint can be expressed as a
conjunction or a disjunction of constraints:

Y0 ≤ X0 ∧
(Y0 = X0) ⇒ Y1 ≤ X1 ∧

(Y0 = X0 ∧ Y1 = X1) ⇒ Y2 ≤ X2 ∧
...

(Y0 = X0 ∧ Y1 = X1 ∧ . . . ∧ Yn−2 = Xn−2) ⇒ Yn−1 ≤ Xn−1

Y0 < X0 ∨
Y0 = X0 ∧ Y1 < X1 ∨

Y0 = X0 ∧ Y1 = X1 ∧ Y2 < X2 ∨
...

Y0 = X0 ∧ Y1 = X1 ∧ . . . ∧ Yn−2 = Xn−2 ∧ Yn−1 ≤ Xn−1

When used separately, the two previous logical decompositions do not maintain
arc-consistency.

Systems lexEq in Choco, rel in Gecode, lex greatereq in MiniZinc , lex chain in
SICStus.

See also common keyword: cond lex greatereq, lex between, lex chain less,
lex chain lesseq (lexicographic order), lex different (vector).

implied by: lex equal, lex greater, sort.

implies (if swap arguments):lex lesseq.

negation:lex less.

Keywords characteristic of a constraint: vector, automaton, automaton without counters,
reified automaton constraint, derived collection.

constraint network structure: Berge-acyclic constraint network.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#lex_greatereq
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1300 PATH FROM TO,PRODUCT (PATH ,VOID); AUTOMATON

constraint type: order constraint.

filtering: duplicated variables, arc-consistency.

heuristics: heuristics and lexicographical ordering.

symmetry: symmetry, matrix symmetry, lexicographic order, multiset ordering.

20030820 1301

Derived Collections

col

(

DESTINATION−collection(index−int, x−int, y−int),
[item(index− 0, x− 0, y− 0)]

)

col

(

COMPONENTS−collection(index−int, x−dvar, y−dvar),
[

item(index− VECTOR1.key, x− VECTOR1.var, y− VECTOR2.var)
]

)

Arc input(s) COMPONENTS DESTINATION

Arc generator PRODUCT (PATH ,VOID) 7→collection(item1, item2)

Arc arity 2

Arc constraint(s)
∨

item2.index > 0 ∧ item1.x = item1.y,
item1.index < |VECTOR1| ∧ item2.index = 0 ∧ item1.x > item1.y,
item1.index = |VECTOR1| ∧ item2.index = 0 ∧ item1.x ≥ item1.y

Graph property(ies) PATH FROM TO(index, 1, 0) = 1

Graph model Parts (A) and (B) of Figure5.393respectively show the initial and final graph associated
with the first example of theExampleslot. Since we use thePATH FROM TO graph
property we show on the final graph the following information:

• The vertices, which respectively correspond to the start and the end ofthe required
path, are stressed in bold.

• The arcs on the required path are also stressed in bold.

COMPONENTS

DESTINATION

1

2

1

3

4

PATH_FROM_TO(index,1,0)=1

COMPONENTS

DESTINATION

1:1,5,5

2:2,2,2

3:3,8,6

1:0,0,0

4:4,9,2

(A) (B)

Figure 5.393: Initial and final graph of thelex greatereq constraint

The vertices of the initial graph are generated in the following way:

• We create a vertexci for each pair of components that both have the same indexi.

• We create an additional dummy vertex calledd.

Derived Collections
Declarations of new collections that are derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1302 PATH FROM TO,PRODUCT (PATH ,VOID); AUTOMATON

The arcs of the initial graph are generated in the following way:

• We create an arc betweenci andd. Whenci was generated from the last components
of both vectors We associate to this arc the arc constraintitem1.x ≥ item2.y;
Otherwise we associate to this arc the arc constraintitem1.x > item2.y;

• We create an arc betweenci andci+1. We associate to this arc the arc constraint
item1.x = item2.y.

Thelex greatereq constraint holds when there exist a path fromc1 to d. This path can
be interpreted as a maximum sequence ofequalityconstraints on the prefix of both vectors,
possibly followed by agreater thanconstraint.

Signature Since the maximum value returned by the graph propertyPATH FROM TO

is equal to 1 we can rewritePATH FROM TO(index, 1, 0) = 1 to
PATH FROM TO(index, 1, 0) ≥ 1. Therefore we simplifyPATH FROM TO

toPATH FROM TO.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1303

Automaton Figure5.394depicts the automaton associated with thelex greatereq constraint. Let
VAR1i andVAR2i respectively be thevar attributes of theith items of theVECTOR1 and the
VECTOR2 collections. To each pair(VAR1i, VAR2i) corresponds a signature variableSi as
well as the following signature constraint:(VAR1i < VAR2i ⇔ Si = 1) ∧ (VAR1i =
VAR2i ⇔ Si = 2) ∧ (VAR1i > VAR2i ⇔ Si = 3).

t

iVAR1 =VAR2

VAR1 > VAR2 ii

i iVAR1 > VAR2

VAR1 =VAR2i i

VAR1 < VAR2 ii

s i

Figure 5.394: Automaton of thelex greatereq constraint

n

VAR2
 2

VAR2 1
VAR2

 1
VAR1

 2
VAR1

 n
VAR1

1Q0Q =s

1S 2S nS

t

s
Q =

 n

Figure 5.395: Hypergraph of the reformulation corresponding to the automaton of the
lex greatereq constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1304 PATH FROM TO,PRODUCT (PATH ,VOID); AUTOMATON

5.211 lexless

DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint lex less(VECTOR1, VECTOR2)

Synonyms lex, lex chain, rel, less.

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)

Restrictions required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

Purpose

VECTOR1 is lexicographically strictly less thanVECTOR2. Given two vectors,~X and~Y
of n components,〈X0, . . . , Xn−1〉 and〈Y0, . . . , Yn−1〉, ~X is lexicographically strictly
less than~Y if and only if X0 < Y0 or X0 = Y0 and〈X1, . . . , Xn−1〉 is lexicographi-
cally strictly less than〈Y1, . . . , Yn−1〉.

Example
(

〈5, 2, 3, 9〉 ,
〈5, 2, 6, 2〉

)

The lex less constraint holds sinceVECTOR1 = 〈5, 2, 3, 9〉 is lexicographically
strictly less thanVECTOR2 = 〈5, 2, 6, 2〉.

Symmetries • VECTOR1.var can bedecreased.

• VECTOR2.var can beincreased.

Arg. properties
Suffix-extensiblewrt. VECTOR1 andVECTOR2 (add items at same position).

Remark A multiset orderingconstraint and its corresponding filtering algorithm are described
in [161].

Algorithm The first filtering algorithm maintainingarc-consistencyfor this constraint was presented
in [160]. A second filtering algorithm maintainingarc-consistencyand detecting entail-
ment in a more eager way, was given in [91]. This second algorithm was derived from a
deterministic finite automata. A third filtering algorithm extending the algorithm presented
in [160] detecting entailment is given in the PhD thesis of Z. Kızıltan [221, page 95]. The
previous thesis [221, pages 105–109] presents also a filtering algorithm handling the fact
that a given variable has more than one occurrence. Finally, T. Frühwirth shows how to
encode lexicographic ordering constraints within the context of CHR [162] in [163].

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

20030820 1305

Reformulation The following reformulations in term of arithmetic and/or logical expressions exist for
enforcing thelexicographically strictly less thanconstraint. The first one converts~X and
~Y into numbers and post an inequality constraint. It assumes all components of ~X and~Y
to be within[0, a− 1]:

an−1X0 + an−2X1 + . . .+ a0Xn−1 < an−1Y0 + an−2Y1 + . . .+ a0Yn−1

Since the previous reformulation can only be used with small values ofn anda, W. Harvey
came up with the following alternative model that maintainsarc-consistency:

(X0 < Y0 + (X1 < Y1 + (. . .+ (Xn−1 < Yn−1 + 0) . . .))) = 1

Finally, thelexicographically strictly less thanconstraint can be expressed as a conjunction
or a disjunction of constraints:

X0 ≤ Y0 ∧
(X0 = Y0) ⇒ X1 ≤ Y1 ∧

(X0 = Y0 ∧X1 = Y1) ⇒ X2 ≤ Y2 ∧
...

(X0 = Y0 ∧X1 = Y1 ∧ . . . ∧Xn−2 = Yn−2) ⇒ Xn−1 < Yn−1

X0 < Y0 ∨
X0 = Y0 ∧X1 < Y1 ∨

X0 = Y0 ∧X1 = Y1 ∧X2 < Y2 ∨
...

X0 = Y0 ∧X1 = Y1 ∧ . . . ∧Xn−2 = Yn−2 ∧Xn−1 < Yn−1

When used separately, the two previous logical decompositions do not maintain
arc-consistency.

Systems lex in Choco, rel in Gecode, lex less in MiniZinc , lex chain in SICStus.

Used in lex chain less, ordered atleast nvector, ordered atmost nvector,
ordered nvector.

See also common keyword: cond lex less, lex between,
lex chain lesseq (lexicographic order).

implies: lex different, lex lesseq.

implies (if swap arguments):lex greater.

negation:lex greatereq.

system of constraints:lex chain less.

Keywords characteristic of a constraint: vector, automaton, automaton without counters,
reified automaton constraint, derived collection.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

filtering: duplicated variables, arc-consistency.

heuristics: heuristics and lexicographical ordering.

symmetry: symmetry, matrix symmetry, lexicographic order, multiset ordering.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#lex_less
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1306 PATH FROM TO,PRODUCT (PATH ,VOID); AUTOMATON

Derived Collections

col

(

DESTINATION−collection(index−int, x−int, y−int),
[item(index− 0, x− 0, y− 0)]

)

col

(

COMPONENTS−collection(index−int, x−dvar, y−dvar),
[

item(index− VECTOR1.key, x− VECTOR1.var, y− VECTOR2.var)
]

)

Arc input(s) COMPONENTS DESTINATION

Arc generator PRODUCT (PATH ,VOID) 7→collection(item1, item2)

Arc arity 2

Arc constraint(s)
∨

(

item2.index > 0 ∧ item1.x = item1.y,
item2.index = 0 ∧ item1.x < item1.y

)

Graph property(ies) PATH FROM TO(index, 1, 0) = 1

Graph model Parts (A) and (B) of Figure5.396respectively show the initial and final graph associated
with theExample slot. Since we use thePATH FROM TO graph property we show
on the final graph the following information:

• The vertices, which respectively correspond to the start and the end ofthe required
path, are stressed in bold.

• The arcs on the required path are also stressed in bold.

COMPONENTS

DESTINATION

1

2

1

3

4

PATH_FROM_TO(index,1,0)=1

COMPONENTS

DESTINATION

1:1,5,5

2:2,2,2

3:3,3,6

1:0,0,0

(A) (B)

Figure 5.396: Initial and final graph of thelex less constraint

The vertices of the initial graph are generated in the following way:

• We create a vertexci for each pair of components that both have the same indexi.

• We create an additional dummy vertex calledd.

The arcs of the initial graph are generated in the following way:

Derived Collections
Declarations of new collections that are derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1307

• We create an arc betweenci and d. We associate to this arc the arc constraint
item1.x < item2.y.

• We create an arc betweenci andci+1. We associate to this arc the arc constraint
item1.x = item2.y.

The lex less constraint holds when there exist a path fromc1 to d. This path can be
interpreted as a sequence ofequalityconstraints on the prefix of both vectors, immediately
followed by aless thanconstraint.

Signature Since the maximum value returned by the graph propertyPATH FROM TO

is equal to 1 we can rewritePATH FROM TO(index, 1, 0) = 1 to
PATH FROM TO(index, 1, 0) ≥ 1. Therefore we simplifyPATH FROM TO

toPATH FROM TO.

Signature
Provides some explanations about the graph based signature of the constraint.

1308 PATH FROM TO,PRODUCT (PATH ,VOID); AUTOMATON

Automaton Figure5.397depicts the automaton associated with thelex less constraint. LetVAR1i
and VAR2i respectively be thevar attributes of theith items of theVECTOR1 and the
VECTOR2 collections. To each pair(VAR1i, VAR2i) corresponds a signature variableSi
as well as the following signature constraint:(VAR1i < VAR2i ⇔ Si = 1) ∧ (VAR1i =
VAR2i ⇔ Si = 2) ∧ (VAR1i > VAR2i ⇔ Si = 3).

s

iVAR1 < VAR2

iiVAR1 =VAR2

VAR1 < VAR2i i

VAR1 =VAR2i i

iiVAR1 < VAR2

t i

Figure 5.397: Automaton of thelex less constraint

n

VAR2
 1 VAR2

 2
VAR2

 n

VAR1
 1 VAR1

 2
VAR1

 n

Q1Q =s0

S1 S2 Sn

Q =t

Figure 5.398: Hypergraph of the reformulation corresponding to the automaton of the
lex less constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20030820 1309

1310 PATH FROM TO,PRODUCT (PATH ,VOID); AUTOMATON

5.212 lexlesseq

DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint lex lesseq(VECTOR1, VECTOR2)

Synonyms lexeq, lex chain, rel, lesseq, leq, lex leq.

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)

Restrictions required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

Purpose

VECTOR1 is lexicographically less than or equal toVECTOR2. Given two vectors,~X and
~Y of n components,〈X0, . . . , Xn−1〉 and〈Y0, . . . , Yn−1〉, ~X is lexicographically less
than or equal to~Y if and only if n = 0 or X0 < Y0 or X0 = Y0 and〈X1, . . . , Xn−1〉
is lexicographically less than or equal to〈Y1, . . . , Yn−1〉.

Example
(

〈5, 2, 3, 1〉 ,
〈5, 2, 6, 2〉

)

(

〈5, 2, 3, 9〉 ,
〈5, 2, 3, 9〉

)

The lex lesseq constraints associated with the first and second examples hold
since:

• Within the first exampleVECTOR1 = 〈5, 2, 3, 1〉 is lexicographically less than or
equal toVECTOR2 = 〈5, 2, 6, 2〉.

• Within the second exampleVECTOR1 = 〈5, 2, 3, 9〉 is lexicographically less than or
equal toVECTOR2 = 〈5, 2, 3, 9〉.

Typical |VECTOR1| > 1

Symmetries • VECTOR1.var can bedecreased.

• VECTOR2.var can beincreased.

Arg. properties
Suffix-contractiblewrt. VECTOR1 andVECTOR2 (remove items from same position).

Remark A multiset orderingconstraint and its corresponding filtering algorithm are described
in [161].

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

20030820 1311

Algorithm The first filtering algorithm maintainingarc-consistencyfor this constraint was presented
in [160]. A second filtering algorithm maintainingarc-consistencyand detecting entail-
ment in a more eager way, was given in [91]. This second algorithm was derived from a
deterministic finite automata. A third filtering algorithm extending the algorithm presented
in [160] detecting entailment is given in the PhD thesis of Z. Kızıltan [221, page 95]. The
previous thesis [221, pages 105–109] presents also a filtering algorithm handling the fact
that a given variable has more than one occurrence. Finally, T. Frühwirth shows how to
encode lexicographic ordering constraints within the context of CHR [162] in [163].

Reformulation The following reformulations in term of arithmetic and/or logical expressions exist for
enforcing thelexicographically less than or equal toconstraint. The first one converts~X
and~Y into numbers and post an inequality constraint. It assumes all components of ~X and
~Y to be within[0, a− 1]:

an−1X0 + an−2X1 + . . .+ a0Xn−1 ≤ an−1Y0 + an−2Y1 + . . .+ a0Yn−1

Since the previous reformulation can only be used with small values ofn anda, W. Harvey
came up with the following alternative model that maintainsarc-consistency:

(X0 < Y0 + (X1 < Y1 + (. . .+ (Xn−1 < Yn−1 + 1) . . .))) = 1

Finally, the lexicographically less than or equal toconstraint can be expressed as a con-
junction or a disjunction of constraints:

X0 ≤ Y0 ∧
(X0 = Y0) ⇒ X1 ≤ Y1 ∧

(X0 = Y0 ∧X1 = Y1) ⇒ X2 ≤ Y2 ∧
...

(X0 = Y0 ∧X1 = Y1 ∧ . . . ∧Xn−2 = Yn−2) ⇒ Xn−1 ≤ Yn−1

X0 < Y0 ∨
X0 = Y0 ∧X1 < Y1 ∨

X0 = Y0 ∧X1 = Y1 ∧X2 < Y2 ∨
...

X0 = Y0 ∧X1 = Y1 ∧ . . . ∧Xn−2 = Yn−2 ∧Xn−1 ≤ Yn−1

When used separately, the two previous logical decompositions do not maintain
arc-consistency.

Systems lexEq in Choco, rel in Gecode, lex lesseq in MiniZinc , lex chain in SICStus.

Used in lex between, lex chain lesseq, ordered atleast nvector,
ordered atmost nvector, ordered nvector.

See also common keyword: allperm, cond lex lesseq (lexicographic order),
lex2 (matrix symmetry,lexicographic order), lex chain less (lexicographic order),
lex different (vector), strict lex2 (matrix symmetry,lexicographic order).

implied by: lex equal, lex less, lex lesseq allperm.

implies (if swap arguments):lex greatereq.

negation:lex greater.

system of constraints:lex between, lex chain lesseq.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#lex_lesseq
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

1312 PATH FROM TO,PRODUCT (PATH ,VOID); AUTOMATON

Keywords characteristic of a constraint: vector, automaton, automaton without counters,
reified automaton constraint, derived collection.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

filtering: duplicated variables, arc-consistency.

heuristics: heuristics and lexicographical ordering.

symmetry: symmetry, matrix symmetry, lexicographic order, multiset ordering.

Keywords
Related keywords grouped by meta-keywords.

20030820 1313

Derived Collections

col

(

DESTINATION−collection(index−int, x−int, y−int),
[item(index− 0, x− 0, y− 0)]

)

col

(

COMPONENTS−collection(index−int, x−dvar, y−dvar),
[

item(index− VECTOR1.key, x− VECTOR1.var, y− VECTOR2.var)
]

)

Arc input(s) COMPONENTS DESTINATION

Arc generator PRODUCT (PATH ,VOID) 7→collection(item1, item2)

Arc arity 2

Arc constraint(s)
∨

item2.index > 0 ∧ item1.x = item1.y,
item1.index < |VECTOR1| ∧ item2.index = 0 ∧ item1.x < item1.y,
item1.index = |VECTOR1| ∧ item2.index = 0 ∧ item1.x ≤ item1.y

Graph property(ies) PATH FROM TO(index, 1, 0) = 1

Graph model Parts (A) and (B) of Figure5.399respectively show the initial and final graph associated
with the first example of theExampleslot. Since we use thePATH FROM TO graph
property we show on the final graph the following information:

• The vertices, which respectively correspond to the start and the end ofthe required
path, are stressed in bold.

• The arcs on the required path are also stressed in bold.

COMPONENTS

DESTINATION

1

2

1

3

4

PATH_FROM_TO(index,1,0)=1

COMPONENTS

DESTINATION

1:1,5,5

2:2,2,2

3:3,3,6

1:0,0,0

4:4,1,2

(A) (B)

Figure 5.399: Initial and final graph of thelex lesseq constraint

The vertices of the initial graph are generated in the following way:

• We create a vertexci for each pair of components that both have the same indexi.

• We create an additional dummy vertex calledd.

Derived Collections
Declarations of new collections that are derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1314 PATH FROM TO,PRODUCT (PATH ,VOID); AUTOMATON

The arcs of the initial graph are generated in the following way:

• We create an arc betweenci andd. Whenci was generated from the last components
of both vectors We associate to this arc the arc constraintitem1.x ≤ item2.y;
Otherwise we associate to this arc the arc constraintitem1.x < item2.y;

• We create an arc betweenci andci+1. We associate to this arc the arc constraint
item1.x = item2.y.

Thelex lesseq constraint holds when there exist a path fromc1 to d. This path can be
interpreted as a maximum sequence ofequalityconstraints on the prefix of both vectors,
possibly followed by aless thanconstraint.

Signature Since the maximum value returned by the graph propertyPATH FROM TO

is equal to 1 we can rewritePATH FROM TO(index, 1, 0) = 1 to
PATH FROM TO(index, 1, 0) ≥ 1. Therefore we simplifyPATH FROM TO

toPATH FROM TO.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1315

Automaton Figure5.400depicts the automaton associated with thelex lesseq constraint. LetVAR1i
and VAR2i respectively be thevar attributes of theith items of theVECTOR1 and the
VECTOR2 collections. To each pair(VAR1i, VAR2i) corresponds a signature variableSi
as well as the following signature constraint:(VAR1i < VAR2i ⇔ Si = 1) ∧ (VAR1i =
VAR2i ⇔ Si = 2) ∧ (VAR1i > VAR2i ⇔ Si = 3).

s

iVAR1 > VAR2

iiVAR1 =VAR2

iiVAR1 < VAR2

VAR1 < VAR2i i

VAR1 =VAR2i i

t i

Figure 5.400: Automaton of thelex lesseq constraint

n

VAR2
 2

VAR2 1
VAR2

 1
VAR1

 2
VAR1

 n
VAR1

1Q0Q =s

1S 2S nS

Q =
t

s

 n

Figure 5.401: Hypergraph of the reformulation corresponding to the automaton of the
lex lesseq constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1316 PREDEFINED

5.213 lexlesseqallperm

DESCRIPTION LINKS

Origin Inspired by [155]

Constraint lex lesseq allperm(VECTOR1, VECTOR2)

Synonym leximin.

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)

Restrictions required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

Purpose

VECTOR1 is lexicographically less than or equal toall permutations ofVECTOR2. Given
two vectors, ~X and ~Y of n components,〈X0, . . . , Xn−1〉 and 〈Y0, . . . , Yn−1〉, ~X is
lexicographically less than or equal to~Y if and only if n = 0 or X0 < Y0 or X0 = Y0

and〈X1, . . . , Xn−1〉 is lexicographically less than or equal to〈Y1, . . . , Yn−1〉.

Example
(

〈1, 2, 3〉 ,
〈3, 1, 2〉

)

The lex lesseq allperm constraint holds since vector〈1, 2, 3〉 is lexicographi-
cally less than or equal to all the permutations of vector〈3, 1, 2〉 (i.e., 〈1, 2, 3〉, 〈1, 3, 2〉,
〈2, 1, 3〉, 〈2, 3, 1〉, 〈3, 1, 2〉, 〈3, 2, 1〉).

Typical |VECTOR1| > 1

Symmetry All occurrences of two distinct values inVECTOR1.var or VECTOR2.var can beswapped;
all occurrences of a value inVECTOR1.var orVECTOR2.var can berenamedto any unused
value.

Arg. properties
Suffix-contractiblewrt. VECTOR1 andVECTOR2 (remove items from same position).

Remark The lex lesseq allperm(VECTOR1, VECTOR2) can be reformulated as the conjunction
sort(VECTOR2, VECTOR), lex lesseq(VECTOR1, VECTOR).

Systems leximin in Choco.

Used in allperm.

See also common keyword:allperm (matrix symmetry,lexicographic order).

implies: lex lesseq.

system of constraints:allperm.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

20070916 1317

Keywords characteristic of a constraint: vector.

constraint type: predefined constraint, order constraint.

symmetry: symmetry, matrix symmetry, lexicographic order.

Keywords
Related keywords grouped by meta-keywords.

1318 NARC,PRODUCT

5.214 link set to booleans

DESCRIPTION LINKS GRAPH

Origin Inspired bydomain constraint.

Constraint link set to booleans(SVAR, BOOLEANS)

Arguments SVAR : svar

BOOLEANS : collection(bool−dvar, val−int)

Restrictions required(BOOLEANS, [bool, val])
BOOLEANS.bool ≥ 0
BOOLEANS.bool ≤ 1
distinct(BOOLEANS, val)

Purpose

Make the link between a set variableSVAR and those0-1 variables that are associated
with each potential value belonging toSVAR: The 0-1 variables, which are associated
with a value belonging to the set variableSVAR, are equal to1, while the remaining0-1
variables are all equal to0.

Example

{1, 3, 4},

〈

bool− 0 val− 0,
bool− 1 val− 1,
bool− 0 val− 2,
bool− 1 val− 3,
bool− 1 val− 4,
bool− 0 val− 5

〉

In the example, the0-1 variables associated with the values1, 3 and 4 are all set to
1, while the other0-1 variables are set to0. Consequently, thelink set to booleans

constraint holds since its first argumentSVAR is set to{1, 3, 4}.

Typical |BOOLEANS| > 1
range(BOOLEANS.bool) > 1

Symmetry Items ofBOOLEANS arepermutable.

Usage This constraint is used in order to make the link between a formulation using set variables
and a formulation based on linear programming.

Systems channel in Gecode, link set to booleans in MiniZinc .

See also common keyword: alldifferent between sets,
clique (constraint involving set variables), domain constraint (channelling constraint),
k cut, path from to, roots, strongly connected, symmetric cardinality,
symmetric gcc, tour (constraint involving set variables).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Usage
Typical usage of the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.gecode.org/doc/3.7.0/reference/group__TaskModelSetConnect.html
http://www.gecode.org/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#link_set_to_booleans
http://www.g12.cs.mu.oz.au/minizinc/

See also
Related constraints grouped by semantics links.

20030820 1319

Keywords characteristic of a constraint: derived collection.

constraint arguments:constraint involving set variables.

constraint type: decomposition, value constraint.

filtering: linear programming.

modelling: channelling constraint, set channel.

Keywords
Related keywords grouped by meta-keywords.

1320 NARC,PRODUCT

Derived Collection

col

(

SET−collection(one−int, setvar−svar),
[item(one− 1, setvar− SVAR)]

)

Arc input(s) SET BOOLEANS

Arc generator PRODUCT 7→collection(set, booleans)

Arc arity 2

Arc constraint(s) booleans.bool = set.one ⇔in set(booleans.val, set.setvar)

Graph property(ies) NARC= |BOOLEANS|

Graph model The link set to booleans constraint is modelled with the following bipartite graph.
The first set of vertices corresponds to one single vertex containing theset variable. The
second class of vertices contains one vertex for each item of the collectionBOOLEANS. The
arc constraint between the set variableSVAR and one potential valuev of the set variable
expresses the following:

• If the 0-1 variable associated withv is equal to1 thenv should belong toSVAR.

• Otherwise if the0-1 variable associated withv is equal to0 thenv should not belong
to SVAR.

Since all arc constraints should hold the final graph contains exactly|BOOLEANS| arcs.

Parts (A) and (B) of Figure5.402respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold. Thelink set to booleans constraint holds since the final
graph contains exactly6 arcs (one for each0-1 variable).

Signature Since the initial graph contains|BOOLEANS| arcs the maximum number of arcs of the final
graph is equal to|BOOLEANS|. Therefore we can rewrite the graph propertyNARC =
|BOOLEANS| toNARC ≥ |BOOLEANS| and simplifyNARC toNARC.

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1321

(A)

SET

BOOLEANS

1

123456

(B) NARC=6

1:1,{1,3,4}

1:0,0 2:1,1 3:0,2 4:1,3 5:1,4 6:0,5

Figure 5.402: Initial and final graph of thelink set to booleans constraint

1322 MAX NCC,PATH ; AUTOMATON

5.215 longestchange

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromchange.

Constraint longest change(SIZE, VARIABLES, CTR)

Arguments SIZE : dvar

VARIABLES : collection(var−dvar)
CTR : atom

Restrictions SIZE ≥ 0
SIZE < |VARIABLES|
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose
SIZE is the maximum number of consecutive variables of the collectionVARIABLES for
which constraintCTR holds in an uninterrupted way. We count a change whenX CTR Y
holds;X andY are two consecutive variables of the collectionVARIABLES.

Example

4,

〈

var− 8,
var− 8,
var− 3,
var− 4,
var− 1,
var− 1,
var− 5,
var− 5,
var− 2

〉

, 6=

The longest change constraint holds since its first argumentSIZE = 4 is fixed
to the length of the longest subsequence of consecutive values of the collection
〈8, 8, 3, 4, 1, 1, 5, 5, 2〉 such that two consecutive values are distinct (i.e., subsequence
8 3 4 1).

Typical |VARIABLES| > 2
range(VARIABLES.var) > 1
CTR ∈ [6=]

Symmetry One and the same constant can beaddedto thevar attribute of all items ofVARIABLES.

Arg. properties
Functional dependency: SIZE determined byVARIABLES andCTR.

See also root concept:change.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

20000128 1323

Keywords characteristic of a constraint: automaton, automaton with counters.

constraint arguments:pure functional dependency.

constraint network structure: sliding cyclic(1) constraint network(3).

constraint type: timetabling constraint.

miscellaneous:obscure.

modelling: functional dependency.

Keywords
Related keywords grouped by meta-keywords.

1324 MAX NCC,PATH ; AUTOMATON

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) MAX NCC= SIZE

Graph model In order to specify thelongest change constraint, we useMAX NCC, which is the
number of vertices of the largest connected component. Since the initial graph corresponds
to a path, this will be the length of the longest path in the final graph.

Parts (A) and (B) of Figure5.403respectively show the initial and final graph associated
with theExampleslot. Since we use theMAX NCC graph property we show the largest
connected component of the final graph. It corresponds to the longest period of uninter-
rupted changes: sequence8, 3, 4, 1 that involves4 consecutive variables.

VARIABLES

1

2

3

4

5

6

7

8

9

MAX_NCC=4

MAX_NCC

2:8

3:3

4:4

5:1

6:1

7:5

8:5

9:2

(A) (B)

Figure 5.403: Initial and final graph of thelongest change constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 1325

Automaton Figure5.404depicts the automaton associated with thelongest change constraint. To
each pair of consecutive variables(VARi, VARi+1) of the collectionVARIABLES corresponds
a 0-1 signature variableSi. The following signature constraint linksVARi, VARi+1 andSi:
VARi CTR VARi+1 ⇔ Si.

{C=0,D=1}

i
{C=max(C,D),D=1}

i+1VAR not CTR VAR ,

{D=D+1}

VAR CTR VAR ,i i+1

t:
SIZE=C

$,

{C=max(C,D)}

s

Figure 5.404: Automaton of thelongest change constraint

1 VAR
2

S2

VAR
nVAR

3

S3

Q2

C2

Sn−1

VAR
n−1

Q =s0

C =00 C1

Q1

S1

D =10 D1 D2

Q =tn−1

C =SIZEn−1

Dn−1

VAR

Figure 5.405: Hypergraph of the reformulation corresponding to the automaton of the
longest change constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1326 PREDEFINED

5.216 lt

DESCRIPTION LINKS

Origin Arithmetic.

Constraint lt(VAR1, VAR2)

Synonyms rel, xlty.

Arguments VAR1 : dvar

VAR2 : dvar

Purpose Enforce the fact that the first variable is strictly less than the second variable.

Example (1, 8)

Thelt constraint holds since1 is strictly less than8.

Symmetries • VAR1 can be replaced by any value< VAR2.

• VAR2 can be replaced by any value> VAR1.

Systems lt in Choco, rel in Gecode, xlty in JaCoP, #< in SICStus.

See also common keyword:eq (binary constraint,arithmetic constraint).

implies: leq, neq.

implies (if swap arguments):gt.

negation:geq.

Keywords constraint arguments:binary constraint.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/XltY.html
http://www.jacop.eu/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20070821 1327

1328 NCC,NTREE,CLIQUE

5.217 map

DESCRIPTION LINKS GRAPH

Origin Inspired by [355]

Constraint map(NBCYCLE, NBTREE, NODES)

Arguments NBCYCLE : dvar

NBTREE : dvar

NODES : collection(index−int, succ−dvar)

Restrictions NBCYCLE ≥ 0
NBTREE ≥ 0
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Number of trees and number of cycles of a map. We take the description of a map from
[355, page 459]:

“Every map decomposes into a set ofconnected components, also
called connected maps. Each component consists of the set of all points
that wind up on the same cycle, with each point on the cycle attached to a
tree of all points that enter the cycle at that point.”

Example

2, 3,

〈

index− 1 succ− 5,
index− 2 succ− 9,
index− 3 succ− 8,
index− 4 succ− 2,
index− 5 succ− 9,
index− 6 succ− 2,
index− 7 succ− 9,
index− 8 succ− 8,
index− 9 succ− 1

〉

The map constraint holds since, as shown by part (B) of Figure5.406, the graph
corresponding to theNODES collection is a map containingNBCYCLE = 2 cycles (i.e., a
first cycle involving vertices1, 5 and9 and a second cycle involving vertex8) and3 trees
(i.e., two trees respectively involving vertices7 and4, 6, 2 and attached to the first cycle,
and one tree mentioning vertex3 linked to the second cycle.)

Typical NBCYCLE > 0
NBTREE > 0
NBCYCLE < |NODES|
NBCYCLE < NBTREE

|NODES| > 2

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20000128 1329

Symmetry Items ofNODES arepermutable.

Arg. properties
• Functional dependency: NBCYCLE determined byNODES.

• Functional dependency: NBTREE determined byNODES.

See also common keyword:cycle, graph crossing, tree (graph partitioning constraint).

Keywords constraint arguments:pure functional dependency.

constraint type: graph constraint, graph partitioning constraint.

final graph structure: connected component.

modelling: functional dependency.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1330 NCC,NTREE,CLIQUE

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • NCC= NBCYCLE

• NTREE= NBTREE

Graph model Note that, for the argumentNBTREE of themap constraint, we consider a definition different
from the one used for the argumentNTREES of thetree constraint:

• In themap constraint the number of treesNBTREE is equal to the number of vertices
of the final graph, which both do not belong to any circuit and have a successor that
is located on a circuit. Therefore we count three trees in the context of theExample
slot.

• In the tree constraint the number of treesNTREES is equal to the number of
connected componentsof the final graph.

Parts (A) and (B) of Figure5.406 respectively show the initial and final graph associ-
ated with theExample slot. Since we use theNCC graph property, we display the two
connected componentsof the final graph. Each of them corresponds to a connected map.
The first connected map is made up from one circuit and two trees, while the second one
consists of one circuit and one tree. Since we also use theNTREE graph property, we
display with a double circle those vertices that do not belong to any circuit but for which at
least one successor belongs to a circuit.

NODES

1

2

3

4

5

6

7

8

9

NCC=2,NTREE=3

CC#1

CC#2

1:1,5

5:5,92:2,9

9:9,1

4:4,26:6,2

7:7,9

3:3,8

8:8,8

(A) (B)

Figure 5.406: Initial and final graph of themap constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 1331

1332 ORDER,CLIQUE

5.218 maxindex

DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint max index(MAX INDEX, VARIABLES)

Arguments MAX INDEX : dvar

VARIABLES : collection(index−int, var−dvar)

Restrictions |VARIABLES| > 0
MAX INDEX ≥ 0
MAX INDEX ≤ |VARIABLES|
required(VARIABLES, [index, var])
VARIABLES.index ≥ 1
VARIABLES.index ≤ |VARIABLES|
distinct(VARIABLES, index)

Purpose MAX INDEX is one of the indices of the collection of variablesVARIABLES corresponding
to its maximum value.

Example

3,

〈

index− 1 var− 3,
index− 2 var− 2,
index− 3 var− 7,
index− 4 var− 2,
index− 5 var− 7

〉

The attributevar = 7 of the third and fifth items of the collectionVARIABLES is
the maximum value over values3, 2, 7, 2, 7. Consequently, themax index constraint
holds since its first argumentMAX INDEX is set to3 ∈ {3, 5}.

Typical |VARIABLES| > 0
range(VARIABLES.var) > 1

Symmetries • Items ofVARIABLES arepermutable.

• One and the same constant can beaddedto the var attribute of all items of
VARIABLES.

See also comparison swapped:min index.

Keywords characteristic of a constraint: maximum.

constraint type: order constraint.

modelling: functional dependency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 1333

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s)
∨

(

variables1.key = variables2.key,
variables1.var > variables2.var

)

Graph property(ies) ORDER(0, 0, index) = MAX INDEX

Graph model Parts (A) and (B) of Figure5.407respectively show the initial and final graph associated
with theExample slot. Since we use theORDER graph property, the vertex of rank0
(without considering the loops) of the final graph is outlined with a thick circle.

VARIABLES

1

2

3

4

5

ORDER(0,0,index)=3

1:1,3

2:2,2 4:4,2

3:3,75:5,7

(A) (B)

Figure 5.407: Initial and final graph of themax index constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1334 ORDER,CLIQUE

5.219 maxn

DESCRIPTION LINKS GRAPH

Origin [26]

Constraint max n(MAX, RANK, VARIABLES)

Arguments MAX : dvar

RANK : int

VARIABLES : collection(var−dvar)

Restrictions RANK ≥ 0
RANK < |VARIABLES|
|VARIABLES| > 0
required(VARIABLES, var)

Purpose MAX is the maximum value of rankRANK (i.e., theRANKth largest distinct value) of the
collection of domain variablesVARIABLES. Sinks have a rank of0.

Example (6, 1, 〈3, 1, 7, 1, 6〉)

The max n constraint holds since its first argumentMAX = 6 is fixed to the second
(i.e.,RANK+ 1) largest distinct value of the collection〈3, 1, 7, 1, 6〉.

Typical RANK > 0
RANK < 3
|VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetries • Items ofVARIABLES arepermutable.

• One and the same constant can beaddedto MAX as well as to thevar attribute of
all items ofVARIABLES.

Arg. properties
Functional dependency: MAX determined byRANK andVARIABLES.

Algorithm [26].

Reformulation The constraintamong var(1, 〈MAX〉, VARIABLES) enforcesMAX to be assigned one of the
values ofVARIABLES. The constraintnvalue(NVAL, VARIABLES) provides a hand on the
number of distinct values assigned to the variables ofVARIABLES. By associating to each
variableVi (i ∈ [1, |VARIABLES|]) of the VARIABLES collection arank variableRi ∈
[0, |VARIABLES| − 1] with the reified constraintRi = RANK ⇔ Vi = MAX, the inequality
Ri < NVAL, and by creating for each pair of variablesVi, Vj (i, j < i ∈ [1, |VARIABLES|])
the reified constraints
Vi > Vj ⇔ Ri < Rj ,

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

20000128 1335

Vi = Vj ⇔ Ri = Rj ,
Vi < Vj ⇔ Ri > Rj ,

one can reformulate themax n constraint in term of3 · |VARIABLES|·(|VARIABLES|−1)
2

+ 1 reified
constraints.

See also comparison swapped:min n.

generalisation:maximum (absolute maximum replaced by maximum or ordern).

Keywords characteristic of a constraint: rank, maximum.

constraint arguments:pure functional dependency.

constraint type: order constraint.

modelling: functional dependency.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1336 ORDER,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s)
∨

(

variables1.key = variables2.key,
variables1.var > variables2.var

)

Graph property(ies) ORDER(RANK, MININT, var) = MAX

Graph model Parts (A) and (B) of Figure5.408respectively show the initial and final graph associated
with theExample slot. Since we use theORDER graph property, the vertex of rank1
(without considering the loops) of the final graph is outlined with a thick circle.

VARIABLES

1

2

3

4

5

ORDER(1,MININT,var)=6

1:3

2:1 4:1

3:7

5:6

(A) (B)

Figure 5.408: Initial and final graph of themax n constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 1337

1338 MAX NSCC,CLIQUE

5.220 maxnvalue

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromnvalue.

Constraint max nvalue(MAX, VARIABLES)

Arguments MAX : dvar

VARIABLES : collection(var−dvar)

Restrictions MAX ≥ 1
MAX ≤ |VARIABLES|
required(VARIABLES, var)

Purpose MAX is the maximum number of times that the same value is taken by the variables ofthe
collectionVARIABLES.

Example

3,

〈

var− 9,
var− 1,
var− 7,
var− 1,
var− 1,
var− 6,
var− 7,
var− 7,
var− 4,
var− 9

〉

In the example, values1, 4, 6, 7, 9 are respectively used3, 1, 1, 3, 2 times. So the
maximum number of timeMAX that a same value occurs is3. Consequently the
max nvalue constraint holds.

Typical MAX > 1
MAX < |VARIABLES|
|VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetries • Items ofVARIABLES arepermutable.

• All occurrences of two distinct values ofVARIABLES.var can beswapped; all
occurrences of a value ofVARIABLES.var can berenamedto any unused value.

Arg. properties
Functional dependency: MAX determined byVARIABLES.

Usage This constraint may be used in order to replace a set ofcount or among constraints were
one would have to generate explicitly one constraint for each potential value. Also useful
for constraining the number of occurrences of the mostly used value without knowing this
value in advance and without giving explicitly an upper limit on the number ofoccurrences
of each value as it is done in theglobal cardinality constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

20000128 1339

Reformulation Assume thatVARIABLES is not empty. Letα andβ respectively denote the smallest and
largest possible values that can be assigned to the variables of theVARIABLES collec-
tion. Let the variablesOα, Oα+1, . . . , Oβ respectively correspond to the number of oc-
currences of valuesα, α + 1, . . . , β within the variables of theVARIABLES collection.
Themax nvalue constraint can be expressed as the conjunction of the following two con-
straints:
global cardinality (VARIABLES,

〈val− α noccurrence−Oα,
val− α+ 1 noccurrence−Oα+1,
. . .
val− β noccurrence−Oβ〉),

maximum(MAX, 〈Oα, Oα+1, . . . , Oβ〉).

See also common keyword: among (counting constraint), count,
global cardinality (value constraint,counting constraint), min nvalue,
nvalue (counting constraint).

Keywords application area: assignment.

characteristic of a constraint: maximum, automaton, automaton with array of counters.

constraint arguments:pure functional dependency.

constraint type: value constraint, counting constraint.

final graph structure: equivalence.

modelling: maximum number of occurrences, functional dependency.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1340 MAX NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) MAX NSCC= MAX

Graph model Because of the arc constraint, each strongly connected component ofthe final graph cor-
responds to a distinct value that is assigned to a subset of variables of theVARIABLES

collection. Therefore the number of vertices of the largest strongly connected component
is equal to the mostly used value.

Parts (A) and (B) of Figure5.409respectively show the initial and final graph associated
with the Example slot. Since we use theMAX NSCC graph property, we show the
largest strongly connected component of the final graph.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 1341

(A)

VARIABLES

1

2

3

4

5

6

7

8

9

10

(B) MAX_NSCC=3

MAX_NSCC

3:7

7:7

8:7

1:9

10:9

2:1

4:1

5:1

6:6 9:4

Figure 5.409: Initial and final graph of themax nvalue constraint

1342 MAX NSCC,CLIQUE

Automaton Figure5.410depicts the automaton associated with themax nvalue constraint. To each
item of the collectionVARIABLES corresponds a signature variableSi that is equal to0.

maximum(N,C)
0,

i i

{C[_]=0}

s:
{C[VAR]=C[VAR]+1}

Figure 5.410: Automaton of themax nvalue constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20000128 1343

1344 MAX NSCC,CLIQUE

5.221 maxsizeset of consecutivevar

DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint max size set of consecutive var(MAX, VARIABLES)

Arguments MAX : dvar

VARIABLES : collection(var−dvar)

Restrictions MAX ≥ 1
MAX ≤ |VARIABLES|
required(VARIABLES, var)

Purpose MAX is the size of the largest set of variables of the collectionVARIABLES that all take
their value in a set ofconsecutive values.

Example

6,

〈

var− 3,
var− 1,
var− 3,
var− 7,
var− 4,
var− 1,
var− 2,
var− 8,
var− 7,
var− 6

〉

In the example, the two sets{3, 1, 3, 4, 1, 2} and {7, 8, 7, 6} take respectively their
values in the two following sets ofconsecutive values{1, 2, 3, 4} and{6, 7, 8}. Conse-
quently, themax size set of consecutive var constraint holds since the cardinality
of the largest set of variables is6.

Typical MAX < |VARIABLES|
|VARIABLES| > 0
range(VARIABLES.var) > 1

Symmetries • Items ofVARIABLES arepermutable.

• All occurrences of two distinct values ofVARIABLES.var can beswapped.

• One and the same constant can beaddedto the var attribute of all items of
VARIABLES.

Arg. properties
Functional dependency: MAX determined byVARIABLES.

See also common keyword:nset of consecutive values (consecutive values).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

20030820 1345

Keywords characteristic of a constraint: consecutive values, maximum.

constraint arguments:pure functional dependency.

constraint type: value constraint.

modelling: functional dependency.

Keywords
Related keywords grouped by meta-keywords.

1346 MAX NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) abs(variables1.var− variables2.var) ≤ 1

Graph property(ies) MAX NSCC= MAX

Graph model Since the arc constraint is symmetric each strongly connected component of the final graph
corresponds exactly to one connected component of the final graph.

Parts (A) and (B) of Figure5.411respectively show the initial and final graph associated
with the Example slot. Since we use theMAX NSCC graph property, we show the
largest strongly connected component of the final graph.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1347

(A)

VARIABLES

1

2

3

4

5

6

7

8

9

10

(B) MAX_NSCC=6

MAX_NSCC

1:3

3:3

5:47:2

2:1

6:1

4:7

8:8

9:7

10:6

Figure 5.411: Initial and final graph of themax size set of consecutive var con-
straint

1348 ORDER,CLIQUE ; AUTOMATON

5.222 maximum

DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint maximum(MAX, VARIABLES)

Synonym max.

Arguments MAX : dvar

VARIABLES : collection(var−dvar)

Restrictions |VARIABLES| > 0
required(VARIABLES, var)

Purpose MAX is the maximum value of the collection of domain variablesVARIABLES.

Example (7, 〈3, 2, 7, 2, 6〉)

The maximum constraint holds since its first argumentMAX = 7 is fixed to the max-
imum value of the collection〈3, 2, 7, 2, 6〉.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetries • Items ofVARIABLES arepermutable.

• All occurrences of two distinct values ofVARIABLES.var can beswapped.

• One and the same constant can beaddedto MAX as well as to thevar attribute of
all items ofVARIABLES.

Arg. properties
• Functional dependency: MAX determined byVARIABLES.

• Aggregate: MAX(max), VARIABLES(union).

Usage In some project scheduling problems one has to introduce dummy activities that correspond
for instance to the completion time of a given set of activities. In this contextone can use
themaximum constraint to get the maximum completion time of a set of tasks.

Remark Note thatmaximum is a constraint and not just a function that computes the maximum value
of a collection of variables: potential values ofMAX influence the variables ofVARIABLES,
and reciprocally potential values that can be assigned to variables ofVARIABLES influence
MAX.

Themaximum constraint is calledmax in JaCoP(http://www.jacop.eu/).

Algorithm A filtering algorithm for themaximum constraint is described in [26].

Themaximum constraint isentailedif all the following conditions hold:

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.jacop.eu/

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

20000128 1349

1. MAX is fixed.

2. At least one variable ofVARIABLES is assigned valueMAX.

3. All variables ofVARIABLES have their maximum value less than or equal to value
MAX.

Systems max in Choco, max in Gecode, max in JaCoP, maximum in MiniZinc , maximum in
SICStus.

See also common keyword:minimum (order constraint).

comparison swapped:minimum.

generalisation:maximum modulo (variable replaced byvariablemod constant).

implied by: or.

implies: in.

soft variant: open maximum (open constraint).

specialisation:max n (maximum or ordern replaced by absolute maximum).

uses in its reformulation: tree range.

Keywords characteristic of a constraint: maximum, automaton, automaton without counters,
reified automaton constraint.

constraint arguments:pure functional dependency.

constraint network structure: centered cyclic(1) constraint network(1).

constraint type: order constraint.

filtering: arc-consistency, entailment.

modelling: balanced assignment, functional dependency.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntArith.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/Max.html
http://www.jacop.eu/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#maximum
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1350 ORDER,CLIQUE ; AUTOMATON

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s)
∨

(

variables1.key = variables2.key,
variables1.var > variables2.var

)

Graph property(ies) ORDER(0, MININT, var) = MAX

Graph model We use a similar definition that the one that was utilised for theminimum constraint. Within
the arc constraint, we replace the comparison operator< by >.

Parts (A) and (B) of Figure5.412respectively show the initial and final graph associated
with theExample slot. Since we use theORDER graph property, the vertex of rank0
(without considering the loops) of the final graph is outlined with a thick circle.

VARIABLES

1

2

3

4

5

ORDER(0,MININT,var)=7

1:3

2:2 4:2

3:7

5:6

(A) (B)

Figure 5.412: Initial and final graph of themaximum constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 1351

Automaton Figure 5.413depicts the automaton associated with themaximum constraint. LetVARi
be theith variable of theVARIABLES collection. To each pair(MAX, VARi) corresponds a
signature variableSi as well as the following signature constraint:(MAX > VARi ⇔ Si =
0) ∧ (MAX = VARi ⇔ Si = 1) ∧ (MAX < VARi ⇔ Si = 2).

s

MAX>VARiMAX=VAR

iMAX=VAR

iMAX>VAR

t i

Figure 5.413: Automaton of themaximum constraint

MAX

n

Q =tn
Q1Q =s0

S2S1

VAR
1

VAR
2

VAR
n

S

Figure 5.414: Hypergraph of the reformulation corresponding to the automaton of the
maximum constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1352 ORDER,CLIQUE

5.223 maximummodulo

DESCRIPTION LINKS GRAPH

Origin Derived frommaximum.

Constraint maximum modulo(MAX, VARIABLES, M)

Arguments MAX : dvar

VARIABLES : collection(var−dvar)
M : int

Restrictions |VARIABLES| > 0
M > 0
required(VARIABLES, var)

Purpose
MAX is a maximum value of the collection of domain variablesVARIABLES according to
the following partial ordering:(X mod M) < (Y mod M).

Example (5, 〈9, 1, 7, 6, 5〉 , 3)

The maximum modulo constraint holds since its first argumentMAX is set to value5,
where 5 mod 3 = 2 is greater than or equal to all the expressions9 mod 3 = 0,
1 mod 3 = 1, 7 mod 3 = 1 and6 mod 3 = 0.

Typical M > 1
M <maxval(VARIABLES.var)
|VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetry Items ofVARIABLES arepermutable.

Arg. properties
Functional dependency: MAX determined byVARIABLES andM.

See also comparison swapped:minimum modulo.

specialisation:maximum (variablemod constant replaced byvariable).

Keywords characteristic of a constraint: modulo, maximum.

constraint arguments:pure functional dependency.

constraint type: order constraint.

modelling: functional dependency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20000128 1353

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s)
∨

(

variables1.key = variables2.key,
variables1.varmod M > variables2.varmod M

)

Graph property(ies) ORDER(0, MININT, var) = MAX

Graph model Parts (A) and (B) of Figure5.415respectively show the initial and final graph associated
with theExample slot. Since we use theORDER graph property, the vertex of rank0
(without considering the loops) of the final graph is outlined with a thick circle.

VARIABLES

1

2

3

4

5

ORDER(0,MININT,var)=5

1:9

2:1

4:6

3:7

5:5

(A) (B)

Figure 5.415: Initial and final graph of themaximum modulo constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1354 LOGIC

5.224 meetsboxes

DESCRIPTION LINKS LOGIC

Origin Geometry, derived from [318]

Constraint meet sboxes(K, DIMS, OBJECTS, SBOXES)

Synonym meet.

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)

Arguments K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−int, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− POSITIVES)

Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
K > 0
DIMS ≥ 0
DIMS < K

increasing seq(OBJECTS, [oid])
required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
|SBOXES| ≥ 1
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
do not overlap(SBOXES)

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

20070622 1355

Purpose

Holds if, for each pair of objects(Oi, Oj), i 6= j, Oi andOj meet with respect to a set
of dimensions depicted byDIMS. Eachshapeis defined as a finite set of shifted boxes,
where each shifted box is described by a box in aK-dimensional space at a given offset
(from the origin of the shape) with given sizes. More precisely, ashifted boxis an entity
defined by its shape idsid, shift offsett, and sizesl. Then, a shape is defined as the
union of shifted boxes sharing the same shape id. Anobject is an entity defined by its
unique object identifieroid, shape idsid and originx.
Two objectsOi and objectOj meetwith respect to a set of dimensions depicted byDIMS

if and only if the two following conditions hold:

• For all shifted boxsi associated withOi and for all shifted boxsj associated with
Oj there exists a dimensiond ∈ DIMS such that (1) the start ofsi in dimension
d is greater than or equal to the end ofsj in dimensiond, or (2) the start ofsj in
dimensiond is greater than or equal to the end ofsi in dimensiond (i.e., there is
no overlap between the shifted box ofOi and the shifted box ofOj).

• There exists a shifted boxsi of Oi and there exists a shifted boxsj of Oj such
that for all dimensionsd (1) the end ofsi in dimensiond is greater than or equal
to the start ofsj in dimensiond, and (2) the end ofsj in dimensiond is greater
than or equal to the start ofsi in dimensiond (i.e., at least two shifted box ofOi

andOj are in contact).

Example

2, {0, 1},
〈

oid− 1 sid− 1 x− 〈3, 2〉 ,
oid− 2 sid− 2 x− 〈4, 1〉 ,
oid− 3 sid− 4 x− 〈3, 4〉

〉

,

〈

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 ,
sid− 2 t− 〈0, 0〉 l− 〈1, 1〉 ,
sid− 2 t− 〈1, 0〉 l− 〈1, 3〉 ,
sid− 2 t− 〈0, 2〉 l− 〈1, 1〉 ,
sid− 3 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 3 t− 〈0, 1〉 l− 〈1, 1〉 ,
sid− 3 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 4 t− 〈0, 0〉 l− 〈1, 1〉

〉

Figure 5.416 shows the objects of the example. Since all the pairs of objects meet
themeet sboxes constraint holds.

Typical |OBJECTS| > 1

Symmetries • Items ofOBJECTS arepermutable.

• Items ofSBOXES arepermutable.

• Items ofOBJECTS.x, SBOXES.t andSBOXES.l arepermutable(same permutation
used).

Arg. properties
Suffix-contractiblewrt. OBJECTS.

Remark One of the eight relations of theRegion Connection Calculus[318].

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

1356 LOGIC

See also common keyword: contains sboxes, coveredby sboxes,
covers sboxes, disjoint sboxes, equal sboxes, inside sboxes (rcc8),
non overlap sboxes (geometrical constraint,logic), overlap sboxes (rcc8).

Keywords constraint type: logic.

geometry:geometrical constraint, rcc8.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20070622 1357

3

O3

(D) Three objects for which each pair of objects meet

1

4 5

O2

S1
S2

S4

S3

first object
(A) Shape of the (B) Shapes of the

second object
(C) Shape of the

third object

1 2 3

2

O1

4

Figure 5.416: The three objects of the example

1358 LOGIC

Logic
• origin(O1, S1, D)

def
= O1.x(D) + S1.t(D)

• end(O1, S1, D)
def
= O1.x(D) + S1.t(D) + S1.l(D)

• non overlap sboxes(Dims, O1, S1, O2, S2)
def
=

∃D ∈ Dims

∨

end(O1, S1, D) ≤

origin

O2,
S2,
D

,

end(O2, S2, D) ≤

origin

O1,
S1,
D

• meet sboxes(Dims, O1, S1, O2, S2)
def
=

∃D ∈ Dims

∨

end(O1, S1, D) =
origin(O2, S2, D)

,

end(O2, S2, D) =
origin(O1, S1, D)

• meet objects(Dims, O1, O2)
def
=

∧

∀S1 ∈ sboxes([O1.sid])
∀S2 ∈ sboxes

([

O2.sid
])

non overlap sboxes

Dims,
O1,
S1,
O2,
S2

,

∃S1 ∈ sboxes([O1.sid])
∃S2 ∈ sboxes

([

O2.sid
])

meet sboxes

Dims,
O1,
S1,
O2,
S2

• all meet(Dims, OIDS)
def
=

∀O1 ∈ objects(OIDS)
∀O2 ∈ objects(OIDS)

O1.oid <
O2.oid

⇒

meet objects

Dims,
O1,
O2

• all meet(DIMENSIONS, OIDS)

Logic
Explicit description in terms of first order logic formulae of the meaning of the constraint.

20070622 1359

1360 ORDER,CLIQUE

5.225 min index

DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint min index(MIN INDEX, VARIABLES)

Arguments MIN INDEX : dvar

VARIABLES : collection(index−int, var−dvar)

Restrictions |VARIABLES| > 0
MIN INDEX ≥ 0
MIN INDEX ≤ |VARIABLES|
required(VARIABLES, [index, var])
VARIABLES.index ≥ 1
VARIABLES.index ≤ |VARIABLES|
distinct(VARIABLES, index)

Purpose MIN INDEX is one of the indices of the collection of variablesVARIABLES corresponding
to its minimum value.

Example

2,

〈

index− 1 var− 3,
index− 2 var− 2,
index− 3 var− 7,
index− 4 var− 2,
index− 5 var− 6

〉

4,

〈

index− 1 var− 3,
index− 2 var− 2,
index− 3 var− 7,
index− 4 var− 2,
index− 5 var− 6

〉

The attributevar = 2 of the second and fourth items of the collectionVARIABLES
is the minimum value over values3, 2, 7, 2, 6. Consequently, bothmin index constraints
hold since their first argumentsMIN INDEX are respectively set to2 and4.

Typical |VARIABLES| > 0
range(VARIABLES.var) > 1

Symmetries • Items ofVARIABLES arepermutable.

• One and the same constant can beaddedto the var attribute of all items of
VARIABLES.

Usage Within the context of scheduling, assume the variables of theVARIABLES collection corre-
spond to the starts of a set of tasks. ThenMIN INDEX gives the indexes of those tasks that
can be scheduled first.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

20030820 1361

See also comparison swapped:max index.

Keywords characteristic of a constraint: minimum.

constraint type: order constraint.

modelling: functional dependency.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1362 ORDER,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s)
∨

(

variables1.key = variables2.key,
variables1.var < variables2.var

)

Graph property(ies) ORDER(0, 0, index) = MIN INDEX

Graph model Parts (A) and (B) of Figure5.417respectively show the initial and final graph associated
with the two examples of theExample slot. Since we use theORDER graph property,
the vertices of rank0 (without considering the loops) of the final graph are outlined with a
thick circle.

VARIABLES

1

2

3

4

5

ORDER(0,0,index)=2

1:1,3

3:3,7

5:5,6

2:2,2 4:4,2

(A) (B)

Figure 5.417: Initial and final graph of themin index constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1363

1364 ORDER,CLIQUE

5.226 min n

DESCRIPTION LINKS GRAPH AUTOMATON

Origin [26]

Constraint min n(MIN, RANK, VARIABLES)

Arguments MIN : dvar

RANK : int

VARIABLES : collection(var−dvar)

Restrictions |VARIABLES| > 0
RANK ≥ 0
RANK < |VARIABLES|
required(VARIABLES, var)

Purpose MIN is the minimum value of rankRANK (i.e., theRANKth smallest distinct value) of the
collection of domain variablesVARIABLES. Sources have a rank of0.

Example (3, 1, 〈3, 1, 7, 1, 6〉)

The min n constraint holds since its first argumentMIN = 3 is fixed to the second
(i.e.,RANK + 1) smallest distinct value of the collection〈3, 1, 7, 1, 6〉. Note that identical
values are only counted once: this is why the minimum of order1 is 3 instead of1.

Typical RANK > 0
RANK < 3
|VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetries • Items ofVARIABLES arepermutable.

• One and the same constant can beaddedto MIN as well as to thevar attribute of
all items ofVARIABLES.

Arg. properties
Functional dependency: MIN determined byRANK andVARIABLES.

Algorithm [26].

Reformulation The constraintamong var(1, 〈MIN〉, VARIABLES) enforcesMIN to be assigned one of the
values ofVARIABLES. The constraintnvalue(NVAL, VARIABLES) provides a hand on the
number of distinct values assigned to the variables ofVARIABLES. By associating to each
variableVi (i ∈ [1, |VARIABLES|]) of the VARIABLES collection arank variableRi ∈
[0, |VARIABLES| − 1] with the reified constraintRi = RANK ⇔ Vi = MIN, the inequality
Ri < NVAL, and by creating for each pair of variablesVi, Vj (i, j < i ∈ [1, |VARIABLES|])
the reified constraints

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

20000128 1365

Vi < Vj ⇔ Ri < Rj ,
Vi = Vj ⇔ Ri = Rj ,
Vi > Vj ⇔ Ri > Rj ,

one can reformulate themin n constraint in term of3 · |VARIABLES|·(|VARIABLES|−1)
2

+ 1 reified
constraints.

See also comparison swapped:max n.

generalisation:minimum (absolute minimum replaced by minimum or ordern).

used in reformulation: among var, nvalue.

Keywords characteristic of a constraint: rank, minimum, maxint, automaton,
automaton with array of counters.

constraint arguments:pure functional dependency.

constraint type: order constraint.

modelling: functional dependency.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1366 ORDER,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s)
∨

(

variables1.key = variables2.key,
variables1.var < variables2.var

)

Graph property(ies) ORDER(RANK, MAXINT, var) = MIN

Graph model Parts (A) and (B) of Figure5.418respectively show the initial and final graph associated
with theExample slot. Since we use theORDER graph property, the vertex of rank1
(without considering the loops) of the final graph is shown in grey.

VARIABLES

1

2

3

4

5

ORDER(1,MAXINT,var)=3

1:3

3:7

5:6

2:1 4:1

(A) (B)

Figure 5.418: Initial and final graph of themin n constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 1367

Automaton Figure5.419depicts the automaton associated with themin n constraint. Figure5.419
depicts the automaton associated with themin n constraint. To each item of the collection
VARIABLES corresponds a signature variableSi that is equal to1.

MIN=M+D−1
{C[VAR]=C[VAR]+1,D=min(D,VAR)}
1,

{C[_]=0,D=maxint}

s:
ith_pos_different_from_0(RANK+1,M,C)

i i i

Figure 5.419: Automaton of themin n constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1368 MIN NSCC,CLIQUE

5.227 min nvalue

DESCRIPTION LINKS GRAPH AUTOMATON

Origin N. Beldiceanu

Constraint min nvalue(MIN, VARIABLES)

Arguments MIN : dvar

VARIABLES : collection(var−dvar)

Restrictions MIN ≥ 1
MIN ≤ |VARIABLES|
required(VARIABLES, var)

Purpose MIN is the minimum number of times that the same value is taken by the variables of the
collectionVARIABLES.

Example

2,

〈

var− 9,
var− 1,
var− 7,
var− 1,
var− 1,
var− 7,
var− 7,
var− 7,
var− 7,
var− 9

〉

In the example, values1, 7, 9 are respectively used3, 5, 2 times. So the minimum
number of timeMIN that a same value occurs is2. Consequently themin nvalue

constraint holds.

Typical 2 ∗ MIN ≤ |VARIABLES|
|VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetries • Items ofVARIABLES arepermutable.

• All occurrences of two distinct values ofVARIABLES.var can beswapped; all
occurrences of a value ofVARIABLES.var can berenamedto any unused value.

Arg. properties
Functional dependency: MIN determined byVARIABLES.

Usage This constraint may be used in order to replace a set ofcount or among constraints were
one would have to generate explicitly one constraint for each potential value. Also useful
for constraining the number of occurrences of the less used value without knowing this
value in advance and without giving explicitly a lower limit on the number of occurrences
of each value as it is done in theglobal cardinality constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

20000128 1369

Reformulation Assume thatVARIABLES is not empty. Letα andβ respectively denote the smallest and
largest possible values that can be assigned to the variables of theVARIABLES collec-
tion. Let the variablesOα, Oα+1, . . . , Oβ respectively correspond to the number of oc-
currences of valuesα, α + 1, . . . , β within the variables of theVARIABLES collection.
Themin nvalue constraint can be expressed as the conjunction of the following two con-
straints:
global cardinality (VARIABLES,

〈val− α noccurrence−Oα,
val− α+ 1 noccurrence−Oα+1,
. . .
val− β noccurrence−Oβ〉),

min n(MIN, 1, 〈0, Oα, Oα+1, . . . , Oβ〉).
We use amin n constraint (with itsRANK parameter set to1) instead of aminimum con-
straint in order to discard the smallest value0.

See also common keyword: among (counting constraint), count,
global cardinality (value constraint,counting constraint), max nvalue,
nvalue (counting constraint).

Keywords application area: assignment.

characteristic of a constraint: minimum, automaton, automaton with array of counters.

constraint arguments:pure functional dependency.

constraint type: value constraint, counting constraint.

final graph structure: equivalence.

modelling: minimum number of occurrences, functional dependency.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1370 MIN NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) MIN NSCC= MIN

Graph model Parts (A) and (B) of Figure5.420respectively show the initial and final graph. Since we use
theMIN NSCC graph property, we show the smallest strongly connected component of
the final graph associated with theExampleslot.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 1371

(A)

VARIABLES

1

2

3

4

5

6

7

8

9

10

(B) MIN_NSCC=2

MIN_NSCC

1:9

10:9

2:1

4:1

5:1

3:7

6:7

7:7

8:7

9:7

Figure 5.420: Initial and final graph of themin nvalue constraint

1372 MIN NSCC,CLIQUE

Automaton Figure5.421depicts the automaton associated with themin nvalue constraint. To each
item of the collectionVARIABLES corresponds a signature variableSi that is equal to0.

minimum_except_0(N,C)
0,

i i

{C[_]=0}

s:
{C[VAR]=C[VAR]+1}

Figure 5.421: Automaton of themin nvalue constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20000128 1373

1374 MIN NSCC,CLIQUE

5.228 min sizeset of consecutivevar

DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint min size set of consecutive var(MIN, VARIABLES)

Arguments MIN : dvar

VARIABLES : collection(var−dvar)

Restrictions MIN ≥ 1
MIN ≤ |VARIABLES|
required(VARIABLES, var)

Purpose MIN is the size of the smallest set of variables of the collectionVARIABLES that all take
their value in a set ofconsecutive values.

Example

4,

〈

var− 3,
var− 1,
var− 3,
var− 7,
var− 4,
var− 1,
var− 2,
var− 8,
var− 7,
var− 6

〉

In the example, the two parts3, 1, 3, 4, 1, 2 and 7, 8, 7, 6 take respectively their
values in the two following sets ofconsecutive values{1, 2, 3, 4} and{6, 7, 8}. Conse-
quently, themin size set of consecutive var constraint holds since the cardinality
of the smallest set of variables is4.

Typical MIN > 1
MIN < |VARIABLES|
|VARIABLES| > 0
range(VARIABLES.var) > 1

Symmetries • Items ofVARIABLES arepermutable.

• All occurrences of two distinct values ofVARIABLES.var can beswapped.

• One and the same constant can beaddedto the var attribute of all items of
VARIABLES.

Arg. properties
Functional dependency: MIN determined byVARIABLES.

See also common keyword:nset of consecutive values (consecutive values).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

20030820 1375

Keywords application area: assignment.

characteristic of a constraint: consecutive values, minimum.

constraint arguments:pure functional dependency.

constraint type: value constraint.

modelling: functional dependency.

Keywords
Related keywords grouped by meta-keywords.

1376 MIN NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) abs(variables1.var− variables2.var) ≤ 1

Graph property(ies) MIN NSCC= MIN

Graph model Since the arc constraint is symmetric each strongly connected component of the final graph
corresponds exactly to one connected component of the final graph.

Parts (A) and (B) of Figure5.422respectively show the initial and final graph associated
with the Example slot. Since we use theMIN NSCC graph property, we show the
smallest strongly connected component of the final graph.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1377

(A)

VARIABLES

1

2

3

4

5

6

7

8

9

10

(B) MIN_NSCC=4

MIN_NSCC

4:7

8:8

9:7

10:6

1:3

3:3

5:4 7:2

2:1

6:1

Figure 5.422: Initial and final graph of themin size set of consecutive var con-
straint

1378 ORDER,CLIQUE ; AUTOMATON

5.229 minimum

DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint minimum(MIN, VARIABLES)

Synonym min.

Arguments MIN : dvar

VARIABLES : collection(var−dvar)

Restrictions |VARIABLES| > 0
required(VARIABLES, var)

Purpose MIN is the minimum value of the collection of domain variablesVARIABLES.

Example (2, 〈3, 2, 7, 2, 6〉)

The minimum constraint holds since its first argumentMIN = 2 is set to the mini-
mum value of the collection〈3, 2, 7, 2, 6〉.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetries • Items ofVARIABLES arepermutable.

• All occurrences of two distinct values ofVARIABLES.var can beswapped.

• One and the same constant can beaddedto MIN as well as to thevar attribute of
all items ofVARIABLES.

Arg. properties
• Functional dependency: MIN determined byVARIABLES.

• Aggregate: MIN(min), VARIABLES(union).

Usage In some project scheduling problems one has to introduce dummy activities that correspond
for instance to the starting time of a given set of activities. In this context one can use the
minimum constraint to get the minimum starting time of a set of tasks.

Remark Note thatminimum is a constraint and not just a function that computes the minimum value
of a collection of variables: potential values ofMIN influence the variables ofVARIABLES,
and reciprocally potential values that can be assigned to variables ofVARIABLES influence
MIN.

Theminimum constraint is calledmin in JaCoP(http://www.jacop.eu/).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.jacop.eu/

20000128 1379

Algorithm A filtering algorithm for theminimum constraint is described in [26].

Theminimum constraint isentailedif all the following conditions hold:

1. MIN is fixed.

2. At least one variable ofVARIABLES is assigned valueMIN.

3. All variables ofVARIABLES have their minimum value greater than or equal to value
MIN.

Systems min in Choco, min in Gecode, min in JaCoP, minimum in MiniZinc , minimum in
SICStus.

Used in minimum greater than, next element, next greater element.

See also common keyword:maximum (order constraint).

comparison swapped:maximum.

generalisation:minimum modulo (variable replaced byvariablemod constant).

implied by: and.

implies: in.

soft variant: minimum except 0 (value0 is ignored), open minimum (open constraint).

specialisation:min n (minimum or ordern replaced by absolute minimum).

uses in its reformulation: cycle.

Keywords characteristic of a constraint: minimum, maxint, automaton,
automaton without counters, reified automaton constraint.

constraint arguments:pure functional dependency.

constraint network structure: centered cyclic(1) constraint network(1).

constraint type: order constraint.

filtering: arc-consistency, entailment.

modelling: functional dependency.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntArith.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/Min.html
http://www.jacop.eu/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#minimum
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1380 ORDER,CLIQUE ; AUTOMATON

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s)
∨

(

variables1.key = variables2.key,
variables1.var < variables2.var

)

Graph property(ies) ORDER(0, MAXINT, var) = MIN

Graph model The conditionvariables1.key = variables2.key holds if and only ifvariables1 and
variables2 corresponds to the same vertex. It is used in order to enforce to keep all the
vertices of the initial graph.ORDER(0, MAXINT, var) refers to the source vertices of the
graph, i.e., those vertices that do not have any predecessor.

Parts (A) and (B) of Figure5.423respectively show the initial and final graph associated
with theExample slot. Since we use theORDER graph property, the vertices of rank0
(without considering the loops) of the final graph are outlined with a thick circle.

VARIABLES

1

2

3

4

5

ORDER(0,MAXINT,var)=2

1:3

3:7

5:6

2:2 4:2

(A) (B)

Figure 5.423: Initial and final graph of theminimum constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 1381

Automaton Figure 5.424depicts the automaton associated with theminimum constraint. LetVARi
be theith variable of theVARIABLES collection. To each pair(MIN, VARi) corresponds a
signature variableSi as well as the following signature constraint:(MIN < VARi ⇔ Si =
0) ∧ (MIN = VARi ⇔ Si = 1) ∧ (MIN > VARi ⇔ Si = 2).

s

MIN<VARiMIN=VAR

iMIN=VAR

iMIN<VAR

t i

Figure 5.424: Automaton of theminimum constraint

MIN

n

Q =tn
Q1Q =s0

S2S1

VAR
1

VAR
2

VAR
n

S

Figure 5.425: Hypergraph of the reformulation corresponding to the automaton of the
minimum constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1382 ORDER,CLIQUE ; AUTOMATON

5.230 minimum except0

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromminimum.

Constraint minimum except 0(MIN, VARIABLES, DEFAULT)

Arguments MIN : dvar

VARIABLES : collection(var−dvar)
DEFAULT : int

Restrictions MIN > 0
MIN ≤ DEFAULT

|VARIABLES| > 0
required(VARIABLES, var)
VARIABLES.var ≥ 0
VARIABLES.var ≤ DEFAULT

DEFAULT > 0

Purpose

All variables of the collectionVARIABLES are assigned a value that belongs to inter-
val [0, DEFAULT]. MIN is the minimum value of the collection of domain variables
VARIABLES, ignoring all variables that take0 as value. When all variables of the collec-
tion VARIABLES are assigned value0, MIN is set to the default valueDEFAULT.

Example

3,

〈

var− 3,
var− 7,
var− 6,
var− 7,
var− 4,
var− 7

〉

, 1000000

2,

〈

var− 3,
var− 2,
var− 0,
var− 7,
var− 2,
var− 6

〉

, 1000000

1000000,

〈

var− 0,
var− 0,
var− 0,
var− 0,
var− 0,
var− 0

〉

, 1000000

The three examples of theminimum except 0 constraint respectively hold since:

• Within the first example,MIN is set to the minimum value3 of the collection
〈3, 7, 6, 7, 4, 7〉.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20030820 1383

• Within the second example,MIN is set to the minimum value2 (ignoring value0) of
the collection〈3, 2, 0, 7, 2, 6〉.

• Finally within the third example,MIN is set to the default value1000000 since all
items of the collection〈0, 0, 0, 0, 0, 0〉 are set to0.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
atleast(1, VARIABLES, 0)

Symmetries • Items ofVARIABLES arepermutable.

• All occurrences of two distinct values ofVARIABLES.var can beswapped.

Arg. properties
Functional dependency: MIN determined byVARIABLES andDEFAULT.

Remark The joker value0 makes sense only because we restrict the variables of theVARIABLES

collection to take non-negative values.

Reformulation By (1) associating to each variableVi (i ∈ [1, |VARIABLES|]) of theVARIABLES collection
arankvariableRi ∈ [0, |VARIABLES|−1] with the reified constraintRi = 1 ⇔ Vi = MIN,
and by creating for each pair of variablesVi, Vj (i, j < i ∈ [1, |VARIABLES|]) the reified
constraints

Vi < Vj ⇔ Ri < Rj ,
Vi = Vj ⇔ Ri = Rj ,
Vi > Vj ⇔ Ri > Rj ,

and by (2) creating the reified constraint
V1 = 0 ∧ V2 = 0 ∧ . . . ∧ Vn = 0 ⇒ MIN = DEFAULT,

one can reformulate theminimum except 0 constraint in term of 3 ·
|VARIABLES|·(|VARIABLES|−1)

2
+ 2 reified constraints.

See also hard version: minimum (value0 is not ignored any more).

Keywords characteristic of a constraint: joker value, minimum, automaton,
automaton without counters, reified automaton constraint.

constraint arguments:pure functional dependency.

constraint network structure: centered cyclic(1) constraint network(1).

constraint type: order constraint.

modelling: functional dependency.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1384 ORDER,CLIQUE ; AUTOMATON

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var 6= 0
• variables2.var 6= 0

• ∨

(

variables1.key = variables2.key,
variables1.var < variables2.var

)

Graph property(ies) ORDER(0, DEFAULT, var) = MIN

Graph model Because of the first two conditions of the arc constraint, all vertices that correspond to0
will be removed from the final graph.

Parts (A) and (B) of Figure5.426respectively show the initial and final graph of the second
example of theExample slot. Since we use theORDER graph property, the vertices of
rank0 (without considering the loops) of the final graph are outlined with a thick circle.

VARIABLES

1

2

3

4

5

6

ORDER(0,DEFAULT,var)=2

1:3

4:7

6:6

2:2 5:2

(A) (B)

Figure 5.426: Initial and final graph of theminimum except 0 constraint

Since the graph associated with the third example does not contain any vertex, ORDER

returns the default valueDEFAULT.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1385

Automaton Figure5.427depicts the automaton associated with theminimum except 0 constraint. Let
VARi be theith variable of theVARIABLES collection. To each pair(MIN, VARi) corresponds
a signature variableSi as well as the following signature constraint:

((VARi = 0) ∧ (MIN 6= DEFAULT)) ⇔ Si = 0 ∧
((VARi = 0) ∧ (MIN = DEFAULT)) ⇔ Si = 1 ∧
((VARi 6= 0) ∧ (MIN = VARi)) ⇔ Si = 2 ∧
((VARi 6= 0) ∧ (MIN < VARi)) ⇔ Si = 3.

VAR <>0 and MIN<VAR

i

VAR =0 and MIN=DEFAULTi

VAR =0 and MIN=DEFAULTiVAR =0 and MIN<>DEFAULTi

VAR <>0 and MIN=VARi i

VAR =0 and MIN<>DEFAULTi

kj

s i iVAR <>0 and MIN<VAR

i iVAR <>0 and MIN=VAR

i i

VAR =0 and MIN=DEFAULT

Figure 5.427: Automaton of theminimum except 0 constraint

MIN

S

1Q0Q =s

2S1S

n
VAR

2
VAR

1
VAR

k

j
Q =n

n

Figure 5.428: Hypergraph of the reformulation corresponding to the automaton of the
minimum except 0 constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1386 NARC,PRODUCT , SUCC; AUTOMATON

5.231 minimum greater than

DESCRIPTION LINKS GRAPH AUTOMATON

Origin N. Beldiceanu

Constraint minimum greater than(VAR1, VAR2, VARIABLES)

Arguments VAR1 : dvar

VAR2 : dvar

VARIABLES : collection(var−dvar)

Restrictions VAR1 > VAR2

|VARIABLES| > 0
required(VARIABLES, var)

Purpose
VAR1 is the smallest value strictly greater thanVAR2 of the collection of variables
VARIABLES: this concretely means that there exists at least one variable ofVARIABLES

that takes a value strictly greater thanVAR2.

Example (5, 3, 〈8, 5, 3, 8〉)

The minimum greater than constraint holds since value5 is the smallest value
strictly greater than value3 among values8, 5, 3 and8.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetry Items ofVARIABLES arepermutable.

Arg. properties
Aggregate: VAR1(min), VAR2(id), VARIABLES(union).

Reformulation Let V1, V2, . . . , V|VARIABLES| denote the variables of the collection of variables
VARIABLES. By creating the extra variablesM and U1, U2, . . . , U|VARIABLES|, the
minimum greater than constraint can be expressed in term of the following constraints:

1. maximum(M, VARIABLES),

2. VAR1 > VAR2,

3. VAR1 ≤ M ,

4. Vi ≤ VAR2 ⇒ Ui = M (i ∈ [1, |VARIABLES|]),
5. Vi > VAR2 ⇒ Ui = Vi (i ∈ [1, |VARIABLES|]),
6. minimum(VAR1, 〈U1, U2, . . . , U|VARIABLES|〉).

See also common keyword:next greater element (order constraint).

implied by: next greater element.

related: next element (identify an element in a table).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

20030820 1387

Keywords characteristic of a constraint: minimum, automaton, automaton without counters,
reified automaton constraint, derived collection.

constraint network structure: centered cyclic(2) constraint network(1).

constraint type: order constraint.

Keywords
Related keywords grouped by meta-keywords.

1388 NARC,PRODUCT , SUCC; AUTOMATON

Derived Collection
col(ITEM−collection(var−dvar), [item(var− VAR2)])

Arc input(s) ITEM VARIABLES

Arc generator PRODUCT 7→collection(item, variables)

Arc arity 2

Arc constraint(s) item.var < variables.var

Graph property(ies) NARC> 0

Sets SUCC 7→ [source, variables]

Constraint(s) on sets minimum(VAR1, variables)

Graph model Similar to thenext greater element constraint, except that there is no order on the
variables of the collectionVARIABLES.

Parts (A) and (B) of Figure5.429respectively show the initial and final graph associated
with theExampleslot. Since we use theNARC graph property, the arcs of the final graph
are stressed in bold. The source and the sinks of the final graph respectively correspond to
the variableVAR2 and to the variables of theVARIABLES collection that are strictly greater
thanVAR2. VAR1 is set to the smallest value of thevar attribute of the sinks of the final
graph.

ITEM

VARIABLES

1

1234

NARC=3

1:3

1:8 2:5 4:8

(A) (B)

Figure 5.429: Initial and final graph of theminimum greater than constraint

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1389

Automaton Figure 5.430 depicts the automaton associated with theminimum greater than con-
straint. Let VARi be the ith variable of theVARIABLES collection. To each triple
(VAR1, VAR2, VARi) corresponds a signature variableSi as well as the following signature
constraint:

((VARi < VAR1) ∧ (VARi ≤ VAR2)) ⇔ Si = 0 ∧
((VARi = VAR1) ∧ (VARi ≤ VAR2)) ⇔ Si = 1 ∧
((VARi > VAR1) ∧ (VARi ≤ VAR2)) ⇔ Si = 2 ∧
((VARi < VAR1) ∧ (VARi > VAR2)) ⇔ Si = 3 ∧
((VARi = VAR1) ∧ (VARi > VAR2)) ⇔ Si = 4 ∧
((VARi > VAR1) ∧ (VARi > VAR2)) ⇔ Si = 5.

The automaton is constructed in order to fulfil the following conditions:

• We look for an item of theVARIABLES collection such thatvari = VAR1 andvari >
VAR2,

• There should not exist any item of theVARIABLES collection such thatvari < VAR1

andvari > VAR2.

s

VAR >VAR1 and VAR >VAR2

VAR =VAR1 and VAR >VAR2i i

VAR >VAR1 and VAR >VAR2i i

VAR >VAR1 and VAR <=VAR2

VAR =VAR1 and VAR <=VAR2

VAR <VAR1 and VAR <=VAR2

i i

i i

i i

i iVAR =VAR1 and VAR >VAR2

t

VAR >VAR1 and VAR <=VAR2

VAR =VAR1 and VAR <=VAR2

VAR <VAR1 and VAR <=VAR2

i i

i i

i i

i i

Figure 5.430: Automaton of theminimum greater than constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1390 NARC,PRODUCT , SUCC; AUTOMATON

VAR1

n

Q =tn
Q1Q =s0

S2S1

VAR
1

VAR
2

VAR
n

VAR2

S

Figure 5.431: Hypergraph of the reformulation corresponding to the automaton of the
minimum greater than constraint

20030820 1391

1392 ORDER,CLIQUE

5.232 minimum modulo

DESCRIPTION LINKS GRAPH

Origin Derived fromminimum.

Constraint minimum modulo(MIN, VARIABLES, M)

Arguments MIN : dvar

VARIABLES : collection(var−dvar)
M : int

Restrictions |VARIABLES| > 0
M > 0
required(VARIABLES, var)

Purpose
MIN is a minimum value of the collection of domain variablesVARIABLES according to
the following partial ordering:(X mod M) < (Y mod M).

Example (6, 〈9, 1, 7, 6, 5〉 , 3)
(9, 〈9, 1, 7, 6, 5〉 , 3)

The minimum modulo constraints hold sinceMIN is respectively set to values6 and
9, where6 mod 3 = 0 and9 mod 3 = 0 are both less than or equal to all the expressions
9 mod 3 = 0, 1 mod 3 = 1, 7 mod 3 = 1, 6 mod 3 = 0, and5 mod 3 = 2.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
M > 1
M <maxval(VARIABLES.var)

Symmetry Items ofVARIABLES arepermutable.

Arg. properties
Functional dependency: MIN determined byVARIABLES andM.

See also comparison swapped:maximum modulo.

specialisation:minimum (variablemod constant replaced byvariable).

Keywords characteristic of a constraint: modulo, maxint, minimum.

constraint arguments:pure functional dependency.

constraint type: order constraint.

modelling: functional dependency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20000128 1393

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s)
∨

(

variables1.key = variables2.key,
variables1.varmod M < variables2.varmod M

)

Graph property(ies) ORDER(0, MAXINT, var) = MIN

Graph model We use a similar definition that the one that was utilised for theminimum constraint. Within
the arc constraint we replace the conditionX < Y by the condition(X mod M) <
(Y mod M).

Parts (A) and (B) of Figure5.432respectively show the initial and final graph associated
with the second example of theExampleslot. Since we use theORDER graph property,
the vertex of rank0 (without considering the loops) associated with value9 is outlined with
a thick circle.

VARIABLES

1

2

3

4

5

ORDER(0,MAXINT,var)=9

1:9

2:1 3:7

5:5

4:6

(A) (B)

Figure 5.432: Initial and final graph of theminimum modulo constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1394 NTREE,SUM WEIGHT ARC,CLIQUE

5.233 minimum weight alldifferent

DESCRIPTION LINKS GRAPH

Origin [158]

Constraint minimum weight alldifferent(VARIABLES, MATRIX, COST)

Synonyms minimum weight alldiff, minimum weight alldistinct, min weight alldiff,
min weight alldifferent, min weight alldistinct.

Arguments VARIABLES : collection(var−dvar)
MATRIX : collection(i−int, j−int, c−int)
COST : dvar

Restrictions |VARIABLES| > 0
required(VARIABLES, var)
VARIABLES.var ≥ 1
VARIABLES.var ≤ |VARIABLES|
required(MATRIX, [i, j, c])
increasing seq(MATRIX, [i, j])
MATRIX.i ≥ 1
MATRIX.i ≤ |VARIABLES|
MATRIX.j ≥ 1
MATRIX.j ≤ |VARIABLES|
|MATRIX| = |VARIABLES| ∗ |VARIABLES|

Purpose

All variables of theVARIABLES collection should take a distinct value located within
interval [1, |VARIABLES|]. In additionCOST is equal to the sum of the costs associated
with the fact that we assign valuei to variablej. These costs are given by the matrix
MATRIX.

Example

〈2, 3, 1, 4〉 ,

〈

i− 1 j− 1 c− 4,
i− 1 j− 2 c− 1,
i− 1 j− 3 c− 7,
i− 1 j− 4 c− 0,
i− 2 j− 1 c− 1,
i− 2 j− 2 c− 0,
i− 2 j− 3 c− 8,
i− 2 j− 4 c− 2,
i− 3 j− 1 c− 3,
i− 3 j− 2 c− 2,
i− 3 j− 3 c− 1,
i− 3 j− 4 c− 6,
i− 4 j− 1 c− 0,
i− 4 j− 2 c− 0,
i− 4 j− 3 c− 6,
i− 4 j− 4 c− 5

〉

, 17

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20030820 1395

The minimum weight alldifferent constraint holds since the cost17 corresponds to
the sumMATRIX[(1−1) ·4+2].c+MATRIX[(2−1) ·4+3].c+MATRIX[(3−1) ·4+1].c+
MATRIX[(4−1) ·4+4].c = MATRIX[2].c+MATRIX[7].c+MATRIX[9].c+MATRIX[16].c =
1 + 8 + 3 + 5.

Typical |VARIABLES| > 1
range(MATRIX.c) > 1
MATRIX.c > 0

Arg. properties
Functional dependency: COST determined byVARIABLES andMATRIX.

Algorithm The Hungarian method for the assignment problem[225] can be used for evaluating the
bounds of theCOST variable. A filtering algorithm is described in [356]. It can be used for
handling both side of theminimum weight alldifferent constraint:

• Evaluating a lower bound of theCOST variable and pruning the variables of the
VARIABLES collection in order to not exceed the maximum value ofCOST.

• Evaluating an upper bound of theCOST variable and pruning the variables of the
VARIABLES collection in order to not be under the minimum value ofCOST.

Systems all different in SICStus, all distinct in SICStus.

See also attached to cost variant:alldifferent.

common keyword:global cardinality with costs (cost filtering constraint,weighted assignment),
sum of weights of distinct values (weighted assignment),
weighted partial alldiff (cost filtering constraint,weighted assignment).

Keywords application area: assignment.

characteristic of a constraint: core.

filtering: cost filtering constraint, Hungarian method for the assignment problem.

final graph structure: onesucc.

modelling: cost matrix, functional dependency.

problems: weighted assignment.

Typical
Typical conditions on the arguments of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1396 NTREE,SUM WEIGHT ARC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.key

Graph property(ies) • NTREE= 0

• SUM WEIGHT ARC

(

MATRIX

[

∑

(

(variables1.key− 1) ∗ |VARIABLES|,
variables1.var

)]

.c

)

= COST

Graph model Since each variable takes one value, and because of the arc constraintvariables1 =
variables.key, each vertex of the initial graph belongs to the final graph and has exactly
one successor. Therefore the sum of the out-degrees of the verticesof the final graph is
equal to the number of vertices of the final graph. Since the sum of the in-degrees is equal
to the sum of the out-degrees, it is also equal to the number of vertices of the final graph.
SinceNTREE = 0, each vertex of the final graph belongs to a circuit. Therefore each
vertex of the final graph has at least one predecessor. Since we sawthat the sum of the
in-degrees is equal to the number of vertices of the final graph, each vertex of the final
graph has exactly one predecessor. We conclude that the final graphconsists of a set of
vertex-disjoint elementary circuits.

Finally the graph constraint expresses that theCOST variable is equal to the sum of the
elementary costs associated with each variable-valueassignment. All these elementary
costs are recorded in theMATRIX collection. More precisely, the costcij is recorded in the
attributec of the ((i − 1) · |VARIABLES)| + j)th entry of theMATRIX collection. This is
ensured by theincreasing restriction that enforces that the items of theMATRIX collection
are sorted in lexicographically increasing order according to attributesi andj.

VARIABLES

1

2

3

4 NARC=4
SUM_WEIGHT_ARC=1+8+3+5=17

1:2

2:3

1

3:1

8

3

4:4 5

(A) (B)

Figure 5.433: Initial and final graph of theminimum weight alldifferent con-
straint

Parts (A) and (B) of Figure5.433respectively show the initial and final graph associated
with theExample slot. Since we use theSUM WEIGHT ARC graph property, the

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1397

arcs of the final graph are stressed in bold. We also indicate their corresponding weight.

1398 PREDEFINED

5.234 multi global contiguity

DESCRIPTION LINKS

Origin Derived fromglobal contiguity.

Constraint multi global contiguity(VARIABLES)

Synonym multi contiguity.

Argument VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
VARIABLES.var ≥ 0

Purpose
Enforce all variables of theVARIABLES collection to be assigned a value greater than or
equal to0. In addition, each valuev strictly greater than0 should appear contiguously.

Example

〈

var− 0,
var− 2,
var− 2,
var− 1,
var− 1,
var− 0,
var− 0,
var− 5

〉

The multi global contiguity constraint holds since the sequence0 2 2 1 1 0 0 5
contains no more than one group of contiguous1, no more than one group of contiguous
2, and no more than one group of contiguous5.

Typical |VARIABLES| > 2
range(VARIABLES.var) > 2

Symmetry Items ofVARIABLES can bereversed.

Arg. properties
Contractiblewrt. VARIABLES.

See also common keyword:group (sequence).

implied by: global contiguity.

Keywords combinatorial object: sequence.

constraint type: predefined constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20120212 1399

1400 PREDEFINED

5.235 multi inter distance

DESCRIPTION LINKS

Origin [282]

Constraint multi inter distance(VARIABLES, LIMIT, DIST)

Synonyms multi all min distance, multi all min dist, sliding atmost,
atmost sliding.

Arguments VARIABLES : collection(var−dvar)
LIMIT : int

DIST : int

Restrictions required(VARIABLES, var)
LIMIT > 0
DIST > 0

Purpose
Enforce that at mostLIMIT variables of the collectionVARIABLES are assigned values
in any set consisting ofDIST consecutive integer values.

Example (〈4, 0, 9, 4, 7〉 , 2, 3)

The multi inter distance constraint holds since, for each set ofDIST = 3 con-
secutive values, no more thanLIMIT = 2 variables of theVARIABLES collection
〈4, 0, 9, 4, 7〉 are assigned a value from that set:

• At most two, in fact one, variables of theVARIABLES collection are assigned a value
from the set{0, 1, 2}.

• At most two, in fact zero, variables of theVARIABLES collection are assigned a value
from the set{1, 2, 3}.

• At most two, in fact two, variables of theVARIABLES collection are assigned a value
from the set{2, 3, 4}.

• At most two, in fact two, variables of theVARIABLES collection are assigned a value
from the set{3, 4, 5}.

• At most two, in fact two, variables of theVARIABLES collection are assigned a value
from the set{4, 5, 6}.

• At most two, in fact one, variables of theVARIABLES collection are assigned a value
from the set{5, 6, 7}.

• At most two, in fact one, variables of theVARIABLES collection are assigned a value
from the set{6, 7, 8}.

• At most two, in fact two, variables of theVARIABLES collection are assigned a value
from the set{7, 8, 9}.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20110814 1401

Typical LIMIT > 1
LIMIT < |VARIABLES|
DIST > 1
DIST <range(VARIABLES.var)

Symmetries • Items ofVARIABLES arepermutable.

• One and the same constant can beaddedto the var attribute of all items of
VARIABLES.

• LIMIT can beincreased.

• MINDIST can bedecreasedto any value≥ 1.

Arg. properties
Contractiblewrt. VARIABLES.

Usage Themulti inter distance constraint was tested for scheduling tasks that all have the
same fixed duration in the context ofair traffic management.

Algorithm P. Ouellet and C.-G. Quimper came up with a cubic time complexity algorithm achieving
bound-consistencyin [282].

See also generalisation: cumulative (line segment, of same length, replaced by
line segment).

specialisation: all min dist (LIMIT parameter set to 1),
cardinality atmost (window of DIST consecutive values replaced by window of
size1).

Keywords application area: air traffic management.

constraint type: predefined constraint, value constraint, scheduling constraint.

filtering: bound-consistency.

modelling: at most.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1402 AUTOMATON

5.236 nand

DESCRIPTION LINKS AUTOMATON

Origin Logic

Constraint nand(VAR, VARIABLES)

Synonym clause.

Arguments VAR : dvar

VARIABLES : collection(var−dvar)

Restrictions VAR ≥ 0
VAR ≤ 1
|VARIABLES| ≥ 2
required(VARIABLES, var)
VARIABLES.var ≥ 0
VARIABLES.var ≤ 1

Purpose
Let VARIABLES be a collection of0-1 variablesVAR1, VAR2, . . . , VARn (n ≥ 2). Enforce
VAR = ¬(VAR1 ∧ VAR2 ∧ . . . ∧ VARn).

Example (1, 〈0, 0〉)
(1, 〈0, 1〉)
(1, 〈1, 0〉)
(0, 〈1, 1〉)
(1, 〈1, 0, 1〉)

Symmetry Items ofVARIABLES arepermutable.

Arg. properties
• Functional dependency: VAR determined byVARIABLES.

• Contractiblewrt. VARIABLES whenVAR = 0.

• Extensiblewrt. VARIABLES whenVAR = 1.

• Aggregate: VAR(∨), VARIABLES(union).

Systems clause in Choco, clause in Gecode, #/\ in SICStus.

See also common keyword:and, equivalent, imply, nor, or, xor (Boolean constraint).

implies: atleast nvalue.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelBool.html
http://www.gecode.org/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

20051226 1403

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint arguments:pure functional dependency.

constraint network structure: Berge-acyclic constraint network.

constraint type: Boolean constraint.

filtering: arc-consistency.

modelling: functional dependency.

Keywords
Related keywords grouped by meta-keywords.

1404 AUTOMATON

Automaton Figure5.434depicts the automaton associated with thenand constraint. To the first argu-
mentVAR of thenand constraint corresponds the first signature variable. To each variable
VARi of the second argumentVARIABLES of thenand constraint corresponds the next sig-
nature variable. There is no signature constraint.

VAR=0

i

VAR =1
i

VAR =1
i

VAR =0
i

VAR =1
i

s

i j

k

VAR=1

VAR =0

Figure 5.434: Automaton of thenand constraint

VAR

Q =s 1Q

n
VAR

1
VAR

k
jQ =n+10

Figure 5.435: Hypergraph of the reformulation corresponding to the automaton of the
nand constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20051226 1405

1406 NSCC,CLIQUE

5.237 nclass

DESCRIPTION LINKS GRAPH

Origin Derived fromnvalue.

Constraint nclass(NCLASS, VARIABLES, PARTITIONS)

Type VALUES : collection(val−int)

Arguments NCLASS : dvar

VARIABLES : collection(var−dvar)
PARTITIONS : collection(p− VALUES)

Restrictions |VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)
NCLASS ≥ 0
NCLASS ≤ min(|VARIABLES|, |PARTITIONS|)
NCLASS ≤range(VARIABLES.var)
required(VARIABLES, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose
Number of partitions of the collectionPARTITIONS such that at least one value is as-
signed to at least one variable of the collectionVARIABLES.

Example

2, 〈3, 2, 7, 2, 6〉 ,
〈

p− 〈1, 3〉 ,
p− 〈4〉 ,
p− 〈2, 6〉

〉

Note that the values of〈3, 2, 7, 2, 6〉 occur within partitionsp − 〈1, 3〉 andp − 〈2, 6〉 but
not within p − 〈4〉. Consequently, thenclass constraint holds since its first argument
NCLASS is set to value2.

Typical NCLASS > 1
NCLASS < |VARIABLES|
NCLASS <range(VARIABLES.var)
|VARIABLES| > |PARTITIONS|

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20000128 1407

Symmetries • Items ofVARIABLES arepermutable.

• Items ofPARTITIONS arepermutable.

• Items ofPARTITIONS.p arepermutable.

• An occurrence of a value ofVARIABLES.var can be replaced by any other value
that also belongs to the same partition ofPARTITIONS.

• All occurrences of two distinct tuples of values inVARIABLES.var or
PARTITIONS.p.val can beswapped; all occurrences of a tuple of values in
VARIABLES.var or PARTITIONS.p.val can berenamedto any unused tuple of
values.

Arg. properties
• Functional dependency: NCLASS determined byVARIABLES andPARTITIONS.

• Extensiblewrt. VARIABLES whenNCLASS = |PARTITIONS|.

Algorithm [26, 38].

See also related: nequivalence (variable ∈ partition replaced by
variable mod constant), ninterval (variable ∈ partition replaced by
variable/constant), npair (variable ∈ partition replaced by pair of
variables).

specialisation:nvalue (variable ∈ partition replaced byvariable).

used in graph description:in same partition.

Keywords characteristic of a constraint: partition.

constraint arguments:pure functional dependency.

constraint type: counting constraint, value partitioning constraint.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes, functional dependency.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1408 NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) NSCC= NCLASS

Graph model Parts (A) and (B) of Figure5.436respectively show the initial and final graph associated
with the Example slot. Since we use theNSCC graph property we show the different
strongly connected components of the final graph. Each strongly connected component
corresponds to a class of values that was assigned to some variables ofthe VARIABLES

collection. We effectively use two classes of values that respectively correspond to values
{3} and {2, 6}. Note that we do not consider value7 since it does not belong to the
different classes of values we gave: all corresponding arc constraints do not hold.

VARIABLES

1

2

3

4

5

NSCC=2

SCC#1 SCC#2

1:3 2:2

4:2

5:6

(A) (B)

Figure 5.436: Initial and final graph of thenclass constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 1409

1410 PREDEFINED

5.238 neq

DESCRIPTION LINKS

Origin Arithmetic.

Constraint neq(VAR1, VAR2)

Synonym rel.

Arguments VAR1 : dvar

VAR2 : dvar

Purpose Enforce the fact that two variables are not equal.

Example (1, 8)

Theneq constraint holds since1 is not equal to8.

Symmetries • Arguments arepermutablew.r.t. permutation(VAR1, VAR2).

• A value inVAR1 or VAR2 can berenamedto any unused value.

Systems neq in Choco, rel in Gecode, #\= in SICStus.

See also common keyword:geq, leq (binary constraint,arithmetic constraint).

generalisation:neq cst (constant added), not all equal.

implied by: gt, lt.

negation:eq.

system of constraints:alldifferent.

Keywords constraint arguments:binary constraint.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20070821 1411

1412 PREDEFINED

5.239 neqcst

DESCRIPTION LINKS

Origin Arithmetic.

Constraint neq cst(VAR1, VAR2, CST2)

Arguments VAR1 : dvar

VAR2 : dvar

CST2 : int

Purpose Enforce the fact that the first variable is different from the sum of the second variable
and the constant.

Example (8, 2, 7)

Theneq cst constraint holds since8 is different from2 + 7.

Typical CST2 6= 0
VAR1 6= VAR2+ CST2

Symmetries • Arguments arepermutablew.r.t. permutation(VAR1) (VAR2, CST2).

• One and the same constant can beaddedto VAR1 andVAR2.

• One and the same constant can beaddedto VAR1 andCST2.

See also negation:eq cst.

specialisation:neq (constant removed).

Keywords characteristic of a constraint: disequality.

constraint arguments:binary constraint.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20090923 1413

1414 NSCC,CLIQUE

5.240 nequivalence

DESCRIPTION LINKS GRAPH

Origin Derived fromnvalue.

Constraint nequivalence(NEQUIV, M, VARIABLES)

Arguments NEQUIV : dvar

M : int

VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
NEQUIV ≥ min(1, |VARIABLES|)
NEQUIV ≤ min(M, |VARIABLES|)
NEQUIV ≤range(VARIABLES.var)
M > 0

Purpose
NEQUIV is the number of distinct rests obtained by dividing the variables of the collection
VARIABLES by M.

Example

2, 3,

〈

var− 3,
var− 2,
var− 5,
var− 6,
var− 15,
var− 3,
var− 3

〉

Since the expressions3 mod 3 = 0, 2 mod 3 = 2, 5 mod 3 = 2, 6 mod 3 = 0,
15 mod 3 = 0, 3 mod 3 = 0, and3 mod 3 = 0 involve two distinct values (values0 and
2), the first argumentNEQUIV of thenequivalence constraint is set to value2.

Typical NEQUIV > 1
NEQUIV < |VARIABLES|
NEQUIV <range(VARIABLES.var)
M > 1
M <maxval(VARIABLES.var)

Symmetries • Items ofVARIABLES arepermutable.

• An occurrence of a valueu of VARIABLES.var can bereplacedby any other value
v such thatv is congruent tou moduloM.

Arg. properties
• Functional dependency: NEQUIV determined byM andVARIABLES.

• Contractiblewrt. VARIABLES whenNEQUIV = 1 and|VARIABLES| > 0.

• Contractiblewrt. VARIABLES whenNEQUIV = |VARIABLES|.
• Extensiblewrt. VARIABLES whenNEQUIV = M.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

20000128 1415

Algorithm Since constraintsX = Y andX ≡ Y (modM) are similar, one should also use a similar
algorithm as the one [26, 38] provided for constraintnvalue.

See also related: nclass (variable mod constant replaced byvariable ∈ partition),
ninterval (variable mod constant replaced by variable/constant),
npair (variablemod constant replaced bypair of variables).

specialisation:nvalue (variablemod constant replaced byvariable).

Keywords constraint arguments:pure functional dependency.

constraint type: counting constraint, value partitioning constraint.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes, functional dependency.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1416 NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.varmod M = variables2.varmod M

Graph property(ies) NSCC= NEQUIV

Graph model Parts (A) and (B) of Figure5.437respectively show the initial and final graph associated
with the Example slot. Since we use theNSCC graph property we show the different
strongly connected components of the final graph. Each strongly connected component
corresponds to one equivalence class: We have two equivalence classes that respectively
correspond to values{3, 6, 15} and{2, 5}.

VARIABLES

1

2

3

4

5

6

7

NSCC=2

SCC#1 SCC#2

1:3

4:6

5:15

6:3

7:3

2:2

3:5

(A) (B)

Figure 5.437: Initial and final graph of thenequivalence constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 1417

1418 NARC,PRODUCT , SUCC; AUTOMATON

5.241 nextelement

DESCRIPTION LINKS GRAPH AUTOMATON

Origin N. Beldiceanu

Constraint next element(THRESHOLD, INDEX, TABLE, VAL)

Arguments THRESHOLD : dvar

INDEX : dvar

TABLE : collection(index−int, value−dvar)
VAL : dvar

Restrictions INDEX ≥ 1
INDEX ≤ |TABLE|
THRESHOLD < INDEX

required(TABLE, [index, value])
|TABLE| > 0
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose INDEX is the smallest entry ofTABLE strictly greater thanTHRESHOLD containing value
VAL.

Example

2, 3,

〈

index− 1 value− 1,
index− 2 value− 8,
index− 3 value− 9,
index− 4 value− 5,
index− 5 value− 9

〉

, 9

The next element constraint holds since3 is the smallest entry located after entry
2 that contains value9.

Typical |TABLE| > 1
range(TABLE.value) > 1

Usage Originally introduced for modelling the fact that a nucleotide has to be consumed as soon
as possible at cycleINDEX after a given cycle represented by variableTHRESHOLD.

See also related: minimum greater than (identify an element in a table),
next greater element (allow to iterate over the values of a table).

Keywords characteristic of a constraint: minimum, automaton, automaton without counters,
reified automaton constraint, derived collection.

constraint network structure: centered cyclic(3) constraint network(1).

constraint type: data constraint.

modelling: table.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 1419

Derived Collection

col

(

ITEM−collection(index−dvar, value−dvar),
[item(index− THRESHOLD, value− VAL)]

)

Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→collection(item, table)

Arc arity 2

Arc constraint(s) • item.index < table.index
• item.value = table.value

Graph property(ies) NARC> 0

Sets SUCC 7→

source,

variables− col

(

VARIABLES−collection(var−dvar),
[item(var− TABLE.index)]

)

Constraint(s) on sets minimum(INDEX, variables)

Graph model Parts (A) and (B) of Figure5.438respectively show the initial and final graph associated
with the second graph constraint of theExample slot. Since we use theNARC graph
property, the arcs of the final graph are stressed in bold.

ITEM

TABLE

1

12345

NARC=2

1:2,9

3:3,9 5:5,9

(A) (B)

Figure 5.438: Initial and final graph of thenext element constraint

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1420 NARC,PRODUCT , SUCC; AUTOMATON

Automaton Figure5.439depicts the automaton associated with thenext element constraint. LetIk
andVk respectively be theindex and thevalue attributes of thekth item of theTABLE
collections. To each quintuple(THRESHOLD, INDEX, VAL, Ik, Vk) corresponds a signature
variableSk as well as the following signature constraint:

((Ik ≤ THRESHOLD) ∧ (Ik < INDEX) ∧ (Vk = VAL)) ⇔ Sk = 0 ∧
((Ik ≤ THRESHOLD) ∧ (Ik < INDEX) ∧ (Vk 6= VAL)) ⇔ Sk = 1 ∧
((Ik ≤ THRESHOLD) ∧ (Ik = INDEX) ∧ (Vk = VAL)) ⇔ Sk = 2 ∧
((Ik ≤ THRESHOLD) ∧ (Ik = INDEX) ∧ (Vk 6= VAL)) ⇔ Sk = 3 ∧
((Ik ≤ THRESHOLD) ∧ (Ik > INDEX) ∧ (Vk = VAL)) ⇔ Sk = 4 ∧
((Ik ≤ THRESHOLD) ∧ (Ik > INDEX) ∧ (Vk 6= VAL)) ⇔ Sk = 5 ∧
((Ik > THRESHOLD) ∧ (Ik < INDEX) ∧ (Vk = VAL)) ⇔ Sk = 6 ∧
((Ik > THRESHOLD) ∧ (Ik < INDEX) ∧ (Vk 6= VAL)) ⇔ Sk = 7 ∧
((Ik > THRESHOLD) ∧ (Ik = INDEX) ∧ (Vk = VAL)) ⇔ Sk = 8 ∧
((Ik > THRESHOLD) ∧ (Ik = INDEX) ∧ (Vk 6= VAL)) ⇔ Sk = 9 ∧
((Ik > THRESHOLD) ∧ (Ik > INDEX) ∧ (Vk = VAL)) ⇔ Sk = 10 ∧
((Ik > THRESHOLD) ∧ (Ik > INDEX) ∧ (Vk 6= VAL)) ⇔ Sk = 11.

The automaton is constructed in order to fulfil the following conditions:

• We look for an item of theTABLE collection such thatINDEXi > THRESHOLD and
INDEXi = INDEX andVALUEi = VAL,

• There should not exist any item of theTABLE collection such thatINDEXi >
THRESHOLD andINDEXi < INDEX andVALUEi = VAL.

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20030820 1421

s

 i i i

INDEX <=THRESHOLD and INDEX <INDEX and VALUE <>VAL i i i

INDEX <=THRESHOLD and INDEX =INDEX and VALUE =VAL i i i

INDEX <=THRESHOLD and INDEX =INDEX and VALUE <>VAL i i i

INDEX <=THRESHOLD and INDEX >INDEX and VALUE =VAL i i i

INDEX <=THRESHOLD and INDEX >INDEX and VALUE <>VAL i i i

 i i iINDEX >THRESHOLD and INDEX <INDEX and VALUE <>VAL

INDEX >THRESHOLD and INDEX =INDEX and VALUE =VAL i i i

 i i iINDEX >THRESHOLD and INDEX =INDEX and VALUE <>VAL

 i i iINDEX >THRESHOLD and INDEX >INDEX and VALUE =VAL

 i i iINDEX >THRESHOLD and INDEX >INDEX and VALUE <>VAL

INDEX >THRESHOLD and INDEX >INDEX and VALUE <>VAL i i i

INDEX >THRESHOLD and INDEX >INDEX and VALUE =VAL i i i

INDEX >THRESHOLD and INDEX =INDEX and VALUE <>VAL i i i

INDEX >THRESHOLD and INDEX <INDEX and VALUE <>VAL i i i

 i i iINDEX <=THRESHOLD and INDEX >INDEX and VALUE <>VAL

 i i iINDEX <=THRESHOLD and INDEX >INDEX and VALUE =VAL

 i i iINDEX <=THRESHOLD and INDEX =INDEX and VALUE <>VAL

 i i iINDEX <=THRESHOLD and INDEX =INDEX and VALUE =VAL

 i i iINDEX <=THRESHOLD and INDEX <INDEX and VALUE <>VAL

 i i iINDEX <=THRESHOLD and INDEX <INDEX and VALUE =VAL

 i i iINDEX >THRESHOLD and INDEX =INDEX and VALUE =VAL

t
INDEX <=THRESHOLD and INDEX <INDEX and VALUE =VAL

Figure 5.439: Automaton of thenext element constraint

1422 NARC,PRODUCT , SUCC; AUTOMATON

INDEX

n

Q =tn
Q1Q =s0

S2S1

VALUE
 1

VALUE
 2

VALUE
 n

THRESHOLD

VAL

S

Figure 5.440: Hypergraph of the reformulation corresponding to the automaton of the
next element constraint

20030820 1423

1424 NARC,PATH ;NARC,PRODUCT , SUCC

5.242 nextgreater element

DESCRIPTION LINKS GRAPH

Origin M. Carlsson

Constraint next greater element(VAR1, VAR2, VARIABLES)

Arguments VAR1 : dvar

VAR2 : dvar

VARIABLES : collection(var−dvar)

Restrictions VAR1 < VAR2

|VARIABLES| > 0
required(VARIABLES, var)

Purpose
VAR2 is the value strictly greater thanVAR1 located at the smallest possible entry of the
tableTABLE. In addition, the variables of the collectionVARIABLES are sorted in strictly
increasing order.

Example (7, 8, 〈3, 5, 8, 9〉)

Thenext greater element constraint holds since:

• VAR2 is fixed to the first value8 strictly greater thanVAR1 = 7,

• The var attributes of the items of the collectionVARIABLES are sorted in strictly
increasing order.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Usage Originally introduced in [92] for modelling the fact that a nucleotide has to be consumed
as soon as possible at cycleVAR2 after a given cycleVAR1.

Remark Similar to theminimum greater than constraint, except for the fact that thevar attributes
are sorted.

Reformulation Let V1, V2, . . . , V|VARIABLES| denote the variables of the collection of variables
VARIABLES. By creating the extra variablesM and U1, U2, . . . , U|VARIABLES|, the
next greater element constraint can be expressed in term of the following constraints:

1. V1 < V2 < . . . < V|VARIABLES|

2. maximum(M, VARIABLES),

3. VAR2 > VAR1,

4. VAR2 ≤ M ,

5. Vi ≤ VAR1 ⇒ Ui = M (i ∈ [1, |VARIABLES|]),

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

20030820 1425

6. Vi > VAR1 ⇒ Ui = Vi (i ∈ [1, |VARIABLES|]),
7. minimum(VAR2, 〈U1, U2, . . . , U|VARIABLES|〉).

See also common keyword:minimum greater than (order constraint).

implies: minimum greater than.

related: next element (allow to iterate over the values of a table).

Keywords characteristic of a constraint: minimum, derived collection.

constraint type: order constraint, data constraint.

modelling: table.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1426 NARC,PATH ;NARC,PRODUCT , SUCC

Derived Collection
col(V−collection(var−dvar), [item(var− VAR1)])

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var < variables2.var

Graph property(ies) NARC= |VARIABLES| − 1

Arc input(s) V VARIABLES

Arc generator PRODUCT 7→collection(v, variables)

Arc arity 2

Arc constraint(s) v.var < variables.var

Graph property(ies) NARC> 0

Sets SUCC 7→ [source, variables]

Constraint(s) on sets minimum(VAR2, variables)

Graph model Parts (A) and (B) of Figure5.441respectively show the initial and final graph associated
with the second graph constraint of theExample slot. Since we use theNARC graph
property, the arcs of the final graph are stressed in bold.

V

VARIABLES

1

1234

NARC=2

1:7

3:8 4:9

(A) (B)

Figure 5.441: Initial and final graph of thenext greater element constraint

Signature Since the first graph constraint uses thePATH arc generator on theVARIABLES collection,
the number of arcs of the corresponding initial graph is equal to|VARIABLES|−1. Therefore
the maximum number of arcs of the final graph is equal to|VARIABLES|−1. For this reason
we can rewriteNARC = |VARIABLES|−1 toNARC ≥ |VARIABLES|−1 and simplify
NARC to NARC.

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1427

1428 NSCC,CLIQUE

5.243 ninterval

DESCRIPTION LINKS GRAPH

Origin Derived fromnvalue.

Constraint ninterval(NVAL, VARIABLES, SIZE INTERVAL)

Arguments NVAL : dvar

VARIABLES : collection(var−dvar)
SIZE INTERVAL : int

Restrictions NVAL ≥ min(1, |VARIABLES|)
NVAL ≤ |VARIABLES|
required(VARIABLES, var)
SIZE INTERVAL > 0

Purpose
Consider the intervals of the form[SIZE INTERVAL · k, SIZE INTERVAL · k +
SIZE INTERVAL − 1] wherek is an integer.NVAL is the number of intervals for which
at least one value is assigned to at least one variable of the collectionVARIABLES.

Example (2, 〈3, 1, 9, 1, 9〉 , 4)

In the example, the third argumentSIZE INTERVAL = 4 defines the following
family of intervals[4 · k, 4 · k + 3], wherek is an integer. Values3, 1, 9, 1 and9 are
respectively located within intervals[0, 3], [0, 3], [8, 11], [0, 3] and[8, 11]. Since we only
use the two intervals[0, 3] and[8, 11] the first argument of theninterval constraint is set
to value2.

Typical NVAL > 1
NVAL < |VARIABLES|
SIZE INTERVAL > 1
SIZE INTERVAL <range(VARIABLES.var)

Symmetries • Items ofVARIABLES arepermutable.

• An occurrence of a value ofVARIABLES.var that belongs to thek-th interval, of
sizeSIZE INTERVAL, can bereplacedby any other value of the same interval.

Arg. properties
• Functional dependency: NVAL determined byVARIABLES andSIZE INTERVAL.

• Contractiblewrt. VARIABLES whenNVAL = 1 and|VARIABLES| > 0.

• Contractiblewrt. VARIABLES whenNVAL = |VARIABLES|.

Usage Theninterval constraint is useful for counting the number of effectively used periods,
no matter how many time each period is used. A period can for example stand for a hour
or for a day.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

20030820 1429

Algorithm [26, 38].

See also related: nclass (variable/constant replaced by variable ∈ partition),
nequivalence (variable/constant replaced by variable mod constant),
npair (variable/constant replaced bypair of variables).

specialisation:nvalue (variable/constant replaced byvariable).

Keywords constraint arguments:pure functional dependency.

constraint type: counting constraint, value partitioning constraint.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes, interval, functional dependency.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1430 NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL = variables2.var/SIZE INTERVAL

Graph property(ies) NSCC= NVAL

Graph model Parts (A) and (B) of Figure5.442respectively show the initial and final graph associated
with the Example slot. Since we use theNSCC graph property we show the differ-
ent strongly connected components of the final graph. Each strongly connected compo-
nent corresponds to those values of an interval that are assigned to some variables of the
VARIABLES collection. The values1, 3 and the value9, which respectively correspond to
intervals[0, 3] and[8, 11], are assigned to the variables of theVARIABLES collection.

VARIABLES

1

2

3

4

5

NSCC=2

SCC#1 SCC#2

1:3

2:1

4:1

3:9

5:9

(A) (B)

Figure 5.442: Initial and final graph of theninterval constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1431

1432 AUTOMATON

5.244 nopeak

DESCRIPTION LINKS AUTOMATON

Origin Derived frompeak.

Constraint no peak(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restrictions |VARIABLES| > 0
required(VARIABLES, var)

Purpose

A variableVk (1 < k < m) of the sequence of variablesVARIABLES = V1, . . . , Vm is a
peakif and only if there exists ani (1 < i ≤ k) such thatVi−1 < Vi andVi = Vi+1 =
. . . = Vk andVk > Vk+1. The total number of peaks of the sequence of variables
VARIABLES is equal to0.

Example (〈1, 1, 4, 8, 8〉)

The no peak constraint holds since the sequence1 1 4 8 8 does not contain any
peak.

Variables

1

1 2 5

2

3

4

5

6

43

7

8

1 1

4

Values
8 8

Figure 5.443: A sequence without any peak

Typical |VARIABLES| > 2
range(VARIABLES.var) > 1

Symmetries • Items ofVARIABLES can bereversed.

• One and the same constant can beaddedto the var attribute of all items of
VARIABLES.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20031101 1433

Arg. properties
Contractiblewrt. VARIABLES.

See also comparison swapped:no valley.

generalisation:peak (introduce avariable counting the number of peaks).

implied by: decreasing, increasing.

related: valley.

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(1).

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1434 AUTOMATON

Automaton Figure5.444depicts the automaton associated with theno peak constraint. To each pair of
consecutive variables(VARi, VARi+1) of the collectionVARIABLES corresponds a signature
variableSi. The following signature constraint linksVARi, VARi+1 and Si: (VARi <
VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔ Si = 2).

t VAR <VAR

i i+1VAR =VAR

i i+1VAR =VAR

i i+1VAR >VAR

i i+1VAR <VAR

s

i i+1

Figure 5.444: Automaton of theno peak constraint

n−1

VAR
2

VAR

2S

n
VAR

3
VAR

3S

2Q

n−1S

n−1
VAR

1S

1Q0Q =s
t

s
Q =

1

Figure 5.445: Hypergraph of the reformulation corresponding to the automaton of the
no peak constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20031101 1435

1436 AUTOMATON

5.245 novalley

DESCRIPTION LINKS AUTOMATON

Origin Derived fromvalley.

Constraint no valley(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restrictions |VARIABLES| > 0
required(VARIABLES, var)

Purpose

A variableVk (1 < k < m) of the sequence of variablesVARIABLES = V1, . . . , Vm

is a valley if and only if there exists ani (1 < i ≤ k) such thatVi−1 > Vi and
Vi = Vi+1 = . . . = Vk andVk < Vk+1. The total number of valleys of the sequence of
variablesVARIABLES is equal to0.

Example

〈

var− 1,
var− 1,
var− 4,
var− 8,
var− 8,
var− 2

〉

The no valley constraint holds since the sequence1 1 4 8 8 2 does not contain
any valley.

Variables

1

1 2 5 6

2

3

4

5

6

43

7

8

1 1

4

Values
8 8

2

Figure 5.446: A sequence without any valley

Typical |VARIABLES| > 2
range(VARIABLES.var) > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20031101 1437

Symmetries • Items ofVARIABLES can bereversed.

• One and the same constant can beaddedto the var attribute of all items of
VARIABLES.

Arg. properties
Contractiblewrt. VARIABLES.

See also comparison swapped:no peak.

generalisation:valley (introduce avariable counting the number of valleys).

implied by: decreasing, global contiguity, increasing.

related: peak.

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(1).

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1438 AUTOMATON

Automaton Figure5.447depicts the automaton associated with theno valley constraint. To each pair
of consecutive variables(VARi, VARi+1) of the collectionVARIABLES corresponds a signa-
ture variableSi. The following signature constraint linksVARi, VARi+1 andSi: (VARi <
VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔ Si = 2).

t VAR >VAR

i i+1VAR =VAR

i i+1VAR =VAR

i i+1VAR <VAR

i i+1VAR >VAR

s

i i+1

Figure 5.447: Automaton of theno valley constraint

n−1

VAR
2

VAR

2S

n
VAR

3
VAR

3S

2Q

n−1S

n−1
VAR

1S

1Q0Q =s
t

s
Q =

1

Figure 5.448: Hypergraph of the reformulation corresponding to the automaton of the
no valley constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20031101 1439

1440 LOGIC

5.246 nonoverlap sboxes

DESCRIPTION LINKS LOGIC

Origin Geometry, derived from [36]

Constraint non overlap sboxes(K, DIMS, OBJECTS, SBOXES)

Synonyms non overlap, non overlapping.

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)

Arguments K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−int, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− POSITIVES)

Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
K > 0
DIMS ≥ 0
DIMS < K

increasing seq(OBJECTS, [oid])
required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

20070622 1441

Purpose

Holds if, for each pair of objects(Oi, Oj), i < j, Oi andOj do not overlap with respect
to a set of dimensions depicted byDIMS. Oi andOj are objects that take a shape among
a set of shapes. Eachshapeis defined as a finite set of shifted boxes, where each shifted
box is described by a box in aK-dimensional space at a given offset (from the origin of
the shape) with given sizes. More precisely, ashifted boxis an entity defined by its shape
id sid, shift offsett, and sizesl. Then, a shape is defined as the union of shifted boxes
sharing the same shape id. Anobject is an entity defined by its unique object identifier
oid, shape idsid and originx.
An objectOi does not overlapan objectOj with respect to a set of dimensions depicted
by DIMS if and only if, for all shifted boxsi associated withOi and for all shifted box
sj associated withOj , there exists a dimensiond ∈ DIMS such that the start ofsi in
dimensiond is greater than or equal to the end ofsj in dimensiond, or the start ofsj in
dimensiond is greater than or equal to the end ofsi in dimensiond.

Example

2, {0, 1},
〈

oid− 1 sid− 1 x− 〈4, 1〉 ,
oid− 2 sid− 3 x− 〈2, 2〉 ,
oid− 3 sid− 4 x− 〈5, 4〉

〉

,

〈

sid− 1 t− 〈0, 0〉 l− 〈1, 1〉 ,
sid− 1 t− 〈1, 0〉 l− 〈1, 3〉 ,
sid− 1 t− 〈0, 2〉 l− 〈1, 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 2 t− 〈0, 1〉 l− 〈1, 1〉 ,
sid− 2 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 3 t− 〈0, 0〉 l− 〈1, 2〉 ,
sid− 4 t− 〈0, 0〉 l− 〈1, 1〉

〉

Figure 5.449 shows the objects of the example. SinceO1 and O2 do not overlap,
since O1 and O3 do not overlap, and sinceO2 and O3 also do not overlap, the
non overlap sboxes constraint holds.

Typical |OBJECTS| > 1

Symmetries • Items ofOBJECTS arepermutable.

• Items ofSBOXES arepermutable.

• Items ofOBJECTS.x, SBOXES.t andSBOXES.l arepermutable(same permutation
used).

• SBOXES.l.v can bedecreasedto any value≥ 1.

Arg. properties
Suffix-contractiblewrt. OBJECTS.

Remark In addition from preventing objects to overlap, thedisjoint sboxes constraint also en-
forces that borders and corners of objects are not directly in contact.

See also common keyword: contains sboxes, coveredby sboxes,
covers sboxes (geometrical constraint between shifted boxes),
diffn (geometrical constraint,non-overlapping), disjoint sboxes,

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

1442 LOGIC

equal sboxes (geometrical constraint between shifted boxes), geost,
geost time (geometrical constraint,non-overlapping), inside sboxes,
meet sboxes, overlap sboxes (geometrical constraint between shifted boxes),
visible (geometrical constraint).

Keywords constraint type: logic.

geometry:geometrical constraint, non-overlapping.

Keywords
Related keywords grouped by meta-keywords.

20070622 1443

4 O3

and O2 does not overlap O3

O2

S3

S2

second objectfirst object

S1

(A) Shape of the(B) Shapes of the

52 31 4

1

S4

(C) Shape of the
third object

2

3

(D) Three objects for which where O1 does not overlap O2

O1

Figure 5.449: The three objects of the example

1444 LOGIC

Logic
• origin(O1, S1, D)

def
= O1.x(D) + S1.t(D)

• end(O1, S1, D)
def
= O1.x(D) + S1.t(D) + S1.l(D)

• non overlap sboxes(Dims, O1, S1, O2, S2)
def
=

∃D ∈ Dims

∨

end(O1, S1, D) ≤

origin

O2,
S2,
D

,

end(O2, S2, D) ≤

origin

O1,
S1,
D

• non overlap objects(Dims, O1, O2)
def
=

∀S1 ∈ sboxes([O1.sid])
∀S2 ∈ sboxes

([

O2.sid
])

non overlap sboxes

Dims,
O1,
S1,
O2,
S2

• all non overlap(Dims, OIDS)
def
=

∀O1 ∈ objects(OIDS)
∀O2 ∈ objects

(

OIDS
)

O1.oid <
O2.oid

⇒

non overlap objects

Dims,
O1,
O2

• all non overlap(DIMENSIONS, OIDS)

Logic
Explicit description in terms of first order logic formulae of the meaning of the constraint.

20070622 1445

1446 AUTOMATON

5.247 nor

DESCRIPTION LINKS AUTOMATON

Origin Logic

Constraint nor(VAR, VARIABLES)

Synonym clause.

Arguments VAR : dvar

VARIABLES : collection(var−dvar)

Restrictions VAR ≥ 0
VAR ≤ 1
|VARIABLES| ≥ 2
required(VARIABLES, var)
VARIABLES.var ≥ 0
VARIABLES.var ≤ 1

Purpose
Let VARIABLES be a collection of0-1 variablesVAR1, VAR2, . . . , VARn (n ≥ 2). Enforce
VAR = ¬(VAR1 ∨ VAR2 ∨ . . . ∨ VARn).

Example (1, 〈0, 0〉)
(0, 〈0, 1〉)
(0, 〈1, 0〉)
(0, 〈1, 1〉)
(0, 〈1, 0, 1〉)

Symmetry Items ofVARIABLES arepermutable.

Arg. properties
• Functional dependency: VAR determined byVARIABLES.

• Contractiblewrt. VARIABLES whenVAR = 1.

• Extensiblewrt. VARIABLES whenVAR = 0.

• Aggregate: VAR(∧), VARIABLES(union).

Systems reifiedXnor in Choco, clause in Gecode, #\/ in SICStus.

See also common keyword:and, equivalent, imply, nand, or, xor (Boolean constraint).

implies: atleast nvalue.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelBool.html
http://www.gecode.org/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

20051226 1447

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint arguments:pure functional dependency.

constraint network structure: Berge-acyclic constraint network.

constraint type: Boolean constraint.

filtering: arc-consistency.

modelling: functional dependency.

Keywords
Related keywords grouped by meta-keywords.

1448 AUTOMATON

Automaton Figure5.450depicts the automaton associated with thenor constraint. To the first argu-
mentVAR of thenor constraint corresponds the first signature variable. To each variable
VARi of the second argumentVARIABLES of thenor constraint corresponds the next signa-
ture variable. There is no signature constraint.

j

i

VAR =0
i

VAR =1
i

VAR =0
i

VAR =0
i

s

k

VAR=0 VAR=1

i

VAR =1

Figure 5.450: Automaton of thenor constraint

VAR

Q =s 1Q

n
VAR

1
VAR

k
i

Q =n+10

Figure 5.451: Hypergraph of the reformulation corresponding to the automaton of the
nor constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20051226 1449

1450 NSCC,CLIQUE ; AUTOMATON

5.248 notall equal

DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint not all equal(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
|VARIABLES| > 1

Purpose The variables of the collectionVARIABLES should take more than one single value.

Example (〈3, 1, 3, 3, 3〉)

The not all equal constraint holds since the collection〈3, 1, 3, 3, 3〉 involves
more than one value (i.e., values1 and3).

Typical |VARIABLES| > 2

Symmetries • Items ofVARIABLES arepermutable.

• All occurrences of two distinct values ofVARIABLES.var can beswapped; all
occurrences of a value ofVARIABLES.var can berenamedto any unused value.

Arg. properties
Extensiblewrt. VARIABLES.

Algorithm If the intersection of the domains of the variables of theVARIABLES collection is empty
the not all equal constraint is entailed. Otherwise, when only one single variableV
remains not fixed, remove the unique value (unique since the constraintis not entailed)
taken by the other variables from the domain ofV .

Reformulation The not all equal(VARIABLES) constraint can be expressed as
atleast nvalue(2, VARIABLES).

Systems rel in Gecode.

See also generalisation:nvalue (introduce a variable for counting the number of distinct values).

implied by: alldifferent.

negation:all equal.

specialisation:neq (when go down to two variables).

used in reformulation: atleast nvalue.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/

See also
Related constraints grouped by semantics links.

20030820 1451

Keywords characteristic of a constraint: disequality, automaton, automaton without counters,
reified automaton constraint.

constraint network structure: sliding cyclic(1) constraint network(1).

constraint type: value constraint.

filtering: arc-consistency.

final graph structure: equivalence.

Keywords
Related keywords grouped by meta-keywords.

1452 NSCC,CLIQUE ; AUTOMATON

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC> 1

Graph model Parts (A) and (B) of Figure5.452respectively show the initial and final graph associated
with the Example slot. Since we use theNSCC graph property we show the different
strongly connected components of the final graph. Each strongly connected component
corresponds to a value that is assigned to some variables of theVARIABLES collection.
Thenot all equal holds since the final graph contains more than one strongly connected
component.

VARIABLES

1

2

3

4

5

NSCC=2

SCC#1 SCC#2

1:3

3:3

4:3

5:3

2:1

(A) (B)

Figure 5.452: Initial and final graph of thenot all equal constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1453

Automaton Figure5.453depicts the automaton associated with thenot all equal constraint. To
each pair of consecutive variables(VARi, VARi+1) of the collectionVARIABLES corresponds
a signature variableSi. The following signature constraint linksVARi, VARi+1 and Si:
VARi = VARi+1 ⇔ Si.

s

iVAR <>VAR i+1iVAR =VAR

VAR <>VARi i+1

VAR =VARi i+1

ti+1

Figure 5.453: Automaton of thenot all equal constraint

1 VAR
2

S2

VAR
nVAR

3

S3

Q2

Sn−1

VAR
n−1

Q =tn−1Q =s0 Q1

S1

VAR

Figure 5.454: Hypergraph of the reformulation corresponding to the automaton of the
not all equal constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1454 NARC,PRODUCT ; AUTOMATON

5.249 not in

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromin.

Constraint not in(VAR, VALUES)

Arguments VAR : dvar

VALUES : collection(val−int)

Restrictions required(VALUES, val)
distinct(VALUES, val)

Purpose EnforceVAR to be assigned a value different from the values of theVALUES collection.

Example (2, 〈1, 3〉)

The constraintnot in holds since the value of its first argumentVAR = 2 does not
occur within the collection〈1, 3〉.

Typical |VALUES| > 1

Symmetries • Items ofVALUES arepermutable.

• One and the same constant can beaddedto VAR as well as to theval attribute of
all items ofVALUES.

Arg. properties
Contractiblewrt. VALUES.

Remark Entailmentoccurs immediately after posting this constraint and removing all values in
VALUES from VAR.

Systems notMember in Choco, rel in Gecode.

Used in group.

See also negation:in.

Keywords characteristic of a constraint: disequality, automaton, automaton without counters,
reified automaton constraint, derived collection.

constraint arguments:unary constraint.

constraint network structure: centered cyclic(1) constraint network(1).

constraint type: value constraint.

filtering: arc-consistency, entailment.

modelling: excluded, domain definition.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelSetRel.html
http://www.gecode.org/

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 1455

Derived Collection
col(VARIABLES−collection(var−dvar), [item(var− VAR)])

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) NARC= 0

Graph model Figure5.455shows the initial graph associated with theExample slot. Since we use the
NARC = 0 graph property the corresponding final graph is empty.

VARIABLES

VALUES

1

12

Figure 5.455: Initial graph of thenot in constraint (the final graph is empty)

Signature Since0 is the smallest number of arcs of the final graph we can rewriteNARC = 0 to
NARC ≤ 0. This leads to simplifyNARC toNARC.

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

1456 NARC,PRODUCT ; AUTOMATON

Automaton Figure5.456depicts the automaton associated with thenot in constraint. LetVALi be the
val attribute of theith item of theVALUES collection. To each pair(VAR, VALi) corresponds
a0-1 signature variableSi as well as the following signature constraint:VAR = VALi ⇔ Si.

iVAR<>VALs

Figure 5.456: Automaton of thenot in constraint

n
Q0Q =s

n
 S

2
 S1

 S

VAR

Q =s1

Figure 5.457: Hypergraph of the reformulation corresponding to the automaton of the
not in constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20030820 1457

1458 NSCC,CLIQUE

5.250 npair

DESCRIPTION LINKS GRAPH

Origin Derived fromnvalue.

Constraint npair(NPAIRS, PAIRS)

Arguments NPAIRS : dvar

PAIRS : collection(x−dvar, y−dvar)

Restrictions NPAIRS ≥ min(1, |PAIRS|)
NPAIRS ≤ |PAIRS|
required(PAIRS, [x, y])

Purpose NPAIRS is the number of distinct pairs of values assigned to the pairs of variables of the
collectionPAIRS.

Example

2,

〈

x− 3 y− 1,
x− 1 y− 5,
x− 3 y− 1,
x− 3 y− 1,
x− 1 y− 5

〉

The npair constraint holds since its first argumentNPAIRS = 2 is set to the num-
ber of distinct pairs〈x− 3 y− 1〉 and〈x− 1 y− 5〉 of its second argumentPAIRS.

Typical NPAIRS > 1
NPAIRS < |PAIRS|
|PAIRS| > 1
range(PAIRS.x) > 1
range(PAIRS.y) > 1

Symmetries • Items ofPAIRS arepermutable.

• Attributes ofPAIRS arepermutablew.r.t. permutation(x, y) (permutation applied
to all items).

• All occurrences of two distinct tuples of values ofNPAIRS can beswapped; all
occurrences of a tuple of values ofNPAIRS can berenamedto any unused tuple of
values.

Arg. properties
• Functional dependency: NPAIRS determined byPAIRS.

• Contractiblewrt. PAIRS whenNPAIRS = 1 and|PAIRS| > 0.

• Contractiblewrt. PAIRS whenNPAIRS = |PAIRS|.

Remark This is an example of anumber of distinct valuesconstraint where there is more than one
attribute that is associated with each vertex of the final graph.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

20030820 1459

See also related: nclass (pair of variables replaced by variable ∈ partition),
nequivalence (pair of variables replaced by variable mod constant),
ninterval (pair of variables replaced byvariable/constant).

specialisation:nvalue (pair of variables replaced byvariable).

Keywords characteristic of a constraint: pair.

constraint arguments:pure functional dependency.

constraint type: counting constraint, value partitioning constraint.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes, functional dependency.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1460 NSCC,CLIQUE

Arc input(s) PAIRS

Arc generator CLIQUE 7→collection(pairs1, pairs2)

Arc arity 2

Arc constraint(s) • pairs1.x = pairs2.x
• pairs1.y = pairs2.y

Graph property(ies) NSCC= NPAIRS

Graph model Parts (A) and (B) of Figure5.458respectively show the initial and final graph associated
with the Example slot. Since we use theNSCC graph property we show the different
strongly connected components of the final graph. Each strongly connected component
corresponds to a pair of values that is assigned to some pairs of variables of thePAIRS
collection. In our example we have the following pairs of values:〈x − 3 y − 1〉 and
〈x− 1 y− 5〉.

PAIRS

1

2

3

4

5

NSCC=2

SCC#1 SCC#2

1:3,1

3:3,1

4:3,1

2:1,5

5:1,5

(A) (B)

Figure 5.458: Initial and final graph of thenpair constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1461

1462 NSCC,CLIQUE

5.251 nsetof consecutivevalues

DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint nset of consecutive values(N, VARIABLES)

Arguments N : dvar

VARIABLES : collection(var−dvar)

Restrictions N ≥ 1
N ≤ |VARIABLES|
required(VARIABLES, var)

Purpose N is the number of set ofconsecutive valuesused by the variables of the collection
VARIABLES.

Example

2,

〈

var− 3,
var− 1,
var− 7,
var− 1,
var− 1,
var− 2,
var− 8

〉

In the example, the two parts3, 1, 1, 1, 2 and 7, 8 take respectively their values in
the following sets ofconsecutive values{1, 2, 3} and {7, 8}. Consequently, the
nset of consecutive values constraint holds since its first argumentN = 2 is set to
the number of sets of consecutive values.

Typical N > 1
|VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetries • Items ofVARIABLES arepermutable.

• All occurrences of two distinct values ofVARIABLES.var can beswapped.

• One and the same constant can beaddedto the var attribute of all items of
VARIABLES.

Arg. properties
Functional dependency: N determined byVARIABLES.

Usage Used for specifying the fact that the values have to be used in a compactway is achieved
by settingN to 1.

See also common keyword: max size set of consecutive var,
min size set of consecutive var (consecutive values).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

20030820 1463

Keywords characteristic of a constraint: consecutive values.

constraint arguments:pure functional dependency.

constraint type: value constraint.

final graph structure: strongly connected component.

modelling: functional dependency.

Keywords
Related keywords grouped by meta-keywords.

1464 NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) abs(variables1.var− variables2.var) ≤ 1

Graph property(ies) NSCC= N

Graph model Since the arc constraint is symmetric each strongly connected component of the final graph
corresponds exactly to one connected component of the final graph.

Parts (A) and (B) of Figure5.459respectively show the initial and final graph associated
with theExampleslot. Since we use theNSCC graph property, we show the two strongly
connected components of the final graph.

VARIABLES

1

2

3

4

5

6

7

NSCC=2

SCC#1 SCC#2

1:3

6:2

2:1

4:1

5:1

3:7

7:8

(A) (B)

Figure 5.459: Initial and final graph of thenset of consecutive values constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1465

1466 NSCC,CLIQUE

5.252 nvalue

DESCRIPTION LINKS GRAPH AUTOMATON

Origin [283]

Constraint nvalue(NVAL, VARIABLES)

Synonyms cardinality on attributes values, values.

Arguments NVAL : dvar

VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
NVAL ≥ min(1, |VARIABLES|)
NVAL ≤ |VARIABLES|
NVAL ≤range(VARIABLES.var)

Purpose NVAL is the number of distinct values taken by the variables of the collectionVARIABLES.

Example (4, 〈3, 1, 7, 1, 6〉)

The nvalue constraint holds since its first argumentNVAL = 4 is set to the num-
ber of distinct values occurring within the collection〈3, 1, 7, 1, 6〉.

Typical NVAL > 1
NVAL < |VARIABLES|
NVAL <range(VARIABLES.var)
|VARIABLES| > 1
NVAL < 0 ∨ NVAL > 1

Symmetries • Items ofVARIABLES arepermutable.

• All occurrences of two distinct values ofVARIABLES.var can beswapped; all
occurrences of a value ofVARIABLES.var can berenamedto any unused value.

Arg. properties
• Functional dependency: NVAL determined byVARIABLES.

• Contractiblewrt. VARIABLES whenNVAL = 1 and|VARIABLES| > 0.

• Contractiblewrt. VARIABLES whenNVAL = |VARIABLES|.

Usage A classical example from the early 1850s is thedominating queenschess puzzle problem:
Place a number of queens on an by n chessboard in such a way that all squares are either
attacked by a queen or are occupied by a queen. A queen can attack all squares located on
the same column, on the same row or on the same diagonal. Part (A) of Figure5.460illus-
trates a set of five queens which together attack all of the squares of an8 by 8 chessboard.
Thedominating queensproblem can be modelled as one singlenvalue constraint:

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

20000128 1467

• We first label the different squares of the chessboard from1 to n2.

• We then associate to each squareS of the chessboard a domain variable. Its ini-
tial domain is set to the numbers of the squares that can be attacked fromS. For
instance, in the context of an8 by 8 chessboard, the initial domain ofV29 will be
set to{2,5,8,11,13,15,20..22,25..32,36..38,43,45,47,50,53,56,57,61} (see the green
squares of part (B) of Figure5.460).

• Finally, we post the constraintnvalue(Q, 〈var − V1, var − V2, . . . , var − Vn2〉)
whereQ is a domain variable in[1, n2] that gives the total number of queens used
for controlling all squares of the chessboard. For the solution depicted by Part (A)
of Figure5.460, the number in each square of Part (C) of Figure5.460gives the
value assigned to the corresponding variable. Note that, since a given square can
be attacked by several queens, we have also other assignments corresponding to the
solution depicted by Part (A) of Figure5.460.

2317 18 19 24

(A) (B) (C)

35 23 35 29 29 29 23

12 46 29 29 35 29 23

29 29 29 29 29 29 29

35 35 29 29 29 35 35

46 35 29 35 29 29 46

35 29 35 12 29 46 46 29

29 23 35 46 29 35 23 46

46 29 35 12 29 46 35 29

12

23

29

35

46

1 2 3 4 6 7 85

10 11 13 14 15 16129

25 26 27 28 30 31 3229

33 34 37 38 39 4035 36

41 42 43 44 45 47 4846

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

20 21 22

Figure 5.460: Modelling thedominating queensproblem with one singlenvalue con-
straint

The nvalue constraint occurs also in many practical applications. In the context of
timetabling one wants to set up a limit on the maximum number of activity types it is
possible to perform. For frequency allocation problems, one optimisationcriteria is to
minimise the number of distinct frequencies that you use all over the entirenetwork. The
nvalue constraint generalises several constraints like:

• alldifferent(VARIABLES): in order to get thealldifferent constraint, one has
to setNVAL to the total number of variables.

• not all equal(VARIABLES): in order to get thenot all equal constraint, one
has to set the minimum value ofNVAL to 2.

Remark This constraint appears in [283, page 339] under the name ofCardinality on Attributes
Values. Thenvalue constraint is calledvalues in JaCoP (http://www.jacop.eu/).
A constraint calledk diff enforcing that a set of variables takes at leastk distinct values
appears in the PhD thesis of J.-C. Régin [321].

It was shown in [65] that, finding out whether anvalue constraint has a solution or not is
NP-hard. This was achieved by reduction from3-SAT. In the same article, it is also shown,
by reduction fromminimum hitting set cardinality, that computing a sharp lower bound on
NVAL is NP-hard.

Both reformulations of the coloured cumulative constraint and of the
coloured cumulatives constraint use thenvalue constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.jacop.eu/

1468 NSCC,CLIQUE

Algorithm A first filtering algorithm for thenvalue constraint was described in [26]. Assuming that
the minimum value of variableNVAL is not constrained at all, two algorithms that both
achievebound-consistencywere provided one year later in [38]. Under the same assump-
tion, algorithms that partially take into account holes in the domains of the variables of the
VARIABLES collection are described in [38, 58].

Reformulation A model, involving linear inequalities constraints, preservingbound-consistencywas in-
troduced in [68].

Systems nvalues in Gecode, nvalue in MiniZinc , nvalue in SICStus.

Used in track.

See also assignment dimension added:assign and nvalues.

common keyword: among, among diff 0, count,
global cardinality, max nvalue, min nvalue (counting constraint),
nvalues except 0 (counting constraint,number of distinct values).

cost variant: sum of weights of distinct values (introduce a weight for each value
and replace number of distinct values by sum of weights associated with distinct values).

generalisation: nclass (variable replaced by variable ∈ partition),
nequivalence (variable replaced by variable mod constant),
ninterval (variable replaced by variable/constant), npair (variable re-
placed bypair of variables), nvalues (replace an equality with the number of distinct
values by a comparison with the number of distinct values), nvector (variable replaced
byvector).

implied by: increasing nvalue.

implies: atleast nvalue (= NVAL replaced by≥ NVAL), atmost nvalue (= NVAL re-
placed by≤ NVAL).

related: balance (restriction on how balanced an assignment is),
coloured cumulative (restrict number of distinct colours on each maximum clique of
the interval graph associated with the tasks), coloured cumulatives (restrict number of
distinct colours on each maximum clique of the interval graph associated with the tasks as-
signed to the same machine), increasing nvalue chain, k alldifferent (necessary
condition for two overlappingalldifferent constraints), soft alldifferent var.

shift of concept:nvalue on intersection.

soft variant: nvalues except 0 (value0 is ignored).

specialisation:all equal (enforce to have one single value), alldifferent (enforce a
number of distinct values equal to the number of variables), not all equal (enforce to
have at least two distinct values).

uses in its reformulation: consecutive values, cycle, min n.

Keywords characteristic of a constraint: core, automaton, automaton with array of counters.

complexity: 3-SAT, minimum hitting set cardinality.

constraint arguments:pure functional dependency.

constraint type: counting constraint, value partitioning constraint.

filtering: bound-consistency, convex bipartite graph.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntNValues.html
http://www.gecode.org/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#nvalue
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20000128 1469

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes, number of distinct values,
functional dependency.

problems: domination.

puzzles:dominating queens.

1470 NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC= NVAL

Graph class EQUIVALENCE

Graph model Parts (A) and (B) of Figure5.461respectively show the initial and final graph associated
with the Example slot. Since we use theNSCC graph property we show the different
strongly connected components of the final graph. Each strongly connected component
corresponds to a value that is assigned to some variables of theVARIABLES collection. The
4 following values1, 3, 6 and7 are used by the variables of theVARIABLES collection.

VARIABLES

1

2

3

4

5

NSCC=4

SCC#1 SCC#2 SCC#3 SCC#4

1:3 2:1

4:1

3:7 5:6

(A) (B)

Figure 5.461: Initial and final graph of thenvalue constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 1471

Automaton Figure5.462depicts the automaton associated with thenvalue constraint. To each item
of the collectionVARIABLES corresponds a signature variableSi that is equal to0.

s: 0,

i i

{C[_]=0}

among_diff_0(N,C) {C[VAR]=C[VAR]+1}

Figure 5.462: Automaton of thenvalue constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1472 NCC,PRODUCT

5.253 nvalueon intersection

DESCRIPTION LINKS GRAPH

Origin Derived fromcommon andnvalue.

Constraint nvalue on intersection(NVAL, VARIABLES1, VARIABLES2)

Arguments NVAL : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions required(VARIABLES1, var)
required(VARIABLES2, var)
NVAL ≥ 0
NVAL ≤ |VARIABLES1|
NVAL ≤ |VARIABLES2|
NVAL ≤range(VARIABLES1.var)
NVAL ≤range(VARIABLES2.var)

Purpose NVAL is the number of distinct values that both occur in theVARIABLES1 and
VARIABLES2 collections.

Example

2, 〈1, 9, 1, 5〉 ,

〈

var− 2,
var− 1,
var− 9,
var− 9,
var− 6,
var− 9

〉

Note that the two collections〈1, 9, 1, 5〉 and 〈2, 1, 9, 9, 6, 9〉 share two values in
common (i.e., values1 and9). Consequently thenvalue on intersection constraint
holds since its first argumentNVAL is set to2.

Typical NVAL > 0
NVAL < |VARIABLES1|
NVAL < |VARIABLES2|
NVAL <range(VARIABLES1.var)
NVAL <range(VARIABLES2.var)
|VARIABLES1| > 1
|VARIABLES2| > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20040530 1473

Symmetries • Arguments are permutable w.r.t. permutation (NVAL)
(VARIABLES1, VARIABLES2).

• Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• All occurrences of two distinct values inVARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value inVARIABLES1.var or
VARIABLES2.var can berenamedto any unused value.

Arg. properties
• Functional dependency: NVAL determined byVARIABLES1 andVARIABLES2.

• Contractiblewrt. VARIABLES1 whenNVAL = 0.

• Contractiblewrt. VARIABLES2 whenNVAL = 0.

See also common keyword: alldifferent on intersection, common,
same intersection (constraint on the intersection).

root concept:nvalue.

Keywords constraint arguments:pure functional dependency.

constraint type: counting constraint, constraint on the intersection.

final graph structure: connected component.

modelling: number of distinct values, functional dependency.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1474 NCC,PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NCC= NVAL

Graph model Parts (A) and (B) of Figure5.463 respectively show the initial and final graph associ-
ated with theExample slot. Since we use theNCC graph property we show the con-
nected components of the final graph. The variableNVAL is equal to this number of
connected components. Note that all the vertices corresponding to the variables that take
values5, 2 or 6 were removed from the final graph since there is no arc for which the
associated equality constraint holds.

VARIABLES1

VARIABLES2

1

1234 56

234

NCC=2

CC#1 CC#2

1:1

2:1

3:1 2:9

3:9 4:9 6:9

(A) (B)

Figure 5.463: Initial and final graph of thenvalue on intersection constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20040530 1475

1476 NSCC,CLIQUE

5.254 nvalues

DESCRIPTION LINKS GRAPH

Origin Inspired bynvalue andcount.

Constraint nvalues(VARIABLES, RELOP, LIMIT)

Arguments VARIABLES : collection(var−dvar)
RELOP : atom

LIMIT : dvar

Restrictions required(VARIABLES, var)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose Let N be the number of distinct values assigned to the variables of theVARIABLES

collection. Enforce conditionN RELOP LIMIT to hold.

Example

〈

var− 4,
var− 5,
var− 5,
var− 4,
var− 1,
var− 5

〉

,=, 3

The nvalues constraint holds since the number of distinct values occurring within
the collection〈4, 5, 5, 4, 1, 5〉 is equal (i.e.,RELOP is set to=) to its third argument
LIMIT = 3.

Typical |VARIABLES| > 1
LIMIT > 1
LIMIT < |VARIABLES|
RELOP ∈ [=, <,≥, >,≤]

Symmetries • Items ofVARIABLES arepermutable.

• All occurrences of two distinct values ofVARIABLES.var can beswapped; all
occurrences of a value ofVARIABLES.var can berenamedto any unused value.

Arg. properties
• Contractiblewrt. VARIABLES whenRELOP ∈ [<,≤].

• Contractible wrt. VARIABLES when RELOP ∈ [=], LIMIT = 1 and
|VARIABLES| > 0.

• Contractiblewrt. VARIABLES whenRELOP ∈ [=] andLIMIT = |VARIABLES|.
• Extensiblewrt. VARIABLES whenRELOP ∈ [≥, >].

Usage Used in the Constraint(s) on sets slot for defining some constraints like
assign and nvalues, circuit cluster or coloured cumulative.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

20030820 1477

Reformulation Thenvalues(VARIABLES, RELOP , LIMIT) constraint can be expressed in term of the con-
junctionnvalue(NV , VARIABLES) ∧ NV RELOP LIMIT.

Systems nvalues in Gecode.

Used in assign and nvalues, circuit cluster, coloured cumulative,
coloured cumulatives.

See also assignment dimension added:assign and nvalues.

common keyword:nvalues except 0 (counting constraint,number of distinct values).

specialisation:nvalue (replace a comparison with the number of distinct values by an
equality with the number of distinct values).

Keywords constraint type: counting constraint, value partitioning constraint.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes, number of distinct values.

problems: domination.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntNValues.html
http://www.gecode.org/

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1478 NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC RELOP LIMIT

Graph class EQUIVALENCE

Graph model Parts (A) and (B) of Figure5.464respectively show the initial and final graph associated
with the Example slot. Since we use theNSCC graph property we show the different
strongly connected components of the final graph. Each strongly connected component
corresponds to a value that is assigned to some variables of theVARIABLES collection. The
3 following values1, 4 and5 are used by the variables of theVARIABLES collection.

VARIABLES

1

2

3

4

5

6

NSCC=3

SCC#1 SCC#2 SCC#3

1:4

4:4

2:5

3:5

6:5

5:1

(A) (B)

Figure 5.464: Initial and final graph of thenvalues constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1479

1480 NSCC,CLIQUE

5.255 nvaluesexcept0

DESCRIPTION LINKS GRAPH

Origin Derived fromnvalues.

Constraint nvalues except 0(VARIABLES, RELOP, LIMIT)

Arguments VARIABLES : collection(var−dvar)
RELOP : atom

LIMIT : dvar

Restrictions required(VARIABLES, var)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose LetN be the number of distinct values, different from0, assigned to the variables of the
VARIABLES collection. Enforce conditionN RELOP LIMIT to hold.

Example

〈

var− 4,
var− 5,
var− 5,
var− 4,
var− 0,
var− 1

〉

,=, 3

The nvalues except 0 constraint holds since the number of distinct values, differ-
ent from0, occurring within the collection〈4, 5, 5, 4, 0, 1〉 is equal (i.e.,RELOP is set to=)
to its third argumentLIMIT = 3.

Typical |VARIABLES| > 1
LIMIT > 1
LIMIT < |VARIABLES|
atleast(1, VARIABLES, 0)
RELOP ∈ [=, <,≥, >,≤]

Symmetries • Items ofVARIABLES arepermutable.

• All occurrences of two distinct values ofVARIABLES.var that are both different
from 0 can beswapped; all occurrences of a value ofVARIABLES.var that is dif-
ferent from0 can berenamedto any unused value that is also different from0.

Arg. properties
• Contractiblewrt. VARIABLES whenRELOP ∈ [<,≤].

• Extensiblewrt. VARIABLES whenRELOP ∈ [≥, >].

Reformulation Thenvalues except 0(〈V1, V2, . . . , V|VARIABLES|〉, RELOP , LIMIT) constraint can be ex-
pressed in term of the conjunctionnvalue(NV1 , 〈0, V1, V2, . . . , V|VARIABLES|〉) ∧ NV1 −
1 RELOP LIMIT.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

20030820 1481

Used in cycle or accessibility.

See also common keyword:assign and nvalues (number of distinct values),
nvalue, nvalues (counting constraint,number of distinct values).

Keywords characteristic of a constraint: joker value.

constraint type: counting constraint, value partitioning constraint.

final graph structure: strongly connected component.

modelling: number of distinct values.

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1482 NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var 6= 0
• variables1.var = variables2.var

Graph property(ies) NSCC RELOP LIMIT

Graph model Parts (A) and (B) of Figure5.465respectively show the initial and final graph associated
with the Example slot. Since we use theNSCC graph property we show the different
strongly connected components of the final graph. Each strongly connected component
corresponds to a value distinct from0 that is assigned to some variables of theVARIABLES

collection. Beside value0, the3 following values1, 4 and5 are assigned to the variables
of theVARIABLES collection.

VARIABLES

1

2

3

4

5

6

NSCC=3

SCC#1 SCC#2 SCC#3

1:4

4:4

2:5

3:5

6:1

(A) (B)

Figure 5.465: Initial and final graph of thenvalues except 0 constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1483

1484 NSCC,CLIQUE

5.256 nvector

DESCRIPTION LINKS GRAPH

Origin Introduced by G. Chabert as a generalisation ofnvalue

Constraint nvector(NVEC, VECTORS)

Synonyms nvectors, npoint, npoints.

Type VECTOR : collection(var−dvar)

Arguments NVEC : dvar

VECTORS : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
NVEC ≥ min(1, |VECTORS|)
NVEC ≤ |VECTORS|
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose
NVEC is the number of distinct tuples of values taken by the vectors of the collection
VECTORS. Two tuples of values〈A1, A2, . . . , Am〉 and〈B1, B2, . . . , Bm〉 aredistinct
if and only if there exist an integeri ∈ [1,m] such thatAi 6= Bi.

Example

2,

〈

vec− 〈5, 6〉 ,
vec− 〈5, 6〉 ,
vec− 〈9, 3〉 ,
vec− 〈5, 6〉 ,
vec− 〈9, 3〉

〉

The nvector constraint holds since its first argumentNVEC = 2 is set to the num-
ber of distinct tuples of values (i.e., tuples〈5, 6〉 and〈9, 3〉) occurring within the collection
VECTORS. Figure5.466depicts with a thick rectangle a possible initial domain for each of
the five vectors and with a grey circle each tuple of values of the corresponding solution.

Typical |VECTOR| > 1
NVEC > 1
NVEC < |VECTORS|
|VECTORS| > 1

Symmetries • Items ofVECTORS arepermutable.

• Items ofVECTORS.vec arepermutable(same permutation used).

• All occurrences of two distinct tuples of values ofVECTORS.vec can beswapped;
all occurrences of a tuple of values ofVECTORS.vec can berenamedto any unused
tuple of values.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20081220 1485

Arg. properties
• Functional dependency: NVEC determined byVECTORS.

• Contractiblewrt. VECTORS whenNVEC = 1 and|VECTORS| > 0.

• Contractiblewrt. VECTORS whenNVEC = |VECTORS|.

Remark It was shown in [103, 102] that, finding out whether anvector constraint has a solution
or not is NP-hard (i.e., the restriction to the rectangle case and to the atmost side of the
nvector were considered for this purpose). This was achieved by reduction from the
rectangle clique partitionproblem.

Reformulation Assume the collectionVECTORS is not empty (otherwiseNVEC = 0). In this context, let
n andm respectively denote the number of vectors of the collectionVECTORS and the
number of components of each vector. Furthermore, letαi = min(C1i, C2i, . . . , Cni),
βi = max(C1i, C2i, . . . , Cni), γi = βi − αi + 1, (i ∈ [1,m]). By associating to each
vector

〈Ck1, Ck2, . . . , Ckm〉, (k ∈ [1, n])

a variable

Dk =
∑

1≤i≤m

∏

i<j≤m

γj

 · (Cki − αi)

 ,

the constraint
nvector(NVEC,

〈vec− 〈C11, C12, . . . , C1m〉,
vec− 〈C21, C22, . . . , C2m〉,
. .
vec− 〈Cn1, Cn2, . . . , Cnm〉〉)

can be expressed in term of the constraint
nvalue(NVEC, 〈D1, D2, . . . , Dn〉).

Note that the previous reformulation does not work anymore if the variables have a
continuous domain, or if an overflow occurs while propagating the equalityconstraint

Dk =
∑

1≤i≤m

((

∏

i<j≤m γj
)

· (Cki − αi)
)

(i.e., the number of componentsm is too

big).

When using this reformulation with respect to theExample slot we first introduceD1 =
1·6−3+(4·5−20)) = 3,D2 = 1·6−3+(4·5−20)) = 3,D3 = 1·3−3+(4·9−20)) = 16,
D4 = 1 · 6− 3+ (4 · 5− 20)) = 3, D5 = 1 · 3− 3+ (4 · 9− 20)) = 16 and then get the
constraintnvalue(2, 〈3, 3, 16, 3, 16〉).

See also common keyword: lex equal, ordered atleast nvector,
ordered atmost nvector (vector).

generalisation: nvectors (replace an equality with the number of distinct vectors by a
comparison with the number of distinct nvectors).

implied by: ordered nvector.

implies: atleast nvector (= NVEC replaced by≥ NVEC), atmost nvector (= NVEC

replaced by≤ NVEC).

specialisation:nvalue (vectorreplaced byvariable).

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

1486 NSCC,CLIQUE

Keywords application area: SLAM problem.

characteristic of a constraint: vector.

complexity: rectangle clique partition.

constraint arguments:pure functional dependency.

constraint type: counting constraint, value partitioning constraint.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes, functional dependency.

problems: domination.

Keywords
Related keywords grouped by meta-keywords.

20081220 1487

42414V =(C ,C)

52
51

5V
 =

(C

,C

)

0

1

2

4

5

7

8

9

10

tuples of
values6

3

95 141312111087643210

12
11

1V
 =

(C

,C

)

2221V =(C ,C)2

31 323V =(C ,C)

Figure 5.466: Initial possible initial domains (C11 ∈ [1, 6], C12 ∈ [2, 6], C21 ∈ [3, 5],
C22 ∈ [6, 9], C31 ∈ [4, 10], C32 ∈ [1, 4], C41 ∈ [5, 9], C42 ∈ [3, 7], C51 ∈ [9, 11],
C52 ∈ [0, 5]) and solution corresponding to the example

1488 NSCC,CLIQUE

Arc input(s) VECTORS

Arc generator CLIQUE 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) lex equal(vectors1.vec, vectors2.vec)

Graph property(ies) NSCC= NVEC

Graph class EQUIVALENCE

Graph model Parts (A) and (B) of Figure5.467respectively show the initial and final graph associated
with the Example slot. Since we use theNSCC graph property we show the different
strongly connected components of the final graph. Each strongly connected component
corresponds to a tuple of values that is assigned to some vectors of theVECTORS collection.
The2 following tuple of values〈5, 6〉 and〈9, 3〉 are used by the vectors of theVECTORS
collection.

VECTORS

1

2

3

4

5

NSCC=2

SCC#1 SCC#2

1:5
 6

2:5
 6

4:5
 6

3:9
 3

5:9
 3

(A) (B)

Figure 5.467: Initial and final graph of thenvector constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20081220 1489

1490 NSCC,CLIQUE

5.257 nvectors

DESCRIPTION LINKS GRAPH

Origin Inspired bynvector andcount.

Constraint nvectors(VECTORS, RELOP, LIMIT)

Synonym npoints.

Type VECTOR : collection(var−dvar)

Arguments VECTORS : collection(vec− VECTOR)
RELOP : atom

LIMIT : dvar

Restrictions |VECTOR| ≥ 1
required(VECTORS, vec)
same size(VECTORS, vec)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose Let N be the number of distinct tuples of values taken by the vectors of theVECTORS

collection. Enforce conditionN RELOP LIMIT to hold.

Example

〈

vec− 〈5, 6〉 ,
vec− 〈5, 6〉 ,
vec− 〈9, 3〉 ,
vec− 〈5, 6〉 ,
vec− 〈9, 3〉

〉

,=, 2

Thenvectors constraint holds since the number of distinct tuples of values (i.e., tuples
〈5, 6〉 and〈9, 3〉) occurring within the collectionVECTORS is equal (i.e.,RELOP is set to=)
to its third argumentLIMIT = 2.

Typical |VECTOR| > 1
|VECTORS| > 1
RELOP ∈ [=, <,≥, >,≤]
LIMIT > 1
LIMIT < |VECTORS|

Symmetries • Items ofVECTORS arepermutable.

• Items ofVECTORS.vec arepermutable(same permutation used).

• All occurrences of two distinct values ofVECTORS.vec can beswapped; all occur-
rences of a value ofVECTORS.vec can berenamedto any unused value.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20081226 1491

Arg. properties
• Contractiblewrt. VECTORS whenRELOP ∈ [<,≤].

• Extensiblewrt. VECTORS whenRELOP ∈ [≥, >].

Reformulation Thenvectors(VECTORS, RELOP , LIMIT) constraint can be expressed in term of the con-
junctionnvector(NV , VECTORS) ∧ NV RELOP LIMIT.

See also specialisation:nvector (replace a comparison with the number of distinct vectors by an
equality with the number of distinct vectors).

Keywords characteristic of a constraint: vector.

constraint type: counting constraint, value partitioning constraint.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes.

problems: domination.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1492 NSCC,CLIQUE

Arc input(s) VECTORS

Arc generator CLIQUE 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) lex equal(vectors1.vec, vectors2.vec)

Graph property(ies) NSCC RELOP LIMIT

Graph class EQUIVALENCE

Graph model Parts (A) and (B) of Figure5.468respectively show the initial and final graph associated
with the Example slot. Since we use theNSCC graph property we show the different
strongly connected components of the final graph. Each strongly connected component
corresponds to a tuple of values that is assigned to some vectors of theVECTORS collection.
The2 following tuple of values〈5, 6〉 and〈9, 3〉 are used by the vectors of theVECTORS
collection.

VECTORS

1

2

3

4

5

NSCC=2

SCC#1 SCC#2

1:5
 6

2:5
 6

4:5
 6

3:9
 3

5:9
 3

(A) (B)

Figure 5.468: Initial and final graph of thenvectors constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20081226 1493

1494 AUTOMATON

5.258 nvisiblefrom end

DESCRIPTION LINKS

Origin Derived fromnvisible from start

Constraint nvisible from end(N, VARIABLES)

Synonyms nvisible, nvisible from right.

Arguments N : dvar

VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
N ≥ min(1, |VARIABLES|)
N ≤ |VARIABLES|

Purpose
The ith (1 ≤ i ≤ |VARIABLES|) variable of the sequenceVARIABLES is visible if and
only if all variables after theith variable are strictly smaller than theith variable itself.
N is the total number of visible variables of the sequence of variablesVARIABLES.

Example

2,

〈

var− 1,
var− 6,
var− 2,
var− 1,
var− 4,
var− 8,
var− 2

〉

The nvisible constraint holds since the sequence1 6 2 1 4 8 2 contains two
visible items that respectively correspond to the seventh and sixth items.

Typical |VARIABLES| > 2

Symmetry One and the same constant can beaddedto thevar attribute of all items ofVARIABLES.

Arg. properties
Functional dependency: N determined byVARIABLES.

See also related: nvisible from start (count from the start of the sequence rather than from the
end).

Keywords combinatorial object: sequence.

constraint arguments:pure functional dependency.

modelling: functional dependency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20111228 1495

1496 AUTOMATON

5.259 nvisiblefrom start

DESCRIPTION LINKS

Origin Derived from a puzzle called skyscraper

Constraint nvisible from start(N, VARIABLES)

Synonyms nvisible, nvisible from left.

Arguments N : dvar

VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
N ≥ min(1, |VARIABLES|)
N ≤ |VARIABLES|

Purpose
The ith (1 ≤ i ≤ |VARIABLES|) variable of the sequenceVARIABLES is visible if and
only if all variables before theith variable are strictly smaller than theith variable itself.
N is the total number of visible variables of the sequence of variablesVARIABLES.

Example

3,

〈

var− 1,
var− 6,
var− 2,
var− 1,
var− 4,
var− 8,
var− 2

〉

The nvisible constraint holds since the sequence1 6 2 1 4 8 2 contains three
visible items that respectively correspond to the first, second and sixth items.

Typical |VARIABLES| > 2

Symmetry One and the same constant can beaddedto thevar attribute of all items ofVARIABLES.

Arg. properties
Functional dependency: N determined byVARIABLES.

See also related: nvisible from end (count from the end of the sequence rather than from the
start).

Keywords combinatorial object: sequence.

constraint arguments:pure functional dependency.

modelling: functional dependency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20111227 1497

1498 MAX NSCC,CLIQUE

5.260 openalldifferent

DESCRIPTION LINKS GRAPH

Origin [402]

Constraint open alldifferent(S, VARIABLES)

Synonyms open alldiff, open alldistinct, open distinct.

Arguments S : svar

VARIABLES : collection(var−dvar)

Restrictions S ≥ 1
S ≤ |VARIABLES|
required(VARIABLES, var)

Purpose
LetV be the variables of the collectionVARIABLES for which the corresponding position
belongs to the setS. Positions are numbered from1. Enforce all variables ofV to take
distinct values.

Example ({2, 3, 4}, 〈9, 1, 9, 3〉)

The open alldifferent constraint holds since the last three (i.e.,S = {2, 3, 4})
values of the collection〈9, 1, 9, 3〉 are distinct.

Typical |VARIABLES| > 2

Symmetry All occurrences of two distinct values ofVARIABLES.var can beswapped; all occur-
rences of a value ofVARIABLES.var can berenamedto any unused value.

Arg. properties
Suffix-contractiblewrt. VARIABLES.

Usage In their article [402], W.-J. van Hoeve and J.-C. Régin motivate theopen alldifferent

constraint by the following scheduling problem. Consider a set of activities (where each
activity has a fixed duration1 and a start variable) that can be processed on two factory
lines such that all the activities that will be processed on a given line must be pairwise
distinct. This can be modelled by using oneopen alldifferent constraint for each line,
involving all the start variables as well as a set variable whose final valuespecifies the set
of activities assigned to that specific factory line.

Note that this can also be directly modelled by one singlediffn constraint. This is done by
introducing an assignment variable for each activity. The initial domain ofeach assignment
variable consists of two values that respectively correspond to the two factory lines.

Algorithm A slight adaptation of theflow model that handles the originalglobal cardinality con-
straint [322] is described in [402].

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

20060824 1499

See also common keyword: size max seq alldifferent,
size max starting seq alldifferent (all different,disequality).

generalisation: open global cardinality (control the number of occurrence of each
active value10 with a counter variable), open global cardinality low up (control the
number of occurrence of each active value with an interval).

hard version: alldifferent.

used in graph description:in set.

Keywords characteristic of a constraint: all different, disequality.

constraint arguments:constraint involving set variables.

constraint type: open constraint, soft constraint, value constraint.

filtering: flow.

10An active valuecorresponds to a value occuring at a position mentionned in the setS.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1500 MAX NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var = variables2.var
• in set(variables1.key, S)
• in set(variables2.key, S)

Graph property(ies) MAX NSCC≤ 1

Graph class ONE SUCC

Graph model We generate acliquewith anequalityconstraint between each pair of vertices (including a
vertex and itself) and state that the size of the largest strongly connected component should
not exceed one. Variables for which the corresponding position does not belong to the set
S are removed from the final graph by the second and third conditions of the arc-constraint.

Parts (A) and (B) of Figure5.469respectively show the initial and final graph associated
with the Example slot. Since we use theMAX NSCC graph property we show one
of the largest strongly connected component of the final graph. Theopen alldifferent

holds since all the strongly connected components have at most one vertex: a value is used
at most once.

VARIABLES

1

2

3

4

MAX_NSCC=1

MAX_NSCC

2:1 3:9 4:3

(A) (B)

Figure 5.469: Initial and final graph of theopen alldifferent constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20060824 1501

1502 NARC,SELF

5.261 openamong

DESCRIPTION LINKS GRAPH

Origin Derived fromamong andopen global cardinality.

Constraint open among(S, NVAR, VARIABLES, VALUES)

Arguments S : svar

NVAR : dvar

VARIABLES : collection(var−dvar)
VALUES : collection(val−int)

Restrictions S ≥ 1
S ≤ |VARIABLES|
NVAR ≥ 0
NVAR ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose
LetV be the variables of the collectionVARIABLES for which the corresponding position
belongs to the setS. Positions are numbered from1. NVAR is the number of variables of
V that take their value inVALUES.

Example

{2, 3, 4, 5}, 3,
〈8, 5, 5, 4, 1〉 ,
〈1, 5, 8〉

Theopen among constraint holds since within the last four values (i.e.,S = {2, 3, 4, 5})
of 〈8, 5, 5, 4, 1〉 exactly3 values belong to the set of values{1, 5, 8}.

Typical NVAR > 0
NVAR < |VARIABLES|
|VARIABLES| > 1
|VALUES| > 1
|VARIABLES| > |VALUES|

Symmetries • Items ofVALUES arepermutable.

• An occurrence of a value ofVARIABLES.var that belongs toVALUES.val (resp.
does not belong toVALUES.val) can bereplacedby any other value inVALUES.val
(resp. not inVALUES.val).

Arg. properties
• Functional dependency: NVAR determined byS, VARIABLES andVALUES.

• Suffix-contractiblewrt. VARIABLES whenNVAR = 0.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

20060824 1503

See also common keyword: open atleast, open atmost (open constraint,value constraint),
open global cardinality (open constraint,counting constraint).

hard version: among.

used in graph description:in set.

Keywords constraint arguments:constraint involving set variables.

constraint type: open constraint, value constraint, counting constraint.

modelling: functional dependency.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1504 NARC,SELF

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) • in(variables.var, VALUES)
• in set(variables.key, S)

Graph property(ies) NARC= NVAR

Graph model The arc constraint corresponds to the conjunction of unary constraints
in(variables.var, VALUES) and in set(variables.key, S) defined in this cata-
logue. Consequently we employ theSELF arc generator in order to produce an initial
graph with a single loop on each vertex.

Parts (A) and (B) of Figure5.470respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the loops of the final
graph are stressed in bold.

VARIABLES

12345

NARC=3

2:5 3:5 5:1

(A) (B)

Figure 5.470: Initial and final graph of theopen among constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20060824 1505

1506 NARC,SELF

5.262 openatleast

DESCRIPTION LINKS GRAPH

Origin Derived fromatleast andopen global cardinality.

Constraint open atleast(S, N, VARIABLES, VALUE)

Arguments S : svar

N : int

VARIABLES : collection(var−dvar)
VALUE : int

Restrictions S ≥ 1
S ≤ |VARIABLES|
N ≥ 0
N ≤ |VARIABLES|
required(VARIABLES, var)

Purpose
LetV be the variables of the collectionVARIABLES for which the corresponding position
belongs to the setS. Positions are numbered from1. At leastN variables ofV are
assigned valueVALUE.

Example
(

{2, 3, 4}, 2,
〈4, 2, 4, 4〉 , 4

)

The open atleast constraint holds since, within the last three (i.e.,S = {2, 3, 4})
values of the collection〈4, 2, 4, 4〉, at leastN = 2 values are equal to valueVALUE = 4.

Typical N > 0
N < |VARIABLES|
|VARIABLES| > 1

Symmetries • N can bedecreasedto any value≥ 0.

• An occurrence of a value ofVARIABLES.var that is different fromVALUE can be
replacedby any other value.

Arg. properties
Suffix-extensiblewrt. VARIABLES.

See also common keyword:open among, open global cardinality (open constraint,value constraint).

comparison swapped:open atmost.

hard version: atleast.

used in graph description:in set.

Keywords constraint arguments:constraint involving set variables.

constraint type: open constraint, value constraint.

modelling: at least.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20060824 1507

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) • variables.var = VALUE

• in set(variables.key, S)

Graph property(ies) NARC≥ N

Graph model Since each arc constraint involves only one vertex (VALUE is fixed), we employ theSELF
arc generator in order to produce a graph with a single loop on each vertex. Variables for
which the corresponding position does not belong to the setS are removed from the final
graph by the second condition of the arc-constraint.

Parts (A) and (B) of Figure5.471respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the loops of the final
graph are stressed in bold.

VARIABLES

1234

NARC=2

3:4 4:4

(A) (B)

Figure 5.471: Initial and final graph of theopen atleast constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1508 NARC,SELF

5.263 openatmost

DESCRIPTION LINKS GRAPH

Origin Derived fromatmost andopen global cardinality.

Constraint open atmost(S, N, VARIABLES, VALUE)

Arguments S : svar

N : int

VARIABLES : collection(var−dvar)
VALUE : int

Restrictions S ≥ 1
S ≤ |VARIABLES|
N ≥ 0
required(VARIABLES, var)

Purpose
LetV be the variables of the collectionVARIABLES for which the corresponding position
belongs to the setS. Positions are numbered from1. At most N variables ofV are
assigned valueVALUE.

Example
(

{2, 3, 4}, 1,
〈2, 2, 4, 5〉 , 2

)

The open atmost constraint holds since, within the last three (i.e.,S = {2, 3, 4})
values of the collection〈2, 2, 4, 5〉, at mostN = 1 value is equal to valueVALUE = 2.

Typical N > 0
N < |VARIABLES|
|VARIABLES| > 1

Symmetries • N can beincreased.

• An occurrence of a value ofVARIABLES.var can bereplacedby any other value
that is different fromVALUE.

Arg. properties
Suffix-contractiblewrt. VARIABLES.

See also common keyword:open among, open global cardinality (open constraint,value constraint).

comparison swapped:open atleast.

hard version: atmost.

used in graph description:in set.

Keywords constraint arguments:constraint involving set variables.

constraint type: open constraint, value constraint.

modelling: at most.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20060824 1509

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) • variables.var = VALUE

• in set(variables.key, S)

Graph property(ies) NARC≤ N

Graph model Since each arc constraint involves only one vertex (VALUE is fixed), we employ theSELF
arc generator in order to produce a graph with a single loop on each vertex. Variables for
which the corresponding position does not belong to the setS are removed from the final
graph by the second condition of the arc-constraint.

Parts (A) and (B) of Figure5.472respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the loops of the final
graph are stressed in bold.

VARIABLES

1234

NARC=1

2:2

(A) (B)

Figure 5.472: Initial and final graph of theopen atmost constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1510 NVERTEX,SELF , ∀

5.264 openglobal cardinality

DESCRIPTION LINKS GRAPH

Origin [402]

Constraint open global cardinality(S, VARIABLES, VALUES)

Synonyms open gcc, ogcc.

Arguments S : svar

VARIABLES : collection(var−dvar)
VALUES : collection(val−int, noccurrence−dvar)

Restrictions S ≥ 1
S ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, [val, noccurrence])
distinct(VALUES, val)
VALUES.noccurrence ≥ 0
VALUES.noccurrence ≤ |VARIABLES|

Purpose
Each valueVALUES[i].val (1 ≤ i ≤ |VALUES|) should be taken by exactly
VALUES[i].noccurrence variables of theVARIABLES collection for which the corre-
sponding position belongs to the setS. Positions are numbered from1.

Example

{2, 3, 4},
〈3, 3, 8, 6〉 ,
〈

val− 3 noccurrence− 1,
val− 5 noccurrence− 0,
val− 6 noccurrence− 1

〉

Theopen global cardinality constraint holds since:

• Values3, 5 and6 respectively occur1, 0 and1 times within the collection〈3, 3, 8, 6〉
(the first item3 of 〈3, 3, 8, 6〉 is ignored since value1 does not belong to the first
argumentS = {2, 3, 4} of theopen global cardinality constraint).

• No constraint was specified for value8.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VALUES| > 1
range(VALUES.noccurrence) > 1
|VARIABLES| > |VALUES|

Symmetries • Items ofVALUES arepermutable.

• An occurrence of a value ofVARIABLES.var that does not belong toVALUES.val
can bereplacedby any other value that also does not belong toVALUES.val.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20060824 1511

Usage In their article [402], W.-J. van Hoeve and J.-C. Régin motivate the
open global cardinality constraint by the following scheduling problem. Con-
sider a set of activities (where each activity has a fixed duration1 and a start variable)
that can be processed on two factory lines such that all the activities that will be
processed on a given line must be pairwise distinct. This can be modelled by using one
open global cardinality constraint for each line, involving all the start variables
as well as a set variable whose final value specifies the set of activities assigned to that
specific factory line.

Note that this can also be directly modelled by one singlediffn constraint. This is done by
introducing an assignment variable for each activity. The initial domain ofeach assignment
variable consists of two values that respectively correspond to the two factory lines.

Remark In their article [402], W.-J. van Hoeve and J.-C. Régin consider the case where we have no
counter variables for the values, but rather some lower and upper bounds (i.e., in fact the
open global cardinality low up constraint).

Algorithm A slight adaptation of theflow model that handles the originalglobal cardinality con-
straint [322] is described in [402].

See also common keyword: global cardinality low up (assignment,counting constraint),
open among (open constraint,counting constraint),
open atleast, open atmost (open constraint,value constraint).

hard version: global cardinality.

specialisation: open alldifferent (each active value11 should occur at most once),
open global cardinality low up (variable replaced byfixed interval).

used in graph description:in set.

Keywords application area: assignment.

constraint arguments:constraint involving set variables.

constraint type: open constraint, value constraint, counting constraint.

filtering: flow.

11An active valuecorresponds to a value occuring at a position mentionned in the setS.

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1512 NVERTEX,SELF , ∀

For all items ofVALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) • variables.var = VALUES.val
• in set(variables.key, S)

Graph property(ies) NVERTEX= VALUES.noccurrence

Graph model Since we want to express one unary constraint for each value we use the “For all items of
VALUES” iterator. The only difference with the graph model of theglobal cardinality

constraint is the arc constraint where we also specify that the position of the considered
variable should belong to the first argumentS.

Part (A) of Figure5.473shows the initial graphs associated with each value3, 5 and6 of
theVALUES collection of theExample slot. Part (B) of Figure5.473shows the two corre-
sponding final graphs respectively associated with values3 and6 that are both assigned to
those variables of theVARIABLES collection for which the index belongs toS (since value
5 is not assigned to any variable of theVARIABLES collection the final graph associated
with value5 is empty). Since we use theNVERTEX graph property, the vertices of the
final graphs are stressed in bold.

VARIABLES

1234

3:NVERTEX=1, 5:NVERTEX=0, 6:NVERTEX=1

VALUES:3 VALUES:6

2:3 4:6

(A) (B)

Figure 5.473: Initial and final graph of theopen global cardinality constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20060824 1513

1514 NVERTEX,SELF , ∀

5.265 openglobal cardinality low up

DESCRIPTION LINKS GRAPH

Origin [402]

Constraint open global cardinality low up(S, VARIABLES, VALUES)

Arguments S : svar

VARIABLES : collection(var−dvar)
VALUES : collection(val−int, omin−int, omax−int)

Restrictions S ≥ 1
S ≤ |VARIABLES|
required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, omin, omax])
distinct(VALUES, val)
VALUES.omin ≥ 0
VALUES.omax ≤ |VARIABLES|
VALUES.omin ≤ VALUES.omax

Purpose
Each valueVALUES[i].val (1 ≤ i ≤ |VALUES|) should be taken by at least
VALUES[i].omin and at mostVALUES[i].omax variables of theVARIABLES collection for
which the corresponding position belongs to the setS. Positions are numbered from1.

Example

{2, 3, 4},
〈3, 3, 8, 6〉 ,
〈

val− 3 omin− 1 omax− 3,
val− 5 omin− 0 omax− 1,
val− 6 omin− 1 omax− 2

〉

Theopen global cardinality low up constraint holds since:

• Values3, 5 and6 are respectively used1 (1 ≤ 1 ≤ 3), 0 (0 ≤ 0 ≤ 1) and1
(1 ≤ 1 ≤ 2) times within the collection〈3, 3, 8, 6〉 (the first item3 of 〈3, 3, 8, 6〉
is ignored since value1 does not belong to the first argumentS = {2, 3, 4} of the
open global cardinality low up constraint).

• No constraint was specified for value8.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VALUES| > 1
VALUES.omin ≤ |VARIABLES|
VALUES.omax > 0
VALUES.omax ≤ |VARIABLES|
|VARIABLES| > |VALUES|

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20060824 1515

Symmetries • Items ofVALUES arepermutable.

• An occurrence of a value ofVARIABLES.var that does not belong toVALUES.val
can bereplacedby any other value that also does not belong toVALUES.val.

Usage In their article [402], W.-J. van Hoeve and J.-C. Régin motivate the
open global cardinality low up constraint by the following scheduling prob-
lem. Consider a set of activities (where each activity has a fixed duration1 and a start
variable) that can be processed on two factory lines such that all the activities that will
be processed on a given line must be pairwise distinct. This can be modelled by using
oneopen global cardinality low up constraint for each line, involving all the start
variables as well as a set variable whose final value specifies the set ofactivities assigned
to that specific factory line.

Note that this can also be directly modelled by one singlediffn constraint. This is done by
introducing an assignment variable for each activity. The initial domain ofeach assignment
variable consists of two values that respectively correspond to the two factory lines.

Algorithm A slight adaptation of theflow model that handles the originalglobal cardinality con-
straint [322] is described in [402].

See also common keyword:global cardinality (assignment,counting constraint).

generalisation:open global cardinality (fixed interval replaced byvariable).

hard version: global cardinality low up.

specialisation:open alldifferent (each active value12 should occur at most once).

used in graph description:in set.

Keywords application area: assignment.

constraint arguments:constraint involving set variables.

constraint type: open constraint, value constraint, counting constraint.

filtering: flow.

12An active valuecorresponds to a value occuring at a position mentionned in the setS.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1516 NVERTEX,SELF , ∀

For all items ofVALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) • variables.var = VALUES.val
• in set(variables.key, S)

Graph property(ies) • NVERTEX≥ VALUES.omin
• NVERTEX≤ VALUES.omax

Graph model Since we want to express one unary constraint for each value we use the “For
all items of VALUES” iterator. The only difference with the graph model of the
global cardinality low up constraint is the arc constraint where we also specify that
the position of the considered variable should belong to the first argumentS.

Part (A) of Figure5.474shows the initial graphs associated with each value3, 5 and6 of
theVALUES collection of theExample slot. Part (B) of Figure5.474shows the two corre-
sponding final graphs respectively associated with values3 and6 that are both assigned to
the variables of theVARIABLES collection (since value5 is not assigned to any variable of
theVARIABLES collection the final graph associated with value5 is empty). Since we use
theNVERTEX graph property, the vertices of the final graphs are stressed in bold.

VARIABLES

1234

3:NVERTEX=1, 5:NVERTEX=0, 6:NVERTEX=1

VALUES:3 VALUES:6

2:3 4:6

(A) (B)

Figure 5.474: Initial and final graph of theopen global cardinality low up con-
straint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20060824 1517

1518 AUTOMATON

5.266 openmaximum

DESCRIPTION LINKS AUTOMATON

Origin Derived frommaximum

Constraint open maximum(MAX, VARIABLES)

Arguments MAX : dvar

VARIABLES : collection(var−dvar, bool−dvar)

Restrictions |VARIABLES| > 0
required(VARIABLES, [var, bool])
VARIABLES.bool ≥ 0
VARIABLES.bool ≤ 1

Purpose
MAX is the maximum value of the variablesVARIABLES[i].var, (1 ≤ i ≤ |VARIABLES|)
for whichVARIABLES[i].bool = 1 (at least one of the Boolean variables is set to1).

Example

5,

〈

var− 3 bool− 1,
var− 1 bool− 0,
var− 7 bool− 0,
var− 5 bool− 1,
var− 5 bool− 1

〉

The open maximum constraint holds since its first argumentMAX = 5 is set to the
maximum value of values3, 1, 7, 5, 5 for which the corresponding Boolean1, 0, 0, 1, 1 is
set to1 (i.e., values3, 5, 5).

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetries • Items ofVARIABLES arepermutable.

• One and the same constant can beaddedto MAX as well as to thevar attribute of
all items ofVARIABLES.

See also comparison swapped:open minimum.

hard version: maximum.

used in graph description:in set.

Keywords characteristic of a constraint: maximum, automaton, automaton without counters,
reified automaton constraint.

constraint network structure: centered cyclic(1) constraint network(1).

constraint type: order constraint, open constraint, open automaton constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20090507 1519

Automaton Figure5.475depicts the automaton associated with theopen maximum constraint. Let
VARi, Bi be theith item of theVARIABLES collection. To each triple(MAX, VARi, Bi)
corresponds a signature variableSi as well as the following signature constraint:(Bi =
1 ∧ MAX < VARi ⇔ Si = 0) ∧ (Bi = 1 ∧ MAX = VARi ⇔ Si = 1) ∧ (Bi = 1 ∧ MAX >
VARi ⇔ Si = 2) ∧ (Bi = 0 ∧ MAX < VARi ⇔ Si = 3) ∧ (Bi = 0 ∧ MAX = VARi ⇔ Si =
4) ∧ (Bi = 0 ∧ MAX > VARi ⇔ Si = 5).

B =0i

iB =0

B =1 andi

B =1 andi

iB =1 and iMAX>VAR

MAX=VARi

MAX>VARi

MAX=VARi

t
B =1 and

s

i

Figure 5.475: Automaton of theopen maximum constraint

MAX

n
B

2
B

1

Sn

Q =tn
Q1Q =s0

S2S1

VAR
1

VAR
2

VAR
n

B

Figure 5.476: Hypergraph of the reformulation corresponding to the automaton of the
open maximum constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1520 AUTOMATON

5.267 openminimum

DESCRIPTION LINKS AUTOMATON

Origin Derived fromminimum

Constraint open minimum(MIN, VARIABLES)

Arguments MIN : dvar

VARIABLES : collection(var−dvar, bool−dvar)

Restrictions |VARIABLES| > 0
required(VARIABLES, [var, bool])
VARIABLES.bool ≥ 0
VARIABLES.bool ≤ 1

Purpose
MIN is the minimum value of the variablesVARIABLES[i].var, (1 ≤ i ≤ |VARIABLES|)
for whichVARIABLES[i].bool = 1 (at least one of the Boolean variables is set to1).

Example

3,

〈

var− 3 bool− 1,
var− 1 bool− 0,
var− 7 bool− 0,
var− 5 bool− 1,
var− 5 bool− 1

〉

The open minimum constraint holds since its first argumentMIN = 3 is set to the
minimum value of values3, 1, 7, 5, 5 for which the corresponding Boolean1, 0, 0, 1, 1 is
set to1 (i.e., values3, 5, 5).

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetries • Items ofVARIABLES arepermutable.

• One and the same constant can beaddedto MIN as well as to thevar attribute of
all items ofVARIABLES.

Remark Theopen minimum constraint is used in the reformulation of thetree range constraint.

See also comparison swapped:open maximum.

hard version: minimum.

used in graph description:in set.

uses in its reformulation: tree range.

Keywords characteristic of a constraint: minimum, automaton, automaton without counters,
reified automaton constraint.

constraint network structure: centered cyclic(1) constraint network(1).

constraint type: order constraint, open constraint, open automaton constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20090506 1521

Automaton Figure5.477depicts the automaton associated with theopen minimum constraint. Let
VARi, Bi be theith item of theVARIABLES collection. To each triple(MIN, VARi, Bi)
corresponds a signature variableSi as well as the following signature constraint:(Bi =
1 ∧ MIN < VARi ⇔ Si = 0) ∧ (Bi = 1 ∧ MIN = VARi ⇔ Si = 1) ∧ (Bi = 1 ∧ MIN >
VARi ⇔ Si = 2) ∧ (Bi = 0 ∧ MIN < VARi ⇔ Si = 3) ∧ (Bi = 0 ∧ MIN = VARi ⇔ Si =
4) ∧ (Bi = 0 ∧ MIN > VARi ⇔ Si = 5).

iMIN=VAR

iMIN<VAR

iMIN=VAR

B =1 andi

iB =1 and

iB =1 and

B =0i

iB =0
iB =1 and

t

MIN<VARs i

Figure 5.477: Automaton of theopen minimum constraint

MIN

VAR
2

VAR
1

VAR

1S 2S

0Q =s 1Q
nQ =t

nS

B
1

B
2

B
n

n

Figure 5.478: Hypergraph of the reformulation corresponding to the automaton of the
open minimum constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1522 PREDEFINED

5.268 oppositesign

DESCRIPTION LINKS

Origin Arithmetic.

Constraint opposite sign(VAR1, VAR2)

Arguments VAR1 : dvar

VAR2 : dvar

Restriction

Purpose Enforce the fact that the product of the first and second variables is less than or equal to
0.

Example (6,−3)

Theopposite sign constraint holds since6 and−3 do not have the same sign.

Typical VAR1 6= 0

Symmetry Arguments arepermutablew.r.t. permutation(VAR1, VAR2).

See also comparison swapped:same sign.

Keywords constraint arguments:binary constraint.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20100821 1523

1524 AUTOMATON

5.269 or

DESCRIPTION LINKS AUTOMATON

Origin Logic

Constraint or(VAR, VARIABLES)

Synonym rel.

Arguments VAR : dvar

VARIABLES : collection(var−dvar)

Restrictions VAR ≥ 0
VAR ≤ 1
|VARIABLES| ≥ 2
required(VARIABLES, var)
VARIABLES.var ≥ 0
VARIABLES.var ≤ 1

Purpose Let VARIABLES be a collection of0-1 variablesVAR1, VAR2, . . . , VARn (n ≥ 2). Enforce
VAR = VAR1 ∨ VAR2 ∨ . . . ∨ VARn.

Example (0, 〈0, 0〉)
(1, 〈0, 1〉)
(1, 〈1, 0〉)
(1, 〈1, 1〉)
(1, 〈1, 0, 1〉)

Symmetry Items ofVARIABLES arepermutable.

Arg. properties
• Functional dependency: VAR determined byVARIABLES.

• Contractiblewrt. VARIABLES whenVAR = 0.

• Extensiblewrt. VARIABLES whenVAR = 1.

• Aggregate: VAR(∨), VARIABLES(union).

Systems reifiedOr in Choco, rel in Gecode, orbool in JaCoP, #\/ in SICStus.

See also common keyword: and, clause or, equivalent, imply, nand, nor,
xor (Boolean constraint).

implies: atleast nvalue, maximum.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelBool.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/OrBool.html
http://www.jacop.eu/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

20051226 1525

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint arguments:pure functional dependency.

constraint network structure: Berge-acyclic constraint network.

constraint type: Boolean constraint.

filtering: arc-consistency.

modelling: disjunction, functional dependency.

Keywords
Related keywords grouped by meta-keywords.

1526 AUTOMATON

Automaton Figure5.479depicts the automaton associated with theor constraint. To the first argument
VAR of the or constraint corresponds the first signature variable. To each variableVARi

of the second argumentVARIABLES of the or constraint corresponds the next signature
variable. There is no signature constraint.

j

i

VAR =0
i

VAR =1
i

VAR =0
i

VAR =0
i

s

k

VAR=1 VAR=0

i

VAR =1

Figure 5.479: Automaton of theor constraint

VAR

Q =s 1Q

n
VAR

1
VAR

k

i
Q =n+10

Figure 5.480: Hypergraph of the reformulation corresponding to the automaton of the
or constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20051226 1527

1528 NARC,CLIQUE(<)

5.270 orchard

DESCRIPTION LINKS GRAPH

Origin [206]

Constraint orchard(NROW, TREES)

Arguments NROW : dvar

TREES : collection(index−int, x−dvar, y−dvar)

Restrictions NROW ≥ 0
TREES.index ≥ 1
TREES.index ≤ |TREES|
required(TREES, [index, x, y])
distinct(TREES, index)
TREES.x ≥ 0
TREES.y ≥ 0

Purpose
Orchard problem [206]:

“Your aid I want, Nine trees to plant, In rows just half a score, And let
there be, In each row, three—Solve this: I ask no more!”

Example

10,

〈

index− 1 x− 0 y− 0,
index− 2 x− 4 y− 0,
index− 3 x− 8 y− 0,
index− 4 x− 2 y− 4,
index− 5 x− 4 y− 4,
index− 6 x− 6 y− 4,
index− 7 x− 0 y− 8,
index− 8 x− 4 y− 8,
index− 9 x− 8 y− 8

〉

The 10 alignmentsof 3 trees correspond to the following triples of trees:(1, 2, 3),
(1, 4, 8), (1, 5, 9), (2, 4, 7), (2, 5, 8), (2, 6, 9), (3, 5, 7), (3, 6, 8), (4, 5, 6), (7, 8, 9).
Figure5.481shows the9 trees and the10 alignmentscorresponding to the example.

Typical NROW > 0
|TREES| > 3

Symmetries • Items ofTREES arepermutable.

• Attributes ofTREES arepermutablew.r.t. permutation(index) (x, y) (permuta-
tion applied to all items).

• One and the same constant can beaddedto thex attribute of all items ofTREES.

• One and the same constant can beaddedto they attribute of all items ofTREES.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20000128 1529

Arg. properties
Functional dependency: NROW determined byTREES.

Keywords characteristic of a constraint: hypergraph.

constraint arguments:pure functional dependency.

geometry:geometrical constraint, alignment.

modelling: functional dependency.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Keywords
Related keywords grouped by meta-keywords.

1530 NARC,CLIQUE(<)

9

2
1 3

5

4 6

7
8

Figure 5.481: Nine trees with10 alignments of3 trees

20000128 1531

Arc input(s) TREES

Arc generator CLIQUE(<) 7→collection(trees1, trees2, trees3)

Arc arity 3

Arc constraint(s)
∑

trees1.x ∗ trees2.y− trees1.x ∗ trees3.y,
trees1.y ∗ trees3.x− trees1.y ∗ trees2.x,
trees2.x ∗ trees3.y− trees2.y ∗ trees3.x

 = 0

Graph property(ies) NARC= NROW

Graph model The arc generatorCLIQUE(<) with an arity of three is used in order to generate all
the arcs of the directed hypergraph. Each arc is an ordered triple of trees. We use the
restriction< in order to generate one single arc for each set of three trees. This is required,
since otherwise we would count more than once a givenalignmentof three trees. The
formula used within the arc constraint expresses the fact that the three points of respective
coordinates(trees1.x, trees1.y), (trees2.x, trees2.y) and(trees3.x, trees3.y) are
aligned. It corresponds to the development of the expression:

∣

∣

∣

∣

∣

∣

trees1.x trees2.y 1
trees2.x trees2.y 1
trees3.x trees3.y 1

∣

∣

∣

∣

∣

∣

= 0

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1532 NARC,PATH ;NCC,PATH

5.271 orderedatleast nvector

DESCRIPTION LINKS GRAPH

Origin Conjoinatleast nvector andlex chain lesseq.

Constraint ordered atleast nvector(NVEC, VECTORS)

Synonyms ordered atleast nvectors, ordered atleast npoint,
ordered atleast npoints.

Type VECTOR : collection(var−dvar)

Arguments NVEC : dvar

VECTORS : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
NVEC ≥ 0
NVEC ≤ |VECTORS|
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose

Enforces the following two conditions:

1. The number of distinct tuples of values taken by the vectors of the col-
lection VECTORS is greater than or equal toNVEC. Two tuples of values
〈A1, A2, . . . , Am〉 and〈B1, B2, . . . , Bm〉 aredistinct if and only if there exist
an integeri ∈ [1,m] such thatAi 6= Bi.

2. For each pair of consecutive vectorsVECTORi andVECTORi+1 of the VECTORS

collection we have thatVECTORi is lexicographically less than or equal to
VECTORi+1. Given two vectors,~X and ~Y of n components,〈X0, . . . , Xn−1〉
and〈Y0, . . . , Yn−1〉, ~X is lexicographically less than or equal to~Y if and only
if n = 0 or X0 < Y0 or X0 = Y0 and〈X1, . . . , Xn−1〉 is lexicographically less
than or equal to〈Y1, . . . , Yn−1〉.

Example

2,

〈

vec− 〈5, 6〉 ,
vec− 〈5, 6〉 ,
vec− 〈5, 6〉 ,
vec− 〈9, 3〉 ,
vec− 〈9, 4〉

〉

Theordered atleast nvector constraint holds since:

1. The collectionVECTORS involves at least2 distinct tuples of values (i.e., in fact the3
distinct tuples〈5, 6〉, 〈9, 3〉 and〈9, 4〉).

2. The vectors of the collectionVECTORS are sorted in increasing lexicographical order.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20080921 1533

Typical |VECTOR| > 1
NVEC > 0
NVEC < |VECTORS|
|VECTORS| > 1

Symmetry NVEC can bedecreasedto any value≥ 0.

Reformulation The ordered atleast nvector constraint can be reformulated as a conjunction of a
atleast nvector and alex chain lesseq constraints.

See also common keyword:nvector (vector).

comparison swapped:ordered atmost nvector.

implied by: ordered nvector (≥ NVEC replaced by= NVEC).

implies: atleast nvector, lex chain lesseq (NVEC of constraint
ordered atleast nvector removed).

used in graph description:lex less, lex lesseq.

Keywords characteristic of a constraint: vector.

constraint type: counting constraint, order constraint.

symmetry: symmetry.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1534 NARC,PATH ;NCC,PATH

Arc input(s) VECTORS

Arc generator PATH 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) lex lesseq(vectors1.vec, vectors2.vec)

Graph property(ies) NARC= |VECTORS| − 1

Arc input(s) VECTORS

Arc generator PATH 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) lex less(vectors1.vec, vectors2.vec)

Graph property(ies) NCC≥ NVEC

Graph model Parts (A) and (B) of Figure5.482respectively show the initial and final graph of the second
graph constraint associated with theExampleslot. Since we use theNCC graph property
in this second graph constraint, we show the different connected components of the final
graph. Each strongly connected component corresponds to a tuple ofvalues that is assigned
to some vectors of theVECTORS collection. The3 following tuple of values〈5, 6〉, 〈9, 3〉
and〈9, 4〉 are used by the vectors of theVECTORS collection.

VECTORS

1

2

3

4

5

NCC=3

CC#1
CC#2 CC#3

1:5
 6

2:5
 6

3:5
 6

4 5

(A) (B)

Figure 5.482: Initial and final graph of theordered atleast nvector constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20080921 1535

1536 NARC,PATH ;NCC,PATH

5.272 orderedatmost nvector

DESCRIPTION LINKS GRAPH

Origin Conjoinatmost nvector andlex chain lesseq.

Constraint ordered atmost nvector(NVEC, VECTORS)

Synonyms ordered atmost nvectors, ordered atmost npoint, ordered atmost npoints.

Type VECTOR : collection(var−dvar)

Arguments NVEC : dvar

VECTORS : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
NVEC ≥ min(1, |VECTORS|)
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose

Enforces the following two conditions:

1. The number of distinct tuples of values taken by the vectors of the collection
VECTORS is less than or equal toNVEC. Two tuples of values〈A1, A2, . . . , Am〉
and〈B1, B2, . . . , Bm〉 aredistinct if and only if there exist an integeri ∈ [1,m]
such thatAi 6= Bi.

2. For each pair of consecutive vectorsVECTORi andVECTORi+1 of the VECTORS

collection we have thatVECTORi is lexicographically less than or equal to
VECTORi+1. Given two vectors,~X and ~Y of n components,〈X0, . . . , Xn−1〉
and〈Y0, . . . , Yn−1〉, ~X is lexicographically less than or equal to~Y if and only
if n = 0 or X0 < Y0 or X0 = Y0 and〈X1, . . . , Xn−1〉 is lexicographically less
than or equal to〈Y1, . . . , Yn−1〉.

Example

3,

〈

vec− 〈5, 6〉 ,
vec− 〈5, 6〉 ,
vec− 〈5, 6〉 ,
vec− 〈9, 3〉 ,
vec− 〈9, 3〉

〉

Theordered atmost nvector constraint holds since:

1. The collectionVECTORS involves at most3 distinct tuples of values (i.e., in fact the
2 distinct tuples〈5, 6〉 and〈9, 3〉).

2. The vectors of the collectionVECTORS are sorted in increasing lexicographical order.

Typical |VECTOR| > 1
NVEC > 1
NVEC < |VECTORS|
|VECTORS| > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20080921 1537

Symmetry NVEC can beincreased.

Arg. properties
Contractiblewrt. VECTORS.

Reformulation The ordered atmost nvector constraint can be reformulated as a conjunction of a
atmost nvector and alex chain lesseq constraints.

See also common keyword:nvector (vector).

comparison swapped:ordered atleast nvector.

implied by: ordered nvector (≤ NVEC replaced by= NVEC).

implies: atmost nvector, lex chain lesseq (NVEC of constraint
ordered atmost nvector removed).

used in graph description:lex less, lex lesseq.

Keywords characteristic of a constraint: vector.

constraint type: counting constraint, order constraint.

symmetry: symmetry.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1538 NARC,PATH ;NCC,PATH

Arc input(s) VECTORS

Arc generator PATH 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) lex lesseq(vectors1.vec, vectors2.vec)

Graph property(ies) NARC= |VECTORS| − 1

Arc input(s) VECTORS

Arc generator PATH 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) lex less(vectors1.vec, vectors2.vec)

Graph property(ies) NCC≤ NVEC

Graph model Parts (A) and (B) of Figure5.483respectively show the initial and final graph of the second
graph constraint associated with theExampleslot. Since we use theNCC graph property
in this second graph constraint, we show the different connected components of the final
graph. Each strongly connected component corresponds to a tuple ofvalues that is assigned
to some vectors of theVECTORS collection. The2 following tuple of values〈5, 6〉 and〈9, 3〉
are used by the vectors of theVECTORS collection.

VECTORS

1

2

3

4

5

NCC=2

CC#1 CC#2

1:5
 6

2:5
 6

3:5
 6

4:9
 3

5:9
 3

(A) (B)

Figure 5.483: Initial and final graph of theordered atmost nvector constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20080921 1539

1540 NVERTEX,SELF , ∀

5.273 orderedglobal cardinality

DESCRIPTION LINKS GRAPH

Origin [292]

Constraint ordered global cardinality(VARIABLES, VALUES)

Usual name ordgcc

Synonym ordered gcc.

Arguments VARIABLES : collection(var−dvar)
VALUES : collection(val−int, omax−int)

Restrictions required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, omax])
increasing seq(VALUES, [val])
VALUES.omax ≥ 0
VALUES.omax ≤ |VARIABLES|

Purpose

For eachi ∈ [1, |VALUES|], the values of the corresponding set of valuesVALUES[j].val
(i ≤ j ≤ |VALUES|) should be taken by at mostVALUES[i].omax variables of the
VARIABLES collection.
From that previous definition, theomax attributes are decreasing.

Example

〈2, 0, 1, 0, 0〉 ,
〈

val− 0 omax− 5,
val− 1 omax− 3,
val− 2 omax− 1

〉

The ordered global cardinality constraint holds since the values of the three
sets of values{0, 1, 2}, {1, 2} and{2} are respectively used no more than5, 3 and1 times
within the collection〈2, 0, 1, 0, 0〉.

Symmetry Items ofVARIABLES arepermutable.

Arg. properties
Contractiblewrt. VALUES.

Usage Theordered global cardinality can be used in order to restrict the way we assign the
values of theVALUES collection to the variables of theVARIABLES collection. It expresses
the fact that, when we use a valuev, we implicitly also use all values that are less than
or equal tov. As depicted by Figure5.484this is for instance the case for asoft cumu-
lative constraint where we want to control the shape of cumulative profile by providing
for each instanti a variablehi that gives the height of the cumulative profile at instanti.
These variableshi are passed as the first argument of theordered global cardinality

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

20090911 1541

constraint. Then theomax attribute of thej-th item of theVALUES collection gives the
maximum number of instants for which the height of the cumulative profile isgreater than
or equal to valueVALUES[j].val. In Figure5.484we should have:

• no more than1 height variable greater than or equal to2,

• no more than3 height variables greater than or equal to1,

• no more than5 height variables greater than or equal to0.

<4
<6

2 1 2

1

(A) (B)

5h4h3h2hh 1 h 21h h 3 h 4 h 5

2

1

0

0 0 0

0 0 0

<2

Figure 5.484: (A) Cumulative profile and (B) corresponding height variables

Remark The original definition of theordered global cardinality constraint mentions a third
argument, namely the minimum number of occurrences of the smallest value. We omit it
since it is redundant.

An other closely related constraint, thecost ordered global cardinality constraint
was introduced in [292] in order to model the fact that overloads costs may depend of the
instant where they occur.

Algorithm A filtering algorithm achievingarc-consistencyinO(|VARIABLES|+|VALUES|) is described
in [292]. It is based on the equivalence between the following two statements:

1. theordered global cardinality constraint has a solution,

2. all variables of theVARIABLES collection assigned to their respective minimum value
correspond to a solution of theordered global cardinality constraint.

Reformulation Theordered global cardinality(〈var− V1, var− V2, . . . , var− V|VARIABLES|〉,
〈val − v1 omax − o1, val − v2 omax − o2, . . . , val − v|VALUES| omax − o|VALUES|〉) con-
straint can be reformulated into aglobal cardinality(〈var−V1, var−V2, . . . , var−
V|VARIABLES|〉, 〈val − v1 noccurrence − N1, val − v2 noccurrence − N2, . . . , val −
v|VALUES| noccurrence−N|VALUES|〉) and|VALUES| sliding linear inequalities constraints of
the form:

N1 +N2 + . . .+N|VALUES| ≤ o1,
N2 + . . .+N|VALUES| ≤ o2,

.,
N|VALUES| ≤ o|VALUES|.

However, with the next example, T. Petit and J.-C. Régin have shown that this reformulation
hinders propagation:

1. V1 ∈ {0, 1}, V2 ∈ {0, 1}, V3 ∈ {0, 1, 2}, V4 ∈ {2, 3}, V5 ∈ {2, 3}.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

1542 NVERTEX,SELF , ∀

2. global cardinality(〈V1, V2, V3, V4, V5〉, 〈val − 1 noccurrence − N1,
val− 2 noccurrence−N2, val− 3 noccurrence−N3〉),

3. N1 +N2 +N3 ≤ 3 ∧N2 +N3 ≤ 2 ∧N3 ≤ 2.

The previous reformulation does not remove value2 from the domain of variableV3.

See also related: cumulative (controlling the shape of the cumulative profile for breaking sym-
metry), global cardinality low up, increasing global cardinality (the order is
imposed on the main variables, and not on the count variables).

root concept:global cardinality.

Keywords application area: assignment.

constraint type: value constraint, order constraint.

filtering: arc-consistency.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20090911 1543

For all items ofVALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var ≥ VALUES.val

Graph property(ies) NVERTEX≤ VALUES.omax

Graph model Since we want to express one unary constraint for each value we use the “For all items
of VALUES” iterator. Part (A) of Figure5.485shows the initial graphs associated with
each value0, 1 and 2 of the VALUES collection of theExample slot. Part (B) of Fig-
ure5.485shows the corresponding final graph associated with value0. Since we use the
NVERTEX graph property, the vertices of the final graph is stressed in bold.

VARIABLES

12345

0:NVERTEX=5, 1:NVERTEX=2, 2:NVERTEX=1

VALUES:0

1:22:03:14:05:0

(A) (B)

Figure 5.485: Initial and final graph of theordered global cardinality constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1544 NARC,PATH ;NCC,PATH

5.274 orderednvector

DESCRIPTION LINKS GRAPH

Origin Derived fromnvector.

Constraint ordered nvector(NVEC, VECTORS)

Synonyms ordered nvectors, ordered npoint, ordered npoints.

Type VECTOR : collection(var−dvar)

Arguments NVEC : dvar

VECTORS : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
NVEC ≥ min(1, |VECTORS|)
NVEC ≤ |VECTORS|
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose

Enforces the following two conditions:

1. NVEC is the number of distinct tuples of values assigned to the vectors
of the collection VECTORS. Two tuples of values〈A1, A2, . . . , Am〉 and
〈B1, B2, . . . , Bm〉 are distinct if and only if there exist an integeri ∈ [1,m]
such thatAi 6= Bi.

2. For each pair of consecutive vectorsVECTORi andVECTORi+1 of the VECTORS

collection we have thatVECTORi is lexicographically less than or equal to
VECTORi+1. Given two vectors,~X and ~Y of n components,〈X0, . . . , Xn−1〉
and〈Y0, . . . , Yn−1〉, ~X is lexicographically less than or equal to~Y if and only
if n = 0 or X0 < Y0 or X0 = Y0 and〈X1, . . . , Xn−1〉 is lexicographically less
than or equal to〈Y1, . . . , Yn−1〉.

Example

2,

〈

vec− 〈5, 6〉 ,
vec− 〈5, 6〉 ,
vec− 〈5, 6〉 ,
vec− 〈9, 3〉 ,
vec− 〈9, 3〉

〉

Theordered nvector constraint holds since:

1. Its first argumentNVEC = 2 is set to the number of distinct tuples of values (i.e., tu-
ples〈5, 6〉 and〈9, 3〉) occurring within the collectionVECTORS.

2. The vectors of the collectionVECTORS are sorted in increasing lexicographical order.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20080919 1545

Typical |VECTOR| > 1
NVEC > 1
NVEC < |VECTORS|
|VECTORS| > 1

Arg. properties
• Functional dependency: NVEC determined byVECTORS.

• Contractiblewrt. VECTORS whenNVEC = 1 and|VECTORS| > 0.

• Contractiblewrt. VECTORS whenNVEC = |VECTORS|.

Reformulation Theordered nvector constraint can be reformulated as a conjunction of anvector and
alex chain lesseq constraints.

See also implies: lex chain lesseq (NVEC of constraint ordered nvector removed),
nvector, ordered atleast nvector (= NVEC replaced by ≥ NVEC),
ordered atmost nvector (= NVEC replaced by≤ NVEC).

related: increasing nvalue chain.

root concept:increasing nvalue.

used in graph description:lex less, lex lesseq.

Keywords characteristic of a constraint: vector.

constraint type: counting constraint, order constraint.

modelling: functional dependency.

symmetry: symmetry.

Typical
Typical conditions on the arguments of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1546 NARC,PATH ;NCC,PATH

Arc input(s) VECTORS

Arc generator PATH 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) lex lesseq(vectors1.vec, vectors2.vec)

Graph property(ies) NARC= |VECTORS| − 1

Arc input(s) VECTORS

Arc generator PATH 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) lex less(vectors1.vec, vectors2.vec)

Graph property(ies) NCC= NVEC

Graph model Parts (A) and (B) of Figure5.486respectively show the initial and final graph of the second
graph constraint associated with theExampleslot. Since we use theNCC graph property
in this second graph constraint, we show the different connected components of the final
graph. Each strongly connected component corresponds to a tuple ofvalues that is assigned
to some vectors of theVECTORS collection. The2 following tuple of values〈5, 6〉 and〈9, 3〉
are used by the vectors of theVECTORS collection.

VECTORS

1

2

3

4

5

NCC=2

CC#1 CC#2

1:5
 6

2:5
 6

3:5
 6

4:9
 3

5:9
 3

(A) (B)

Figure 5.486: Initial and final graph of theordered nvector constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20080919 1547

1548 NARC,SELF

5.275 orth link ori siz end

DESCRIPTION LINKS GRAPH

Origin Used by several constraints between orthotopes

Constraint orth link ori siz end(ORTHOTOPE)

Argument ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)

Restrictions |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end

Purpose Enforce for each item of theORTHOTOPE collection the constraintori+ siz = end.

Example
(

〈ori− 2 siz− 2 end− 4, ori− 1 siz− 3 end− 4〉
)

The orth link ori siz end constraint holds since the two items〈ori − 2 siz −
2 end − 4〉 and〈ori − 1 siz − 3 end − 4〉 respectively verify the conditions2 + 2 = 4
and1 + 3 = 4.

Typical |ORTHOTOPE| > 1
ORTHOTOPE.siz > 0

Symmetries • Items ofORTHOTOPE arepermutable.

• One and the same constant can beaddedto theori andend attributes of all items
of ORTHOTOPE.

• One and the same constant can beaddedto thesiz andend attributes of all items
of ORTHOTOPE.

Arg. properties
• Functional dependency: ORTHOTOPE.ori determined byORTHOTOPE.siz and

ORTHOTOPE.end.

• Functional dependency: ORTHOTOPE.siz determined byORTHOTOPE.ori and
ORTHOTOPE.end.

• Functional dependency: ORTHOTOPE.end determined byORTHOTOPE.ori and
ORTHOTOPE.siz.

• Contractiblewrt. ORTHOTOPE.

Usage Used in the Arc constraint(s) slot for defining some constraints likediffn,
place in pyramid or orths are connected.

Used in diffn, orth on the ground, orth on top of orth, orths are connected,
two orth are in contact, two orth column, two orth do not overlap,
two orth include.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Used in
List of constraints that use this constraint in their description.

20030820 1549

Keywords constraint arguments:pure functional dependency.

constraint type: decomposition.

geometry:orthotope.

modelling: functional dependency.

Keywords
Related keywords grouped by meta-keywords.

1550 NARC,SELF

Arc input(s) ORTHOTOPE

Arc generator SELF 7→collection(orthotope)

Arc arity 1

Arc constraint(s) orthotope.ori+ orthotope.siz = orthotope.end

Graph property(ies) NARC= |ORTHOTOPE|

Graph model Parts (A) and (B) of Figure5.487respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the loops of the final
graph are stressed in bold.

ORTHOTOPE

12

NARC=2

1:2,2,4 2:1,3,4

(A) (B)

Figure 5.487: Initial and final graph of theorth link ori siz end constraint

Signature Since we use theSELF arc generator on theORTHOTOPE collection the number of arcs of
the initial graph is equal to|ORTHOTOPE|. Therefore the maximum number of arcs of the
final graph is also equal to|ORTHOTOPE|. For this reason we can rewrite the graph property
NARC = |ORTHOTOPE| toNARC ≥ |ORTHOTOPE| and simplifyNARC toNARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1551

1552 NARC,SELF

5.276 orth on the ground

DESCRIPTION LINKS GRAPH

Origin Used for definingplace in pyramid.

Constraint orth on the ground(ORTHOTOPE, VERTICAL DIM)

Arguments ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)
VERTICAL DIM : int

Restrictions |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end
VERTICAL DIM ≥ 1
VERTICAL DIM ≤ |ORTHOTOPE|
orth link ori siz end(ORTHOTOPE)

Purpose Theori attribute of theVERTICAL DIMth item of theORTHOTOPES collection should be
fixed to one.

Example
(

〈ori− 1 siz− 2 end− 3, ori− 2 siz− 3 end− 5〉 , 1
)

The orth on the ground constraint holds since theori attribute of its 1th item
〈ori− 1 siz− 2 end− 3〉 (i.e.,1th item sinceVERTICAL DIM = 1) is set to one.

Typical |ORTHOTOPE| > 1
ORTHOTOPE.siz > 0

Used in place in pyramid.

Keywords geometry:geometrical constraint, orthotope.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Used in
List of constraints that use this constraint in their description.

Keywords
Related keywords grouped by meta-keywords.

20030820 1553

Arc input(s) ORTHOTOPE

Arc generator SELF 7→collection(orthotope)

Arc arity 1

Arc constraint(s) • orthotope.key = VERTICAL DIM

• orthotope.ori = 1

Graph property(ies) NARC= 1

Graph model Parts (A) and (B) of Figure5.488respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the loop of the final
graph is stressed in bold.

ORTHOTOPE

12

NARC=1

1:1,2,3

(A) (B)

Figure 5.488: Initial and final graph of theorth on the ground constraint

Signature Since all thekey attributes of theORTHOTOPES collection are distinct, because of the first
condition of the arc constraint, and since we use theSELF arc generator the final graph
contains at most one arc. Therefore we can rewrite the graph property NARC = 1 to
NARC ≥ 1 and simplifyNARC toNARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

1554 NARC,PRODUCT (=)

5.277 orth on top of orth

DESCRIPTION LINKS GRAPH

Origin Used for definingplace in pyramid.

Constraint orth on top of orth(ORTHOTOPE1, ORTHOTOPE2, VERTICAL DIM)

Type ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)

Arguments ORTHOTOPE1 : ORTHOTOPE

ORTHOTOPE2 : ORTHOTOPE

VERTICAL DIM : int

Restrictions |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end
|ORTHOTOPE1| = |ORTHOTOPE2|
VERTICAL DIM ≥ 1
VERTICAL DIM ≤ |ORTHOTOPE1|
orth link ori siz end(ORTHOTOPE1)
orth link ori siz end(ORTHOTOPE2)

Purpose

ORTHOTOPE1 is located on top ofORTHOTOPE2 which concretely means:

• In each dimension different fromVERTICAL DIM the projection ofORTHOTOPE1
is included in the projection ofORTHOTOPE2.

• In the dimensionVERTICAL DIM the origin ofORTHOTOPE1 coincide with the end
of ORTHOTOPE2.

Example
(

〈ori− 5 siz− 2 end− 7, ori− 3 siz− 3 end− 6〉 ,
〈ori− 3 siz− 5 end− 8, ori− 1 siz− 2 end− 3〉 , 2

)

As illustrated by Figure5.489 the orthotopeORTHOTOPE1 (rectangle R1 coloured in
pink) is on top ofORTHOTOPE2 (rectangle R2 coloured in blue) according to the hypothesis
that the vertical dimension corresponds to dimension2 (i.e., VERTICAL DIM = 2). This
stands from the fact that the following conditions hold:

• ORTHOTOPE2[2].ori+ ORTHOTOPE2[2].siz = 1 + 2 = ORTHOTOPE1[2].ori,

• ORTHOTOPE2[1].ori = 3 ≤ ORTHOTOPE1[1].ori = 5,

• ORTHOTOPE1[1].end = 7 ≤ ORTHOTOPE2[1].end = 8.

Consequently, theorth on top of orth constraint holds.

Typical |ORTHOTOPE| > 1
ORTHOTOPE.siz > 0

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20030820 1555

Used in place in pyramid.

Keywords constraint type: logic.

geometry:geometrical constraint, non-overlapping, orthotope.

Used in
List of constraints that use this constraint in their description.

Keywords
Related keywords grouped by meta-keywords.

1556 NARC,PRODUCT (=)

ORTHOTOPE2[2].ori

ORTHOTOPE2[1].end

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

V
E

R
T

IC
A

L
_

D
IM

=
2

R2

R1

ORTHOTOPE1[2].ori

ORTHOTOPE1[1].end

ORTHOTOPE1[1].ori

ORTHOTOPE2[1].ori

Figure 5.489: Illustration of the relationon top of

20030820 1557

Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator PRODUCT (=) 7→collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s) • orthotope1.key 6= VERTICAL DIM

• orthotope2.ori ≤ orthotope1.ori
• orthotope1.end ≤ orthotope2.end

Graph property(ies) NARC= |ORTHOTOPE1| − 1

Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator PRODUCT (=) 7→collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s) • orthotope1.key = VERTICAL DIM

• orthotope1.ori = orthotope2.end

Graph property(ies) NARC= 1

Graph model The first and second graph constraints respectively express the first and second conditions
stated in thePurposeslot defining theorth on top of orth constraint.

Parts (A) and (B) of Figure5.490respectively show the initial and final graph associated
with the second graph constraint of theExample slot. Since we use theNARC graph
property, the unique arc of the final graph is stressed in bold.

ORTHOTOPE1

ORTHOTOPE2

1

1

2

2

NARC=1

2:3,3,6

2:1,2,3

(A) (B)

Figure 5.490: Initial and final graph of theorth on top of orth constraint

Signature Consider the second graph constraint. Since all thekey attributes of theORTHOTOPE1
collection are distinct, because of the arc constraintorthotope1.key = VERTICAL DIM,
and since we use thePRODUCT (=) arc generator the final graph contains at most one
arc. Therefore we can rewrite the graph propertyNARC = 1 to NARC ≥ 1 and
simplify NARC to NARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

1558 NARC,SELF ;NCC,NVERTEX,CLIQUE(6=)

5.278 orthsare connected

DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint orths are connected(ORTHOTOPES)

Type ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)

Argument ORTHOTOPES : collection(orth− ORTHOTOPE)

Restrictions |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz > 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end
required(ORTHOTOPES, orth)
same size(ORTHOTOPES, orth)

Purpose

There should be one single group of connectedorthotopes. Two orthotopestouch each
other (i.e., are connected) if they overlap in all dimensions except one, and if, for the
dimension where they do not overlap, the distance between the twoorthotopesis equal
to 0.

Example

〈

orth−
〈

ori− 2 siz− 4 end− 6,
ori− 2 siz− 2 end− 4

〉

,

orth−
〈

ori− 1 siz− 2 end− 3,
ori− 4 siz− 3 end− 7

〉

,

orth−
〈

ori− 7 siz− 4 end− 11,
ori− 1 siz− 2 end− 3

〉

,

orth−
〈

ori− 6 siz− 2 end− 8,
ori− 3 siz− 2 end− 5

〉

〉

Figure5.491shows the rectangles associated with the example. One can note that:

• Rectangle2 touch rectangle1,

• Rectangle1 touch rectangle2 and rectangle4,

• Rectangle4 touch rectangle1 and rectangle3,

• Rectangle3 touch rectangle4.

Consequently, since we have one single group of connected rectangles, the
orths are connected constraint holds.

Typical |ORTHOTOPE| > 1
|ORTHOTOPES| > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20000128 1559

Symmetries • Items ofORTHOTOPES arepermutable.

• Items ofORTHOTOPES.orth arepermutable(same permutation used).

• One and the same constant can beaddedto theori andend attributes of all items
of ORTHOTOPES.orth.

Usage In floor planning problem there is a typical constraint, that states that one should be able to
access every room from any room.

See also implies: diffn.

used in graph description:orth link ori siz end, two orth are in contact.

Keywords geometry:geometrical constraint, touch, contact, non-overlapping, orthotope.

R2

1 2 3 4 5 6 7 8 9 10

2

3

4

5

6

R1

R3

R4

1

Figure 5.491: Four connected rectangles

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1560 NARC,SELF ;NCC,NVERTEX,CLIQUE(6=)

Arc input(s) ORTHOTOPES

Arc generator SELF 7→collection(orthotopes)

Arc arity 1

Arc constraint(s) orth link ori siz end(orthotopes.orth)

Graph property(ies) NARC= |ORTHOTOPES|

Arc input(s) ORTHOTOPES

Arc generator CLIQUE (6=) 7→collection(orthotopes1, orthotopes2)

Arc arity 2

Arc constraint(s) two orth are in contact(orthotopes1.orth, orthotopes2.orth)

Graph property(ies) • NVERTEX= |ORTHOTOPES|
• NCC= 1

Graph model Parts (A) and (B) of Figure5.492respectively show the initial and final graph associated
with theExample slot.Since we use theNVERTEX graph property the vertices of the
final graph are stressed in bold. Since we also use theNCC graph property we show the
unique connected component of the final graph. An arc between two vertices indicates that
two rectangles are incontact.

ORTHOTOPES

1

2

3

4 NVERTEX=4
NCC=1

SCC#1

1:2,4,6
 2,2,4

2:1,2,3
 4,3,7

4:6,2,8
 3,2,5

3:7,4,11
 1,2,3

(A) (B)

Figure 5.492: Initial and final graph of theorths are connected constraint

Signature Since the first graph constraint uses theSELF arc generator on theORTHOTOPES col-
lection the corresponding initial graph contains|ORTHOTOPES| arcs. Therefore the final
graph of the first graph constraint contains at most|ORTHOTOPES| arcs and we can rewrite
NARC = |ORTHOTOPES| to NARC ≥ |ORTHOTOPES|. So we can simplifyNARC to
NARC.

Consider now the second graph constraint. Since its corresponding initialgraph con-
tains |ORTHOTOPES| vertices, its final graph has a maximum number of vertices also

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20000128 1561

equal to|ORTHOTOPES|. Therefore we can rewriteNVERTEX = |ORTHOTOPES| to
NVERTEX ≥ |ORTHOTOPES| and simplifyNVERTEX to NVERTEX. From the
graph propertyNVERTEX = |ORTHOTOPES| and from the restriction|ORTHOTOPES| >
0 the final graph is not empty. Therefore it contains at least one connected component. So
we can rewriteNCC = 1 to NCC ≤ 1 and simplifyNCC toNCC.

1562 LOGIC

5.279 overlapsboxes

DESCRIPTION LINKS LOGIC

Origin Geometry, derived from [318]

Constraint overlap sboxes(K, DIMS, OBJECTS, SBOXES)

Synonym overlap.

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)

Arguments K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−int, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− POSITIVES)

Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
K > 0
DIMS ≥ 0
DIMS < K

increasing seq(OBJECTS, [oid])
required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
|SBOXES| ≥ 1
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
do not overlap(SBOXES)

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

20070622 1563

Purpose

Holds if, for each pair of objects(Oi, Oj), i < j, Oi overlapsOj with respect to a set
of dimensions depicted byDIMS. Oi andOj are objects that take a shape among a set
of shapes. Eachshapeis defined as a finite set of shifted boxes, where each shifted box
is described by a box in aK-dimensional space at a given offset (from the origin of the
shape) with given sizes. More precisely, ashifted boxis an entity defined by its shape
id sid, shift offsett, and sizesl. Then, a shape is defined as the union of shifted boxes
sharing the same shape id. Anobject is an entity defined by its unique object identifier
oid, shape idsid and originx.
An objectOi overlapsan objectOj with respect to a set of dimensions depicted byDIMS

if and only if, there exists a shifted boxsi associated withOi and there exists a shifted
box sj associated withOj , such that (1) there exists a dimensiond ∈ DIMS where the
end ofOi in dimensiond is strictly greater than the start ofOj in dimensiond, and
(2) the end ofOj in dimensiond is strictly greater than the start ofOi in dimensiond.

Example

2, {0, 1},
〈

oid− 1 sid− 1 x− 〈1, 1〉 ,
oid− 2 sid− 2 x− 〈3, 2〉 ,
oid− 3 sid− 3 x− 〈2, 4〉

〉

,

〈

sid− 1 t− 〈0, 0〉 l− 〈4, 5〉 ,
sid− 2 t− 〈0, 0〉 l− 〈3, 3〉 ,
sid− 3 t− 〈0, 0〉 l− 〈2, 1〉

〉

Figure 5.493 shows the objects of the example. SinceO1 overlaps bothO2 and
O3, and sinceO2 overlapsO3, theoverlap sboxes constraint holds.

3

(C) Shape of the

6

5

2

4

1

1 2 5

overlaps both O2 and O3, and O2 overlaps O3
(D) Three objects O1, O2 and O3, where O1

3

4

S3

 first object second object third object

S1

S2

(A) Shape of the (B) Shapes of the

O3

O1

O2

Figure 5.493: The three objects of the example

Typical |OBJECTS| > 1

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

1564 LOGIC

Symmetries • Items ofOBJECTS arepermutable.

• Items ofSBOXES arepermutable.

• Items ofOBJECTS.x, SBOXES.t andSBOXES.l arepermutable(same permutation
used).

• SBOXES.l.v can beincreased.

Arg. properties
Suffix-contractiblewrt. OBJECTS.

Remark One of the eight relations of theRegion Connection Calculus[318].

See also common keyword: contains sboxes, coveredby sboxes, covers sboxes,
disjoint sboxes, equal sboxes, inside sboxes, meet sboxes (rcc8),
non overlap sboxes (geometrical constraint,logic).

Keywords constraint type: logic.

geometry:geometrical constraint, rcc8.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20070622 1565

Logic
• origin(O1, S1, D)

def
= O1.x(D) + S1.t(D)

• end(O1, S1, D)
def
= O1.x(D) + S1.t(D) + S1.l(D)

• overlap sboxes(Dims, O1, S1, O2, S2)
def
=

∀D ∈ Dims

∧

end(O1, S1, D) >
origin(O2, S2, D)

,

end(O2, S2, D) >
origin(O1, S1, D)

• overlap objects(Dims, O1, O2)
def
=

∀S1 ∈ sboxes([O1.sid])
∃S2 ∈ sboxes

([

O2.sid
])

overlap sboxes

Dims,
O1,
S1,
O2,
S2

• all overlap(Dims, OIDS)
def
=

∀O1 ∈ objects(OIDS)
∀O2 ∈ objects(OIDS)

O1.oid <
O2.oid

⇒

overlap objects

Dims,
O1,
O2

• all overlap(DIMENSIONS, OIDS)

Logic
Explicit description in terms of first order logic formulae of the meaning of the constraint.

1566 MAX ID,MAX NSCC,NCC,CLIQUE

5.280 path

DESCRIPTION LINKS GRAPH

Origin Derived frombinary tree.

Constraint path(NPATH, NODES)

Arguments NPATH : dvar

NODES : collection(index−int, succ−dvar)

Restrictions NPATH ≥ 1
NPATH ≤ |NODES|
required(NODES, [index, succ])
|NODES| > 0
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose
Cover the digraphG described by theNODES collection withNPATH paths in such a way
that each vertex ofG belongs to exactly one path.

Example

3,

〈

index− 1 succ− 1,
index− 2 succ− 3,
index− 3 succ− 5,
index− 4 succ− 7,
index− 5 succ− 1,
index− 6 succ− 6,
index− 7 succ− 7,
index− 8 succ− 6

〉

The path constraint holds since its second argument corresponds to the3 (i.e., the
first argument of thepath constraint) paths depicted by Figure5.494.

6

5

1

2

3

4

7

8

Figure 5.494: The three paths corresponding to theExample slot

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20090101 1567

Typical NPATH < |NODES|
|NODES| > 1

Symmetry Items ofNODES arepermutable.

Arg. properties
Functional dependency: NPATH determined byNODES.

Reformulation Thepath constraint can be expressed in term of (1) a set of|NODES|2 reified constraints
for avoiding circuit between more than one node and of (2)|NODES| reified constraints and
of one sum constraint for counting the paths and of (3) a set of|NODES|2 reified constraints
and of|NODES| inequalities constraints for enforcing the fact that each vertex has at most
two children.

1. For each vertexNODES[i] (i ∈ [1, |NODES|]) of the NODES collection we create a
variableRi that takes its value within interval[1, |NODES|]. This variable represents
the rank of vertexNODES[i] within a solution. It is used to prevent the creation of
circuit involving more than one vertex as explained now. For each pair ofvertices
NODES[i], NODES[j] (i, j ∈ [1, |NODES|]) of theNODES collection we create a reified
constraint of the formNODES[i].succ = NODES[j].index ∧ i 6= j ⇒ Ri < Rj .
The purpose of this constraint is to express the fact that, if there is an arcfrom vertex
NODES[i] to another vertexNODES[j], thenRi should be strictly less thanRj .

2. For each vertexNODES[i] (i ∈ [1, |NODES|]) of the NODES collection we cre-
ate a0-1 variableBi and state the following reified constraintNODES[i].succ =
NODES[i].index ⇔ Bi in order to force variableBi to be set to value1 if and
only if there is a loop on vertexNODES[i]. Finally we create a constraintNPATH =
B1 +B2 + . . .+B|NODES| for stating the fact that the number of paths is equal to the
number of loops of the graph.

3. For each pair of verticesNODES[i], NODES[j] (i, j ∈ [1, |NODES|]) of the NODES

collection we create a0-1 variableBij and state the following reified constraint
NODES[i].succ = NODES[j].index ∧ i 6= j ⇔ Bij . VariableBij is set to value1 if
and only if there is an arc fromNODES[i] to NODES[j]. Then for each vertexNODES[j]
(j ∈ [1, |NODES|]) we create a constraint of the formB1j+B2j+. . .+B|NODES|j ≤ 2.

See also common keyword: circuit (graph partitioning constraint,onesucc),
dom reachability (path), path from to (path, select an induced subgraph so
that there is a path from a given vertex to an other given vertex).

generalisation: binary tree (at most one child replaced by at most two children),
temporal path (vertices are located in time, and to each arc corresponds a precedence
constraint), tree (at most one child replaced by no limit on the number of children).

implies: binary tree.

related: balance path (counting number of paths versus controlling how balanced the
paths are).

Keywords combinatorial object: path.

constraint type: graph constraint, graph partitioning constraint.

filtering: DFS-bottleneck.

final graph structure: connected component, tree, onesucc.

modelling: functional dependency.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1568 MAX ID,MAX NSCC,NCC,CLIQUE

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • MAX NSCC≤ 1
• NCC= NPATH

• MAX ID≤ 1

Graph class ONE SUCC

Graph model We use the same graph constraint as for thebinary tree constraint, except that we replace
the graph propertyMAX ID≤ 2, which constraints the maximum in-degree of the final
graph to not exceed2 byMAX ID≤ 1. MAX ID does not consider loops: This is why
we do not have any problem with the final node of each path.

Parts (A) and (B) of Figure5.495respectively show the initial and final graph associated
with the Example slot. Since we use theNCC graph property, we display the three
connected componentsof the final graph. Each of them corresponds to a path. Since we
use theMAX ID graph property, we also show with a double circle a vertex that has a
maximum number of predecessors.

Thepath constraint holds since all strongly connected components of the final graph have
no more than one vertex, sinceNPATH =NCC= 3 and sinceMAX ID= 1.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20090101 1569

NODES

1

2

3

4

5

6

7

8
MAX_NSCC=1, NCC=3

MAX_ID=1

CC#1 CC#2 CC#3

1:1,1

2:2,3

3:3,5

5:5,1

4:4,7

7:7,7 6:6,6

8:8,6

(A) (B)

Figure 5.495: Initial and final graph of thepath constraint

1570 PATH FROM TO,CLIQUE

5.281 pathfrom to

DESCRIPTION LINKS GRAPH

Origin [4]

Constraint path from to(FROM, TO, NODES)

Usual name path

Arguments FROM : int

TO : int

NODES : collection(index−int, succ−svar)

Restrictions FROM ≥ 1
FROM ≤ |NODES|
TO ≥ 1
TO ≤ |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose Select some arcs of a digraphG so that there is still a path between two given vertices
of G.

Example

4, 3,

〈

index− 1 succ− ∅,
index− 2 succ− ∅,
index− 3 succ− {5},
index− 4 succ− {5},
index− 5 succ− {2, 3}

〉

The path from to constraint holds since within the digraphG corresponding to
the item of theNODES collection there is a path from vertexFROM = 4 to vertexTO = 3:
this path starts from vertex4, enters vertex5, and ends up in vertex3.

Typical FROM 6= TO

|NODES| > 2

Symmetry Items ofNODES arepermutable.

See also common keyword:dom reachability (path),
link set to booleans (constraint involving set variables),
path, temporal path (path).

used in graph description:in set.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

See also
Related constraints grouped by semantics links.

20030820 1571

Keywords combinatorial object: path.

constraint arguments:constraint involving set variables.

constraint type: graph constraint.

filtering: linear programming.

Keywords
Related keywords grouped by meta-keywords.

1572 PATH FROM TO,CLIQUE

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) in set(nodes2.index, nodes1.succ)

Graph property(ies) PATH FROM TO(index, FROM, TO) = 1

Graph model Within the context of theExample slot, part (A) of Figure5.496shows the initial graph
from which we choose to start. It is derived from the set associated with each vertex.
Each set describes the potential values of thesucc attribute of a given vertex. Part (B)
of Figure5.496gives the final graph associated with theExample slot. Since we use the
PATH FROM TO graph property we show on the final graph the following informa-
tion:

• The vertices that respectively correspond to the start and the end of therequired path
are stressed in bold.

• The arcs on the required path are also stressed in bold.

Thepath from to constraint holds since there is a path from vertex4 to vertex3 (4 and3
refer to theindex attribute of a vertex).

NODES

1:1,{2,4}

2:2,{1,3,5}

4:4,{1,5}3:3,{2,5}

5:5,{2,3,4}

PATH_FROM_TO(index,4,3)=1

4:4,{5}

5:5,{2,3}

3:3,{5} 2:2,{}

(A) (B)

Figure 5.496: Initial and final graph of thepath from to set constraint

Signature Since the maximum value returned by the graph propertyPATH FROM TO

is equal to 1 we can rewrite PATH FROM TO(index, FROM, TO) = 1
to PATH FROM TO(index, FROM, TO) ≥ 1. Therefore we simplify
PATH FROM TO to PATH FROM TO.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1573

1574 AUTOMATON

5.282 pattern

DESCRIPTION LINKS AUTOMATON

Origin [78]

Constraint pattern(VARIABLES, PATTERNS)

Type PATTERN : collection(var−int)

Arguments VARIABLES : collection(var−dvar)
PATTERNS : collection(pat− PATTERN)

Restrictions required(PATTERN, var)
PATTERN.var ≥ 0
change(0, PATTERN,=)
|PATTERN| > 1
required(VARIABLES, var)
required(PATTERNS, pat)
|PATTERNS| > 0
same size(PATTERNS, pat)

Purpose

We quote the definition from the original article [78, page 157] introducing thepattern
constraint:

“We call ak-pattern(k > 1) any sequence ofk elements such that
no two successive elements have the same value. Consider a setV =
{v1, v2, . . . , vm} and a sequences = s1 s2 . . . sn of elements ofV . In
this context, astretchis a maximum subsequence of variables ofs which
all have the same value. Consider now the sequencevi1 vi2 . . . vil of
the types of the successive stretches that appear ins. Let P be a set of
k-patterns.s satisfiesP if and only if every subsequence ofk elements in
vi1 vi2 . . . , vil belongs toP.”

Example

〈

var− 1,
var− 1,
var− 2,
var− 2,
var− 2,
var− 1,
var− 3,
var− 3

〉

,

〈

pat− 〈1, 2, 1〉 ,
pat− 〈1, 2, 3〉 ,
pat− 〈2, 1, 3〉

〉

The pattern constraint holds since, as depicted by Figure5.497, all its sequences
of three consecutive stretches correspond to one of the3-pattern given in thePATTERNS
collection.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20031008 1575

Typical |VARIABLES| > 2
range(VARIABLES.var) > 1

Symmetries • Items ofPATTERNS arepermutable.

• Items ofVARIABLES andPATTERNS.pat aresimultaneously reversable.

• All occurrences of two distinct tuples of values inVARIABLES.var or
PATTERNS.pat.var can beswapped; all occurrences of a tuple of values in
VARIABLES.var or PATTERNS.pat.var can berenamedto any unused tuple of
values.

Arg. properties
• Prefix-contractiblewrt. VARIABLES.

• Suffix-contractiblewrt. VARIABLES.

Usage Thepattern constraint was originally introduced within the context of staff scheduling.
In this context, the value of theith variable of theVARIABLES collection corresponds to
the type of shift performed by a person on theith day. A stretchis a maximum sequence
of consecutive variables that are all assigned to the same value. Thepattern constraint
imposes that each sequence ofk consecutive stretches belongs to a given list of patterns.

Remark A generalisation of thepattern constraint to theregular constraint enforcing the fact
that a sequence of variables corresponds to a regular expression is presented in [286].

See also common keyword:group (timetabling constraint),
sliding distribution (sliding sequence constraint),
stretch circuit, stretch path (sliding sequence constraint,timetabling constraint),
stretch path partition (sliding sequence constraint).

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: timetabling constraint, sliding sequence constraint.

filtering: arc-consistency.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1576 AUTOMATON

2 1

1222 33

3−pattern 2

3−pattern 3

str
et

ch
 1

str
et

ch
 2

str
et

ch
 3

str
et

ch
 4

1 2 1

1 2 3

2 1 3

122211

decomposition of the sequence

in terms of 3−patterns

3−pattern 1

1 1 3 32 2

Figure 5.497: The sequence of theExampleslot, its four stretches and the correspond-
ing two3-patterns1 2 1 and2 1 3

20031008 1577

Automaton Taking advantage of the fact that allk-patterns have the same lengthk, it is straight-
forward to construct an automaton that only accepts solutions of thepattern constraint.
Figure5.498depicts the automaton associated with thepattern constraint of theExample
slot. The construction can be done in three steps:

• First, build a prefix tree of all thek-patterns. In the context of our example, this gives
all arcs of Figure5.498, except self loops and the arc froms3 to s7.

• Second, find out the transitions that exit a leave of the tree. For this purpose we
remove the first symbol of the correspondingk-pattern, add at the end of the re-
mainingk-pattern a symbol corresponding to a stretch value, and check whetherthe
new pattern belongs or not to the set ofk-patterns of thepattern constraint. When
the new pattern belongs to the set ofk-patterns we add a corresponding transition.
For instance, in the context of our example, consider the leaves3 that is associated
with the3-pattern1, 2, 1. We remove the first symbol1 and get2, 1. We then try to
successively add the stretch values1, 2 and3 to the end of2, 1 and check if the cor-
responding patterns2, 1, 1, 2, 1, 2 and2, 1, 3 belong or not to our set of3-patterns.
Since only2, 1, 3 is a3-pattern we add a new transition between the corresponding
leaves of the prefix tree (i.e., a transition froms3 to s7).

• Third, in order to take into account the fact that each value of ak-pattern corresponds
in fact to a given stretch value (i.e., several consecutive values thatare assigned the
same value), we add a self loop to all non-source states with a transition label that
corresponds to the transition label of their entering arc.

1

7
s

s
6

5
s

VAR =2 VAR =1

VAR =2 VAR =1

VAR =1 VAR =2

VAR =1 VAR =2

VAR =3 VAR =3 VAR =1

VAR =3

VAR =3

VAR =1

VAR =3

i i

i

i

i

i

i i

i

i

i

i

i

i

s

i

−1

3
ss

4

2
s

s

Figure 5.498: Automaton of thepattern constraint of theExample slot

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1578 AUTOMATON

5.283 peak

DESCRIPTION LINKS AUTOMATON

Origin Derived frominflexion.

Constraint peak(N, VARIABLES)

Arguments N : dvar

VARIABLES : collection(var−dvar)

Restrictions N ≥ 0
2 ∗ N ≤ max(|VARIABLES| − 1, 0)
required(VARIABLES, var)

Purpose

A variableVk (1 < k < m) of the sequence of variablesVARIABLES = V1, . . . , Vm is a
peakif and only if there exists ani (1 < i ≤ k) such thatVi−1 < Vi andVi = Vi+1 =
. . . = Vk andVk > Vk+1. N is the total number of peaks of the sequence of variables
VARIABLES.

Example

2,

〈

var− 1,
var− 1,
var− 4,
var− 8,
var− 6,
var− 2,
var− 7,
var− 1

〉

The peak constraint holds since the sequence1 1 4 8 6 2 7 1 contains two peaks
that respectively correspond to the variables that are assigned to values8 and7.

11

1 5 6 7 8

2

3

4

5

6

43

7

8

1 1

4

Values

Variables

8

2

6

2

7

Figure 5.499: The sequence and its two peaks

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20040530 1579

Typical |VARIABLES| > 2
range(VARIABLES.var) > 1

Symmetries • Items ofVARIABLES can bereversed.

• One and the same constant can beaddedto the var attribute of all items of
VARIABLES.

Arg. properties
Contractiblewrt. VARIABLES whenN = 0.

Usage Useful for constraining the number ofpeaksof a sequence of domain variables.

Remark Since the arity of the arc constraint is not fixed, thepeak constraint cannot be currently de-
scribed. However, this would not hold anymore if we were introducing a slot that specifies
how to merge adjacent vertices of the final graph.

See also common keyword:highest peak, inflexion (sequence).

comparison swapped:valley.

related: no valley.

specialisation:no peak (the variable counting the number of peaks is set to0 and re-
moved).

Keywords characteristic of a constraint: automaton, automaton with counters.

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(2).

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1580 AUTOMATON

Automaton Figure5.500depicts the automaton associated with thepeak constraint. To each pair of
consecutive variables(VARi, VARi+1) of the collectionVARIABLES corresponds a signature
variableSi. The following signature constraint linksVARi, VARi+1 and Si: (VARi >
VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi < VARi+1 ⇔ Si = 2).

{C=0}

iVAR > VAR
i+1iVAR = VAR

i+1iVAR = VARVAR < VARi+1i

i+1iVAR < VAR

N=C

N=C

s:

u:

VAR > VAR ,i i+1
{C=C+1}

i+1

Figure 5.500: Automaton of thepeak constraint

n−1Q =s

0C =0 1C

1Q

1
VAR

1S

2
VAR

2S

n
VAR

3
VAR

n−1S

n−1
VAR

3S

2Q

2C n−1C =N

u
s

Q =0

Figure 5.501: Hypergraph of the reformulation corresponding to the automaton of the
peak constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20040530 1581

1582 PREDEFINED

5.284 period

DESCRIPTION LINKS

Origin N. Beldiceanu

Constraint period(PERIOD, VARIABLES, CTR)

Arguments PERIOD : dvar

VARIABLES : collection(var−dvar)
CTR : atom

Restrictions PERIOD ≥ 1
PERIOD ≤ |VARIABLES|
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

Let us noteV0, V1, . . . , Vm−1 the variables of theVARIABLES collection. PERIOD is
the period of the sequenceV0 V1 . . . Vm−1 according to constraintCTR . This means
thatPERIOD is the smallest natural number such thatVi CTR Vi+PERIOD holds for alli ∈
0, 1, . . . ,m− PERIOD− 1.

Example

3,

〈

var− 1,
var− 1,
var− 4,
var− 1,
var− 1,
var− 4,
var− 1,
var− 1

〉

,=

The period constraint holds since, as depicted by Figure5.502, its first argument
PERIOD = 3 is equal (i.e., sinceCTR is set to=) to the period of the sequence
1 1 4 1 1 4 1 1.

41 1 1 1 1 14

Figure 5.502: A sequence that has a period of3

Typical PERIOD > 1
PERIOD < |VARIABLES|
|VARIABLES| > 2
range(VARIABLES.var) > 1
CTR ∈ [=]

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20000128 1583

Symmetries • Items ofVARIABLES can bereversed.

• Items ofVARIABLES can beshifted.

• All occurrences of two distinct values ofVARIABLES.var can beswapped; all
occurrences of a value ofVARIABLES.var can berenamedto any unused value.

Arg. properties
• Functional dependency: PERIOD determined byVARIABLES andCTR.

• Contractiblewrt. VARIABLES whenCTR ∈ [=] andPERIOD = 1.

• Prefix-contractiblewrt. VARIABLES.

• Suffix-contractiblewrt. VARIABLES.

Algorithm When CTR corresponds to the equality constraint, a potentially incomplete filtering algo-
rithm based on13 deductions rules is described in [52]. The generalisation of these rules
to the case whereCTR is not the equality constraint is discussed.

See also generalisation:period vectors (variable replaced byvector).

implies: period except 0.

soft variant: period except 0 (value0 can match any other value).

Keywords combinatorial object: periodic, sequence.

constraint arguments:pure functional dependency.

constraint type: predefined constraint, timetabling constraint, scheduling constraint.

filtering: border.

modelling: functional dependency.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1584 PREDEFINED

5.285 periodexcept0

DESCRIPTION LINKS

Origin Derived fromperiod.

Constraint period except 0(PERIOD, VARIABLES, CTR)

Arguments PERIOD : dvar

VARIABLES : collection(var−dvar)
CTR : atom

Restrictions PERIOD ≥ 1
PERIOD ≤ |VARIABLES|
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

Let us noteV0, V1, . . . , Vm−1 the variables of theVARIABLES collection.PERIOD is the
period of the sequenceV0 V1 . . . Vm−1 according to constraintCTR . This means that
PERIOD is the smallest natural number such thatVi CTR Vi+PERIOD∨Vi = 0∨Vi+PERIOD =
0 holds for alli ∈ 0, 1, . . . ,m− PERIOD− 1.

Example

3,

〈

var− 1,
var− 1,
var− 4,
var− 1,
var− 1,
var− 0,
var− 1,
var− 1

〉

,=

The period except 0 constraint holds since, as depicted by Figure5.503, its first
argumentPERIOD = 3 is equal (i.e., sinceCTR is set to=) to the period of the sequence
1 1 4 1 1 0 1 1; value0 is assumed to be equal to any other value.

01 1 1 1 1 14

Figure 5.503: A sequence that has a period of3 when we assume that value0 can be
equal to any other value

Typical PERIOD > 1
PERIOD < |VARIABLES|
|VARIABLES| > 2
range(VARIABLES.var) > 1
atleast(1, VARIABLES, 0)
CTR ∈ [=]

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20030820 1585

Symmetries • Items ofVARIABLES can bereversed.

• Items ofVARIABLES can beshifted.

• All occurrences of two distinct values ofVARIABLES.var that are both different
from 0 can beswapped; all occurrences of a value ofVARIABLES.var that is dif-
ferent from0 can berenamedto any unused value that is also different from0.

Arg. properties
• Functional dependency: PERIOD determined byVARIABLES andCTR.

• Contractiblewrt. VARIABLES whenCTR ∈ [=] andPERIOD = 1.

• Prefix-contractiblewrt. VARIABLES.

• Suffix-contractiblewrt. VARIABLES.

Usage Useful for timetabling problems where a person should repeat some work pattern over an
over except when he is unavailable for some reason. The value0 represents the fact that he
is unavailable, while the other values are used in the work pattern.

Algorithm See [52].

See also hard version: period.

implied by: period.

Keywords characteristic of a constraint: joker value.

combinatorial object: periodic, sequence.

constraint arguments:pure functional dependency.

constraint type: predefined constraint, timetabling constraint, scheduling constraint.

modelling: functional dependency.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1586 PREDEFINED

5.286 periodvectors

DESCRIPTION LINKS

Origin Derived fromperiod

Constraint period vectors(PERIOD, VECTORS, CTRS)

Types VECTOR : collection(var−dvar)
CTR : atom

Arguments PERIOD : dvar

VECTORS : collection(vec− VECTOR)
CTRS : collection(ctr− CTR)

Restrictions |VECTOR| ≥ 1
required(VECTOR, var)
CTR ∈ [=, 6=, <,≥, >,≤]
PERIOD ≥ 1
PERIOD ≤ |VECTORS|
required(VECTORS, vec)
same size(VECTORS, vec)
required(CTRS, ctr)
|CTRS| = |VECTOR|

Purpose

Let us noteVECTOR0, VECTOR1, . . . , VECTORn−1 the vectors of theVECTORS collec-
tion, andd the number of components of each vector (all vectors have the same size).
PERIOD is theperiod of the sequence of vectorsVECTOR0, VECTOR1, . . . , VECTORn−1

according to constraintsCTRS. This means thatPERIOD is the smallest nat-
ural number such that∀i ∈ [0, n − PERIOD − 1], ∀j ∈ [0, d − 1] :
VECTORi.vec[j] CTRS[j] VECTORi+PERIOD.vec[j].

Example

3,

〈

vec− 〈1, 0〉 ,
vec− 〈1, 5〉 ,
vec− 〈4, 4〉 ,
vec− 〈1, 0〉 ,
vec− 〈1, 5〉 ,
vec− 〈4, 4〉 ,
vec− 〈1, 0〉 ,
vec− 〈1, 5〉

〉

,

〈=,=〉

The period vectors constraint holds since its first argumentPERIOD = 3 is
equal (i.e., sinceCTRS is set to〈=,=〉) to the period of the sequencevec − 〈1, 0〉,
vec − 〈1, 5〉, vec − 〈4, 4〉, vec − 〈1, 0〉, vec − 〈1, 5〉, vec − 〈4, 4〉, vec − 〈1, 0〉,
vec− 〈1, 5〉.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20110614 1587

Typical CTR ∈ [=]
|VECTOR| > 1
PERIOD > 1
PERIOD < |VECTORS|
|VECTORS| > 2

Symmetry Items ofVECTORS can bereversed.

Arg. properties
• Functional dependency: PERIOD determined byVECTORS andCTRS.

• Prefix-contractiblewrt. VECTORS.

• Suffix-contractiblewrt. VECTORS.

See also specialisation:period (vectorreplaced byvariable).

Keywords characteristic of a constraint: vector.

combinatorial object: periodic, sequence.

constraint arguments:pure functional dependency.

constraint type: predefined constraint.

modelling: functional dependency.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1588 MAX NSCC,CLIQUE

5.287 permutation

DESCRIPTION LINKS GRAPH

Origin Derived fromalldifferent consecutive values.

Constraint permutation(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
minval(VARIABLES.var) = 1
maxval(VARIABLES.var) = |VARIABLES|

Purpose Enforce all variables of the collectionVARIABLES to take distinct values between1 and
the total number of variables.

Example (〈3, 2, 1, 4〉)

The permutation constraint holds since all the values3, 2, 1 and 4 are distinct,
and since they all belong to interval[1, 4] where4 is the total number of variables.

Typical |VARIABLES| > 2

Symmetries • Items ofVARIABLES arepermutable.

• Two distinct values ofVARIABLES.var can beswapped.

Usage SeeUsageslof of alldifferent.

Algorithm SeeAlgorithm slof of alldifferent.

See also implies: alldifferent consecutive values.

Keywords characteristic of a constraint: all different, disequality, sort based reformulation.

combinatorial object: permutation.

constraint type: value constraint.

final graph structure: onesucc.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20111210 1589

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) MAX NSCC≤ 1

Graph class ONE SUCC

Graph model We generate acliquewith anequalityconstraint between each pair of vertices (including a
vertex and itself) and state that the size of the largest strongly connected component should
not exceed one. Finally the restrictions express the fact that all values are between1 and
the total number of variables.

Parts (A) and (B) of Figure5.504respectively show the initial and final graph associated
with the Example slot. Since we use theMAX NSCC graph property we show one
of the largest strongly connected component of the final graph. Thepermutation holds
since all the strongly connected components have at most one vertex: avalue is used at
most once.

VARIABLES

1

2

3

4

MAX_NSCC=1

MAX_NSCC

1:3 2:2 3:1 4:4

(A) (B)

Figure 5.504: Initial and final graph of thepermutation constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1590 NARC,CLIQUE

5.288 placein pyramid

DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint place in pyramid(ORTHOTOPES, VERTICAL DIM)

Type ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)

Arguments ORTHOTOPES : collection(orth− ORTHOTOPE)
VERTICAL DIM : int

Restrictions |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end
required(ORTHOTOPES, orth)
same size(ORTHOTOPES, orth)
VERTICAL DIM ≥ 1
diffn(ORTHOTOPES)

Purpose

For each pair oforthotopes(O1, O2) of the collectionORTHOTOPES, O1 andO2 do not
overlap (twoorthotopesdo not overlap if there exists at least one dimension where their
projections do not overlap). In addition, eachorthotopeof the collectionORTHOTOPES
should be supported by one otherorthotopeor by the ground. The vertical dimension is
given by the parameterVERTICAL DIM.

Example

〈

orth−
〈

ori− 1 siz− 3 end− 4,
ori− 1 siz− 2 end− 3

〉

,

orth−
〈

ori− 1 siz− 2 end− 3,
ori− 3 siz− 3 end− 6

〉

,

orth−
〈

ori− 5 siz− 6 end− 11,
ori− 1 siz− 2 end− 3

〉

,

orth−
〈

ori− 5 siz− 2 end− 7,
ori− 3 siz− 2 end− 5

〉

,

orth−
〈

ori− 8 siz− 3 end− 11,
ori− 3 siz− 2 end− 5

〉

,

orth−
〈

ori− 8 siz− 2 end− 10,
ori− 5 siz− 2 end− 7

〉

〉

, 2

Figure 5.505 depicts the placement associated with the example, where theith item
of theORTHOTOPES collection is represented by the rectangle Ri. Theplace in pyramid

constraint holds since the rectangles do not overlap and since rectangles R1, R2, R3, R4,
R5, and R6 are respectively supported by the ground, R1, the ground, R3, R3, and R5.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20000128 1591

Typical |ORTHOTOPE| > 1
ORTHOTOPE.siz > 0
|ORTHOTOPES| > 1

Symmetry Items ofORTHOTOPES arepermutable.

Usage Thediffn constraint is not enough if one wants to produce a placement where noorthotope
floats in the air. This constraint is usually handled with a heuristic during the enumeration
phase.

See also used in graph description:orth on the ground, orth on top of orth.

Keywords constraint type: logic.

geometry:geometrical constraint, non-overlapping, orthotope.

1
987654321 10

6

5

4

3

2 R1

R2
R5

R6

R4

R3

dim=1

di
m

=
2

Figure 5.505: Solution corresponding to the example

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1592 NARC,CLIQUE

Arc input(s) ORTHOTOPES

Arc generator CLIQUE 7→collection(orthotopes1, orthotopes2)

Arc arity 2

Arc constraint(s)
∨

∧

(

orthotopes1.key = orthotopes2.key,
orth on the ground(orthotopes1.orth, VERTICAL DIM)

)

,

∧

orthotopes1.key 6= orthotopes2.key,

orth on top of orth

orthotopes1.orth,
orthotopes2.orth,
VERTICAL DIM

Graph property(ies) NARC= |ORTHOTOPES|

Graph model The arc constraint of the graph constraint enforces one of the following conditions:

• If the arc connects the sameorthotopeO then the ground directly supportsO,

• Otherwise, if we have an arc from anorthotopeO1 to a distinctorthotopeO2,
the condition is: O1 is on top ofO2 (i.e., in all dimensions, except dimension
VERTICAL DIM, the projection ofO1 is included in the projection ofO2, while in
dimensionVERTICAL DIM the projection ofO1 is located after the projection ofO2).

Parts (A) and (B) of Figure5.506respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

ORTHOTOPES

1

2

3

4

5

6

NARC=6

1:1,3,4
 1,2,3

2:1,2,3
 3,3,6

3:5,6,11
 1,2,3

4:5,2,7
 3,2,5

5:8,3,11
 3,2,5

6:8,2,10
 5,2,7

(A) (B)

Figure 5.506: Initial and final graph of theplace in pyramid constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 1593

1594 NCC,NVERTEX,CLIQUE(6=)

5.289 polyomino

DESCRIPTION LINKS GRAPH

Origin Inspired by [180].

Constraint polyomino(CELLS)

Argument CELLS : collection

index−int,
right−dvar,
left−dvar,
up−dvar,
down−dvar

Restrictions CELLS.index ≥ 1
CELLS.index ≤ |CELLS|
|CELLS| ≥ 1
required(CELLS, [index, right, left, up, down])
distinct(CELLS, index)
CELLS.right ≥ 0
CELLS.right ≤ |CELLS|
CELLS.left ≥ 0
CELLS.left ≤ |CELLS|
CELLS.up ≥ 0
CELLS.up ≤ |CELLS|
CELLS.down ≥ 0
CELLS.down ≤ |CELLS|

Purpose

Enforce all cells of the collectionCELLS to be connected and to form one single block.
Each cell is defined by the following attributes:

1. Theindex attribute of the cell, which is an integer between1 and the total number
of cells, is unique for each cell.

2. Theright attribute that is the index of the cell located immediately to the right
of that cell (or0 if no such cell exists).

3. Theleft attribute that is the index of the cell located immediately to the left of
that cell (or0 if no such cell exists).

4. Theup attribute that is the index of the cell located immediately on top of that
cell (or0 if no such cell exists).

5. Thedown attribute that is the index of the cell located immediately above that cell
(or 0 if no such cell exists).

This corresponds to a polyomino [181].

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

20000128 1595

Example

〈

index− 1 right− 0 left− 0 up− 2 down− 0,
index− 2 right− 3 left− 0 up− 0 down− 1,
index− 3 right− 0 left− 2 up− 4 down− 0,
index− 4 right− 5 left− 0 up− 0 down− 3,
index− 5 right− 0 left− 4 up− 0 down− 0

〉

The polyomino constraint holds since all the cells corresponding to the items of
theCELLS collection form one single group of connected cells: theith (i ∈ [1, 4]) cell is
connected to the(i+ 1)th cell. Figure5.507shows the corresponding polyomino.

5

1

2 3

4

Figure 5.507: Polyomino corresponding to the example

Symmetries • Items ofCELLS arepermutable.

• Attributes ofCELLS are permutablew.r.t. permutation(index) (right, left)
(up) (down) (permutation applied to all items).

• Attributes ofCELLS arepermutablew.r.t. permutation(index) (right) (left)
(up, down) (permutation applied to all items).

• Attributes of CELLS are permutable w.r.t. permutation (index)
(up, left, down, right) (permutation applied to all items).

Usage Enumeration of polyominoes.

Keywords combinatorial object: pentomino.

final graph structure: strongly connected component.

geometry:geometrical constraint.

puzzles:pentomino.

Example
One or several examples of ground solutions of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Keywords
Related keywords grouped by meta-keywords.

1596 NCC,NVERTEX,CLIQUE(6=)

Arc input(s) CELLS

Arc generator CLIQUE (6=) 7→collection(cells1, cells2)

Arc arity 2

Arc constraint(s)
∨

cells1.right = cells2.index ∧ cells2.left = cells1.index,
cells1.left = cells2.index ∧ cells2.right = cells1.index,
cells1.up = cells2.index ∧ cells2.down = cells1.index,
cells1.down = cells2.index ∧ cells2.up = cells1.index

Graph property(ies) • NVERTEX= |CELLS|
• NCC= 1

Graph model The graph constraint models the fact that all the cells are connected. Weuse the
CLIQUE(6=) arc generator in order to only consider connections between two distinct
cells. The first graph propertyNVERTEX = |CELLS| avoid the case isolated cells,
while the second graph propertyNCC = 1 enforces to have one single group of con-
nected cells.

Parts (A) and (B) of Figure5.508respectively show the initial and final graph associated
with theExample slot. Since we use theNVERTEX graph property the vertices of the
final graph are stressed in bold. Since we also use theNCC graph property we show the
unique connected component of the final graph. An arc between two vertices indicates that
two cells are directly connected.

CELLS

1

2

3

4

5 NVERTEX=5
NCC=1

CC#1

1:1,0,0,2,0

2:2,3,0,0,1

3:3,0,2,4,0

4:4,5,0,0,3

5:5,0,4,0,0

(A) (B)

Figure 5.508: Initial and final graph of thepolyomino constraint

Signature From the graph propertyNVERTEX = |CELLS| and from the restriction|CELLS| ≥ 1

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20000128 1597

we have that the final graph is not empty. Therefore it contains at leastone connected
component. So we can rewriteNCC = 1 toNCC ≤ 1 and simplifyNCC toNCC.

1598 PREDEFINED

5.290 power

DESCRIPTION LINKS

Origin [126]

Constraint power(X, N, Y)

Synonym xexpyeqz.

Arguments X : dvar

N : dvar

Y : dvar

Restrictions X ≥ 0
N ≥ 0
Y ≥ 0

Purpose Enforce the fact thatY is equal toXN.

Example (2, 3, 8)

Thepower constraint holds since8 is equal to23.

Typical X > 1
N > 1
Y > 1

Arg. properties
Functional dependency: Y determined byX andN.

Algorithm In [126] a filtering algorithm for thepower constraint was automatically derived from
the algorithm that multipliesX by itself N times by using constructive disjunction and
abstract interpretationin order to approximate the behaviour of the while loop of that algo-
rithm.

Systems xexpyeqz in JaCoP.

See also common keyword:gcd (abstract interpretation).

Keywords constraint arguments: ternary constraint, pure functional dependency.

constraint type: arithmetic constraint, predefined constraint.

filtering: abstract interpretation.

modelling: functional dependency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://jacopapi.osolpro.com/JaCoP/constraints/XexpYeqZ.html
http://www.jacop.eu/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20070930 1599

1600 NARC,PATH

5.291 precedence

DESCRIPTION LINKS GRAPH

Origin Scheduling

Constraint precedence(TASKS)

Argument TASKS : collection(origin−dvar, duration−dvar)

Restrictions required(TASKS, [origin, duration])
TASKS.duration ≥ 0

Purpose
All consecutive pairs of tasks of the collectionTASKS should be ordered (i.e., the end of
the first task of a pair should be less than or equal to the start of the second task of the
same pair).

Example

〈
origin− 1 duration− 3,
origin− 4 duration− 0,
origin− 5 duration− 2,
origin− 8 duration− 1

〉

Since the tasks are ordered (i.e.,1 + 3 ≤ 4, 4 + 0 ≤ 5, 5 + 2 ≤ 8) the precedence
constraint holds.

Typical |TASKS| > 1
TASKS.duration ≥ 1

Symmetries • TASKS.duration can bedecreasedto any value≥ 0.

• One and the same constant can beaddedto theorigin attribute of all items of
TASKS.

Arg. properties
Contractiblewrt. TASKS.

See also common keyword:increasing (order constraint).

implies: disjunctive.

Keywords constraint type: decomposition, order constraint.

filtering: arc-consistency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20111015 1601

Arc input(s) TASKS

Arc generator PATH 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) tasks1.origin+ tasks1.duration ≤ tasks2.origin

Graph property(ies) NARC= |TASKS| − 1

Graph model Since we are only interested by the constraints linking two consecutive items of the collec-
tion TASKS we usePATH to generate the arcs of the initial graph.

Parts (A) and (B) of Figure5.509respectively show the initial and final graph of the first
example of theExample slot. Since we use theNARC graph property, the arcs of the
final graph are stressed in bold.

TASKS

1

2

3

4

NARC=3

1:1,3

2:4,0

3:5,2

4:8,1

(A) (B)

Figure 5.509: Initial and final graph of theprecedence constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1602 PROD,SELF

5.292 product ctr

DESCRIPTION LINKS GRAPH

Origin Arithmetic constraint.

Constraint product ctr(VARIABLES, CTR, VAR)

Arguments VARIABLES : collection(var−dvar)
CTR : atom

VAR : dvar

Restrictions required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose
Constraint the product of a set of domain variables. More precisely, let P denote the
product of the variables of theVARIABLES collection. Enforce the following constraint
to hold:P CTR VAR.

Example (〈2, 1, 4〉 ,=, 8)

Theproduct ctr constraint holds since its last argumentVAR = 8 is equal (i.e.,CTR is
set to=) to 2 · 1 · 4.

Typical |VARIABLES| > 1
|VARIABLES| < 10
range(VARIABLES.var) > 1
VARIABLES.var 6= 0
CTR ∈ [=, <,≥, >,≤]
VAR 6= 0

Symmetry Items ofVARIABLES arepermutable.

Arg. properties
• Contractible wrt. VARIABLES when CTR ∈ [<,≤] and

minval(VARIABLES.var) > 0.

• Aggregate: VARIABLES(union), CTR(id), VAR(∗) whenCTR ∈ [=].

Used in cumulative product.

See also common keyword:range ctr, sum ctr (arithmetic constraint).

Keywords characteristic of a constraint: product.

constraint type: arithmetic constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 1603

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) TRUE

Graph property(ies) PROD(VARIABLES, var) CTR VAR

Graph model Since we want to keep all the vertices of the initial graph we use theSELF arc generator
together with theTRUE arc constraint. This predefined arc constraint always holds.

Parts (A) and (B) of Figure5.510respectively show the initial and final graph associated
with theExampleslot. Since we use theTRUE arc constraint both graphs are identical.

VARIABLES

123

PROD(VARIABLES,var)=2*1*4=8

1:2 2:1 3:4

(A) (B)

Figure 5.510: Initial and final graph of theproduct ctr constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1604 NCC,NVERTEX,CLIQUE(6=)

5.293 proper forest

DESCRIPTION LINKS GRAPH

Origin Derived fromtree, [44].

Constraint proper forest(NTREES, NODES)

Arguments NTREES : dvar

NODES : collection(index−int, neighbour−svar)

Restrictions NTREES ≥ 0
required(NODES, [index, neighbour])
|NODES|mod 2 = 0
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.neighbour ≥ 1
NODES.neighbour ≤ |NODES|
NODES.neighbour 6= NODES.index

Purpose
Cover an undirected graphG by a set ofNTREES trees (i.e., atree is a connected graph
without cycles that contains at least two vertices [100]) in such a way that each vertex of
G belongs to one distinct tree.

Example

3,

〈

index− 1 neighbour− {3, 6},
index− 2 neighbour− {9},
index− 3 neighbour− {1, 5, 7},
index− 4 neighbour− {9},
index− 5 neighbour− {3},
index− 6 neighbour− {1},
index− 7 neighbour− {3},
index− 8 neighbour− {10},
index− 9 neighbour− {2, 4},
index− 10 neighbour− {8}

〉

The proper forest constraint holds since the undirected graph associated with
the items of theNODES collection corresponds to a forest containingNTREES = 3 trees:
each tree respectively involves the vertices{1, 3, 5, 6, 7}, {2, 4, 9} and{8, 10}.

Typical NTREES > 0
|NODES| > 1

Symmetry Items ofNODES arepermutable.

Arg. properties
Functional dependency: NTREES determined byNODES.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

20050604 1605

Algorithm A filtering algorithm for theproper forest constraint was proposed by N. Beldiceanu
et al. in [44]. It achieveshybrid-consistencyand its running time is dominated by the
complexity of finding all edges that do not belong to any maximum cardinalitymatching
in an undirectedn-vertex,m-edge graph, i.e.,O(m · n).

Systems tree in Choco.

See also common keyword:tree (connected component,tree).

Keywords characteristic of a constraint: undirected graph.

constraint arguments:constraint involving set variables.

constraint type: graph constraint.

filtering: hybrid-consistency.

final graph structure: connected component, tree, no cycle, symmetric.

modelling: functional dependency.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1606 NCC,NVERTEX,CLIQUE(6=)

Arc input(s) NODES

Arc generator CLIQUE (6=) 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) in set(nodes2.index, nodes1.neighbour)

Graph property(ies) • NVERTEX= (NARC+2 ∗ NTREES)/2
• NCC= NTREES

• NVERTEX= |NODES|

Graph class SYMMETRIC

Graph model The graph constraint enforces the following conditions:

• Eachconnected componentof the final graph hasn vertices and2 ·(n−1) arcs. This
is equivalent to the fact that eachconnected componenthas not any cycle.

• Since we use theCLIQUE (6=) arc-generator and since, by definition, the final graph
does not contain any isolated vertex, eachconnected componentof the final graph
involves more than one vertex.

• The number ofconnected componentsof the final graph is equal toNCC.

• All the vertices of the initial graph belong to the final graph.

• The final graph is symmetric.

Parts (A) and (B) of Figure5.511respectively show the initial and final graph associated
with the Example slot. For eachconnected componentwe display its number of arcs as
well as its number of vertices. Theproper forest constraint holds since the final graph
hasNTREES = NCC = 3 connected componentsand no cycle.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20050604 1607

(A)

NODES

1

2

3

4

5

6

7

8

9

10

(B)

CC#1:NARC=8,NVERTEX=5
CC#2:NARC=4,NVERTEX=3
CC#3:NARC=2,NVERTEX=2

NCC=3

CC#1 CC#2 CC#3

1:1,{3,6}

3:3,{1,5,7} 6:6,{1}

5:5,{3} 7:7,{3}

2:2,{9}

9:9,{2,4}

4:4,{9} 8:8,{10}

10:10,{8}

Figure 5.511: Initial and final graph of theproper forest constraint

1608 RANGE,SELF

5.294 rangectr

DESCRIPTION LINKS GRAPH

Origin Arithmetic constraint.

Constraint range ctr(VARIABLES, CTR, R)

Arguments VARIABLES : collection(var−dvar)
CTR : atom

R : dvar

Restrictions |VARIABLES| > 0
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

Constraint the difference between the maximum value and the minimum valueof a set
of domain variables. More precisely, letRANGE denote the difference between the largest
and the smallest variables of theVARIABLES collection plus one. Enforce the following
constraint to hold:RANGE CTR R.

Example (〈1, 9, 4〉 ,=, 9)

The range ctr constraint holds sincemax(1, 9, 4) − min(1, 9, 4) + 1 is equal
(i.e.,CTR is set to=) to its last argumentR = 9.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
CTR ∈ [=, <,≥, >,≤]

Symmetries • Items ofVARIABLES arepermutable.

• All occurrences of two distinct values ofVARIABLES.var can beswapped.

• One and the same constant can beaddedto the var attribute of all items of
VARIABLES.

Arg. properties
• Contractiblewrt. VARIABLES whenCTR ∈ [<,≤].

• Extensiblewrt. VARIABLES whenCTR ∈ [≥, >].

Used in shift.

See also common keyword:product ctr, sum ctr (arithmetic constraint).

Keywords characteristic of a constraint: range.

constraint type: arithmetic constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 1609

1

V
al

ue
s

Variables

minimum value=1

maximum value=99

4

1

8

7

6

5

3

2

32

R
=

9
−

1
+

1

Figure 5.512: Illustration of the example: three variablesrespectively fixed to values
1, 9 and4, and their corresponding rangeR = 9

1610 RANGE,SELF

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) TRUE

Graph property(ies) RANGE(VARIABLES, var) CTR R

Graph model Since we want to keep all the vertices of the initial graph we use theSELF arc generator
together with theTRUE arc constraint. This predefined arc constraint always holds.

Parts (A) and (B) of Figure5.513respectively show the initial and final graph associated
with theExampleslot. Since we use theTRUE arc constraint both graphs are identical.

VARIABLES

123

RANGE(VARIABLES,var)=9-1+1=9

1:1 2:9 3:4

(A) (B)

Figure 5.513: Initial and final graph of therange ctr constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1611

1612 NARC,PATH

5.295 relaxedsliding sum

DESCRIPTION LINKS GRAPH

Origin CHIP

Constraint relaxed sliding sum(ATLEAST, ATMOST, LOW, UP, SEQ, VARIABLES)

Arguments ATLEAST : int

ATMOST : int

LOW : int

UP : int

SEQ : int

VARIABLES : collection(var−dvar)

Restrictions ATLEAST ≥ 0
ATMOST ≥ ATLEAST

ATMOST ≤ |VARIABLES| − SEQ+ 1
UP ≥ LOW

SEQ > 0
SEQ ≤ |VARIABLES|
required(VARIABLES, var)

Purpose
There are betweenATLEAST andATMOST sequences ofSEQ consecutive variables of the
collectionVARIABLES such that the sum of the variables of the sequence is in[LOW, UP].

Example

3, 4, 3, 7, 4,

〈

var− 2,
var− 4,
var− 2,
var− 0,
var− 0,
var− 3,
var− 4

〉

Within the sequence2 4 2 0 0 3 4 we have exactly3 subsequences ofSEQ = 4
consecutive values such that their sum is located within the interval[LOW, UP] = [3, 7]:
subsequences4 2 0 0, 2 0 0 3 and0 0 3 4. Consequently therelaxed sliding sum

constraint holds since the number of such subsequences is located withinthe interval
[ATLEAST, ATMOST] = [3, 4].

Typical SEQ > 1
SEQ < |VARIABLES|
range(VARIABLES.var) > 1
ATLEAST > 0 ∨ ATMOST < |VARIABLES| − SEQ+ 1

Symmetries • ATLEAST can bedecreasedto any value≥ 0.

• ATMOST can beincreasedto any value≤ |VARIABLES| − SEQ+ 1.

• Items ofVARIABLES can bereversed.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20000128 1613

Algorithm [29].

See also hard version: sliding sum.

used in graph description:sum ctr (the sliding constraint).

Keywords characteristic of a constraint: hypergraph.

combinatorial object: sequence.

constraint type: sliding sequence constraint, soft constraint, relaxation.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1614 NARC,PATH

Arc input(s) VARIABLES

Arc generator PATH 7→collection

Arc arity SEQ

Arc constraint(s) • sum ctr(collection,≥, LOW)
• sum ctr(collection,≤, UP)

Graph property(ies) • NARC≥ ATLEAST

• NARC≤ ATMOST

Graph model Within the context of theExample slot, the corresponding final directed hypergraph is
given by Figure5.514. For each vertex of the graph we show its corresponding position
within the collection of variables. The constraint associated with each arc corresponds to
a conjunction of twosum ctr constraints involving4 consecutive variables. We did not
put vertex1 since the single arc constraint that mentions vertex1 does not hold (i.e., the
sum2 + 4 + 2 + 0 = 8 is not located in interval[3, 7]). However, the directed hypergraph
contains3 arcs, so therelaxed sliding sum constraint is satisfied since it was requested
to have between3 and4 arcs.

2 3 7654

Figure 5.514: Final directed hypergraph associated with the example

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 1615

1616 PREDEFINED

5.296 remainder

DESCRIPTION LINKS

Origin Arithmetic.

Constraint remainder(Q, D, R)

Synonyms modulo, mod.

Arguments Q : dvar

D : dvar

R : dvar

Restrictions Q ≥ 0
D > 0
R ≥ 0
R < D

Purpose EnforceR to be equal to the remainder of the division ofQ by D.

Example (15, 2, 1)

Theremainder constraint holds since1 is the rest of the division of15 by 2.

Arg. properties
Functional dependency: R determined byQ andD.

Keywords constraint arguments:binary constraint, pure functional dependency.

constraint type: predefined constraint, arithmetic constraint.

modelling: functional dependency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Keywords
Related keywords grouped by meta-keywords.

20110612 1617

1618 NARC,PRODUCT

5.297 roots

DESCRIPTION LINKS GRAPH

Origin [59]

Constraint roots(S, T, VARIABLES)

Arguments S : svar

T : svar

VARIABLES : collection(var−dvar)

Restrictions S ≤ |VARIABLES|
required(VARIABLES, var)

Purpose
S is the set of indices of the variables in the collectionVARIABLES taking their values in
T; S = {i | VARIABLES[i].var ∈ T}. Positions are numbered from1.

Example

{2, 4, 5},
{2, 3, 8},
〈1, 3, 1, 2, 3〉

Theroots constraint holds since values2 and3 in T occur in the collection〈1, 3, 1, 2, 3〉
only at positionsS = {2, 4, 5}. The value8 ∈ T does not occur within the collection
〈1, 3, 1, 2, 3〉.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Usage Bessìere et al. showed [59] that manycounting and occurence constraintscan be spec-
ified with two global primitives: roots and range. For instance, thecount con-
straint can be decomposed into oneroots constraint: count(VAL, VARS, OP, NVAR) iff
roots(S, {VAL}, VARS) ∧ |S| OP NVAR.

roots does not count but collects the set of variables using particular values.It provides
then a way of channeling.roots generalizes, for instance, thelink set to booleans

constraint,link set to booleans(S, BOOLEANS) iff roots(S, {1}, BOOLEANS.bool), or
may be used instead of thedomain constraint.

Other examples of reformulations are given in [63].

Algorithm In [62], Bessìere et al. shows that enforcinghybrid-consistencyon roots is NP-hard.
They consider the decomposition ofroots into a network of ternary constraints:∀i,
i ∈ S ⇒ VARIABLES[i].var ∈ T and VARIABLES[i].var ⇒ T ∧ i ∈ S. Enforcing
bound consistency on the decomposition achieves bound consistency onroots. Enforcing
hybrid consistency on the decomposition achieves at least bound consistency onroots,
until hybrid consistency in some special cases:

• dom(VARIABLES[i].var) ⊂ T, ∀i ∈ S,

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

20070620 1619

• dom(VARIABLES[i].var) ∩ T = ∅, ∀i 6∈ S,

• VARIABLES are ground,

• T is ground.

Enforcing hybrid consistency on the decomposition can be done inO(nd) with n =
|VARIABLES| andd the maximum domain size ofVARIABLES[i].var andT.

Systems roots in Gecode, roots in MiniZinc .

See also common keyword:link set to booleans (constraint involving set variables).

related: among (can be expressed withroots), assign and nvalues (can be ex-
pressed withroots and range), atleast, atmost (can be expressed withroots),
common (can be expressed withroots andrange), count (can be expressed withroots),
domain constraint, global cardinality, global contiguity (can be expressed
with roots), symmetric alldifferent, uses (can be expressed withroots and
range).

Keywords characteristic of a constraint: disequality.

constraint arguments:constraint involving set variables.

constraint type: counting constraint, value constraint, decomposition.

filtering: hybrid-consistency.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.gecode.org/doc/3.7.0/reference/group__TaskModelMiniModelSetAlias.html
http://www.gecode.org/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#roots
http://www.g12.cs.mu.oz.au/minizinc/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1620 NARC,PRODUCT

Derived Collection
col(SETS−collection(s−svar, t−svar), [item(s− S, t− T)])

Arc input(s) SETS VARIABLES

Arc generator PRODUCT 7→collection(sets, variables)

Arc arity 2

Arc constraint(s) in set(variables.key, sets.s) ⇔in set(variables.var, sets.t)

Graph property(ies) NARC= |VARIABLES|

SETS

VARIABLES

1

12345

NARC=5

1:{2,4,5},{2,3,8}

1:1 2:3 3:1 4:2 5:3

(A) (B)

Figure 5.515: Initial and final graph of theroots constraint

Graph model

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20070620 1621

1622 NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT

5.298 same

DESCRIPTION LINKS GRAPH AUTOMATON

Origin N. Beldiceanu

Constraint same(VARIABLES1, VARIABLES2)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose
The variables of theVARIABLES2 collection correspond to the variables of the
VARIABLES1 collection according to a permutation.

Example

〈

var− 1,
var− 9,
var− 1,
var− 5,
var− 2,
var− 1

〉

,

〈

var− 9,
var− 1,
var− 1,
var− 1,
var− 2,
var− 5

〉

The same constraint holds since values1, 2, 5 and 9 have the same number of oc-
currences within both collections〈1, 9, 1, 5, 2, 1〉 and 〈9, 1, 1, 1, 2, 5〉. Figure 5.516
illustrates this correspondence.

5

VARIABLES1

1 9 1 5 2 1

VARIABLES2

9 1 1 1 2

Figure 5.516: Correspondence between collection〈1, 9, 1, 5, 2, 1〉 and collection
〈9, 1, 1, 1, 2, 5〉

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20000128 1623

Symmetries • Arguments arepermutablew.r.t. permutation(VARIABLES1, VARIABLES2).

• Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• All occurrences of two distinct values inVARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value inVARIABLES1.var or
VARIABLES2.var can berenamedto any unused value.

Arg. properties
Aggregate: VARIABLES1(union), VARIABLES2(union).

Usage Thesame constraint can be used in the following contexts:

• Pairing problems taken from [46]. The organisation Doctors Without Borders has a
list of doctors and a list of nurses, each of whom volunteered to go on one mission
in the next year. Each volunteer specifies a list of possible dates and each mission
involves one doctor and one nurse. The task is to produce a list of pairs such that
each pair includes a doctor and a nurse who are available at the same dateand each
volunteer appears in exactly one pair. The problem is modelled by asame(D =
d1, d2, . . . , dm, N = n1, n2, . . . , nm) constraint where each doctor is represented
by a domain variable inD and each nurse by a domain variable inN . For a given
doctor or nurse the corresponding domain variable gives the dates when the person
is available. When the number of nurses is different from the number ofdoctors we
replace thesame constraint by aused by constraint.

• Timetabling problems where we wish to produce fair schedules for different persons
is a second use of thesame constraint. Assume we need to generate a plan over a
period ofD consecutive days forP persons. For each dayd and each personp we
need to decide whether personp works in the morning shift, in the afternoon shift,
in the night shift or does not work at all on dayd. In a fair schedule, the number
of morning shifts should be the same for all the persons. The same condition holds
for the afternoon and the night shifts as well as for the days off. We create for each
personp the sequence of variablesvp,1, vp,2, . . . , vp,D. vp,D is equal to one of0, 1, 2
and3, depending on whether personp does not work, works in the morning, in the
afternoon or during the night on dayd. We can useP −1 same constraints to express
the fact thatv1,1, v1,2, . . . , v1,D should be a permutation ofvp,1, vp,2, . . . , vp,D for
each(1 < p ≤ P).

• Thesame constraint can also be used as achannelling constraintfor modelling the
following recurring pattern: given the number of 1s in each line and eachcolumn of
a 0-1 matrix M with n rows andm columns, reconstruct the matrix. This pattern
usually occurs with additional constraints about compatible positions of the 1s, or
about the overall shape reconstructed from all the 1’s (e.g., convexity, connectivity).
If we restrict ourselves to the basic pattern there is anO(mn) algorithm for recon-
structing am · n matrix from its horizontal and vertical directions [165]. We show
how to model this pattern with thesame constraint. Letli (1 ≤ i ≤ n) and cj
(1 ≤ j ≤ m) denote respectively, the required number of 1s in theith row and the
jth column ofM. We number the entries of the matrix as shown in the left-hand side
of 5.517. For rowi we createli domain variablesvik wherek ∈ [1, li]. Similarly,
for each columnj we createcj domain variablesujk wherek ∈ [1, ci]. The domain
of each variable contains the set of entries that belong to the row or columnthat the
variable corresponds to. Thus, each domain variable represents a1 that appears in

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

1624 NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT

the designated row or column. LetV be the set of variables corresponding to rows
andU be the set of variables corresponding to columns. To make sure that each 1
is placed in a different entry, we impose the constraintalldifferent(U). In ad-
dition, the constraintsame(U ,V) enforces that the 1s exactly coincide on the rows
and the columns. A solution is shown on the right-hand side of5.517. Note that the
same and global cardinality constraint allows to model the matrix reconstruc-
tion problem without the additionalalldifferent constraint.

v

1 2 3 4

5 6 7 8

2311 21 22 11 21 4131

1

1

3

1 1 1

1 1 0 1

0 0 1 0

same([5,6,3,8],[3,5,6,8])

21
22
23

11

11 31

21 41

 in {5,6,7,8}
 in {5,6,7,8}
 in {5,6,7,8}

 in {1,2,3,4}

u
u
u

u

same([, , ,],[, , ,])u u u u v v v v

 in {1,5} in {3,7}

 in {2,6} in {4,8}

v v

v

Figure 5.517: Modelling the0-1 matrix reconstruction problem with thesame con-
straint

Remark Thesame constraint is a relaxed version of thesort constraint introduced in [277]. We do
not enforce the second collection of variables to be sorted in increasing order.

If we interpret the collectionsVARIABLES1 and VARIABLES2 as two multisets vari-
ables [222], the same constraint can be considered as an equality constraint between two
multisets variables.

Thesame constraint can be modelled by twoglobal cardinality constraints. For in-
stance, thesame constraint

same

(〈

var− x1, var− x2

〉

,
〈

var− y1, var− y2
〉

,

)

where the union of the domains of the different variables is{1, 2, 3, 4} corresponds to the
conjunction of the following twoglobal cardinality constraints:

global cardinality

〈

var− x1, var− x2

〉

,

〈
val− 1 noccurrence− c1,
val− 2 noccurrence− c2,
val− 3 noccurrence− c3,
val− 4 noccurrence− c4

〉

global cardinality

〈

var− y1, var− y2
〉

,

〈
val− 1 noccurrence− c1,
val− 2 noccurrence− c2,
val− 3 noccurrence− c3,
val− 4 noccurrence− c4

〉

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

20000128 1625

As shown by the next example, the consistency for all variables of the two
global cardinality constraints does not implies consistency for the corresponding
same constraint. This is for instance the case when the domains ofx1, x2, y1 and y2
is respectively equal to{1, 2}, {3, 4}, {1, 2, 3, 4} and{3, 4}. The conjunction of the two
global cardinality constraints does not remove values3 and4 from y1.

In his PhD thesis, W.-J. van Hoeve introduces a soft version of thesame constraint where
the cost is the minimum number of variables to unassign in order to get backto a solu-
tion [398, page 78]. In the context of thesame constraint this violation cost corresponds
to the difference between the number of variables inVARIABLES1 and the number of
values that both occur inVARIABLES1 and inVARIABLES2 (provided that one value of
VARIABLES1 matches at most one value ofVARIABLES2).

Algorithm In [45, 46, 47, 213], it is shown how to model this constraint by aflow network that en-
ables to computearc-consistencyandbound-consistency. Unlike the networks used for
alldifferent andglobal cardinality, the network now has three sets of nodes, so
the algorithms are more complex, in particular the efficientbound-consistencyalgorithm.

Reformulation Thesame(VARIABLES1, VARIABLES2) constraint can be reformulated as the conjunction
sort(VARIABLES1, SORTED VARIABLES) ∧ sort(VARIABLES2, SORTED VARIABLES).

Used in k same.

See also generalisation: correspondence (PERMUTATION parameter added),
same interval (variable replaced by variable/constant),
same modulo (variable replaced by variable mod constant),
same partition (variable replaced byvariable ∈ partition).

implied by: lex equal, same and global cardinality,
same and global cardinality low up, sort.

implies: same intersection, used by.

related to a common problem:colored matrix (matrix reconstruction problem).

soft variant: soft same var (variable-based violation measure).

system of constraints:k same.

used in reformulation: sort.

Keywords characteristic of a constraint: sort based reformulation, automaton,
automaton with array of counters.

combinatorial object: permutation, multiset.

constraint arguments:constraint between two collections of variables.

filtering: flow, arc-consistency, bound-consistency, DFS-bottleneck.

modelling: channelling constraint, equality between multisets.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1626 NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • for all connected components:NSOURCE=NSINK

• NSOURCE= |VARIABLES1|
• NSINK= |VARIABLES2|

Graph model Parts (A) and (B) of Figure5.518respectively show the initial and final graph associated
with the Example slot. Since we use theNSOURCE andNSINK graph properties,
the source and sink vertices of the final graph are stressed with a doublecircle. Since there
is a constraint on each connected component of the final graph we alsoshow the different
connected components. Each of them corresponds to an equivalenceclass according to the
arc constraint. Thesame constraint holds since:

• Each connected component of the final graph has the same number ofsources and of
sinks.

• The number of sources of the final graph is equal to|VARIABLES1|.
• The number of sinks of the final graph is equal to|VARIABLES2|.

Signature Since the initial graph contains only sources and sinks, and since isolated vertices are elim-
inated from the final graph, we make the following observations:

• Sources of the initial graph cannot become sinks of the final graph,

• Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use thePRODUCT arc generator on the col-
lectionsVARIABLES1 andVARIABLES2, we have that the maximum number of sources and
sinks of the final graph is respectively equal to|VARIABLES1| and|VARIABLES2|. There-
fore we can rewriteNSOURCE = |VARIABLES1| to NSOURCE ≥ |VARIABLES1|
and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite
NSINK = |VARIABLES2| to NSINK ≥ |VARIABLES2| and simplifyNSINK to
NSINK.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20000128 1627

(A)

VARIABLES1

VARIABLES2

1

1234 56

2 3456

(B)

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=1,NSINK=1
CC#3:NSOURCE=1,NSINK=1
CC#4:NSOURCE=1,NSINK=1

CC#1 CC#2 CC#3 CC#4

1:1

2:1 3:14:1

3:16:1 2:9

1:9

4:5

6:5

5:2

5:2

Figure 5.518: Initial and final graph of thesame constraint

1628 NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT

Automaton To each item of the collectionVARIABLES1 corresponds a signature variableSi that is
equal to0. To each item of the collectionVARIABLES2 corresponds a signature variable
Si+|VARIABLES1| that is equal to1.

{C[_]=0}

1,

i i

t:
arith(C,=,0)

{c[VAR]=c[VAR]−1}
1,

i i

i i{c[VAR]=c[VAR]+1}
0,s

{c[VAR]=c[VAR]−1}

Figure 5.519: Automaton of thesame constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20000128 1629

1630NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT ;NVERTEX,SELF , ∀

5.299 sameand global cardinality

DESCRIPTION LINKS GRAPH

Origin Conjoinsame andglobal cardinality

Constraint same and global cardinality(VARIABLES1, VARIABLES2, VALUES)

Synonyms sgcc, same gcc, same and gcc, swc, same with cardinalities.

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
VALUES : collection(val−int, noccurrence−dvar)

Restrictions |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(VALUES, [val, noccurrence])
distinct(VALUES, val)
VALUES.noccurrence ≥ 0
VALUES.noccurrence ≤ |VARIABLES1|

Purpose

The variables of theVARIABLES2 collection correspond to the variables of
the VARIABLES1 collection according to a permutation. In addition, each
value VALUES[i].val (with i ∈ [1, |VALUES|]) should be taken by exactly
VALUES[i].noccurrence variables of theVARIABLES1 collection. Finally, each variable
of VARIABLES1 should be assigned a value ofVALUES[i].val (with i ∈ [1, |VALUES|]).

Example

〈

var− 1,
var− 9,
var− 1,
var− 5,
var− 2,
var− 1

〉

,

〈

var− 9,
var− 1,
var− 1,
var− 1,
var− 2,
var− 5

〉

,

〈

val− 1 noccurrence− 3,
val− 2 noccurrence− 1,
val− 5 noccurrence− 1,
val− 7 noccurrence− 0,
val− 9 noccurrence− 1

〉

Thesame and global cardinality constraint holds since:

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20040530 1631

• The values1, 9, 1, 5, 2, 1 assigned toVARIABLES1 correspond to a permutation of
the values9, 1, 1, 1, 2, 5 assigned toVARIABLES2.

• The values1, 2, 5, 7 and6 are respectively used3, 1, 1, 0 and1 times.

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1
|VALUES| > 1
range(VALUES.noccurrence) > 1
|VARIABLES1| > |VALUES|

Symmetries • Arguments arepermutablew.r.t. permutation(VARIABLES1, VARIABLES2)
(VALUES).

• Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• Items ofVALUES arepermutable.

• An occurrence of a value ofVARIABLES1.var or VARIABLES2.var that does not
belong toVALUES.val can bereplacedby any other value that also does not belong
to VALUES.val.

• All occurrences of two distinct values inVARIABLES1.var, VARIABLES2.var or
VALUES.val can beswapped; all occurrences of a value inVARIABLES1.var,
VARIABLES2.var or VALUES.val can berenamedto any unused value.

Arg. properties
Contractiblewrt. VALUES.

Usage See thesame and global cardinality low up constraint.

Algorithm The filtering algorithm presented in [48] can be reused for pruning the variables of
the VARIABLES1 and theVARIABLES2 collection. This algorithm does not restrict the
noccurrence variables of theVALUES collection.

See also implies: global cardinality, same.

related: k alldifferent (two overlappingalldifferent plus restriction on values).

specialisation:same and global cardinality low up (variable replaced byfixed
interval).

Keywords application area: assignment.

combinatorial object: permutation, multiset.

constraint arguments:constraint between two collections of variables.

constraint type: value constraint.

filtering: flow.

modelling: equality between multisets.

problems: demand profile.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1632NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT ;NVERTEX,SELF , ∀

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • for all connected components:NSOURCE=NSINK

• NSOURCE= |VARIABLES1|
• NSINK= |VARIABLES2|

For all items ofVALUES:

Arc input(s) VARIABLES1

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUES.val

Graph property(ies) NVERTEX= VALUES.noccurrence

Graph model Parts (A) and (B) of Figure5.520respectively show the initial and final graph associated
with the first graph constraint of theExample slot. Since we use theNSOURCE and
NSINK graph properties, the source and sink vertices of the final graph are stressed
with a double circle. Since there is a constraint on each connected component of the final
graph we also show the different connected components. Each of themcorresponds to an
equivalence class according to the arc constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20040530 1633

(A)

VARIABLES1

VARIABLES2

1

1234 56

2 3456

(B)

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=1,NSINK=1
CC#3:NSOURCE=1,NSINK=1
CC#4:NSOURCE=1,NSINK=1

CC#1 CC#2 CC#3 CC#4

1:1

2:1 3:14:1

3:16:1 2:9

1:9

4:5

6:5

5:2

5:2

Figure 5.520: Initial and final graph of thesame and global cardinality con-
straint

1634NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT ;NVERTEX,SELF , ∀

5.300 sameand global cardinality low up

DESCRIPTION LINKS GRAPH

Origin Derived fromsame andglobal cardinality low up

Constraint same and global cardinality low up(VARIABLES1, VARIABLES2, VALUES)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
VALUES : collection(val−int, omin−int, omax−int)

Restrictions |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(VALUES, [val, omin, omax])
distinct(VALUES, val)
VALUES.omin ≥ 0
VALUES.omax ≤ |VARIABLES1|
VALUES.omin ≤ VALUES.omax

Purpose

The variables of theVARIABLES2 collection correspond to the variables of the
VARIABLES1 collection according to a permutation. In addition, each value
VALUES[i].val (with i ∈ [1, |VALUES|]) should be taken by at leastVALUES[i].omin and
at mostVALUES[i].omax variables of theVARIABLES1 collection. Finally, each variable
of VARIABLES1 should be assigned a value ofVALUES[i].val (with i ∈ [1, |VALUES|]).

Example

〈

var− 1,
var− 9,
var− 1,
var− 5,
var− 2,
var− 1

〉

,

〈

var− 9,
var− 1,
var− 1,
var− 1,
var− 2,
var− 5

〉

,

〈

val− 1 omin− 2 omax− 3,
val− 2 omin− 1 omax− 1,
val− 5 omin− 1 omax− 1,
val− 7 omin− 0 omax− 2,
val− 9 omin− 1 omax− 1

〉

Thesame and global cardinality low up constraint holds since:

• The values1, 9, 1, 5, 2, 1 assigned to|VARIABLES1| correspond to a permutation of
the values9, 1, 1, 1, 2, 5 assigned to|VARIABLES2|.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20051104 1635

• The values1, 2, 5, 7 and6 are respectively used3 (2 ≤ 3 ≤ 3), 1 (1 ≤ 1 ≤ 1), 1
(1 ≤ 1 ≤ 1), 0 (0 ≤ 0 ≤ 2) and1 (1 ≤ 1 ≤ 1) times.

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1
|VALUES| > 1
VALUES.omin ≤ |VARIABLES1|
VALUES.omax > 0
VALUES.omax < |VARIABLES1|
|VARIABLES1| > |VALUES|

Symmetries • Arguments arepermutablew.r.t. permutation(VARIABLES1, VARIABLES2)
(VALUES).

• Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• An occurrence of a value ofVARIABLES1.var or VARIABLES2.var that does not
belong toVALUES.val can bereplacedby any other value that also does not belong
to VALUES.val.

• Items ofVALUES arepermutable.

• VALUES.omin can bedecreasedto any value≥ 0.

• VALUES.omax can beincreasedto any value≤ |VARIABLES1|.
• All occurrences of two distinct values inVARIABLES1.var, VARIABLES2.var or

VALUES.val can beswapped; all occurrences of a value inVARIABLES1.var,
VARIABLES2.var or VALUES.val can berenamedto any unused value.

Arg. properties
Contractiblewrt. VALUES.

Usage The same and global cardinality low up constraint can be used for modelling the
following assignmentproblem with one single constraint. The organisation Doctors With-
out Borders has a list of doctors and a list of nurses, each of whom volunteered to go on one
rescue mission. Each volunteer specifies a list of possible dates and each mission should
include one doctor and one nurse. In addition we have for each date the minimum and
maximum number of missions that should be effectively done. The task isto produce a list
of pairs such that each pair includes a doctor and a nurse who are available on the same date
and each volunteer appears in exactly one pair so that for each day we build the required
number of missions.

Algorithm In [48], theflow network that was used to model thesame constraint [45, 46] is extended
to support the cardinalities. Then, algorithms are developed to computearc-consistency
andbound-consistency.

See also generalisation: same and global cardinality (fixed interval replaced by
variable).

implies: global cardinality low up, global cardinality low up no loop, same.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

1636NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT ;NVERTEX,SELF , ∀

Keywords application area: assignment.

combinatorial object: permutation, multiset.

constraint arguments:constraint between two collections of variables.

constraint type: value constraint.

filtering: bound-consistency, arc-consistency, flow.

modelling: equality between multisets.

problems: demand profile.

Keywords
Related keywords grouped by meta-keywords.

20051104 1637

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • for all connected components:NSOURCE=NSINK

• NSOURCE= |VARIABLES1|
• NSINK= |VARIABLES2|

For all items ofVALUES:

Arc input(s) VARIABLES1

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUES.val

Graph property(ies) • NVERTEX≥ VALUES.omin
• NVERTEX≤ VALUES.omax

Graph model Parts (A) and (B) of Figure5.521respectively show the initial and final graph associated
with the first graph constraint of theExample slot. Since we use theNSOURCE and
NSINK graph properties, the source and sink vertices of the final graph are stressed
with a double circle. Since there is a constraint on each connected component of the final
graph we also show the different connected components. Each of themcorresponds to an
equivalence class according to the arc constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1638NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT ;NVERTEX,SELF , ∀

(A)

VARIABLES1

VARIABLES2

1

1234 56

2 3456

(B)

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=1,NSINK=1
CC#3:NSOURCE=1,NSINK=1
CC#4:NSOURCE=1,NSINK=1

CC#1 CC#2 CC#3 CC#4

1:1

2:1 3:14:1

3:16:1 2:9

1:9

4:5

6:5

5:2

5:2

Figure 5.521: Initial and final graph of thesame and global cardinality low up

constraint

20051104 1639

1640 CC(NSINK,NSOURCE),PRODUCT

5.301 sameintersection

DESCRIPTION LINKS GRAPH

Origin Derived fromsame andcommon.

Constraint same intersection(VARIABLES1, VARIABLES2)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose Each value, which occurs both in theVARIABLES1 and in theVARIABLES2 collections,
has the same number of occurrences inVARIABLES1 as well as inVARIABLES2.

Example

〈

var− 1,
var− 9,
var− 1,
var− 5,
var− 2,
var− 1

〉

,

〈

var− 9,
var− 1,
var− 1,
var− 1,
var− 3,
var− 5,
var− 8

〉

First note that the values, which occur both inVARIABLES1 = 〈1, 9, 1, 5, 2, 1〉 as
well as inVARIABLES2 = 〈9, 1, 1, 1, 3, 5, 8〉 correspond to values1, 5, and9. Conse-
quently, thesame intersection constraint holds since these values1, 5, and9 have the
same number of occurrences in both collections (i.e., they respectively occur3, 1, and1
times withinVARIABLES1 andVARIABLES2).

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
|VARIABLES2| > 1
range(VARIABLES2.var) > 1

Symmetries • Arguments arepermutablew.r.t. permutation(VARIABLES1, VARIABLES2).

• Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• All occurrences of two distinct values inVARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value inVARIABLES1.var or
VARIABLES2.var can berenamedto any unused value.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20040530 1641

See also common keyword:common, nvalue on intersection (constraint on the intersection).

implied by: alldifferent on intersection, same.

Keywords constraint arguments:constraint between two collections of variables.

constraint type: constraint on the intersection.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1642 CC(NSINK,NSOURCE),PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) for all connected components:NSOURCE=NSINK

Graph model Parts (A) and (B) of Figure5.522respectively show the initial and final graph associated
with the Example slot. Thesame intersection constraint holds since each connected
component of the final graph has the same number of sources and sinks. Note that all the
vertices corresponding to the variables that take values2, 3 or 8 were removed from the
final graph since there is no arc for which the associated equality constraint holds.

VARIABLES1

VARIABLES2

1

123456 7

2 3456

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=1,NSINK=1
CC#3:NSOURCE=1,NSINK=1

CC#1 CC#2 CC#3

1:1

2:1 3:1 4:1

3:16:1 2:9

1:9

4:5

6:5

(A) (B)

Figure 5.522: Initial and final graph of thesame intersection constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20040530 1643

1644 NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT

5.302 sameinterval

DESCRIPTION LINKS GRAPH

Origin Derived fromsame.

Constraint same interval(VARIABLES1, VARIABLES2, SIZE INTERVAL)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
SIZE INTERVAL : int

Restrictions |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
SIZE INTERVAL > 0

Purpose
Let Ni (respectivelyMi) denote the number of variables of the collectionVARIABLES1

(respectively VARIABLES2) that take a value in the interval[SIZE INTERVAL ·
i, SIZE INTERVAL · i+ SIZE INTERVAL− 1. For all integeri we haveNi = Mi.

Example

〈

var− 1,
var− 7,
var− 6,
var− 0,
var− 1,
var− 7

〉

,

〈

var− 8,
var− 8,
var− 8,
var− 0,
var− 1,
var− 2

〉

, 3

In the example, the third argumentSIZE INTERVAL = 3 defines the following
family of intervals [3 · k, 3 · k + 2], wherek is an integer. Consequently the values
of the collection〈1, 7, 6, 0, 1, 7〉 are respectively located within intervals[0, 2], [6, 8],
[6, 8], [0, 2], [0, 2], [6, 8]. Therefore intervals[0, 2] and[6, 8] are respectively used3 and
3 times. Similarly, the values of the collection〈8, 8, 8, 0, 1, 2〉 are respectively located
within intervals[6, 8], [6, 8], [6, 8], [0, 2], [0, 2], [0, 2]. As before intervals[0, 2] and[6, 8]
are respectively used3 and3 times. Consequently thesame interval constraint holds.
Figure5.523illustrates this correspondence.

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1
SIZE INTERVAL > 1
SIZE INTERVAL <range(VARIABLES1.var)
SIZE INTERVAL <range(VARIABLES2.var)

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20030820 1645

Symmetries • Arguments arepermutablew.r.t. permutation(VARIABLES1, VARIABLES2)
(SIZE INTERVAL).

• Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• An occurrence of a value ofVARIABLES.var that belongs to thek-th interval, of
sizeSIZE INTERVAL, can bereplacedby any other value of the same interval.

Arg. properties
Aggregate: VARIABLES1(union), VARIABLES2(union), SIZE INTERVAL(id).

Algorithm See algorithm of thesame constraint.

Used in k same interval.

See also implies: used by interval.

soft variant: soft same interval var (variable-based violation measure).

specialisation:same (variable/constant replaced byvariable).

system of constraints:k same interval.

Keywords characteristic of a constraint: sort based reformulation.

combinatorial object: permutation.

constraint arguments:constraint between two collections of variables.

modelling: interval.

intervals

7 6 0 1 7

[6,8][6,8][6,8][0,2][0,2][0,2]

8 8 8 0 1 2VARIABLES2

[6,8][6,8][0,2][0,2][6,8][0,2]

VARIABLES1

intervals

1

Figure 5.523: Correspondence between the intervals associated with collection
〈1, 7, 6, 0, 1, 7〉 and with collection〈8, 8, 8, 0, 1, 2〉

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1646 NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL = variables2.var/SIZE INTERVAL

Graph property(ies) • for all connected components:NSOURCE=NSINK

• NSOURCE= |VARIABLES1|
• NSINK= |VARIABLES2|

Graph model Parts (A) and (B) of Figure5.524respectively show the initial and final graph associated
with the Example slot. Since we use theNSOURCE andNSINK graph properties,
the source and sink vertices of the final graph are stressed with a doublecircle. Since there
is a constraint on each connected component of the final graph we alsoshow the different
connected components. Each of them corresponds to an equivalenceclass according to the
arc constraint. Thesame interval constraint holds since:

• Each connected component of the final graph has the same number ofsources and of
sinks.

• The number of sources of the final graph is equal to|VARIABLES1|.
• The number of sinks of the final graph is equal to|VARIABLES2|.

Signature Since the initial graph contains only sources and sinks, and since isolated vertices are elim-
inated from the final graph, we make the following observations:

• Sources of the initial graph cannot become sinks of the final graph,

• Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use thePRODUCT arc generator on the col-
lectionsVARIABLES1 andVARIABLES2, we have that the maximum number of sources and
sinks of the final graph is respectively equal to|VARIABLES1| and|VARIABLES2|. There-
fore we can rewriteNSOURCE = |VARIABLES1| to NSOURCE ≥ |VARIABLES1|
and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite
NSINK = |VARIABLES2| to NSINK ≥ |VARIABLES2| and simplifyNSINK to
NSINK.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1647

(A)

VARIABLES1

VARIABLES2

1

1234 56

2 3456

(B)
CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=3,NSINK=3

CC#1 CC#2

1:1

4:0 5:16:2

4:05:1 2:7

1:8 2:83:8

3:66:7

Figure 5.524: Initial and final graph of thesame interval constraint

1648 NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT

5.303 samemodulo

DESCRIPTION LINKS GRAPH

Origin Derived fromsame.

Constraint same modulo(VARIABLES1, VARIABLES2, M)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
M : int

Restrictions |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
M > 0

Purpose
For each integerR in [0, M − 1], let N1R (respectivelyN2R) denote the number of
variables ofVARIABLES1 (respectivelyVARIABLES2) that haveR as a rest when divided
by M. For allR in [0, M− 1] we have thatN1R = N2R.

Example

〈

var− 1,
var− 9,
var− 1,
var− 5,
var− 2,
var− 1

〉

,

〈

var− 6,
var− 4,
var− 1,
var− 1,
var− 5,
var− 5

〉

, 3

The values of the first collection〈1, 9, 1, 5, 2, 1〉 are respectively associated with
the equivalence classes1 mod 3 = 1, 9 mod 3 = 0, 1 mod 3 = 1, 5 mod 3 = 2,
2 mod 3 = 2, 1 mod 3 = 1. Therefore the equivalence classes0, 1, and2 are respectively
used1, 3, and 2 times. Similarly, the values of the second collection〈6, 4, 1, 1, 5, 5〉
are respectively associated with the equivalence classes6 mod 3 = 0, 4 mod 3 = 1,
1 mod 3 = 1, 1 mod 3 = 1, 5 mod 3 = 2, 5 mod 3 = 2. Therefore the equivalence
classes0, 1, and2 are respectively used1, 3, and2 times. Consequently thesame modulo

constraint holds. Figure5.525illustrates this correspondence.

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1
M > 1
M <maxval(VARIABLES1.var)
M <maxval(VARIABLES2.var)

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20030820 1649

Symmetries • Arguments arepermutablew.r.t. permutation(VARIABLES1, VARIABLES2) (M).

• Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• An occurrence of a valueu of VARIABLES.var can bereplacedby any other value
v such thatv is congruent tou moduloM.

Arg. properties
Aggregate: VARIABLES1(union), VARIABLES2(union), M(id).

Used in k same modulo.

See also implies: used by modulo.

soft variant: soft same modulo var (variable-based violation measure).

specialisation:same (variablemod constant replaced byvariable).

system of constraints:k same modulo.

Keywords characteristic of a constraint: sort based reformulation, modulo.

combinatorial object: permutation.

constraint arguments:constraint between two collections of variables.

1

1 1 1 2 2

equivalence classes

equivalence classes

VARIABLES1

VARIABLES2 6 4 1 1 5 5

1 9 1 5 2 1

1 0 1 2 2

0

Figure 5.525: Correspondence between the equivalence classes associated with collec-
tion 〈1, 9, 1, 5, 2, 1〉 and with collection〈6, 4, 1, 1, 5, 5〉

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1650 NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.varmod M = variables2.varmod M

Graph property(ies) • for all connected components:NSOURCE=NSINK

• NSOURCE= |VARIABLES1|
• NSINK= |VARIABLES2|

Graph model Parts (A) and (B) of Figure5.526respectively show the initial and final graph associated
with the Example slot. Since we use theNSOURCE andNSINK graph properties,
the source and sink vertices of the final graph are stressed with a doublecircle. Since there
is a constraint on each connected component of the final graph we alsoshow the different
connected components. Each of them corresponds to an equivalenceclass according to the
arc constraint. Thesame modulo constraint holds since:

• Each connected component of the final graph has the same number ofsources and of
sinks.

• The number of sources of the final graph is equal to|VARIABLES1|.
• The number of sinks of the final graph is equal to|VARIABLES2|.

Signature Since the initial graph contains only sources and sinks, and since isolated vertices are elim-
inated from the final graph, we make the following observations:

• Sources of the initial graph cannot become sinks of the final graph,

• Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use thePRODUCT arc generator on the col-
lectionsVARIABLES1 andVARIABLES2, we have that the maximum number of sources and
sinks of the final graph is respectively equal to|VARIABLES1| and|VARIABLES2|. There-
fore we can rewriteNSOURCE = |VARIABLES1| to NSOURCE ≥ |VARIABLES1|
and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite
NSINK = |VARIABLES2| to NSINK ≥ |VARIABLES2| and simplifyNSINK to
NSINK.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1651

(A)

VARIABLES1

VARIABLES2

1

1234 56

2 3456

(B)

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=1,NSINK=1
CC#3:NSOURCE=2,NSINK=2

CC#1 CC#2 CC#3

1:1

2:4 3:14:1

3:16:1 2:9

1:6

4:5

5:5 6:5

5:2

Figure 5.526: Initial and final graph of thesame modulo constraint

1652 NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT

5.304 samepartition

DESCRIPTION LINKS GRAPH

Origin Derived fromsame.

Constraint same partition(VARIABLES1, VARIABLES2, PARTITIONS)

Type VALUES : collection(val−int)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
PARTITIONS : collection(p− VALUES)

Restrictions |VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose

For each integeri in [1, |PARTITIONS|], let N1 i (respectivelyN2 i) denote the number
of variables ofVARIABLES1 (respectivelyVARIABLES2) that take their value in theith

partition of the collectionPARTITIONS. For all i in [1, |PARTITIONS|] we haveN1 i =
N2 i.

Example

〈

var− 1,
var− 2,
var− 6,
var− 3,
var− 1,
var− 2

〉

,

〈

var− 6,
var− 6,
var− 2,
var− 3,
var− 1,
var− 3

〉

,

〈

p− 〈1, 3〉 ,
p− 〈4〉 ,
p− 〈2, 6〉

〉

The different values of the collection〈1, 2, 6, 3, 1, 2〉 are respectively associated
with the partitionsp− 〈1, 3〉, p− 〈2, 6〉, p− 〈2, 6〉, p− 〈1, 3〉, p− 〈1, 3〉, andp− 〈2, 6〉.
Therefore partitionsp−〈1, 3〉 andp−〈2, 6〉 are respectively used3 and3 times. Similarly,

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20030820 1653

the different values of the collection〈6, 6, 2, 3, 1, 3〉 are respectively associated with the
partitionsp−〈2, 6〉, p−〈2, 6〉, p−〈2, 6〉, p−〈1, 3〉, p−〈1, 3〉, andp−〈1, 3〉. As before
partitionsp − 〈1, 3〉 andp− 〈2, 6〉 are respectively used3 and3 times. Consequently the
same partition constraint holds. Figure5.527illustrates this correspondence.

partitions

<2,6><2,6><1,3> <2,6><1,3>

VARIABLES1 1 2 6 3 1 2

<2,6><2,6><2,6><1,3><1,3><1,3>

6 6 2 3 1 3VARIABLES2

<1,3>partitions

Figure 5.527: Correspondence between the partitions associated with collection
〈1, 2, 6, 3, 1, 2〉 and with collection〈6, 6, 2, 3, 1, 3〉

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1
|VARIABLES1| > |PARTITIONS|
|VARIABLES2| > |PARTITIONS|

Symmetries • Arguments arepermutablew.r.t. permutation(VARIABLES1, VARIABLES2)
(PARTITIONS).

• Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• Items ofPARTITIONS arepermutable.

• Items ofPARTITIONS.p arepermutable.

• An occurrence of a value ofVARIABLES.var can be replaced by any other value
that also belongs to the same partition ofPARTITIONS.

Arg. properties
Aggregate: VARIABLES1(union), VARIABLES2(union), PARTITIONS(id).

Used in k same partition.

See also implies: used by partition.

soft variant: soft same partition var (variable-based violation measure).

specialisation:same (variable ∈ partition replaced byvariable).

system of constraints:k same partition.

used in graph description:in same partition.

Keywords characteristic of a constraint: sort based reformulation, partition.

combinatorial object: permutation.

constraint arguments:constraint between two collections of variables.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1654 NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) • for all connected components:NSOURCE=NSINK

• NSOURCE= |VARIABLES1|
• NSINK= |VARIABLES2|

Graph model Parts (A) and (B) of Figure5.528respectively show the initial and final graph associated
with the Example slot. Since we use theNSOURCE andNSINK graph properties,
the source and sink vertices of the final graph are stressed with a doublecircle. Since there
is a constraint on each connected component of the final graph we alsoshow the different
connected components. Each of them corresponds to an equivalenceclass according to the
arc constraint. Thesame partition constraint holds since:

• Each connected component of the final graph has the same number ofsources and of
sinks.

• The number of sources of the final graph is equal to|VARIABLES1|.
• The number of sinks of the final graph is equal to|VARIABLES2|.

Signature Since the initial graph contains only sources and sinks, and since isolated vertices are elim-
inated from the final graph, we make the following observations:

• Sources of the initial graph cannot become sinks of the final graph,

• Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use thePRODUCT arc generator on the col-
lectionsVARIABLES1 andVARIABLES2, we have that the maximum number of sources and
sinks of the final graph is respectively equal to|VARIABLES1| and|VARIABLES2|. There-
fore we can rewriteNSOURCE = |VARIABLES1| to NSOURCE ≥ |VARIABLES1|
and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite
NSINK = |VARIABLES2| to NSINK ≥ |VARIABLES2| and simplifyNSINK to
NSINK.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1655

(A)

VARIABLES1

VARIABLES2

1

1234 56

2 3456

(B)
CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=3,NSINK=3

CC#1 CC#2

1:1

4:3 5:16:3

4:35:1 2:2

1:6 2:63:2

3:66:2

Figure 5.528: Initial and final graph of thesame partition constraint

1656 PREDEFINED

5.305 samesign

DESCRIPTION LINKS

Origin Arithmetic.

Constraint same sign(VAR1, VAR2)

Arguments VAR1 : dvar

VAR2 : dvar

Restriction

Purpose Enforce the fact that the product of the first and second variables is greater than or equal
to 0.

Example (7, 1)

Thesame sign constraint holds since7 and1 have the same sign.

Typical VAR1 6= 0
VAR2 6= 0

Symmetry Arguments arepermutablew.r.t. permutation(VAR1, VAR2).

See also comparison swapped:opposite sign.

implied by: divisible, eq.

Keywords constraint arguments:binary constraint.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20100821 1657

1658 PREDEFINED

5.306 scalarproduct

DESCRIPTION LINKS

Origin Arithmetic constraint.

Constraint scalar product(LINEARTERM, CTR, VAL)

Synonyms equation, linear, sum weight, weightedSum.

Arguments LINEARTERM : collection(coeff−int, var−dvar)
CTR : atom

VAL : dvar

Restrictions required(LINEARTERM, [coeff, var])
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

Constraint a linear term defined as the sum of products of coefficients and variables.
More precisely, letS denote the sum of the product between a coefficient and its variable
of the different items of theLINEARTERM collection. Enforce the following constraint to
hold: S CTR VAL.

Example

〈

coeff− 1 var− 1,
coeff− 3 var− 1,
coeff− 1 var− 4

〉

,=, 8

The scalar product constraint holds since the condition1 · 1 + 3 · 1 + 1 · 4 = 8 is
satisfied.

Typical |LINEARTERM| > 1
range(LINEARTERM.coeff) > 1
range(LINEARTERM.var) > 1
CTR ∈ [=, <,≥, >,≤]

Symmetries • Items ofLINEARTERM arepermutable.

• Attributes ofLINEARTERM arepermutablew.r.t. permutation(coeff, var) (per-
mutation not necessarily applied to all items).

Arg. properties
• Contractible wrt. LINEARTERM when CTR ∈ [<,≤],

minval(LINEARTERM.coeff) ≥ 0 andminval(LINEARTERM.var) ≥ 0.

• Extensible wrt. LINEARTERM when CTR ∈ [≥, >],
minval(LINEARTERM.coeff) ≥ 0 andminval(LINEARTERM.var) ≥ 0.

• Aggregate: LINEARTERM(union), CTR(id), VAL(+).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

20090415 1659

Remark The scalar product constraint is calledlinear in Gecode(http://www.gecode.

org/). It is calledsum weight in JaCoP (http://www.jacop.eu/). In the 2008 CSP
solver competition thescalar product constraint was calledweightedSum and required
VAL to be fixed.

Algorithm Most filtering algorithms first merge multiple occurrences of identical variables in order
to potentially make more deductions. WhenCTR corresponds to theless than or equal
to constraint, a filtering algorithm achievingbound-consistencyfor thescalar product

constraint with large numbers of variables is described in [188].

Systems equation in Choco, linear in Gecode, sumweight in JaCoP, scalar product
in SICStus.

See also specialisation:sum ctr (arithmetic constraintwhere all coefficients are equal to1).

Keywords characteristic of a constraint: sum.

constraint type: predefined constraint, arithmetic constraint.

filtering: duplicated variables.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.gecode.org/
http://www.jacop.eu/

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntLI.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/SumWeight.html
http://www.jacop.eu/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1660 NARC,SELF ;NARC,CLIQUE(<); AUTOMATON

5.307 sequencefolding

DESCRIPTION LINKS GRAPH AUTOMATON

Origin J. Pearson

Constraint sequence folding(LETTERS)

Argument LETTERS : collection(index−int, next−dvar)

Restrictions |LETTERS| ≥ 1
required(LETTERS, [index, next])
LETTERS.index ≥ 1
LETTERS.index ≤ |LETTERS|
increasing seq(LETTERS, index)
LETTERS.next ≥ 1
LETTERS.next ≤ |LETTERS|

Purpose

Express the fact that a sequence is folded in a way that no crossing occurs. A sequence
is modelled by a collection of letters. For each letterl1 of a sequence, we indicate the
next letterl2 located afterl1 that is directly in contact withl1 (l1 itself if such a letter
does not exist).

Example

〈

index− 1 next− 1,
index− 2 next− 8,
index− 3 next− 3,
index− 4 next− 5,
index− 5 next− 5,
index− 6 next− 7,
index− 7 next− 7,
index− 8 next− 8,
index− 9 next− 9

〉

Figure 5.529 gives the folded sequence associated with the previous example. Each
number represents the index of an item. Thesequence folding constraint holds since
no crossing occurs.

Typical |LETTERS| > 2
range(LETTERS.next) > 1

Usage Motivated by RNA folding [154].

Keywords application area: bioinformatics.

characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

combinatorial object: sequence.

constraint type: decomposition.

geometry:geometrical constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Usage
Typical usage of the constraint.

Keywords
Related keywords grouped by meta-keywords.

20030820 1661

8

7
65

2

9

1
3

4

Figure 5.529: Folded sequence associated with the example

1662 NARC,SELF ;NARC,CLIQUE(<); AUTOMATON

Arc input(s) LETTERS

Arc generator SELF 7→collection(letters)

Arc arity 1

Arc constraint(s) letters.next ≥ letters.index

Graph property(ies) NARC= |LETTERS|

Arc input(s) LETTERS

Arc generator CLIQUE (<) 7→collection(letters1, letters2)

Arc arity 2

Arc constraint(s) letters2.index ≥ letters1.next ∨ letters2.next ≤ letters1.next

Graph property(ies) NARC= |LETTERS| ∗ (|LETTERS| − 1)/2

Graph model Parts (A) and (B) of Figure5.530respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

LETTERS

1

2

3

4

5

6

7

8

9

NARC=36

1:1,1

2:2,8

3:3,3

4:4,5

5:5,5

6:6,7

7:7,7

8:8,8

9:9,9

(A) (B)

Figure 5.530: Initial and final graph of thesequence folding constraint

Signature Consider the first graph constraint. Since we use theSELF arc generator on theLETTERS
collection the maximum number of arcs of the final graph is equal to|LETTERS|. Therefore

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1663

we can rewrite the graph propertyNARC = |LETTERS| to NARC ≥ |LETTERS| and
simplify NARC to NARC.

Consider now the second graph constraint. Since we use theCLIQUE(<) arc generator
on theLETTERS collection the maximum number of arcs of the final graph is equal to
|LETTERS| · (|LETTERS| − 1)/2. Therefore we can rewrite the graph propertyNARC =
|LETTERS| ·(|LETTERS|−1)/2 toNARC ≥ |LETTERS| ·(|LETTERS|−1)/2 and simplify
NARC toNARC.

1664 NARC,SELF ;NARC,CLIQUE(<); AUTOMATON

Automaton Figure5.531depicts the automaton associated with thesequence folding constraint.
Consider theith and thejth (i < j) items of the collectionLETTERS. Let INDEXi
andNEXTi respectively denote theindex and thenext attributes of theith item of the
collection LETTERS. Similarly, let INDEXj and NEXTj respectively denote theindex
and thenext attributes of thejth item of the collectionLETTERS. To each quadru-
ple (INDEXi, NEXTi, INDEXj , NEXTj) corresponds a signature variableSi,j , which takes its
value in{0, 1, 2}, as well as the following signature constraint:

(INDEXi ≤ NEXTi) ∧ (INDEXj ≤ NEXTj) ∧ (NEXTi ≤ NEXTj) ⇔ Si,j = 0 ∧
(INDEXi ≤ NEXTi) ∧ (INDEXj ≤ NEXTj) ∧ (NEXTi > INDEXj) ∧ (NEXTj ≤ NEXTi) ⇔
Si,j = 1.

sINDEX <=NEXT and

INDEX <=NEXT and

INDEX <INDEX and

ij

ji

jj

ii

ji

NEXT <=NEXT

INDEX <=NEXT and

INDEX <=NEXT and

INDEX <INDEX and

j

jj

j

i

i

i

i

NEXT <=INDEXNEXT >INDEX and

Figure 5.531: Automaton of thesequence folding constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20030820 1665

1666 PREDEFINED

5.308 setvalue precede

DESCRIPTION LINKS

Origin [240]

Constraint set value precede(S, T, VARIABLES)

Arguments S : int

T : int

VARIABLES : collection(var−svar)

Restrictions S 6= T

required(VARIABLES, var)

Purpose
If there exists a set variablev1 of VARIABLES such thatS does not belong tov1 andT
does, then there also exists a set variablev2 precedingv1 such thatS belongs tov2 and
T does not.

Example

2, 1,

〈
var− {0, 2},
var− {0, 1},
var− ∅,
var− {1}

〉

0, 1,

〈
var− {0, 2},
var− {0, 1},
var− ∅,
var− {1}

〉

0, 2,

〈
var− {0, 2},
var− {0, 1},
var− ∅,
var− {1}

〉

0, 4,

〈
var− {0, 2},
var− {0, 1},
var− ∅,
var− {1}

〉

The following examples are taken from [239, page 58]:

• Theset value precede(2, 1, 〈{0, 2}, {0, 1}, {}, {1}〉) constraint holds since the
first occurrence of value2 precedes the first occurrence of value1 (i.e., the set{0, 2}
occurs before the set{0, 1}).

• Theset value precede(0, 1, 〈{0, 2}, {0, 1}, {}, {1}〉) constraint holds since the
first occurrence of value0 precedes the first occurrence of value1 (i.e., the set{0, 2}
occurs before the set{0, 1}).

• The set value precede(0, 2, 〈{0, 2}, {0, 1}, {}, {1}〉) constraint holds since
“there is no set in〈{0, 2}, {0, 1}, {}, {1}〉 that contains2 but not0”.

• The set value precede(0, 4, 〈{0, 2}, {0, 1}, {}, {1}〉) constraint holds since no
set in〈{0, 2}, {0, 1}, {}, {1}〉 contains value4.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20041003 1667

Typical S < T

|VARIABLES| > 1

Arg. properties
Suffix-contractiblewrt. VARIABLES.

Algorithm A filtering algorithm for maintaining value precedence on a sequence of set variables is
presented in [240]. Its complexity is linear to the number of variables of the collection
VARIABLES.

Systems precede in Gecode.

See also specialisation: int value precede (sequence of set variables replaced by
sequence of domain variables).

Keywords constraint arguments:constraint involving set variables.

constraint type: order constraint.

symmetry: symmetry, indistinguishable values, value precedence.

Typical
Typical conditions on the arguments of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.gecode.org/doc/3.7.0/reference/group__TaskModelSetPrecede.html
http://www.gecode.org/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1668 NARC,SELF ;CLIQUE ,CC

5.309 shift

DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint shift(MIN BREAK, MAX RANGE, TASKS)

Arguments MIN BREAK : int

MAX RANGE : int

TASKS : collection(origin−dvar, end−dvar)

Restrictions MIN BREAK > 0
MAX RANGE > 0
required(TASKS, [origin, end])
TASKS.origin < TASKS.end

Purpose

The difference between the end of the last task of ashift and the origin of the first task
of a shift should not exceed the quantityMAX RANGE. Two taskst1 andt2 belong to the
same shiftif at least one of the following conditions is true:

• Taskt2 starts after the end of taskt1 at a distance that is less than or equal to the
quantityMIN BREAK,

• Taskt1 starts after the end of taskt2 at a distance that is less than or equal to the
quantityMIN BREAK.

• Taskt1 overlaps taskt2.

Example

6, 8,

〈

origin− 17 end− 20,
origin− 7 end− 10,
origin− 2 end− 4,
origin− 21 end− 22,
origin− 5 end− 6

〉

Figure 5.532 represents the different tasks of the example. Each task is drawn as a
rectangle with its correspondingid attribute in the middle. We indicate the distance
between two consecutive tasks of a same shift and note that it is less than or equal to
MIN BREAK = 6. Since each shift has a range that is less than or equal toMAX RANGE = 8,
the shift constraint holds (therangeof a shift is the difference between the end of the
last task of the shift and the origin of the first task of the shift).

Typical MIN BREAK > 1
MAX RANGE > 1
MIN BREAK < MAX RANGE

|TASKS| > 2

Symmetries • Items ofTASKS arepermutable.

• One and the same constant can beaddedto theorigin attribute of all items of
TASKS.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20030820 1669

Usage The shift constraint can be used in machine scheduling problems whereone has to shut
down a machine for maintenance purpose after a given maximum utilisationof that ma-
chine. In this case theMAX RANGE parameter indicates the maximum possible utilisation of
the machine before maintenance, while theMIN BREAK parameter gives the minimum time
needed for maintenance.

The shift constraint can also be used for timetabling problems where the rest period of a
person can move in time. In this caseMAX RANGE indicates the maximum possible working
time for a person, whileMIN BREAK specifies the minimum length of the break that follows
a working time period.

See also common keyword:sliding time window (temporal constraint).

used in graph description:range ctr.

Keywords constraint type: scheduling constraint, timetabling constraint, temporal constraint.

5 7 17 21

1

=7 range=5

second shiftfirst shift break

2 time

3 5 2 1 4

1 1

range=8

Figure 5.532: The two shifts of the example

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1670 NARC,SELF ;CLIQUE ,CC

Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) • tasks.end ≥ tasks.origin
• tasks.end− tasks.origin ≤ MAX RANGE

Graph property(ies) NARC= |TASKS|

Arc input(s) TASKS

Arc generator CLIQUE 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s)
∨

∧

(

tasks2.origin ≥ tasks1.end,
tasks2.origin− tasks1.end ≤ MIN BREAK

)

,

∧

(

tasks1.origin ≥ tasks2.end,
tasks1.origin− tasks2.end ≤ MIN BREAK

)

,

tasks2.origin < tasks1.end ∧ tasks1.origin < tasks2.end

Sets CC 7→

 variables− col

VARIABLES−collection(var−dvar),
[

item(var− TASKS.origin),
item(var− TASKS.end)

]

Constraint(s) on sets range ctr(variables,≤, MAX RANGE)

Graph model The first graph constraint enforces the following two constraints between the attributes of
each task:

• The end of a task should not be situated before its start,

• The duration of a task should not be greater than theMAX RANGE parameter.

The second graph constraint decomposes the final graph in connected components where
each component corresponds to a given shift. Finally, theConstraint(s) on setsslot re-
stricts the stretch of each shift.

Parts (A) and (B) of Figure5.533respectively show the initial and final graph associated
with the second graph constraint of theExample slot. Since we use the set generatorCC

we show the two connected components of the final graph. They respectively correspond
to the two shifts that are displayed in Figure5.532.

Signature Consider the first graph constraint. Since we use theSELF arc generator on theTASKS
collection the maximum number of arcs of the final graph is equal to|TASKS|. Therefore
we can rewrite the graph propertyNARC = |TASKS| toNARC ≥ |TASKS| and simplify
NARC to NARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1671

TASKS

1

2

3

4

5

SET#1 SET#2

1:17,20

4:21,22

2:7,10

3:2,4

5:5,6

(A) (B)

Figure 5.533: Initial and final graph of theshift constraint

1672 PREDEFINED

5.310 signof

DESCRIPTION LINKS

Origin Arithmetic.

Constraint sign of(S, X)

Usual name sign

Arguments S : dvar

X : dvar

Restrictions S ≥ −1
S ≤ 1

Purpose

According to the value of the first variableS, restrict the sign of the second variableX:

• WhenS = −1, X should be negative (i.e.,X < 0).

• WhenS = 0, X is also equal to0.

• WhenS = +1, X should be positive (i.e.,X > 0).

Example (−1,−8)
(0, 0)
(1, 8)

• The firstsign of constraint holds sinceS = −1 andX = −8 is negative.

• The secondsign of constraint holds sinceS = 0 andX = 0 is neither negative,
neither positive.

• The secondsign of constraint holds sinceS = +1 andX = 8 is positive.

Typical S 6= 0
X 6= 0

Arg. properties
Functional dependency: S determined byX.

See also implies: geq.

Keywords constraint arguments:binary constraint, pure functional dependency.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.

modelling: functional dependency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20110612 1673

1674 NARC,PATH N

5.311 sizemax seqalldifferent

DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint size max seq alldifferent(SIZE, VARIABLES)

Synonyms size maximal sequence alldiff, size maximal sequence alldistinct,
size maximal sequence alldifferent.

Arguments SIZE : dvar

VARIABLES : collection(var−dvar)

Restrictions SIZE ≥ 0
SIZE ≤ |VARIABLES|
required(VARIABLES, var)

Purpose
SIZE is the size of the maximal sequence (among all possible sequences of consecutive
variables of the collectionVARIABLES) for which thealldifferent constraint holds.

Example

4,

〈

var− 2,
var− 2,
var− 4,
var− 5,
var− 2,
var− 7,
var− 4

〉

The size max seq alldifferent constraint holds since the constraint
alldifferent(〈var − 4, var − 5, var − 2, var − 7〉) holds and since the following
three constraints do not hold:

• alldifferent(〈var− 2, var− 2, var− 4, var− 5, var− 2〉),
• alldifferent(〈var− 2, var− 4, var− 5, var− 2, var− 7〉),
• alldifferent(〈var− 4, var− 5, var− 2, var− 7, var− 4〉).

Typical SIZE > 2
SIZE < |VARIABLES|
range(VARIABLES.var) > 1

Symmetry One and the same constant can beaddedto thevar attribute of all items ofVARIABLES.

Arg. properties
Functional dependency: SIZE determined byVARIABLES.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

20030820 1675

See also common keyword: alldifferent, open alldifferent,
size max starting seq alldifferent (all different,disequality).

implies: atleast nvalue.

Keywords characteristic of a constraint: all different, disequality, hypergraph.

combinatorial object: sequence.

constraint arguments:pure functional dependency.

constraint type: sliding sequence constraint, conditional constraint.

modelling: functional dependency.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1676 NARC,PATH N

Arc input(s) VARIABLES

Arc generator PATH N 7→collection

Arc arity ∗
Arc constraint(s) alldifferent(collection)

Graph property(ies) NARC= SIZE

Graph model Note that this is an example of global constraint where the arc constraints do not have the
same arity. However they correspond to the same type of constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1677

1678 NARC,PATH 1

5.312 sizemax starting seqalldifferent

DESCRIPTION LINKS GRAPH

Origin Inspired bysize max seq alldifferent.

Constraint size max starting seq alldifferent(SIZE, VARIABLES)

Synonyms size maximal starting sequence alldiff,
size maximal starting sequence alldistinct,
size maximal starting sequence alldifferent.

Arguments SIZE : dvar

VARIABLES : collection(var−dvar)

Restrictions SIZE ≥ 0
SIZE ≤ |VARIABLES|
required(VARIABLES, var)

Purpose
SIZE is the size of the maximal sequence (among all sequences of consecutive variables
of the collectionVARIABLES starting at position one) for which thealldifferent con-
straint holds.

Example

4,

〈

var− 9,
var− 2,
var− 4,
var− 5,
var− 2,
var− 7,
var− 4

〉

The size max starting seq alldifferent constraint holds since the con-
straint alldifferent(〈var − 9, var − 2, var − 4, var − 5〉) holds and since
alldifferent(〈var− 9, var− 2, var− 4, var− 5, var− 2〉) does not hold.

Typical SIZE > 2
SIZE < |VARIABLES|
range(VARIABLES.var) > 1

Symmetry One and the same constant can beaddedto thevar attribute of all items ofVARIABLES.

Arg. properties
Functional dependency: SIZE determined byVARIABLES.

Remark A conditional constraint[266] with the specific structure that one can relax the constraints
on the last variables of the collectionVARIABLES.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

20030820 1679

See also common keyword: alldifferent, open alldifferent,
size max seq alldifferent (all different,disequality).

implies: atleast nvalue.

Keywords characteristic of a constraint: all different, disequality, hypergraph.

combinatorial object: sequence.

constraint arguments:pure functional dependency.

constraint type: sliding sequence constraint, open constraint, conditional constraint.

modelling: functional dependency.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1680 NARC,PATH 1

Arc input(s) VARIABLES

Arc generator PATH 1 7→collection

Arc arity ∗
Arc constraint(s) alldifferent(collection)

Graph property(ies) NARC= SIZE

Graph model Note that this is an example where the arc constraints do not have the same arity. However
they correspond to the same constraint.

Parts (A) and (B) of Figure5.534respectively show the initial and final graph associated
with theExampleslot.

(B)

1:9 2:2 4:53:4

2 3 4 6 71 5

(A)

Figure 5.534: Initial and final graph of thesize max starting seq alldifferent

constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1681

1682 PATH ,LOOP ,CC; AUTOMATON

5.313 slidingcard skip0

DESCRIPTION LINKS GRAPH AUTOMATON

Origin N. Beldiceanu

Constraint sliding card skip0(ATLEAST, ATMOST, VARIABLES, VALUES)

Arguments ATLEAST : int

ATMOST : int

VARIABLES : collection(var−dvar)
VALUES : collection(val−int)

Restrictions ATLEAST ≥ 0
ATLEAST ≤ |VARIABLES|
ATMOST ≥ 0
ATMOST ≤ |VARIABLES|
ATMOST ≥ ATLEAST

required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)
VALUES.val 6= 0

Purpose

Let n be the total number of variables of the collectionVARIABLES. A maximum non-
zero set of consecutive variablesXi..Xj(1 ≤ i ≤ j ≤ n) is defined in the following
way:

• All variablesXi, . . . , Xj take a non-zero value,

• i = 1 orXi−1 is equal to0,

• j = n orXj+1 is equal to0.

Enforces that each maximum non-zero set of consecutive variablesof the collection
VARIABLES contains at leastATLEAST and at mostATMOST values from the collection of
valuesVALUES.

Example

2, 3,

〈

var− 0,
var− 7,
var− 2,
var− 9,
var− 0,
var− 0,
var− 9,
var− 4,
var− 9

〉

,

〈7, 9〉

The sliding card skip0 constraint holds since the two maximum non-zero set of
consecutive values7 2 9 and9 4 9 of its third argument〈0, 7, 2, 9, 0, 0, 9, 4, 9〉 take both2
(2 ∈ [ATLEAST, ATMOST] = [2, 3]) values within the set of values〈7, 9〉.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20000128 1683

Typical |VARIABLES| > 1
|VALUES| > 0
|VARIABLES| > |VALUES|
atleast(1, VARIABLES, 0)
ATLEAST > 0 ∨ ATMOST < |VARIABLES|

Symmetries • ATLEAST can bedecreasedto any value≥ 0.

• ATMOST can beincreasedto any value≤ |VARIABLES|.
• Items ofVARIABLES can bereversed.

• An occurrence of a value different from0 of VARIABLES.var that belongs to
VALUES.val (resp. does not belong toVALUES.val) can be replaced by any other
value different from0 in VALUES.val (resp. not inVALUES.val).

Usage This constraint is useful in timetabling problems where the variables are interpreted as the
type of job that a person does on consecutive days. Value 0 represents a rest day and one
imposes a cardinality constraint on periods that are located between restperiods.

Remark One cannot initially state aglobal cardinality constraint since the rest days are not
yet allocated. One can also not use anamong seq constraint since it does not hold for the
sequences of consecutive variables that contains at least one rest day.

See also related: among (counting constraint on the full sequence),
global cardinality (counting constraintfor different values on the full sequence).

specialisation:among low up (maximal sequences replaced by the full sequence).

Keywords characteristic of a constraint: automaton, automaton with counters.

combinatorial object: sequence.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: timetabling constraint, sliding sequence constraint.

miscellaneous:obscure.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1684 PATH ,LOOP ,CC; AUTOMATON

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)
LOOP 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var 6= 0
• variables2.var 6= 0

Sets CC 7→ [variables]

Constraint(s) on sets among low up(ATLEAST, ATMOST, variables, VALUES)

Graph model Note that the arc constraint will produce the different sequences of consecutive variables
that do not contain any0. TheCC set generator produces all the connected components of
the final graph.

Parts (A) and (B) of Figure5.535respectively show the initial and final graph associated
with theExampleslot. Since we use the set generatorCC we show the two connected com-
ponents of the final graph. Since these two connected components both contains between2
and3 variables that take their values in{7, 9} thesliding card skip0 constraint holds.

VARIABLES

1

2

3

4

5

6

7

8

9

SET#1 SET#2

2:7

3:2

4:9

7:9

8:4

9:9

(A) (B)

Figure 5.535: Initial and final graph of thesliding card skip0 constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 1685

Automaton Figure5.536depicts the automaton associated with thesliding card skip0 constraint.
To each variableVARi of the collectionVARIABLES corresponds a signature variableSi.
The following signature constraint linksVARi andSi:

(VARi = 0) ⇔ Si = 0 ∧
(VARi 6= 0 ∧ VARi /∈ VALUES) ⇔ Si = 1 ∧
(VARi 6= 0 ∧ VARi ∈ VALUES) ⇔ Si = 2.

s VAR = 0

iVAR = 0 and

iVAR <>0 and in(VAR ,VALUES),i
{C=C+1}

iVAR <>0 and

not_in(VAR ,VALUES)i

iVAR <>0 and not_in(VAR ,VALUES),i

t

i

ATLEAST<=C and

$

$ and ATLEAST<=C and C<=ATMOST

iVAR <>0 and in(VAR ,VALUES),i
{C=1}

{C=0}

C<=ATMOST

{C=0}

i

Figure 5.536: Automaton of thesliding card skip0 constraint

1

VAR
1

S1

Q1

VAR
2

S2

VAR
n

Sn

Q =s0

C =00

Q =tn

Cn
C

Figure 5.537: Hypergraph of the reformulation corresponding to the automaton of the
sliding card skip0 constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1686 NARC,PATH

5.314 slidingdistribution

DESCRIPTION LINKS GRAPH

Origin [331]

Constraint sliding distribution(SEQ, VARIABLES, VALUES)

Arguments SEQ : int

VARIABLES : collection(var−dvar)
VALUES : collection(val−int, omin−int, omax−int)

Restrictions SEQ > 0
SEQ ≤ |VARIABLES|
required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, omin, omax])
distinct(VALUES, val)
VALUES.omin ≥ 0
VALUES.omax ≤ SEQ

VALUES.omin ≤ VALUES.omax

Purpose
For each sequence ofSEQ consecutive variables of theVARIABLES collection, each value
VALUES[i].val (1 ≤ i ≤ |VALUES|) should be taken by at leastVALUES[i].omin and at
mostVALUES[i].omax variables.

Example

4,

〈

var− 0,
var− 5,
var− 0,
var− 6,
var− 5,
var− 0,
var− 0

〉

,

〈

val− 0 omin− 1 omax− 2,
val− 1 omin− 0 omax− 4,
val− 4 omin− 0 omax− 4,
val− 5 omin− 1 omax− 2,
val− 6 omin− 0 omax− 2

〉

Thesliding distribution constraint holds since:

• On the first sequence of4 consecutive values0 5 0 6 values0, 1, 4, 5 and6 are
respectively used2, 0, 0, 1 and1 times.

• On the second sequence of4 consecutive values5 0 6 5 values0, 1, 4, 5 and6 are
respectively used1, 0, 0, 2 and1 times.

• On the third sequence of4 consecutive values0 6 5 0 values0, 1, 4, 5 and6 are
respectively used2, 0, 0, 1 and1 times.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20031008 1687

• On the fourth sequence of4 consecutive values6 5 0 0 values0, 1, 4, 5 and6 are
respectively used2, 0, 0, 1 and1 times.

Typical SEQ > 1
SEQ < |VARIABLES|
|VARIABLES| > |VALUES|

Symmetries • Items ofVARIABLES can bereversed.

• An occurrence of a value ofVARIABLES.var that does not belong toVALUES.val
can bereplacedby any other value that also does not belong toVALUES.val.

• Items ofVALUES arepermutable.

• VALUES.omin can bedecreasedto any value≥ 0.

• VALUES.omax can beincreasedto any value≤ SEQ.

• All occurrences of two distinct values inVARIABLES.var or VALUES.val can be
swapped; all occurrences of a value inVARIABLES.var or VALUES.val can be
renamedto any unused value.

Arg. properties
• Contractiblewrt. VARIABLES whenSEQ = 1.

• Prefix-contractiblewrt. VARIABLES.

• Suffix-contractiblewrt. VARIABLES.

• Contractiblewrt. VALUES.

See also common keyword: pattern, sliding sum, stretch circuit,
stretch path (sliding sequence constraint).

part of system of constraints:global cardinality low up.

specialisation:among seq (individual values replaced by single set of values).

used in graph description:global cardinality low up.

Keywords characteristic of a constraint: hypergraph.

combinatorial object: sequence.

constraint type: decomposition, sliding sequence constraint, system of constraints.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1688 NARC,PATH

Arc input(s) VARIABLES

Arc generator PATH 7→collection

Arc arity SEQ

Arc constraint(s) global cardinality low up(collection, VALUES)

Graph property(ies) NARC= |VARIABLES| − SEQ+ 1

Graph model Note that thesliding distribution constraint is a constraint where the arc constraints
do not have an arity of2.

Parts (A) and (B) of Figure5.538respectively show the initial and final graph associated
with theExample slot. Since all arc constraints hold (i.e., because of the graph property
NARC = |VARIABLES| − SEQ+ 1) the final graph corresponds to the initial graph.

1:0 4:62:5 5:5 7:06:03:0

(B)

1 432 5 76

(A)

Figure 5.538: Initial and final graph of thesliding distribution constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20031008 1689

1690 NARC,PATH

5.315 slidingsum

DESCRIPTION LINKS GRAPH

Origin CHIP

Constraint sliding sum(LOW, UP, SEQ, VARIABLES)

Synonym sequence.

Arguments LOW : int

UP : int

SEQ : int

VARIABLES : collection(var−dvar)

Restrictions UP ≥ LOW

SEQ > 0
SEQ ≤ |VARIABLES|
required(VARIABLES, var)

Purpose
Constrains all sequences ofSEQ consecutive variables of the collectionVARIABLES so
that the sum of the variables belongs to interval[LOW, UP].

Example

3, 7, 4,

〈

var− 1,
var− 4,
var− 2,
var− 0,
var− 0,
var− 3,
var− 4

〉

The example considers all sliding sequences ofSEQ = 4 consecutive values of
〈1, 4, 2, 0, 0, 3, 4〉 collection and constraints the sum to be in[LOW, UP] = [3, 7].
The sliding sum constraint holds since the sum associated with the corresponding
subsequences1 4 2 0, 4 2 0 0, 2 0 0 3, and0 0 3 4 are respectively7, 6, 5 and7.

Typical LOW ≥ 0
UP > 0
SEQ > 1
SEQ < |VARIABLES|
VARIABLES.var ≥ 0
UP <sum(VARIABLES.var)

Symmetry Items ofVARIABLES can bereversed.

Arg. properties
• Contractiblewrt. VARIABLES whenSEQ = 1.

• Prefix-contractiblewrt. VARIABLES.

• Suffix-contractiblewrt. VARIABLES.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

20000128 1691

Algorithm Beldiceanu and Carlsson [29] have proposed a first incomplete filtering algorithm for the
sliding sum constraint. In2008, Maheret al. showed in [254] that thesliding sum

constraint has a solution “if and only there are no negative cycles in the flow graph asso-
ciated with the dual linear program” that encodes the conjunction of inequalities. They
derive abound-consistencyfiltering algorithm from this fact.

Systems sliding sum in MiniZinc .

See also common keyword:sliding distribution (sliding sequence constraint).

part of system of constraints:sum ctr.

soft variant: relaxed sliding sum.

used in graph description:sum ctr.

Keywords characteristic of a constraint: hypergraph, sum.

combinatorial object: sequence.

constraint type: decomposition, sliding sequence constraint, system of constraints.

filtering: linear programming, flow, bound-consistency.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#sliding_sum
http://www.g12.cs.mu.oz.au/minizinc/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1692 NARC,PATH

Arc input(s) VARIABLES

Arc generator PATH 7→collection

Arc arity SEQ

Arc constraint(s) • sum ctr(collection,≥, LOW)
• sum ctr(collection,≤, UP)

Graph property(ies) NARC= |VARIABLES| − SEQ+ 1

Graph model We usesum ctr as an arc constraint.sum ctr takes a collection of domain variables as its
first argument.

Parts (A) and (B) of Figure5.539respectively show the initial and final graph associated
with theExample slot. Since all arc constraints hold (i.e., because of the graph property
NARC = |VARIABLES| − SEQ+ 1) the final graph corresponds to the initial graph.

(A)

6 752 3 41

(B)

6:3 7:45:02:4 3:2 4:01:1

Figure 5.539: Initial and final graph of thesliding sum constraint

Signature Since we use thePATH arc generator with an arity ofSEQ on the items of theVARIABLES
collection, the expression|VARIABLES| − SEQ + 1 corresponds to the maximum num-
ber of arcs of the final graph. Therefore we can rewrite the graph propertyNARC =
|VARIABLES| − SEQ+ 1 to NARC ≥ |VARIABLES| − SEQ+ 1 and simplifyNARC to
NARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20000128 1693

1694 CLIQUE , SUCC

5.316 slidingtime window

DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint sliding time window(WINDOW SIZE, LIMIT, TASKS)

Arguments WINDOW SIZE : int

LIMIT : int

TASKS : collection(origin−dvar, duration−dvar)

Restrictions WINDOW SIZE > 0
LIMIT ≥ 0
required(TASKS, [origin, duration])
TASKS.duration ≥ 0

Purpose
For any time window of sizeWINDOW SIZE, the intersection of all the tasks of the col-
lectionTASKS with this time window is less than or equal to a given limitLIMIT.

Example

9, 6,

〈

origin− 10 duration− 3,
origin− 5 duration− 1,
origin− 6 duration− 2,
origin− 14 duration− 2,
origin− 2 duration− 2

〉

The lower part of Figure5.540 indicates the different tasks on the time axis. Each
task is drawn as a rectangle with its corresponding identifier in the middle. Finally
the upper part of Figure5.540 shows the different time windows and the respective
contribution of the tasks in these time windows. Note that we only need to focuson those
time windows starting at the start of one of the tasks. A line with two arrows depicts each
time window. The two arrows indicate the start and the end of the time window. At the left
of each time window we give its occupation. Since this occupation is always less than or
equal to the limit6, thesliding time window constraint holds.

Typical WINDOW SIZE > 1
LIMIT > 0
LIMIT <sum(TASKS.duration)
|TASKS| > 1
TASKS.duration > 0

Symmetries • WINDOW SIZE can bedecreased.

• LIMIT can beincreased.

• Items ofTASKS arepermutable.

• One and the same constant can beaddedto theorigin attribute of all items of
TASKS.

• TASKS.duration can bedecreasedto any value≥ 0.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20030820 1695

Arg. properties
Contractiblewrt. TASKS.

Usage Thesliding time window constraint is useful for timetabling problems in order to put
an upper limit on the total work over sliding time windows.

Reformulation Thesliding time window constraint can be expressed in term of a set of|TASKS|2 reified
constraints and of|TASKS| linear inequalitiesconstraints:

1. For each pair of tasksTASKS[i], TASKS[j] (i, j ∈ [1, |TASKS|]) of theTASKS collec-
tion we create a variableInter ij which is set to the intersection ofTASKS[j] with the
time windowWi of sizeWINDOW SIZE that starts at instantTASKS[i].origin:

• If i = j (i.e.,TASKS[i] andTASKS[j] coincide):

– Inter ij = min(TASKS[i].duration, WINDOW SIZE).

• If i 6= j and TASKS[j].origin + TASKS[j].duration < TASKS[i].origin
(i.e.,TASKS[j] for sure ends before the time windowWi):

– Inter ij = 0.

• If i 6= j and TASKS[j].origin > TASKS[i].origin + WINDOW SIZE − 1
(i.e.,TASKS[j] for sure starts after the time windowWi):

– Inter ij = 0.

• Otherwise (i.e.,TASKS[j] can potentially overlap the time windowWi):

– Inter ij = max(0,min(TASKS[i].origin +
WINDOW SIZE, TASKS[j].origin + TASKS[j].duration) −
max(TASKS[i].origin, TASKS[j].origin)).

2. For each taskTASKS[i] (i ∈ [1, |TASKS|]) we create a linear inequality constraint
Inter i1 + Inter i2 + . . .+ Inter i|TASKS| ≤ LIMIT.

See also common keyword:shift (temporal constraint).

related: sliding time window sum (sum of intersections of tasks with sliding time win-
dow replaced by sum of the points of intersecting tasks with sliding time window).

used in graph description:sliding time window from start.

Keywords constraint type: sliding sequence constraint, temporal constraint.

6 = 2+1+2+1 < 7

2 5 6 10 14

6 = 1+2+3 < 7

6 = 2+3+1 < 7

5 = 3+2 < 7

2 = 2 < 7

time

5 2 3 1 4

Figure 5.540: Time windows of thesliding time window constraint

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1696 CLIQUE , SUCC

Arc input(s) TASKS

Arc generator CLIQUE 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.origin ≤ tasks2.origin
• tasks2.origin− tasks1.origin < WINDOW SIZE

Sets SUCC 7→ [source, tasks]

Constraint(s) on sets sliding time window from start

WINDOW SIZE,
LIMIT,
tasks,
source.origin

Graph model We generate an arc from a taskt1 to a taskt2 if task t2 does not start before taskt1 and
if task t2 intersects the time window that starts at the origin of taskt1. Each set generated
by SUCC corresponds to all tasks that intersect in time the time window that starts at the
origin of a given task.

Parts (A) and (B) of Figure5.541respectively show the initial and final graph associated
with theExampleslot. In the final graph, the successors of a given taskt correspond to the
set of tasks that do not start before taskt and intersect the time window that starts at the
origin of taskt.

TASKS

1

2

3

4

5

1:10,3

4:14,2

2:5,1

3:6,2

5:2,2

(A) (B)

Figure 5.541: Initial and final graph of thesliding time window constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1697

1698 SUM WEIGHT ARC,PRODUCT

5.317 slidingtime window from start

DESCRIPTION LINKS GRAPH

Origin Used for definingsliding time window.

Constraint sliding time window from start(WINDOW SIZE, LIMIT, TASKS, START)

Arguments WINDOW SIZE : int

LIMIT : int

TASKS : collection(origin−dvar, duration−dvar)
START : dvar

Restrictions WINDOW SIZE > 0
LIMIT ≥ 0
required(TASKS, [origin, duration])
TASKS.duration ≥ 0

Purpose
The sum of the intersections of all the tasks of theTASKS collection with interval
[START, START+ WINDOW SIZE− 1] is less than or equal toLIMIT.

Example

 9, 6,

〈

origin− 10 duration− 3,
origin− 5 duration− 1,
origin− 6 duration− 2

〉

, 5

The intersections of tasks〈id − 1 origin − 10 duration − 3〉, 〈id − 2 origin −
5 duration − 1〉, and 〈id − 3 origin − 6 duration − 2〉 with interval
[START, START + WINDOW SIZE − 1] = [5, 5 + 9 − 1] = [5, 13] are respectively
equal to3, 1, and2 (i.e., the three tasks of theTASKS collection are in fact included within
interval [5, 13]). Consequently, thesliding time window from start constraint holds
since the sum3 + 1 + 2 of these intersections does not exceed the value of its second
argumentLIMIT = 6.

Typical WINDOW SIZE > 1
LIMIT > 0
LIMIT < WINDOW SIZE

|TASKS| > 1
TASKS.duration > 0

Symmetries • WINDOW SIZE can bedecreased.

• LIMIT can beincreased.

• Items ofTASKS arepermutable.

• TASKS.duration can bedecreasedto any value≥ 0.

• One and the same constant can beaddedto START as well as to theorigin at-
tribute of all items ofTASKS.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20030820 1699

Arg. properties
Contractiblewrt. TASKS.

Reformulation Similar to the reformulation ofsliding time window.

Used in sliding time window.

Keywords characteristic of a constraint: derived collection.

constraint type: sliding sequence constraint, temporal constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Used in
List of constraints that use this constraint in their description.

Keywords
Related keywords grouped by meta-keywords.

1700 SUM WEIGHT ARC,PRODUCT

Derived Collection
col(S−collection(var−dvar), [item(var− START)])

Arc input(s) S TASKS

Arc generator PRODUCT 7→collection(s, tasks)

Arc arity 2

Arc constraint(s) TRUE

Graph property(ies) SUM WEIGHT ARC

 max

 0,
min

(

s.var+ WINDOW SIZE,
tasks.origin+ tasks.duration

)

−
max(s.var, tasks.origin)

 ≤ LIMIT

Graph model Since we use theTRUE arc constraint the final and the initial graph are identical. The unique
source of the final graph corresponds to the interval[START, START+ WINDOW SIZE− 1].
Each sink of the final graph represents a given task of theTASKS collection. We associate to
each arc the value given by the intersection of the task associated with one of the extremities
of the arc with the time window[START, START + WINDOW SIZE − 1]. Finally, the graph
propertySUM WEIGHT ARC sums up all the valuations of the arcs and check that
it does not exceed a given limit.

Parts (A) and (B) of Figure5.542 respectively show the initial and final graph associ-
ated with theExample slot. To each arc of the final graph we associate the intersection
of the corresponding sink task with interval[START, START + WINDOW SIZE − 1]. The
constraintsliding time window from start holds since the sum of the previous inter-
sections does not exceedLIMIT.

S

TASKS

1

123

SUM_WEIGHT_ARC=3+1+2=6

1:5

1:10,3

3

2:5,1

1

3:6,2

2

(A) (B)

Figure 5.542: Initial and final graph of thesliding time window from start con-
straint

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1701

1702 NARC,SELF ;CLIQUE , SUCC

5.318 slidingtime window sum

DESCRIPTION LINKS GRAPH

Origin Derived fromsliding time window.

Constraint sliding time window sum(WINDOW SIZE, LIMIT, TASKS)

Arguments WINDOW SIZE : int

LIMIT : int

TASKS : collection(origin−dvar, end−dvar, npoint−dvar)

Restrictions WINDOW SIZE > 0
LIMIT ≥ 0
required(TASKS, [origin, end, npoint])
TASKS.origin ≤ TASKS.end
TASKS.npoint ≥ 0

Purpose
For any time window of sizeWINDOW SIZE, the sum of the points of the tasks of the
collectionTASKS that overlap that time window do not exceed a given limitLIMIT.

Example

9, 16,

〈

origin− 10 end− 13 npoint− 2,
origin− 5 end− 6 npoint− 3,
origin− 6 end− 8 npoint− 4,
origin− 14 end− 16 npoint− 5,
origin− 2 end− 4 npoint− 6

〉

The lower part of Figure5.543 indicates the different tasks on the time axis. Each
task is drawn as a rectangle with its corresponding identifier in the middle. Finally
the upper part of Figure5.543 shows the different time windows and the respective
contribution of the tasks in these time windows. A line with two arrows depicts each time
window. The two arrows indicate the start and the end of the time window. At the right
of each time window we give its occupation. Since this occupation is always less than or
equal to the limit16, thesliding time window sum constraint holds.

Typical WINDOW SIZE > 1
LIMIT > 0
LIMIT <sum(TASKS.npoint)
|TASKS| > 1
TASKS.origin < TASKS.end
TASKS.npoint > 0

Symmetries • WINDOW SIZE can bedecreased.

• LIMIT can beincreased.

• Items ofTASKS arepermutable.

• TASKS.npoint can bedecreasedto any value≥ 0.

• One and the same constant can beaddedto theorigin andend attributes of all
items ofTASKS.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20030820 1703

Arg. properties
Contractiblewrt. TASKS.

Usage This constraint may be used for timetabling problems in order to put an upper limit on the
cumulated number of points in a shift.

Reformulation Thesliding time window sum constraint can be expressed in term of a set of|TASKS|2
reified constraints and of|TASKS| linear inequalitiesconstraints:

1. For each pair of tasksTASKS[i], TASKS[j] (i, j ∈ [1, |TASKS|]) of the TASKS

collection we create a variablePoint ij which is set toTASKS[j].npoint if
TASKS[j] intersects the time windowWi of sizeWINDOW SIZE that starts at instant
TASKS[i].origin, or 0 otherwise:

• If i = j (i.e.,TASKS[i] andTASKS[j] coincide):

– Point ij = TASKS[i].npoint.

• If i 6= j andTASKS[j].end < TASKS[i].origin (i.e., TASKS[j] for sure ends
before the time windowWi):

– Point ij = 0.

• If i 6= j and TASKS[j].origin > TASKS[i].origin + WINDOW SIZE − 1
(i.e.,TASKS[j] for sure starts after the time windowWi):

– Point ij = 0.

• Otherwise (i.e.,TASKS[j] can potentially overlap the time windowWi):

– Point ij = min(1,max(0,min(TASKS[i].origin +
WINDOW SIZE, TASKS[j].end)−max(TASKS[i].origin, TASKS[j].origin)))·
TASKS[j].npoint.

2. For each taskTASKS[i] (i ∈ [1, |TASKS|]) we create a linear inequality constraint
Point i1 + Point i2 + . . .+ Point i|TASKS| ≤ LIMIT.

See also related: sliding time window (sum of the points of intersecting tasks with sliding time
window replaced by sum of intersections of tasks with sliding time window).

used in graph description:sum ctr.

Keywords characteristic of a constraint: time window, sum.

constraint type: sliding sequence constraint, temporal constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1704 NARC,SELF ;CLIQUE , SUCC

4

2 5 6 10 14

15 = 6+3+4+2 < 17

9 = 3+4+2 < 17

11 = 4+2+5 < 17

7 = 2+5 < 17

5 = 5 < 17

time

5 2 3 1

Figure 5.543: Time windows of thesliding time window sum constraint

20030820 1705

Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin ≤ tasks.end

Graph property(ies) NARC= |TASKS|

Arc input(s) TASKS

Arc generator CLIQUE 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.end ≤ tasks2.end
• tasks2.origin− tasks1.end < WINDOW SIZE− 1

Sets SUCC 7→

source,

variables− col

(

VARIABLES−collection(var−dvar),
[item(var− TASKS.npoint)]

)

Constraint(s) on sets sum ctr(variables,≤, LIMIT)

Graph model We generate an arc from a taskt1 to a taskt2 if task t2 does not end before the end of task
t1 and if taskt2 intersects the time window that starts at the last instant of taskt1. Each
set generated bySUCC corresponds to all tasks that intersect in time the time window that
starts at instantend− 1, whereend is the end of a given task.

Parts (A) and (B) of Figure5.544respectively show the initial and final graph associated
with the Example slot. In the final graph, the successors of a given taskt correspond to
the set of tasks that both do not end before theend of taskt, and intersect the time window
that starts at theend− 1 of taskt.

Signature Consider the first graph constraint. Since we use theSELF arc generator on theTASKS
collection the maximum number of arcs of the final graph is equal to|TASKS|. Therefore we
can rewriteNARC = |TASKS| toNARC ≥ |TASKS| and simplifyNARC toNARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

1706 NARC,SELF ;CLIQUE , SUCC

TASKS

1

2

3

4

5

1:10,13,2

4:14,16,5

2:5,6,3

3:6,8,4

5:2,4,6

(A) (B)

Figure 5.544: Initial and final graph of thesliding time window sum constraint

20030820 1707

1708 NARC,PATH ; AUTOMATON

5.319 smooth

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromchange.

Constraint smooth(NCHANGE, TOLERANCE, VARIABLES)

Arguments NCHANGE : dvar

TOLERANCE : int

VARIABLES : collection(var−dvar)

Restrictions NCHANGE ≥ 0
NCHANGE < |VARIABLES|
TOLERANCE ≥ 0
required(VARIABLES, var)

Purpose NCHANGE is the number of times that|X−Y | > TOLERANCE holds;X andY correspond
to consecutive variables of the collectionVARIABLES.

Example (1, 2, 〈1, 3, 4, 5, 2〉)

In the example we have one change between values5 and 2 since the difference in
absolute value is greater than the tolerance (i.e.,|5 − 2| > 2). Consequently theNCHANGE
argument is fixed to1 and thesmooth constraint holds.

Typical NCHANGE > 0
TOLERANCE > 0
|VARIABLES| > 2
range(VARIABLES.var) > 1

Symmetries • Items ofVARIABLES can bereversed.

• One and the same constant can beaddedto the var attribute of all items of
VARIABLES.

Arg. properties
• Functional dependency: NCHANGE determined byTOLERANCE andVARIABLES.

• Prefix-contractiblewrt. VARIABLES whenNCHANGE = 0.

• Suffix-contractiblewrt. VARIABLES whenNCHANGE = 0.

• Prefix-contractiblewrt. VARIABLES whenNCHANGE = |VARIABLES| − 1.

• Suffix-contractiblewrt. VARIABLES whenNCHANGE = |VARIABLES| − 1.

Usage This constraint is useful for the following problems:

• Assume thatVARIABLES corresponds to the number of people that work on consec-
utive weeks. One may not normally increase or decrease too drasticallythe number
of people from one week to the next week. With thesmooth constraint you can state
a limit on the number of drastic changes.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

20000128 1709

• Assume you have to produce a set of orders, each order having a specific attribute.
You want to generate the orders in such a way that there is not a too big difference
between the values of the attributes of two consecutive orders. If you can’t achieve
this on two given specific orders, this would imply a set-up or a cost. Again,with the
smooth constraint, you can control this kind of drastic changes.

Algorithm A first incomplete algorithm is described in [29]. The sketch of a filtering algorithm for the
conjunction of thesmooth and thestretch constraints based ondynamic programming
achievingarc-consistencyis mentioned by Lars Hellsten in [191, page 60].

Reformulation Thesmooth constraint can be reformulated with theseq bin constraint [290] that we now
introduce. GivenN a domain variable,X a sequence of domain variables, andC andB two
binary constraints,seq bin(N, X, C, B) holds if (1)N is equal to the number ofC-stretches
in the sequenceX, and (2)B holds on any pair of consecutive variables inX. A C-stretch
is a generalisation of the notion of stretch introduced by G. Pesant [285], where the equal-
ity constraint is made explicit by replacing it by a binary constraintC, i.e., aC-stretch
is a maximal length subsequence ofX for which the binary constraintC is satisfied on
consecutive variables.smooth(NCHANGE, VARIABLES, TOLERANCE) can be reformulated
asN = N1 − 1 ∧ seq bin(N1, X, |xi − xi+1| ≤ TOLERANCE, true), wheretrue is the
universal constraint.

See also common keyword: change (number of changesin a sequence with respect to a binary
constraint).

related: distance.

Keywords characteristic of a constraint: automaton, automaton with counters,
non-deterministic automaton, non-deterministic automaton.

constraint arguments:pure functional dependency.

constraint network structure: sliding cyclic(1) constraint network(2),
Berge-acyclic constraint network.

constraint type: timetabling constraint.

filtering: dynamic programming.

modelling: number of changes, functional dependency.

modelling exercises:n-Amazon.

puzzles:n-Amazon.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1710 NARC,PATH ; AUTOMATON

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) abs(variables1.var− variables2.var) > TOLERANCE

Graph property(ies) NARC= NCHANGE

Graph model Parts (A) and (B) of Figure5.545respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the unique arc of the
final graph is stressed in bold.

VARIABLES

1

2

3

4

5

NARC=1

4:5

5:2

(A) (B)

Figure 5.545: Initial and final graph of thesmooth constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 1711

Automaton Figure5.546depicts a first automaton that only accepts all the solutions of thesmooth

constraint. This automaton uses a counter in order to record the number of satisfied con-
straints of the form(|VARi − VARi+1|) > TOLERANCE already encountered. To each pair
of consecutive variables(VARi, VARi+1) of the collectionVARIABLES corresponds a0-
1 signature variableSi. The following signature constraint linksVARi, VARi+1 andSi:
(|VARi − VARi+1|) > TOLERANCE ⇔ Si = 1.

NCHANGE=C i
|VAR −VAR |<=TOLERANCE

i+1i
|VAR −VAR |>TOLERANCE,

{C=0}

{C=C+1}

s:
i+1

Figure 5.546: Automaton (with a counter) of thesmooth constraint

n−1Q =s

0C =0 1C

1Q

1
VAR

1S

2
VAR

2S

n
VAR

3
VAR

3S

2Q

2C

n−1S

n−1
VAR

n−1C =NCHANGE

Q =s0

Figure 5.547: Hypergraph of the reformulation corresponding to the automaton (with
a counter) of thesmooth constraint

Since the reformulation associated with the previous automaton is notBerge-acyclic, we
now describe a second counter free automaton that also only accepts allthe solutions of
thesmooth constraint. Without loss of generality, assume that the collection of variables
VARIABLES contains at least two variables (i.e.,|VARIABLES| ≥ 2). Letn, min, max , and
D respectively denote the number of variables of the collectionVARIABLES, the smallest
value that can be assigned to the variables ofVARIABLES, the largest value that can be
assigned to the variables ofVARIABLES, and the union of the domains of the variables
of VARIABLES. Clearly, the maximum number of changes (i.e., the number of times the
constraint(|VARi−VARi+1|) > TOLERANCE (1 ≤ i < n) holds) cannot exceed the quantity
m = min(n−1, NCHANGE). The(m+1) · |D|+2 states of the automaton that only accepts
all the solutions of thesmooth constraint are defined in the following way:

• We have an initial state labelled bysI .

• We havem · |D| intermediate states labelled bysij (i ∈ D, j ∈ [0,m]). The first
subscripti of statesij corresponds to the value currently encountered. The second
subscriptj denotes the number of already encountered satisfied constraints of the
form (|VARk − VARk+1|) > TOLERANCE from the initial statesI to the statesij .

• We have a final state labelled bysF .

Four classes of transitions are respectively defined in the following way:

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1712 NARC,PATH ; AUTOMATON

1. There is a transition, labelled byi from the initial statesI to the statesi0, (i ∈ D).

2. There is a transition, labelled byj, from every statesij , (i ∈ D, j ∈ [0,m]), to the
final statesF .

3. ∀i ∈ D, ∀j ∈ [0,m], ∀k ∈ D ∩ [max(min, i − TOLERANCE),min(max , i +
TOLERANCE)] there is a transition labelled byk from sij to skj (i.e., the counterj
does not change for valuesk that are too closed from valuei).

4. ∀i ∈ D, ∀j ∈ [0,m − 1], ∀k ∈ D r [max(min, i − TOLERANCE),min(max , i +
TOLERANCE)] there is a transition labelled byk from sij to skj+1 (i.e., the counterj
is incremented by+1 for valuesk that are too far fromi).

We have|D| transitions of type1, |D| · (m+ 1) transitions of type2, and at least|D|2 ·m
transitions of types3 and4. Since the maximum value ofm is equal ton− 1, in the worst
case we have at least|D|2 · (n− 1) transitions. This leads to a worst case time complexity
of O(|D|2 · n2) if we use Pesant’s algorithm for filtering theregular constraint [286].

Figure5.548depicts the corresponding counter free non deterministic automaton associ-
ated with thesmooth constraint under the hypothesis that (1) all variables ofVARIABLES

are assigned a value in{0, 1, 2, 3}, (2) |VARIABLES| is equal to4, and (3)TOLERANCE is
equal to1.

20000128 1713

2 3

2 3 0 1

1

1

2

2

NCHANGE

The sequence of variables

is passed to the automaton
321 VAR4VARVARVAR

F
s

I
s

s

s

s

s

ssss

sss
12

s

ssss

ssss

23

2111

13

13033323

322202

11013121

30201000

33

02

13

321

210

02

13

2

3

1

2

0

1

3

2

3

1

0

100332

32100

1003 32

3210

0 1 2 3

2 13 0

0 1

Figure 5.548: Counter free non deterministic automaton of the
smooth(NCHANGE, 1, 〈VAR1, VAR2, VAR3, VAR4〉) constraint assumingVARi ∈ [0, 3]
(1 ≤ i ≤ 3), with initial statesI and final statesF

1714 MAX NSCC,CLIQUE

5.320 softall equal max var

DESCRIPTION LINKS GRAPH

Origin [137]

Constraint soft all equal max var(N, VARIABLES)

Arguments N : dvar

VARIABLES : collection(var−dvar)

Restrictions N ≥ 0
N ≤ |VARIABLES|
required(VARIABLES, var)

Purpose

LetM be the number of occurrences of the most often assigned value to the variables of
theVARIABLES collection.N is less than or equal to the total number of variables of the
VARIABLES collection minusM (i.e.,N is less than or equal to the minimum number of
variables that need to be reassigned in order to obtain a solution where all variables are
assigned a same value).

Example (1, 〈5, 1, 5, 5〉)

Within the collection 〈5, 1, 5, 5〉, 3 is the number of occurrences of the most as-
signed value. Consequently, thesoft all equal max var constraint holds since the
argumentN = 1 is less than or equal to the total number of variables4 minus3.

Typical N > 0
N < |VARIABLES|
|VARIABLES| > 1

Symmetries • N can bedecreasedto any value≥ 0.

• Items ofVARIABLES arepermutable.

• All occurrences of two distinct values ofVARIABLES.var can beswapped; all
occurrences of a value ofVARIABLES.var can berenamedto any unused value.

Algorithm [137].

See also common keyword: soft all equal min ctr, soft all equal min var,
soft alldifferent ctr, soft alldifferent var (soft constraint).

hard version: all equal.

related: atmost nvalue.

Keywords constraint type: soft constraint, value constraint, relaxation,
variable-based violation measure.

filtering: arc-consistency, bound-consistency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20090926 1715

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) MAX NSCC≤ |VARIABLES| − N

Graph model We generate an initial graph with binaryequalitiesconstraints between each vertex and its
successors. The graph property states thatN is less than or equal to the difference between
the total number of vertices of the initial graph and the number of vertices of the largest
strongly connected component of the final graph.

Parts (A) and (B) of Figure5.549respectively show the initial and final graph associated
with theExample slot. Since we use theMAX NSCC graph property we show one of
the largest strongly connected component of the final graph.

VARIABLES

1

2

3

4

MAX_NSCC=3

MAX_NSCC

1:5

3:5

4:5

2:1

(A) (B)

Figure 5.549: Initial and final graph of thesoft all equal max var constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1716 NARC,CLIQUE(6=)

5.321 softall equal min ctr

DESCRIPTION LINKS GRAPH

Origin [190]

Constraint soft all equal min ctr(N, VARIABLES)

Synonyms soft alldiff max ctr, soft alldifferent max ctr,
soft alldistinct max ctr.

Arguments N : int

VARIABLES : collection(var−dvar)

Restrictions N ≥ 0
N ≤ |VARIABLES| ∗ |VARIABLES| − |VARIABLES|
required(VARIABLES, var)

Purpose
Consider theequality constraints involving two distinct variables of the collection
VARIABLES. Among the previous set of constraints,N is less than or equal to the number
of equalityconstraints that hold.

Example (6, 〈5, 1, 5, 5〉)

Within the collection 〈5, 1, 5, 5〉 six equality constraints holds. Consequently, the
soft all equal ctr constraint holds since the argumentN = 6 is less than or equal to
the number of equality constraints that hold.

Typical N > 0
N < |VARIABLES| ∗ |VARIABLES| − |VARIABLES|
|VARIABLES| > 1

Symmetries • N can bedecreasedto any value≥ 0.

• Items ofVARIABLES arepermutable.

• All occurrences of two distinct values ofVARIABLES.var can beswapped; all
occurrences of a value ofVARIABLES.var can berenamedto any unused value.

Remark It was shown in [190] that, finding out whether thesoft all equal ctr constraint has a
solution or not is NP-hard. This was achieved by reduction from3-dimensional-matching.
Hebrardet al. also identify a tractable class when no value occurs in more than two vari-
ables of the collectionVARIABLES that is equivalent to the vertex matching problem. One
year later, [137] shows how to achievebound-consistencyin polynomial time.

See also common keyword: soft all equal max var, soft all equal min var,
soft alldifferent ctr, soft alldifferent var (soft constraint).

hard version: all equal.

related: atmost nvalue.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

20081004 1717

Keywords complexity: 3-dimensional-matching.

constraint type: soft constraint, value constraint, relaxation,
decomposition-based violation measure.

filtering: bound-consistency.

Keywords
Related keywords grouped by meta-keywords.

1718 NARC,CLIQUE(6=)

Arc input(s) VARIABLES

Arc generator CLIQUE (6=) 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NARC≥ N

Graph model We generate an initial graph with binaryequalitiesconstraints between each vertex and its
successors. We use the arc generatorCLIQUE(6=) in order to avoid consideringequality
constraints between the same variable. The graph property states thatN is less than or equal
to the number ofequalitiesthat hold in the final graph.

Parts (A) and (B) of Figure5.550respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold. Six equality constraints remain in the final graph.

VARIABLES

1

2

3

4

NARC=6

1:5

3:5

4:5

(A) (B)

Figure 5.550: Initial and final graph of thesoft all equal min ctr constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20081004 1719

1720 MAX NSCC,CLIQUE

5.322 softall equal min var

DESCRIPTION LINKS GRAPH

Origin [137]

Constraint soft all equal min var(N, VARIABLES)

Arguments N : dvar

VARIABLES : collection(var−dvar)

Restrictions N ≥ 0
required(VARIABLES, var)

Purpose

Let M be the number of occurrences of the most often assigned value to the variables
of theVARIABLES collection.N is greater than or equal to the total number of variables
of theVARIABLES collection minusM (i.e.,N is greater than or equal to the minimum
number of variables that need to be reassigned in order to obtain a solutionwhere all
variables are assigned a same value).

Example (1, 〈5, 1, 5, 5〉)

Within the collection 〈5, 1, 5, 5〉, 3 is the number of occurrences of the most as-
signed value. Consequently, thesoft all equal min var constraint holds since the
argumentN = 1 is greater than or equal to the total number of variables4 minus3.

Typical N > 0
|VARIABLES| > 1

Symmetries • N can beincreased.

• Items ofVARIABLES arepermutable.

• All occurrences of two distinct values ofVARIABLES.var can beswapped; all
occurrences of a value ofVARIABLES.var can berenamedto any unused value.

Algorithm Letm denote the total number of potential values that can be assigned to the variables of the
VARIABLES collection. In [137], E. Hebrardet al. provides anO(m) filtering algorithm
achievingarc-consistencyon thesoft all equal min var constraint. The same paper
also provides an algorithm with a lower complexity for achievingrange consistency. Both
algorithms are based on the following ideas:

• In a first phase, they both compute anenvelopeof the unionD of the domains of
the variables of theVARIABLES collection, i.e., an arrayA that indicates for each
potential valuev of D, the maximum number of variables that could possibly be
assigned valuev. Letmax occ denote the maximum value over the entries of array
A, and letVmax occ denote the set of values which all occur inmax occ variables of
theVARIABLES collection. The quantity|VARIABLES| −max occ is a lower bound
of N.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

20090926 1721

• In a second phase, depending on the relative ordering betweenmax occ and the min-
imum value of|VARIABLES| − N, i.e.,|VARIABLES| − N, we have the three following
cases:

1. Whenmax occ < |VARIABLES|−N, the constraintsoft all equal min var

simply fails since not enough variables of theVARIABLES collection can be
assigned the same value.

2. Whenmax occ = |VARIABLES|−N, the constraintsoft all equal min var

can be satisfied. In this context, a valuev can be removed from the domain of a
variableV of theVARIABLES collection if and only if:

(a) valuev does not belong toVmax occ ,

(b) the domain of variableV contains all values ofVmax occ .

On the one hand, the first condition can be understand as the fact that value
v is not a value that allows to have at least|VARIABLES| − N variables as-
signed the same value. On the other hand, the second condition can be inter-
preted as the fact that variableV is absolutely required in order to have at least
|VARIABLES| − N variables assigned the same value.

3. Whenmax occ > |VARIABLES|−N, the constraintsoft all equal min var

can be satisfied, but no value can be pruned.

Note that, in the context ofrange consistency, the first phase of the filtering algorithm can
be interpreted as asweepalgorithm were:

• On the one hand, thesweep statuscorresponds to the maximum number of occur-
rence of variables that can be assigned a given value.

• On the other hand, theevent point seriescorrespond to the minimum values of the
variables of theVARIABLES collection as well as to the maximum values (+1) of the
same variables.

Figure5.551illustrates the previous filtering algorithm on an example whereN is equal to1,
and where we have four variablesV1, V2, V3 andV4 respectively taking their values within
intervals[1, 3], [3, 7], [0, 8] and[5, 6] (see Part (A) of Figure5.551, where the values of each
variable are assigned a same colour that we retrieve in the other parts of Figure5.551).

Part (B) of Figure5.551illustrates the first phase of the filtering algorithm, namely the
computation of the envelope of the domains of variablesV1, V2, V3 andV4. The start
eventss1, s2, s3, s4 (i.e., the events respectively associated with the minimum value of
variablesV1, V2, V3, V4) where the envelope is increased by1 are represented by the
character↑. Similarly, theend events(i.e., the eventse1, e2, e3, e4 respectively associated
with the maximum value (+1) of V1, V2, V3, V4 are represented by the character↓). Since
the highest peak of the envelope is equal to3 we have thatmax occ is equal to3. The
values that allow to reach this highest peak are equal toVmax occ = {3, 5, 6} (i.e., shown
in red in Part (B) of Figure5.551).

Finally, Part (C) of Figure5.551 illustrates the second phase of the filtering algorithm.
Sincemax occ = 3 is equal to|VARIABLES| − N = 4 − 1 we remove from the variables
whose domains containVmax occ = {3, 5, 6} (i.e., variablesV2 andV3) all values not in
Vmax occ = {3, 5, 6} (i.e., values4, 7 for variableV2 and values0, 1, 2, 4, 7, 8 for variable
V3).

See also common keyword: soft all equal max var, soft all equal min ctr,
soft alldifferent ctr, soft alldifferent var (soft constraint).

See also
Related constraints grouped by semantics links.

1722 MAX NSCC,CLIQUE

hard version: all equal.

related: atmost nvalue.

Keywords constraint type: soft constraint, value constraint, relaxation,
variable-based violation measure.

filtering: arc-consistency, sweep.

Keywords
Related keywords grouped by meta-keywords.

20090926 1723

�����
�����
�����
�����

������
������
������
������ ���

���
���

���
���
���

������
������
������

������
������
������

���
���
���

���
���
���

��������
��������
��������

��������
��������
��������

���������
���������
���������
���������

������
������
������
������

���������
���������
���������

���������
���������
���������

���
���
���

���
���
���

����������
����������
����������

����������
����������
����������

��
��
��

��
��
��

���
���
���
���

����
����
����
����

values of each variable

1
s
2

s
3

s
4

e
1

e
2

e
34

e

V

V

V

1

2

V
3

4

4

3
V

2

1

V

V

V

max_occ=3

6531 987420 1

10 2 3 4 5 6 7 8 91

6531 987420 1

envelope

(B) Phase 1: computing the domains

cross represents a pruned value)

(C) Phase 2: pruning the variables (each

(A) Initial domains: one color for the

s

Figure 5.551: Illustration of the two phases filtering algorithm

1724 MAX NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) MAX NSCC≥ |VARIABLES| − N

Graph model We generate an initial graph with binaryequalitiesconstraints between each vertex and
its successors. The graph property states thatN is greater than or equal to the difference
between the total number of vertices of the initial graph and the number of vertices of the
largest strongly connected component of the final graph.

Parts (A) and (B) of Figure5.552respectively show the initial and final graph associated
with theExample slot. Since we use theMAX NSCC graph property we show one of
the largest strongly connected component of the final graph.

VARIABLES

1

2

3

4

MAX_NSCC=3

MAX_NSCC

1:5

3:5

4:5

2:1

(A) (B)

Figure 5.552: Initial and final graph of thesoft all equal min var constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20090926 1725

1726 NARC,CLIQUE(<)

5.323 softalldifferent ctr

DESCRIPTION LINKS GRAPH

Origin [294]

Constraint soft alldifferent ctr(C, VARIABLES)

Synonyms soft alldiff ctr, soft alldistinct ctr, soft alldiff min ctr,
soft alldifferent min ctr, soft alldistinct min ctr,
soft all equal max ctr.

Arguments C : dvar

VARIABLES : collection(var−dvar)

Restrictions C ≥ 0
required(VARIABLES, var)

Purpose

Consider thedisequalityconstraints involving two distinct variablesVARIABLES[i].var
andVARIABLES[j].var (i < j) of the collectionVARIABLES. Among the previous set
of constraints,C is greater than or equal to the number ofdisequalityconstraints that do
not hold.

Example

4,

〈

var− 5,
var− 1,
var− 9,
var− 1,
var− 5,
var− 5

〉

Within the collection 〈5, 1, 9, 1, 5, 5〉 the first and fifth values, the first and sixth
values, the second and fourth values, and the fifth and sixth values are identical. Con-
sequently, the argumentC = 4 is greater than or equal to the number ofdisequality
constraints that do not hold (i.e, 4) and thesoft alldifferent ctr constraint holds.

Typical C > 0
|VARIABLES| > 1

Symmetries • C can beincreased.

• Items ofVARIABLES arepermutable.

• All occurrences of two distinct values ofVARIABLES.var can beswapped; all
occurrences of a value ofVARIABLES.var can berenamedto any unused value.

Usage A soft alldifferent constraint.

Remark The soft alldifferent ctr constraint is called soft alldiff min ctr or
soft all equal max ctr in [137].

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

20030820 1727

Algorithm Since it focus on the soft aspect of thealldifferent constraint, the original article [294]
that introduces this constraint describes how to evaluate the minimum value of C and how
to prune according to the maximum value ofC. The corresponding filtering algorithm
does not achievearc-consistency. W.-J. van Hoeve [397] presents a new filtering algo-
rithm that achievesarc-consistency. This algorithm is based on a reformulation into a
minimum-cost flowproblem.

See also common keyword: soft all equal max var, soft all equal min ctr,
soft all equal min var, soft alldifferent var (soft constraint).

hard version: alldifferent.

related: atmost nvalue.

Keywords characteristic of a constraint: all different, disequality.

constraint type: soft constraint, value constraint, relaxation,
decomposition-based violation measure.

filtering: minimum cost flow.

modelling: degree of diversity of a set of solutions.

modelling exercises:degree of diversity of a set of solutions.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1728 NARC,CLIQUE(<)

Arc input(s) VARIABLES

Arc generator CLIQUE (<) 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NARC≤ C

Graph model We generate an initial graph with binaryequalitiesconstraints between each vertex and its
successors. We use the arc generatorCLIQUE(<) in order to avoid counting twice the
sameequalityconstraint. The graph property states thatC is greater than or equal to the
number ofequalitiesthat hold in the final graph.

Parts (A) and (B) of Figure5.553respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold. Since four equality constraints remain in the final graph thecost
variableC is greater than or equal to4.

VARIABLES

1

2

3

4

5

6

NARC=4

1:5

5:5

6:5

2:1

4:1

(A) (B)

Figure 5.553: Initial and final graph of thesoft alldifferent ctr constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1729

1730 NSCC,CLIQUE

5.324 softalldifferent var

DESCRIPTION LINKS GRAPH

Origin [294]

Constraint soft alldifferent var(C, VARIABLES)

Synonyms soft alldiff var, soft alldistinct var, soft alldiff min var,
soft alldifferent min var, soft alldistinct min var.

Arguments C : dvar

VARIABLES : collection(var−dvar)

Restrictions C ≥ 0
required(VARIABLES, var)

Purpose
C is greater than or equal to the minimum number of variables of the collection
VARIABLES for which the value needs to be changed in order that all variables of
VARIABLES take a distinct value.

Example

3,

〈

var− 5,
var− 1,
var− 9,
var− 1,
var− 5,
var− 5

〉

Within the collection〈5, 1, 9, 1, 5, 5〉, 3 and 2 items are respectively fixed to values
5 and1. Therefore one must change the values of at least(3 − 1) + (2 − 1) = 3 items
to get back to6 distinct values. Consequently, thesoft alldifferent var constraint
holds since its first argumentC is greater than or equal to3.

Typical C > 0
2 ∗ C ≤ |VARIABLES|
|VARIABLES| > 1

Symmetries • C can beincreased.

• Items ofVARIABLES arepermutable.

• All occurrences of two distinct values ofVARIABLES.var can beswapped; all
occurrences of a value ofVARIABLES.var can berenamedto any unused value.

Usage A soft alldifferent constraint.

Remark Since it focus on the soft aspect of thealldifferent constraint, the original article [294],
which introduce this constraint, describes how to evaluate the minimum value of C and how
to prune according to the maximum value ofC.

Thesoft alldifferent var constraint is calledsoft alldiff min var in [137].

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

20030820 1731

Algorithm The filtering algorithm presented in [294] achievesarc-consistency.

Reformulation By introducing a variableM that gives the number of distinct values used by variables of
the collectionVARIABLES, the soft alldifferent var(C, VARIABLES) constraint can
be expressed as a conjunction of thenvalue(M, VARIABLES) constraint and of the linear
constraintC ≥ |VARIABLES| −M .

See also common keyword: soft all equal max var, soft all equal min ctr,
soft all equal min var, soft alldifferent ctr,
weighted partial alldiff (soft constraint).

hard version: alldifferent.

related: atmost nvalue, nvalue.

Keywords characteristic of a constraint: all different, disequality.

constraint type: soft constraint, value constraint, relaxation,
variable-based violation measure.

final graph structure: strongly connected component, equivalence.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1732 NSCC,CLIQUE

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC≥ |VARIABLES| − C

Graph model We generate a clique with binaryequalitiesconstraints between each pairs of vertices (this
include an arc between a vertex and itself) and we state thatC is equal to the difference
between the total number of variables and the number of strongly connected components.

Parts (A) and (B) of Figure5.554respectively show the initial and final graph associated
with the Example slot. Since we use theNSCC graph property we show the different
strongly connected components of the final graph. Each strongly connected component of
the final graph includes all variables that take the same value. Since we have 6 variables
and3 strongly connected components thecostvariableC is greater than or equal to6− 3.

VARIABLES

1

2

3

4

5

6

NSCC=3

SCC#1 SCC#2 SCC#3

1:5

5:5

6:5

2:1

4:1

3:9

(A) (B)

Figure 5.554: Initial and final graph of thesoft alldifferent var constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1733

1734 PREDEFINED

5.325 softcumulative

DESCRIPTION LINKS

Origin Derived fromcumulative

Constraint soft cumulative(TASKS, LIMIT, INTERMEDIATE LEVEL, SURFACE ON TOP)

Arguments TASKS : collection

origin−dvar,
duration−dvar,
end−dvar,
height−dvar

LIMIT : int

INTERMEDIATE LEVEL : int

SURFACE ON TOP : dvar

Restrictions require at least(2, TASKS, [origin, duration, end])
required(TASKS, height)
TASKS.duration ≥ 0
TASKS.origin ≤ TASKS.end
TASKS.height ≥ 0
LIMIT ≥ 0
INTERMEDIATE LEVEL ≥ 0
INTERMEDIATE LEVEL ≤ LIMIT

SURFACE ON TOP ≥ 0

Purpose

Consider a setT of n tasks described by theTASKS collection, whereoriginj ,
durationj , endj , heightj are shortcuts forTASKS[j].origin, TASKS[j].duration,
TASKS[j].end, TASKS[j].height. In addition letα and β respectively denote the
earliest possible start over all tasks and the latest possible end over all tasks. The
soft cumulative constraint enforces the three following conditions:

1. For each taskTASKS[j] (1 ≤ j ≤ n) of T we haveoriginj + durationj =
endj .

2. At each point in time, the cumulated height of the set of tasks that over-
lap that point, does not exceed a given limitLIMIT (i.e., ∀i ∈ [α, β] :
∑

j∈[1,n]|originj≤i<endj
heightj ≤ LIMIT).

3. The surface of the profile resource utilisation, which is greater
than INTERMEDIATE LEVEL, is equal to SURFACE ON TOP (i.e.,
∑

i∈[α,β] max(0, (
∑

j∈[1,n]|originj≤i<endj
heightj) − INTERMEDIATE LEVEL)

= SURFACE ON TOP).

Example

〈

origin− 1 duration− 4 end− 5 height− 1,
origin− 1 duration− 1 end− 3 height− 2,
origin− 3 duration− 3 end− 6 height− 2

〉

, 3, 2, 3

Figure 5.555 shows the cumulated profile associated with the example. To each

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20091121 1735

task of thecumulative constraint corresponds a set of rectangles coloured with the same
colour: the sum of the lengths of the rectangles corresponds to the duration of the task,
while the height of the rectangles (i.e., all the rectangles associated with a task have the
same height) corresponds to the resource consumption of the task. Thesoft cumulative

constraint holds since:

1. For each task we have that its end is equal to the sum of its origin and its duration.

2. At each point in time we do not have a cumulated resource consumptionstrictly
greater than the upper limitLIMIT = 3 enforced by the second argument of the
soft cumulative constraint.

3. The surface of the cumulated profile located on top of the intermediate level
INTERMEDIATE LEVEL = 2 is equal toSURFACE ON TOP = 3.

time

am
ou

nt
 o

f r
es

ou
rc

e

SURFACE_ON_TOP=3

LIMIT=3

INTERMEDIATE_LEVEL=2

1

654321

32

Figure 5.555: Resource consumption profile associated withthe3 tasks of the example,
where parts on top of the intermediate level2 are marked by a cross

Typical |TASKS| > 1
range(TASKS.origin) > 1
range(TASKS.duration) > 1
range(TASKS.end) > 1
range(TASKS.height) > 1
TASKS.duration > 0
TASKS.height > 0
LIMIT <sum(TASKS.height)
INTERMEDIATE LEVEL > 0
INTERMEDIATE LEVEL < LIMIT

SURFACE ON TOP > 0

Symmetries • Items ofTASKS arepermutable.

• One and the same constant can beaddedto theorigin andend attributes of all
items ofTASKS.

• LIMIT can beincreased.

Remark Thesoft cumulative constraint was initially introduced inCHIP [117] as a variant of
the cumulative constraint. An extension of this constraint where one can restrict the
surface on top of the intermediate level on different time intervals was proposed in [291].

See also hard version: cumulative.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.cosytec.com

See also
Related constraints grouped by semantics links.

1736 PREDEFINED

Keywords constraint type: predefined constraint, soft constraint, scheduling constraint,
resource constraint, temporal constraint, relaxation.

Keywords
Related keywords grouped by meta-keywords.

20091121 1737

1738 NSINK NSOURCE,PRODUCT

5.326 softsameinterval var

DESCRIPTION LINKS GRAPH

Origin Derived fromsame interval

Constraint soft same interval var(C, VARIABLES1, VARIABLES2, SIZE INTERVAL)

Synonym soft same interval.

Arguments C : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
SIZE INTERVAL : int

Restrictions C ≥ 0
C ≤ |VARIABLES1|
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
SIZE INTERVAL > 0

Purpose

Let Ni (respectivelyMi) denote the number of variables of the collectionVARIABLES1

(respectively VARIABLES2) that take a value in the interval[SIZE INTERVAL ·
i, SIZE INTERVAL · i + SIZE INTERVAL − 1. C is the minimum number of values to
change in theVARIABLES1 andVARIABLES2 collections so that for all integeri we have
Ni = Mi.

Example

4,

〈

var− 9,
var− 9,
var− 9,
var− 9,
var− 9,
var− 1

〉

,

〈

var− 9,
var− 1,
var− 1,
var− 1,
var− 1,
var− 8

〉

, 3

In the example, the fourth argumentSIZE INTERVAL = 3 defines the following
family of intervals[3 · k, 3 · k + 2], wherek is an integer. Consequently the values of the
collections〈9, 9, 9, 9, 9, 1〉 and 〈9, 1, 1, 1, 1, 8〉 are respectively located within intervals
[9, 11], [9, 11], [9, 11], [9, 11], [9, 11], [0, 2] and intervals[9, 11], [0, 2], [0, 2], [0, 2], [0, 2],
[6, 8]. Since there is a correspondence between two pairs of intervals we mustunset at least
6 − 2 items (6 is the number of items of theVARIABLES1 andVARIABLES2 collections).
Consequently, thesoft same interval var constraint holds since its first argumentC is
set to6− 2.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20050507 1739

Typical C > 0
|VARIABLES1| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1
SIZE INTERVAL > 1
SIZE INTERVAL <range(VARIABLES1.var)
SIZE INTERVAL <range(VARIABLES2.var)

Symmetries • Arguments arepermutablew.r.t. permutation(C) (VARIABLES1, VARIABLES2)
(SIZE INTERVAL).

• Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• An occurrence of a value ofVARIABLES1.var that belongs to thek-th interval, of
sizeSIZE INTERVAL, can bereplacedby any other value of the same interval.

• An occurrence of a value ofVARIABLES2.var that belongs to thek-th interval, of
sizeSIZE INTERVAL, can bereplacedby any other value of the same interval.

Usage A soft same interval constraint.

Algorithm See algorithm of thesoft same var constraint.

See also hard version: same interval.

implies: soft used by interval var.

Keywords constraint arguments:constraint between two collections of variables.

constraint type: soft constraint, relaxation, variable-based violation measure.

modelling: interval.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1740 NSINK NSOURCE,PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL = variables2.var/SIZE INTERVAL

Graph property(ies) NSINK NSOURCE= |VARIABLES1| − C

Graph model Parts (A) and (B) of Figure5.556 respectively show the initial and final graph associ-
ated with theExample slot. Since we use theNSINK NSOURCE graph property,
the source and sink vertices of the final graph are stressed with a doublecircle. The
soft same interval var constraint holds since the cost4 corresponds to the difference
between the number of variables ofVARIABLES1 and the sum over the different connected
components of the minimum number of sources and sinks.

(A)

VARIABLES1

VARIABLES2

1

1234 56

2 3456

(B) NSINK_NSOURCE=min(5,1)+min(1,4)=2

1:9

1:9

2:9 3:9 4:9 5:9 6:1

2:1 3:1 4:1 5:1

Figure 5.556: Initial and final graph of thesoft same interval var constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20050507 1741

1742 NSINK NSOURCE,PRODUCT

5.327 softsamemodulo var

DESCRIPTION LINKS GRAPH

Origin Derived fromsame modulo

Constraint soft same modulo var(C, VARIABLES1, VARIABLES2, M)

Synonym soft same modulo.

Arguments C : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
M : int

Restrictions C ≥ 0
C ≤ |VARIABLES1|
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
M > 0

Purpose

For each integerR in [0, M − 1], let N1R (respectivelyN2R) denote the number of
variables ofVARIABLES1 (respectivelyVARIABLES2) that haveR as a rest when divided
byM. C is the minimum number of values to change in theVARIABLES1 andVARIABLES2
collections so that for allR in [0, M− 1] we haveN1R = N2R.

Example

4,

〈

var− 9,
var− 9,
var− 9,
var− 9,
var− 9,
var− 1

〉

,

〈

var− 9,
var− 1,
var− 1,
var− 1,
var− 1,
var− 8

〉

, 3

In the example, the values of the collections〈9, 9, 9, 9, 9, 1〉 and 〈9, 1, 1, 1, 1, 8〉 are
respectively associated with the equivalence classes9 mod 3 = 0, 9 mod 3 = 0,
9 mod 3 = 0, 9 mod 3 = 0, 9 mod 3 = 0, 1 mod 3 = 1 and9 mod 3 = 0, 1 mod 3 = 1,
1 mod 3 = 1, 1 mod 3 = 1, 1 mod 3 = 1, 8 mod 3 = 2. Since there is a correspondence
between two pairs of equivalence classes we must unset at least6 − 2 items (6 is the
number of items of theVARIABLES1 and VARIABLES2 collections). Consequently, the
soft same modulo var constraint holds since its first argumentC is set to6− 2.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20050507 1743

Typical C > 0
|VARIABLES1| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1
M > 1
M <maxval(VARIABLES1.var)
M <maxval(VARIABLES2.var)

Symmetries • Arguments arepermutablew.r.t. permutation(C) (VARIABLES1, VARIABLES2)
(M).

• Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• An occurrence of a valueu of VARIABLES1.var can bereplacedby any other
valuev such thatv is congruent tou moduloM.

• An occurrence of a valueu of VARIABLES2.var can bereplacedby any other
valuev such thatv is congruent tou moduloM.

Usage A soft same modulo constraint.

Algorithm See algorithm of thesoft same var constraint.

See also hard version: same modulo.

implies: soft used by modulo var.

Keywords characteristic of a constraint: modulo.

constraint arguments:constraint between two collections of variables.

constraint type: soft constraint, relaxation, variable-based violation measure.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1744 NSINK NSOURCE,PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.varmod M = variables2.varmod M

Graph property(ies) NSINK NSOURCE= |VARIABLES1| − C

Graph model Parts (A) and (B) of Figure5.557 respectively show the initial and final graph associ-
ated with theExample slot. Since we use theNSINK NSOURCE graph property,
the source and sink vertices of the final graph are stressed with a doublecircle. The
soft same modulo var constraint holds since the cost4 corresponds to the difference
between the number of variables ofVARIABLES1 and the sum over the different connected
components of the minimum number of sources and sinks.

(A)

VARIABLES1

VARIABLES2

1

1234 56

2 3456

(B) NSINK_NSOURCE=min(5,1)+min(1,4)=2

1:9

1:9

2:9 3:9 4:9 5:9 6:1

2:1 3:1 4:1 5:1

Figure 5.557: Initial and final graph of thesoft same modulo var constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20050507 1745

1746 NSINK NSOURCE,PRODUCT

5.328 softsamepartition var

DESCRIPTION LINKS GRAPH

Origin Derived fromsame partition

Constraint soft same partition var(C, VARIABLES1, VARIABLES2, PARTITIONS)

Synonym soft same partition.

Type VALUES : collection(val−int)

Arguments C : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
PARTITIONS : collection(p− VALUES)

Restrictions C ≥ 0
C ≤ |VARIABLES1|
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2
|VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)

Purpose

For each integeri in [1, |PARTITIONS|], let N1 i (respectivelyN2 i) denote the number
of variables ofVARIABLES1 (respectivelyVARIABLES2) that take their value in theith

partition of the collectionPARTITIONS. C is the minimum number of values to change
in theVARIABLES1 andVARIABLES2 collections so that for alli in [1, |PARTITIONS|]
we haveN1 i = N2 i.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

20050507 1747

Example

4,

〈

var− 9,
var− 9,
var− 9,
var− 9,
var− 9,
var− 1

〉

,

〈

var− 9,
var− 1,
var− 1,
var− 1,
var− 1,
var− 8

〉

,

〈

p− 〈1, 2〉 ,
p− 〈9〉 ,
p− 〈7, 8〉

〉

In the example, the values of the collections〈9, 9, 9, 9, 9, 1〉 and 〈9, 1, 1, 1, 1, 8〉 are
respectively associated with the partitionsp − 〈9〉, p − 〈9〉, p − 〈9〉, p − 〈9〉, p − 〈9〉,
p−〈1, 2〉 andp−〈9〉, p−〈1, 2〉, p−〈1, 2〉, p−〈1, 2〉, p−〈1, 2〉, p−〈7, 8〉. Since there
is a correspondence between two pairs of partitions we must unset at least 6 − 2 items (6
is the number of items of theVARIABLES1 andVARIABLES2 collections). Consequently,
thesoft same partition var constraint holds since its first argumentC is set to6− 2.

Typical C > 0
|VARIABLES1| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1
|VARIABLES1| > |PARTITIONS|
|VARIABLES2| > |PARTITIONS|

Symmetries • Arguments arepermutablew.r.t. permutation(C) (VARIABLES1, VARIABLES2)
(PARTITIONS).

• Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• Items ofPARTITIONS arepermutable.

• Items ofPARTITIONS.p arepermutable.

• An occurrence of a value ofVARIABLES1.var can be replaced by any other value
that also belongs to the same partition ofPARTITIONS.

• An occurrence of a value ofVARIABLES2.var can be replaced by any other value
that also belongs to the same partition ofPARTITIONS.

Usage A soft same partition constraint.

Algorithm See algorithm of thesoft same var constraint.

See also hard version: same partition.

implies: soft used by partition var.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

1748 NSINK NSOURCE,PRODUCT

Keywords characteristic of a constraint: partition.

constraint arguments:constraint between two collections of variables.

constraint type: soft constraint, relaxation, variable-based violation measure.

Keywords
Related keywords grouped by meta-keywords.

20050507 1749

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) NSINK NSOURCE= |VARIABLES1| − C

Graph model Parts (A) and (B) of Figure5.558 respectively show the initial and final graph associ-
ated with theExample slot. Since we use theNSINK NSOURCE graph property,
the source and sink vertices of the final graph are stressed with a doublecircle. The
soft same partition var constraint holds since the cost4 corresponds to the difference
between the number of variables ofVARIABLES1 and the sum over the different connected
components of the minimum number of sources and sinks.

(A)

VARIABLES1

VARIABLES2

1

1234 56

2 3456

(B) NSINK_NSOURCE=min(5,1)+min(1,4)=2

1:9

1:9

2:9 3:9 4:9 5:9 6:1

2:1 3:1 4:1 5:1

Figure 5.558: Initial and final graph of thesoft same partition var constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1750 NSINK NSOURCE,PRODUCT

5.329 softsamevar

DESCRIPTION LINKS GRAPH

Origin [398]

Constraint soft same var(C, VARIABLES1, VARIABLES2)

Synonym soft same.

Arguments C : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions C ≥ 0
C ≤ |VARIABLES1|
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose
C is the minimum number of values to change in theVARIABLES1 andVARIABLES2
collections so that the variables of theVARIABLES2 collection correspond to the variables
of theVARIABLES1 collection according to a permutation.

Example

4,

〈

var− 9,
var− 9,
var− 9,
var− 9,
var− 9,
var− 1

〉

,

〈

var− 9,
var− 1,
var− 1,
var− 1,
var− 1,
var− 8

〉

As illustrated by Figure5.559, there is a correspondence between two pairs of val-
ues of the collections〈9, 9, 9, 9, 9, 1〉 and〈9, 1, 1, 1, 1, 8〉. Consequently, we must unset
at least6 − 2 items (6 is the number of items of theVARIABLES1 and VARIABLES2

collections). Thesoft same var constraint holds since its first argumentC is set to6− 2.

Typical C > 0
|VARIABLES1| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20050507 1751

Symmetries • Arguments arepermutablew.r.t. permutation(C) (VARIABLES1, VARIABLES2).

• Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• All occurrences of two distinct values inVARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value inVARIABLES1.var or
VARIABLES2.var can berenamedto any unused value.

Usage A soft same constraint.

Algorithm [398, page 80].

See also hard version: same.

implies: soft used by var.

Keywords constraint arguments:constraint between two collections of variables.

constraint type: soft constraint, relaxation, variable-based violation measure.

filtering: minimum cost flow.

8

VARIABLES1

9 9 9 9 9 1

VARIABLES2

9 1 1 1 1

Figure 5.559: Correspondence between collection〈9, 9, 9, 9, 9, 1〉 and collection
〈9, 1, 1, 1, 1, 8〉

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1752 NSINK NSOURCE,PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSINK NSOURCE= |VARIABLES1| − C

Graph model Parts (A) and (B) of Figure5.560 respectively show the initial and final graph associ-
ated with theExample slot. Since we use theNSINK NSOURCE graph property,
the source and sink vertices of the final graph are stressed with a doublecircle. The
soft same var constraint holds since the cost4 corresponds to the difference between
the number of variables ofVARIABLES1 and the sum over the different connected compo-
nents of the minimum number of sources and sinks.

(A)

VARIABLES1

VARIABLES2

1

1234 56

2 3456

(B) NSINK_NSOURCE=min(5,1)+min(1,4)=2

1:9

1:9

2:9 3:9 4:9 5:9 6:1

2:1 3:1 4:1 5:1

Figure 5.560: Initial and final graph of thesoft same var constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20050507 1753

1754 NSINK NSOURCE,PRODUCT

5.330 softusedby interval var

DESCRIPTION LINKS GRAPH

Origin Derived fromused by interval.

Constraint soft used by interval var(C, VARIABLES1, VARIABLES2, SIZE INTERVAL)

Synonym soft used by interval.

Arguments C : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
SIZE INTERVAL : int

Restrictions C ≥ 0
C ≤ |VARIABLES2|
|VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
SIZE INTERVAL > 0

Purpose

Let Ni (respectivelyMi) denote the number of variables of the collectionVARIABLES1

(respectively VARIABLES2) that take a value in the interval[SIZE INTERVAL ·
i, SIZE INTERVAL · i + SIZE INTERVAL − 1]. C is the minimum number of values
to change in theVARIABLES1 andVARIABLES2 collections so that for all integeri we
haveMi > 0 ⇒ Ni ≥ Mi.

Example
(

2, 〈9, 1, 1, 8, 8〉 ,
〈9, 9, 9, 1〉 , 3

)

In the example, the fourth argumentSIZE INTERVAL = 3 defines the following
family of intervals [3 · k, 3 · k + 2], wherek is an integer. Consequently the values
of the collections〈9, 1, 1, 8, 8〉 and 〈9, 9, 9, 1〉 are respectively located within intervals
[9, 11], [0, 2], [0, 2], [6, 8], [6, 8] and intervals[9, 11], [9, 11], [9, 11], [0, 2]. Since
there is a correspondence between two pairs of intervals we must unsetat least4 − 2
items (4 is the number of items of theVARIABLES2 collection). Consequently, the
soft used by interval var constraint holds since its first argumentC is set to4− 2.

Typical C > 0
|VARIABLES1| > 1
|VARIABLES2| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1
SIZE INTERVAL > 1
SIZE INTERVAL <range(VARIABLES1.var)
SIZE INTERVAL <range(VARIABLES2.var)

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20050507 1755

Symmetries • Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• An occurrence of a value ofVARIABLES1.var that belongs to thek-th interval, of
sizeSIZE INTERVAL, can bereplacedby any other value of the same interval.

• An occurrence of a value ofVARIABLES2.var that belongs to thek-th interval, of
sizeSIZE INTERVAL, can bereplacedby any other value of the same interval.

Usage A soft used by interval constraint.

See also hard version: used by interval.

implied by: soft same interval var.

Keywords constraint arguments:constraint between two collections of variables.

constraint type: soft constraint, relaxation, variable-based violation measure.

modelling: interval.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1756 NSINK NSOURCE,PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL = variables2.var/SIZE INTERVAL

Graph property(ies) NSINK NSOURCE= |VARIABLES2| − C

Graph model Parts (A) and (B) of Figure5.561 respectively show the initial and final graph associ-
ated with theExample slot. Since we use theNSINK NSOURCE graph property,
the source and sink vertices of the final graph are stressed with a doublecircle. The
soft used by interval var constraint holds since the cost2 corresponds to the dif-
ference between the number of variables ofVARIABLES2 and the sum over the different
connected components of the minimum number of sources and sinks.

VARIABLES1

VARIABLES2

1

1234

2345

NSINK_NSOURCE=min(1,3)+min(2,1)=2

1:9

1:9 2:9 3:9

2:1

4:1

3:1

(A) (B)

Figure 5.561: Initial and final graph of thesoft used by interval var constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20050507 1757

1758 NSINK NSOURCE,PRODUCT

5.331 softusedby modulo var

DESCRIPTION LINKS GRAPH

Origin Derived fromused by modulo

Constraint soft used by modulo var(C, VARIABLES1, VARIABLES2, M)

Synonym soft used by modulo.

Arguments C : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
M : int

Restrictions C ≥ 0
C ≤ |VARIABLES2|
|VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
M > 0

Purpose

For each integerR in [0, M − 1], let N1R (respectivelyN2R) denote the number of
variables ofVARIABLES1 (respectivelyVARIABLES2) that haveR as a rest when divided
byM. C is the minimum number of values to change in theVARIABLES1 andVARIABLES2
collections so that for allR in [0, M− 1] we haveN2R > 0 ⇒ N1R ≥ N2R.

Example
(

2, 〈9, 1, 1, 8, 8〉 ,
〈9, 9, 9, 1〉 , 3

)

In the example, the values of the collections〈9, 1, 1, 8, 8〉 and 〈9, 9, 9, 1〉 are re-
spectively associated with the equivalence classes9 mod 3 = 0, 1 mod 3 = 1,
1 mod 3 = 1, 8 mod 3 = 2, 8 mod 3 = 2 and9 mod 3 = 0, 9 mod 3 = 0, 9 mod 3 = 0,
1mod3 = 1. Since there is a correspondence between two pairs of equivalence classes we
must unset at least4 − 2 items (4 is the number of items of theVARIABLES2 collection).
Consequently, thesoft used by modulo var constraint holds since its first argumentC

is set to4− 2.

Typical C > 0
|VARIABLES1| > 1
|VARIABLES2| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1
M > 1
M <maxval(VARIABLES1.var)
M <maxval(VARIABLES2.var)

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20050507 1759

Symmetries • Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• An occurrence of a valueu of VARIABLES1.var can bereplacedby any other
valuev such thatv is congruent tou moduloM.

• An occurrence of a valueu of VARIABLES2.var can bereplacedby any other
valuev such thatv is congruent tou moduloM.

Usage A soft used by modulo constraint.

See also hard version: used by modulo.

implied by: soft same modulo var.

Keywords characteristic of a constraint: modulo.

constraint arguments:constraint between two collections of variables.

constraint type: soft constraint, relaxation, variable-based violation measure.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1760 NSINK NSOURCE,PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.varmod M = variables2.varmod M

Graph property(ies) NSINK NSOURCE= |VARIABLES2| − C

Graph model Parts (A) and (B) of Figure5.562 respectively show the initial and final graph associ-
ated with theExample slot. Since we use theNSINK NSOURCE graph property,
the source and sink vertices of the final graph are stressed with a doublecircle. The
soft used by modulo var constraint holds since the cost2 corresponds to the difference
between the number of variables ofVARIABLES2 and the sum over the different connected
components of the minimum number of sources and sinks.

VARIABLES1

VARIABLES2

1

1234

2345

NSINK_NSOURCE=min(1,3)+min(2,1)=2

1:9

1:9 2:9 3:9

2:1

4:1

3:1

(A) (B)

Figure 5.562: Initial and final graph of thesoft used by modulo var constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20050507 1761

1762 NSINK NSOURCE,PRODUCT

5.332 softusedby partition var

DESCRIPTION LINKS GRAPH

Origin Derived fromused by partition.

Constraint soft used by partition var(C, VARIABLES1, VARIABLES2, PARTITIONS)

Synonym soft used by partition.

Type VALUES : collection(val−int)

Arguments C : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
PARTITIONS : collection(p− VALUES)

Restrictions C ≥ 0
C ≤ |VARIABLES2|
|VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2
|VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)

Purpose

For each integeri in [1, |PARTITIONS|], let N1 i (respectivelyN2 i) denote the number
of variables ofVARIABLES1 (respectivelyVARIABLES2) that take their value in theith

partition of the collectionPARTITIONS. C is the minimum number of values to change
in theVARIABLES1 andVARIABLES2 collections so that for alli in [1, |PARTITIONS|]
we haveN2 i > 0 ⇒ N1 i ≥ N2 i.

Example

2, 〈9, 1, 1, 8, 8〉 ,
〈9, 9, 9, 1〉 ,
〈

p− 〈1, 2〉 ,
p− 〈9〉 ,
p− 〈7, 8〉

〉

In the example, the values of the collections〈9, 1, 1, 8, 8〉 and 〈9, 9, 9, 1〉 are re-
spectively associated with the partitionsp − 〈9〉, p − 〈1, 2〉, p − 〈1, 2〉, p − 〈7, 8〉,
p − 〈7, 8〉 andp − 〈9〉, p − 〈9〉, p − 〈9〉, p − 〈1, 2〉. Since there is a correspondence
between two pairs of partitions we must unset at least4 − 2 items (4 is the number of
items of theVARIABLES2 collection). Consequently, thesoft used by partition var

constraint holds since its first argumentC is set to4− 2.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20050507 1763

Typical C > 0
|VARIABLES1| > 1
|VARIABLES2| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1
|VARIABLES1| > |PARTITIONS|
|VARIABLES2| > |PARTITIONS|

Symmetries • Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• Items ofPARTITIONS arepermutable.

• Items ofPARTITIONS.p arepermutable.

• An occurrence of a value ofVARIABLES1.var can be replaced by any other value
that also belongs to the same partition ofPARTITIONS.

• An occurrence of a value ofVARIABLES2.var can be replaced by any other value
that also belongs to the same partition ofPARTITIONS.

Usage A soft used by partition constraint.

See also hard version: used by partition.

implied by: soft same partition var.

Keywords characteristic of a constraint: partition.

constraint arguments:constraint between two collections of variables.

constraint type: soft constraint, relaxation, variable-based violation measure.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1764 NSINK NSOURCE,PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) NSINK NSOURCE= |VARIABLES2| − C

Graph model Parts (A) and (B) of Figure5.563 respectively show the initial and final graph associ-
ated with theExample slot. Since we use theNSINK NSOURCE graph property,
the source and sink vertices of the final graph are stressed with a doublecircle. The
soft used by partition var constraint holds since the cost2 corresponds to the dif-
ference between the number of variables ofVARIABLES2 and the sum over the different
connected components of the minimum number of sources and sinks.

VARIABLES1

VARIABLES2

1

1234

2345

NSINK_NSOURCE=min(1,3)+min(2,1)=2

1:9

1:9 2:9 3:9

2:1

4:1

3:1

(A) (B)

Figure 5.563: Initial and final graph of thesoft used by partition var constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20050507 1765

1766 NSINK NSOURCE,PRODUCT

5.333 softusedby var

DESCRIPTION LINKS GRAPH

Origin Derived fromused by

Constraint soft used by var(C, VARIABLES1, VARIABLES2)

Synonym soft used by.

Arguments C : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions C ≥ 0
C ≤ |VARIABLES2|
|VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose
C is the minimum number of values to change in theVARIABLES1 andVARIABLES2
collections so that all the values of the variables of collectionVARIABLES2 are used by
the variables of collectionVARIABLES1.

Example
(

2, 〈9, 1, 1, 8, 8〉 ,
〈9, 9, 9, 1〉

)

As illustrated by Figure5.564, there is a correspondence between two pairs of val-
ues of the collections〈9, 1, 1, 8, 8〉 and 〈9, 9, 9, 1〉. Consequently, we must unset at
least 4 − 2 items (4 is the number of items of theVARIABLES2 collection). The
soft used by var constraint holds since its first argumentC is set to4− 2.

1

VARIABLES1

9 1 1 8 8

VARIABLES2

9 9 9

Figure 5.564: Correspondence between collection〈9, 1, 1, 8, 8〉 and collection
〈9, 9, 9, 1〉

Typical C > 0
|VARIABLES1| > 1
|VARIABLES2| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20050507 1767

Symmetries • Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• All occurrences of two distinct values inVARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value inVARIABLES1.var or
VARIABLES2.var can berenamedto any unused value.

Usage A soft used by constraint.

See also hard version: used by.

implied by: soft same var.

Keywords constraint arguments:constraint between two collections of variables.

constraint type: soft constraint, relaxation, variable-based violation measure.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1768 NSINK NSOURCE,PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSINK NSOURCE= |VARIABLES2| − C

Graph model Parts (A) and (B) of Figure5.565 respectively show the initial and final graph associ-
ated with theExample slot. Since we use theNSINK NSOURCE graph property,
the source and sink vertices of the final graph are stressed with a doublecircle. The
soft used by var constraint holds since the cost2 corresponds to the difference between
the number of variables ofVARIABLES2 and the sum over the different connected compo-
nents of the minimum number of sources and sinks.

VARIABLES1

VARIABLES2

1

1234

2345

NSINK_NSOURCE=min(1,3)+min(2,1)=2

1:9

1:9 2:9 3:9

2:1

4:1

3:1

(A) (B)

Figure 5.565: Initial and final graph of thesoft used by var constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20050507 1769

1770 NARC,CLIQUE(<)

5.334 someequal

DESCRIPTION LINKS GRAPH

Origin Derived fromalldifferent

Constraint some equal(VARIABLES)

Synonyms some eq, not alldifferent, not alldiff, not alldistinct, not distinct.

Argument VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
|VARIABLES| > 1

Purpose Enforce at least two variables of the collectionVARIABLES to be assigned the same value.

Example (〈1, 4, 1, 6〉)

The some equal constraint holds since the first and the third variables are both
assigned the same value1.

Typical |VARIABLES| > 2

Symmetries • Items ofVARIABLES arepermutable.

• All occurrences of two distinct values ofVARIABLES.var can beswapped; all
occurrences of a value ofVARIABLES.var can berenamedto any unused value.

Arg. properties
Extensiblewrt. VARIABLES.

See also negation:alldifferent.

Keywords characteristic of a constraint: sort based reformulation.

constraint type: value constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20110604 1771

Arc input(s) VARIABLES

Arc generator CLIQUE(<) 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NARC> 0

Graph model We generate acliquewith an equality constraint between each pair of distinct vertices and
state that the number of arcs of the final graph should be strictly greater than0.

Parts (A) and (B) of Figure5.566respectively show the initial and final graph associated
with theExample slot. Thesome equal constraint holds since the final graph has at one
arc, i.e. two variables are assigned the same value.

VARIABLES

1

2

3

4

NARC=1

1:1

3:1

(A) (B)

Figure 5.566: Initial and final graph of thesome equal constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1772NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT ;NARC,PATH

5.335 sort

DESCRIPTION LINKS GRAPH

Origin [277]

Constraint sort(VARIABLES1, VARIABLES2)

Synonyms sortedness, sorted, sorting.

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose
The variables of the collectionVARIABLES2 correspond to the variables ofVARIABLES1
according to a permutation. The variables ofVARIABLES2 are also sorted in increasing
order.

Example

〈

var− 1,
var− 9,
var− 1,
var− 5,
var− 2,
var− 1

〉

,

〈

var− 1,
var− 1,
var− 1,
var− 2,
var− 5,
var− 9

〉

Thesort constraint holds since:

• Values1, 2, 5 and9 have the same number of occurrences within both collections
〈1, 9, 1, 5, 2, 1〉 and〈1, 1, 1, 2, 5, 9〉. Figure5.567illustrates this correspondence.

• The items of collection〈1, 1, 1, 2, 5, 9〉 are sorted in increasing order.

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1

Symmetries • Items ofVARIABLES1 arepermutable.

• One and the same constant can beaddedto the var attributes of all items of
VARIABLES1 andVARIABLES2.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20030820 1773

Arg. properties
Functional dependency: VARIABLES2 determined byVARIABLES1.

Usage The main usage of thesort constraint, that was not foreseen when thesort constraint
was invented, is its use in many reformulations. Many constraints involving one or several
collections of variablesbecome much simpler to express when the variables of these col-
lections are sorted. In addition these reformulations typically have a size that is linear in
the number of variables of the original constraint. This justifies why thesort constraint is
considered to be acoreconstraint. As illustrative examples of these types of reformulations
we successively consider thealldifferent and thesame constraints:

• The alldifferent(〈v1, v2, . . . , vn〉) constraint can be reformulated
as the conjunction sort(〈v1, v2, . . . , vn〉, 〈w1, w2, . . . , wn〉) ∧
strictly increasing(〈w1, w2, . . . , wn〉).

• The same(〈u1, u2, . . . , un〉, 〈v1, v2, . . . , vn〉) constraint can be reformu-
lated as the conjunctionsort(〈u1, u2, . . . , un〉, 〈w1, w2, . . . , wn〉) ∧
sort(〈v1, v2, . . . , vn〉, 〈w1, w2, . . . , wn〉).

Remark A variant of this constraint was introduced in [423]. In this variant an additional list
of domain variables represents the permutation that allows to go fromVARIABLES1 to
VARIABLES2.

Algorithm [74, 262].

Systems sorting in Choco, sorted in Gecode, sort in MiniZinc , sorting in SICStus.

See also generalisation:sort permutation (PERMUTATION parameter added).

implies: lex greatereq, same.

uses in its reformulation: alldifferent, same.

Keywords characteristic of a constraint: core, sort.

combinatorial object: permutation.

constraint arguments: constraint between two collections of variables,
pure functional dependency.

filtering: bound-consistency.

modelling: functional dependency.

9

VARIABLES1

1 9 1 5 2 1

VARIABLES2

1 1 1 2 5

Figure 5.567: Correspondence between collection〈1, 9, 1, 5, 2, 1〉 and collection
〈1, 1, 1, 2, 5, 9〉

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntSorted.html
http://www.gecode.org/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#sort
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1774NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT ;NARC,PATH

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • for all connected components:NSOURCE=NSINK

• NSOURCE= |VARIABLES1|
• NSINK= |VARIABLES2|

Arc input(s) VARIABLES2

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var ≤ variables2.var

Graph property(ies) NARC= |VARIABLES2| − 1

Graph model Parts (A) and (B) of Figure5.568respectively show the initial and final graph associated
with the first graph constraint of theExample slot. Since it uses theNSOURCE and
NSINK graph properties, the source and sink vertices of this final graph are stressed with
a double circle. Since there is a constraint on each connected component of the final graph
we also show the different connected components. Thesort constraint holds since:

• Each connected component of the final graph of the first graph constraint has the
same number of sources and of sinks.

• The number of sources of the final graph of the first graph constraint is equal to
|VARIABLES1|.

• The number of sinks of the final graph of the first graph constraint is equal to
|VARIABLES2|.

• Finally the second graph constraint holds also since its corresponding final graph
contains exactly|VARIABLES1 − 1| arcs: all the inequalities constraints between
consecutive variables ofVARIABLES2 holds.

Signature Consider the first graph constraint. Since the initial graph contains only sources and sinks,
and since isolated vertices are eliminated from the final graph, we make thefollowing
observations:

• Sources of the initial graph cannot become sinks of the final graph,

• Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use thePRODUCT arc generator on the col-
lectionsVARIABLES1 andVARIABLES2, we have that the maximum number of sources and
sinks of the final graph is respectively equal to|VARIABLES1| and|VARIABLES2|. There-
fore we can rewriteNSOURCE = |VARIABLES1| to NSOURCE ≥ |VARIABLES1|
and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite
NSINK = |VARIABLES2| to NSINK ≥ |VARIABLES2| and simplifyNSINK to
NSINK.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1775

(A)

VARIABLES1

VARIABLES2

1

1234 56

2 3456

(B)

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=1,NSINK=1
CC#3:NSOURCE=1,NSINK=1
CC#4:NSOURCE=1,NSINK=1

NSOURCE=6,NSINK=6

CC#1 CC#2 CC#3 CC#4

1:1

1:1 2:13:1

3:16:1 2:9

6:9

4:5

5:5

5:2

4:2

Figure 5.568: Initial and final graph of thesort constraint

1776NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT ;NARC,PATH

Consider now the second graph constraint. Since we use thePATH arc generator with an
arity of 2 on theVARIABLES2 collection, the maximum number of arcs of the final graph
is equal to|VARIABLES2| − 1. Therefore we can rewrite the graph propertyNARC =
|VARIABLES2| − 1 toNARC ≥ |VARIABLES2| − 1 and simplifyNARC toNARC.

20030820 1777

1778 NARC,PRODUCT ;NARC,PATH

5.336 sortpermutation

DESCRIPTION LINKS GRAPH

Origin [423]

Constraint sort permutation(FROM, PERMUTATION, TO)

Usual name sort

Synonyms extended sortedness, sortedness, sorted, sorting.

Arguments FROM : collection(var−dvar)
PERMUTATION : collection(var−dvar)
TO : collection(var−dvar)

Restrictions |PERMUTATION| = |FROM|
|PERMUTATION| = |TO|
PERMUTATION.var ≥ 1
PERMUTATION.var ≤ |PERMUTATION|
alldifferent(PERMUTATION)
required(FROM, var)
required(PERMUTATION, var)
required(TO, var)

Purpose
The variables of collectionFROM correspond to the variables of collectionTO according
to the permutationPERMUTATION (i.e., FROM[i].var = TO[PERMUTATION[i].var].var).
The variables of collectionTO are also sorted in increasing order.

Example

〈

var− 1,
var− 9,
var− 1,
var− 5,
var− 2,
var− 1

〉

,

〈

var− 1,
var− 6,
var− 3,
var− 5,
var− 4,
var− 2

〉

,

〈

var− 1,
var− 1,
var− 1,
var− 2,
var− 5,
var− 9

〉

Thesort permutation constraint holds since:

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20030820 1779

• – The first item FROM[1].var = 1 of collection FROM corresponds to the
PERMUTATION[1].var = 1th item of collectionTO.

– The second itemFROM[2].var = 9 of collection FROM corresponds to the
PERMUTATION[2].var = 6th item of collectionTO.

– The third item FROM[3].var = 1 of collection FROM corresponds to the
PERMUTATION[3].var = 3th item of collectionTO.

– The fourth itemFROM[4].var = 5 of collection FROM corresponds to the
PERMUTATION[4].var = 5th item of collectionTO.

– The fifth item FROM[5].var = 2 of collection FROM corresponds to the
PERMUTATION[5].var = 4th item of collectionTO.

– The sixth itemFROM[6].var = 1 of collection FROM corresponds to the
PERMUTATION[6].var = 2th item of collectionTO.

• The items of collectionTO = 〈1, 1, 1, 2, 5, 9〉 are sorted in increasing order.

PERMUTATION

1

9

1

5

2

1

1

6

3

5

4

2

1

1

1

2

5

9

TOFROM

Figure 5.569: Illustration of the correspondence between the items of theFROM and the
TO collections according to the permutation defined by the items of thePERMUTATION
collection

Typical |FROM| > 1
range(FROM.var) > 1
lex different(FROM, TO)

Symmetry One and the same constant can beaddedto thevar attributes of all items ofFROM andTO.

Arg. properties
• Functional dependency: TO determined byFROM.

• Functional dependency: PERMUTATION determined byFROM andTO.

Remark This constraint is referenced under the namesorting in SICStus Prolog.

Algorithm [423].

Reformulation Let n denote the number of variables in the collectionFROM. The sort permutation

constraint can be reformulated as a conjunction of the form:
element(PERMUTATION[1], FROM, TO[1]),
element(PERMUTATION[2], FROM, TO[2]),

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.sics.se/sicstus/

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

1780 NARC,PRODUCT ;NARC,PATH

. . .
element(PERMUTATION[n], FROM, TO[n]),
alldifferent(PERMUTATION),
increasing(TO).

To enhance the previous model, the following necessary condition was proposed by
P. Schaus.∀i ∈ [1, n] :

∑j=n
j=1 (FROM[j] < TO[i]) ≤ i − 1 (i.e., at mosti − 1 vari-

ables of the collectionFROM are assigned a value strictly less thanTO[i]). Similarly, we
have that∀i ∈ [1, n] :

∑j=n
j=1 (FROM[j] > TO[i]) ≥ n − i (i.e., at mostn − i variables of

the collectionFROM are assigned a value are strictly greater thanTO[i]).

Systems sorted in Gecode, sorting in SICStus.

See also implies: correspondence.

specialisation:sort (PERMUTATION parameter removed).

used in reformulation: alldifferent, element, increasing.

Keywords characteristic of a constraint: sort, derived collection.

combinatorial object: permutation.

constraint arguments:constraint between three collections of variables.

modelling: functional dependency.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntSorted.html
http://www.gecode.org/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 1781

Derived Collection

col

(

FROM PERMUTATION−collection(var−dvar, ind−dvar),
[item(var− FROM.var, ind− PERMUTATION.var)]

)

Arc input(s) FROM PERMUTATION TO

Arc generator PRODUCT 7→collection(from permutation, to)

Arc arity 2

Arc constraint(s) • from permutation.var = to.var
• from permutation.ind = to.key

Graph property(ies) NARC= |PERMUTATION|

Arc input(s) TO

Arc generator PATH 7→collection(to1, to2)

Arc arity 2

Arc constraint(s) to1.var ≤ to2.var

Graph property(ies) NARC= |TO| − 1

Graph model Parts (A) and (B) of Figure5.570 respectively show the initial and final graph associ-
ated with the first graph constraint of theExample slot. In both graphs the source ver-
tices correspond to the items of the derived collectionFROM PERMUTATION, while the sink
vertices correspond to the items of theTO collection. Since the first graph constraint
uses theNARC graph property, the arcs of its final graph are stressed in bold. The
sort permutation constraint holds since:

• The first graph constraint holds since its final graph contains exactlyPERMUTATION

arcs.

• Finally the second graph constraint holds also since its corresponding final graph
contains exactly|PERMUTATION − 1| arcs: all the inequalities constraints between
consecutive variables ofTO holds.

Signature Consider the first graph constraint where we use thePRODUCT arc generator. Since all
the key attributes of theTO collection are distinct, and because of the second condition
from permutation.ind = to.key of the arc constraint, each vertex of the final graph has
at most one successor. Therefore the maximum number of arcs of the final graph is equal
to |PERMUTATION|. So we can rewrite the graph propertyNARC = |PERMUTATION| to
NARC ≥ |PERMUTATION| and simplifyNARC toNARC.

Consider now the second graph constraint. Since we use thePATH arc generator with
an arity of 2 on theTO collection, the maximum number of arcs of the corresponding final
graph is equal to|TO| − 1. Therefore we can rewriteNARC = |TO| − 1 to NARC ≥
|TO| − 1 and simplifyNARC toNARC.

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

1782 NARC,PRODUCT ;NARC,PATH

FROM_PERMUTATION

TO

1

1234 56

2 3456

NARC=6

1:1,1

1:1

2:9,6

6:9

3:1,3

3:1

4:5,5

5:5

5:2,4

4:2

6:1,2

2:1

(A) (B)

Figure 5.570: Initial and final graph of thesort permutation constraint

20030820 1783

1784 MAX ID,MAX NSCC,NCC,PATH FROM TO,CLIQUE

5.337 stablecompatibility

DESCRIPTION LINKS GRAPH

Origin P. Flener, [41]

Constraint stable compatibility(NODES)

Argument NODES : collection(index−int, father−dvar, prec−sint, inc−sint)

Restrictions required(NODES, [index, father, prec, inc])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.father ≥ 1
NODES.father ≤ |NODES|
NODES.prec ≥ 1
NODES.prec ≤ |NODES|
NODES.inc ≥ 1
NODES.inc ≤ |NODES|
NODES.inc > NODES.index

Purpose
Enforce the construction of astably compatiblesupertree that is compatible with several
given trees. The notion of stable compatibility and its context are detailed in theUsage
slot.

Example

〈

index− 1 father− 4 prec− {11, 12} inc− ∅,
index− 2 father− 3 prec− {8, 9} inc− ∅,
index− 3 father− 4 prec− {2, 10} inc− ∅,
index− 4 father− 5 prec− {1, 3} inc− ∅,
index− 5 father− 7 prec− {4, 13} inc− ∅,
index− 6 father− 2 prec− {8, 14} inc− ∅,
index− 7 father− 7 prec− {6, 13} inc− ∅,
index− 8 father− 6 prec− ∅ inc− {9, 10, 11, 12, 13, 14},
index− 9 father− 2 prec− ∅ inc− {10, 11, 12, 13},
index− 10 father− 3 prec− ∅ inc− {11, 12, 13},
index− 11 father− 1 prec− ∅ inc− {12, 13},
index− 12 father− 1 prec− ∅ inc− {13},
index− 13 father− 5 prec− ∅ inc− {14},
index− 14 father− 6 prec− ∅ inc− ∅

〉

Figure 5.571 shows the two trees we want to merge. Note that the leavesa and f

occur in both trees. Figure5.572gives one way to merge the two previous trees. This
solution corresponds to the ground instance provided by the example. Note that there exist
7 other ways to merge these two trees. They are respectively depicted by Figures5.572
to 5.579.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20070601 1785

7

f

a

f

g

T2

d

e

c

a

b

T1

1

2

3

4

5 6

Figure 5.571: The two trees to merge

7
f

d

e

c

b

a

g

SOL1

1

2

3

4

5

6

Figure 5.572: First solution corresponding to the ground instance of the example

SOL2

f

d

e

c

a

b

g

Figure 5.573: Second solution

SOL3

f

d

e

c

g

a

b

Figure 5.574: Third solution

e

SOL4

f

c

g

a

b

d

Figure 5.575: Fourth solution

1786 MAX ID,MAX NSCC,NCC,PATH FROM TO,CLIQUE

SOL5

f

g

c

a

b

d

e

Figure 5.576: Fifth solution

SOL6

f

g

d

e

c

a

b

Figure 5.577: Sixth solution

SOL7

f

d

e

g

c

a

b

Figure 5.578: Seventh solution

SOL8

f

g

d

e

c

a

b

Figure 5.579: Eighth solution

20070601 1787

Typical |NODES| > 2
range(NODES.father) > 1

Symmetry Items ofNODES arepermutable.

Usage One objective of phylogeny is to construct the genealogy of the species,called thetree of
life, whose leaves represent the contemporary species and whose internal nodes represent
extinct species that are not necessarily named. An important problem inphylogeny is
the construction of a supertree [72] that is compatible with several given trees. There are
several definitions of tree compatibility in the literature:

• A treeT is strongly compatiblewith a treeT ′ if T ′ is topologically equivalent to a
subtreeT that respects the node labelling. [274]

• A tree T is weakly compatiblewith a treeT ′ if T ′ can be obtained fromT by a
series of arc contractions. [374]

• A treeT is stably compatiblewith a setS of trees ifT is weakly compatible with
each tree inS and each internal node ofT can be labelled by at least one correspond-
ing internal node of some tree inS.

For the supertree problem, strong and weak compatibility coincide if and only if all the
given trees are binary [274]. The existence of solutions is not lost when restricting weak
compatibility to stable compatibility.

8

13

8

12

11

10

9

7 ?

d

e

c

a

b

g

f

T T ′

9

11

10

12

13

8

f

g

b

a

c

e

d

7

7

f

d

e

c

a

b

a

f

g

T2

T1

13

12

11

10

9

Figure 5.580: Supertree problem instance and two of its solutions

a
5

43

2
1

T5T4T3

a

b

c

a

b

c c

b

Figure 5.581: Three small phylogenetic trees

For example, the treesT1 andT2 of Figure5.580haveT andT ′ as supertrees under both
weak and strong compatibility. As shown, all the internal nodes ofT ′ can be labelled by

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Usage
Typical usage of the constraint.

1788 MAX ID,MAX NSCC,NCC,PATH FROM TO,CLIQUE

corresponding internal nodes of the two given trees, but this is not the case for the father of
b andg in T . HenceT and four other such supertrees are debatable because they speculate
about the existence of extinct species that were not in any of the given trees. Consider
also the three small trees in Figure5.581: T3 andT4 haveT4 as a supertree under weak
compatibility, as it suffices to contract the arc(3, 2) to getT3 from T4. However,T3 and
T4 have no supertree under strong compatibility, as the most recent common ancestor ofb
andc, denoted bymrca(b, c), is the same asmrca(a, b) in T3, namely1, but not the same
in T4, asmrca(b, c) = 3 is an evolutionary descendant ofmrca(a, b) = 2. Also, T4 and
T5 have neither weakly nor strongly compatible supertrees.

Under strong compatibility, a first supertree algorithm was given in [3], with an application
for database management systems; it takesO(l2) time, wherel is the number of leaves
in the given trees. Derived algorithms have emerged from phylogeny,for instanceOne-
Tree[274]. The first constraint program was proposed in [176], using standard, non-global
constraints. Under weak compatibility, a phylogenetic supertree algorithm can be found
in [374] for instance. Under stable compatibility, the algorithm from computational lin-
guistics of [75] has supertree construction as special case.

See also root concept:tree.

Keywords application area: bioinformatics, phylogeny.

constraint type: graph constraint.

final graph structure: tree.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20070601 1789

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.father = nodes2.index

Graph property(ies) • MAX NSCC≤ 1
• NCC= 1
• MAX ID≤ 2
• PATH FROM TO(index, index, prec) = 1
• PATH FROM TO(index, index, inc) = 0
• PATH FROM TO(index, inc, index) = 0

Graph model To each distinct leave (i.e., each species) of the trees to merge corresponds a vertex of the
initial graph. To each internal vertex of the trees to merge correspondsalso a vertex of the
initial graph. Each vertex of the initial graph has the following attributes:

• An indexcorresponding to a unique identifier.

• A father corresponding to the father of the vertex in the final tree. Since the leaves
of the trees to merge must remain leaves we remove the index value of all the leaves
from all the father variables.

• A set of precedence constraintscorresponding to all the arcs of the trees to merge.

• A set of incomparability constraintscorresponding to the incomparable vertices of
each tree to merge.

The arc constraint describes the fact that we link a vertex to its father variable. Finally we
use the following six graph properties on our final graph:

• The first graph propertyMAX NSCC ≤ 1 enforces the fact that the size of the
largest strongly connected component does not exceed one. This avoid having cir-
cuits containing more than one vertex. In fact the root of the merged treeis a strongly
connected component with one single vertex.

• The second graph propertyNCC = 1 imposes having only one single tree.

• The third graph propertyPATH FROM TO(index, index, prec) = 1 en-
forces for each vertexi a set of precedence constraints; for each vertexj of the
precedence set there is a path fromi to j in the final graph.

• The fourth graph propertyMAX ID ≤ 2 enforces that the number of predecessors
(i.e., arcs from a vertex to itself are not counted) of each vertex doesnot exceed2
(i.e., the final graph is a binary tree).

• The fifth and sixth graph propertiesPATH FROM TO(index, index, inc) =
0 andPATH FROM TO(index, inc, index) = 0 enforces for each vertexi a
set of incomparability constraints; for each vertexj of the incomparability set there
is neither a path fromi to j, nor a path fromj to i.

Figures5.582and5.583respectively show the precedence and the incomparability graphs
associated with theExample slot. As it contains too many arcs the initial graph is not
shown. Figures5.572shows the first solution satisfying all the precedence and incompara-
bility constraints.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1790 MAX ID,MAX NSCC,NCC,PATH FROM TO,CLIQUE

f

7

6

14

9

8

10

12

11

13

2

1

3

4

5

g

b

a

c

e

d

Figure 5.582: Precedence graph associated with the two trees to merge described by
Figure5.571

g

7

6

5

4

3

2

1

14

11

12

13

10

9

8

a

b

c d

e

f

Figure 5.583: Incomparability graph associated with the two trees to merge described
by Figure5.571; the two cliques respectively correspond to the leaves of the two trees
to merge.

20070601 1791

1792 NARC,PATH ;NARC,PRODUCT ; AUTOMATON

5.338 stageelement

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Choco, derived fromelement.

Constraint stage element(ITEM, TABLE)

Usual name stage elt

Synonym stage elem.

Arguments ITEM : collection(index−dvar, value−dvar)
TABLE : collection(low−int, up−int, value−int)

Restrictions required(ITEM, [index, value])
|ITEM| = 1
|TABLE| > 0
required(TABLE, [low, up, value])
TABLE.low ≤ TABLE.up
increasing seq(TABLE, [low])

Purpose

Let lowi, upi and valuei respectively denote the values of thelow, up and value
attributes of theith item of theTABLE collection. First we have that:lowi ≤ upi and
upi + 1 = lowi+1.
Second, thestage element constraint enforces the following equivalence:
lowi ≤ ITEM.index ∧ ITEM.index ≤ upi ⇔ ITEM.value = valuei.

Example

〈index− 5 value− 6〉 ,
〈

low− 3 up− 7 value− 6,
low− 8 up− 8 value− 9,
low− 9 up− 14 value− 2,
low− 15 up− 19 value− 9

〉

Figure 5.584 depicts the function associated with the items of theTABLE collection.
Thestage element constraint holds since:

• The value ofITEM[1].index is located between the values of thelow andup at-
tributes of the first item of theTABLE collection (i.e.,5 ∈ [3, 7]).

• The value ofITEM[1].value corresponds to thevalue attribute of the first item of
theTABLE collection (i.e.,6).

Typical |TABLE| > 1
range(TABLE.value) > 1
TABLE.low < TABLE.up

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20040828 1793

Symmetry All occurrences of two distinct values inITEM.value or TABLE.value can beswapped;
all occurrences of a value inITEM.value or TABLE.value can berenamedto any unused
value.

Arg. properties
• Functional dependency: ITEM.value determined byITEM.index andTABLE.

• Suffix-extensiblewrt. TABLE.

See also common keyword:elem, element (data constraint).

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint arguments:binary constraint, pure functional dependency.

constraint network structure: centered cyclic(2) constraint network(1).

constraint type: data constraint.

filtering: arc-consistency.

modelling: table, functional dependency.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1794 NARC,PATH ;NARC,PRODUCT ; AUTOMATON

va
lu

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200

0

1

10

2

3

4

5

6

7

8

9

index

Figure 5.584: Function associated with theTABLE collection of the example

20040828 1795

Arc input(s) TABLE

Arc generator PATH 7→collection(table1, table2)

Arc arity 2

Arc constraint(s) • table1.low ≤ table1.up
• table1.up+ 1 = table2.low
• table2.low ≤ table2.up

Graph property(ies) NARC= |TABLE| − 1

Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→collection(item, table)

Arc arity 2

Arc constraint(s) • item.index ≥ table.low
• item.index ≤ table.up
• item.value = table.value

Graph property(ies) NARC= 1

Graph model The first graph constraint models the restrictions on thelow andup attributes of theTABLE
collection, while the second graph constraint is similar to the one used for defining the
element constraint.

Parts (A) and (B) of Figure5.585respectively show the initial and final graph associated
with the second graph constraint of theExample slot. Since we use theNARC graph
property, the unique arc of the final graph is stressed in bold.

ITEM

TABLE

1

1234

NARC=1

1:5,6

1:3,7,6

(A) (B)

Figure 5.585: Initial and final graph of thestage element constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1796 NARC,PATH ;NARC,PRODUCT ; AUTOMATON

Automaton Figure5.586depicts the automaton associated with thestage element constraint. Let
INDEX and VALUE respectively be theindex and thevalue attributes of the unique
item of theITEM collection. LetLOWi, UPi and VALUEi respectively be thelow, the
up and thevalue attributes of theith item of theTABLE collection. To each quintu-
ple (INDEX, VALUE, LOWi, UPi, VALUEi) corresponds a0-1 signature variableSi as well as
the following signature constraint:((LOWi ≤ INDEX) ∧ (INDEX ≤ UPi) ∧ (VALUE =
VALUEi)) ⇔ Si.

i i i
s

t

TABLE_LOW =<ITEM_INDEX and ITEM_INDEX=<TABLE_UP and ITEM_VALUE=TABLE_VALUE
i i i

TABLE_LOW >ITEM_INDEX or ITEM_INDEX>TABLE_UP or ITEM_VALUE<>TABLE_VALUE

Figure 5.586: Automaton of thestage element constraint

ITEM_VALUE

Q =tn

SnS2

Q1Q =s0

S1

ITEM_INDEX

Figure 5.587: Hypergraph of the reformulation corresponding to the automaton of the
stage element constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20040828 1797

1798 MAX NCC,CIRCUIT ,LOOP , ∀

5.339 stretchcircuit

DESCRIPTION LINKS GRAPH

Origin [285]

Constraint stretch circuit(VARIABLES, VALUES)

Usual name stretch

Arguments VARIABLES : collection(var−dvar)
VALUES : collection(val−int, lmin−int, lmax−int)

Restrictions |VARIABLES| > 0
required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, lmin, lmax])
distinct(VALUES, val)
VALUES.lmin ≤ VALUES.lmax
VALUES.lmin ≤ |VARIABLES|
sum(VALUES.lmin) ≤ |VARIABLES|

Purpose

In order to define the meaning of thestretch path constraint, we first introduce the no-
tions ofstretchandspan. Letn be the number of variables of the collectionVARIABLES
and leti, j (0 ≤ i < n, 0 ≤ j < n) be two positions within the collection of variables
VARIABLES such that the following conditions apply:

• If i ≤ j then all variablesXi, . . . , Xj take a same value from the set of values of
theval attribute.

If i > j then all variablesXi, . . . , Xn−1, X0, . . . , Xj take a same value from
the set of values of theval attribute.

• X(i−1) mod n is different fromXi.

• X(j+1) mod n is different fromXj .

We call such a set of variables astretch. The span of the stretch is equal to
1 + (j − i) mod n, while thevalueof the stretch isXi. We now define the condition
enforced by thestretch circuit constraint.

Each item(val − v, lmin − s, lmax − t) of the VALUES collection enforces the
minimum values as well as the maximum valuet for the span of a stretch of valuev.

Note that:

1. Having an item(val− v, lmin− s, lmax− t) with s strictly greater than0 does
not mean that valuev should be assigned to one of the variables of collection
VARIABLES. It rather means that, when valuev is used, all stretches of valuev
must have a span that belong to interval[s, t].

2. A variable of the collectionVARIABLES may be assigned a value that is not de-
fined in theVALUES collection.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

20030820 1799

Example

〈

var− 6,
var− 6,
var− 3,
var− 1,
var− 1,
var− 1,
var− 6,
var− 6

〉

,

〈
val− 1 lmin− 2 lmax− 4,
val− 2 lmin− 2 lmax− 3,
val− 3 lmin− 1 lmax− 6,
val− 6 lmin− 2 lmax− 4

〉

Thestretch circuit constraint holds since the sequence6 6 3 1 1 1 6 6 contains three
stretches6 6 6 6, 3, and1 1 1 respectively verifying the following conditions:

• The span of the first stretch6 6 6 6 is located within interval[2, 4] (i.e., the limit
associated with value6).

• The span of the second stretch3 is located within interval[1, 6] (i.e., the limit asso-
ciated with value3).

• The span of the third stretch1 1 1 is located within interval[2, 4] (i.e., the limit
associated with value1).

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VARIABLES| > |VALUES|
|VALUES| > 1
VALUES.lmax ≤ |VARIABLES|

Symmetries • Items ofVARIABLES can beshifted.

• Items ofVALUES arepermutable.

• All occurrences of two distinct values inVARIABLES.var or VALUES.val can be
swapped; all occurrences of a value inVARIABLES.var or VALUES.val can be
renamedto any unused value.

Usage The article [285], which originally introduced thestretch constraint, quotes rostering
problems as typical examples of use of this constraint.

Remark We split the originstretch constraint into thestretch circuit and thestretch path

constraints that respectively use thePATH LOOP andCIRCUIT LOOP arc generators.
We also reorganise the parameters: theVALUES collection describes the attributes of each
value that can be assigned to the variables of thestretch circuit constraint. Finally we
skipped the pattern constraint that tells what values can follow a given value.

Algorithm A first filtering algorithm was described in the original article of G. Pesant [285]. An
algorithm that also generates explanations is given in [340]. The first filtering algo-
rithm achievingarc-consistencyis depicted in [191, 192]. This algorithm is based on
dynamic programmingand handles the fact that some values can be followed by only a
given subset of values.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

1800 MAX NCC,CIRCUIT ,LOOP , ∀

Reformulation The stretch circuit constraint can be reformulated in term of astretch path con-
straint. LetLMAX denote the maximum value taken by thelmax attribute within the items
of the collectionVALUES, letn be the number of variables of the collectionVARIABLES, and
let δ = min(LMAX , n). The first and second arguments of thestretch path constraint
are created in the following way:

• We pass to thestretch path the variables of the collectionVARIABLES to which
we add theδ first variables of the collectionVARIABLES.

• We pass to thestretch path the values of the collectionVALUES with the following
modification: to each valuev for which the correspondinglmax attribute is greater
than or equal ton we reset its value ton+ δ.

Even if stretch path can achievearc-consistencythis reformulation may not achieve
arc-consistencysince it duplicates variables.

Using this reformulation, the example
stretch circuit(〈6, 6, 3, 1, 1, 1, 6, 6〉,

〈val− 1 lmin− 2 lmax− 4, val− 2 lmin− 2 lmax− 3,
val− 3 lmin− 1 lmax− 6, val− 6 lmin− 2 lmax− 4〉)

of theExampleslot is reformulated as:
stretch path(〈6, 6, 3, 1, 1, 1, 6, 6, 6, 6, 3, 1, 1, 1〉,

〈val− 1 lmin− 2 lmax− 4, val− 2 lmin− 2 lmax− 3,
val− 3 lmin− 1 lmax− 6, val− 6 lmin− 2 lmax− 4〉)

In the reformulationδ was equal to6, and theVALUES collection was left unchanged since
nolmax attribute was equal to the number of variables of theVARIABLES collection (i.e.,8).

See also common keyword:group (timetabling constraint),
pattern (sliding sequence constraint,timetabling constraint),
sliding distribution (sliding sequence constraint),
stretch path (sliding sequence constraint,timetabling constraint).

used in reformulation: stretch path.

Keywords characteristic of a constraint: cyclic.

constraint type: timetabling constraint, sliding sequence constraint.

filtering: dynamic programming, arc-consistency, duplicated variables.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 1801

For all items ofVALUES:

Arc input(s) VARIABLES

Arc generator CIRCUIT 7→collection(variables1, variables2)
LOOP 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var = VALUES.val
• variables2.var = VALUES.val

Graph property(ies) • not in(MIN NCC, 1, VALUES.lmin− 1)
• MAX NCC≤ VALUES.lmax

Graph model Part (A) of Figure5.588shows the initial graphs associated with values1, 2, 3 and6 of the
Example slot. Part (B) of Figure5.588shows the corresponding final graphs associated
with values1, 3 and6. Since value2 is not assigned to any variable of theVARIABLES col-
lection the final graph associated with value2 is empty. Thestretch circuit constraint
holds since:

• For value1 we have one connected component for which the number of vertices is
greater than or equal to2 and less than or equal to4,

• For value2 we do not have any connected component,

• For value3 we have one connected component for which the number of vertices is
greater than or equal to1 and less than or equal to6,

• For value6 we have one connected component for which the number of vertices is
greater than or equal to2 and less than or equal to4.

VARIABLES

1

2

3

4

5

6

7

8

1:MIN_NCC=3,MAX_NCC=3
3:MIN_NCC=1,MAX_NCC=1
6:MIN_NCC=4,MAX_NCC=4

VALUES:1 VALUES:3 VALUES:6

4:1

5:1

6:1

3:3

1:6

2:6

7:6

8:6

(A) (B)

Figure 5.588: Initial and final graph of thestretch circuit constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1802 MAX NCC,PATH ,LOOP , ∀; AUTOMATON

5.340 stretchpath

DESCRIPTION LINKS GRAPH AUTOMATON

Origin [285]

Constraint stretch path(VARIABLES, VALUES)

Usual name stretch

Arguments VARIABLES : collection(var−dvar)
VALUES : collection(val−int, lmin−int, lmax−int)

Restrictions |VARIABLES| > 0
required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, lmin, lmax])
distinct(VALUES, val)
VALUES.lmin ≥ 0
VALUES.lmin ≤ VALUES.lmax
VALUES.lmin ≤ |VARIABLES|

Purpose

In order to define the meaning of thestretch path constraint, we first introduce the no-
tions ofstretchandspan. Letn be the number of variables of the collectionVARIABLES.
LetXi, . . . , Xj (1 ≤ i ≤ j ≤ n) be consecutive variables of the collection of variables
VARIABLES such that the following conditions apply:

• All variablesXi, . . . , Xj take a same value from the set of values of theval

attribute,

• i = 1 orXi−1 is different fromXi,

• j = n orXj+1 is different fromXj .

We call such a set of variables astretch. Thespanof the stretch is equal toj − i + 1,
while the value of the stretch isXi. We now define the condition enforced by the
stretch path constraint.

Each item(val − v, lmin − s, lmax − t) of the VALUES collection enforces the
minimum values as well as the maximum valuet for the span of a stretch of valuev
over consecutive variables of theVARIABLES collection.

Note that:

1. Having an item(val− v, lmin− s, lmax− t) with s strictly greater than0 does
not mean that valuev should be assigned to one of the variables of collection
VARIABLES. It rather means that, when valuev is used, all stretches of valuev
must have a span that belong to interval[s, t].

2. A variable of the collectionVARIABLES may be assigned a value that is not de-
fined in theVALUES collection.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

20030820 1803

Example

〈

var− 6,
var− 6,
var− 3,
var− 1,
var− 1,
var− 1,
var− 6,
var− 6

〉

,

〈
val− 1 lmin− 2 lmax− 4,
val− 2 lmin− 2 lmax− 3,
val− 3 lmin− 1 lmax− 6,
val− 6 lmin− 2 lmax− 2

〉

The stretch path constraint holds since the sequence6 6 3 1 1 1 6 6 contains
four stretches6 6, 3, 1 1 1, and6 6 respectively verifying the following conditions:

• The span of the first stretch6 6 is located within interval[2, 2] (i.e., the limit associ-
ated with value6).

• The span of the second stretch3 is located within interval[1, 6] (i.e., the limit asso-
ciated with value3).

• The span of the third stretch1 1 1 is located within interval[2, 4] (i.e., the limit
associated with value1).

• The span of the fourth stretch6 6 is located within interval[2, 2] (i.e., the limit
associated with value6).

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VARIABLES| > |VALUES|
|VALUES| > 1
sum(VALUES.lmin) ≤ |VARIABLES|
VALUES.lmax ≤ |VARIABLES|

Symmetries • Items ofVARIABLES can bereversed.

• Items ofVALUES arepermutable.

• All occurrences of two distinct values inVARIABLES.var or VALUES.val can be
swapped; all occurrences of a value inVARIABLES.var or VALUES.val can be
renamedto any unused value.

Usage The article [285], which originally introduced thestretch constraint, quotes rostering
problems as typical examples of use of this constraint.

Remark We split the original stretch constraint into the stretch path and the
stretch circuit constraints that respectively use thePATH LOOP and the
CIRCUIT LOOP arc generators. We also reorganise the parameters: theVALUES

collection describes the attributes of each value that can be assigned to the variables
of the stretch path constraint. Finally we skipped the pattern constraint that tells
what values can follow a given value. A extension of this constraint (i.e., stretch plus
pattern), calledforced shift stretch, where one can specify for each valuev with a

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

1804 MAX NCC,PATH ,LOOP , ∀; AUTOMATON

0-1 variable, whether it should occur at least once or not at all, was proposed in [192].
By reduction to Hamiltonian path it was shown that enforcingarc-consistencyfor
forced shift stretch is NP-hard [192].

Algorithm A first filtering algorithm was described in the original article of G. Pesant [285]. A second
filtering algorithm, based ondynamic programming, achievingarc-consistencyis depicted
in [191, 192]. It also handles the fact that some values can be followed by only a given
subset of values. An other alternative achievingarc-consistencyis to use the automaton
described in theAutomaton slot.

Systems stretchPath in Choco, stretch in JaCoP.

See also common keyword: change continuity, group (timetabling constraint),
group skip isolated item (timetabling constraint,sequence),
pattern (sliding sequence constraint,timetabling constraint),
sliding distribution (sliding sequence constraint),
stretch circuit (sliding sequence constraint,timetabling constraint).

generalisation: stretch path partition (variable replaced by variable ∈
partition).

uses in its reformulation: stretch circuit.

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

combinatorial object: sequence.

constraint network structure: Berge-acyclic constraint network.

constraint type: timetabling constraint, sliding sequence constraint.

filtering: dynamic programming, arc-consistency.

final graph structure: consecutive loops are connected.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://jacopapi.osolpro.com/JaCoP/constraints/geost/Stretch.html
http://www.jacop.eu/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 1805

For all items ofVALUES:

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)
LOOP 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var = VALUES.val
• variables2.var = VALUES.val

Graph property(ies) • not in(MIN NCC, 1, VALUES.lmin− 1)
• MAX NCC≤ VALUES.lmax

Graph model Part (A) of Figure5.589shows the initial graphs associated with values1, 2, 3 and6 of the
Example slot. Part (B) of Figure5.589shows the corresponding final graphs associated
with values1, 3 and6. Since value2 is not assigned to any variable of theVARIABLES
collection the final graph associated with value2 is empty. Thestretch path constraint
holds since:

• For value1 we have one connected component for which the number of vertices3 is
greater than or equal to2 and less than or equal to4,

• For value2 we do not have any connected component,

• For value3 we have one connected component for which the number of vertices1 is
greater than or equal to1 and less than or equal to6,

• For value6 we have two connected components that both contain two vertices: this
is greater than or equal to2 and less than or equal to2.

VARIABLES

1

2

3

4

5

6

7

8

1:MIN_NCC=3,MAX_NCC=3
3:MIN_NCC=1,MAX_NCC=1
6:MIN_NCC=2,MAX_NCC=2

VALUES:1 VALUES:3 VALUES:6

4:1

5:1

6:1

3:3 1:6

2:6

7:6

8:6

(A) (B)

Figure 5.589: Initial and final graph of thestretch path constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1806 MAX NCC,PATH ,LOOP , ∀; AUTOMATON

During the presentation of this constraint at CP’2001 the following point was mentioned:
it could be useful to allow domain variables for the minimum and the maximum values
of a stretch. This could be achieved in the following way: thelmin (respectivelylmax)
attribute would now be a domain variable that gives the size of the shortest (respectively
longest) stretch. Finally within theGraph property(ies) slot we would replace≥ (and≤)
by=.

20030820 1807

Automaton Let n andm respectively denote the quantities|VARIABLES| and|VALUES|. Furthermore,
let vali, lmini and lmaxi, (i ∈ [1,m]), respectively be shortcuts for the expressions
VALUES[i].val, VALUES[i].lmin andVALUES[i].lmax. Without loss of generality, we as-
sume that all thelmin attributes of the items of theVALUES collection are at least equal to
1. The following automatonA involving 1 + lmax1 + lmax2 + . . . + lmaxm states only
accepts solutions of thestretch path constraint. AutomatonA has the following states:

• an initial states that is also a terminal state,

• ∀i ∈ [1,m], ∀j ∈ [1, lmini − 1], a non-terminal statesi,j ,

• ∀i ∈ [1,m], ∀j ∈ [lmini, lmaxi], a terminal statesi,j .

Transitions ofA are defined in the following way:

• ∀i ∈ [1,m], a transition froms to si,1 labelled by conditionXl = vali,

• a transition froms to s labelled by conditionXl 6= val1 ∧Xl 6= val2 ∧ . . .∧Xl 6=
valm,

• ∀i ∈ [1,m], ∀j ∈ [lmini, lmaxi], a transition fromsi,j to s labelled by condition
Xl 6= val1 ∧Xl 6= val2 ∧ . . . ∧Xl 6= valm,

• ∀i ∈ [1,m], ∀j ∈ [1, lmaxi−1], a transition fromsi,j to si,j+1 labelled by condition
Xl = vali,

• ∀i ∈ [1,m], ∀j ∈ [lmini, lmaxi], ∀k 6= i ∈ [1,m], a transition fromsi,j to sk,1
labelled by conditionXl = valk.

Figure5.590depicts the automaton associated with thestretch path constraint of the
Example slot. Transitions labels0, 1, 2, 3 and4 respectively correspond to the conditions
Xl 6= 1∧Xl 6= 2∧Xl 6= 3∧Xl 6= 6, Xl = 1, Xl = 2, Xl = 3, Xl = 6 (since values1,
2, 3 and6 respectively correspond to the values of the first, second, third and fourth item
of the VALUES collection). Thestretch path constraint holds since the corresponding
sequence of visited states,s s41 s42 s31 s11 s12 s13 s41 s42, ends up in a terminal state
(i.e., terminal states are depicted by thick circles in the figure).

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1808 MAX NCC,PATH ,LOOP , ∀; AUTOMATON

41
21 31

41
21 31

41
s

ss
ss

ss
ss

ss
s

14131211

232221
sss

ssss

s

4
31

04
31

0

4
32

04
32

04
32

0

222

1111

0

41
2111

41
2111

41
2111

41
2111

s
ss

ss
ss

ss
ss

ss
ss

s

34333231
s sss

4
21

04
21

04
21

04
21

0

3

3333

s

4
2

1
0

4
2

1
0

3

11

s

s

s
21

s
41

41
s

21
s

11
s

s
35

s
36

31
2111

s
ss

s

42
s

41
s

3
21

0
44

11 31
41

11 31
41

s
ss

ss
ss

s

21 31

Figure 5.590: Automaton of thestretch path constraint of theExampleslot

20030820 1809

1810 AUTOMATON

5.341 stretchpath partition

DESCRIPTION LINKS

Origin Derived fromstretch path.

Constraint stretch path partition(VARIABLES, PARTLIMITS)

Synonym stretch.

Type VALUES : collection(val−int)

Arguments VARIABLES : collection(var−dvar)
PARTLIMITS : collection(p− VALUES, lmin−int, lmax−int)

Restrictions |VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)
|VARIABLES| > 0
required(VARIABLES, var)
|PARTLIMITS| > 0
required(PARTLIMITS, [p, lmin, lmax])
PARTLIMITS.lmin ≥ 0
PARTLIMITS.lmin ≤ PARTLIMITS.lmax
PARTLIMITS.lmin ≤ |VARIABLES|

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

20091106 1811

Purpose

In order to define the meaning of thestretch path partition constraint, we first
introduce the notions ofstretchandspan. Let n be the number of variables of the col-
lectionVARIABLES. Let Xi, . . . , Xj (1 ≤ i ≤ j ≤ n) be consecutive variables of the
collection of variablesVARIABLES such that the following conditions apply:

• All variables Xi, . . . , Xj take their values in the same partition of the
PARTLIMITS collection (i.e.,∃l ∈ [1, |PARTLIMITS|] such that∀k ∈ [i, j] :
Xk ∈ PARTLIMITS[l].p),

• i = 1 orXi−1 is different fromXi,

• j = n orXj+1 is different fromXj .

We call such a set of variables astretch. Thespanof the stretch is equal toj − i + 1,
while the value of the stretch isl. We now define the condition enforced by the
stretch path partition constraint.

Each itemPARTLIMITS[l] = (p − values, lmin − s, lmax − t) of the PARTLIMITS

collection enforces the minimum values as well as the maximum valuet for the span
of a stretch of valuel over consecutive variables of theVARIABLES collection.

Note that:

1. Having an itemPARTLIMITS[l] = (p − values, lmin − s, lmax − t) with s
strictly greater than0 does not mean that values ofvalues should be assigned to
one of the variables of collectionVARIABLES. It rather means that, when a value
of values is used, all stretches of valuel must have a span that belong to interval
[s, t].

2. A variable of the collectionVARIABLES may be assigned a value that is not de-
fined in the attributep of thePARTLIMITS collection.

Example

〈

var− 1,
var− 2,
var− 0,
var− 0,
var− 2,
var− 2,
var− 2,
var− 0

〉

,

〈

p− 〈1, 2〉 lmin− 2 lmax− 4,
p− 〈3〉 lmin− 0 lmax− 2

〉

The stretch path partition constraint holds since the sequence1 2 0 0 2 2 2 0
contains two stretches1 2, and2 2 2 respectively verifying the following conditions:

• The span of the first stretch1 2 is located within interval[2, 4] (i.e., the limit associ-
ated with itemPARTLIMITS[1]).

• The span of the second stretch2 2 2 is located within interval[2, 4] (i.e., the limit
associated with itemPARTLIMITS[1]).

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

1812 AUTOMATON

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VARIABLES| > |PARTLIMITS|
|PARTLIMITS| > 1
sum(PARTLIMITS.lmin) ≤ |VARIABLES|
PARTLIMITS.lmax ≤ |VARIABLES|

Symmetries • Items ofVARIABLES can bereversed.

• Items ofPARTLIMITS arepermutable.

• Items ofPARTLIMITS.p arepermutable.

• All occurrences of two distinct tuples of values inVARIABLES.var or
PARLIMITS.p.val can beswapped; all occurrences of a tuple of values in
VARIABLES.var or PARLIMITS.p.val can berenamedto any unused tuple of val-
ues.

See also common keyword:pattern (sliding sequence constraint).

specialisation:stretch path (variable ∈ partition replaced byvariable).

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint, partition.

combinatorial object: sequence.

constraint network structure: Berge-acyclic constraint network.

constraint type: timetabling constraint, sliding sequence constraint.

filtering: arc-consistency.

final graph structure: consecutive loops are connected.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20091106 1813

1814 PREDEFINED

5.342 strict lex2

DESCRIPTION LINKS

Origin [155]

Constraint strict lex2(MATRIX)

Type VECTOR : collection(var−dvar)

Argument MATRIX : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
required(VECTOR, var)
required(MATRIX, vec)
same size(MATRIX, vec)

Purpose
Given a matrix of domain variables, enforces that both adjacent rows,and adjacent
columns are lexicographically ordered (adjacent rows and adjacent columns cannot be
equal).

Example
(〈

vec− 〈2, 2, 3〉 ,
vec− 〈2, 3, 1〉

〉)

Thestrict lex2 constraint holds since:

• The first row〈2, 2, 3〉 is lexicographically strictly less than the second row〈2, 3, 1〉.
• The first column〈2, 2〉 is lexicographically strictly less than the second column

〈2, 3〉.
• The second column〈2, 3〉 is lexicographically strictly less than the third column

〈3, 1〉.

Typical |VECTOR| > 1
|MATRIX| > 1

Symmetry One and the same constant can beaddedto thevar attribute of all items ofMATRIX.vec.

Usage A symmetry-breakingconstraint.

Reformulation Thestrict lex2 constraint can be expressed as a conjunction of twolex chain less

constraints: A firstlex chain less constraint on theMATRIX argument and a second
lex chain less constraint on the transpose of theMATRIX argument.

Systems strict lex2 in MiniZinc .

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Usage
Typical usage of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#strict_lex2
http://www.g12.cs.mu.oz.au/minizinc/

20031016 1815

See also common keyword:allperm, lex lesseq (lexicographic order).

implies: lex2, lex chain less.

part of system of constraints:lex chain less.

Keywords constraint type: predefined constraint, system of constraints, order constraint.

modelling: matrix, matrix model.

symmetry: symmetry, matrix symmetry, lexicographic order.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1816 NARC,PATH ; AUTOMATON

5.343 strictly decreasing

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived fromstrictly increasing.

Constraint strictly decreasing(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restriction required(VARIABLES, var)

Purpose The variables of the collectionVARIABLES are strictly decreasing.

Example (〈8, 4, 3, 1〉)

Thestrictly decreasing constraint holds since8 > 4 > 3 > 1.

Typical |VARIABLES| > 2

Symmetry One and the same constant can beaddedto thevar attribute of all items ofVARIABLES.

Arg. properties
Contractiblewrt. VARIABLES.

Systems increasingNValue in Choco, rel in Gecode.

See also common keyword:increasing (order constraint).

comparison swapped:strictly increasing.

implies: alldifferent, decreasing.

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint network structure: sliding cyclic(1) constraint network(1).

constraint type: decomposition, order constraint.

filtering: arc-consistency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20040814 1817

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var > variables2.var

Graph property(ies) NARC= |VARIABLES| − 1

Graph model Parts (A) and (B) of Figure5.591respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

VARIABLES

1

2

3

4

NARC=3

1:8

2:4

3:3

4:1

(A) (B)

Figure 5.591: Initial and final graph of thestrictly decreasing constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1818 NARC,PATH ; AUTOMATON

Automaton Figure 5.592 depicts the automaton associated with thestrictly decreasing con-
straint. To each pair of consecutive variables(VARi, VARi+1) of the collectionVARIABLES
corresponds a0-1 signature variableSi. The following signature constraint linksVARi,
VARi+1 andSi: VARi ≤ VARi+1 ⇔ Si.

s i i+1VAR >VAR

Figure 5.592: Automaton of thestrictly decreasing constraint

n−1

VAR
2

VAR

2S

n
VAR

3
VAR

3S

2Q

n−1S

n−1
VAR

1S

1Q0Q =s Q =s

1

Figure 5.593: Hypergraph of the reformulation corresponding to the automaton of the
strictly decreasing constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20040814 1819

1820 NARC,PATH ; AUTOMATON

5.344 strictly increasing

DESCRIPTION LINKS GRAPH AUTOMATON

Origin KOALOG

Constraint strictly increasing(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restriction required(VARIABLES, var)

Purpose The variables of the collectionVARIABLES are strictly increasing.

Example (〈1, 3, 6, 8〉)

Thestrictly increasing constraint holds since1 < 3 < 6 < 8.

Typical |VARIABLES| > 2

Symmetry One and the same constant can beaddedto thevar attribute of all items ofVARIABLES.

Arg. properties
Contractiblewrt. VARIABLES.

Systems increasingNValue in Choco, rel in Gecode.

Used in golomb, int value precede chain.

See also common keyword:decreasing (order constraint).

comparison swapped:strictly decreasing.

implied by: golomb.

implies: alldifferent, increasing.

uses in its reformulation: alldifferent.

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint network structure: sliding cyclic(1) constraint network(1).

constraint type: decomposition, order constraint.

filtering: arc-consistency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20040814 1821

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var < variables2.var

Graph property(ies) NARC= |VARIABLES| − 1

Graph model Parts (A) and (B) of Figure5.594respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

VARIABLES

1

2

3

4

NARC=3

1:1

2:3

3:6

4:8

(A) (B)

Figure 5.594: Initial and final graph of thestrictly increasing constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1822 NARC,PATH ; AUTOMATON

Automaton Figure 5.595 depicts the automaton associated with thestrictly increasing con-
straint. To each pair of consecutive variables(VARi, VARi+1) of the collectionVARIABLES
corresponds a0-1 signature variableSi. The following signature constraint linksVARi,
VARi+1 andSi: VARi ≥ VARi+1 ⇔ Si.

s VAR <VARi i+1

Figure 5.595: Automaton of thestrictly increasing constraint

n−1

VAR
2

VAR

2S

n
VAR

3
VAR

3S

2Q

n−1S

n−1
VAR

1S

1Q0Q =s Q =s

1

Figure 5.596: Hypergraph of the reformulation corresponding to the automaton of the
strictly increasing constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20040814 1823

1824 MIN NSCC,CLIQUE

5.345 stronglyconnected

DESCRIPTION LINKS GRAPH

Origin [4]

Constraint strongly connected(NODES)

Argument NODES : collection(index−int, succ−svar)

Restrictions required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)

Purpose
Consider a digraphG described by theNODES collection. Select a subset of arcs ofG so
that we have one single strongly connected component involving all vertices ofG.

Example

〈

index− 1 succ− {2},
index− 2 succ− {3},
index− 3 succ− {2, 5},
index− 4 succ− {1},
index− 5 succ− {4}

〉

The strongly connected constraint holds since theNODES collection depicts a
graph involving one single strongly connected component (i.e., since we have a circuit
visiting successively the vertices1, 2, 3, 5, and4).

Typical |NODES| > 2

Symmetry Items ofNODES arepermutable.

Algorithm The sketch of a filtering algorithm for thestrongly connected constraint is given
in [131, page 89].

See also common keyword:link set to booleans (constraint involving set variables).

implied by: connected.

related: circuit (one singlestrongly connected componentin the final solution).

Keywords constraint arguments:constraint involving set variables.

constraint type: graph constraint.

filtering: linear programming.

final graph structure: strongly connected component.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 1825

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) in set(nodes2.index, nodes1.succ)

Graph property(ies) MIN NSCC= |NODES|

Graph model Part (A) of Figure5.597shows the initial graph from which we start. It is derived from
the set associated with each vertex. Each set describes the potential values of thesucc
attribute of a given vertex. Part (B) of Figure5.597gives the final graph associated with the
Example slot. Thestrongly connected constraint holds since the final graph contains
one single strongly connected component mentioning every vertex of theinitial graph.

NODES

1:1,{2,4}

2:2,{1,3,5}

4:4,{1,5}3:3,{2,5}

5:5,{2,3,4}

MIN_NSCC=5

MIN_NSCC

1:1,{2}

2:2,{3}

3:3,{2,5}

5:5,{4}

4:4,{1}

(A) (B)

Figure 5.597: Initial and final graph of thestrongly connected set constraint

Signature Since the maximum number of vertices of the final graph is equal to|NODES| we can rewrite
the graph propertyMIN NSCC = |NODES| to MIN NSCC ≥ |NODES| and simplify
MIN NSCC toMIN NSCC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

1826 PREDEFINED

5.346 subgraphisomorphism

DESCRIPTION LINKS

Origin [258]

Constraint subgraph isomorphism(NODES PATTERN, NODES TARGET, FUNCTION)

Arguments NODES PATTERN : collection(index−int, succ−sint)
NODES TARGET : collection(index−int, succ−svar)
FUNCTION : collection(image−dvar)

Restrictions required(NODES PATTERN, [index, succ])
NODES PATTERN.index ≥ 1
NODES PATTERN.index ≤ |NODES PATTERN|
distinct(NODES PATTERN, index)
NODES PATTERN.succ ≥ 1
NODES PATTERN.succ ≤ |NODES PATTERN|
required(NODES TARGET, [index, succ])
NODES TARGET.index ≥ 1
NODES TARGET.index ≤ |NODES TARGET|
distinct(NODES TARGET, index)
NODES TARGET.succ ≥ 1
NODES TARGET.succ ≤ |NODES TARGET|
required(FUNCTION, [image])
FUNCTION.image ≥ 1
FUNCTION.image ≤ |NODES TARGET|
distinct(FUNCTION, image)
|FUNCTION| = |NODES PATTERN|

Purpose

Given two directed graphsPATTERN andTARGET enforce a one to one correspondence,
defined by the functionFUNCTION, between the vertices of the graphPATTERN and the
vertices of an induced subgraph ofTARGET so that, if there is an arc fromu to v in the
graphPATTERN, then there is also an arc from the image ofu to the image ofv in the
induced subgraph ofTARGET. The vertices of both graphs are respectively defined by
the two collections of verticesNODES PATTERN andNODES TARGET. Within collection
NODES PATTERN the set of successors of each node is fixed, while this is not the case
for the collectionNODES TARGET. This stems from the fact that theTARGET graph is
not fixed (i.e., the lower and upper bounds of the target graph are specified when we
post thesubgraph isomorphism constraint, while the induced subgraph of a solution
to thesubgraph isomorphism constraint corresponds to a graph for which the upper
and lower bounds are identical).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

20090821 1827

Example

〈
index− 1 succ− {2, 4},
index− 2 succ− {1, 3, 4},
index− 3 succ− ∅,
index− 4 succ− ∅

〉

,

〈

index− 1 succ− ∅,
index− 2 succ− {3, 4, 5},
index− 3 succ− ∅,
index− 4 succ− {2, 5},
index− 5 succ− ∅

〉

,

〈4, 2, 3, 5〉

Figure 5.598 gives the pattern (see Part (A)) and target graph (see Part (B)) ofthe
Example slot as well as the one to one correspondence (see Part (C)) betweenthe pattern
graph and the induced subgraph of the target graph. Thesubgraph isomorphism

constraint since:

• To the arc from vertex1 to vertex4 in the pattern graph corresponds the arc from
vertex4 to 5 in the induced subgraph of the target graph.

• To the arc from vertex1 to vertex2 in the pattern graph corresponds the arc from
vertex4 to 2 in the induced subgraph of the target graph.

• To the arc from vertex2 to vertex1 in the pattern graph corresponds the arc from
vertex2 to 4 in the induced subgraph of the target graph.

• To the arc from vertex2 to vertex4 in the pattern graph corresponds the arc from
vertex2 to 5 in the induced subgraph of the target graph.

• To the arc from vertex2 to vertex3 in the pattern graph corresponds the arc from
vertex2 to 3 in the induced subgraph of the target graph.

Typical |NODES PATTERN| > 1
|NODES TARGET| > 1

Symmetries • Items ofNODES PATTERN arepermutable.

• Items ofNODES TARGET arepermutable.

Usage Within the context of constraint programming the constraint was used forfinding symme-
tries [305, 307, 306].

Algorithm [387, 321, 236, 419].

See also related: graph isomorphism.

Keywords constraint arguments:constraint involving set variables.

constraint type: predefined constraint, graph constraint.

symmetry: symmetry.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1828 PREDEFINED

(A)

(C)

(B)

3

1 22

2

1

1

3

3

4

4

3

5 4

45

1 2

Figure 5.598: (A) The pattern graph, (B) the initial target graph – plain arcs must
belong to the induced subgraph, while dotted arcs may or may not belong to the induced
subgraph – and (C) the correspondence between the vertices of the pattern graph and
the vertices of the induced subgraph of the target graph

20090821 1829

1830 SUM,PRODUCT

5.347 sum

DESCRIPTION LINKS GRAPH

Origin [418].

Constraint sum(INDEX, SETS, CONSTANTS, S)

Synonym sum pred.

Arguments INDEX : dvar

SETS : collection(ind−int, set−sint)
CONSTANTS : collection(cst−int)
S : dvar

Restrictions |SETS| ≥ 1
required(SETS, [ind, set])
distinct(SETS, ind)
|CONSTANTS| ≥ 1
required(CONSTANTS, cst)

Purpose S is equal to the sum of the constants ofCONSTANTS corresponding to theINDEXth set
of theSETS collection.

Example

8,

〈
ind− 8 set− {2, 3},
ind− 1 set− {3},
ind− 3 set− {1, 4, 5},
ind− 6 set− {2, 4}

〉

,

〈4, 9, 1, 3, 1〉 , 10

The sum constraint holds since its last argumentS = 10 is equal to the sum of the
2th and 3th items of the collection〈4, 9, 1, 3, 1〉. As illustrated by Figure5.599, this
stems from the fact that its first argumentINDEX = 8 corresponds to the value of the
ind attribute of the first item of theSETS collection. Consequently the corresponding set
{2, 3} is used for summing the2th and3th items of theCONSTANTS collection.

Typical |SETS| > 1
|CONSTANTS| > |SETS|
range(CONSTANTS.cst) > 1

Symmetry Items ofSETS arepermutable.

Arg. properties
Functional dependency: S determined byINDEX, SETS andCONSTANTS.

Usage In his article introducing thesum constraint, Tallys H. Yunes mentions theSequence Depen-
dent Cumulative Cost Problemas the subproblem that originally motivates this constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

20030820 1831

Remark Thesum constraint is calledsum pred in MiniZinc (http://www.g12.cs.mu.oz.au/

minizinc/).

Algorithm The article [418] gives theconvex hull relaxationof thesum constraint.

Systems sum pred in MiniZinc .

See also common keyword:element (data constraint), sum ctr, sum set (sum).

used in graph description:in set.

Keywords characteristic of a constraint: convex hull relaxation, sum.

constraint type: data constraint.

filtering: linear programming.

modelling: functional dependency.

10

ind−6 set−{2,4}

ind−3 set−{1,4,5}

ind−1 set−{3}

SETS

ind−8 set−{2,3}

INDEX CONSTANTS

cst−4

cst−9

cst−1

cst−3

cst−1

S

8

Figure 5.599: Illustration of the correspondence between the arguments of thesum
constraint in the context of theExampleslot

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.g12.cs.mu.oz.au/minizinc/

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#sum_pred
http://www.g12.cs.mu.oz.au/minizinc/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1832 SUM,PRODUCT

Arc input(s) SETS CONSTANTS

Arc generator PRODUCT 7→collection(sets, constants)

Arc arity 2

Arc constraint(s) • INDEX = sets.ind
• in set(constants.key, sets.set)

Graph property(ies) SUM(CONSTANTS, cst) = S

Graph model According to the value assigned toINDEX the arc constraint selects for the final graph:

• TheINDEXth item of theSETS collection,

• The items of theCONSTANTS collection for which the key correspond to the indices
of theINDEXth set of theSETS collection.

Finally, since we use theSUM graph property on thecst attribute of theCONSTANTS
collection, the last argumentS of thesum constraint is equal to the sum of the constants
associated with the vertices of the final graph.

Parts (A) and (B) of Figure5.600respectively show the initial and final graph associated
with theExampleslot. Since we use theSUM graph property we show the vertices from
which we computeS in a box.

SETS

CONSTANTS

1

12 345

234

SUM=9+1=10

1:8,{2,3}

2:9 3:1

(A) (B)

Figure 5.600: Initial and final graph of thesum constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1833

1834 SUM,SELF

5.348 sumctr

DESCRIPTION LINKS GRAPH

Origin Arithmetic constraint.

Constraint sum ctr(VARIABLES, CTR, VAR)

Synonyms constant sum, sum, linear, scalar product.

Arguments VARIABLES : collection(var−dvar)
CTR : atom

VAR : dvar

Restrictions required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose
Constraint the sum of a set of domain variables. More precisely, letS denote the sum of
the variables of theVARIABLES collection (when the collection is empty the correspond-
ing sum is equal to0). Enforce the following constraint to hold:S CTR VAR.

Example (〈1, 1, 4〉 ,=, 6)

Thesum ctr constraint holds since the condition1 + 1 + 4 = 6 is satisfied.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
CTR ∈ [=, <,≥, >,≤]

Symmetry Items ofVARIABLES arepermutable.

Arg. properties
• Contractible wrt. VARIABLES when CTR ∈ [<,≤] and

minval(VARIABLES.var) ≥ 0.

• Contractible wrt. VARIABLES when CTR ∈ [≥, >] and
maxval(VARIABLES.var) ≤ 0.

• Extensiblewrt. VARIABLES whenCTR ∈ [≥, >] andminval(VARIABLES.var) ≥
0.

• Extensiblewrt. VARIABLES whenCTR ∈ [<,≤] andmaxval(VARIABLES.var) ≤
0.

• Aggregate: VARIABLES(union), CTR(id), VAR(+).

Remark When CTR corresponds to= this constraint is referenced under the namesconstant sum

in KOALOG (http://www.koalog.com/php/index.php) andsum in JaCoP (http:

//www.jacop.eu/).

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.jacop.eu/

20030820 1835

Systems equation in Choco, linear in Gecode, scalar product in SICStus.

Used in bin packing, cumulative, cumulative convex,
cumulative with level of priority, cumulatives, indexed sum,
interval and sum, relaxed sliding sum, sliding sum,
sliding time window sum.

See also assignment dimension added:interval and sum (assignment dimensioncorrespond-
ing to intervals is added).

common keyword: arith sliding (arithmetic constraint), increasing sum (sum),
product ctr, range ctr (arithmetic constraint), sum, sum cubes ctr (sum),
sum set (arithmetic constraint), sum squares ctr (sum).

generalisation:scalar product (arithmetic constraintwhere all coefficients are not nec-
essarly equal to1).

system of constraints:sliding sum.

Keywords characteristic of a constraint: sum.

constraint type: arithmetic constraint.

heuristics: regret based heuristics, regret based heuristics in matrix problems.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntLI.html
http://www.gecode.org/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1836 SUM,SELF

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) TRUE

Graph property(ies) SUM(VARIABLES, var) CTR VAR

Graph model Since we want to keep all the vertices of the initial graph we use theSELF arc generator
together with theTRUE arc constraint. This predefined arc constraint always holds.

Parts (A) and (B) of Figure5.601respectively show the initial and final graph associated
with theExampleslot. Since we use theTRUE arc constraint both graphs are identical.

VARIABLES

123

SUM(VARIABLES,var)=1+1+4=6

1:1 2:1 3:4

(A) (B)

Figure 5.601: Initial and final graph of thesum ctr constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1837

1838 PREDEFINED

5.349 sumcubesctr

DESCRIPTION LINKS

Origin Arithmetic constraint.

Constraint sum cubes ctr(VARIABLES, CTR, VAR)

Synonyms sum cubes, sum of cubes, sum of cubes ctr.

Arguments VARIABLES : collection(var−dvar)
CTR : atom

VAR : dvar

Restrictions required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

Constraint the sum of the cubes of a set of domain variables. More precisely, letS denote
the sum of the cubes of the variables of theVARIABLES collection (when the collection
is empty the corresponding sum is equal to0). Enforce the following constraint to hold:
S CTR VAR.

Example (〈1, 2, 2〉 ,=, 17)

The sum cubes ctr constraint holds since the condition13 + 23 + 23 = 17 is
satisfied.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
CTR ∈ [=, <,≥, >,≤]

Symmetry Items ofVARIABLES arepermutable.

Arg. properties
• Contractible wrt. VARIABLES when CTR ∈ [<,≤] and

minval(VARIABLES.var) ≥ 0.

• Contractible wrt. VARIABLES when CTR ∈ [≥, >] and
maxval(VARIABLES.var) ≤ 0.

• Extensiblewrt. VARIABLES whenCTR ∈ [≥, >] andminval(VARIABLES.var) ≥
0.

• Extensiblewrt. VARIABLES whenCTR ∈ [<,≤] andmaxval(VARIABLES.var) ≤
0.

• Aggregate: VARIABLES(union), CTR(id), VAR(+).

See also common keyword:sum ctr, sum squares ctr (sum).

Keywords characteristic of a constraint: sum.

constraint type: predefined constraint, arithmetic constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20111111 1839

1840 PREDEFINED

5.350 sumfree

DESCRIPTION LINKS

Origin [403]

Constraint sum free(S)

Argument S : svar

Purpose
Impose for all pairs of values (not necessarily distinct)i, j of the setS the fact that the
sumi+ j is not an element ofS.

Example ({1, 3, 5, 9})

Thesum free({1, 3, 5, 9}) constraint holds since:

• 1 + 1 = 2 /∈ S, 1 + 3 = 4 /∈ S, 1 + 5 = 6 /∈ S, 1 + 9 = 10 /∈ S.

• 3 + 3 = 6 /∈ S, 3 + 5 = 8 /∈ S, 3 + 9 = 12 /∈ S.

• 5 + 5 = 10 /∈ S, 5 + 9 = 14 /∈ S.

Usage Thesum free constraint was introduced by W.-J. van Hoeve and A. Sabharwal in order to
model in a concise waySchur problems.

• On one hand, the first model hasn domain variablesxi (1 ≤ i ≤ n), wherexi

corresponds to the subset in which elementi occurs. The constraintsxi = s ∧ xj =
s ⇒ xi+j 6= s (s ∈ [1, k], i, j ∈ [1, n], i ≤ j, i+ j ≤ n) enforce that thek subsets
are sum-free. We haveO(k · n2) such constraints.

• On the other hand, the model proposed by W.-J. van Hoeve and A. Sabharwal repre-
sents in an explicit way with a set variableSi (1 ≤ i ≤ n) each subset of the partition
we are looking for. Now, to express the fact that thesek subsets are sum-free they
simply usek sum free constraints of the formsum free(Si).

While the two models have the same behaviour when we focus on the numberof backtracks
the second model is much more efficient from a memory point of view.

Algorithm W.-J. van Hoeve and A. Sabharwal have proposed an algorithm that enforces
bound-consistencyfor thesum free constraint in [403].

Keywords constraint arguments:unary constraint, constraint involving set variables.

constraint type: predefined constraint.

filtering: bound-consistency.

problems: Schur number.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Keywords
Related keywords grouped by meta-keywords.

20061003 1841

1842 PREDEFINED

5.351 sumof increments

DESCRIPTION LINKS

Origin [81]

Constraint sum of increments(VARIABLES, LIMIT)

Synonyms increments sum, incr sum, sum incr, sum increments.

Arguments VARIABLES : collection(var−dvar)
LIMIT : dvar

Restrictions required(VARIABLES, var)
VARIABLES.var ≥ 0
LIMIT ≥ 0

Purpose

Given a collection of variablesVARIABLES which can only be assigned non neg-
ative values, and a variableLIMIT, enforce the conditionVARIABLES[1].var +
∑|VARIABLES|

i=2 max(VARIABLES[i].var − VARIABLES[i − 1].var, 0) ≤ LIMIT.
VARIABLES[1].var stands from the fact that we assume an additional implicit0 before
the first variable (i.e.,VARIABLES[1].var = max(VARIABLES[1].var− 0, 0)).

Example (〈4, 4, 3, 4, 6〉 , 7)

The sum of increments constraint holds since we have that4 + max(4 − 4, 0) +
max(3− 4, 0) + max(4− 3, 0) + max(6− 4, 0) ≤ 7.

Typical |VARIABLES| > 2
range(VARIABLES.var) > 1
maxval(VARIABLES.var) > 0
LIMIT > 0

Symmetries • One and the same constant can beaddedto VARIABLES.var and toLIMIT.

• Items ofVARIABLES can bereversed.

• LIMIT can beincreased.

Arg. properties
• Prefix-contractiblewrt. VARIABLES.

• Suffix-contractiblewrt. VARIABLES.

Usage Thesum of increments was initially motivated by the problem of decomposing a matrix
of non-negative integers into a positive linear combination of matrices consisting of only
zeros and ones, where the ones occur consecutively in each row.

Algorithm A O(|VARIABLES|) bound-consistencyfiltering algorithm for thesum of increments

constraint is described in [81].

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

20111105 1843

Reformulation The following reformulations are provided in [81]. AssumingVARIABLES[0].var is defined
as0 (i.e., a zero is added before the first variable of theVARIABLES collection) we have:

• ∑|VARIABLES|
i=1 Si ≤ LIMIT with Di = VARIABLES[i].var − VARIABLES[i − 1].var

andSi = max(Di, 0) (1 ≤ i ≤ |VARIABLES|).
• ∑|VARIABLES|

i=1 Si ≤ LIMIT with VARIABLES[i].var − VARIABLES[i − 1].var ≤ Si

andSi ∈ [0, LIMIT] (1 ≤ i ≤ |VARIABLES|).

Keywords characteristic of a constraint: difference, sum.

constraint type: predefined constraint.

filtering: bound-consistency.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Keywords
Related keywords grouped by meta-keywords.

1844 NSOURCE,SUM,PRODUCT

5.352 sumof weights of distinct values

DESCRIPTION LINKS GRAPH

Origin [38]

Constraint sum of weights of distinct values(VARIABLES, VALUES, COST)

Synonym swdv.

Arguments VARIABLES : collection(var−dvar)
VALUES : collection(val−int, weight−int)
COST : dvar

Restrictions required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, weight])
VALUES.weight ≥ 0
distinct(VALUES, val)
in attr(VARIABLES, var, VALUES, val)
COST ≥ 0

Purpose
All variables of theVARIABLES collection take a value in theVALUES collection. In
additionCOST is the sum of theweight attributes associated with the distinct values
taken by the variables ofVARIABLES.

Example

〈1, 6, 1〉 ,
〈

val− 1 weight− 5,
val− 2 weight− 3,
val− 6 weight− 7

〉

, 12

The sum of weights of distinct values constraint holds since its last argu-
mentCOST = 12 is equal to the sum5 + 7 of the weights of the values1 and6 that occur
within the〈1, 6, 1〉 collection.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VALUES| > 1
range(VALUES.weight) > 1
VALUES.weight > 0

Symmetries • Items ofVARIABLES arepermutable.

• All occurrences of two distinct values ofVARIABLES.var can beswapped.

• Items ofVALUES arepermutable.

• All occurrences of two distinct values inVARIABLES.var or VALUES.val can be
swapped; all occurrences of a value inVARIABLES.var or VALUES.val can be
renamedto any unused value.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20030820 1845

Arg. properties
Functional dependency: COST determined byVARIABLES andVALUES.

See also attached to cost variant:nvalue (all values have a weight of1).

common keyword: global cardinality with costs,
minimum weight alldifferent, weighted partial alldiff (weighted assignment).

Keywords application area: assignment.

constraint arguments:pure functional dependency.

constraint type: relaxation.

filtering: cost filtering constraint.

modelling: functional dependency.

problems: domination, weighted assignment, facilities location problem.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1846 NSOURCE,SUM,PRODUCT

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) • NSOURCE= |VARIABLES|
• SUM(VALUES, weight) = COST

Signature Since we use thePRODUCT arc generator, the number of sources of the final graph
cannot exceed the number of sources of the initial graph. Since the initialgraph contains
|VARIABLES| sources, this number is an upper bound of the number of sources of the final
graph. Therefore we can rewriteNSOURCE = |VARIABLES| to NSOURCE ≥
|VARIABLES| and simplifyNSOURCE toNSOURCE.

Parts (A) and (B) of Figure5.602respectively show the initial and final graph associated
with theExampleslot. Since we use theNSOURCE graph property, the source vertices
of the final graph are shown in a double circle. Since we also use theSUM graph property
we show the vertices from which we compute the total cost in a box.

VARIABLES

VALUES

1

1 23

2 3

NSOURCE=3
SUM(VALUES,weight)=5+7=12

1:1

1:1,5

2:6

3:6,7

3:1

(A) (B)

Figure 5.602: Initial and final graph of thesum of weights of distinct values

constraint

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1847

1848 SUM,SELF

5.353 sumset

DESCRIPTION LINKS GRAPH

Origin H. Cambazard

Constraint sum set(SV, VALUES, CTR, VAR)

Arguments SV : svar

VALUES : collection(val−int, coef−int)
CTR : atom

VAR : dvar

Restrictions required(VALUES, [val, coef])
distinct(VALUES, val)
VALUES.coef ≥ 0
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose
Let SUM denote the sum of thecoef attributes of theVALUES collection for which the
corresponding valuesval occur in the setSV. Enforce the following constraint to hold:
SUM CTR VAR.

Example

{2, 3, 6},
〈

val− 2 coef− 7,
val− 9 coef− 1,
val− 5 coef− 7,
val− 6 coef− 2

〉

,=, 9

The sum set constraint holds since the sum of thecoef attributes7 + 2 for which
the correspondingval attribute belongs to the first argumentSV = {2, 3, 6} is equal
(i.e., sinceCTR is set to=) to its last argumentVAR = 9.

Typical |VALUES| > 1
VALUES.coef > 0
CTR ∈ [=, <,≥, >,≤]

Symmetry Items ofVALUES arepermutable.

Systems weights in Gecode.

See also common keyword:sum, sum ctr (sum).

Keywords characteristic of a constraint: sum.

constraint arguments:binary constraint, constraint involving set variables.

constraint type: arithmetic constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.gecode.org/doc/3.7.0/reference/group__TaskModelSetConnect.html
http://www.gecode.org/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20031001 1849

Arc input(s) VALUES

Arc generator SELF 7→collection(values)

Arc arity 1

Arc constraint(s) in set(values.val, SV)

Graph property(ies) SUM(VALUES, coef) CTR VAR

Graph model Parts (A) and (B) of Figure5.603respectively show the initial and final graph associated
with theExampleslot.

VALUES

1234

SUM=7+2=9

1:2,7 4:6,2

(A) (B)

Figure 5.603: Initial and final graph of thesum set constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1850 PREDEFINED

5.354 sumsquaresctr

DESCRIPTION LINKS

Origin Arithmetic constraint.

Constraint sum squares ctr(VARIABLES, CTR, VAR)

Synonyms sum squares, sum of squares, sum of squares ctr.

Arguments VARIABLES : collection(var−dvar)
CTR : atom

VAR : dvar

Restrictions required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

Constraint the sum of the squares of a set of domain variables. More precisely, let
S denote the sum of the squares of the variables of theVARIABLES collection (when
the collection is empty the corresponding sum is equal to0). Enforce the following
constraint to hold:S CTR VAR.

Example (〈1, 1, 4〉 ,=, 18)

The sum squares ctr constraint holds since the condition12 + 12 + 42 = 18 is
satisfied.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
CTR ∈ [=, <,≥, >,≤]

Symmetry Items ofVARIABLES arepermutable.

Arg. properties
• Contractiblewrt. VARIABLES whenCTR ∈ [<,≤].

• Extensiblewrt. VARIABLES whenCTR ∈ [≥, >].

• Aggregate: VARIABLES(union), CTR(id), VAR(+).

See also common keyword:sum ctr, sum cubes ctr (sum).

Keywords characteristic of a constraint: sum.

constraint type: predefined constraint, arithmetic constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20110612 1851

1852 CLIQUE

5.355 symmetric

DESCRIPTION LINKS GRAPH

Origin [131]

Constraint symmetric(NODES)

Argument NODES : collection(index−int, succ−svar)

Restrictions required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)

Purpose
Consider a digraphG described by theNODES collection. Select a subset of arcs ofG so
that the corresponding graph is symmetric (i.e., if there is an arc fromi to j, there is also
an arc fromj to i).

Example

〈

index− 1 succ− {1, 2, 3},
index− 2 succ− {1, 3},
index− 3 succ− {1, 2},
index− 4 succ− {5, 6},
index− 5 succ− {4},
index− 6 succ− {4}

〉

The symmetric constraint holds since theNODES collection depicts a symmetric
graph.

Typical |NODES| > 2

Symmetry Items ofNODES arepermutable.

Algorithm The filtering algorithm for thesymmetric constraint is given in [131, page 87]. It removes
(respectively imposes) the arcs(i, j) for which the arc(j, i) is not present (respectively is
present). It has an overall complexity ofO(n+m) wheren andm respectively denote the
number of vertices and the number of arcs of the initial graph.

See also common keyword:connected (symmetric).

used in graph description:in set.

Keywords constraint arguments:constraint involving set variables.

constraint type: graph constraint.

final graph structure: symmetric.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20060930 1853

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) in set(nodes2.index, nodes1.succ)

Graph class SYMMETRIC

Graph model Part (A) of Figure5.604shows the initial graph from which we start. It is derived from
the set associated with each vertex. Each set describes the potential values of thesucc
attribute of a given vertex. Part (B) of Figure5.604gives the final graph associated with
theExampleslot.

NODES

1:1,{1,2,3,4}

2:2,{1,3}

3:3,{1,2}

4:4,{1,5,6}

5:5,{4,6}

6:6,{4}

1:1,{1,2,3}

2:2,{1,3}

3:3,{1,2}

4:4,{5,6}

5:5,{4} 6:6,{4}

(A) (B)

Figure 5.604: Initial and final graph of thesymmetric set constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1854 NARC,CLIQUE(6=)

5.356 symmetricalldifferent

DESCRIPTION LINKS GRAPH

Origin [325]

Constraint symmetric alldifferent(NODES)

Synonyms symmetric alldiff, symmetric alldistinct, symm alldifferent,
symm alldiff, symm alldistinct, one factor, two cycle.

Argument NODES : collection(index−int, succ−dvar)

Restrictions |NODES|mod 2 = 0
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

All variables associated with thesucc attribute of theNODES collection should be pair-
wise distinct. In addition enforce the following condition: if variableNODES[i].succ
takes valuej then variableNODES[j].succ takes valuei. This can be interpreted as a
graph-covering problem where one has to cover a digraphG with circuits of length two
in such a way that each vertex ofG belongs to one singlecircuit.

Example

〈
index− 1 succ− 3,
index− 2 succ− 4,
index− 3 succ− 1,
index− 4 succ− 2

〉

Thesymmetric alldifferent constraint holds since:

• NODES[1].succ = 3 ⇔ NODES[3].succ = 1,

• NODES[2].succ = 4 ⇔ NODES[4].succ = 2.

Typical |NODES| ≥ 4

Symmetry Items ofNODES arepermutable.

Usage As it was reported in [325, page 420], this constraint is useful to express matches between
persons or between teams. Thesymmetric alldifferentconstraint also appears implic-
itly in the cycle cover problemand corresponds to the four conditions given in section 1
Modeling the Cycle Cover Problemof [288].

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Usage
Typical usage of the constraint.

20000128 1855

Remark This constraint is referenced under the nameone factor in [194] as well as in [384]. From
a modelling point of view this constraint can be expressed with thecycle constraint [39]
where one imposes the additional condition that eachcyclehas only two nodes.

Algorithm A filtering algorithm for thesymmetric alldifferent constraint was proposed by
J.-C. Ŕegin in [325]. It achievesarc-consistencyand its running time is dominated by the
complexity of finding all edges that do not belong to any maximum cardinalitymatching
in an undirectedn-vertex,m-edge graph, i.e.,O(m · n).

Reformulation Thesymmetric alldifferent(NODES) constraint can be expressed in term of a conjunc-
tion of |NODES|2 reified constraints of the formNODES[i].succ = j ⇔ NODES[j].succ = i
(1 ≤ i, j ≤ |NODES|). Thesymmetric alldifferent constraint can also be reformu-
lated as aninverse constraint as shown below:

symmetric alldifferent

〈

index− 1 succ− s1,
index− 2 succ− s2,
...

...
index− n succ− sn

〉

inverse

〈

index− 1 succ− s1 pred− s1,
index− 2 succ− s2 pred− s2,
...

...
...

index− n succ− sn pred− sn

〉

See also common keyword:alldifferent, cycle, inverse (permutation).

implies: symmetric alldifferent except 0.

implies (items to collection):lex alldifferent.

related: roots.

Keywords application area: sport timetabling.

characteristic of a constraint: all different, disequality.

combinatorial object: permutation, matching.

constraint type: graph constraint, timetabling constraint, graph partitioning constraint.

filtering: arc-consistency.

final graph structure: circuit.

modelling: cycle.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1856 NARC,CLIQUE(6=)

Arc input(s) NODES

Arc generator CLIQUE (6=) 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • nodes1.succ = nodes2.index
• nodes2.succ = nodes1.index

Graph property(ies) NARC= |NODES|

Graph model In order to express the binary constraint that links two vertices one has tomake explicit the
identifier of the vertices.

Parts (A) and (B) of Figure5.605respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

NODES

1

2

3

4

NARC=4

1:1,3

3:3,1

2:2,4

4:4,2

(A) (B)

Figure 5.605: Initial and final graph of thesymmetric alldifferent constraint

Signature Since all theindex attributes of theNODES collection are distinct, and because of the first
conditionnodes1.succ = nodes2.index of the arc constraint, each vertex of the final
graph has at most one successor. Therefore the maximum number of arcs of the final graph
is equal to the maximum number of vertices|NODES| of the final graph. So we can rewrite
NARC = |NODES| toNARC ≥ |NODES| and simplifyNARC toNARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20000128 1857

1858 PREDEFINED

5.357 symmetricalldifferent except0

DESCRIPTION LINKS

Origin Derived fromsymmetric alldifferent

Constraint symmetric alldifferent except 0(NODES)

Synonyms symmetric alldiff except 0, symmetric alldistinct except 0,
symm alldifferent except 0, symm alldiff except 0,
symm alldistinct except 0.

Argument NODES : collection(index−int, succ−dvar)

Restrictions required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 0
NODES.succ ≤ |NODES|

Purpose

Enforce the following three conditions:

1. ∀i ∈ [1, |NODES|], ∀j ∈ [1, |NODES|], (j 6= i): NODES[i].succ = 0 ∨
NODES[j].succ = 0 ∨ NODES[i].succ 6= NODES[j].succ.

2. ∀i ∈ [1, |NODES|] : NODES[i].succ 6= i.

3. NODES[i].succ = j ∧ j 6= i ∧ j 6= 0 ⇔ NODES[j].succ = i ∧ i 6= j ∧ i 6= 0.

Example

〈
index− 1 succ− 3,
index− 2 succ− 0,
index− 3 succ− 1,
index− 4 succ− 0

〉

Thesymmetric alldifferent except 0 constraint holds since:

• NODES[1].succ = 3 ⇔ NODES[3].succ = 1,

• NODES[2].succ = 0 and value2 is not assigned to any variable.

• NODES[4].succ = 0 and value4 is not assigned to any variable.

Given3 successor variables that have to be assigned a value in interval[0, 3], the solutions
of thesymmetric alldifferent except 0 (〈index− 1 succ− s1, index− 2 succ−
s2, index− 3 succ− s3〉) constraint are〈1 0, 2 0, 3 0〉, 〈1 0, 2 3, 3 2〉, 〈1 2, 2 1, 3 0〉, and
〈1 3, 2 0, 3 1〉.
Given4 successor variables that have to be assigned a value in interval[0, 3], the solutions
of thesymmetric alldifferent except 0 (〈index− 1 succ− s1, index− 2 succ−
s2, index − 3 succ − s3, index − 4 succ − s4〉) constraint are〈1 0, 2 0, 3 0, 4 0〉,
〈1 0, 2 0, 3 4, 4 3〉, 〈1 0, 2 3, 3 2, 4 0〉, 〈1 0, 2 4, 3 0, 4 2〉, 〈1 2, 2 1, 3 0, 4 0〉,
〈1 2, 2 1, 3 4, 4 3〉, 〈1 3, 2 0, 3 1, 4 0〉, 〈1 3, 2 4, 3 1, 4 2〉, 〈1 4, 2 0, 3 0, 4 1〉,
〈1 4, 2 3, 3 2, 4 1〉.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20120208 1859

Typical |NODES| ≥ 4
minval(NODES.succ) = 0

Symmetry Items ofNODES arepermutable.

Usage Within the context of sport scheduling,NODES[i].succ = j (i 6= 0, j 6= 0, i 6= j) is
interpreted as the fact that teami plays against teamj, while NODES[i].succ = 0 (i 6= 0)
is interpreted as the fact that teami does not play at all.

See also implied by: symmetric alldifferent.

Keywords application area: sport timetabling.

characteristic of a constraint: joker value.

constraint type: predefined constraint, timetabling constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Usage
Typical usage of the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1860 NARC,PRODUCT

5.358 symmetriccardinality

DESCRIPTION LINKS GRAPH

Origin Derived fromglobal cardinality by W. Kocjan.

Constraint symmetric cardinality(VARS, VALS)

Arguments VARS : collection(idvar−int, var−svar, l−int, u−int)
VALS : collection(idval−int, val−svar, l−int, u−int)

Restrictions required(VARS, [idvar, var, l, u])
|VARS| ≥ 1
VARS.idvar ≥ 1
VARS.idvar ≤ |VARS|
distinct(VARS, idvar)
VARS.l ≥ 0
VARS.l ≤ VARS.u
VARS.u ≤ |VALS|
required(VALS, [idval, val, l, u])
|VALS| ≥ 1
VALS.idval ≥ 1
VALS.idval ≤ |VALS|
distinct(VALS, idval)
VALS.l ≥ 0
VALS.l ≤ VALS.u
VALS.u ≤ |VARS|

Purpose
Put in relation two sets: for each element of one set gives the corresponding elements of
the other set to which it is associated. In addition, it constraints the number of elements
associated with each element to be in a given interval.

Example

〈
idvar− 1 var− {3} l− 0 u− 1,
idvar− 2 var− {1} l− 1 u− 2,
idvar− 3 var− {1, 2} l− 1 u− 2,
idvar− 4 var− {1, 3} l− 2 u− 3

〉

,

〈
idval− 1 val− {2, 3, 4} l− 3 u− 4,
idval− 2 val− {3} l− 1 u− 1,
idval− 3 val− {1, 4} l− 1 u− 2,
idval− 4 val− ∅ l− 0 u− 1

〉

Thesymmetric cardinality constraint holds since:

• 3 ∈ VARS[1].var ⇔ 1 ∈ VALS[3].val,

• 1 ∈ VARS[2].var ⇔ 2 ∈ VALS[1].val,

• 1 ∈ VARS[3].var ⇔ 3 ∈ VALS[1].val,

• 2 ∈ VARS[3].var ⇔ 3 ∈ VALS[2].val,

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20040530 1861

• 1 ∈ VARS[4].var ⇔ 4 ∈ VALS[1].val,

• 3 ∈ VARS[4].var ⇔ 4 ∈ VALS[3].val,

• The number of elements ofVARS[1].var = {3} belongs to interval[0, 1],

• The number of elements ofVARS[2].var = {1} belongs to interval[1, 2],

• The number of elements ofVARS[3].var = {1, 2} belongs to interval[1, 2],

• The number of elements ofVARS[4].var = {1, 3} belongs to interval[2, 3],

• The number of elements ofVALS[1].val = {2, 3, 4} belongs to interval[3, 4],

• The number of elements ofVALS[2].val = {3} belongs to interval[1, 1],

• The number of elements ofVALS[3].val = {1, 4} belongs to interval[1, 2],

• The number of elements ofVALS[4].val = ∅ belongs to interval[0, 1].

Typical |VARS| > 1
|VALS| > 1

Symmetries • Items ofVARS arepermutable.

• Items ofVALS arepermutable.

Usage The most simple example of applyingsymmetric gcc is a variant of personnelassignment
problem, where one person can be assigned to perform betweenn andm (n ≤ m) jobs,
and every job requires betweenp andq (p ≤ q) persons. In addition every job requires
different kind of skills. The previous problem can be modelled as follows:

• For each person we create an item of theVARS collection,

• For each job we create an item of theVALS collection,

• There is an arc between a person and the particular job if this person is qualified to
perform it.

Remark The symmetric gcc constraint generalises theglobal cardinality constraint by al-
lowing a variable to take more than one value.

Algorithm A flow-basedarc-consistencyalgorithm for thesymmetric cardinality constraint is
described in [223].

See also common keyword:link set to booleans (constraint involving set variables).

generalisation:symmetric gcc (fixed interval replaced byvariable).

root concept:global cardinality.

used in graph description:in set.

Keywords application area: assignment.

combinatorial object: relation.

constraint arguments:constraint involving set variables.

constraint type: decomposition, timetabling constraint.

filtering: flow.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1862 NARC,PRODUCT

Arc input(s) VARS VALS

Arc generator PRODUCT 7→collection(vars, vals)

Arc arity 2

Arc constraint(s) • in set(vars.idvar, vals.val) ⇔in set(vals.idval, vars.var)
• vars.l ≤ card set(vars.var)
• vars.u ≥ card set(vars.var)
• vals.l ≤ card set(vals.val)
• vals.u ≥ card set(vals.val)

Graph property(ies) NARC= |VARS| ∗ |VALS|

Graph model The graph model used for thesymmetric cardinality is similar to the one used in the
domain constraint or in thelink set to booleans constraints: we use an equiva-
lence in the arc constraint and ask all arc constraints to hold.

Parts (A) and (B) of Figure5.606respectively show the initial and final graph associated
with theExample slot. Since we use theNARC graph property, all the arcs of the final
graph are stressed in bold.

VARS

VALS

1

1234

234

NARC=16

1:1,{3},0,1

1:1,{2,3,4},3,4 2:2,{3},1,13:3,{1,4},1,2 4:4,{},0,1

2:2,{1},1,23:3,{1,2},1,2 4:4,{1,3},2,3

(A) (B)

Figure 5.606: Initial and final graph of thesymmetric cardinality constraint

Signature Since we use thePRODUCT arc generator on the collectionsVARS andVALS, the number
of arcs of the initial graph is equal to|VARS| · |VALS|. Therefore the maximum number
of arcs of the final graph is also equal to|VARS| · |VALS| and we can rewriteNARC =
|VARS| · |VALS| to NARC ≥ |VARS| · |VALS|. So we can simplifyNARC toNARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20040530 1863

1864 NARC,PRODUCT

5.359 symmetricgcc

DESCRIPTION LINKS GRAPH

Origin Derived fromglobal cardinality by W. Kocjan.

Constraint symmetric gcc(VARS, VALS)

Synonym sgcc.

Arguments VARS : collection(idvar−int, var−svar, nocc−dvar)
VALS : collection(idval−int, val−svar, nocc−dvar)

Restrictions required(VARS, [idvar, var, nocc])
|VARS| ≥ 1
VARS.idvar ≥ 1
VARS.idvar ≤ |VARS|
distinct(VARS, idvar)
VARS.nocc ≥ 0
VARS.nocc ≤ |VALS|
required(VALS, [idval, val, nocc])
|VALS| ≥ 1
VALS.idval ≥ 1
VALS.idval ≤ |VALS|
distinct(VALS, idval)
VALS.nocc ≥ 0
VALS.nocc ≤ |VARS|

Purpose
Put in relation two sets: for each element of one set gives the corresponding elements of
the other set to which it is associated. In addition, enforce a cardinality constraint on the
number of occurrences of each value.

Example

〈
idvar− 1 var− {3} nocc− 1,
idvar− 2 var− {1} nocc− 1,
idvar− 3 var− {1, 2} nocc− 2,
idvar− 4 var− {1, 3} nocc− 2

〉

,

〈
idval− 1 val− {2, 3, 4} nocc− 3,
idval− 2 val− {3} nocc− 1,
idval− 3 val− {1, 4} nocc− 2,
idval− 4 val− ∅ nocc− 0

〉

Thesymmetric gcc constraint holds since:

• 3 ∈ VARS[1].var ⇔ 1 ∈ VALS[3].val,

• 1 ∈ VARS[2].var ⇔ 2 ∈ VALS[1].val,

• 1 ∈ VARS[3].var ⇔ 3 ∈ VALS[1].val,

• 2 ∈ VARS[3].var ⇔ 3 ∈ VALS[2].val,

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20030820 1865

• 1 ∈ VARS[4].var ⇔ 4 ∈ VALS[1].val,

• 3 ∈ VARS[4].var ⇔ 4 ∈ VALS[3].val,

• The number of elements ofVARS[1].var = {3} is equal to1,

• The number of elements ofVARS[2].var = {1} is equal to1,

• The number of elements ofVARS[3].var = {1, 2} is equal to2,

• The number of elements ofVARS[4].var = {1, 3} is equal to2,

• The number of elements ofVALS[1].val = {2, 3, 4} is equal to3,

• The number of elements ofVALS[2].val = {3} is equal to1,

• The number of elements ofVALS[3].val = {1, 4} is equal to2,

• The number of elements ofVALS[4].val = ∅ is equal to0.

Typical |VARS| > 1
|VALS| > 1

Symmetries • Items ofVARS arepermutable.

• Items ofVALS arepermutable.

Usage The most simple example of applyingsymmetric gcc is a variant of personnelassignment
problem, where one person can be assigned to perform betweenn andm (n ≤ m) jobs,
and every job requires betweenp andq (p ≤ q) persons. In addition every job requires
different kind of skills. The previous problem can be modelled as follows:

• For each person we create an item of theVARS collection,

• For each job we create an item of theVALS collection,

• There is an arc between a person and the particular job if this person is qualified to
perform it.

Remark The symmetric gcc constraint generalises theglobal cardinality constraint by al-
lowing a variable to take more than one value. It corresponds to a variantof the
symmetric cardinality constraint described in [223] where the occurrence variables
of theVARS andVALS collections are replaced by fixed intervals.

See also common keyword:link set to booleans (constraint involving set variables).

root concept:global cardinality.

specialisation:symmetric cardinality (variable replaced byfixed interval).

used in graph description:in set.

Keywords application area: assignment.

combinatorial object: relation.

constraint arguments:constraint involving set variables.

constraint type: decomposition, timetabling constraint.

filtering: flow.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1866 NARC,PRODUCT

Arc input(s) VARS VALS

Arc generator PRODUCT 7→collection(vars, vals)

Arc arity 2

Arc constraint(s) • in set(vars.idvar, vals.val) ⇔in set(vals.idval, vars.var)
• vars.nocc = card set(vars.var)
• vals.nocc = card set(vals.val)

Graph property(ies) NARC= |VARS| ∗ |VALS|

Graph model The graph model used for thesymmetric gcc is similar to the one used in the
domain constraint or in thelink set to booleans constraints: we use an equiva-
lence in the arc constraint and ask all arc constraints to hold.

Parts (A) and (B) of Figure5.607respectively show the initial and final graph. Since we
use theNARC graph property, all the arcs of the final graph are stressed in bold.

VARS

VALS

1

1234

234

NARC=16

1:1,{3},1

1:1,{2,3,4},3 2:2,{3},13:3,{1,4},2 4:4,{},0

2:2,{1},13:3,{1,2},2 4:4,{1,3},2

(A) (B)

Figure 5.607: Initial and final graph of thesymmetric gcc constraint

Signature Since we use thePRODUCT arc generator on the collectionsVARS andVALS, the number
of arcs of the initial graph is equal to|VARS| · |VALS|. Therefore the maximum number
of arcs of the final graph is also equal to|VARS| · |VALS| and we can rewriteNARC =
|VARS| · |VALS| to NARC ≥ |VARS| · |VALS|. So we can simplifyNARC toNARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1867

1868 MAX ID,NCC,NVERTEX,CLIQUE

5.360 temporalpath

DESCRIPTION LINKS GRAPH

Origin ILOG

Constraint temporal path(NPATH, NODES)

Arguments NPATH : dvar

NODES : collection(index−int, succ−dvar, start−dvar, end−dvar)

Restrictions NPATH ≥ 1
NPATH ≤ |NODES|
required(NODES, [index, succ, start, end])
|NODES| > 0
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|
NODES.start ≤ NODES.end

Purpose

LetG be the digraph described by theNODES collection. PartitionG with a set of disjoint
paths such that each vertex of the graph belongs to a single path. In addition, for all pairs
of consecutive vertices of a path we have a precedence constraint that enforces the end
associated with the first vertex to be less than or equal to the start related to the second
vertex.

Example

2,

〈

index− 1 succ− 2 start− 0 end− 1,
index− 2 succ− 6 start− 3 end− 5,
index− 3 succ− 4 start− 0 end− 3,
index− 4 succ− 5 start− 4 end− 6,
index− 5 succ− 7 start− 7 end− 8,
index− 6 succ− 6 start− 7 end− 9,
index− 7 succ− 7 start− 9 end− 10

〉

Thetemporal path constraint holds since:

• The items of theNODES collection represent the two (NPATH = 2) paths1 → 2 → 6
and3 → 4 → 5 → 7.

• As illustrated by Figure5.608, all precedences between adjacent vertices of a same
path hold: each itemi (1 ≤ i ≤ 7) of the NODES collection is represented by a
rectangle starting and ending at instantsNODES[i].start andNODES[i].end; the num-
ber within each rectangle designates the index of the corresponding item within the
NODES collection.

Typical NPATH < |NODES|
|NODES| > 1
NODES.start < NODES.end

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20000128 1869

Symmetries • Items ofNODES arepermutable.

• One and the same constant can beaddedto thestart andend attributes of all
items ofNODES.

Arg. properties
Functional dependency: NPATH determined byNODES.

Remark This constraint is related to thepath constraint ofIlog Solver. It can also be directly
expressed with thecycle [39] constraint ofCHIP by using thediff nodesand the origin
parameters. A generic model based on linear programming that handles paths, trees and
cycles is presented in [226].

Reformulation Thetemporal path(NPATH, NODES) constraint can be expressed in term of a conjunction
of onepath constraint,|NODES| element constraints, and|NODES| inequalities constraints:

• We pass to thepath constraint the number of path variableNPATH as well as the
items of theNODES collection form which we remove thestart andend attributes.

• To thei-th (1 ≤ i ≤ |NODES|) item of theNODES collection, we create a variable
Startsucci and an element(NODES[i].succ, 〈Ti,1, Ti,2, . . . , Ti,NODES〉,Startsucci)
constraint, whereTi,j = NODES[i].start if i 6= j andTi,i = NODES[i].end oth-
erwise.

• Finaly to thei-th (1 ≤ i ≤ |NODES|) item of theNODES collection, we also create an
inequality constraintNODES[i].end ≤ Startsucci . Note that, sinceTi,i was initialised
to NODES[i].end, the inequalityNODES[i].end ≤ Ti,j holds wheni = j.

With respect to theExampleslot we get the following conjunction of constraints:
path(2, 〈index− 1 succ− 2, index− 2 succ− 6, index− 3 succ− 4,

index− 4 succ− 5, index− 5 succ− 7, index− 6 succ− 6,
index− 7 succ− 7〉),

element(2, 〈1, 3, 0, 4, 7, 7, 9〉, 3),
element(6, 〈1, 5, 0, 4, 7, 7, 9〉, 7),
element(4, 〈1, 5, 3, 4, 7, 7, 9〉, 4),
element(5, 〈1, 5, 3, 6, 7, 7, 9〉, 7),
element(7, 〈1, 5, 3, 6, 8, 7, 9〉, 9),
element(6, 〈1, 5, 3, 6, 8, 9, 9〉, 9),
element(7, 〈1, 5, 3, 6, 8, 9, 10〉, 10),
1 ≤ 3, 5 ≤ 7, 3 ≤ 4, 6 ≤ 7, 8 ≤ 9, 9 ≤ 9, 10 ≤ 10.

time
6 7 9 10

time
6 7 8 9 10

8

3

1

2 4 5

2

3

7

2 4 5

0

3

6

1

5

10

4

Figure 5.608: The two paths of theExample slot represented as two sequences of
rectangles

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.ilog.com
http://www.cosytec.com

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

1870 MAX ID,NCC,NVERTEX,CLIQUE

See also common keyword:path from to (path).

implies (items to collection):atleast nvector.

specialisation:path (time dimension removed).

Keywords combinatorial object: path.

constraint type: graph constraint, graph partitioning constraint.

final graph structure: connected component.

modelling: sequence dependent set-up, functional dependency.

modelling exercises:sequence dependent set-up.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20000128 1871

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • nodes1.succ = nodes2.index
• nodes1.succ = nodes1.index ∨ nodes1.end ≤ nodes2.start
• nodes1.start ≤ nodes1.end
• nodes2.start ≤ nodes2.end

Graph property(ies) • MAX ID≤ 1
• NCC= NPATH

• NVERTEX= |NODES|

Graph model The arc constraint is a conjunction of four conditions that respectively correspond to:

• A constraint that links the successor variable of a first vertex to the indexattribute of
a second vertex,

• A precedence constraint that applies on one vertex and its distinct successor,

• One precedence constraint between the start and the end of the vertex that corre-
sponds to the departure of an arc,

• One precedence constraint between the start and the end of the vertex that corre-
sponds to the arrival of an arc.

We use the following three graph properties in order to enforce the partitioning of the graph
in distinct paths:

• The first propertyMAX ID≤ 1 enforces that each vertex has no more than one
predecessor (MAX ID does not consider loops),

• The second propertyNCC= NPATH ensures that we have the required number of
paths,

• The third propertyNVERTEX= |NODES| enforces that, for each vertex, the start
is not located after the end.

Parts (A) and (B) of Figure5.609respectively show the initial and final graph associated
with the Example slot. Since we use theMAX ID, theNCC and theNVERTEX

graph properties we display the following information on the final graph:

• We show with a double circle a vertex that has the maximum number of predecessors.

• We show the twoconnected componentscorresponding to the two paths.

• We put in bold the vertices.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1872 MAX ID,NCC,NVERTEX,CLIQUE

NODES

1

2

3

4

5

6

7

MAX_ID=1,NCC=2,NVERTEX=7

CC#1 CC#2

1:1,2,0,1

2:2,6,3,5

6:6,6,7,9

3:3,4,0,3

4:4,5,4,6

5:5,7,7,8

7:7,7,9,10

(A) (B)

Figure 5.609: Initial and final graph of thetemporal path constraint

20000128 1873

1874NARC,CLIQUE(6=);MAX ID,MAX OD,MIN ID,MIN NSCC,MIN OD,CLIQUE (6=)

5.361 tour

DESCRIPTION LINKS GRAPH

Origin [4]

Constraint tour(NODES)

Synonyms atour, cycle.

Argument NODES : collection(index−int, succ−svar)

Restrictions |NODES| ≥ 3
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)

Purpose
Enforce to cover an undirected graphG described by theNODES collection with a Hamil-
tonian cycle.

Example

〈
index− 1 succ− {2, 4},
index− 2 succ− {1, 3},
index− 3 succ− {2, 4},
index− 4 succ− {1, 3}

〉

The tour constraint holds since itsNODES argument depicts the following Hamilto-
nian cycle visiting successively the vertices1, 2, 3 and4.

Symmetry Items ofNODES arepermutable.

Algorithm When the number of vertices is odd (i.e.,|NODES| is odd) a necessary condition is to have a
bipartite graph (see theAlgorithm slot of thebipartite constraint).

See also common keyword: circuit (graph partitioning constraint,Hamiltonian),
cycle (graph constraint), link set to booleans (constraint involving set variables).

used in graph description:in set.

Keywords characteristic of a constraint: undirected graph.

constraint arguments:constraint involving set variables.

constraint type: graph constraint.

filtering: linear programming.

problems: Hamiltonian.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 1875

Arc input(s) NODES

Arc generator CLIQUE(6=) 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) in set(nodes2.index, nodes1.succ) ⇔
in set(nodes1.index, nodes2.succ)

Graph property(ies) NARC= |NODES| ∗ |NODES| − |NODES|

Arc input(s) NODES

Arc generator CLIQUE(6=) 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) in set(nodes2.index, nodes1.succ)

Graph property(ies) • MIN NSCC= |NODES|
• MIN ID= 2
• MAX ID= 2
• MIN OD= 2
• MAX OD= 2

Graph model The first graph property enforces the subsequent condition: If we have an arc from theith

vertex to thejth vertex then we have also an arc from thejth vertex to theith vertex. The
second graph property enforces the following constraints:

• We have one strongly connected component containing|NODES| vertices,

• Each vertex has exactly two predecessors and two successors.

Part (A) of Figure5.610shows the initial graph from which we start. It is derived from the
set associated with each vertex. Each set describes the potential valuesof thesucc attribute
of a given vertex. Part (B) of Figure5.610gives the final graph associated with theEx-
ample slot. Thetour constraint holds since the final graph corresponds to a Hamiltonian
cycle.

Signature Since the maximum number of vertices of the final graph is equal to|NODES|, we can rewrite
the graph propertyMIN NSCC = |NODES| to MIN NSCC ≥ |NODES| and simplify
MIN NSCC toMIN NSCC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

1876NARC,CLIQUE(6=);MAX ID,MAX OD,MIN ID,MIN NSCC,MIN OD,CLIQUE (6=)

NODES

1:1,{2,3,4}

2:2,{1,3,4}

3:3,{1,2,4}

4:4,{1,2,3}

MIN_NSCC=4
MIN_ID=2

MAX_ID =2
MIN_OD=2
MAX_OD=2

MIN_NSCC

1:1,{2,4}

2:2,{1,3}

4:4,{1,3}

3:3,{2,4}

(A) (B)

Figure 5.610: Initial and final graph of thetour set constraint

20030820 1877

1878 NARC,SELF ;PRODUCT , SUCC

5.362 track

DESCRIPTION LINKS GRAPH

Origin [255]

Constraint track(NTRAIL, TASKS)

Arguments NTRAIL : int

TASKS : collection(trail−int, origin−dvar, end−dvar)

Restrictions NTRAIL > 0
NTRAIL ≤ |TASKS|
required(TASKS, [trail, origin, end])
TASKS.origin ≤ TASKS.end

Purpose
Thetrack constraint enforces that, at each point in time overlapped by at least one task,
the number of distinct values of thetrail attribute of the set of tasks that overlap that
point, is equal toNTRAIL.

Example

2,

〈

trail− 1 origin− 1 end− 2,
trail− 2 origin− 1 end− 2,
trail− 1 origin− 2 end− 4,
trail− 2 origin− 2 end− 3,
trail− 2 origin− 3 end− 4

〉

Figure 5.611 represents the tasks of the example: to theith task of the TASKS

collection corresponds a rectangle labelled byi. Thetrack constraint holds since:

• The first and second tasks both overlap instant1 and have a respective trail of1 and
2. This makes two distinct values for the trail attribute at instant1.

• The third and fourth tasks both overlap instant2 and have a respective trail of1 and
2. This makes two distinct values for the trail attribute at instant2.

• The third and fifth tasks both overlap instant3 and have a respective trail of1 and2.
This makes two distinct values for the trail attribute at instant3.

time

tr
ai

l

40 3

1

2

1 3

2 4 5

1 2 5

Figure 5.611: Tasks associated with the example of theExample slot

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20030820 1879

Typical NTRAIL < |TASKS|
|TASKS| > 1
range(TASKS.trail) > 1
TASKS.origin < TASKS.end

Symmetries • Items ofTASKS arepermutable.

• All occurrences of two distinct values ofTASKS.trail can beswapped; all occur-
rences of a value ofTASKS.trail can berenamedto any unused value.

• One and the same constant can beaddedto theorigin andend attributes of all
items ofTASKS.

Reformulation The track constraint can be expressed in term of a set of reified constraints and of 2 ·
|TASKS| nvalue constraints:

1. For each pair of tasksTASKS[i], TASKS[j] (i, j ∈ [1, |TASKS|]) of theTASKS collec-
tion we create a variableT origin

ij which is set to thetrail attribute of taskTASKS[j]
if task TASKS[j] overlaps the origin attribute of taskTASKS[i], and to thetrail at-
tribute of taskTASKS[i] otherwise:

• If i = j:

– T origin

ij = TASKS[i].trail.

• If i 6= j:

– T origin

ij = TASKS[i].trail ∨ T origin

ij = TASKS[j].trail.

– ((TASKS[j].origin ≤ TASKS[i].origin ∧
TASKS[j].end > TASKS[i].origin) ∧ (T origin

ij = TASKS[j].trail)) ∨
((TASKS[j].origin > TASKS[i].origin ∨
TASKS[j].end ≤ TASKS[i].origin) ∧ (T origin

ij = TASKS[i].trail))

2. For each taskTASKS[i] (i ∈ [1, |TASKS|]) we impose the number of distinct trails
associated with the tasks that overlap the origin of taskTASKS[i] (TASKS[i] overlaps
its own origin) to be equal toNTRAIL:
nvalue(NTRAIL, 〈T origin

i1 , T origin

i2 , . . . , T origin

i|TASKS|〉).
3. For each pair of tasksTASKS[i], TASKS[j] (i, j ∈ [1, |TASKS|]) of theTASKS collec-

tion we create a variableT end
ij which is set to thetrail attribute of taskTASKS[j] if

taskTASKS[j] overlaps the end attribute of taskTASKS[i], and to thetrail attribute
of taskTASKS[i] otherwise:

• If i = j:

– T end
ij = TASKS[i].trail.

• If i 6= j:

– T end
ij = TASKS[i].trail ∨ T end

ij = TASKS[j].trail.

– ((TASKS[j].origin ≤ TASKS[i].end− 1 ∧
TASKS[j].end > TASKS[i].end− 1) ∧ (T end

ij = TASKS[j].trail)) ∨
((TASKS[j].origin > TASKS[i].end− 1 ∨
TASKS[j].end ≤ TASKS[i].end− 1) ∧ (T end

ij = TASKS[i].trail))

4. For each taskTASKS[i] (i ∈ [1, |TASKS|]) we impose the number of distinct trails
associated with the tasks that overlap the end of taskTASKS[i] (TASKS[i] overlaps its
own end) to be equal toNTRAIL:
nvalue(NTRAIL, 〈T end

i1 , T end
i2 , . . . , T end

i|TASKS|〉).

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

1880 NARC,SELF ;PRODUCT , SUCC

With respect to theExampleslot we get the following conjunction ofnvalue constraints:

• Thenvalue(2, 〈1, 2, 1, 1, 1〉) constraint corresponding to thetrail attributes of the
tasks that overlap the origin of the first task (i.e., instant1) that has a trail of1.

• Thenvalue(2, 〈1, 2, 2, 2, 2〉) constraint corresponding to thetrail attributes of the
tasks that overlap the origin of the second task (i.e., instant1) that has a trail of2.

• Thenvalue(2, 〈1, 1, 1, 2, 1〉) constraint corresponding to thetrail attributes of the
tasks that overlap the origin of the third task (i.e., instant2) that has a trail of1.

• Thenvalue(2, 〈2, 2, 1, 2, 2〉) constraint corresponding to thetrail attributes of the
tasks that overlap the origin of the fourth task (i.e., instant2) that has a trail of2.

• Thenvalue(2, 〈2, 2, 1, 2, 2〉) constraint corresponding to thetrail attributes of the
tasks that overlap the origin of the fifth task (i.e., instant3) that has a trail of2.

• Thenvalue(2, 〈1, 2, 1, 1, 1〉) constraint corresponding to thetrail attributes of the
tasks that overlap the last instant of the first task (i.e., instant1) that has a trail of1.

• Thenvalue(2, 〈1, 2, 2, 2, 2〉) constraint corresponding to thetrail attributes of the
tasks that overlap the last instant of the second task (i.e., instant1) that has a trail of
2.

• Thenvalue(2, 〈1, 1, 1, 1, 2〉) constraint corresponding to thetrail attributes of the
tasks that overlap the last instant of the third task (i.e., instant3) that has a trail of1.

• Thenvalue(2, 〈2, 2, 1, 2, 2〉) constraint corresponding to thetrail attributes of the
tasks that overlap the last instant of the fourth task (i.e., instant2) that has a trail of
2.

• Thenvalue(2, 〈2, 2, 1, 2, 2〉) constraint corresponding to thetrail attributes of the
tasks that overlap the last instant of the fifth task (i.e., instant3) that has a trail of2.

See also common keyword:coloured cumulative (resource constraint).

used in graph description:nvalue.

Keywords characteristic of a constraint: derived collection.

constraint type: timetabling constraint, resource constraint, temporal constraint.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 1881

Derived Collection

col

TIME POINTS−collection(origin−dvar, end−dvar, point−dvar),

item

origin− TASKS.origin,
end− TASKS.end,
point− TASKS.origin

 ,

item

origin− TASKS.origin,
end− TASKS.end,
point− TASKS.end− 1

Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin ≤ tasks.end

Graph property(ies) NARC= |TASKS|

Arc input(s) TIME POINTS TASKS

Arc generator PRODUCT 7→collection(time points, tasks)

Arc arity 2

Arc constraint(s) • time points.end > time points.origin
• tasks.origin ≤ time points.point
• time points.point < tasks.end

Sets SUCC 7→

source,

variables− col

(

VARIABLES−collection(var−dvar),
[item(var− TASKS.trail)]

)

Constraint(s) on sets nvalue(NTRAIL, variables)

Graph model Parts (A) and (B) of Figure5.612respectively show the initial and final graph of the second
graph constraint of theExampleslot.

Signature Consider the first graph constraint. Since we use theSELF arc generator on theTASKS
collection, the maximum number of arcs of the final graph is equal to|TASKS|. Therefore
we can rewriteNARC = |TASKS| to NARC ≥ |TASKS| and simplifyNARC to
NARC.

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

1882 NARC,SELF ;PRODUCT , SUCC

(A)

TIME_POINTS

TASKS

1

12 345

23456 78910

(B)

TIME_POINTS

TASKS

1:1,2,1

1:1,1,22:2,1,2

2:1,2,13:1,2,14:1,2,15:2,4,2

3:1,2,4 4:2,2,3

6:2,4,3

5:2,3,4

7:2,3,28:2,3,29:3,4,310:3,4,3

Figure 5.612: Initial and final graph of thetrack constraint

20030820 1883

1884 MAX NSCC,NCC,CLIQUE

5.363 tree

DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint tree(NTREES, NODES)

Arguments NTREES : dvar

NODES : collection(index−int, succ−dvar)

Restrictions NTREES ≥ 1
NTREES ≤ |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose
Cover a digraphG by a set of trees in such a way that each vertex ofG belongs to one
distinct tree. The edges of the trees are directed from their leaves to their respective
roots.

Example

2,

〈

index− 1 succ− 1,
index− 2 succ− 5,
index− 3 succ− 5,
index− 4 succ− 7,
index− 5 succ− 1,
index− 6 succ− 1,
index− 7 succ− 7,
index− 8 succ− 5

〉

The tree constraint holds since the graph associated with the items of theNODES

collection corresponds to two trees (i.e.,NTREES = 2): each tree respectively involves the
vertices{1, 2, 3, 5, 6, 8} and{4, 7}. They are depicted by Figure5.613.

2 8

1

5 6

3

7

4

Figure 5.613: The two trees associated with the example

Typical NTREES < |NODES|
|NODES| > 2

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20000128 1885

Symmetry Items ofNODES arepermutable.

Arg. properties
Functional dependency: NTREES determined byNODES.

Remark Given a complete digraph ofn vertices as well as an unrestricted number of treesNTREES,
the total number of solutions of the correspondingtree constraint corresponds to the se-
quenceA000272of the On-Line Encyclopedia of Integer Sequences [370].

Extension of thetree constraint to theminimum spanning treeconstraint is described
in [132, 329, 332].

Algorithm An arc-consistencyfiltering algorithm for thetree constraint is described in [40]. This
algorithm is based on a necessary and sufficient condition that we now depict.

To anytree constraint we associate the digraphG = (V,E), where:

• To each itemNODES[i] of theNODES collection corresponds a vertexvi of G.

• For every pair of items(NODES[i], NODES[j]) of theNODES collection, wherei andj
are not necessarily distinct, there is an arc fromvi to vj in E if j is a potential value
of NODES[i].succ.

A strongly connected componentC of G is called asink componentif all the successors
of all vertices ofC belong toC. Let MINTREES andMAXTREES respectively denote the
number of sink components ofG and the number of vertices ofG with a loop.

Thetree constraint has a solution if and only if:

• Each sink component ofG contains at least one vertex with a loop,

• The domain ofNTREES has at least one value within interval[MINTREES, MAXTREES].

Inspired by the idea of using dominators used in [205] for getting a linear time algo-
rithm for computingstrong articulation pointsof a digraphG, the worst case complexity
of the algorithm proposed in [40] was also enhanced in a similar way by J.-G. Fages and
X. Lorca [144].

Reformulation Thetree constraint can be expressed in term of (1) a set of|NODES|2 reified constraints
for avoiding circuit between more than one node and of (2)|NODES| reified constraints and
of one sum constraint for counting the trees:

1. For each vertexNODES[i] (i ∈ [1, |NODES|]) of the NODES collection we create a
variableRi that takes its value within interval[1, |NODES|]. This variable represents
the rank of vertexNODES[i] within a solution. It is used to prevent the creation of
circuit involving more than one vertex as explained now. For each pair ofvertices
NODES[i], NODES[j] (i, j ∈ [1, |NODES|]) of theNODES collection we create a reified
constraint of the formNODES[i].succ = NODES[j].index ∧ i 6= j ⇒ Ri < Rj .
The purpose of this constraint is to express the fact that, if there is an arcfrom vertex
NODES[i] to another vertexNODES[j], thenRi should be strictly less thanRj .

2. For each vertexNODES[i] (i ∈ [1, |NODES|]) of the NODES collection we cre-
ate a0-1 variableBi and state the following reified constraintNODES[i].succ =
NODES[i].index ⇔ Bi in order to force variableBi to be set to value1 if and
only if there is a loop on vertexNODES[i]. Finally we create a constraintNTREES =
B1 +B2 + . . .+B|NODES| for stating the fact that the number of trees is equal to the
number of loops of the graph.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://oeis.org/A000272

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

1886 MAX NSCC,NCC,CLIQUE

Systems tree in Choco.

See also common keyword: cycle, graph crossing, map (graph partitioning constraint),
proper forest (connected component,tree).

implied by: binary tree.

implies (items to collection):atleast nvector.

related: balance tree (counting number of trees versus controlling
how balanced the trees are), global cardinality low up no loop,
global cardinality no loop (can be used for restricting number of children
since discard loops associated with tree roots).

shift of concept:stable compatibility, tree range, tree resource.

specialisation:binary tree (no limit on the number of children replaced by at most two
children), path (no limit on the number of children replaced by at most one child).

uses in its reformulation: tree range, tree resource.

Keywords constraint type: graph constraint, graph partitioning constraint.

filtering: strong articulation point, arc-consistency.

final graph structure: connected component, tree, onesucc.

modelling: functional dependency.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20000128 1887

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • MAX NSCC≤ 1
• NCC= NTREES

Graph model We use the graph propertyMAX NSCC ≤ 1 in order to specify the fact that the size
of the largest strongly connected component should not exceed one.In fact each root of a
tree is a strongly connected component with one single vertex. The second graph property
NCC = NTREES enforces the number of trees to be equal to the number of connected
components.

Parts (A) and (B) of Figure5.614 respectively show the initial and final graph associ-
ated with theExample slot. Since we use theNCC graph property, we display the two
connected componentsof the final graph. Each of them corresponds to a tree. Thetree

constraint holds since all strongly connected components of the final graph have no more
than one vertex and sinceNTREES = NCC = 2.

NODES

1

2

3

4

5

6

7

8

MAX_NSCC=1,NCC=2

CC#1 CC#2

1:1,1

2:2,5

5:5,1

3:3,5

6:6,1

8:8,5 4:4,7

7:7,7

(A) (B)

Figure 5.614: Initial and final graph of thetree constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1888 MAX NSCC,NCC,RANGE DRG,CLIQUE

5.364 treerange

DESCRIPTION LINKS GRAPH

Origin Derived fromtree.

Constraint tree range(NTREES, R, NODES)

Arguments NTREES : dvar

R : dvar

NODES : collection(index−int, succ−dvar)

Restrictions NTREES ≥ 0
R ≥ 0
R < |NODES|
|NODES| > 0
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose
Cover the digraphG described by theNODES collection withNTREES trees in such a way
that each vertex ofG belongs to one distinct tree.R is the difference between the longest
and the shortest paths (from a leaf to a root) of the final graph.

Example

2, 1,

〈

index− 1 succ− 1,
index− 2 succ− 5,
index− 3 succ− 5,
index− 4 succ− 7,
index− 5 succ− 1,
index− 6 succ− 1,
index− 7 succ− 7,
index− 8 succ− 5

〉

The tree range constraint holds since the graph associated with the items of the
NODES collection corresponds to two trees (i.e.,NTREES = 2): each tree respectively
involves the vertices{1, 2, 3, 5, 6, 8} and{4, 7}. FurthermoreR = 1 is set to the difference
between the longest path (for instance2 → 5 → 1) and the shortest path (for instance
4 → 7) from a leaf to a root. Figure5.615provides the two trees associated with the
example.

Typical NTREES < |NODES|
|NODES| > 2

Symmetry Items ofNODES arepermutable.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

20030820 1889

Arg. properties
• Functional dependency: NTREES determined byNODES.

• Functional dependency: R determined byNODES.

Reformulation By introducing adistance variableDi, anoccurrence variableOi and aleave variableLi

(1 ≤ i ≤ |NODES|) for each itemi of theNODES collection, where:

• Di represents the number of vertices fromi to the root of the corresponding tree,

• Oi gives the number of occurrences of valuei within variables
NODES[1].succ, NODES[2].succ, . . . , NODES[n].succ,

• Li is set to1 if item i corresponds to a leave (i.e.,Oi > 0) and0 otherwise,

the tree range(NTREES, R, NODES) constraint can be expressed in term of a conjunc-
tion of onetree constraint,|NODES| element constraints,|NODES| linear constraints, one
global cardinality constraint,|NODES| reified constraints, oneopen minimum, one
maximum and one linear constraint, where:

• Thetree constraint models the fact that we have a forest ofNTREES trees.

• Eachelement constraint provides the link between the attributesucc of the i-th
item and the distance variableDNODES[i].succ associated with itemNODES[i].succ.

• Each linear constraint associated with thei-th item states that the difference between
the distance variableDi and the distance variableDNODES[i].succ is equal to1.

• The global cardinality constraint provides the number of oc-
currences Oi of value i (1 ≤ i ≤ |NODES|) within variables
NODES[1].succ, NODES[2].succ, . . . , NODES[|NODES|].succ. Note that, when
Oi is equal to0, the correspondingi-th item is a leave of one of theNTREES trees.

• Each reified constraint of the formLi ⇔ Oi > 0 makes the link between thei-th
occurrence variableOi and thei-th leave variableLi.

• Theopen minimum constraint computes the minimum distanceMIN from the leaves
to the corresponding roots. The leave variableLi is used in order to select only the
distance variables corresponding to leaves.

• Themaximum constraint computes the maximum distanceMAX from the vertices to
the roots. Since the maximum is achieved by a leave we do not need to focusjust on
the leaves as it was the case for the minimum distanceMIN.

• The linear constraintMAX− MIN = R links together argumentR to the minimum and
maximum distances.

With respect to theExampleslot we get the following conjunction of constraints:
tree(2, 〈index− 1 succ− 1, index− 2 succ− 5,

index− 3 succ− 5, index− 4 succ− 7,

2 8

1

5 6

3

7

4

Figure 5.615: The two trees associated with the example

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

1890 MAX NSCC,NCC,RANGE DRG,CLIQUE

index− 5 succ− 1, index− 6 succ− 1,
index− 7 succ− 7, index− 8 succ− 5〉),

domain(〈D1, D2, D3, D4, D5, D6, D7, D8〉, 0, 8),
DS1 ∈ [0, 8], element(1, 〈0, D2, D3, D4, D5, D6, D7, D8〉, DS1), D1 − 0 = 1,
DS2 ∈ [0, 8], element(5, 〈1, 0, D3, D4, D5, D6, D7, D8〉, DS2), D2 −D5 = 1,
DS3 ∈ [0, 8], element(5, 〈1, D2, 0, D4, D5, D6, D7, D8〉, DS3), D3 −D5 = 1,
DS4 ∈ [0, 8], element(7, 〈1, D2, D3, 0, D5, D6, D7, D8〉, DS4), D4 −D7 = 1,
DS5 ∈ [0, 8], element(1, 〈1, D2, D3, D4, 0, D6, D7, D8〉, DS5), D5 − 1 = 1,
DS6 ∈ [0, 8], element(1, 〈1, 3, 3, D4, 2, 0, D7, D8〉, DS6), D6 − 1 = 1,
DS7 ∈ [0, 8], element(7, 〈1, 3, 3, D4, 2, 2, 0, D8〉, DS7), D7 − 0 = 1,
DS8 ∈ [0, 8], element(5, 〈1, 3, 3, 2, 2, 2, 1, 0〉, DS8), D8 − 2 = 1,
global cardinality(〈1, 5, 5, 7, 1, 1, 7, 5〉, 〈val− 1 noccurrence− 3,

val− 2 noccurrence− 0,
val− 3 noccurrence− 0,
val− 4 noccurrence− 0,
val− 5 noccurrence− 3,
val− 6 noccurrence− 0,
val− 7 noccurrence− 2,
val− 8 noccurrence− 0〉),

1 ⇔ 3 > 0, 0 ⇔ 0 > 0, 0 ⇔ 0 > 0, 0 ⇔ 0 > 0,
1 ⇔ 3 > 0, 0 ⇔ 0 > 0, 1 ⇔ 2 > 0, 0 ⇔ 0 > 0,
open minimum(MIN, 〈var− 3 bool− 1, var− 0 bool− 0,

var− 0 bool− 0, var− 0 bool− 0,
var− 3 bool− 1, var− 0 bool− 0,
var− 2 bool− 1, var− 0 bool− 0〉),

maximum(MAX, 〈1, 3, 3, 2, 2, 2, 1, 3〉),
MAX− MIN = R = 1.

See also related: balance (balanced tree versus balanced assignment).

root concept:tree.

used in reformulation: domain, element, global cardinality, maximum,
open minimum, tree.

Keywords constraint type: graph constraint, graph partitioning constraint.

final graph structure: connected component, tree.

modelling: balanced tree, functional dependency.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 1891

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • MAX NSCC≤ 1
• NCC= NTREES

• RANGE DRG= R

Graph model Parts (A) and (B) of Figure5.616respectively show the initial and final graph associated
with theExample slot. Since we use theRANGE DRG graph property, we respectively dis-
play the longest and shortest paths of the final graph with a bold and a dash line.

NODES

1

2

3

4

5

6

7

8 MAX_NSCC=1,NCC=2
RANGE_DRG=2-1=1

CC#1 CC#2

1:1,1

2:2,5

5:5,1

3:3,5

6:6,1

8:8,5 4:4,7

7:7,7

(A) (B)

Figure 5.616: Initial and final graph of thetree range constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1892 MAX NSCC,NCC,NVERTEX,CLIQUE ;NVERTEX,CLIQUE , ∀

5.365 treeresource

DESCRIPTION LINKS GRAPH

Origin Derived fromtree.

Constraint tree resource(RESOURCE, TASK)

Arguments RESOURCE : collection(id−int, nb task−dvar)
TASK : collection(id−int, father−dvar, resource−dvar)

Restrictions |RESOURCE| > 0
required(RESOURCE, [id, nb task])
RESOURCE.id ≥ 1
RESOURCE.id ≤ |RESOURCE|
distinct(RESOURCE, id)
RESOURCE.nb task ≥ 0
RESOURCE.nb task ≤ |TASK|
required(TASK, [id, father, resource])
TASK.id > |RESOURCE|
TASK.id ≤ |RESOURCE|+ |TASK|
distinct(TASK, id)
TASK.father ≥ 1
TASK.father ≤ |RESOURCE|+ |TASK|
TASK.resource ≥ 1
TASK.resource ≤ |RESOURCE|

Purpose

Cover a digraphG in such a way that each vertex belongs to one distinct tree. Each
tree is made up from oneresourcevertex and severaltaskvertices. The resource ver-
tices correspond to the roots of the different trees. For each resource a domain variable
nb task indicates how many task-vertices belong to the corresponding tree. For each
task a domain variableresource gives the identifier of the resource that can handle the
task.

Example

〈id− 1 nb task− 4, id− 2 nb task− 0, id− 3 nb task− 1〉 ,

〈

id− 4 father− 8 resource− 1,
id− 5 father− 3 resource− 3,
id− 6 father− 8 resource− 1,
id− 7 father− 1 resource− 1,
id− 8 father− 1 resource− 1

〉

The tree resource constraint holds since the graph associated with the items of
the RESOURCE and theTASK collections corresponds to3 trees (i.e.,|RESOURCE| = 3):
each tree respectively involves the vertices{1, 4, 6, 7, 8}, {2} and {3, 5}. They are
depicted by Figure5.617, whereresourceand task vertices are respectively coloured in
blue and pink.

Typical |RESOURCE| > 0
|TASK| > |RESOURCE|

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20030820 1893

Symmetries • Items ofRESOURCE arepermutable.

• Items ofTASK arepermutable.

Reformulation Thetree resource(RESOURCE, TASK) constraint can be expressed in term of a conjunc-
tion of onetree constraint,|TASK| element constraints and oneglobal cardinality

constraint:

• Thetree constraint expresses the fact that we have a well formed tree.

• Theelement constraint is used for expressing the link between thefather attribute
of an item of theTASK collection and its correspondingresource attribute.

• Theglobal cardinality constraint is used to link theresource attribute of the
items of theTASK collection with thenb task attribute of the items of theRESOURCE
collection.

With respect to theExampleslot we get the following conjunction of constraints:
tree(3, 〈index− 1 succ− 1,

index− 2 succ− 2,
index− 3 succ− 3,
index− 4 succ− 8,
index− 5 succ− 3,
index− 6 succ− 8,
index− 7 succ− 1,
index− 8 succ− 1〉),

element(8, 〈1, 2, 3, 1, 3, 1, 1, 1〉, 1),
element(3, 〈1, 2, 3, 1, 3, 1, 1, 1〉, 3),
element(8, 〈1, 2, 3, 1, 3, 1, 1, 1〉, 1),
element(1, 〈1, 2, 3, 1, 3, 1, 1, 1〉, 1),
element(1, 〈1, 2, 3, 1, 3, 1, 1, 1〉, 1),
global cardinality(〈1, 3, 1, 1, 1〉,

〈val− 1 noccurrence− 4,
val− 2 noccurrence− 0,
val− 3 noccurrence− 1〉).

See also root concept:tree.

used in reformulation: element, global cardinality, tree.

Keywords characteristic of a constraint: derived collection.

constraint type: graph constraint, resource constraint, graph partitioning constraint.

final graph structure: tree, connected component.

5

4

87

1 2 3

6

Figure 5.617: The three trees associated with the example

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1894 MAX NSCC,NCC,NVERTEX,CLIQUE ;NVERTEX,CLIQUE , ∀

Derived Collection

col

RESOURCE TASK−collection(index−int, succ−dvar, name−dvar),

item

index− RESOURCE.id,
succ− RESOURCE.id,
name− RESOURCE.id

 ,

item

index− TASK.id,
succ− TASK.father,
name− TASK.resource

Arc input(s) RESOURCE TASK

Arc generator CLIQUE 7→collection(resource task1, resource task2)

Arc arity 2

Arc constraint(s) • resource task1.succ = resource task2.index
• resource task1.name = resource task2.name

Graph property(ies) • MAX NSCC≤ 1
• NCC= |RESOURCE|
• NVERTEX= |RESOURCE|+ |TASK|

For all items ofRESOURCE:

Arc input(s) RESOURCE TASK

Arc generator CLIQUE 7→collection(resource task1, resource task2)

Arc arity 2

Arc constraint(s) • resource task1.succ = resource task2.index
• resource task1.name = resource task2.name
• resource task1.name = RESOURCE.id

Graph property(ies) NVERTEX= RESOURCE.nb task+ 1

Graph model For the second graph constraint, part (A) of Figure5.618shows the initial graphs associated
with resources1, 2 and3 of theExample slot. For the second graph constraint, part (B)
of Figure5.618shows the corresponding final graphs associated with resources1, 2 and3.
Since we use theNVERTEX graph property, the vertices of the final graphs are stressed
in bold. To each resource corresponds a tree of respectively4, 0 and1 task-vertices.

Signature Since the initial graph of the first graph constraint contains|RESOURCE| + |TASK| ver-
tices, the corresponding final graph cannot have more than|RESOURCE| + |TASK| vertices.
Therefore we can rewrite the graph propertyNVERTEX = |RESOURCE| + |TASK| to
NVERTEX ≥ |RESOURCE|+ |TASK| and simplifyNVERTEX toNVERTEX.

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1895

RESOURCE_TASK

1

2

3

4

5

6

7

8
1:NVERTEX=5
2:NVERTEX=1
3:NVERTEX=2

RESOURCE:1 RESOURCE:2 RESOURCE:3

1:1,1,1

4:4,8,1

8:8,1,1

6:6,8,1

7:7,1,1

2:2,2,2

3:3,3,3

5:5,3,3

(A) (B)

Figure 5.618: Initial and final graph of thetree resource constraint

1896 PREDEFINED

5.366 twin

DESCRIPTION LINKS

Origin Pairs of variables related by hidenelement constraints sharing the same table.

Constraint twin(PAIRS)

Argument PAIRS : collection(x−dvar, y−dvar)

Restrictions required(PAIRS, x)
required(PAIRS, y)
|PAIRS| > 0

Purpose
Enforce the conditionPAIRS[i].x = u ∧ PAIRS[i].y = v (i ∈ [1, |PAIRS|]) ⇒ ∀j ∈
[1, |PAIRS|] : PAIRS[j].x = u ⇔ PAIRS[j].y = v.

Example

〈

x− 1 y− 8,
x− 9 y− 6,
x− 1 y− 8,
x− 5 y− 0,
x− 6 y− 7,
x− 9 y− 6

〉

The twin constraint holds since1 is paired with8, 9 is paired with6, 5 is paired
with 0, 6 is paired with7.

Typical |PAIRS| > 1
|PAIRS| >nval(PAIRS.x)
|PAIRS| >nval(PAIRS.y)
nval(PAIRS.x) > 1
nval(PAIRS.y) > 1
nval(PAIRS.x) =nval(PAIRS.y)
nval(PAIRS.x) < |PAIRS|
nval(PAIRS.y) < |PAIRS|

Arg. properties
Contractiblewrt. PAIRS.

See also related: element (pairs linked by an element with the same table).

Keywords characteristic of a constraint: pair.

constraint type: predefined constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Argument
Argument of the constraint and its corresponding type.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20111129 1897

1898 NARC,CLIQUE(<)

5.367 twolayer edgecrossing

DESCRIPTION LINKS GRAPH

Origin Inspired by [186].

Constraint two layer edge crossing

NCROSS,
VERTICES LAYER1,
VERTICES LAYER2,
EDGES

Arguments NCROSS : dvar

VERTICES LAYER1 : collection(id−int, pos−dvar)
VERTICES LAYER2 : collection(id−int, pos−dvar)
EDGES : collection(id−int, vertex1−int, vertex2−int)

Restrictions NCROSS ≥ 0
required(VERTICES LAYER1, [id, pos])
VERTICES LAYER1.id ≥ 1
VERTICES LAYER1.id ≤ |VERTICES LAYER1|
distinct(VERTICES LAYER1, id)
distinct(VERTICES LAYER1, pos)
required(VERTICES LAYER2, [id, pos])
VERTICES LAYER2.id ≥ 1
VERTICES LAYER2.id ≤ |VERTICES LAYER2|
distinct(VERTICES LAYER2, id)
distinct(VERTICES LAYER2, pos)
required(EDGES, [id, vertex1, vertex2])
EDGES.id ≥ 1
EDGES.id ≤ |EDGES|
distinct(EDGES, id)
EDGES.vertex1 ≥ 1
EDGES.vertex1 ≤ |VERTICES LAYER1|
EDGES.vertex2 ≥ 1
EDGES.vertex2 ≤ |VERTICES LAYER2|

Purpose NCROSS is the number of line-segments intersections.

Example

2, 〈id− 1 pos− 1, id− 2 pos− 2〉 ,
〈id− 1 pos− 3, id− 2 pos− 1, id− 3 pos− 2〉 ,
〈

id− 1 vertex1− 2 vertex2− 2,
id− 2 vertex1− 2 vertex2− 3,
id− 3 vertex1− 1 vertex2− 1

〉

Figure5.619provides a picture of the example, where one can see the two line-segments
intersections. Each line-segment of Figure5.619 is labelled with its identifier and
corresponds to an item of theEDGES collection. The two vertices on top of Figure5.619

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20030820 1899

correspond to the items of theVERTICES LAYER1 collection, while the three other vertices
are associated with the items ofVERTICES LAYER2.

vertex position
3 1

1 2 3

1 2
1 2

2

1 2 3

layer 2

layer 1
vertex id

vertex position

vertex id

Figure 5.619: Intersection between line-segments joiningtwo layers

Typical |VERTICES LAYER1| > 1
|VERTICES LAYER2| > 1
|EDGES| ≥ |VERTICES LAYER1|
|EDGES| ≥ |VERTICES LAYER2|

Symmetries • Arguments are permutable w.r.t. permutation (NCROSS)
(VERTICES LAYER1, VERTICES LAYER2) (EDGES).

• Items ofVERTICES LAYER1 arepermutable.

• Items ofVERTICES LAYER2 arepermutable.

Arg. properties
Functional dependency: NCROSS determined byVERTICES LAYER1, VERTICES LAYER2

andEDGES.

Remark The two-layer edge crossing minimisation problem was proved to be NP-hard in [170].

See also common keyword:crossing, graph crossing (line-segments intersection).

Keywords characteristic of a constraint: derived collection.

constraint arguments:pure functional dependency.

geometry:geometrical constraint, line-segments intersection.

miscellaneous:obscure.

modelling: functional dependency.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1900 NARC,CLIQUE(<)

Derived Collection

col

EDGES EXTREMITIES−collection(layer1−dvar, layer2−dvar),
[

item

(

layer1− EDGES.vertex1(VERTICES LAYER1, pos, id),
layer2− EDGES.vertex2(VERTICES LAYER2, pos, id)

)]

Arc input(s) EDGES EXTREMITIES

Arc generator CLIQUE (<) 7→collection(edges extremities1, edges extremities2)

Arc arity 2

Arc constraint(s)
∨

∧

(

edges extremities1.layer1 < edges extremities2.layer1,
edges extremities1.layer2 > edges extremities2.layer2

)

,

∧

(

edges extremities1.layer1 > edges extremities2.layer1,
edges extremities1.layer2 < edges extremities2.layer2

)

Graph property(ies) NARC= NCROSS

Graph model As usual for the two-layer edge crossing problem [186], [21], positions of the vertices
on each layer are represented as a permutation of the vertices. We generate a derived
collection that, for each edge, contains the position of its extremities on both layers. In the
arc generator we use the restriction< in order to generate one single arc for each pair of
segments. This is required, since otherwise we would count more than once a line-segments
intersection.

Parts (A) and (B) of Figure5.620respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

EDGES_EXTREMITIES

1

2

3

NARC=2

3:1,3

1:2,1 2:2,2

(A) (B)

Figure 5.620: Initial and final graph of thetwo layer edge crossing constraint

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1901

1902 NARC,PRODUCT (=); AUTOMATON

5.368 twoorth are in contact

DESCRIPTION LINKS GRAPH AUTOMATON

Origin [338], used for definingorths are connected.

Constraint two orth are in contact(ORTHOTOPE1, ORTHOTOPE2)

Type ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)

Arguments ORTHOTOPE1 : ORTHOTOPE

ORTHOTOPE2 : ORTHOTOPE

Restrictions |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz > 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end
|ORTHOTOPE1| = |ORTHOTOPE2|
orth link ori siz end(ORTHOTOPE1)
orth link ori siz end(ORTHOTOPE2)

Purpose

Enforce the following conditions on twoorthotopesO1 andO2:

• For all dimensionsi, except one dimension, the projections ofO1 andO2 on i
have a non-empty intersection.

• For all dimensionsi, the distance between the projections ofO1 andO2 on i is
equal to0.

Example
(

〈ori− 1 siz− 3 end− 4, ori− 5 siz− 2 end− 7〉 ,
〈ori− 3 siz− 2 end− 5, ori− 2 siz− 3 end− 5〉

)

Figure5.621shows the two rectangles of the example. Thetwo orth are in contact

constraint holds since the two rectangles are in contact: the contact is depicted by a pink
line-segment.

5321

1

4

6

5

4

3

2

R1

R2

Figure 5.621: Two rectangles that are in contact

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20030820 1903

Typical |ORTHOTOPE| > 1

Symmetries • Arguments arepermutablew.r.t. permutation(ORTHOTOPE1, ORTHOTOPE2).

• Items ofORTHOTOPE1 andORTHOTOPE2 arepermutable(same permutation used).

Used in orths are connected.

See also implies: two orth do not overlap.

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: logic.

filtering: arc-consistency.

geometry:geometrical constraint, touch, contact, non-overlapping, orthotope.

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1904 NARC,PRODUCT (=); AUTOMATON

Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator PRODUCT (=) 7→collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s) • orthotope1.end > orthotope2.ori
• orthotope2.end > orthotope1.ori

Graph property(ies) NARC= |ORTHOTOPE1| − 1

Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator PRODUCT (=) 7→collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s) max

(

0,
max(orthotope1.ori, orthotope2.ori)−
min(orthotope1.end, orthotope2.end)

)

= 0

Graph property(ies) NARC= |ORTHOTOPE1|

Graph model Parts (A) and (B) of Figure5.622respectively show the initial and final graph associated
with the first graph constraint of theExample slot. Since we use theNARC graph prop-
erty, the unique arc of the final graph is stressed in bold. It corresponds to the fact that the
projection in dimension1 of the two rectangles of the example overlap.

ORTHOTOPE1

ORTHOTOPE2

1

1

2

2

NARC=1

1:1,3,4

1:3,2,5

(A) (B)

Figure 5.622: Initial and final graph of thetwo orth are in contact constraint

Signature Consider the second graph constraint. Since we use the arc generatorPRODUCT (=
) on the collectionsORTHOTOPE1 and ORTHOTOPE2, and because of the restriction
|ORTHOTOPE1| = |ORTHOTOPE2|, the maximum number of arcs of the corresponding final
graph is equal to|ORTHOTOPE1|. Therefore we can rewrite the graph propertyNARC =
|ORTHOTOPE1| toNARC ≥ |ORTHOTOPE1| and simplifyNARC toNARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1905

Automaton Figure5.623depicts the automaton associated with thetwo orth are in contact con-
straint. LetORI1i, SIZ1i andEND1i respectively be theori, thesiz and theend attributes
of theith item of theORTHOTOPE1 collection. LetORI2i, SIZ2i andEND2i respectively be
theori, thesiz and theend attributes of theith item of theORTHOTOPE2 collection. To
each sextuple(ORI1i, SIZ1i, END1i, ORI2i, SIZ2i, END2i) corresponds a signature vari-
ableSi, which takes its value in{0, 1, 2}, as well as the following signature constraint:

((SIZ1i > 0) ∧ (SIZ2i > 0) ∧ (END1i > ORI2i) ∧ (END2i > ORI1i)) ⇔ Si = 0

((SIZ1i > 0) ∧ (SIZ2i > 0) ∧ (END1i = ORI2i ∨ END2i = ORI1i)) ⇔ Si = 1.

s

t i

iiEND2 =ORI1)ii

i

i

i END2 >ORI1END1 >ORI2 andSIZ1 >0 and SIZ2 >0 and i i iii

(END1 =ORI2 orSIZ1 >0 and SIZ2 >0 andi

END2 >ORI1END1 >ORI2 andSIZ1 >0 and SIZ2 >0 and i i ii

Figure 5.623: Automaton of thetwo orth are in contact constraint

 1
SIZ1

 1
END1

 1
ORI2

 1
SIZ2

 1
END2

 1

S1

Q =s0
Q1

SIZ1
 2

END1
 2

ORI2
 2

ORI1
 2

SIZ2
 2

END2
 2

ORI1
 n

SIZ1
 n

END1
 n

ORI2
 n

SIZ2
 n

END2
 n

Q =tn

S2 Sn

ORI1

Figure 5.624: Hypergraph of the reformulation corresponding to the automaton of the
two orth are in contact constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1906 NARC,PRODUCT (=)

5.369 twoorth column

DESCRIPTION LINKS GRAPH

Origin Used for definingdiffn column.

Constraint two orth column(ORTHOTOPE1, ORTHOTOPE2, DIM)

Type ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)

Arguments ORTHOTOPE1 : ORTHOTOPE

ORTHOTOPE2 : ORTHOTOPE

DIM : int

Restrictions |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end
|ORTHOTOPE1| = |ORTHOTOPE2|
orth link ori siz end(ORTHOTOPE1)
orth link ori siz end(ORTHOTOPE2)
DIM > 0
DIM ≤ |ORTHOTOPE1|

Purpose

Let P1 andP2 respectively denote the projections ofORTHOTOPE1 andORTHOTOPE2 in
dimensionDIM. If P1 andP2 overlap then the size of their intersection is equal to the size
of ORTHOTOPE1 in dimensionDIM, as well as to the size ofORTHOTOPE2 in dimension
DIM.

Example
(

〈ori− 1 siz− 3 end− 4, ori− 1 siz− 1 end− 2〉 ,
〈ori− 4 siz− 2 end− 6, ori− 1 siz− 3 end− 4〉 , 1

)

ORTHOTOPE1

ORTHOTOPE2

1

1

2

2

NARC=1

1:1,3,4

2:1,3,4

(A) (B)

Figure 5.625: Initial and final graph of thetwo orth column constraint

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20030820 1907

Typical |ORTHOTOPE| > 1

Symmetry Arguments arepermutablew.r.t. permutation(ORTHOTOPE1, ORTHOTOPE2) (DIM).

Used in diffn column.

See also implies: two orth include.

related: diffn (an extension of thediffn constraint).

Keywords constraint type: logic.

geometry:geometrical constraint, positioning constraint, orthotope, guillotine cut.

Typical
Typical condition on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1908 NARC,PRODUCT (=)

Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator PRODUCT (=) 7→collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s)
∧

orthotope1.key = DIM,
orthotope1.ori < orthotope2.end,
orthotope2.ori < orthotope1.end,
orthotope1.siz > 0,
orthotope2.siz > 0

⇒

∧

min(orthotope1.end, orthotope2.end)−
max(orthotope1.ori, orthotope2.ori)

=

orthotope1.siz
,

orthotope1.siz = orthotope2.siz

Graph property(ies) NARC= 1

20030820 1909

1910 NARC,SYMMETRIC PRODUCT (=); AUTOMATON

5.370 twoorth do not overlap

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Used for definingdiffn.

Constraint two orth do not overlap(ORTHOTOPE1, ORTHOTOPE2)

Type ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)

Arguments ORTHOTOPE1 : ORTHOTOPE

ORTHOTOPE2 : ORTHOTOPE

Restrictions |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end
|ORTHOTOPE1| = |ORTHOTOPE2|
orth link ori siz end(ORTHOTOPE1)
orth link ori siz end(ORTHOTOPE2)

Purpose
For two orthotopesO1 andO2 enforce that there exists at least one dimensioni such
that the projections oni of O1 andO2 do not overlap.

Example
(

〈ori− 2 siz− 2 end− 4, ori− 1 siz− 3 end− 4〉 ,
〈ori− 4 siz− 4 end− 8, ori− 3 siz− 3 end− 6〉

)

Figure 5.626 represents the respective position of the two rectangles of the exam-
ple. The coordinates of the leftmost lowest corner of each rectangle are stressed in bold.
Thetwo orth do not overlap constraint holds since the two rectangles do not overlap.

2

3

5

6

4

1

1 3 4 5 6 7 8 9

2

R2

R1

Figure 5.626: The two rectangles of the example

Typical |ORTHOTOPE| > 1

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical condition on the arguments of the constraint.

20030820 1911

Symmetries • Arguments arepermutablew.r.t. permutation(ORTHOTOPE1, ORTHOTOPE2).

• Items ofORTHOTOPE1 andORTHOTOPE2 arepermutable(same permutation used).

• ORTHOTOPE1.siz can bedecreasedto any value≥ 0.

• ORTHOTOPE2.siz can bedecreasedto any value≥ 0.

Used in diffn.

See also implied by: two orth are in contact.

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: logic.

filtering: arc-consistency, constructive disjunction.

final graph structure: bipartite, no loop.

geometry:geometrical constraint, non-overlapping, orthotope.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1912 NARC,SYMMETRIC PRODUCT (=); AUTOMATON

Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator SYMMETRIC PRODUCT (=) 7→collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s) orthotope1.end ≤ orthotope2.ori ∨ orthotope1.siz = 0

Graph property(ies) NARC≥ 1

Graph class • BIPARTITE

• NO LOOP

Graph model We build an initial graph where each arc corresponds to the fact that, either the projection
of anorthotopeon a given dimension is empty, either it is located before the projection in
the same dimension of the otherorthotope. Finally we ask that at least one arc constraint
remains in the final graph.

Parts (A) and (B) of Figure5.627respectively show the initial and final graph associated
with theExampleslot. Since we use theNARC graph property, the unique arc of the final
graph is stressed in bold. It corresponds to the fact that the projection indimension1 of
the firstorthotopeis located before the projection in dimension1 of the secondorthotope.
Therefore the twoorthotopesdo not overlap.

ORTHOTOPE1

ORTHOTOPE2

1

1

2

2

NARC=1

1:2,2,4

1:4,4,8

(A) (B)

Figure 5.627: Initial and final graph of thetwo orth do not overlap constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20030820 1913

Automaton Figure5.628depicts the automaton associated with thetwo orth do not overlap con-
straint. LetORI1i, SIZ1i andEND1i respectively be theori, thesiz and theend attributes
of the ith item of theORTHOTOPE1 collection. LetORI2i, SIZ2i andEND2i respectively
be theori, the siz and theend attributes of theith item of theORTHOTOPE2 collec-
tion. To each sextuple(ORI1i, SIZ1i, END1i, ORI2i, SIZ2i, END2i) corresponds a0-1 sig-
nature variableSi as well as the following signature constraint:((SIZ1i > 0) ∧ (SIZ2i >
0) ∧ (END1i > ORI2i) ∧ (END2i > ORI1i)) ⇔ Si.

s

SIZ1 =0 or SIZ2 =0 or END1 <=ORI2 or END2 <=ORI1

i i i i i iSIZ1 >0 and SIZ2 >0 and END1 >ORI2 and END2 >ORI1

SIZ1 =0 or SIZ2 =0 or END1 <=ORI2 or END2 <=ORI1i i i i i i

SIZ1 >0 and SIZ2 >0 and END1 >ORI2 and END2 >ORI1i i i i i i

t

i i i i i i

Figure 5.628: Automaton of thetwo orth do not overlap constraint

 1
SIZ1

 1
END1

 1
ORI2

 1
SIZ2

 1
END2

 1

S1

Q =s0
Q1

SIZ1
 2

END1
 2

ORI2
 2

ORI1
 2

SIZ2
 2

END2
 2

ORI1
 n

SIZ1
 n

END1
 n

ORI2
 n

SIZ2
 n

END2
 n

Q =tn

S2 Sn

ORI1

Figure 5.629: Hypergraph of the reformulation corresponding to the automaton of the
two orth do not overlap constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1914 NARC,PRODUCT (=)

5.371 twoorth include

DESCRIPTION LINKS GRAPH

Origin Used for definingdiffn include.

Constraint two orth include(ORTHOTOPE1, ORTHOTOPE2, DIM)

Type ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)

Arguments ORTHOTOPE1 : ORTHOTOPE

ORTHOTOPE2 : ORTHOTOPE

DIM : int

Restrictions |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end
|ORTHOTOPE1| = |ORTHOTOPE2|
orth link ori siz end(ORTHOTOPE1)
orth link ori siz end(ORTHOTOPE2)
DIM > 0
DIM ≤ |ORTHOTOPE1|

Purpose
Let P1 andP2 respectively denote the projections ofORTHOTOPE1 andORTHOTOPE2 in
dimensionDIM. If P1 andP2 overlap then, eitherP1 is included inP2, eitherP2 is
included inP1.

Example
(

〈ori− 1 siz− 3 end− 4, ori− 1 siz− 1 end− 2〉 ,
〈ori− 1 siz− 2 end− 3, ori− 2 siz− 3 end− 5〉 , 1

)

ORTHOTOPE1

ORTHOTOPE2

1

1

2

2

NARC=1

1:1,3,4

2:2,3,5

(A) (B)

Figure 5.630: Initial and final graph of thetwo orth include constraint

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20030820 1915

Typical |ORTHOTOPE| > 1

Symmetry Arguments arepermutablew.r.t. permutation(ORTHOTOPE1, ORTHOTOPE2) (DIM).

Used in diffn include.

See also implied by: two orth column.

related: diffn (an extension of thediffn constraint).

Keywords constraint type: logic.

geometry:geometrical constraint, positioning constraint, orthotope.

Typical
Typical condition on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1916 NARC,PRODUCT (=)

Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator PRODUCT (=) 7→collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s)
∧

orthotope1.key = DIM,
orthotope1.ori < orthotope2.end,
orthotope2.ori < orthotope1.end,
orthotope1.siz > 0,
orthotope2.siz > 0

⇒

min(orthotope1.end, orthotope2.end)−
max(orthotope1.ori, orthotope2.ori)

=

min(orthotope1.siz, orthotope2.siz)

Graph property(ies) NARC= 1

20030820 1917

1918 NSINK,CC(NSINK,NSOURCE),PRODUCT

5.372 usedby

DESCRIPTION LINKS GRAPH AUTOMATON

Origin N. Beldiceanu

Constraint used by(VARIABLES1, VARIABLES2)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions |VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose All the values of the variables of collectionVARIABLES2 are used by the variables of
collectionVARIABLES1.

Example

〈

var− 1,
var− 9,
var− 1,
var− 5,
var− 2,
var− 1

〉

,

〈1, 1, 2, 5〉

The used by constraint holds since, for each value occurring within the collec-
tion VARIABLES2 = 〈1, 1, 2, 5〉, its number of occurrences withinVARIABLES1 =
〈1, 9, 1, 5, 2, 1〉 is greater than or equal to its number of occurrences withinVARIABLES2:

• Value1 occurs3 times within〈1, 9, 1, 5, 2, 1〉 and2 times within〈1, 1, 2, 5〉.
• Value2 occurs1 times within〈1, 9, 1, 5, 2, 1〉 and1 times within〈1, 1, 2, 5〉.
• Value5 occurs1 times within〈1, 9, 1, 5, 2, 1〉 and1 times within〈1, 1, 2, 5〉.

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
|VARIABLES2| > 1
range(VARIABLES2.var) > 1

Symmetries • Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• All occurrences of two distinct values inVARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value inVARIABLES1.var or
VARIABLES2.var can berenamedto any unused value.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

20000128 1919

Arg. properties
• Contractiblewrt. VARIABLES2.

• Extensiblewrt. VARIABLES1.

• Aggregate: VARIABLES1(union), VARIABLES2(union).

Algorithm As described in [45] we can padVARIABLES2 with dummy variables such that its cardi-
nality will be equal to that cardinality ofVARIABLES1. The domain of a dummy variable
contains all of the values. Then, we have asame constraint between the two sets. Direct
arc-consistencyandbound-consistencyalgorithms based on aflow model are also proposed
in [45, 47, 213].

Reformulation Theused by(〈var−U1 var−U2, . . . , var−U|VARIABLES1|〉, 〈var−V1 var−V2, . . . , var−
V|VARIABLES2|〉) constraint can be expressed in term of a conjunction of|VARIABLES2| reified
constraints of the form:

∑

1≤j≤|VARIABLES1|(Vi = Uj) ≥
∑

1≤j≤|VARIABLES2|(Vi = Vj) (i ∈ [1, |VARIABLES2|]).

Used in int value precede chain, k used by.

See also generalisation: used by interval (variable replaced by variable/constant),
used by modulo (variable replaced by variable mod constant),
used by partition (variable replaced byvariable ∈ partition).

implied by: same.

implies: uses.

soft variant: soft used by var (variable-based violation measure).

system of constraints:k used by.

Keywords characteristic of a constraint: sort based reformulation, automaton,
automaton with array of counters.

combinatorial object: multiset.

constraint arguments:constraint between two collections of variables.

filtering: flow, arc-consistency, bound-consistency, DFS-bottleneck.

modelling: inclusion.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1920 NSINK,CC(NSINK,NSOURCE),PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • for all connected components:NSOURCE≥NSINK

• NSINK= |VARIABLES2|

Graph model Parts (A) and (B) of Figure5.631respectively show the initial and final graph associated
with the Example slot. Since we use theNSOURCE andNSINK graph properties,
the source and sink vertices of the final graph are stressed with a doublecircle. Since there
is a constraint on each connected component of the final graph we alsoshow the different
connected components. Each of them corresponds to an equivalenceclass according to
the arc constraint. Note that the vertex corresponding to the variable assigned to value9
was removed from the final graph since there is no arc for which the associated equality
constraint holds. Theused by constraint holds since:

• For each connected component of the final graph the number of sources is greater
than or equal to the number of sinks.

• The number of sinks of the final graph is equal to|VARIABLES2|.

Signature Since the initial graph contains only sources and sinks, and since sources of the initial graph
cannot become sinks of the final graph, we have that the maximum number of sinks of the
final graph is equal to|VARIABLES2|. Therefore we can rewriteNSINK = |VARIABLES2|
toNSINK ≥ |VARIABLES2| and simplifyNSINK toNSINK.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20000128 1921

(A)

VARIABLES1

VARIABLES2

1

1234

2 3456

(B)
CC#1:NSINK=2,CC#2:NSINK=1,CC#3:NSINK=1

NSINK=4

CC#1 CC#2 CC#3

1:1

1:1 2:1

3:16:1 4:5

4:5

5:2

3:2

Figure 5.631: Initial and final graph of theused by constraint

1922 NSINK,CC(NSINK,NSOURCE),PRODUCT

Automaton Figure5.632depicts the automaton associated with theused by constraint. To each item
of the collectionVARIABLES1 corresponds a signature variableSi that is equal to0. To
each item of the collectionVARIABLES2 corresponds a signature variableSi+|VARIABLES1|

that is equal to1.

s

t:
greatereq(C,0) {C[VAR]=C[VAR]+1}

1,

i i

{C[VAR]=C[VAR]+1}
1,

i i

{C[VAR]=C[VAR]−1}i i

0,

{C[_]=0}

Figure 5.632: Automaton of theused by constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20000128 1923

1924 NSINK,CC(NSINK,NSOURCE),PRODUCT

5.373 usedby interval

DESCRIPTION LINKS GRAPH

Origin Derived fromused by.

Constraint used by interval(VARIABLES1, VARIABLES2, SIZE INTERVAL)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
SIZE INTERVAL : int

Restrictions |VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
SIZE INTERVAL > 0

Purpose

Let Ni (respectivelyMi) denote the number of variables of the collectionVARIABLES1

(respectively VARIABLES2) that take a value in the interval[SIZE INTERVAL ·
i, SIZE INTERVAL · i + SIZE INTERVAL − 1]. For all integeri we haveMi > 0 ⇒
Ni ≥ Mi.

Example

〈

var− 1,
var− 9,
var− 1,
var− 8,
var− 6,
var− 2

〉

,

〈1, 0, 7, 7〉 , 3

In the example, the third argumentSIZE INTERVAL = 3 defines the following
family of intervals[3 · k, 3 · k + 2], wherek is an integer. Consequently the values of
the collectionVARIABLES2 = 〈1, 0, 7, 7〉 are respectively located within intervals[0, 2],
[0, 2], [6, 8], [6, 8]. Therefore intervals[0, 2] and[6, 8] are respectively used2 and2 times.

Similarly, the values of the collectionVARIABLES1 = 〈1, 9, 1, 8, 6, 2〉 are respectively
located within intervals[0, 2], [9, 11], [0, 2], [6, 8], [6, 8], [0, 2]. Therefore intervals[0, 2],
[6, 8] and[9, 11] are respectively used3, 2 and1 times.

Consequently, theused by interval constraint holds since, for each interval associ-
ated with the collectionVARIABLES2 = 〈1, 0, 7, 7〉, its number of occurrences within
VARIABLES1 = 〈1, 9, 1, 8, 6, 2〉 is greater than or equal to its number of occurrences within
VARIABLES2:

• Interval[0, 2] occurs3 times within〈1, 9, 1, 8, 6, 2〉 and2 times within〈1, 0, 7, 7〉.
• Interval[6, 8] occurs2 times within〈1, 9, 1, 8, 6, 2〉 and2 times within〈1, 0, 7, 7〉.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20030820 1925

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
|VARIABLES2| > 1
range(VARIABLES2.var) > 1
SIZE INTERVAL > 1
SIZE INTERVAL <range(VARIABLES1.var)
SIZE INTERVAL <range(VARIABLES2.var)

Symmetries • Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• An occurrence of a value ofVARIABLES1.var that belongs to thek-th interval, of
sizeSIZE INTERVAL, can bereplacedby any other value of the same interval.

• An occurrence of a value ofVARIABLES2.var that belongs to thek-th interval, of
sizeSIZE INTERVAL, can bereplacedby any other value of the same interval.

Arg. properties
• Contractiblewrt. VARIABLES2.

• Extensiblewrt. VARIABLES1.

• Aggregate: VARIABLES1(union), VARIABLES2(union), SIZE INTERVAL(id).

Reformulation Theused by interval(〈var−U1 var−U2, . . . , var−U|VARIABLES1|〉, 〈var−V1 var−
V2, . . . , var− V|VARIABLES2|〉, SIZE INTERVAL) constraint can be expressed by introducing
|VARIABLES1|+ |VARIABLES2| quotientvariables

Ui = SIZE INTERVAL·Pi+Ri,Ri ∈ [0, SIZE INTERVAL−1] (i ∈ [1, |VARIABLES1|]),
Vi = SIZE INTERVAL·Qi+Si, Si ∈ [0, SIZE INTERVAL−1] (i ∈ [1, |VARIABLES2|]),

in term of a conjunction of|VARIABLES2| reified constraints of the form:
∑

1≤j≤|VARIABLES1|(Qi = Pj) ≥
∑

1≤j≤|VARIABLES2|(Qi = Qj) (i ∈ [1, |VARIABLES2|]).

Used in k used by interval.

See also implied by: same interval.

soft variant: soft used by interval var (variable-based violation measure).

specialisation:used by (variable/constant replaced byvariable).

system of constraints:k used by interval.

Keywords characteristic of a constraint: sort based reformulation.

constraint arguments:constraint between two collections of variables.

modelling: inclusion, interval.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1926 NSINK,CC(NSINK,NSOURCE),PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL = variables2.var/SIZE INTERVAL

Graph property(ies) • for all connected components:NSOURCE≥NSINK

• NSINK= |VARIABLES2|

Graph model Parts (A) and (B) of Figure5.633respectively show the initial and final graph associated
with the Example slot. Since we use theNSOURCE andNSINK graph properties,
the source and sink vertices of the final graph are stressed with a doublecircle. Since there
is a constraint on each connected component of the final graph we alsoshow the different
connected components. Each of them corresponds to an equivalenceclass according to the
arc constraint. Note that the vertex corresponding to the variable that takes value9 was
removed from the final graph since there is no arc for which the associated equivalence
constraint holds. Theused by interval constraint holds since:

• For each connected component of the final graph the number of sources is greater
than or equal to the number of sinks.

• The number of sinks of the final graph is equal to|VARIABLES2|.

Signature Since the initial graph contains only sources and sinks, and since sources of the initial graph
cannot become sinks of the final graph, we have that the maximum number of sinks of the
final graph is equal to|VARIABLES2|. Therefore we can rewriteNSINK = |VARIABLES2|
toNSINK ≥ |VARIABLES2| and simplifyNSINK toNSINK.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1927

(A)

VARIABLES1

VARIABLES2

1

1234

2 3456

(B)
CC#1:NSINK=2,CC#2:NSINK=1,CC#3:NSINK=1

NSINK=4

CC#1 CC#2 CC#3

1:1

1:1 2:0

3:16:2 4:8

4:7

5:6

3:7

Figure 5.633: Initial and final graph of theused by interval constraint

1928 NSINK,CC(NSINK,NSOURCE),PRODUCT

5.374 usedby modulo

DESCRIPTION LINKS GRAPH

Origin Derived fromused by.

Constraint used by modulo(VARIABLES1, VARIABLES2, M)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
M : int

Restrictions |VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
M > 0

Purpose
For each integerR in [0, M − 1], let N1R (respectivelyN2R) denote the number of
variables ofVARIABLES1 (respectivelyVARIABLES2) that haveR as a rest when divided
by M. For allR in [0, M− 1] we haveN2R > 0 ⇒ N1R ≥ N2R.

Example

〈

var− 1,
var− 9,
var− 4,
var− 5,
var− 2,
var− 1

〉

,

〈7, 1, 2, 5〉 , 3

The values of the collectionVARIABLES2 = 〈7, 1, 2, 5〉 are respectively associated
with the equivalence classes7 mod 3 = 1, 1 mod 3 = 1, 2 mod 3 = 2, 5 mod 3 = 2.
Therefore the equivalence classes1 and2 are respectively used2 and2 times.

Similarly, the values of the collectionVARIABLES1 = 〈1, 9, 4, 5, 2, 1〉 associated with the
equivalence classes1mod3 = 1, 9mod3 = 0, 4mod3 = 1, 5mod3 = 2, 2mod3 = 2,
1 mod 3 = 1. Therefore the equivalence classes0, 1 and2 are respectively used1, 3 and
2 times.

Consequently, theused by modulo constraint holds since, for each equivalence class as-
sociated with the collectionVARIABLES2 = 〈7, 1, 2, 5〉, its number of occurrences within
VARIABLES1 = 〈1, 9, 4, 5, 2, 1〉 is greater than or equal to its number of occurrences within
VARIABLES2:

• The equivalence class1 occurs3 times within 〈1, 9, 4, 5, 2, 1〉 and2 times within
〈7, 1, 2, 5〉.

• The equivalence class2 occurs2 times within 〈1, 9, 4, 5, 2, 1〉 and2 times within
〈7, 1, 2, 5〉.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20030820 1929

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
|VARIABLES2| > 1
range(VARIABLES2.var) > 1
M > 1
M <maxval(VARIABLES1.var)
M <maxval(VARIABLES2.var)

Symmetries • Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• An occurrence of a valueu of VARIABLES1.var can bereplacedby any other
valuev such thatv is congruent tou moduloM.

• An occurrence of a valueu of VARIABLES2.var can bereplacedby any other
valuev such thatv is congruent tou moduloM.

Arg. properties
• Contractiblewrt. VARIABLES2.

• Extensiblewrt. VARIABLES1.

• Aggregate: VARIABLES1(union), VARIABLES2(union), M(id).

Used in k used by modulo.

See also implied by: same modulo.

soft variant: soft used by modulo var (variable-based violation measure).

specialisation:used by (variablemod constant replaced byvariable).

system of constraints:k used by modulo.

Keywords characteristic of a constraint: modulo, sort based reformulation.

constraint arguments:constraint between two collections of variables.

modelling: inclusion.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1930 NSINK,CC(NSINK,NSOURCE),PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.varmod M = variables2.varmod M

Graph property(ies) • for all connected components:NSOURCE≥NSINK

• NSINK= |VARIABLES2|

Graph model Parts (A) and (B) of Figure5.634respectively show the initial and final graph associated
with the Example slot. Since we use theNSOURCE andNSINK graph properties,
the source and sink vertices of the final graph are stressed with a doublecircle. Since there
is a constraint on each connected component of the final graph we alsoshow the different
connected components. Each of them corresponds to an equivalenceclass according to the
arc constraint. Note that the vertex corresponding to the variable that takes value9 was
removed from the final graph since there is no arc for which the associated equivalence
constraint holds. Theused by modulo constraint holds since:

• For each connected component of the final graph the number of sources is greater
than or equal to the number of sinks.

• The number of sinks of the final graph is equal to|VARIABLES2|.

Signature Since the initial graph contains only sources and sinks, and since sources of the initial graph
cannot become sinks of the final graph, we have that the maximum number of sinks of the
final graph is equal to|VARIABLES2|. Therefore we can rewriteNSINK = |VARIABLES2|
toNSINK ≥ |VARIABLES2| and simplifyNSINK toNSINK.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1931

(A)

VARIABLES1

VARIABLES2

1

1234

2 3456

(B)
CC#1:NSINK=2,CC#2:NSINK=2

NSINK=4

CC#1 CC#2 CC#3

1:1

1:7 2:1

3:46:1 4:5

4:5 3:2

5:2

Figure 5.634: Initial and final graph of theused by modulo constraint

1932 NSINK,CC(NSINK,NSOURCE),PRODUCT

5.375 usedby partition

DESCRIPTION LINKS GRAPH

Origin Derived fromused by.

Constraint used by partition(VARIABLES1, VARIABLES2, PARTITIONS)

Type VALUES : collection(val−int)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
PARTITIONS : collection(p− VALUES)

Restrictions |VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)
|VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose

For each integeri in [1, |PARTITIONS|], let N1 i (respectivelyN2 i) denote the number
of variables ofVARIABLES1 (respectivelyVARIABLES2) that take their value in theith

partition of the collectionPARTITIONS. For all i in [1, |PARTITIONS|] we haveN2 i >
0 ⇒ N1 i ≥ N2 i.

Example

〈

var− 1,
var− 9,
var− 1,
var− 6,
var− 2,
var− 3

〉

,

〈1, 3, 6, 6〉 ,
〈

p− 〈1, 3〉 ,
p− 〈4〉 ,
p− 〈2, 6〉

〉

The different values of the collectionVARIABLES2 = 〈1, 3, 6, 6〉 are respectively
associated with the partitionsp − 〈1, 3〉, p − 〈1, 3〉, p − 〈2, 6〉, andp − 〈2, 6〉. Therefore
partitionsp− 〈1, 3〉 andp− 〈2, 6〉 are respectively used2 and2 times.

Similarly, the different values of the collectionVARIABLES1 = 〈1, 9, 1, 6, 2, 3〉 (except
value9, which does not occur in any partition) are respectively associated with the parti-
tionsp − 〈1, 3〉, p − 〈1, 3〉, p − 〈2, 6〉, p − 〈2, 6〉, andp − 〈1, 3〉. Therefore partitions
p− 〈1, 3〉 andp− 〈2, 6〉 are respectively used3 and2 times.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20030820 1933

Consequently, theused by partition constraint holds since, for each partition associ-
ated with the collectionVARIABLES2 = 〈1, 3, 6, 6〉, its number of occurrences within
VARIABLES1 = 〈1, 9, 1, 6, 2, 3〉 is greater than or equal to its number of occurrences within
VARIABLES2:

• Partition p − 〈1, 3〉 occurs 3 times within 〈1, 9, 1, 6, 2, 3〉 and 2 times within
〈1, 3, 6, 6〉.

• Partition p − 〈2, 6〉 occurs 2 times within 〈1, 9, 1, 6, 2, 3〉 and 2 times within
〈1, 3, 6, 6〉.

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
|VARIABLES2| > 1
range(VARIABLES2.var) > 1
|VARIABLES1| > |PARTITIONS|
|VARIABLES2| > |PARTITIONS|

Symmetries • Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• Items ofPARTITIONS arepermutable.

• Items ofPARTITIONS.p arepermutable.

• An occurrence of a value ofVARIABLES1.var can be replaced by any other value
that also belongs to the same partition ofPARTITIONS.

• An occurrence of a value ofVARIABLES2.var can be replaced by any other value
that also belongs to the same partition ofPARTITIONS.

Arg. properties
• Contractiblewrt. VARIABLES2.

• Extensiblewrt. VARIABLES1.

• Aggregate: VARIABLES1(union), VARIABLES2(union), PARTITIONS(id).

Used in k used by partition.

See also implied by: same partition.

soft variant: soft used by partition var (variable-based violation measure).

specialisation:used by (variable ∈ partition replaced byvariable).

system of constraints:k used by partition.

used in graph description:in same partition.

Keywords characteristic of a constraint: partition, sort based reformulation.

constraint arguments:constraint between two collections of variables.

modelling: inclusion.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1934 NSINK,CC(NSINK,NSOURCE),PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) in same partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) • for all connected components:NSOURCE≥NSINK

• NSINK= |VARIABLES2|

Graph model Parts (A) and (B) of Figure5.635respectively show the initial and final graph associated
with the Example slot. Since we use theNSOURCE andNSINK graph properties,
the source and sink vertices of the final graph are stressed with a doublecircle. Since there
is a constraint on each connected component of the final graph we alsoshow the different
connected components. Each of them corresponds to an equivalenceclass according to the
arc constraint. Note that the vertex corresponding to the variable that takes value9 was
removed from the final graph since there is no arc for which the associated equivalence
constraint holds. Theused by partition constraint holds since:

• For each connected component of the final graph the number of sources is greater
than or equal to the number of sinks.

• The number of sinks of the final graph is equal to|VARIABLES2|.

Signature Since the initial graph contains only sources and sinks, and since sources of the initial graph
cannot become sinks of the final graph, we have that the maximum number of sinks of the
final graph is equal to|VARIABLES2|. Therefore we can rewriteNSINK = |VARIABLES2|
toNSINK ≥ |VARIABLES2| and simplifyNSINK toNSINK.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1935

(A)

VARIABLES1

VARIABLES2

1

1234

2 3456

(B)
CC#1:NSINK=2,CC#2:NSINK=2

NSINK=4

CC#1 CC#2 CC#3

1:1

1:1 2:3

3:16:3 4:6

4:6 3:6

5:2

Figure 5.635: Initial and final graph of theused by partition constraint

1936 NSINK,PRODUCT

5.376 uses

DESCRIPTION LINKS GRAPH

Origin [59]

Constraint uses(VARIABLES1, VARIABLES2)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions min(1, |VARIABLES1|) ≥ min(1, |VARIABLES2|)
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose
The set of values assigned to the variables of the collection of variablesVARIABLES2 is
included within the set of values assigned to the variables of the collection of variables
VARIABLES1.

Example
(

〈3, 3, 4, 6〉 ,
〈3, 4, 4, 4, 4〉

)

The uses constraint holds since the set of values{3, 4} assigned to the items of
collection 〈3, 4, 4, 4, 4〉 is included within the set of values{3, 4, 6} occurring within
〈3, 3, 4, 6〉.

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
|VARIABLES2| > 1
range(VARIABLES2.var) > 1
|VARIABLES1| ≤ |VARIABLES2|

Symmetries • Items ofVARIABLES1 arepermutable.

• Items ofVARIABLES2 arepermutable.

• All occurrences of two distinct values inVARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value inVARIABLES1.var or
VARIABLES2.var can berenamedto any unused value.

Arg. properties
• Contractiblewrt. VARIABLES2.

• Extensiblewrt. VARIABLES1.

• Aggregate: VARIABLES1(union), VARIABLES2(union).

Remark It was shown in [59] that, finding out whether auses constraint has a solution or not is
NP-hard. This was achieved by reduction from3-SAT.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

20050917 1937

See also generalisation:common.

implied by: used by.

related: roots.

Keywords complexity: 3-SAT.

constraint arguments:constraint between two collections of variables.

final graph structure: acyclic, bipartite, no loop.

modelling: inclusion.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1938 NSINK,PRODUCT

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSINK= |VARIABLES2|
Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Graph model Parts (A) and (B) of Figure5.636respectively show the initial and final graph associated
with theExample slot. Since we use theNSINK graph property, the sink vertices of the
final graph are stressed with a double circle. Note that all the vertices corresponding to the
variables that take values9 or 2 were removed from the final graph since there is no arc for
which the associated equality constraint holds.

(A)

VARIABLES1

VARIABLES2

1

12 345

234

(B) NSINK=5

1:3

1:3

2:3 3:4

2:4 3:4 4:4 5:4

Figure 5.636: Initial and final graph of theuses constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20050917 1939

1940 AUTOMATON

5.377 valley

DESCRIPTION LINKS AUTOMATON

Origin Derived frominflexion.

Constraint valley(N, VARIABLES)

Arguments N : dvar

VARIABLES : collection(var−dvar)

Restrictions N ≥ 0
2 ∗ N ≤ max(|VARIABLES| − 1, 0)
required(VARIABLES, var)

Purpose

A variableVk (1 < k < m) of the sequence of variablesVARIABLES = V1, . . . , Vm

is a valley if and only if there exists ani (1 < i ≤ k) such thatVi−1 > Vi and
Vi = Vi+1 = . . . = Vk andVk < Vk+1. N is the total number of valleys of the sequence
of variablesVARIABLES.

Example

1,

〈

var− 1,
var− 1,
var− 4,
var− 8,
var− 8,
var− 2,
var− 7,
var− 1

〉

The valley constraint holds since the sequence1 1 4 8 8 2 7 1 contains one val-
ley that corresponds to the variable that is assigned to value2.

11

5 6 7 8

2

3

4

5

6

43

7

8

1 1

Values

Variables 1 2

4

8 8

2

7

Figure 5.637: The sequence and its unique valley

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20040530 1941

Typical |VARIABLES| > 2
range(VARIABLES.var) > 1

Symmetries • Items ofVARIABLES can bereversed.

• One and the same constant can beaddedto the var attribute of all items of
VARIABLES.

Arg. properties
Contractiblewrt. VARIABLES whenN = 0.

Usage Useful for constraining the number ofvalleysof a sequence of domain variables.

Remark Since the arity of the arc constraint is not fixed, thevalley constraint cannot be currently
described. However, this would not hold anymore if we were introducinga slot that speci-
fies how to merge adjacent vertices of the final graph.

See also common keyword:deepest valley, inflexion (sequence).

comparison swapped:peak.

related: no peak.

specialisation:no valley (the variable counting the number of valleys is set to0 and
removed).

Keywords characteristic of a constraint: automaton, automaton with counters.

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(2).

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1942 AUTOMATON

Automaton Figure5.638depicts the automaton associated with thevalley constraint. To each pair of
consecutive variables(VARi, VARi+1) of the collectionVARIABLES corresponds a signature
variableSi. The following signature constraint linksVARi, VARi+1 and Si: (VARi <
VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔ Si = 2).

{C=0}

iVAR = VAR

i+1iVAR < VAR s:

u:

N=C

N=C

i i+1
{C=C+1}

VAR > VARi i+1

VAR = VARi i+1

i i+1VAR > VAR

VAR < VAR ,

i+1

Figure 5.638: Automaton of thevalley constraint

n−1Q =s

0C =0 1C

1Q

1
VAR

1S

2
VAR

2S

n
VAR

3
VAR

n−1S

n−1
VAR

3S

2Q

2C n−1C =N

u
s

Q =0

Figure 5.639: Hypergraph of the reformulation corresponding to the automaton of the
valley constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20040530 1943

1944 NARC,PRODUCT (=)

5.378 veceq tuple

DESCRIPTION LINKS GRAPH

Origin Used for definingin relation.

Constraint vec eq tuple(VARIABLES, TUPLE)

Arguments VARIABLES : collection(var−dvar)
TUPLE : collection(val−int)

Restrictions required(VARIABLES, var)
required(TUPLE, val)
|VARIABLES| = |TUPLE|

Purpose Enforce a vector of domain variables to be equal to a tuple of values.

Example
(

〈5, 3, 3〉 ,
〈5, 3, 3〉

)

The vec eq tuple constraint holds since the first, the second and the third items
of VARIABLES = 〈5, 3, 3〉 are respectively equal to the first, the second and the third items
of TUPLE = 〈5, 3, 3〉.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
range(TUPLE.val) > 1

Symmetries • Arguments arepermutablew.r.t. permutation(VARIABLES, TUPLE).

• Items ofVARIABLES andTUPLE arepermutable(same permutation used).

Arg. properties
Contractiblewrt. VARIABLES andTUPLE (remove items from same position).

Used in in relation.

See also generalisation:lex equal (integer replaced byvariable in second argument).

implies: lex equal.

Keywords characteristic of a constraint: tuple.

constraint type: value constraint.

filtering: arc-consistency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Used in
List of constraints that use this constraint in their description.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 1945

Arc input(s) VARIABLES TUPLE

Arc generator PRODUCT (=) 7→collection(variables, tuple)

Arc arity 2

Arc constraint(s) variables.var = tuple.val

Graph property(ies) NARC= |VARIABLES|

Graph model Parts (A) and (B) of Figure5.640respectively show the initial and final graph associated
with the Example slot. Since we use theNARC graph property, the arcs of the final
graph are stressed in bold.

VARIABLES

TUPLE

1

1

2

2

3

3

NARC=3

1:5

1:5

2:3

2:3

3:3

3:3

(A) (B)

Figure 5.640: Initial and final graph of thevec eq tuple constraint

Signature Since we use the arc generatorPRODUCT (=) on the collectionsVARIABLES andTUPLE,
and because of the restriction|VARIABLES| = |TUPLE|, the maximum number of arcs of
the final graph is equal to|VARIABLES|. Therefore we can rewrite the graph property
NARC = |VARIABLES| toNARC ≥ |VARIABLES| and simplifyNARC toNARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

1946 PREDEFINED

5.379 visible

DESCRIPTION LINKS

Origin Extension ofaccessibilityparameter ofdiffn.

Constraint visible(K, DIMS, FROM, OBJECTS, SBOXES)

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)
DIMDIR : collection(dim−int, dir−int)

Arguments K : int

DIMS : sint

FROM : DIMDIR

OBJECTS : collection

oid−int,
sid−dvar,
x− VARIABLES,
start−dvar,
duration−dvar,
end−dvar

SBOXES : collection(sid−int, t− INTEGERS, l− POSITIVES, f− DIMDIR)

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

20071013 1947

Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
required(DIMDIR, [dim, dir])
|DIMDIR| > 0
|DIMDIR| ≤ K+ K

distinct(DIMDIR, [])
DIMDIR.dim ≥ 0
DIMDIR.dim < K

DIMDIR.dir ≥ 0
DIMDIR.dir ≤ 1
K ≥ 0
DIMS ≥ 0
DIMS < K

distinct(OBJECTS, oid)
required(OBJECTS, [oid, sid, x])
require at least(2, OBJECTS, [start, duration, end])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
OBJECTS.duration ≥ 0
|SBOXES| ≥ 1
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
do not overlap(SBOXES)

Purpose

Holds if and only if:

1. The difference between the end in time and the start in time of each objectis equal
to its duration in time.

2. Given a collection of potential observations placesFROM, where each observation
place is specified by adimension(i.e., an integer between0 andk − 1) and by
a direction (i.e., an integer between0 and1), and given for each shifted box of
SBOXES a set of visible faces, enforce thatat least one visible face of each shifted
box associated with an objecto ∈ OBJECTS should be entirely visible from at
least one observation place ofFROM at timeo.start as well as at timeo.end−1.
This notion is defined in a more formal way in theRemark slot.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

1948 PREDEFINED

Example

2, {0, 1},
〈dim− 0 dir− 1〉 ,
〈

oid− 1 sid− 1 x− 〈1, 2〉 start− 8 duration− 8 end− 16,
oid− 2 sid− 2 x− 〈4, 2〉 start− 1 duration− 15 end− 16

〉

,
〈

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 f− 〈dim− 0 dir− 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈2, 3〉 f− 〈dim− 0 dir− 1〉

〉

2, {0, 1},
〈dim− 0 dir− 1〉 ,
〈

oid− 1 sid− 1 x− 〈1, 2〉 start− 1 duration− 8 end− 9,
oid− 2 sid− 2 x− 〈4, 2〉 start− 1 duration− 15 end− 16

〉

,
〈

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 f− 〈dim− 0 dir− 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈2, 3〉 f− 〈dim− 0 dir− 1〉

〉

2, {0, 1},
〈dim− 0 dir− 1〉 ,
〈

oid− 1 sid− 1 x− 〈1, 1〉 start− 1 duration− 15 end− 16,
oid− 2 sid− 2 x− 〈2, 2〉 start− 6 duration− 6 end− 12

〉

,
〈

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 f− 〈dim− 0 dir− 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈2, 3〉 f− 〈dim− 0 dir− 1〉

〉

2, {0, 1},
〈dim− 0 dir− 1〉 ,
〈

oid− 1 sid− 1 x− 〈4, 1〉 start− 1 duration− 8 end− 9,
oid− 2 sid− 2 x− 〈1, 2〉 start− 1 duration− 15 end− 16

〉

,
〈

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 f− 〈dim− 0 dir− 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈2, 3〉 f− 〈dim− 0 dir− 1〉

〉

2, {0},
〈dim− 0 dir− 1〉 ,
〈

oid− 1 sid− 1 x− 〈2, 1〉 start− 1 duration− 8 end− 9,
oid− 2 sid− 2 x− 〈4, 3〉 start− 1 duration− 15 end− 16

〉

,
〈

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 f− 〈dim− 0 dir− 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈2, 2〉 f− 〈dim− 0 dir− 1〉

〉

The five previous examples correspond respectively to parts (I), (II), (III) and (IV)
of Figure5.642and to Figure5.643. Before explaining these five examples Figure5.641
first illustrates the notion ofobservations placesand ofvisible faces.

Example
One or several examples of ground solutions of the constraint.

20071013 1949

d=0

1

2

3

4 5
6 7

dim=1,dir=0

dim=1,dir=1

di
m

=
0,

di
r=

1

di
m

=
0,

di
r=

0

d=1

Figure 5.641: Entirely visible faces (depicted by a thick line) of rectangles1, 2, 3, 4,
5, 6 and7 from the four observation places〈dim = 0, dir = 1〉, 〈dim = 0, dir = 0〉,
〈dim = 1, dir = 1〉 and〈dim = 1, dir = 0〉 (depicted by an arrow)

1950 PREDEFINED

We first need to introduce a number of definitions in order to illustrate the notion of visibil-
ity.

Definition 1. Consider two distinct objectso ando′ of thevisible constraint (i.e.,o, o′ ∈
iobjects) as well as an observation place defined by the pair〈dim, dir〉 ∈ FROM. The
objecto is masked bythe objecto′ according to the observation place〈dim, dir〉 if there
exist two shifted boxess ands′ respectively associated witho ando′ such that conditionsA,
B, C, D andE all hold:

• (A) o.duration > 0∧ o′.duration > 0∧ o.end > o′.start∧ o′.end > o.start
(i.e., the time intervals associated witho ando′ intersect).

• (B) Discarding dimensiondim, s ands′ intersect in all dimensions specified byDIMS
(i.e., objectso ando′ are in vis-̀a-vis).

• (C) If dir = 0

theno.x[dim] + s.t[dim] ≥ o′.x[dim] + s′.t[dim] + s′.l[dim]

elseo′.x[dim] + s′.t[dim] ≥ o.x[dim] + s.t[dim] + s.l[dim] (i.e., in dimensiondim,
o ando′ are ordered in the wrong way according to directiondir).

• (D) o.start > o′.start ∨ o.end < o′.end (i.e., instantso.start or o.end are
located within interval[o′.start, o′.end]; we consider also conditionA.).

• (E) The observation place〈dim, dir〉 occurs within the list of visible faces asso-
ciated with the face attributef of the shifted boxs (i.e., the pair〈dim, dir〉 is a
potentially visible face ofo).

Definition 2. Consider an objecto of the collectionOBJECTS as well as a possible ob-
servation place defined by the pair〈dim, dir〉. The objecto is masked according to the
observation place〈dim, dir〉 if and only if at least one of the following conditions holds:

• No shifted box associated witho has the pair〈dim, dir〉 as one of its potentially
visible face.

• The objecto is masked according to the possible observation place〈dim, dir〉 by
another objecto′.

Figures5.642and 5.643respectively illustrate Definition1 in the context of an observation
place (depicted by a triangle) equal to the pair〈dim = 0, dir = 1〉. Note that, in the
context of Figure5.643, as theDIMS parameter of thevisible constraint only mentions
dimension0 (and not dimension1), one object may be masked by another object even if
the two objects do not intersect in any dimension: i.e., only their respective ordering in the
dimensiondim = 0 as well as their positions in time matter.

Definition 3. Consider an objecto of the collectionOBJECTS as well as a possible ob-
servation place defined by the pair〈dim, dir〉. The objecto is masked according to the
observation place〈dim, dir〉 if and only if at least one of the following conditions holds:

• No shifted box associated witho has the pair〈dim, dir〉 as one of its potentially
visible face.

• The objecto is masked according to the possible observation place〈dim, dir〉 by
another objecto′.

Definition 4. An object of the collectionOBJECTS constraint ismasked according to a set
of possible observation placesFROM if it is masked according to each observation place of
FROM.

20071013 1951

condition

 oid−o’ sid−2 x−<2,2> start−6 duration−6 end−12>,

<oid−o sid−1 x−<1,1> start−1 duration−15 end−16,

<sid−1 t−<0,0> l−<1,2> f−<dim−0 dir−1>,

 sid−2 t−<0,0> l−<2,3> f−<dim−0 dir−1>>)

visible(2, {0,1}, <dim−0 dir−1>,

visible(2, {0,1}, <dim−0 dir−1>,

 sid−2 t−<0,0> l−<2,3> f−<dim−0 dir−1>>)

<oid−o sid−1 x−<1,2> start−8 duration−8 end−16,

<sid−1 t−<0,0> l−<1,2> f−<dim−0 dir−1>,

 oid−o’ sid−2 x−<4,2> start−1 duration−15 end−16>,

 oid−o’ sid−2 x−<1,2> start−1 duration−15 end−16>,

<oid−o sid−1 x−<4,1> start−1 duration−8 end−9,

visible(2, {0,1}, <dim−0 dir−1>,

 sid−2 t−<0,0> l−<2,3> f−<dim−0 dir−1>>)

<sid−1 t−<0,0> l−<1,2> f−<dim−0 dir−1>,

visible(2, {0,1}, <dim−0 dir−1>,

<sid−1 t−<0,0> l−<1,2> f−<dim−0 dir−1>,

 oid−o’ sid−2 x−<4,2> start−1 duration−15 end−16>,

<oid−o sid−1 x−<1,2> start−1 duration−8 end−9,

 sid−2 t−<0,0> l−<2,3> f−<dim−0 dir−1>>)

the end in time of o is located before the end in time of o’,

<dim=0,dir=1> is a potentially visible face of o.(E)<dim=0,dir=1> is a potentially visible face of o.

the start in time of o is located after the start in time of o’,

(E)

(C)

(A)(A)

(B) (B)

(C)

(D)(D)

(II)(I)

time interval [8,16[time interval [1,8[time interval [1,9[time interval [9,16[

o and o’ intersect in dimension 1,

in dimension 0, o’ starts after the end of o,

o and o’ intersect in time,

o and o’ intersect in dimension 1,

in dimension 0, o’ starts after the end of o,

and even though o and o’ intersect in dimension 1, and even

though the end in time of o is located before the end in time of o’,

and even though <dim=0,dir=1> is a potentially visible face of o,(E)and even though <dim=0,dir=1> is a potentially visible face of o,(E)

(IV)(III)

time interval [1,6[time interval [6,12[time interval [12,16[time interval [9,16[time interval [1,9[

condition does not hold.

(B)

(C)

does not hold.(D)

(B)

(D)

(C)

(A) (A)Even though o and o’ intersect in time,

and even though o and o’ intersect in dimension 1,

and even though, in dimension 0, o’ starts after the end of o,

Even though o and o’ intersect in time,

o and o’ intersect in time,

o is masked by o’ according to <dim=0,dir=1> since: o is masked by o’ according to <dim=0,dir=1> since:

o is not masked by o’ according to <dim=0,dir=1> since: o is not masked by o’ according to <dim=0,dir=1> since:

2

d=
1

d=0

o o

o’

o o

o’
dir=1
dim=0,

dir=1
dim=0,

dir=1
dim=0,dim=0,

dir=1dir=1
dim=0,

dim=0,dir=1dim=0,dir=1dim=0,dir=1dim=0,dir=1

d=
1

d=01 2 3 4 5 6

1

2

3

44

3

2

1

654321

1681 6 1410 171512 13119754320

ob
je

ct
s

time

d=
1

d=0

d=
1

d=01 2 3 4 5 6

1

2

3

44

3

2

1

654321

161 6 1410 171512 1311754320

ob
je

ct
s

time

d=
1

d=0

8 9

o

o’

o

o’

o’ o’

o o

o’ o’

o’

o’

o

8 time

ob
je

ct
s

0 2 3 4 5 7 11 13 15 1710 141 166 9 12 98

d=0

d=
1

3

4 4

3

2

1

431

time

ob
je

ct
s

0 2 3 4 5 7 11 1312 15 1710 1461 16

1 2 3 4 5 6

1

2

3

4 4

3

2

1

654321 d=0

d=
1

o

o’

4

3

2

1

4321

d=
1

d=0 d=0

d=
1

1 2 3 4

1

2

Figure 5.642: Illustration of Definition1: (I,II) the case where an objecto is masked
by an objecto′ according to dimensions{0, 1} and to the observation place〈dim =
0, dir = 1〉 because(A) o ando′ intersect in time,(B) o ando′ intersect in dimension
1, (C) o ando′ are not well ordered according to the observation place,(D) there exists
an instant whereo′ if present (but noto) and(E) 〈dim = 0, dir = 1〉 is a potentially
visible face ofo; (III,IV) the case where an objecto is not masked by an objecto′

according to the observation place〈dim = 0, dir = 1〉.

1952 PREDEFINED

<oid−o sid−1 x−<2,1> start−1 duration−8 end−9,

 sid−2 t−<0,0> l−<2,2> f−<dim−0 dir−1>>)

<sid−1 t−<0,0> l−<1,2> f−<dim−0 dir−1>,

o is masked by o’ according to <dim=0,dir=1> since:

(A)

(D)

(C)

time interval [9,16[time interval [1,9[

o and o’ intersect in time,

in dimension 0, o’ starts after the end of o,

(E)

the end in time of o is located before the end in time of o’,

<dim=0,dir=1> is a potentially visible face of o.

visible(2, {0}, <dim−0 dir−1>,

 oid−o’ sid−2 x−<4,3> start−1 duration−15 end−16>,

o

o’ o’ dir=1
dim=0,

dir=1
dim=0,

98

d=0

d=
1

time

ob
je

ct
s

0 2 3 4 5 7 11 1312 15 1710 1461 16

1 2 3 4 5 6

1

2

3

4 4

3

2

1

654321 d=0

d=
1

o

o’

Figure 5.643: Illustration of Definition1: the case where an objecto is masked by an
objecto′ according to dimension0 and to the observation place〈dim = 0, dir = 1〉
because:(A) o ando′ intersect in time,(C) o ando′ are not well ordered according to
the observation place and(D) there exists an instant whereo′ if present (but noto) and
(E) 〈dim = 0, dir = 1〉 is a potentially visible face ofo.

20071013 1953

We are now in position to define thevisible constraint.

Definition 5. Given a visible(K, DIMS, FROM, OBJECTS, SBOXES) constraint, the
visible constraint holds if none of the objects ofOBJECTS is masked according to the
dimensions ofDIMS and to the set of possible observation places defined byFROM.

1954 PREDEFINED

Typical |OBJECTS| > 1

Symmetries • Items ofOBJECTS arepermutable.

• Items ofSBOXES arepermutable.

Usage We now give several typical concrete uses of thevisible constraint, which all mention
thediffst as well as thevisible constraints:

• Figure5.644corresponds to aship loading problemwhere containers are piled within
a ship by a crane each time the ship visits a given harbour. In this context we have first
to express the fact thata container can only be placed on top of an already placed
containerand second, thata container can only be taken away if no container is
placed on top of it. These two conditions are expressed by one singlevisible

constraint for which theDIMS parameter mentions all three dimensions of the place-
ment space and theFROM parameter mentions the pair〈dim = 2, dir = 1〉 as its
unique observation place. In addition we also use adiffst constraint for expressing
non-overlapping.

 oid−6 sid−1 x−<1,1,1> start−17 duration−7 end−24>

visible(3, {0,1,2}, <dim−2 dir−1>,

 <sid−1 t−<0,0,0> l−<2,4,2> f−<dim−2 dir−1>>)

 <oid−1 sid−1 x−<1,1,1> start−0 duration−17 end−17,

 oid−3 sid−1 x−<4,1,1> start−0 duration−8 end−8 ,
 oid−4 sid−1 x−<1,1,3> start−8 duration−9 end−17,
 oid−5 sid−1 x−<4,1,1> start−8 duration−16 end−24,

 oid−2 sid−1 x−<1,1,3> start−0 duration−8 end−8 ,

2

5
4

3

5

2
154321

4

3

2

1

5
4

3

5

21

2

3

4

1 2 3 4 5 1

5

3
4

5

154321

4

3

2

1

time interval [0,8[

5

6

dim=2,dir=1dim=2,dir=1dim=2,dir=1

10 2 3 4 5 6 7 9 10 11 12 13 14 15 16 18 19 20 21 22 238 17 24 time

ob
je

ct
s

565

4

13

2

1

time interval [8,17[time interval [17,24[

1

2

3

4

Figure 5.644: Illustration of the ship loading problem

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

20071013 1955

• Figure5.645corresponds to acontainer loading/unloading problemin the context
of a pick-up delivery problem where the loading/unloading takes place withrespect
to the front door of the container. Beside thediffst constraint used for expressing
non-overlapping, we use two distinctvisible constraints:

– The firstvisible constraint takes care of the location of the front door of the
container (each objecto has to be loaded/unloaded without moving around any
other object, i.e., objects that are in the vis-à-vis of o according to the front
door of the container). This is expressed by one singlevisible constraint for
which theDIMS parameter mentions all three dimensions of the placement space
and theFROM parameter mentions the pair〈dim = 1, dir = 0〉 as its unique
observation place.

– The secondvisible constraint takes care of thegravity dimension(i.e., each
object that has to be loaded should not be put under another object, andrecip-
rocally each object that has to be unloaded should not be located under another
object). This is expressed by the samevisible constraint that was used for the
ship loading problem, i.e., avisible constraint for which theDIMS parameter
mentions all three dimensions of the placement space and theFROM parameter
mentions the pair〈dim = 2, dir = 1〉 as its unique observation place.

• Figure 5.646corresponds to apallet loading problemwhere one has to place six
objects on a pallet. Each object corresponds to a parallelepiped that has abar code
on one of its four sides (i.e., the sides that are different from the top and the bottom
of the parallelepiped). If, for some reason, an object has no bar code then we simply
remove it from the objects that will be passed to thevisible constraint: this is for
instance the case of the sixth object. In this context the constraint to enforce (beside
the non-overlapping constraint between the parallelepipeds that are assigned to a
same pallet) is the fact that the bar code of each object should be visible (i.e., visible
from one of the four sides of the pallet). This is expressed by thevisible constraint
given in Part (F) of Figure5.646.

Remark Thevisible constraint is a generalisation of theaccessibility constraint initially in-
troduced in the context of thediffn constraint.

See also common keyword:diffn (geometrical constraint),
geost, geost time (geometrical constraint,sweep),
non overlap sboxes (geometrical constraint).

Keywords constraint type: decomposition, predefined constraint.

filtering: sweep.

geometry:geometrical constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1956 PREDEFINED

 <sid−1 t−<0,0,0> l−<2,1,1> f−<dim−1 dir−0, dim−2 dir−1>,
 sid−2 t−<0,0,0> l−<2,2,2> f−<dim−1 dir−0, dim−2 dir−1>,
 sid−3 t−<0,0,0> l−<2,4,2> f−<dim−1 dir−0, dim−2 dir−1>,

 sid−5 t−<0,0,0> l−<2,3,1> f−<dim−1 dir−0, dim−2 dir−1>,
 sid−4 t−<0,0,0> l−<2,4,1> f−<dim−1 dir−0, dim−2 dir−1>,

visible(3, {0,1,2}, <dim−1 dir−0>,

 oid−6 sid−6 x−<3,1,1> start−8 duration−12 end−24,

 oid−4 sid−4 x−<4,1,1> start−0 duration−17 end−17,
 oid−3 sid−3 x−<1,1,1> start−0 duration−17 end−17,

 oid−7 sid−3 x−<1,1,1> start−17 duration−7 end−24>,

 oid−5 sid−5 x−<1,2,3> start−8 duration−9 end−17,

 oid−2 sid−2 x−<1,3,3> start−0 duration−8 end−8,
 <oid−1 sid−1 x−<1,2,3> start−0 duration−8 end−8,

 sid−6 t−<0,0,0> l−<1,2,2> f−<dim−1 dir−0, dim−2 dir−1>>)

visible(3, {0,1,2}, <dim−2 dir−1>,

 sid−6 t−<0,0,0> l−<1,2,2> f−<dim−1 dir−0, dim−2 dir−1>>)

 <oid−1 sid−1 x−<1,2,3> start−0 duration−8 end−8,
 oid−2 sid−2 x−<1,3,3> start−0 duration−8 end−8,

 oid−5 sid−5 x−<1,2,3> start−8 duration−9 end−17,

 oid−7 sid−3 x−<1,1,1> start−17 duration−7 end−24>,

 oid−3 sid−3 x−<1,1,1> start−0 duration−17 end−17,
 oid−4 sid−4 x−<4,1,1> start−0 duration−17 end−17,

 oid−6 sid−6 x−<3,1,1> start−8 duration−12 end−24,

 sid−4 t−<0,0,0> l−<2,4,1> f−<dim−1 dir−0, dim−2 dir−1>,
 sid−5 t−<0,0,0> l−<2,3,1> f−<dim−1 dir−0, dim−2 dir−1>,

 sid−3 t−<0,0,0> l−<2,4,2> f−<dim−1 dir−0, dim−2 dir−1>,
 sid−2 t−<0,0,0> l−<2,2,2> f−<dim−1 dir−0, dim−2 dir−1>,
 <sid−1 t−<0,0,0> l−<2,1,1> f−<dim−1 dir−0, dim−2 dir−1>,

5

1

2

3

4

1 2 3 4 5 1
2

5

3
4

5

4 5 1
2

3
4

1

2

3

4

1 2 3 4 5 1
2

5

3
4

5

1

2

3

4

1 2 3

5

1

14

dim=2,dir=1dim=2,dir=1dim=2,dir=1

7

ob
je

ct
s

time

7

1816

dim=1,dir=0dim=1,dir=0dim=1,dir=0

12 13

time interval [0,8[

3
4

111097654320 1

6

5

4

3

2

1

2

time interval [8,17[time interval [17,24[

24178 23222115 2019

6
4

3 6

5

Figure 5.645: Illustration of the pick-up delivery problem

20071013 1957

P
ot

en
tia

l s
ha

pe
s

fo
r

th
e

se
co

nd
 o

bj
ec

t

s1 s2 s3 s4 s5
s6

(E)

 sid−s6 t−<0,0,0> l−<2,2,1> f−<>>)
 sid−s5 t−<0,0,0> l−<3,1,1> f−<dim−0 dir−0, dim−0 dir−1, dim−1 dir−0, dim−1 dir−1>,
 sid−s4 t−<0,0,0> l−<2,1,1> f−<dim−1 dir−0, dim−1 dir−1>,
 sid−s3 t−<0,0,0> l−<1,2,1> f−<dim−0 dir−0, dim−0 dir−1>,
 sid−s2 t−<0,0,0> l−<3,2,1> f−<dim−1 dir−0, dim−1 dir−1>,
<sid−s1 t−<0,0,0> l−<2,3,1> f−<dim−0 dir−0, dim−0 dir−1>,
 oid−o6 sid−s4 x−<2,2,1> start−0 duration−1 end−1>,
 oid−o5 sid−s3 x−<1,1,1> start−0 duration−1 end−1,
 oid−o4 sid−s2 x−<4,1,1> start−0 duration−1 end−1,
 oid−o3 sid−s2 x−<1,2,1> start−0 duration−1 end−1,
 oid−o2 sid−s1 x−<3,4,1> start−0 duration−1 end−1,
<oid−o1 sid−s1 x−<1,4,1> start−0 duration−1 end−1,

visible(3, {0,1,2}, <dim−0 dir−0, dim−0 dir−1, dim−1 dir−0, dim−1 dir−1>,

(F)

P
ot

en
tia

l s
ha

pe
 fo

r
th

e
th

ird
 o

bj
ec

t

(C)(B)(A)P
ot

en
tia

l s
ha

pe
s

fo
r

th
e

fir
st

 o
bj

ec
t

S
ha

pe
 o

f t
he

 fo
ur

th
 o

bj
ec

t

(D)

o4

o2

o3 o6

o1

o5

Figure 5.646: Illustration of the pallet loading problem

1958 MAX ID,SUM,PRODUCT

5.380 weightedpartial alldiff

DESCRIPTION LINKS GRAPH

Origin [381, page 71]

Constraint weighted partial alldiff(VARIABLES, UNDEFINED, VALUES, COST)

Synonyms weighted partial alldifferent, weighted partial alldistinct, wpa.

Arguments VARIABLES : collection(var−dvar)
UNDEFINED : int

VALUES : collection(val−int, weight−int)
COST : dvar

Restrictions required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, weight])
in attr(VARIABLES, var, VALUES, val)
distinct(VALUES, val)

Purpose

All variables of theVARIABLES collection that are not assigned to valueUNDEFINED
must have pairwise distinct values from theval attribute of theVALUES collection. In
additionCOST is the sum of theweight attributes associated with the values assigned to
the variables ofVARIABLES. Within theVALUES collection, valueUNDEFINED must be
explicitly defined with a weight of0.

Example

〈

var− 4,
var− 0,
var− 1,
var− 2,
var− 0,
var− 0

〉

, 0,

〈

val− 0 weight− 0,
val− 1 weight− 2,
val− 2 weight−−1,
val− 4 weight− 7,
val− 5 weight−−8,
val− 6 weight− 2

〉

, 8

Theweighted partial alldiff constraint holds since:

• No value, except valueUNDEFINED = 0, is used more than once.

• COST = 8 is equal to the sum of the weights2, −1 and7 of the values1, 2 and4
assigned to the variables ofVARIABLES = 〈4, 0, 1, 2, 0, 0〉.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20040814 1959

Typical |VARIABLES| > 0
atleast(1, VARIABLES, UNDEFINED)
|VARIABLES| ≤ |VALUES|+ 2

Symmetries • Items ofVARIABLES arepermutable.

• Items ofVALUES arepermutable.

• All occurrences of two distinct values inVARIABLES.var or VALUES.val that are
both different fromUNDEFINED can beswapped; all occurrences of a value in
VARIABLES.var or VALUES.val that is different fromUNDEFINED can berenamed
to any unused value that is also different fromUNDEFINED.

Arg. properties
Functional dependency: COST determined byVARIABLES andVALUES.

Usage In his PhD thesis [381, pages 71–72], Sven Thiel describes the following three potential
scenarios of theweighted partial alldiff constraint:

• Given a set of tasks (i.e., the items of theVARIABLES collection), assign to each task a
resource (i.e., an item of theVALUES collection). Except for the resource associated
with value UNDEFINED, every resource can be used at most once. The cost of a
resource is independent from the task to which the resource is assigned. The cost of
valueUNDEFINED is equal to0. The total costCOST of an assignmentcorresponds
to the sum of the costs of the resources effectively assigned to the tasks.Finally we
impose an upper bound on the total cost.

• Given a set of persons (i.e., the items of theVARIABLES collection), select for each
person an offer (i.e., an item of theVALUES collection). Except for the offer associ-
ated with valueUNDEFINED, every offer should be selected at most once. The profit
associated with an offer is independent from the person that selects the offer. The
profit of valueUNDEFINED is equal to0. The total benefitCOST is equal to the sum
of the profits of the offers effectively selected. In addition we impose a lower bound
on the total benefit.

• The last scenario deals with an application to an over-constraint problem involving
thealldifferent constraint. Allowing some variables to take an ”undefined” value
is done by setting all weights of all the values different fromUNDEFINED to 1. As
a consequence all variables assigned to a value different fromUNDEFINED will have
to take distinct values. TheCOST variable allows to control the number of such
variables.

Remark It was shown in [381, page 104] that, finding out whether the
weighted partial alldiff constraint has a solution or not is NP-hard. This was
achieved by reduction fromsubset sum.

Algorithm A filtering algorithm is given in [381, pages 73–104]. After showing that, deciding whether
the weighted partial alldiff has a solution is NP-complete, [381, pages 105–106]
gives the following results of his filtering algorithm with respect to consistency under the
3 scenarios previously described:

• For scenario1, if there is no restriction of the lower bound of theCOST variable,
the filtering algorithm achievesarc-consistencyfor all variables of theVARIABLES
collection (but not for theCOST variable itself).

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

1960 MAX ID,SUM,PRODUCT

• For scenario2, if there is no restriction of the upper bound of theCOST variable,
the filtering algorithm achievesarc-consistencyfor all variables of theVARIABLES
collection (but not for theCOST variable itself).

• Finally, for scenario3, the filtering algorithm achievesarc-consistencyfor all vari-
ables of theVARIABLES collection as well as for theCOST variable.

See also attached to cost variant:alldifferent, alldifferent except 0.

common keyword: global cardinality with costs (weighted assignment),
minimum weight alldifferent (cost filtering constraint,weighted assignment),
soft alldifferent var (soft constraint),
sum of weights of distinct values (weighted assignment).

Keywords application area: assignment.

characteristic of a constraint: all different, joker value.

complexity: subset sum.

constraint type: soft constraint, relaxation.

filtering: cost filtering constraint.

modelling: functional dependency.

problems: weighted assignment.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20040814 1961

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→collection(variables, values)

Arc arity 2

Arc constraint(s) • variables.var 6= UNDEFINED

• variables.var = values.val

Graph property(ies) • MAX ID≤ 1
• SUM(VALUES, weight) = COST

Graph model Parts (A) and (B) of Figure5.647respectively show the initial and final graph associated
with theExample slot. Since we also use theSUM graph property we show the vertices
of the final graph from which we compute the total cost in a box.

VARIABLES

VALUES

1

1234 56

2 3456

SUM(VALUES,weight)=2-1+7=8

1:4

4:4,7

3:1

2:1,2

4:2

3:2,-1

(A) (B)

Figure 5.647: Initial and final graph of theweighted partial alldiff constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1962 AUTOMATON

5.381 xor

DESCRIPTION LINKS AUTOMATON

Origin Logic

Constraint xor(VAR, VARIABLES)

Synonym rel.

Arguments VAR : dvar

VARIABLES : collection(var−dvar)

Restrictions VAR ≥ 0
VAR ≤ 1
|VARIABLES| = 2
required(VARIABLES, var)
VARIABLES.var ≥ 0
VARIABLES.var ≤ 1

Purpose
Let VARIABLES be a collection of0-1 variablesVAR1, VAR2. EnforceVAR = (VAR1 6=
VAR2).

Example (0, 〈0, 0〉)
(1, 〈0, 1〉)
(1, 〈1, 0〉)
(0, 〈1, 1〉)

Symmetry Items ofVARIABLES arepermutable.

Arg. properties
Functional dependency: VAR determined byVARIABLES.

Systems reifiedXor in Choco, rel in Gecode, xorbool in JaCoP, #\ in SICStus.

See also common keyword:and, equivalent, imply, nand, nor, or (Boolean constraint).

Keywords characteristic of a constraint: automaton, automaton without counters,
reified automaton constraint.

constraint arguments:pure functional dependency.

constraint network structure: Berge-acyclic constraint network.

constraint type: Boolean constraint.

filtering: arc-consistency.

modelling: functional dependency.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelBool.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/XorBool.html
http://www.jacop.eu/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20051226 1963

Automaton Figure5.648depicts the automaton associated with thexor constraint. To the first argu-
mentVAR of thexor constraint corresponds the first signature variable. To each variable
VARi of the second argumentVARIABLES of thexor constraint corresponds the next signa-
ture variable. There is no signature constraint.

j

VAR =0

2
VAR =0

2
VAR =1

1
VAR =0

1
VAR =1

1
VAR =1

s

t

k l

VAR=0 VAR=1

i

1

Figure 5.648: Automaton of thexor constraint

VAR
1

Q1Q =s0

VAR
2

Q =t3Q2

VAR

Figure 5.649: Hypergraph of the reformulation corresponding to the automaton of the
xor constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1964 AUTOMATON

Appendix A

Legend for the Description

This section provides the list ofrestrictions, of arc generators, of graph parameters
and ofset generatorssorted in alphabetic order with the page where they are defined.

1965

1966 APPENDIX A. LEGEND FOR THE DESCRIPTION

Restrictions :

• Term1 Comparison Term2 p. 14

• distinct p. 11

• in attr p. 10

• in list p. 10

• increasing seq p. 11

• non increasing size p. 12

• required p. 12

• require at least p. 13

• same size p. 13

Arc generators :

• CHAIN p. 53

• CIRCUIT p. 53

• CLIQUE p. 53

• CLIQUE(C) p. 54

• CYCLE p. 54

• GRID p. 54

• LOOP p. 54

• PATH p. 54

• PATH 1 p. 55

• PATH N p. 55

• PRODUCT p. 55

• PRODUCT (C) p. 55

• SELF p. 55

• SYMMETRIC PRODUCT p. 55

• SYMMETRIC PRODUCT (C) p. 55

• VOID p. 56

Graph parameters :

• DISTANCE p. 69

• MAX DRG p. 60

• MAX ID p. 60

• MAX NCC p. 61

• MAX NSCC p. 61

• MAX OD, p. 61

• MIN DRG p. 61

• MIN ID p. 61

• MIN NCC p. 62

• MIN NSCC p. 62

• MIN OD p. 62

• NARC p. 62

• NARC NO LOOP p. 63

• NCC p. 63

• NSCC p. 63

• NSINK p. 63

• NSINK NSOURCE p. 64

• NSOURCE p. 64

• NTREE p. 64

• NVERTEX p. 65

• ORDER p. 65

• PATH FROM TO p. 66

• PROD p. 67

• RANGE p. 67

• RANGE DRG p. 65

• RANGE NCC p. 65

• RANGE NSCC p. 65

• SUM p. 68

• SUM WEIGHT ARC p. 69

Set generators :

• ALL VERTICES p. 75

• CC p. 75

• PATH LENGTH p. 75

• PRED p. 75

• SUCC p. 75

Appendix B

Electronic Constraint Catalogue

Contents
B.1 absvalue . 1977
B.2 all differ from at least k pos 1978
B.3 all equal . 1981
B.4 all incomparable . 1983
B.5 all min dist . 1986
B.6 alldifferent . 1988
B.7 alldifferent betweensets. 1991
B.8 alldifferent consecutivevalues 1993
B.9 alldifferent cst . 1995
B.10 alldifferent except0 . 1997
B.11 alldifferent interval . 2000
B.12 alldifferent modulo . 2002
B.13 alldifferent on intersection 2004
B.14 alldifferent partition . 2007
B.15 alldifferent samevalue . 2009
B.16 allperm . 2011
B.17 among. 2013
B.18 amongdiff 0 . 2016
B.19 amonginterval . 2019
B.20 amonglow up . 2022
B.21 amongmodulo . 2026
B.22 amongseq . 2029
B.23 amongvar . 2032
B.24 and . 2035
B.25 arith . 2037
B.26 arith or . 2040
B.27 arith sliding . 2045

1967

1968 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.28 assignand counts . 2050
B.29 assignand nvalues . 2053
B.30 atleast . 2056
B.31 atleastnvalue . 2059
B.32 atleastnvector . 2061
B.33 atmost. 2063
B.34 atmost1 . 2065
B.35 atmostnvalue . 2066
B.36 atmostnvector . 2068
B.37 balance . 2070
B.38 balancecycle . 2072
B.39 balanceinterval . 2074
B.40 balancemodulo . 2076
B.41 balancepartition . 2078
B.42 balancepath . 2080
B.43 balancetree . 2083
B.44 betweenmin max . 2086
B.45 bin packing . 2089
B.46 bin packing capa. 2091
B.47 binary tree . 2093
B.48 bipartite . 2095
B.49 calendar . 2096
B.50 cardinality atleast . 2100
B.51 cardinality atmost . 2103
B.52 cardinality atmost partition 2106
B.53 change . 2108
B.54 changecontinuity . 2111
B.55 changepair . 2119
B.56 changepartition . 2128
B.57 changevectors . 2130
B.58 circuit . 2133
B.59 circuit cluster . 2135
B.60 circular change. 2137
B.61 clauseand . 2140
B.62 clauseor . 2142
B.63 clique . 2144
B.64 coloredmatrix . 2146
B.65 colouredcumulative . 2149
B.66 colouredcumulatives . 2154
B.67 common. 2160
B.68 commoninterval . 2162
B.69 commonmodulo . 2165
B.70 commonpartition . 2167

1969

B.71 compareand count . 2170
B.72 condlex cost . 2173
B.73 condlex greater . 2175
B.74 condlex greatereq . 2177
B.75 condlex less . 2179
B.76 condlex lesseq . 2181
B.77 connectpoints . 2183
B.78 connected. 2186
B.79 consecutivegroups of ones 2187
B.80 consecutivevalues . 2190
B.81 containssboxes. 2192
B.82 correspondence. 2195
B.83 count . 2197
B.84 counts. 2200
B.85 coveredbysboxes. 2203
B.86 coverssboxes. 2207
B.87 crossing. 2211
B.88 cumulative . 2213
B.89 cumulative convex . 2216
B.90 cumulative product . 2218
B.91 cumulative two d . 2222
B.92 cumulative with level of priority 2225
B.93 cumulatives. 2228
B.94 cutset . 2232
B.95 cycle. 2234
B.96 cyclecard on path . 2236
B.97 cycleor accessibility . 2238
B.98 cycleresource . 2240
B.99 cyclic change . 2243
B.100 cyclicchangejoker . 2247
B.101 dag . 2252
B.102 decreasing . 2254
B.103 deepestvalley . 2256
B.104 derangement . 2258
B.105 differ from at least k pos . 2260
B.106 diffn . 2263
B.107 diffn column . 2267
B.108 diffn include . 2269
B.109 discrepancy. 2272
B.110 disj . 2274
B.111 disjoint . 2276
B.112 disjoint sboxes . 2278
B.113 disjoint tasks . 2282

1970 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.114 disjunctive . 2285
B.115 disjunctive or sameend . 2287
B.116 disjunctive or samestart . 2289
B.117 distance. 2291
B.118 distancebetween . 2292
B.119 distancechange . 2298
B.120 divisible . 2304
B.121 divisible or . 2305
B.122 domreachability . 2306
B.123 domain . 2308
B.124 domainconstraint . 2310
B.125 elem. 2313
B.126 elemfrom to . 2316
B.127 element . 2319
B.128 elementgreatereq . 2322
B.129 elementlesseq . 2325
B.130 elementmatrix . 2328
B.131 elementproduct . 2332
B.132 elementsparse . 2334
B.133 elementn . 2338
B.134 elements . 2341
B.135 elementsalldifferent . 2343
B.136 elementssparse . 2345
B.137 eq . 2348
B.138 eqcst . 2349
B.139 eqset . 2350
B.140 equalsboxes . 2351
B.141 equivalent. 2354
B.142 exactly . 2356
B.143 gcd . 2358
B.144 geost. 2359
B.145 geosttime . 2362
B.146 geq . 2365
B.147 geqcst . 2366
B.148 globalcardinality . 2367
B.149 globalcardinality low up . 2370
B.150 globalcardinality low up no loop 2373
B.151 globalcardinality no loop . 2377
B.152 globalcardinality with costs 2380
B.153 globalcontiguity . 2384
B.154 golomb . 2387
B.155 graph crossing . 2389
B.156 graph isomorphism . 2391

1971

B.157 group . 2393
B.158 group skip isolated item . 2399
B.159 gt . 2405
B.160 highestpeak . 2406
B.161 imply . 2408
B.162 in . 2410
B.163 in interval . 2412
B.164 in interval reified . 2414
B.165 in intervals . 2415
B.166 in relation . 2417
B.167 in samepartition . 2419
B.168 in set . 2422
B.169 incomparable. 2423
B.170 increasing. 2425
B.171 increasingglobal cardinality 2428
B.172 increasingnvalue . 2438
B.173 increasingnvalue chain . 2446
B.174 increasingsum . 2448
B.175 indexedsum . 2449
B.176 inflexion. 2452
B.177 insidesboxes . 2454
B.178 int value precede. 2457
B.179 int value precedechain . 2460
B.180 interval and count . 2467
B.181 interval and sum . 2471
B.182 inverse . 2474
B.183 inverseoffset . 2476
B.184 inverseset . 2478
B.185 inversewithin range . 2480
B.186 ith pos different from 0 . 2481
B.187 k alldifferent . 2483
B.188 k cut . 2485
B.189 k disjoint . 2487
B.190 k same . 2489
B.191 k sameinterval . 2491
B.192 k samemodulo . 2493
B.193 k samepartition . 2495
B.194 k usedby . 2497
B.195 k usedby interval . 2499
B.196 k usedby modulo . 2501
B.197 k usedby partition . 2503
B.198 lengthfirst sequence. 2505
B.199 length last sequence. 2508

1972 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.200 leq . 2511
B.201 leqcst . 2512
B.202 lex2 . 2513
B.203 lexalldifferent . 2514
B.204 lexbetween . 2516
B.205 lexchain less . 2521
B.206 lexchain lesseq . 2523
B.207 lexdifferent . 2525
B.208 lexequal . 2528
B.209 lexgreater . 2531
B.210 lexgreatereq . 2534
B.211 lex less . 2537
B.212 lex lesseq . 2540
B.213 lex lesseqallperm . 2543
B.214 link set to booleans . 2544
B.215 longestchange . 2546
B.216 lt . 2549
B.217 map . 2550
B.218 maxindex . 2552
B.219 maxn . 2554
B.220 maxnvalue . 2556
B.221 maxsizeset of consecutivevar 2558
B.222 maximum . 2560
B.223 maximum modulo . 2562
B.224 meetsboxes. 2564
B.225 min index . 2568
B.226 min n . 2570
B.227 min nvalue . 2572
B.228 min sizeset of consecutivevar 2574
B.229 minimum . 2576
B.230 minimum except0 . 2578
B.231 minimum greater than . 2581
B.232 minimum modulo . 2584
B.233 minimum weight alldifferent 2586
B.234 multi global contiguity . 2588
B.235 multi inter distance . 2590
B.236 nand. 2592
B.237 nclass . 2594
B.238 neq . 2596
B.239 neqcst . 2597
B.240 nequivalence . 2598
B.241 nextelement . 2600
B.242 nextgreater element . 2604

1973

B.243 ninterval . 2606
B.244 nopeak . 2608
B.245 novalley . 2610
B.246 nonoverlap sboxes . 2612
B.247 nor . 2615
B.248 not all equal . 2617
B.249 not in . 2619
B.250 npair . 2621
B.251 nsetof consecutivevalues . 2623
B.252 nvalue. 2625
B.253 nvalueon intersection . 2627
B.254 nvalues . 2629
B.255 nvaluesexcept0 . 2631
B.256 nvector . 2633
B.257 nvectors. 2635
B.258 nvisiblefrom end . 2637
B.259 nvisiblefrom start . 2639
B.260 openalldifferent . 2641
B.261 openamong . 2642
B.262 openatleast . 2644
B.263 openatmost . 2646
B.264 openglobal cardinality . 2648
B.265 openglobal cardinality low up 2650
B.266 openmaximum . 2652
B.267 openminimum . 2654
B.268 oppositesign . 2656
B.269 or . 2657
B.270 orchard . 2659
B.271 orderedatleast nvector . 2661
B.272 orderedatmost nvector . 2663
B.273 orderedglobal cardinality 2665
B.274 orderednvector . 2667
B.275 orth link ori siz end . 2669
B.276 orth on the ground . 2671
B.277 orth on top of orth . 2672
B.278 orths are connected . 2674
B.279 overlapsboxes . 2676
B.280 path . 2679
B.281 path from to . 2681
B.282 pattern . 2683
B.283 peak. 2690
B.284 period . 2692
B.285 period except0 . 2694

1974 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.286 period vectors . 2696
B.287 permutation . 2698
B.288 placein pyramid . 2700
B.289 polyomino . 2702
B.290 power . 2704
B.291 precedence. 2706
B.292 product ctr . 2708
B.293 proper forest . 2710
B.294 rangectr . 2712
B.295 relaxedsliding sum . 2714
B.296 remainder . 2717
B.297 roots. 2718
B.298 same. 2719
B.299 sameand global cardinality 2721
B.300 sameand global cardinality low up 2724
B.301 sameintersection . 2727
B.302 sameinterval . 2730
B.303 samemodulo . 2732
B.304 samepartition . 2734
B.305 samesign . 2737
B.306 scalarproduct . 2738
B.307 sequencefolding . 2741
B.308 setvalue precede. 2744
B.309 shift . 2745
B.310 signof . 2749
B.311 sizemax seqalldifferent . 2750
B.312 sizemax starting seqalldifferent 2752
B.313 sliding card skip0 . 2755
B.314 sliding distribution . 2758
B.315 sliding sum . 2761
B.316 sliding time window . 2764
B.317 sliding time window from start 2766
B.318 sliding time window sum . 2769
B.319 smooth . 2776
B.320 softall equal max var . 2779
B.321 softall equal min ctr . 2781
B.322 softall equal min var . 2783
B.323 softalldifferent ctr . 2785
B.324 softalldifferent var . 2787
B.325 softcumulative . 2789
B.326 softsameinterval var . 2791
B.327 softsamemodulo var . 2794
B.328 softsamepartition var . 2796

1975

B.329 softsamevar . 2799
B.330 softusedby interval var . 2801
B.331 softusedby modulo var . 2804
B.332 softusedby partition var . 2806
B.333 softusedby var . 2809
B.334 someequal . 2812
B.335 sort . 2814
B.336 sort permutation . 2816
B.337 stablecompatibility . 2818
B.338 stageelement . 2820
B.339 stretchcircuit . 2823
B.340 stretchpath . 2826
B.341 stretchpath partition . 2830
B.342 strict lex2 . 2836
B.343 strictly decreasing . 2837
B.344 strictly increasing . 2840
B.345 strongly connected. 2842
B.346 subgraphisomorphism . 2843
B.347 sum . 2845
B.348 sumctr . 2847
B.349 sumcubesctr . 2849
B.350 sumfree . 2851
B.351 sumof increments . 2852
B.352 sumof weights of distinct values 2854
B.353 sumset . 2857
B.354 sumsquaresctr . 2859
B.355 symmetric . 2861
B.356 symmetricalldifferent . 2862
B.357 symmetricalldifferent except0 2864
B.358 symmetriccardinality . 2866
B.359 symmetricgcc . 2868
B.360 temporal path . 2870
B.361 tour . 2873
B.362 track . 2875
B.363 tree . 2879
B.364 treerange . 2881
B.365 treeresource . 2885
B.366 twin . 2889
B.367 two layer edgecrossing . 2891
B.368 two orth are in contact . 2894
B.369 two orth column . 2897
B.370 two orth do not overlap . 2899
B.371 two orth include . 2902

1976 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.372 usedby . 2904

B.373 usedby interval . 2906

B.374 usedby modulo . 2908

B.375 usedby partition . 2910

B.376 uses . 2913

B.377 valley . 2915

B.378 veceq tuple . 2917

B.379 visible . 2919

B.380 weightedpartial alldiff . 2924

B.381 xor . 2928

B.382 Utilities . 2930

1977

B.1 absvalue

♦ META-DATA:

ctr_predefined(abs_value).

ctr_date(abs_value,[’20100821’]).

ctr_origin(abs_value,’Arithmetic.’,[]).

ctr_usual_name(abs_value,abs).

ctr_synonyms(abs_value,[absolute_value]).

ctr_arguments(abs_value,[’Y’-dvar,’X’-dvar]).

ctr_restrictions(abs_value,[’Y’>=0]).

ctr_example(abs_value,abs_value(8,-8)).

ctr_eval(abs_value,[builtin(abs_value_b)]).

ctr_pure_functional_dependency(abs_value,[]).

ctr_functional_dependency(abs_value,1,[2]).

abs_value_b(Y,X) :-
check_type(dvar,Y),
check_type(dvar,X),
X#>=0#/\Y#=X#\/X#<0#/\X+Y#=0.

1978 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.2 all differ from at least k pos

♦ META-DATA:

ctr_date(
all_differ_from_at_least_k_pos,
[’20030820’,’20040530’,’20060803’]).

ctr_origin(
all_differ_from_at_least_k_pos,
Inspired by \cite{Frutos97}.,
[]).

ctr_types(
all_differ_from_at_least_k_pos,
[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
all_differ_from_at_least_k_pos,
[’K’-int,’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
all_differ_from_at_least_k_pos,
[required(’VECTOR’,var),

size(’VECTOR’)>=1,
size(’VECTOR’)>=’K’,
’K’>=0,
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
all_differ_from_at_least_k_pos,
all_differ_from_at_least_k_pos(

2,
[[vec-[[var-2],[var-5],[var-2],[var-0]]],

[vec-[[var-3],[var-6],[var-2],[var-1]]],
[vec-[[var-3],[var-6],[var-1],[var-0]]]])).

ctr_typical(
all_differ_from_at_least_k_pos,
[’K’>0,size(’VECTOR’)<size(’VECTORS’),size(’VECTORS ’)>1]).

ctr_exchangeable(
all_differ_from_at_least_k_pos,
[items(’VECTORS’,all),items_sync(’VECTORS’ˆvec,all)]).

1979

ctr_graph(
all_differ_from_at_least_k_pos,
[’VECTORS’],
2,
[’CLIQUE’(=\=)>>collection(vectors1,vectors2)],
[differ_from_at_least_k_pos(

K,
vectors1ˆvec,
vectors2ˆvec)],

[’NARC’=size(’VECTORS’) * size(’VECTORS’)-size(’VECTORS’)],
[’NO_LOOP’,’SYMMETRIC’]).

ctr_eval(
all_differ_from_at_least_k_pos,
[reformulation(all_differ_from_at_least_k_pos_r)]).

ctr_contractible(
all_differ_from_at_least_k_pos,
[],
VECTORS,
any).

ctr_extensible(
all_differ_from_at_least_k_pos,
[],
’VECTORS’ˆvec,
any).

all_differ_from_at_least_k_pos_r(K,VECTORS) :-
integer(K),
K>=0,
all_differ_from_at_least_k_pos_rr(K,VECTORS).

all_differ_from_at_least_k_pos_rr(_31026,[]) :-
!.

all_differ_from_at_least_k_pos_rr(K,[[_31035-VECTOR 1]|R]) :-
length(VECTOR1,N),
N>=K,
all_differ_from_at_least_k_pos1(R,VECTOR1,K),
all_differ_from_at_least_k_pos_rr(K,R).

all_differ_from_at_least_k_pos1([],_31024,_31025).

all_differ_from_at_least_k_pos1([[_31034-VECTOR2]|R],VECTOR1,K) :-
eval(differ_from_at_least_k_pos(K,VECTOR1,VECTOR2)) ,

1980 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

all_differ_from_at_least_k_pos1(R,VECTOR1,K).

1981

B.3 all equal

♦ META-DATA:

ctr_date(all_equal,[’20081005’,’20100418’]).

ctr_origin(
all_equal,
Derived from %c,
[soft_all_equal_min_ctr]).

ctr_synonyms(all_equal,[rel]).

ctr_arguments(all_equal,[’VARIABLES’-collection(var -dvar)]).

ctr_restrictions(
all_equal,
[required(’VARIABLES’,var),size(’VARIABLES’)>0]).

ctr_example(
all_equal,
all_equal([[var-5],[var-5],[var-5],[var-5]])).

ctr_typical(all_equal,[size(’VARIABLES’)>2]).

ctr_exchangeable(
all_equal,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
all_equal,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NARC’=size(’VARIABLES’)-1],
[]).

ctr_eval(
all_equal,
[checker(all_equal_c),reformulation(all_equal_r)]).

ctr_contractible(all_equal,[],’VARIABLES’,any).

all_equal_c(VARIABLES) :-

1982 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
all_equal2(VARS).

all_equal_r(VARIABLES) :-
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
all_equal1(VARS).

all_equal1([]).

all_equal1([_26890]) :-
!.

all_equal1([V1,V2|R]) :-
V1#=V2,
all_equal1([V2|R]).

all_equal2([]).

all_equal2([_26890]) :-
!.

all_equal2([V,V|R]) :-
all_equal2([V|R]).

1983

B.4 all incomparable

♦ META-DATA:

ctr_date(all_incomparable,[’20120202’]).

ctr_origin(
all_incomparable,
Inspired by incomparable rectangles.,
[]).

ctr_synonyms(all_incomparable,[all_incomparables]).

ctr_types(all_incomparable,[’VECTOR’-collection(var -dvar)]).

ctr_arguments(
all_incomparable,
[’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
all_incomparable,
[required(’VECTOR’,var),

size(’VECTOR’)>=1,
required(’VECTORS’,vec),
size(’VECTORS’)>=1,
same_size(’VECTORS’,vec)]).

ctr_example(
all_incomparable,
all_incomparable(

[[vec-[[var-16],[var-2]]],
[vec-[[var-4],[var-11]]],
[vec-[[var-5],[var-10]]]])).

ctr_typical(
all_incomparable,
[size(’VECTOR’)>1,

size(’VECTORS’)>1,
size(’VECTORS’)>size(’VECTOR’)]).

ctr_exchangeable(all_incomparable,[items(’VECTORS’, all)]).

ctr_graph(
all_incomparable,
[’VECTORS’],
2,

1984 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[’CLIQUE’(=\=)>>collection(vectors1,vectors2)],
[incomparable(vectors1ˆvec,vectors2ˆvec)],
[’NARC’=size(’VECTORS’) * size(’VECTORS’)-size(’VECTORS’)],
[’NO_LOOP’,’SYMMETRIC’]).

ctr_eval(all_incomparable,[reformulation(all_incomp arable_r)]).

ctr_contractible(all_incomparable,[],’VECTORS’,any) .

all_incomparable_r(VECTORS) :-
collection(VECTORS,[col([dvar])]),
same_size(VECTORS),
get_attr11(VECTORS,VECTS),
VECTS=[VEC|_27348],
length(VEC,N),
N>=1,
all_incomparable(VECTS,N).

all_incomparable([_27315],_27314) :-
!.

all_incomparable(_27313,1) :-
!,
fail.

all_incomparable(VECTS,_27314) :-
all_incomparable1(VECTS).

all_incomparable1([]).

all_incomparable1([_27311]).

all_incomparable1([V|R]) :-
all_incomparable2(R,V),
all_incomparable1(R).

all_incomparable2([],_27311).

all_incomparable2([V|R],U) :-
all_incomparable3(U,V),
all_incomparable2(R,U).

all_incomparable3([U1,U2],[V1,V2]) :-
!,
U1#<V1#/\U2#>V2#\/U1#>V1#/\U2#<V2.

1985

all_incomparable3(U,V) :-
length(U,N),
length(V,N),
N>2,
length(PU,N),
length(PV,N),
domain(PU,1,N),
domain(PV,1,N),
get_minimum(U,MinU),
get_maximum(U,MaxU),
get_minimum(V,MinV),
get_maximum(V,MaxV),
length(SU,N),
length(SV,N),
domain(SU,MinU,MaxU),
domain(SV,MinV,MaxV),
sorting(U,PU,SU),
sorting(V,PV,SV),
all_incomparable4(SU,SV,Or1),
call(Or1),
all_incomparable4(SV,SU,Or2),
call(Or2).

all_incomparable4([],[],0).

all_incomparable4([U|R],[V|S],U#>V#\/T) :-
all_incomparable4(R,S,T).

1986 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.5 all min dist

♦ META-DATA:

ctr_date(all_min_dist,[’20050508’,’20060803’]).

ctr_origin(all_min_dist,’\\cite{Regin97}’,[]).

ctr_synonyms(all_min_dist,[minimum_distance,inter_d istance]).

ctr_arguments(
all_min_dist,
[’MINDIST’-int,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
all_min_dist,
[’MINDIST’>0,

size(’VARIABLES’)<2#\/’MINDIST’<range(’VARIABLES’ˆv ar),
required(’VARIABLES’,var)]).

ctr_example(
all_min_dist,
all_min_dist(2,[[var-5],[var-1],[var-9],[var-3]])).

ctr_typical(all_min_dist,[’MINDIST’>1,size(’VARIABL ES’)>1]).

ctr_exchangeable(
all_min_dist,
[vals([’MINDIST’],int(>=(1)),>,dontcare,dontcare),

items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,in),
translate([’VARIABLES’ˆvar])]).

ctr_graph(
all_min_dist,
[’VARIABLES’],
2,
[’CLIQUE’(<)>>collection(variables1,variables2)],
[abs(variables1ˆvar-variables2ˆvar)>=’MINDIST’],
[’NARC’=size(’VARIABLES’) * (size(’VARIABLES’)-1)/2],
[’ACYCLIC’,’NO_LOOP’]).

ctr_eval(all_min_dist,[reformulation(all_min_dist_r)]).

ctr_contractible(all_min_dist,[],’VARIABLES’,any).

1987

all_min_dist_r(MINDIST,[]) :-
!,
integer(MINDIST),
MINDIST>0.

all_min_dist_r(MINDIST,VARIABLES) :-
integer(MINDIST),
MINDIST>0,
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
length(VARS,N),
(N>1 ->

list_dvar_range(VARS,RANGE),
MINDIST#<RANGE,
all_min_dist1(VARIABLES,MINDIST)

; true
).

all_min_dist1([],_35230).

all_min_dist1([[_35239-VAR1]|R],MINDIST) :-
all_min_dist2(R,VAR1,MINDIST),
all_min_dist1(R,MINDIST).

all_min_dist2([],_35230,_35231).

all_min_dist2([[_35240-VAR2]|R],VAR1,MINDIST) :-
abs(VAR1-VAR2)#>=MINDIST,
all_min_dist2(R,VAR1,MINDIST).

1988 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.6 alldifferent

♦ META-DATA:

ctr_date(
alldifferent,
[20000128,

20030820,
20040530,
20060803,
20081227,
20090521]).

ctr_origin(alldifferent,’\\cite{Lauriere78}’,[]).

ctr_synonyms(
alldifferent,
[alldiff,

alldistinct,
distinct,
bound_alldifferent,
bound_alldiff,
bound_distinct,
rel]).

ctr_arguments(alldifferent,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(alldifferent,[required(’VARIABLES’ ,var)]).

ctr_example(
alldifferent,
alldifferent([[var-5],[var-1],[var-9],[var-3]])).

ctr_typical(alldifferent,[size(’VARIABLES’)>1]).

ctr_exchangeable(
alldifferent,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
alldifferent,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],

1989

[’MAX_NSCC’=<1],
[’ONE_SUCC’]).

ctr_eval(
alldifferent,
[checker(alldifferent_c),

builtin(alldifferent_b),
reformulation(alldifferent_r1),
reformulation(alldifferent_r2)]).

ctr_contractible(alldifferent,[],’VARIABLES’,any).

ctr_sol(alldifferent,’A000142’,[1,2,6,24,120,720,50 40]).

alldifferent_c(VARIABLES) :-
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
sort(VARS,SVARS),
length(VARS,N),
length(SVARS,N).

alldifferent_b(VARIABLES) :-
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
all_different(VARS).

alldifferent_r1(VARIABLES) :-
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
get_minimum(VARS,MIN),
get_maximum(VARS,MAX),
length(VARS,N),
length(L,N),
domain(L,MIN,MAX),
gen_collection(L,var,SORTED_VARIABLES),
eval(sort(VARIABLES,SORTED_VARIABLES)),
eval(strictly_increasing(SORTED_VARIABLES)).

alldifferent_r2(VARIABLES) :-
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
get_minimum(VARS,MIN),
get_maximum(VARS,MAX),
alldifferent_r20(MIN,MAX,VARS).

alldifferent_r20(L,MAX,_67682) :-

1990 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

L>MAX,
!.

alldifferent_r20(L,MAX,VARS) :-
alldifferent_r21(L,MAX,VARS),
L1 is L+1,
alldifferent_r20(L1,MAX,VARS).

alldifferent_r21(L,U,_67682) :-
L>U,
!.

alldifferent_r21(L,U,VARS) :-
alldifferent_r22(VARS,L,U,T),
S is U-L+1,
call(T#=<S),
U1 is U-1,
alldifferent_r21(L,U1,VARS).

alldifferent_r22([],_67681,_67682,0) :-
!.

alldifferent_r22([Vi|R],L,U,Bilu+S) :-
Vi in L..U#<=>Bilu,
alldifferent_r22(R,L,U,S).

1991

B.7 alldifferent betweensets

♦ META-DATA:

ctr_date(
alldifferent_between_sets,
[’20030820’,’20051008’,’20060803’]).

ctr_origin(alldifferent_between_sets,’ILOG’,[]).

ctr_synonyms(
alldifferent_between_sets,
[all_null_intersect,

alldiff_between_sets,
alldistinct_between_sets,
alldiff_on_sets,
alldistinct_on_sets,
alldifferent_on_sets]).

ctr_arguments(
alldifferent_between_sets,
[’VARIABLES’-collection(var-svar)]).

ctr_restrictions(
alldifferent_between_sets,
[required(’VARIABLES’,var)]).

ctr_example(
alldifferent_between_sets,
alldifferent_between_sets(

[[var-{3,5}],[var-{}],[var-{3}],[var-{3,5,7}]])).

ctr_typical(alldifferent_between_sets,[size(’VARIAB LES’)>2]).

ctr_exchangeable(
alldifferent_between_sets,
[items(’VARIABLES’,all)]).

ctr_graph(
alldifferent_between_sets,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[eq_set(variables1ˆvar,variables2ˆvar)],
[’MAX_NSCC’=<1],
[’ONE_SUCC’]).

1992 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_contractible(alldifferent_between_sets,[],’VARI ABLES’,any).

1993

B.8 alldifferent consecutivevalues

♦ META-DATA:

ctr_date(alldifferent_consecutive_values,[’20080618 ’]).

ctr_origin(
alldifferent_consecutive_values,
Derived from %c.,
[alldifferent]).

ctr_arguments(
alldifferent_consecutive_values,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
alldifferent_consecutive_values,
[required(’VARIABLES’,var),alldifferent(’VARIABLES’)]).

ctr_example(
alldifferent_consecutive_values,
alldifferent_consecutive_values(

[[var-5],[var-4],[var-3],[var-6]])).

ctr_typical(
alldifferent_consecutive_values,
[size(’VARIABLES’)>2]).

ctr_exchangeable(
alldifferent_consecutive_values,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],int,=\=,all,in),
translate([’VARIABLES’ˆvar])]).

ctr_graph(
alldifferent_consecutive_values,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[’TRUE’],
[’RANGE’(’VARIABLES’,var)=size(’VARIABLES’)-1],
[]).

ctr_eval(
alldifferent_consecutive_values,
[checker(alldifferent_consecutive_values_c),

1994 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

reformulation(alldifferent_consecutive_values_r)]).

alldifferent_consecutive_values_c([]) :-
!.

alldifferent_consecutive_values_c(VARIABLES) :-
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
sort(VARS,SVARS),
length(VARS,N),
length(SVARS,N),
min_member(MIN,VARS),
max_member(MAX,VARS),
N is MAX-MIN+1.

alldifferent_consecutive_values_r([]) :-
!.

alldifferent_consecutive_values_r(VARIABLES) :-
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
all_different(VARS),
minimum(MIN,VARS),
maximum(MAX,VARS),
length(VARIABLES,N),
N#=MAX-MIN+1.

1995

B.9 alldifferent cst

♦ META-DATA:

ctr_date(alldifferent_cst,[’20051104’,’20060803’]).

ctr_origin(alldifferent_cst,’\\index{CHIP|indexuse} CHIP’,[]).

ctr_synonyms(alldifferent_cst,[alldiff_cst,alldisti nct_cst]).

ctr_arguments(
alldifferent_cst,
[’VARIABLES’-collection(var-dvar,cst-int)]).

ctr_restrictions(
alldifferent_cst,
[required(’VARIABLES’,[var,cst])]).

ctr_example(
alldifferent_cst,
alldifferent_cst(

[[var-5,cst-0],
[var-1,cst-1],
[var-9,cst-0],
[var-3,cst-4]])).

ctr_typical(
alldifferent_cst,
[size(’VARIABLES’)>2,

range(’VARIABLES’ˆvar)>1,
range(’VARIABLES’ˆcst)>1]).

ctr_exchangeable(
alldifferent_cst,
[items(’VARIABLES’,all),

attrs(’VARIABLES’,[[var,cst]]),
translate([’VARIABLES’ˆvar]),
translate([’VARIABLES’ˆcst])]).

ctr_graph(
alldifferent_cst,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar+variables1ˆcst=

variables2ˆvar+variables2ˆcst],

1996 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[’MAX_NSCC’=<1],
[’ONE_SUCC’]).

ctr_eval(alldifferent_cst,[reformulation(alldiffere nt_cst_r)]).

ctr_contractible(alldifferent_cst,[],’VARIABLES’,an y).

alldifferent_cst_r(VARIABLES) :-
collection(VARIABLES,[dvar,int]),
get_attr1(VARIABLES,VARS),
get_attr2(VARIABLES,CSTS),
gen_varcst(VARS,CSTS,VARCSTS),
all_different(VARCSTS).

1997

B.10 alldifferent except0

♦ META-DATA:

ctr_date(
alldifferent_except_0,
[’20000128’,’20030820’,’20040530’,’20060803’]).

ctr_origin(
alldifferent_except_0,
Derived from %c.,
[alldifferent]).

ctr_synonyms(
alldifferent_except_0,
[alldiff_except_0,alldistinct_except_0]).

ctr_arguments(
alldifferent_except_0,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
alldifferent_except_0,
[required(’VARIABLES’,var)]).

ctr_example(
alldifferent_except_0,
alldifferent_except_0(

[[var-5],[var-0],[var-1],[var-9],[var-0],[var-3]])) .

ctr_typical(
alldifferent_except_0,
[size(’VARIABLES’)>2,

atleast(2,’VARIABLES’,0),
range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
alldifferent_except_0,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],int(=\=(0)),=\=,all,dontcare)]).

ctr_graph(
alldifferent_except_0,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],

1998 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[variables1ˆvar=\=0,variables1ˆvar=variables2ˆvar],
[’MAX_NSCC’=<1],
[]).

ctr_eval(
alldifferent_except_0,
[checker(alldifferent_except_0_c),

reformulation(alldifferent_except_0_r)]).

ctr_contractible(alldifferent_except_0,[],’VARIABLE S’,any).

alldifferent_except_0_c(VARIABLES) :-
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
filter_zeros(VARS,L),
sort(L,SL),
length(L,N),
length(SL,N).

filter_zeros([],[]) :-
!.

filter_zeros([0|R],S) :-
!,
filter_zeros(R,S).

filter_zeros([X|R],[X|S]) :-
filter_zeros(R,S).

alldifferent_except_0_r(VARIABLES) :-
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
alldifferent_except_01(VARS).

alldifferent_except_01([]).

alldifferent_except_01([_34431]) :-
!.

alldifferent_except_01([V1|R]) :-
alldifferent_except_01(R,V1),
alldifferent_except_01(R).

alldifferent_except_01([],_34428).

alldifferent_except_01([V2|R],V1) :-

1999

V1#=0#\/V2#=0#\/V1#\=V2,
alldifferent_except_01(R,V1).

2000 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.11 alldifferent interval

♦ META-DATA:

ctr_date(alldifferent_interval,[’20030820’,’2006080 3’]).

ctr_origin(
alldifferent_interval,
Derived from %c.,
[alldifferent]).

ctr_synonyms(
alldifferent_interval,
[alldiff_interval,alldistinct_interval]).

ctr_arguments(
alldifferent_interval,
[’VARIABLES’-collection(var-dvar),’SIZE_INTERVAL’-i nt]).

ctr_restrictions(
alldifferent_interval,
[required(’VARIABLES’,var),’SIZE_INTERVAL’>0]).

ctr_example(
alldifferent_interval,
alldifferent_interval([[var-2],[var-4],[var-10]],3)).

ctr_typical(
alldifferent_interval,
[size(’VARIABLES’)>2,

’SIZE_INTERVAL’>1,
’SIZE_INTERVAL’<range(’VARIABLES’ˆvar)]).

ctr_exchangeable(
alldifferent_interval,
[items(’VARIABLES’,all),

vals(
[’VARIABLES’ˆvar],
intervals(’SIZE_INTERVAL’),
=,
all,
dontcare),

vals(
[’VARIABLES’ˆvar],
intervals(’SIZE_INTERVAL’),
=\=,

2001

all,
in)]).

ctr_graph(
alldifferent_interval,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar/’SIZE_INTERVAL’=

variables2ˆvar/’SIZE_INTERVAL’],
[’MAX_NSCC’=<1],
[’ONE_SUCC’]).

ctr_eval(
alldifferent_interval,
[reformulation(alldifferent_interval_r)]).

ctr_contractible(alldifferent_interval,[],’VARIABLE S’,any).

alldifferent_interval_r(VARIABLES,SIZE_INTERVAL) :-
collection(VARIABLES,[dvar]),
integer(SIZE_INTERVAL),
SIZE_INTERVAL>0,
get_attr1(VARIABLES,VARS),
gen_quotient(VARS,SIZE_INTERVAL,QUOTVARS),
all_different(QUOTVARS).

2002 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.12 alldifferent modulo

♦ META-DATA:

ctr_date(alldifferent_modulo,[’20030820’,’20060803’]).

ctr_origin(
alldifferent_modulo,
Derived from %c.,
[alldifferent]).

ctr_synonyms(
alldifferent_modulo,
[alldiff_modulo,alldistinct_modulo]).

ctr_arguments(
alldifferent_modulo,
[’VARIABLES’-collection(var-dvar),’M’-int]).

ctr_restrictions(
alldifferent_modulo,
[required(’VARIABLES’,var),’M’>0,’M’>=size(’VARIABL ES’)]).

ctr_example(
alldifferent_modulo,
alldifferent_modulo([[var-25],[var-1],[var-14],[var -3]],5)).

ctr_typical(alldifferent_modulo,[size(’VARIABLES’)> 2,’M’>1]).

ctr_exchangeable(
alldifferent_modulo,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],mod(’M’),=,all,dontcare),
vals([’VARIABLES’ˆvar],mod(’M’),=\=,all,in)]).

ctr_graph(
alldifferent_modulo,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[’MAX_NSCC’=<1],
[’ONE_SUCC’]).

ctr_eval(
alldifferent_modulo,

2003

[reformulation(alldifferent_modulo_r)]).

ctr_contractible(alldifferent_modulo,[],’VARIABLES’ ,any).

alldifferent_modulo_r(VARIABLES,M) :-
collection(VARIABLES,[dvar]),
integer(M),
M>0,
length(VARIABLES,N),
M>=N,
get_attr1(VARIABLES,VARS),
gen_remainder(VARS,M,REMVARS),
all_different(REMVARS).

2004 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.13 alldifferent on intersection

♦ META-DATA:

ctr_date(alldifferent_on_intersection,[’20040530’,’ 20060803’]).

ctr_origin(
alldifferent_on_intersection,
Derived from %c and %c.,
[common,alldifferent]).

ctr_synonyms(
alldifferent_on_intersection,
[alldiff_on_intersection,alldistinct_on_intersectio n]).

ctr_arguments(
alldifferent_on_intersection,
[’VARIABLES1’-collection(var-dvar),

’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
alldifferent_on_intersection,
[required(’VARIABLES1’,var),required(’VARIABLES2’,v ar)]).

ctr_example(
alldifferent_on_intersection,
alldifferent_on_intersection(

[[var-5],[var-9],[var-1],[var-5]],
[[var-2],[var-1],[var-6],[var-9],[var-6],[var-2]])) .

ctr_typical(
alldifferent_on_intersection,
[size(’VARIABLES1’)>1,size(’VARIABLES2’)>1]).

ctr_exchangeable(
alldifferent_on_intersection,
[args([[’VARIABLES1’,’VARIABLES2’]]),

items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
int,
=\=,
all,
dontcare)]).

2005

ctr_graph(
alldifferent_on_intersection,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’MAX_NCC’=<2],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(
alldifferent_on_intersection,
[reformulation(alldifferent_on_intersection_r)]).

ctr_contractible(
alldifferent_on_intersection,
[],
VARIABLES1,
any).

ctr_contractible(
alldifferent_on_intersection,
[],
VARIABLES2,
any).

alldifferent_on_intersection_r(VARIABLES1,VARIABLES 2) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
alldifferent_on_intersection(VARS1,1,VARS1,VARS2).

alldifferent_on_intersection([],_37660,_37661,_3766 2).

alldifferent_on_intersection([VAR1|R1],I,VARS1,VARS 2) :-
alldifferent_on_intersection(

VARS2,
1,
VAR1,
I,
VARS1,
VARS2),

I1 is I+1,
alldifferent_on_intersection(R1,I1,VARS1,VARS2).

alldifferent_on_intersection(

2006 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[],
_37938,
_37984,
_38030,
_38076,
_38122).

alldifferent_on_intersection([VAR2|R2],J,VAR1,I,VAR S1,VARS2) :-
alldifferent_on_intersection1(VARS1,1,VAR1,I,VAR2,J),
alldifferent_on_intersection1(VARS2,1,VAR2,J,VAR1,I),
J1 is J+1,
alldifferent_on_intersection(R2,J1,VAR1,I,VARS1,VAR S2).

alldifferent_on_intersection1(
[],
_37938,
_37984,
_38030,
_38076,
_38122).

alldifferent_on_intersection1([VAR|R],K,VAR1,I,VAR2 ,J) :-
K=\=I,
!,
VAR1#=VAR2#=>VAR#\=VAR1,
K1 is K+1,
alldifferent_on_intersection1(R,K1,VAR1,I,VAR2,J).

alldifferent_on_intersection1([_37668|R],K,VAR1,I,V AR2,J) :-
K=:=I,
K1 is K+1,
alldifferent_on_intersection1(R,K1,VAR1,I,VAR2,J).

2007

B.14 alldifferent partition

♦ META-DATA:

ctr_date(alldifferent_partition,[’20030820’,’200608 03’]).

ctr_origin(
alldifferent_partition,
Derived from %c.,
[alldifferent]).

ctr_synonyms(
alldifferent_partition,
[alldiff_partition,alldistinct_partition]).

ctr_types(
alldifferent_partition,
[’VALUES’-collection(val-int)]).

ctr_arguments(
alldifferent_partition,
[’VARIABLES’-collection(var-dvar),

’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
alldifferent_partition,
[size(’VALUES’)>=1,

required(’VALUES’,val),
distinct(’VALUES’,val),
size(’VARIABLES’)=<size(’PARTITIONS’),
required(’VARIABLES’,var),
size(’PARTITIONS’)>=2,
required(’PARTITIONS’,p)]).

ctr_example(
alldifferent_partition,
alldifferent_partition(

[[var-6],[var-3],[var-4]],
[[p-[[val-1],[val-3]]],

[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

ctr_typical(alldifferent_partition,[size(’VARIABLES ’)>2]).

ctr_exchangeable(
alldifferent_partition,

2008 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[items(’VARIABLES’,all),
items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all),
vals(

[’VARIABLES’ˆvar],
part(’PARTITIONS’),
=,
all,
dontcare),

vals([’VARIABLES’ˆvar],part(’PARTITIONS’),=\=,all,i n)]).

ctr_graph(
alldifferent_partition,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
PARTITIONS)],

[’MAX_NSCC’=<1],
[’ONE_SUCC’]).

ctr_eval(
alldifferent_partition,
[reformulation(alldifferent_partition_r)]).

ctr_contractible(alldifferent_partition,[],’VARIABL ES’,any).

alldifferent_partition_r(VARIABLES,PARTITIONS) :-
collection(VARIABLES,[dvar]),
collection(PARTITIONS,[col_len_gteq(1,[int])]),
get_attr1(VARIABLES,VARS),
get_col_attr1(PARTITIONS,1,PVALS),
flattern(PVALS,VALS),
all_different(VALS),
length(VARIABLES,N),
length(PARTITIONS,M),
N=<M,
M>1,
length(PVALS,LPVALS),
get_partition_var(VARS,PVALS,PVARS,LPVALS,0),
all_different(PVARS).

2009

B.15 alldifferent samevalue

♦ META-DATA:

ctr_date(
alldifferent_same_value,
[’20000128’,’20030820’,’20060803’]).

ctr_origin(
alldifferent_same_value,
Derived from %c.,
[alldifferent]).

ctr_synonyms(
alldifferent_same_value,
[alldiff_same_value,alldistinct_same_value]).

ctr_arguments(
alldifferent_same_value,
[’NSAME’-dvar,

’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
alldifferent_same_value,
[’NSAME’>=0,

’NSAME’=<size(’VARIABLES1’),
size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_example(
alldifferent_same_value,
alldifferent_same_value(

2,
[[var-7],[var-3],[var-1],[var-5]],
[[var-1],[var-3],[var-1],[var-7]])).

ctr_typical(
alldifferent_same_value,
[’NSAME’<size(’VARIABLES1’),size(’VARIABLES1’)>2]).

ctr_exchangeable(
alldifferent_same_value,
[items_sync(’VARIABLES1’,’VARIABLES2’,all),

vals(

2010 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
int,
=\=,
all,
dontcare)]).

ctr_graph(
alldifferent_same_value,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’(’CLIQUE’,’LOOP’,=)>>

collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’MAX_NSCC’=<1,’NARC_NO_LOOP’=’NSAME’],
[]).

ctr_eval(
alldifferent_same_value,
[reformulation(alldifferent_same_value_r)]).

ctr_functional_dependency(alldifferent_same_value,1 ,[2,3]).

alldifferent_same_value_r(NSAME,VARIABLES1,VARIABLE S2) :-
check_type(dvar,NSAME),
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
NSAME#>=0,
NSAME#=<N1,
N1=N2,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
all_different(VARS1),
alldifferent_same_value1(VARS1,VARS2,SUMBOOLS),
call(NSAME#=SUMBOOLS).

alldifferent_same_value1([],[],0).

alldifferent_same_value1([V1|R1],[V2|R2],B+R) :-
V1#=V2#<=>B,
alldifferent_same_value1(R1,R2,R).

2011

B.16 allperm

♦ META-DATA:

ctr_date(allperm,[’20031008’,’20070916’]).

ctr_origin(
allperm,
\cite{FlenerFrischHnichKiziltanMiguelPearsonWalsh02 },
[]).

ctr_synonyms(allperm,[all_perm,all_permutations]).

ctr_types(allperm,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(allperm,[’MATRIX’-collection(vec-’VEC TOR’)]).

ctr_restrictions(
allperm,
[size(’VECTOR’)>=1,

required(’VECTOR’,var),
required(’MATRIX’,vec),
same_size(’MATRIX’,vec)]).

ctr_example(
allperm,
allperm(

[[vec-[[var-1],[var-2],[var-3]]],
[vec-[[var-3],[var-1],[var-2]]]])).

ctr_typical(allperm,[size(’VECTOR’)>1,size(’MATRIX’)>1]).

ctr_exchangeable(allperm,[translate([’MATRIX’ˆvecˆv ar])]).

ctr_graph(
allperm,
[’MATRIX’],
2,
[’CLIQUE’(<)>>collection(matrix1,matrix2)],
[matrix1ˆkey=1,

matrix2ˆkey>1,
lex_lesseq_allperm(matrix1ˆvec,matrix2ˆvec)],

[’NARC’=size(’MATRIX’)-1],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(allperm,[reformulation(allperm_r)]).

2012 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_contractible(allperm,[],’MATRIX’ˆvec,suffix).

allperm_r(MATRIX) :-
same_size(MATRIX),
MATRIX=[[vec-F]|R],
allperm_sorted(R,S),
allperm_order(S,F).

allperm_sorted([],[]).

allperm_sorted([[vec-X]|R],[S|T]) :-
get_attr1(X,L),
get_minimum(L,MIN),
get_maximum(L,MAX),
length(X,LX),
length(Y,LX),
domain(Y,MIN,MAX),
gen_collection(Y,var,S),
eval(sort(X,S)),
allperm_sorted(R,T).

allperm_order([],_31571).

allperm_order([X|R],F) :-
eval(lex_lesseq(F,X)),
allperm_order(R,F).

2013

B.17 among

♦ META-DATA:

ctr_date(among,[’20000128’,’20030820’,’20040807’,’2 0060804’]).

ctr_origin(among,’\\cite{BeldiceanuContejean94}’,[]).

ctr_synonyms(among,[between,count]).

ctr_arguments(
among,
[’NVAR’-dvar,

’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
among,
[’NVAR’>=0,

’NVAR’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
among,
among(

3,
[[var-4],[var-5],[var-5],[var-4],[var-1]],
[[val-1],[val-5],[val-8]])).

ctr_typical(
among,
[’NVAR’>0,

’NVAR’<size(’VARIABLES’),
size(’VARIABLES’)>1,
size(’VALUES’)>1,
size(’VARIABLES’)>size(’VALUES’)]).

ctr_exchangeable(
among,
[items(’VARIABLES’,all),

items(’VALUES’,all),
vals(

[’VARIABLES’ˆvar],
comp(’VALUES’ˆval),

2014 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

=,
dontcare,
dontcare)]).

ctr_graph(
among,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar in ’VALUES’],
[’NARC’=’NVAR’],
[]).

ctr_eval(among,[reformulation(among_r),automaton(am ong_a)]).

ctr_pure_functional_dependency(among,[]).

ctr_functional_dependency(among,1,[2,3]).

ctr_contractible(among,[’NVAR’=0],’VARIABLES’,any).

ctr_contractible(
among,
[’NVAR’=size(’VARIABLES’)],
VARIABLES,
any).

ctr_aggregate(among,[],[+,union,sunion]).

among_r(NVAR,VARIABLES,VALUES) :-
check_type(dvar,NVAR),
collection(VARIABLES,[dvar]),
collection(VALUES,[int]),
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
length(VARIABLES,N),
NVAR#>=0,
NVAR#=<N,
all_different(VALS),
among1(VARS,VALS,SUM_BVARS),
call(NVAR#=SUM_BVARS).

among1([],_46147,0).

among1([V|R],VALS,B+S) :-
build_or_var_in_values(VALS,V,OR),

2015

call(OR#<=>B),
among1(R,VALS,S).

among_a(FLAG,NVAR,VARIABLES,VALUES) :-
check_type(dvar,NVAR),
collection(VARIABLES,[dvar]),
collection(VALUES,[int]),
get_attr1(VALUES,LIST_VALUES),
length(VARIABLES,N),
NVAR#>=0,
NVAR#=<N,
all_different(LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
among_signature(VARIABLES,SIGNATURE,SET_OF_VALUES),
automaton(

SIGNATURE,
_48426,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

COUNT#=NVAR#<=>FLAG.

among_signature([],[],_46148).

among_signature([[var-VAR]|VARs],[S|Ss],SET_OF_VALU ES) :-
VAR in_set SET_OF_VALUES#<=>S,
among_signature(VARs,Ss,SET_OF_VALUES).

2016 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.18 amongdiff 0

♦ META-DATA:

ctr_date(among_diff_0,[’20040807’,’20060804’]).

ctr_origin(
among_diff_0,
Used in the automaton of %c.,
[nvalue]).

ctr_arguments(
among_diff_0,
[’NVAR’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
among_diff_0,
[’NVAR’>=0,

’NVAR’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
among_diff_0,
among_diff_0(3,[[var-0],[var-5],[var-5],[var-0],[va r-1]])).

ctr_typical(
among_diff_0,
[’NVAR’>0,

’NVAR’<size(’VARIABLES’),
size(’VARIABLES’)>1,
atleast(1,’VARIABLES’,0)]).

ctr_exchangeable(
among_diff_0,
[items(’VARIABLES’,all),

vals(
[’VARIABLES’ˆvar],
int(=\=(0)),
=\=,
dontcare,
dontcare)]).

ctr_graph(
among_diff_0,
[’VARIABLES’],
1,

2017

[’SELF’>>collection(variables)],
[variablesˆvar=\=0],
[’NARC’=’NVAR’],
[]).

ctr_eval(
among_diff_0,
[reformulation(among_diff_0_r),automaton(among_diff _0_a)]).

ctr_pure_functional_dependency(among_diff_0,[]).

ctr_functional_dependency(among_diff_0,1,[2]).

ctr_contractible(among_diff_0,[’NVAR’=0],’VARIABLES ’,any).

ctr_contractible(
among_diff_0,
[’NVAR’=size(’VARIABLES’)],
VARIABLES,
any).

ctr_aggregate(among_diff_0,[],[+,union]).

among_diff_0_r(NVAR,VARIABLES) :-
check_type(dvar,NVAR),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
length(VARIABLES,N),
NVAR#>=0,
NVAR#=<N,
among_diff_01(VARS,SUM_BVARS),
call(NVAR#=SUM_BVARS).

among_diff_01([],0).

among_diff_01([V|R],B+S) :-
V#\=0#<=>B,
among_diff_01(R,S).

among_diff_0_a(FLAG,NVAR,VARIABLES) :-
check_type(dvar,NVAR),
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
NVAR#>=0,
NVAR#=<N,
among_diff_0_signature(VARIABLES,SIGNATURE),

2018 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

automaton(
SIGNATURE,
_31202,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

COUNT#=NVAR#<=>FLAG.

among_diff_0_signature([],[]).

among_diff_0_signature([[var-VAR]|VARs],[S|Ss]) :-
VAR#\=0#<=>S,
among_diff_0_signature(VARs,Ss).

2019

B.19 amonginterval

♦ META-DATA:

ctr_date(among_interval,[’20030820’,’20040530’,’200 60804’]).

ctr_origin(among_interval,’Derived from %c.’,[among]) .

ctr_arguments(
among_interval,
[’NVAR’-dvar,

’VARIABLES’-collection(var-dvar),
’LOW’-int,
’UP’-int]).

ctr_restrictions(
among_interval,
[’NVAR’>=0,

’NVAR’=<size(’VARIABLES’),
required(’VARIABLES’,var),
’LOW’=<’UP’]).

ctr_example(
among_interval,
among_interval(

3,
[[var-4],[var-5],[var-8],[var-4],[var-1]],
3,
5)).

ctr_typical(
among_interval,
[’NVAR’>0,

’NVAR’<size(’VARIABLES’),
size(’VARIABLES’)>1,
’LOW’<’UP’,
’LOW’=<maxval(’VARIABLES’ˆvar),
’UP’>=minval(’VARIABLES’ˆvar)]).

ctr_exchangeable(
among_interval,
[items(’VARIABLES’,all),

vals(
[’VARIABLES’ˆvar],
comp(’LOW’ in ’UP’),
=,

2020 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

dontcare,
dontcare)]).

ctr_graph(
among_interval,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[’LOW’=<variablesˆvar,variablesˆvar=<’UP’],
[’NARC’=’NVAR’],
[]).

ctr_eval(
among_interval,
[reformulation(among_interval_r),

automaton(among_interval_a)]).

ctr_pure_functional_dependency(among_interval,[]).

ctr_functional_dependency(among_interval,1,[2,3,4]) .

ctr_contractible(among_interval,[’NVAR’=0],’VARIABL ES’,any).

ctr_contractible(
among_interval,
[’NVAR’=size(’VARIABLES’)],
VARIABLES,
any).

ctr_aggregate(among_interval,[],[+,union,id,id]).

among_interval_r(NVAR,VARIABLES,LOW,UP) :-
check_type(dvar,NVAR),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
integer(LOW),
integer(UP),
length(VARIABLES,N),
NVAR#>=0,
NVAR#=<N,
LOW=<UP,
among_interval1(VARS,SUM_BVARS,LOW,UP),
call(NVAR#=SUM_BVARS).

among_interval1([],0,_31526,_31527).

2021

among_interval1([V|R],B+S,LOW,UP) :-
V#>=LOW#/\V#=<UP#<=>B,
among_interval1(R,S,LOW,UP).

among_interval_a(FLAG,NVAR,VARIABLES,LOW,UP) :-
check_type(dvar,NVAR),
collection(VARIABLES,[dvar]),
integer(LOW),
integer(UP),
length(VARIABLES,N),
NVAR#>=0,
NVAR#=<N,
LOW=<UP,
among_interval_signature(VARIABLES,SIGNATURE,LOW,UP),
automaton(

SIGNATURE,
_33665,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

COUNT#=NVAR#<=>FLAG.

among_interval_signature([],[],_31526,_31527).

among_interval_signature([[var-VAR]|VARs],[S|Ss],LO W,UP) :-
LOW#=<VAR#/\VAR#=<UP#<=>S,
among_interval_signature(VARs,Ss,LOW,UP).

2022 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.20 amonglow up

♦ META-DATA:

ctr_date(among_low_up,[’20030820’,’20040530’,’20060 804’]).

ctr_origin(among_low_up,’\\cite{BeldiceanuContejean 94}’,[]).

ctr_arguments(
among_low_up,
[’LOW’-int,

’UP’-int,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
among_low_up,
[’LOW’>=0,

’LOW’=<size(’VARIABLES’),
’UP’>=0,
’UP’=<size(’VARIABLES’),
’UP’>=’LOW’,
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
among_low_up,
among_low_up(

1,
2,
[[var-9],[var-2],[var-4],[var-5]],
[[val-0],[val-2],[val-4],[val-6],[val-8]])).

ctr_typical(
among_low_up,
[’LOW’<size(’VARIABLES’),

’UP’>0,
’LOW’<’UP’,
size(’VARIABLES’)>1,
size(’VALUES’)>1,
size(’VARIABLES’)>size(’VALUES’),
’LOW’>0#\/’UP’<size(’VARIABLES’)]).

ctr_exchangeable(
among_low_up,

2023

[items(’VARIABLES’,all),
items(’VALUES’,all),
vals([’LOW’],int(>=(0)),>,dontcare,dontcare),
vals(

[’UP’],
int(=<(size(’VARIABLES’))),
<,
dontcare,
dontcare),

vals(
[’VARIABLES’ˆvar],
comp(’VALUES’ˆval),
=,
dontcare,
dontcare)]).

ctr_graph(
among_low_up,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’NARC’>=’LOW’,’NARC’=<’UP’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(
among_low_up,
[reformulation(among_low_up_r),automaton(among_low_ up_a)]).

ctr_contractible(among_low_up,[’UP’=0],’VARIABLES’, any).

ctr_contractible(
among_low_up,
[’UP’=size(’VARIABLES’)],
VARIABLES,
any).

ctr_aggregate(among_low_up,[],[+,+,union,sunion]).

among_low_up_r(LOW,UP,VARIABLES,VALUES) :-
integer(LOW),
integer(UP),
collection(VARIABLES,[dvar]),
collection(VALUES,[int]),
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),

2024 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

length(VARIABLES,N),
LOW>=0,
LOW=<N,
UP>=0,
UP=<N,
UP>=LOW,
all_different(VALS),
among_low_up1(VARS,VALS,SUM_BVARS),
call(LOW#=<SUM_BVARS),
call(UP#>=SUM_BVARS).

among_low_up1([],_38981,0).

among_low_up1([V|R],VALS,B+S) :-
build_or_var_in_values(VALS,V,OR),
call(OR#<=>B),
among_low_up1(R,VALS,S).

among_low_up_a(FLAG,LOW,UP,VARIABLES,VALUES) :-
integer(LOW),
integer(UP),
collection(VARIABLES,[dvar]),
collection(VALUES,[int]),
get_attr1(VALUES,LIST_VALUES),
length(VARIABLES,N),
LOW>=0,
LOW=<N,
UP>=0,
UP=<N,
UP>=LOW,
all_different(LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
among_low_up_signature(

VARIABLES,
SIGNATURE,
SET_OF_VALUES),

NVAR in LOW..UP,
automaton(

SIGNATURE,
_42425,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

2025

COUNT#=NVAR#<=>FLAG.

among_low_up_signature([],[],_38982).

among_low_up_signature([[var-VAR]|VARs],[S|Ss],SET_ OF_VALUES) :-
VAR in_set SET_OF_VALUES#<=>S,
among_low_up_signature(VARs,Ss,SET_OF_VALUES).

2026 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.21 amongmodulo

♦ META-DATA:

ctr_date(among_modulo,[’20030820’,’20040530’,’20060 804’]).

ctr_origin(among_modulo,’Derived from %c.’,[among]).

ctr_arguments(
among_modulo,
[’NVAR’-dvar,

’VARIABLES’-collection(var-dvar),
’REMAINDER’-int,
’QUOTIENT’-int]).

ctr_restrictions(
among_modulo,
[’NVAR’>=0,

’NVAR’=<size(’VARIABLES’),
required(’VARIABLES’,var),
’REMAINDER’>=0,
’REMAINDER’<’QUOTIENT’,
’QUOTIENT’>0]).

ctr_example(
among_modulo,
among_modulo(

3,
[[var-4],[var-5],[var-8],[var-4],[var-1]],
0,
2)).

ctr_typical(
among_modulo,
[’NVAR’>0,

’NVAR’<size(’VARIABLES’),
size(’VARIABLES’)>1,
’QUOTIENT’>1,
’QUOTIENT’<maxval(’VARIABLES’ˆvar)]).

ctr_exchangeable(
among_modulo,
[items(’VARIABLES’,all),

vals(
[’VARIABLES’ˆvar],
comp(’QUOTIENT’ mod ’REMAINDER’),

2027

=,
dontcare,
dontcare)]).

ctr_graph(
among_modulo,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar mod ’QUOTIENT’=’REMAINDER’],
[’NARC’=’NVAR’],
[]).

ctr_eval(
among_modulo,
[reformulation(among_modulo_r),automaton(among_modu lo_a)]).

ctr_pure_functional_dependency(among_modulo,[]).

ctr_functional_dependency(among_modulo,1,[2,3,4]).

ctr_contractible(among_modulo,[’NVAR’=0],’VARIABLES ’,any).

ctr_contractible(
among_modulo,
[’NVAR’=size(’VARIABLES’)],
VARIABLES,
any).

ctr_aggregate(among_modulo,[],[+,union,id,id]).

among_modulo_r(NVAR,VARIABLES,REMAINDER,QUOTIENT) :-
check_type(dvar,NVAR),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
length(VARIABLES,N),
integer(REMAINDER),
integer(QUOTIENT),
NVAR#>=0,
NVAR#=<N,
REMAINDER>=0,
REMAINDER<QUOTIENT,
QUOTIENT>0,
gen_remainder(VARS,QUOTIENT,REMVARS),
among_modulo1(REMVARS,REMAINDER,SUM_BVARS),
call(NVAR#=SUM_BVARS).

2028 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

among_modulo1([],_31939,0).

among_modulo1([V|R],REMAINDER,B+S) :-
V#=REMAINDER#<=>B,
among_modulo1(R,REMAINDER,S).

among_modulo_a(FLAG,NVAR,VARIABLES,REMAINDER,QUOTIE NT) :-
check_type(dvar,NVAR),
collection(VARIABLES,[dvar]),
integer(REMAINDER),
integer(QUOTIENT),
length(VARIABLES,N),
NVAR#>=0,
NVAR#=<N,
REMAINDER>=0,
REMAINDER<QUOTIENT,
QUOTIENT>0,
among_modulo_signature(

VARIABLES,
SIGNATURE,
REMAINDER,
QUOTIENT),

automaton(
SIGNATURE,
_34748,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

COUNT#=NVAR#<=>FLAG.

among_modulo_signature([],[],_31940,_31941).

among_modulo_signature(
[[var-VAR]|VARs],
[S|Ss],
REMAINDER,
QUOTIENT) :-

VAR mod QUOTIENT#=REMAINDER#<=>S,
among_modulo_signature(VARs,Ss,REMAINDER,QUOTIENT).

2029

B.22 amongseq

♦ META-DATA:

ctr_date(among_seq,[’20000128’,’20030820’]).

ctr_origin(among_seq,’\\cite{BeldiceanuContejean94} ’,[]).

ctr_synonyms(among_seq,[sequence]).

ctr_arguments(
among_seq,
[’LOW’-int,

’UP’-int,
’SEQ’-int,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
among_seq,
[’LOW’>=0,

’LOW’=<size(’VARIABLES’),
’UP’>=’LOW’,
’SEQ’>0,
’SEQ’>=’LOW’,
’SEQ’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
among_seq,
among_seq(

1,
2,
4,
[[var-9],

[var-2],
[var-4],
[var-5],
[var-5],
[var-7],
[var-2]],

[[val-0],[val-2],[val-4],[val-6],[val-8]])).

ctr_typical(

2030 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

among_seq,
[’LOW’<’SEQ’,

’UP’>0,
’SEQ’>1,
’SEQ’<size(’VARIABLES’),
size(’VARIABLES’)>1,
size(’VALUES’)>0,
size(’VARIABLES’)>size(’VALUES’),
’LOW’>0#\/’UP’<’SEQ’]).

ctr_exchangeable(
among_seq,
[items(’VARIABLES’,reverse),

items(’VALUES’,all),
vals([’LOW’],int(>=(0)),>,dontcare,dontcare),
vals([’UP’],int(=<(’SEQ’)),<,dontcare,dontcare),
vals(

[’VARIABLES’ˆvar],
comp(’VALUES’ˆval),
=,
dontcare,
dontcare)]).

ctr_graph(
among_seq,
[’VARIABLES’],
SEQ,
[’PATH’>>collection],
[among_low_up(’LOW’,’UP’,collection,’VALUES’)],
[’NARC’=size(’VARIABLES’)-’SEQ’+1],
[]).

ctr_eval(among_seq,[reformulation(among_seq_r)]).

ctr_contractible(among_seq,[’UP’=0],’VARIABLES’,any).

ctr_contractible(among_seq,[’SEQ’=1],’VARIABLES’,an y).

ctr_contractible(among_seq,[],’VARIABLES’,prefix).

ctr_contractible(among_seq,[],’VARIABLES’,suffix).

among_seq_r(LOW,UP,SEQ,VARIABLES,VALUES) :-
integer(LOW),
integer(UP),
integer(SEQ),

2031

collection(VARIABLES,[dvar]),
collection(VALUES,[int]),
get_attr1(VALUES,VALS),
length(VARIABLES,N),
LOW>=0,
LOW=<N,
SEQ>0,
SEQ>=LOW,
SEQ=<N,
all_different(VALS),
among_seq1(LOW,UP,SEQ,VARIABLES,VALUES).

among_seq1(_LOW,_UP,SEQ,VARIABLES,_VALUES) :-
length(VARIABLES,N),
N<SEQ,
!.

among_seq1(LOW,UP,SEQ,VARIABLES,VALUES) :-
length(VARIABLES,N),
N>=SEQ,
among_seq2(VARIABLES,SEQ,SEQVARIABLES),
eval(among_low_up(LOW,UP,SEQVARIABLES,VALUES)),
VARIABLES=[_28403|RVARIABLES],
among_seq1(LOW,UP,SEQ,RVARIABLES,VALUES).

among_seq2(_28349,0,[]) :-
!.

among_seq2([VAR|VARS],SEQ,[VAR|RVARS]) :-
SEQ>0,
SEQ1 is SEQ-1,
among_seq2(VARS,SEQ1,RVARS).

2032 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.23 amongvar

♦ META-DATA:

ctr_date(among_var,[’20090418’]).

ctr_origin(among_var,’Generalisation of %c’,[among]).

ctr_arguments(
among_var,
[’NVAR’-dvar,

’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-dvar)]).

ctr_restrictions(
among_var,
[’NVAR’>=0,

’NVAR’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,val)]).

ctr_example(
among_var,
among_var(

3,
[[var-4],[var-5],[var-5],[var-4],[var-1]],
[[val-1],[val-5],[val-8],[val-1]])).

ctr_typical(
among_var,
[size(’VARIABLES’)>1,

size(’VALUES’)>1,
size(’VARIABLES’)>size(’VALUES’)]).

ctr_exchangeable(
among_var,
[items(’VARIABLES’,all),

items(’VALUES’,all),
vals(

[’VARIABLES’ˆvar,’VALUES’ˆval],
int,
=\=,
all,
dontcare),

vals(
[’VARIABLES’ˆvar],

2033

comp(’VALUES’ˆval),
=,
dontcare,
dontcare)]).

ctr_graph(
among_var,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’NSOURCE’=’NVAR’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(among_var,[reformulation(among_var_r)]).

ctr_pure_functional_dependency(among_var,[]).

ctr_functional_dependency(among_var,1,[2,3]).

ctr_contractible(among_var,[’NVAR’=0],’VARIABLES’,a ny).

ctr_contractible(
among_var,
[’NVAR’=size(’VARIABLES’)],
VARIABLES,
any).

ctr_aggregate(among_var,[],[+,union,union]).

among_var_r(NVAR,VARIABLES,VALUES) :-
check_type(dvar,NVAR),
collection(VARIABLES,[dvar]),
collection(VALUES,[dvar]),
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
length(VARIABLES,N),
NVAR#>=0,
NVAR#=<N,
among_var1(VARS,VALS,SUM_BVARS),
call(NVAR#=SUM_BVARS).

among_var1([],_35340,0).

among_var1([V|R],VALS,B+S) :-
build_or_var_in_values(VALS,V,OR),

2034 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

call(OR#<=>B),
among_var1(R,VALS,S).

2035

B.24 and

♦ META-DATA:

ctr_date(and,[’20051226’]).

ctr_origin(and,’Logic’,[]).

ctr_synonyms(and,[rel]).

ctr_arguments(
and,
[’VAR’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
and,
[’VAR’>=0,

’VAR’=<1,
size(’VARIABLES’)>=2,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar=<1]).

ctr_example(
and,
[and(0,[[var-0],[var-0]]),

and(0,[[var-0],[var-1]]),
and(0,[[var-1],[var-0]]),
and(1,[[var-1],[var-1]]),
and(0,[[var-1],[var-0],[var-1]])]).

ctr_exchangeable(and,[items(’VARIABLES’,all)]).

ctr_eval(and,[reformulation(and_r),automaton(and_a)]).

ctr_pure_functional_dependency(and,[]).

ctr_functional_dependency(and,1,[2]).

ctr_extensible(and,[’VAR’=0],’VARIABLES’,any).

ctr_aggregate(and,[],[#/\,union]).

and_r(VAR,VARIABLES) :-
check_type(dvar(0,1),VAR),
collection(VARIABLES,[dvar(0,1)]),

2036 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

length(VARIABLES,N),
N>=2,
get_attr1(VARIABLES,VARS),
and1(VARS,ANDVARS),
call(ANDVARS#<=>VAR).

and1([VAR],VAR) :-
!.

and1([VAR|VARS],VAR#/\S) :-
and1(VARS,S).

and_a(FLAG,VAR,VARIABLES) :-
check_type(dvar(0,1),VAR),
collection(VARIABLES,[dvar(0,1)]),
length(VARIABLES,N),
N>=2,
get_attr1(VARIABLES,LIST),
append([VAR],LIST,LIST_VARIABLES),
AUTOMATON=
automaton(

LIST_VARIABLES,
_21570,
LIST_VARIABLES,
[source(s),sink(k),sink(j)],
[arc(s,0,i),

arc(s,1,j),
arc(i,0,k),
arc(i,1,i),
arc(k,0,k),
arc(k,1,k),
arc(j,1,j)],

[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

2037

B.25 arith

♦ META-DATA:

ctr_date(arith,[’20040814’,’20060804’]).

ctr_origin(
arith,
Used in the definition of several automata,
[]).

ctr_synonyms(arith,[rel]).

ctr_arguments(
arith,
[’VARIABLES’-collection(var-dvar),

’RELOP’-atom,
’VALUE’-int]).

ctr_restrictions(
arith,
[required(’VARIABLES’,var),

in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_example(
arith,
arith([[var-4],[var-5],[var-7],[var-4],[var-5]],<,9)).

ctr_typical(arith,[size(’VARIABLES’)>1,in_list(’REL OP’,[=])]).

ctr_exchangeable(
arith,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],int,=\=,dontcare,in)]).

ctr_graph(
arith,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[’RELOP’(variablesˆvar,’VALUE’)],
[’NARC’=size(’VARIABLES’)],
[]).

ctr_eval(arith,[reformulation(arith_r),automaton(ar ith_a)]).

2038 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_contractible(arith,[],’VARIABLES’,any).

arith_r(VARIABLES,RELOP,VALUE) :-
collection(VARIABLES,[dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
integer(VALUE),
get_attr1(VARIABLES,VARS),
arith1(VARS,RELOP,VALUE).

arith1([],_35489,_35490).

arith1([VAR|RVARS],RELOP,VALUE) :-
call_term_relop_value(VAR,RELOP,VALUE),
arith1(RVARS,RELOP,VALUE).

arith_a(FLAG,VARIABLES,RELOP,VALUE) :-
collection(VARIABLES,[dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
integer(VALUE),
arith_signature(VARIABLES,SIGNATURE,RELOP,VALUE),
AUTOMATON=
automaton(

SIGNATURE,
_36986,
SIGNATURE,
[source(s),sink(s)],
[arc(s,1,s)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

arith_signature([],[],_35490,_35491).

arith_signature([[var-VAR]|VARs],[S|Ss],=,VALUE) :-
!,
VAR#=VALUE#<=>S,
arith_signature(VARs,Ss,=,VALUE).

arith_signature([[var-VAR]|VARs],[S|Ss],=\=,VALUE) : -
!,
VAR#\=VALUE#<=>S,
arith_signature(VARs,Ss,=\=,VALUE).

arith_signature([[var-VAR]|VARs],[S|Ss],<,VALUE) :-
!,

2039

VAR#<VALUE#<=>S,
arith_signature(VARs,Ss,<,VALUE).

arith_signature([[var-VAR]|VARs],[S|Ss],>=,VALUE) :-
!,
VAR#>=VALUE#<=>S,
arith_signature(VARs,Ss,>=,VALUE).

arith_signature([[var-VAR]|VARs],[S|Ss],>,VALUE) :-
!,
VAR#>VALUE#<=>S,
arith_signature(VARs,Ss,>,VALUE).

arith_signature([[var-VAR]|VARs],[S|Ss],=<,VALUE) :-
VAR#=<VALUE#<=>S,
arith_signature(VARs,Ss,=<,VALUE).

2040 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.26 arith or

♦ META-DATA:

ctr_date(arith_or,[’20040814’,’20060804’]).

ctr_origin(
arith_or,
Used in the definition of several automata,
[]).

ctr_arguments(
arith_or,
[’VARIABLES1’-collection(var-dvar),

’VARIABLES2’-collection(var-dvar),
’RELOP’-atom,
’VALUE’-int]).

ctr_restrictions(
arith_or,
[required(’VARIABLES1’,var),

required(’VARIABLES2’,var),
size(’VARIABLES1’)=size(’VARIABLES2’),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_example(
arith_or,
arith_or(

[[var-0],[var-1],[var-0],[var-0],[var-1]],
[[var-0],[var-0],[var-0],[var-1],[var-0]],
=,
0)).

ctr_typical(
arith_or,
[size(’VARIABLES1’)>0,in_list(’RELOP’,[=])]).

ctr_exchangeable(
arith_or,
[items_sync(’VARIABLES1’,’VARIABLES2’,all)]).

ctr_graph(
arith_or,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’(=)>>collection(variables1,variables2)],

2041

[’RELOP’(variables1ˆvar,’VALUE’)#\/
’RELOP’(variables2ˆvar,’VALUE’)],

[’NARC’=size(’VARIABLES1’)],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(
arith_or,
[reformulation(arith_or_r),automaton(arith_or_a)]).

ctr_contractible(arith_or,[],[’VARIABLES1’,’VARIABL ES2’],any).

arith_or_r(VARIABLES1,VARIABLES2,RELOP,VALUE) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
integer(VALUE),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
N1=N2,
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
arith_or1(VARS1,VARS2,RELOP,VALUE).

arith_or1([],[],_35046,_35047).

arith_or1([VAR1|RVAR1],[VAR2|RVAR2],=,VALUE) :-
!,
VAR1#=VALUE#\/VAR2#=VALUE,
arith_or1(RVAR1,RVAR2,=,VALUE).

arith_or1([VAR1|RVAR1],[VAR2|RVAR2],=\=,VALUE) :-
!,
VAR1#\=VALUE#\/VAR2#\=VALUE,
arith_or1(RVAR1,RVAR2,=\=,VALUE).

arith_or1([VAR1|RVAR1],[VAR2|RVAR2],<,VALUE) :-
!,
VAR1#<VALUE#\/VAR2#<VALUE,
arith_or1(RVAR1,RVAR2,[VAR2|RVAR2],<,VALUE).

arith_or1([VAR1|RVAR1],[VAR2|RVAR2],>=,VALUE) :-
!,
VAR1#>=VALUE#\/VAR2#>=VALUE,
arith_or1(RVAR1,RVAR2,[VAR2|RVAR2],>=,VALUE).

2042 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

arith_or1([VAR1|RVAR1],[VAR2|RVAR2],>,VALUE) :-
!,
VAR1#>VALUE#\/VAR2#>VALUE,
arith_or1(RVAR1,RVAR2,[VAR2|RVAR2],>,VALUE).

arith_or1([VAR1|RVAR1],[VAR2|RVAR2],=<,VALUE) :-
VAR1#=<VALUE#\/VAR2#=<VALUE,
arith_or1(RVAR1,RVAR2,=<,VALUE).

arith_or_a(FLAG,VARIABLES1,VARIABLES2,RELOP,VALUE) : -
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
integer(VALUE),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
N1=N2,
arith_or_signature(

VARIABLES1,
VARIABLES2,
SIGNATURE,
RELOP,
VALUE),

AUTOMATON=
automaton(

SIGNATURE,
_37605,
SIGNATURE,
[source(s),sink(s)],
[arc(s,1,s)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

arith_or_signature([],[],[],_35047,_35048).

arith_or_signature(
[[var-VAR1]|VAR1s],
[[var-VAR2]|VAR2s],
[S|Ss],
=,
VALUE) :-

!,
VAR1#=VALUE#\/VAR2#=VALUE#<=>S,
arith_or_signature(VAR1s,VAR2s,Ss,=,VALUE).

2043

arith_or_signature(
[[var-VAR1]|VAR1s],
[[var-VAR2]|VAR2s],
[S|Ss],
=\=,
VALUE) :-

!,
VAR1#\=VALUE#\/VAR2#\=VALUE#<=>S,
arith_or_signature(VAR1s,VAR2s,Ss,=\=,VALUE).

arith_or_signature(
[[var-VAR1]|VAR1s],
[[var-VAR2]|VAR2s],
[S|Ss],
<,
VALUE) :-

!,
VAR1#<VALUE#\/VAR2#<VALUE#<=>S,
arith_or_signature(VAR1s,VAR2s,Ss,<,VALUE).

arith_or_signature(
[[var-VAR1]|VAR1s],
[[var-VAR2]|VAR2s],
[S|Ss],
>=,
VALUE) :-

!,
VAR1#>=VALUE#\/VAR2#>=VALUE#<=>S,
arith_or_signature(VAR1s,VAR2s,Ss,>=,VALUE).

arith_or_signature(
[[var-VAR1]|VAR1s],
[[var-VAR2]|VAR2s],
[S|Ss],
>,
VALUE) :-

!,
VAR1#>VALUE#\/VAR2#>VALUE#<=>S,
arith_or_signature(VAR1s,VAR2s,Ss,>,VALUE).

arith_or_signature(
[[var-VAR1]|VAR1s],
[[var-VAR2]|VAR2s],
[S|Ss],
=<,

2044 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

VALUE) :-
VAR1#=<VALUE#\/VAR2#=<VALUE#<=>S,
arith_or_signature(VAR1s,VAR2s,Ss,=<,VALUE).

2045

B.27 arith sliding

♦ META-DATA:

ctr_date(arith_sliding,[’20040814’]).

ctr_origin(
arith_sliding,
Used in the definition of some automaton,
[]).

ctr_arguments(
arith_sliding,
[’VARIABLES’-collection(var-dvar),

’RELOP’-atom,
’VALUE’-int]).

ctr_restrictions(
arith_sliding,
[required(’VARIABLES’,var),

in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_example(
arith_sliding,
arith_sliding(

[[var-0],
[var-0],
[var-1],
[var-2],
[var-0],
[var-0],
[var- -3]],

<,
4)).

ctr_typical(
arith_sliding,
[size(’VARIABLES’)>1,in_list(’RELOP’,[<,>=,>,=<])]) .

ctr_graph(
arith_sliding,
[’VARIABLES’],

* ,
[’PATH_1’>>collection],
[arith(collection,’RELOP’,’VALUE’)],
[’NARC’=size(’VARIABLES’)],

2046 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[]).

ctr_eval(
arith_sliding,
[reformulation(arith_sliding_r),

automaton(arith_sliding_a)]).

ctr_contractible(
arith_sliding,
[in_list(’RELOP’,[<,=<]),minval(’VARIABLES’ˆvar)>=0],
VARIABLES,
any).

ctr_contractible(arith_sliding,[],’VARIABLES’,suffi x).

arith_sliding_r(VARIABLES,RELOP,VALUE) :-
collection(VARIABLES,[dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
integer(VALUE),
get_attr1(VARIABLES,VARS),
reverse(VARS,RVARS),
arith_sliding1(RVARS,RELOP,VALUE).

arith_sliding1([],_19027,_19028).

arith_sliding1([VAR|RVARS],RELOP,VALUE) :-
arith_sliding2([VAR|RVARS],SUM),
call_term_relop_value(SUM,RELOP,VALUE),
arith_sliding1(RVARS,RELOP,VALUE).

arith_sliding2([],0).

arith_sliding2([VAR|RVARS],VAR+R) :-
arith_sliding2(RVARS,R).

arith_sliding_a(FLAG,VARIABLES,=,VALUE) :-
!,
collection(VARIABLES,[dvar]),
integer(VALUE),
length(VARIABLES,N),
length(SIGNATURE,N),
domain(SIGNATURE,0,0),
arith_sliding_signature(VARIABLES,VARS,SIGNATURE),
automaton(

VARS,
VAR,

2047

SIGNATURE,
[source(s),sink(s),sink(t)],
[arc(s,0,t,[T,C+VAR]),

arc(t,0,t,(C#=VALUE->[T,C+VAR])),
arc(t,0,t,(C#\=VALUE->[0,C+VAR]))],

[T,C],
[1,0],
[T1,C1]),

T1#=1#/\C1#=VALUE#<=>FLAG.

arith_sliding_a(FLAG,VARIABLES,=\=,VALUE) :-
!,
collection(VARIABLES,[dvar]),
integer(VALUE),
length(VARIABLES,N),
length(SIGNATURE,N),
domain(SIGNATURE,0,0),
arith_sliding_signature(VARIABLES,VARS,SIGNATURE),
automaton(

VARS,
VAR,
SIGNATURE,
[source(s),sink(s),sink(t)],
[arc(s,0,t,[T,C+VAR]),

arc(t,0,t,(C#\=VALUE->[T,C+VAR])),
arc(t,0,t,(C#=VALUE->[0,C+VAR]))],

[T,C],
[1,0],
[T1,C1]),

T1#=1#/\C1#\=VALUE#<=>FLAG.

arith_sliding_a(FLAG,VARIABLES,<,VALUE) :-
!,
collection(VARIABLES,[dvar]),
integer(VALUE),
length(VARIABLES,N),
length(SIGNATURE,N),
domain(SIGNATURE,0,0),
arith_sliding_signature(VARIABLES,VARS,SIGNATURE),
automaton(

VARS,
VAR,
SIGNATURE,
[source(s),sink(s),sink(t)],
[arc(s,0,t,[T,C+VAR]),

arc(t,0,t,(C#<VALUE->[T,C+VAR])),

2048 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

arc(t,0,t,(C#>=VALUE->[0,C+VAR]))],
[T,C],
[1,0],
[T1,C1]),

T1#=1#/\C1#<VALUE#<=>FLAG.

arith_sliding_a(FLAG,VARIABLES,>=,VALUE) :-
!,
collection(VARIABLES,[dvar]),
integer(VALUE),
length(VARIABLES,N),
length(SIGNATURE,N),
domain(SIGNATURE,0,0),
arith_sliding_signature(VARIABLES,VARS,SIGNATURE),
automaton(

VARS,
VAR,
SIGNATURE,
[source(s),sink(s),sink(t)],
[arc(s,0,t,[T,C+VAR]),

arc(t,0,t,(C#>=VALUE->[T,C+VAR])),
arc(t,0,t,(C#<VALUE->[0,C+VAR]))],

[T,C],
[1,0],
[T1,C1]),

T1#=1#/\C1#>=VALUE#<=>FLAG.

arith_sliding_a(FLAG,VARIABLES,>,VALUE) :-
!,
collection(VARIABLES,[dvar]),
integer(VALUE),
length(VARIABLES,N),
length(SIGNATURE,N),
domain(SIGNATURE,0,0),
arith_sliding_signature(VARIABLES,VARS,SIGNATURE),
automaton(

VARS,
VAR,
SIGNATURE,
[source(s),sink(s),sink(t)],
[arc(s,0,t,[T,C+VAR]),

arc(t,0,t,(C#>VALUE->[T,C+VAR])),
arc(t,0,t,(C#=<VALUE->[0,C+VAR]))],

[T,C],
[1,0],
[T1,C1]),

2049

T1#=1#/\C1#>VALUE#<=>FLAG.

arith_sliding_a(FLAG,VARIABLES,=<,VALUE) :-
collection(VARIABLES,[dvar]),
integer(VALUE),
length(VARIABLES,N),
length(SIGNATURE,N),
domain(SIGNATURE,0,0),
arith_sliding_signature(VARIABLES,VARS,SIGNATURE),
automaton(

VARS,
VAR,
SIGNATURE,
[source(s),sink(s),sink(t)],
[arc(s,0,t,[T,C+VAR]),

arc(t,0,t,(C#=<VALUE->[T,C+VAR])),
arc(t,0,t,(C#>VALUE->[0,C+VAR]))],

[T,C],
[1,0],
[T1,C1]),

T1#=1#/\C1#=<VALUE#<=>FLAG.

arith_sliding_signature([],[],[]).

arith_sliding_signature([[var-V]|VARs],[V|Vs],[0|Ss]) :-
arith_sliding_signature(VARs,Vs,Ss).

2050 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.28 assignand counts

♦ META-DATA:

ctr_date(assign_and_counts,[’20000128’,’20030820’,’ 20060804’]).

ctr_origin(assign_and_counts,’N.˜Beldiceanu’,[]).

ctr_arguments(
assign_and_counts,
[’COLOURS’-collection(val-int),

’ITEMS’-collection(bin-dvar,colour-dvar),
’RELOP’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
assign_and_counts,
[required(’COLOURS’,val),

distinct(’COLOURS’,val),
required(’ITEMS’,[bin,colour]),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_example(
assign_and_counts,
assign_and_counts(

[[val-4]],
[[bin-1,colour-4],

[bin-3,colour-4],
[bin-1,colour-4],
[bin-1,colour-5]],

=<,
2)).

ctr_typical(
assign_and_counts,
[size(’COLOURS’)>0,

size(’ITEMS’)>1,
range(’ITEMS’ˆbin)>1,
in_list(’RELOP’,[<,=<]),
’LIMIT’>0,
’LIMIT’<size(’ITEMS’)]).

ctr_exchangeable(
assign_and_counts,
[items(’COLOURS’,all),

items(’ITEMS’,all),

2051

vals([’ITEMS’ˆbin],int,=\=,all,dontcare)]).

ctr_derived_collections(
assign_and_counts,
[col(’VALUES’-collection(val-int),

[item(val-’COLOURS’ˆval)])]).

ctr_graph(
assign_and_counts,
[’ITEMS’,’ITEMS’],
2,
[’PRODUCT’>>collection(items1,items2)],
[items1ˆbin=items2ˆbin],
[],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’],
[SUCC>>

[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’ITEMS’ˆcolour)])]],
[counts(’VALUES’,variables,’RELOP’,’LIMIT’)]).

ctr_eval(
assign_and_counts,
[reformulation(assign_and_counts_r)]).

ctr_contractible(
assign_and_counts,
[in_list(’RELOP’,[<,=<])],
ITEMS,
any).

ctr_extensible(
assign_and_counts,
[in_list(’RELOP’,[>=,>])],
ITEMS,
any).

assign_and_counts_r(COLOURS,ITEMS,RELOP,LIMIT) :-
collection(COLOURS,[int]),
collection(ITEMS,[dvar,dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
check_type(dvar,LIMIT),
get_attr1(COLOURS,COLS),
all_different(COLS),
get_attr1(ITEMS,BINS),

2052 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

get_attr2(ITEMS,ITEMSCOLOURS),
get_minimum(BINS,MINBINS),
get_maximum(BINS,MAXBINS),
gen_matrix_bool(MINBINS,MAXBINS,BINS,BMATRIX),
assign_and_counts1(ITEMSCOLOURS,COLS,CLINE),
assign_and_counts2(BMATRIX,CLINE,RELOP,LIMIT).

assign_and_counts1([],_39619,[]).

assign_and_counts1([ITEMCOLOUR|RITEMCOLOURS],COLS,[B|R]) :-
build_or_var_in_values(COLS,ITEMCOLOUR,OR),
call(OR#<=>B),
assign_and_counts1(RITEMCOLOURS,COLS,R).

assign_and_counts2([],_39619,_39620,_39621).

assign_and_counts2([BLINE|RBMATRIX],CLINE,RELOP,LIM IT) :-
assign_and_counts3(BLINE,CLINE,TERM),
call_term_relop_value(TERM,RELOP,LIMIT),
assign_and_counts2(RBMATRIX,CLINE,RELOP,LIMIT).

assign_and_counts3([],[],0).

assign_and_counts3([B|RBLINE],[C|RCLINE],B * C+R) :-
assign_and_counts3(RBLINE,RCLINE,R).

2053

B.29 assignand nvalues

♦ META-DATA:

ctr_date(
assign_and_nvalues,
[’20000128’,’20030820’,’20040530’,’20050321’,’20060 804’]).

ctr_origin(
assign_and_nvalues,
Derived from %c and %c.,
[assign_and_counts,nvalues]).

ctr_arguments(
assign_and_nvalues,
[’ITEMS’-collection(bin-dvar,value-dvar),

’RELOP’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
assign_and_nvalues,
[required(’ITEMS’,[bin,value]),

in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_example(
assign_and_nvalues,
assign_and_nvalues(

[[bin-2,value-3],
[bin-1,value-5],
[bin-2,value-3],
[bin-2,value-3],
[bin-2,value-4]],

=<,
2)).

ctr_typical(
assign_and_nvalues,
[size(’ITEMS’)>1,

range(’ITEMS’ˆbin)>1,
range(’ITEMS’ˆvalue)>1,
in_list(’RELOP’,[<,=<]),
’LIMIT’>1,
’LIMIT’<size(’ITEMS’)]).

ctr_exchangeable(
assign_and_nvalues,

2054 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[items(’ITEMS’,all),
vals([’ITEMS’ˆbin],int,=\=,all,dontcare)]).

ctr_graph(
assign_and_nvalues,
[’ITEMS’,’ITEMS’],
2,
[’PRODUCT’>>collection(items1,items2)],
[items1ˆbin=items2ˆbin],
[],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’],
[SUCC>>

[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’ITEMS’ˆvalue)])]],
[nvalues(variables,’RELOP’,’LIMIT’)]).

ctr_eval(
assign_and_nvalues,
[reformulation(assign_and_nvalues_r)]).

ctr_contractible(
assign_and_nvalues,
[in_list(’RELOP’,[<,=<])],
ITEMS,
any).

ctr_extensible(
assign_and_nvalues,
[in_list(’RELOP’,[>=,>])],
ITEMS,
any).

assign_and_nvalues_r(ITEMS,RELOP,LIMIT) :-
collection(ITEMS,[dvar,dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
check_type(dvar,LIMIT),
get_attr1(ITEMS,BINS),
get_attr2(ITEMS,VALUES),
get_minimum(BINS,MINBINS),
get_maximum(BINS,MAXBINS),
gen_matrix_bool(MINBINS,MAXBINS,BINS,BMATRIX),
get_minimum(VALUES,MINVALUES),
JOKER is MINVALUES-1,
LIM is LIMIT+1,

2055

assign_and_nvalues1(BMATRIX,VALUES,JOKER,RELOP,LIM) .

assign_and_nvalues1([],_40152,_40153,_40154,_40155) .

assign_and_nvalues1([BLINE|RBMATRIX],VALUES,JOKER,R ELOP,LIM) :-
assign_and_nvalues2(BLINE,VALUES,JOKER,VALS),
length(VALS,M),
N in 0..M,
nvalue(N,VALS),
call_term_relop_value(N,RELOP,LIM),
assign_and_nvalues1(RBMATRIX,VALUES,JOKER,RELOP,LIM).

assign_and_nvalues2([],[],JOKER,[JOKER]).

assign_and_nvalues2([VAR|RVAR],[VAL|RVAL],JOKER,[V| R]) :-
VAR#=0#/\V#=JOKER#\/VAR#=1#/\V#=VAL,
assign_and_nvalues2(RVAR,RVAL,JOKER,R).

2056 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.30 atleast

♦ META-DATA:

ctr_date(atleast,[’20030820’,’20040807’,’20060804’]).

ctr_origin(atleast,’\\index{CHIP|indexuse}CHIP’,[]) .

ctr_synonyms(atleast,[count]).

ctr_arguments(
atleast,
[’N’-int,’VARIABLES’-collection(var-dvar),’VALUE’-i nt]).

ctr_restrictions(
atleast,
[’N’>=0,’N’=<size(’VARIABLES’),required(’VARIABLES’ ,var)]).

ctr_example(
atleast,
atleast(2,[[var-4],[var-2],[var-4],[var-5]],4)).

ctr_typical(
atleast,
[’N’>0,’N’<size(’VARIABLES’),size(’VARIABLES’)>1]).

ctr_exchangeable(
atleast,
[items(’VARIABLES’,all),

vals([’N’],int(>=(0)),>,dontcare,dontcare),
vals(

[’VARIABLES’ˆvar],
comp(’VALUE’),
>=,
dontcare,
dontcare)]).

ctr_graph(
atleast,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=’VALUE’],
[’NARC’>=’N’],
[]).

2057

ctr_eval(
atleast,
[reformulation(atleast_r),automaton(atleast_a)]).

ctr_extensible(atleast,[],’VARIABLES’,any).

atleast_r(N,VARIABLES,VALUE) :-
integer(N),
collection(VARIABLES,[dvar]),
integer(VALUE),
length(VARIABLES,NVARIABLES),
N>=0,
N=<NVARIABLES,
get_attr1(VARIABLES,VARS),
atleast1(VARS,VALUE,SUM_BVARS),
call(SUM_BVARS#>=N).

atleast1([],_33070,0).

atleast1([V|R],VALUE,B+S) :-
V#=VALUE#<=>B,
atleast1(R,VALUE,S).

atleast_a(FLAG,N,VARIABLES,VALUE) :-
integer(N),
collection(VARIABLES,[dvar]),
integer(VALUE),
length(VARIABLES,M),
N>=0,
N=<M,
atleast_signature(VARIABLES,SIGNATURE,VALUE),
NVAR in N..M,
automaton(

SIGNATURE,
_35069,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

COUNT#=NVAR#<=>FLAG.

atleast_signature([],[],_33071).

atleast_signature([[var-VAR]|VARs],[S|Ss],VALUE) :-

2058 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

VAR#=VALUE#<=>S,
atleast_signature(VARs,Ss,VALUE).

2059

B.31 atleastnvalue

♦ META-DATA:

ctr_date(atleast_nvalue,[’20050618’,’20060804’]).

ctr_origin(atleast_nvalue,’\\cite{Regin95}’,[]).

ctr_synonyms(atleast_nvalue,[k_diff]).

ctr_arguments(
atleast_nvalue,
[’NVAL’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
atleast_nvalue,
[required(’VARIABLES’,var),

’NVAL’>=0,
’NVAL’=<size(’VARIABLES’),
’NVAL’=<range(’VARIABLES’ˆvar)]).

ctr_example(
atleast_nvalue,
atleast_nvalue(

2,
[[var-3],[var-1],[var-7],[var-1],[var-6]])).

ctr_typical(
atleast_nvalue,
[’NVAL’>0,

’NVAL’<size(’VARIABLES’),
’NVAL’<range(’VARIABLES’ˆvar),
size(’VARIABLES’)>1]).

ctr_exchangeable(
atleast_nvalue,
[vals([’NVAL’],int(>=(0)),>,dontcare,dontcare),

items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
atleast_nvalue,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],

2060 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[’NSCC’>=’NVAL’],
[’EQUIVALENCE’]).

ctr_eval(atleast_nvalue,[reformulation(atleast_nval ue_r)]).

ctr_extensible(atleast_nvalue,[],’VARIABLES’,any).

atleast_nvalue_r(NVAL,VARIABLES) :-
check_type(dvar,NVAL),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
length(VARIABLES,N),
NVAL#>=0,
NVAL#=<N,
list_dvar_range(VARS,R),
NVAL#=<R,
V in 0..N,
V#>=NVAL,
nvalue(V,VARS).

2061

B.32 atleastnvector

♦ META-DATA:

ctr_date(atleast_nvector,[’20081226’]).

ctr_origin(atleast_nvector,’Derived from %c’,[nvector]).

ctr_types(atleast_nvector,[’VECTOR’-collection(var- dvar)]).

ctr_arguments(
atleast_nvector,
[’NVEC’-dvar,’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
atleast_nvector,
[size(’VECTOR’)>=1,

’NVEC’>=0,
’NVEC’=<size(’VECTORS’),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
atleast_nvector,
atleast_nvector(

2,
[[vec-[[var-5],[var-6]]],

[vec-[[var-5],[var-6]]],
[vec-[[var-9],[var-3]]],
[vec-[[var-5],[var-6]]],
[vec-[[var-9],[var-4]]]])).

ctr_typical(
atleast_nvector,
[size(’VECTOR’)>1,

’NVEC’>1,
’NVEC’<size(’VECTORS’),
size(’VECTORS’)>1]).

ctr_exchangeable(
atleast_nvector,
[vals([’NVEC’],int(>=(0)),>,dontcare,dontcare),

items(’VECTORS’,all),
items_sync(’VECTORS’ˆvec,all),
vals([’VECTORS’ˆvec],int,=\=,all,dontcare)]).

2062 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_graph(
atleast_nvector,
[’VECTORS’],
2,
[’CLIQUE’>>collection(vectors1,vectors2)],
[lex_equal(vectors1ˆvec,vectors2ˆvec)],
[’NSCC’>=’NVEC’],
[’EQUIVALENCE’]).

ctr_eval(atleast_nvector,[reformulation(atleast_nve ctor_r)]).

ctr_extensible(atleast_nvector,[],’VECTORS’,any).

atleast_nvector_r(NVEC,VECTORS) :-
check_type(dvar,NVEC),
length(VECTORS,N),
NVEC#>=0,
NVEC#=<N,
NV in 0..N,
nvector_common(NV,VECTORS),
NV#>=NVEC.

2063

B.33 atmost

♦ META-DATA:

ctr_date(atmost,[’20030820’,’20040807’,’20060804’]) .

ctr_origin(atmost,’\\index{CHIP|indexuse}CHIP’,[]).

ctr_synonyms(atmost,[count]).

ctr_arguments(
atmost,
[’N’-int,’VARIABLES’-collection(var-dvar),’VALUE’-i nt]).

ctr_restrictions(atmost,[’N’>=0,required(’VARIABLES ’,var)]).

ctr_example(
atmost,
atmost(1,[[var-4],[var-2],[var-4],[var-5]],2)).

ctr_typical(
atmost,
[’N’>0,

’N’<size(’VARIABLES’),
size(’VARIABLES’)>1,
atleast(1,’VARIABLES’,’VALUE’)]).

ctr_exchangeable(
atmost,
[items(’VARIABLES’,all),

vals([’N’],int,<,dontcare,dontcare),
vals(

[’VARIABLES’ˆvar],
comp(’VALUE’),
=<,
dontcare,
dontcare)]).

ctr_graph(
atmost,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=’VALUE’],
[’NARC’=<’N’],
[]).

2064 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_eval(atmost,[reformulation(atmost_r),automaton(atmost_a)]).

ctr_contractible(atmost,[],’VARIABLES’,any).

atmost_r(N,VARIABLES,VALUE) :-
integer(N),
collection(VARIABLES,[dvar]),
integer(VALUE),
N>=0,
get_attr1(VARIABLES,VARS),
atmost1_(VARS,VALUE,SUM_BVARS),
call(SUM_BVARS#=<N).

atmost1_([],_30608,0).

atmost1_([V|R],VALUE,B+S) :-
V#=VALUE#<=>B,
atmost1_(R,VALUE,S).

atmost_a(FLAG,N,VARIABLES,VALUE) :-
integer(N),
collection(VARIABLES,[dvar]),
integer(VALUE),
N>=0,
atmost_signature(VARIABLES,SIGNATURE,VALUE),
length(VARIABLES,M),
MN is min(M,N),
NVAR in 0..MN,
automaton(

SIGNATURE,
_32619,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

COUNT#=NVAR#<=>FLAG.

atmost_signature([],[],_30609).

atmost_signature([[var-VAR]|VARs],[S|Ss],VALUE) :-
VAR#=VALUE#<=>S,
atmost_signature(VARs,Ss,VALUE).

2065

B.34 atmost1

♦ META-DATA:

ctr_predefined(atmost1).

ctr_date(atmost1,[’20061003’]).

ctr_origin(atmost1,’\\cite{SadlerGervet01}’,[]).

ctr_synonyms(atmost1,[pair_atmost1]).

ctr_arguments(atmost1,[’SETS’-collection(s-svar,c-i nt)]).

ctr_restrictions(atmost1,[required(’SETS’,[s,c]),’S ETS’ˆc>=1]).

ctr_example(
atmost1,
atmost1(

[[s-{5,8},c-2],
[s-{5},c-1],
[s-{5,6,7},c-3],
[s-{1,4},c-2]])).

ctr_typical(atmost1,[size(’SETS’)>1]).

ctr_exchangeable(
atmost1,
[items(’SETS’,all),vals([’SETS’ˆs],int,=\=,all,dont care)]).

ctr_contractible(atmost1,[],’SETS’,any).

2066 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.35 atmostnvalue

♦ META-DATA:

ctr_date(atmost_nvalue,[’20050618’,’20060804’,’2009 0926’]).

ctr_origin(
atmost_nvalue,
\cite{BessiereHebrardHnichKiziltanWalsh05},
[]).

ctr_synonyms(
atmost_nvalue,
[soft_alldiff_max_var,

soft_alldifferent_max_var,
soft_alldistinct_max_var]).

ctr_arguments(
atmost_nvalue,
[’NVAL’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
atmost_nvalue,
[’NVAL’>=min(1,size(’VARIABLES’)),

required(’VARIABLES’,var)]).

ctr_example(
atmost_nvalue,
atmost_nvalue(4,[[var-3],[var-1],[var-3],[var-1],[v ar-6]])).

ctr_typical(
atmost_nvalue,
[’NVAL’>1,’NVAL’<size(’VARIABLES’),size(’VARIABLES’)>1]).

ctr_exchangeable(
atmost_nvalue,
[vals([’NVAL’],int,<,dontcare,dontcare),

items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,dontcare),
vals([’VARIABLES’ˆvar],int,=\=,dontcare,in)]).

ctr_graph(
atmost_nvalue,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],

2067

[variables1ˆvar=variables2ˆvar],
[’NSCC’=<’NVAL’],
[’EQUIVALENCE’]).

ctr_eval(atmost_nvalue,[reformulation(atmost_nvalue _r)]).

ctr_contractible(atmost_nvalue,[],’VARIABLES’,any).

atmost_nvalue_r(NVAL,VARIABLES) :-
check_type(dvar,NVAL),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
length(VARIABLES,N),
NVAL#=<N,
V in 0..N,
V#=<NVAL,
nvalue(V,VARS).

2068 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.36 atmostnvector

♦ META-DATA:

ctr_date(atmost_nvector,[’20081226’]).

ctr_origin(atmost_nvector,’Derived from %c’,[nvector]).

ctr_types(atmost_nvector,[’VECTOR’-collection(var-d var)]).

ctr_arguments(
atmost_nvector,
[’NVEC’-dvar,’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
atmost_nvector,
[size(’VECTOR’)>=1,

’NVEC’>=min(1,size(’VECTORS’)),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
atmost_nvector,
atmost_nvector(

3,
[[vec-[[var-5],[var-6]]],

[vec-[[var-5],[var-6]]],
[vec-[[var-9],[var-3]]],
[vec-[[var-5],[var-6]]],
[vec-[[var-9],[var-3]]]])).

ctr_typical(
atmost_nvector,
[size(’VECTOR’)>1,

’NVEC’>1,
’NVEC’<size(’VECTORS’),
size(’VECTORS’)>1]).

ctr_exchangeable(
atmost_nvector,
[vals([’NVEC’],int,<,dontcare,dontcare),

items(’VECTORS’,all),
items_sync(’VECTORS’ˆvec,all),
vals([’VECTORS’ˆvec],int,=\=,all,dontcare)]).

ctr_graph(

2069

atmost_nvector,
[’VECTORS’],
2,
[’CLIQUE’>>collection(vectors1,vectors2)],
[lex_equal(vectors1ˆvec,vectors2ˆvec)],
[’NSCC’=<’NVEC’],
[’EQUIVALENCE’]).

ctr_eval(atmost_nvector,[reformulation(atmost_nvect or_r)]).

ctr_contractible(atmost_nvector,[],’VECTORS’,any).

atmost_nvector_r(NVEC,VECTORS) :-
length(VECTORS,N),
NV in 0..N,
nvector_common(NV,VECTORS),
NV#=<NVEC.

2070 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.37 balance

♦ META-DATA:

ctr_date(balance,[’20000128’,’20030820’,’20060804’, ’20110713’]).

ctr_origin(balance,’N.˜Beldiceanu’,[]).

ctr_arguments(
balance,
[’BALANCE’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
balance,
[’BALANCE’>=0,

’BALANCE’=<max(0,size(’VARIABLES’)-2),
required(’VARIABLES’,var)]).

ctr_example(
balance,
balance(2,[[var-3],[var-1],[var-7],[var-1],[var-1]])).

ctr_typical(balance,[size(’VARIABLES’)>2]).

ctr_exchangeable(
balance,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
balance,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’RANGE_NSCC’=’BALANCE’],
[’EQUIVALENCE’]).

ctr_eval(balance,[reformulation(balance_r)]).

ctr_pure_functional_dependency(balance,[]).

ctr_functional_dependency(balance,1,[2]).

balance_r(0,[]) :-
!.

2071

balance_r(BALANCE,VARIABLES) :-
check_type(dvar,BALANCE),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
length(VARIABLES,N),
N2 is max(N-2,0),
BALANCE#>=0,
BALANCE#=<N2,
get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),
balance1(MINVARS,MAXVARS,N,VALS,OCCS,OCCS1),
eval(global_cardinality(VARIABLES,VALS)),
MIN in 1..N,
MAX in 1..N,
eval(minimum(MIN,OCCS1)),
eval(maximum(MAX,OCCS)),
BALANCE+MIN#=MAX.

balance1(I,S,_37046,[],[],[]) :-
I>S,
!.

balance1(
I,
S,
N,
[[val-I,noccurrence-O]|R],
[[var-O]|T],
[[var-O1]|U]) :-

I=<S,
O in 0..N,
O#=0#=>O1#=N,
O#>0#=>O1#=O,
I1 is I+1,
balance1(I1,S,N,R,T,U).

2072 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.38 balancecycle

♦ META-DATA:

ctr_date(balance_cycle,[’20111218’]).

ctr_origin(
balance_cycle,
derived from %c and %c,
[balance,cycle]).

ctr_arguments(
balance_cycle,
[’BALANCE’-dvar,’NODES’-collection(index-int,succ-d var)]).

ctr_restrictions(
balance_cycle,
[’BALANCE’>=0,

’BALANCE’=<max(0,size(’NODES’)-2),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
balance_cycle,
balance_cycle(

1,
[[index-1,succ-2],

[index-2,succ-1],
[index-3,succ-5],
[index-4,succ-3],
[index-5,succ-4]])).

ctr_typical(balance_cycle,[size(’NODES’)>2]).

ctr_exchangeable(balance_cycle,[items(’NODES’,all)]).

ctr_graph(
balance_cycle,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],

2073

[’NTREE’=0,’RANGE_NCC’=’BALANCE’],
[’ONE_SUCC’]).

ctr_eval(balance_cycle,[checker(balance_cycle_c)]).

ctr_functional_dependency(balance_cycle,1,[2]).

balance_cycle_c(BALANCE,NODES) :-
length(NODES,N),
N2 is max(N-2,0),
check_type(dvar(0,N2),BALANCE),
collection(NODES,[int(1,N),dvar(1,N)]),
get_attr1(NODES,INDEXES),
get_attr2(NODES,SUCCS),
sort(INDEXES,Js),
sort(SUCCS,Js),
length(Js,N),
(for(J,1,N),

foreach(X,SUCCS),
foreach(Free,Term),
foreach(Free-1,KeyTerm),foreach(J,Js),param(Term,N) do
nth1(X,Term,Free)),

keysort(KeyTerm,KeySorted),
keyclumped(KeySorted,KeyClumped),
(foreach(_33260-Ones,KeyClumped),

foreach(Count,Counts)do
length(Ones,Count)),

min_member(Min,Counts),
max_member(Max,Counts),
BALANCE is Max-Min.

2074 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.39 balanceinterval

♦ META-DATA:

ctr_date(balance_interval,[’20030820’,’20060804’]).

ctr_origin(balance_interval,’Derived from %c.’,[balan ce]).

ctr_arguments(
balance_interval,
[’BALANCE’-dvar,

’VARIABLES’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
balance_interval,
[’BALANCE’>=0,

’BALANCE’=<max(0,size(’VARIABLES’)-2),
required(’VARIABLES’,var),
’SIZE_INTERVAL’>0]).

ctr_example(
balance_interval,
balance_interval(

3,
[[var-6],[var-4],[var-3],[var-3],[var-4]],
3)).

ctr_typical(
balance_interval,
[size(’VARIABLES’)>2,

’SIZE_INTERVAL’>1,
’SIZE_INTERVAL’<range(’VARIABLES’ˆvar)]).

ctr_exchangeable(
balance_interval,
[items(’VARIABLES’,all),

vals(
[’VARIABLES’ˆvar],
intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare)]).

ctr_graph(
balance_interval,

2075

[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar/’SIZE_INTERVAL’=

variables2ˆvar/’SIZE_INTERVAL’],
[’RANGE_NSCC’=’BALANCE’],
[’EQUIVALENCE’]).

ctr_pure_functional_dependency(balance_interval,[]) .

ctr_functional_dependency(balance_interval,1,[2,3]) .

2076 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.40 balancemodulo

♦ META-DATA:

ctr_date(balance_modulo,[’20030820’,’20060804’]).

ctr_origin(balance_modulo,’Derived from %c.’,[balance]).

ctr_arguments(
balance_modulo,
[’BALANCE’-dvar,’VARIABLES’-collection(var-dvar),’M ’-int]).

ctr_restrictions(
balance_modulo,
[’BALANCE’>=0,

’BALANCE’=<max(0,size(’VARIABLES’)-2),
required(’VARIABLES’,var),
’M’>0]).

ctr_example(
balance_modulo,
balance_modulo(

2,
[[var-6],[var-1],[var-7],[var-1],[var-5]],
3)).

ctr_typical(
balance_modulo,
[size(’VARIABLES’)>2,’M’>1,’M’<maxval(’VARIABLES’ˆv ar)]).

ctr_exchangeable(
balance_modulo,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],mod(’M’),=,dontcare,dontcare)]).

ctr_graph(
balance_modulo,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[’RANGE_NSCC’=’BALANCE’],
[’EQUIVALENCE’]).

ctr_pure_functional_dependency(balance_modulo,[]).

2077

ctr_functional_dependency(balance_modulo,1,[2,3]).

2078 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.41 balancepartition

♦ META-DATA:

ctr_date(balance_partition,[’20030820’,’20060804’]) .

ctr_origin(balance_partition,’Derived from %c.’,[bala nce]).

ctr_types(balance_partition,[’VALUES’-collection(va l-int)]).

ctr_arguments(
balance_partition,
[’BALANCE’-dvar,

’VARIABLES’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
balance_partition,
[size(’VALUES’)>=1,

required(’VALUES’,val),
distinct(’VALUES’,val),
’BALANCE’>=0,
’BALANCE’=<max(0,size(’VARIABLES’)-2),
required(’VARIABLES’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_example(
balance_partition,
balance_partition(

1,
[[var-6],[var-2],[var-6],[var-4],[var-4]],
[[p-[[val-1],[val-3]]],

[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

ctr_typical(
balance_partition,
[size(’VARIABLES’)>2,size(’VARIABLES’)>size(’PARTIT IONS’)]).

ctr_exchangeable(
balance_partition,
[items(’VARIABLES’,all),

items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all),
vals(

2079

[’VARIABLES’ˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare)]).

ctr_graph(
balance_partition,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
PARTITIONS)],

[’RANGE_NSCC’=’BALANCE’],
[’EQUIVALENCE’]).

ctr_pure_functional_dependency(balance_partition,[]).

ctr_functional_dependency(balance_partition,1,[2,3]).

2080 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.42 balancepath

♦ META-DATA:

ctr_date(balance_path,[’20111226’]).

ctr_origin(
balance_path,
derived from %c and %c,
[balance,path]).

ctr_arguments(
balance_path,
[’BALANCE’-dvar,’NODES’-collection(index-int,succ-d var)]).

ctr_restrictions(
balance_path,
[’BALANCE’>=0,

’BALANCE’=<max(0,size(’NODES’)-2),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
balance_path,
balance_path(

3,
[[index-1,succ-1],

[index-2,succ-3],
[index-3,succ-5],
[index-4,succ-4],
[index-5,succ-1],
[index-6,succ-6],
[index-7,succ-7],
[index-8,succ-6]])).

ctr_typical(balance_path,[size(’NODES’)>2]).

ctr_exchangeable(balance_path,[items(’NODES’,all)]) .

ctr_graph(
balance_path,
[’NODES’],

2081

2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’MAX_NSCC’=<1,’MAX_ID’=<1,’RANGE_NCC’=’BALANCE’],
[’ONE_SUCC’]).

ctr_eval(balance_path,[checker(balance_path_c)]).

ctr_functional_dependency(balance_path,1,[2]).

balance_path_c(BALANCE,NODES) :-
length(NODES,N),
N2 is max(N-2,0),
check_type(dvar(0,N2),BALANCE),
collection(NODES,[int(1,N),dvar(1,N)]),
get_attr1(NODES,INDEXES),
get_attr2(NODES,SUCCS),
sort(INDEXES,SIND),
length(SIND,N),
length(RANKS,N),
domain(RANKS,1,N),
balance_path1(INDEXES,SUCCS,RANKS,SUCC_WITHOUT_LOOP S),
sort(SUCC_WITHOUT_LOOPS,SSUCC_WITHOUT_LOOPS),
length(SUCC_WITHOUT_LOOPS,NSL),
length(SSUCC_WITHOUT_LOOPS,NSL),
(foreach(X,SUCCS),

foreach(Free,Term),
foreach(Free-1,KeyTerm),param(Term,N)do
nth1(X,Term,Free)),

keysort(KeyTerm,KeySorted),
keyclumped(KeySorted,KeyClumped),
(foreach(_40798-Ones,KeyClumped),

foreach(Count,Counts)do
length(Ones,Count)),

min_member(Min,Counts),
max_member(Max,Counts),
BALANCE is Max-Min.

balance_path1([],[],_40599,[]) :-
!.

balance_path1([I|RI],[I|RS],RANKS,SUCC) :-
!,
balance_path1(RI,RS,RANKS,SUCC).

balance_path1([I|RI],[S|RS],RANKS,[S|SUCC]) :-

2082 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

nth1(I,RANKS,Ri),
nth1(S,RANKS,Rs),
Ri#<Rs,
balance_path1(RI,RS,RANKS,SUCC).

2083

B.43 balancetree

♦ META-DATA:

ctr_date(balance_tree,[’20111226’]).

ctr_origin(
balance_tree,
derived from %c and %c,
[balance,tree]).

ctr_arguments(
balance_tree,
[’BALANCE’-dvar,’NODES’-collection(index-int,succ-d var)]).

ctr_restrictions(
balance_tree,
[’BALANCE’>=0,

’BALANCE’=<max(0,size(’NODES’)-2),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
balance_tree,
balance_tree(

4,
[[index-1,succ-1],

[index-2,succ-5],
[index-3,succ-5],
[index-4,succ-7],
[index-5,succ-1],
[index-6,succ-1],
[index-7,succ-7],
[index-8,succ-5]])).

ctr_typical(balance_tree,[size(’NODES’)>2]).

ctr_exchangeable(balance_tree,[items(’NODES’,all)]) .

ctr_graph(
balance_tree,
[’NODES’],

2084 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’MAX_NSCC’=<1,’RANGE_NCC’=’BALANCE’],
[]).

ctr_eval(balance_tree,[checker(balance_tree_c)]).

ctr_functional_dependency(balance_tree,1,[2]).

balance_tree_c(BALANCE,NODES) :-
length(NODES,N),
N2 is max(N-2,0),
check_type(dvar(0,N2),BALANCE),
collection(NODES,[int(1,N),dvar(1,N)]),
get_attr1(NODES,_INDEXES),
get_attr2(NODES,_SUCCS),
true.

balance_tree_c(BALANCE,NODES) :-
length(NODES,N),
N2 is max(N-2,0),
check_type(dvar(0,N2),BALANCE),
collection(NODES,[int(1,N),dvar(1,N)]),
get_attr1(NODES,INDEXES),
get_attr2(NODES,SUCCS),
sort(INDEXES,SIND),
length(SIND,N),
length(RANKS,N),
domain(RANKS,1,N),
balance_tree1(INDEXES,SUCCS,RANKS),
(foreach(X,SUCCS),

foreach(Free,Term),
foreach(Free-1,KeyTerm),param(Term,N)do
nth1(X,Term,Free)),

keysort(KeyTerm,KeySorted),
keyclumped(KeySorted,KeyClumped),
(foreach(_38822-Ones,KeyClumped),

foreach(Count,Counts)do
length(Ones,Count)),

min_member(Min,Counts),
max_member(Max,Counts),
BALANCE is Max-Min.

balance_tree1([],[],_38648) :-
!.

2085

balance_tree1([I|RI],[I|RS],RANKS) :-
!,
balance_tree1(RI,RS,RANKS).

balance_tree1([I|RI],[S|RS],RANKS) :-
nth1(I,RANKS,Ri),
nth1(S,RANKS,Rs),
Ri#<Rs,
balance_tree1(RI,RS,RANKS).

2086 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.44 betweenmin max

♦ META-DATA:

ctr_date(between_min_max,[’20050824’,’20060804’]).

ctr_origin(
between_min_max,
Used for defining %c.,
[cumulative_convex]).

ctr_arguments(
between_min_max,
[’VAR’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
between_min_max,
[required(’VARIABLES’,var),size(’VARIABLES’)>0]).

ctr_example(
between_min_max,
between_min_max(3,[[var-1],[var-1],[var-4],[var-8]])).

ctr_typical(
between_min_max,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
between_min_max,
[items(’VARIABLES’,all),

vals(
[’VAR’],
int([’VAR’,’VARIABLES’ˆvar]),
=\=,
all,
dontcare)]).

ctr_derived_collections(
between_min_max,
[col(’ITEM’-collection(var-dvar),[item(var-’VAR’)])]).

ctr_graph(
between_min_max,
[’ITEM’,’VARIABLES’],
2,
[’PRODUCT’>>collection(item,variables)],

2087

[itemˆvar>=variablesˆvar],
[’NARC’>=1],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_graph(
between_min_max,
[’ITEM’,’VARIABLES’],
2,
[’PRODUCT’>>collection(item,variables)],
[itemˆvar=<variablesˆvar],
[’NARC’>=1],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(
between_min_max,
[reformulation(between_min_max_r),

automaton(between_min_max_a)]).

ctr_extensible(between_min_max,[],’VARIABLES’,any).

between_min_max_r(VAR,VARIABLES) :-
check_type(dvar,VAR),
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>0,
get_attr1(VARIABLES,VARS),
get_minimum(VARS,MINIMUM),
get_maximum(VARS,MAXIMUM),
MIN in MINIMUM..MAXIMUM,
MAX in MINIMUM..MAXIMUM,
minimum(MIN,VARS),
maximum(MAX,VARS),
VAR#>=MIN,
VAR#=<MAX.

between_min_max_a(FLAG,VAR,VARIABLES) :-
check_type(dvar,VAR),
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>0,
between_min_max_signature(VARIABLES,VAR,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_34871,
SIGNATURE,

2088 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[source(s),sink(t)],
[arc(s,0,i),

arc(s,1,t),
arc(s,2,j),
arc(i,0,i),
arc(i,1,t),
arc(i,2,t),
arc(j,0,t),
arc(j,1,t),
arc(j,2,j),
arc(t,0,t),
arc(t,1,t),
arc(t,2,t)],

[],
[],
[]),

automaton_bool(FLAG,[0,1,2],AUTOMATON).

between_min_max_signature([],_32936,[]).

between_min_max_signature([[var-VARi]|VARs],VAR,[S| Ss]) :-
S in 0..2,
VAR#<VARi#<=>S#=0,
VAR#=VARi#<=>S#=1,
VAR#>VARi#<=>S#=2,
between_min_max_signature(VARs,VAR,Ss).

2089

B.45 bin packing

♦ META-DATA:

ctr_date(
bin_packing,
[’20000128’,’20030820’,’20040530’,’20060804’]).

ctr_origin(bin_packing,’Derived from %c.’,[cumulative]).

ctr_arguments(
bin_packing,
[’CAPACITY’-int,’ITEMS’-collection(bin-dvar,weight- int)]).

ctr_restrictions(
bin_packing,
[’CAPACITY’>=0,

required(’ITEMS’,[bin,weight]),
’ITEMS’ˆweight>=0,
’ITEMS’ˆweight=<’CAPACITY’]).

ctr_example(
bin_packing,
bin_packing(

5,
[[bin-3,weight-4],[bin-1,weight-3],[bin-3,weight-1]])).

ctr_typical(
bin_packing,
[’CAPACITY’>maxval(’ITEMS’ˆweight),

’CAPACITY’=<sum(’ITEMS’ˆweight),
size(’ITEMS’)>1,
range(’ITEMS’ˆbin)>1,
range(’ITEMS’ˆweight)>1,
’ITEMS’ˆbin>=0,
’ITEMS’ˆweight>0]).

ctr_exchangeable(
bin_packing,
[vals([’CAPACITY’],int,<,dontcare,dontcare),

items(’ITEMS’,all),
vals([’ITEMS’ˆweight],int(>=(0)),>,dontcare,dontcar e),
vals([’ITEMS’ˆbin],int,=\=,all,dontcare)]).

ctr_graph(
bin_packing,

2090 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[’ITEMS’,’ITEMS’],
2,
[’PRODUCT’>>collection(items1,items2)],
[items1ˆbin=items2ˆbin],
[],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’],
[SUCC>>

[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’ITEMS’ˆweight)])]],
[sum_ctr(variables,=<,’CAPACITY’)]).

ctr_eval(bin_packing,[reformulation(bin_packing_r)]).

ctr_contractible(bin_packing,[],’ITEMS’,any).

bin_packing_r(CAPACITY,ITEMS) :-
integer(CAPACITY),
CAPACITY>=0,
collection(ITEMS,[dvar,int(0,CAPACITY)]),
bin_packing1(ITEMS,1,TASKS),
cumulative(TASKS,[limit(CAPACITY)]).

2091

B.46 bin packing capa

♦ META-DATA:

ctr_predefined(bin_packing_capa).

ctr_date(bin_packing_capa,[’20091404’]).

ctr_origin(bin_packing_capa,’Derived from %c.’,[bin_p acking]).

ctr_arguments(
bin_packing_capa,
[’BINS’-collection(id-int,capa-int),

’ITEMS’-collection(bin-dvar,weight-int)]).

ctr_restrictions(
bin_packing_capa,
[size(’BINS’)>0,

required(’BINS’,[id,capa]),
distinct(’BINS’,id),
’BINS’ˆid>=1,
’BINS’ˆid=<size(’BINS’),
’BINS’ˆcapa>=0,
required(’ITEMS’,[bin,weight]),
in_attr(’ITEMS’,bin,’BINS’,id),
’ITEMS’ˆweight>=0]).

ctr_example(
bin_packing_capa,
bin_packing_capa(

[[id-1,capa-4],
[id-2,capa-3],
[id-3,capa-5],
[id-4,capa-3],
[id-5,capa-3]],

[[bin-3,weight-4],[bin-1,weight-3],[bin-3,weight-1]])).

ctr_typical(
bin_packing_capa,
[size(’BINS’)>1,

range(’BINS’ˆcapa)>1,
’BINS’ˆcapa>maxval(’ITEMS’ˆweight),
’BINS’ˆcapa=<sum(’ITEMS’ˆweight),
size(’ITEMS’)>1,
range(’ITEMS’ˆbin)>1,
range(’ITEMS’ˆweight)>1,

2092 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

’ITEMS’ˆweight>0]).

ctr_exchangeable(
bin_packing_capa,
[items(’BINS’,all),

items(’ITEMS’,all),
vals([’BINS’ˆcapa],int,<,dontcare,dontcare),
vals([’ITEMS’ˆweight],int(>=(0)),>,dontcare,dontcar e),
vals([’BINS’ˆid,’ITEMS’ˆbin],int,=\=,all,dontcare)]).

ctr_eval(bin_packing_capa,[reformulation(bin_packin g_capa_r)]).

ctr_contractible(bin_packing_capa,[],’ITEMS’,any).

bin_packing_capa_r(BINS,ITEMS) :-
length(BINS,N),
collection(BINS,[int(1,N),int_gteq(0)]),
collection(ITEMS,[dvar,int_gteq(0)]),
get_attr1(BINS,IDS),
get_attr2(BINS,CAPAS),
get_maximum(CAPAS,MAX),
MAX1 is MAX+1,
all_different(IDS),
bin_packing1(ITEMS,1,TASKS),
length(ITEMS,M),
M1 is M+1,
bin_packing_capa1(BINS,M1,MAX,COMPLEMENTS),
append(COMPLEMENTS,TASKS,COMPLEMENTS_TASKS),
cumulative(COMPLEMENTS_TASKS,[limit(MAX1)]).

bin_packing_capa1([],_20256,_20257,[]).

bin_packing_capa1(
[[_20267-I,_20274-W]|R],
ID,
MAX,
[task(I,1,I1,H,ID)|S]) :-

I1 is I+1,
H is MAX-W+1,
bin_packing_capa1(R,ID,MAX,S).

2093

B.47 binary tree

♦ META-DATA:

ctr_date(binary_tree,[’20000128’,’20030820’,’200608 04’]).

ctr_origin(binary_tree,’Derived from %c.’,[tree]).

ctr_arguments(
binary_tree,
[’NTREES’-dvar,’NODES’-collection(index-int,succ-dv ar)]).

ctr_restrictions(
binary_tree,
[’NTREES’>=0,

’NTREES’=<size(’NODES’),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
binary_tree,
binary_tree(

2,
[[index-1,succ-1],

[index-2,succ-3],
[index-3,succ-5],
[index-4,succ-7],
[index-5,succ-1],
[index-6,succ-1],
[index-7,succ-7],
[index-8,succ-5]])).

ctr_typical(
binary_tree,
[’NTREES’>0,’NTREES’<size(’NODES’),size(’NODES’)>2]).

ctr_exchangeable(binary_tree,[items(’NODES’,all)]).

ctr_graph(
binary_tree,
[’NODES’],
2,

2094 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’MAX_NSCC’=<1,’NCC’=’NTREES’,’MAX_ID’=<2],
[’ONE_SUCC’]).

ctr_eval(binary_tree,[reformulation(binary_tree_r)]).

ctr_functional_dependency(binary_tree,1,[2]).

binary_tree_r(NTREES,NODES) :-
eval(tree(NTREES,NODES)),
get_attr1(NODES,INDEXES),
get_attr2(NODES,SUCCS),
k_ary_tree(INDEXES,INDEXES,SUCCS,2).

2095

B.48 bipartite

♦ META-DATA:

ctr_date(bipartite,[’20061001’]).

ctr_origin(bipartite,’\\cite{Dooms06}’,[]).

ctr_arguments(
bipartite,
[’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
bipartite,
[required(’NODES’,[index,succ]),

’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
bipartite,
bipartite(

[[index-1,succ-{2,3}],
[index-2,succ-{1,4}],
[index-3,succ-{1,4,5}],
[index-4,succ-{2,3,6}],
[index-5,succ-{3,6}],
[index-6,succ-{4,5}]])).

ctr_typical(bipartite,[size(’NODES’)>2]).

ctr_exchangeable(bipartite,[items(’NODES’,all)]).

ctr_graph(
bipartite,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes2ˆindex in_set nodes1ˆsucc],
[],
[’SYMMETRIC’,’BIPARTITE’]).

2096 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.49 calendar

♦ META-DATA:

ctr_predefined(calendar).

ctr_date(calendar,[’20061014’]).

ctr_origin(calendar,’\\cite{BeldiceanuR00}’,[]).

ctr_types(
calendar,
[’UNAVAILABILITIES’-collection(low-int,up-int)]).

ctr_arguments(
calendar,
[INSTANTS-

collection(
machine-dvar,
virtual-dvar,
ireal-dvar,
flagend-int),

’MACHINES’-collection(id-int,cal-’UNAVAILABILITIES’)]).

ctr_restrictions(
calendar,
[required(’UNAVAILABILITIES’,[low,up]),

’UNAVAILABILITIES’ˆlow=<’UNAVAILABILITIES’ˆup,
required(’INSTANTS’,[machine,virtual,ireal,flagend]),
in_attr(’INSTANTS’,machine,’MACHINES’,id),
’INSTANTS’ˆflagend>=0,
’INSTANTS’ˆflagend=<1,
size(’MACHINES’)>0,
required(’MACHINES’,[id,cal]),
distinct(’MACHINES’,id)]).

ctr_example(
calendar,
calendar(

[[machine-1,virtual-2,ireal-3,flagend-0],
[machine-1,virtual-5,ireal-6,flagend-1],
[machine-2,virtual-4,ireal-5,flagend-0],
[machine-2,virtual-6,ireal-9,flagend-1],
[machine-3,virtual-2,ireal-2,flagend-0],
[machine-3,virtual-5,ireal-5,flagend-1],
[machine-4,virtual-2,ireal-2,flagend-0],

2097

[machine-4,virtual-7,ireal-9,flagend-1]],
[[id-1,cal-[[low-2,up-2],[low-6,up-7]]],

[id-2,cal-[[low-2,up-2],[low-6,up-7]]],
[id-3,cal-[]],
[id-4,cal-[[low-3,up-4]]]])).

ctr_typical(calendar,[size(’INSTANTS’)>1,size(’MACH INES’)>1]).

ctr_exchangeable(
calendar,
[items(’INSTANTS’,all),items(’MACHINES’,all)]).

ctr_eval(calendar,[reformulation(calendar_r)]).

ctr_contractible(calendar,[],’INSTANTS’,any).

calendar_r(INSTANTS,MACHINES) :-
collection(INSTANTS,[dvar,dvar,dvar,int(0,1)]),
collection(MACHINES,[int,col([int,int])]),
length(MACHINES,M),
M>0,
get_attr1(MACHINES,IDS),
all_different(IDS),
calendar_low_up(MACHINES),
(INSTANTS=[] ->

true
; calendar_in_attr(INSTANTS,IDS),

calendar_normalize(MACHINES,MACHINESN),
calendar_gen(INSTANTS,MACHINESN)

).

calendar_in_attr([],_24263).

calendar_in_attr([[_24272-M|_24270]|R],IDS) :-
build_or_var_in_values(IDS,M,TERM),
call(TERM),
calendar_in_attr(R,IDS).

calendar_low_up([]).

calendar_low_up([[_24268,_24273-CAL]|R]) :-
calendar_low_up1(CAL),
calendar_low_up(R).

calendar_low_up1([]).

2098 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

calendar_low_up1([[_24271-L,_24278-U]|R]) :-
L=<U,
calendar_low_up1(R).

calendar_normalize([],[]).

calendar_normalize(
[[id-ID,cal-CAL]|R],
[[id-ID,cal-MERGED_CAL]|S]) :-

calendar_merge_intervals(CAL,MERGED_CAL),
calendar_normalize(R,S).

calendar_merge_intervals(List,NewList) :-
(foreach([low-L,up-U],List),fromto([],S1,S3,Set)do

fdset_interval(S2,L,U),fdset_union(S1,S2,S3)),
(foreach([A|B],Set),foreach([low-A,up-B],NewList)do

true).

calendar_gen([],_24263).

calendar_gen(
[[machine-M,virtual-V,ireal-R,flagend-F]|T],
CALENDARS) :-

calendar_gen(CALENDARS,M,V,R,F),
calendar_gen(T,CALENDARS).

calendar_gen([],_24263,_24264,_24265,_24266).

calendar_gen([[id-I,cal-C]|S],M,V,R,F) :-
calendar_gen(C,1,0,I,M,V,R,F),
calendar_gen(S,M,V,R,F).

calendar_gen([],1,0,I,M,V,R,_F) :-
M#=I#<=>M#=I#/\R#=V.

calendar_gen([[low-L,up-U]|S],1,0,I,M,V,R,F) :-
LF is L+F,
M#=I#/\R#<LF#<=>M#=I#/\R#=V,
calendar_gen([[low-L,up-U]|S],0,0,I,M,V,R,F).

calendar_gen([[low-K,up-U],[low-L,up-W]|S],0,Sum,I, M,V,R,F) :-
NSum is Sum+U-K+1,
KF is K+F,
UF is U+F,
LF is L+F,
R in KF..UF#=>M#\=I,

2099

M#=I#/\R#>UF#/\R#<LF#<=>M#=I#/\R#=V+NSum,
calendar_gen([[low-L,up-W]|S],0,NSum,I,M,V,R,F).

calendar_gen([[low-L,up-U]],0,Sum,I,M,V,R,F) :-
NSum is Sum+U-L+1,
LF is L+F,
UF is U+F,
R in LF..UF#=>M#\=I,
M#=I#/\R#>UF#<=>M#=I#/\R#=V+NSum.

2100 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.50 cardinality atleast

♦ META-DATA:

ctr_date(
cardinality_atleast,
[’20030820’,’20040530’,’20060805’]).

ctr_origin(
cardinality_atleast,
Derived from %c.,
[global_cardinality]).

ctr_arguments(
cardinality_atleast,
[’ATLEAST’-dvar,

’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
cardinality_atleast,
[’ATLEAST’>=0,

’ATLEAST’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
cardinality_atleast,
cardinality_atleast(

1,
[[var-3],[var-3],[var-8]],
[[val-3],[val-8]])).

ctr_typical(
cardinality_atleast,
[’ATLEAST’>0,

’ATLEAST’<size(’VARIABLES’),
size(’VARIABLES’)>1,
size(’VALUES’)>0,
size(’VARIABLES’)>size(’VALUES’)]).

ctr_exchangeable(
cardinality_atleast,
[items(’VARIABLES’,all),

items(’VALUES’,all),

2101

vals(
[’VARIABLES’ˆvar],
all(notin(’VALUES’ˆval)),
=,
dontcare,
dontcare),

vals(
[’VARIABLES’ˆvar,’VALUES’ˆval],
int,
=\=,
all,
dontcare)]).

ctr_graph(
cardinality_atleast,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=\=valuesˆval],
[’MAX_ID’=size(’VARIABLES’)-’ATLEAST’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(
cardinality_atleast,
[reformulation(cardinality_atleast_r)]).

ctr_pure_functional_dependency(cardinality_atleast, []).

ctr_functional_dependency(cardinality_atleast,1,[2, 3]).

cardinality_atleast_r(ATLEAST,VARIABLES,VALUES) :-
check_type(dvar,ATLEAST),
ATLEAST#>=0,
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
ATLEAST#=<N,
(VALUES=[] ->

true
; collection(VALUES,[int]),

length(VALUES,M),
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
all_different(VALS),
length(NOCCS,M),
fd_min(ATLEAST,MIN_ATLEAST),
domain(NOCCS,MIN_ATLEAST,N),

2102 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),
get_minimum(VALS,MINVALS),
get_maximum(VALS,MAXVALS),
MIN is min(MINVARS,MINVALS),
MAX is max(MAXVARS,MAXVALS),
complete_card(MIN,MAX,N,VALS,NOCCS,VN),
global_cardinality(VARS,VN)

).

2103

B.51 cardinality atmost

♦ META-DATA:

ctr_date(cardinality_atmost,[’20030820’,’20040530’, ’20060805’]).

ctr_origin(
cardinality_atmost,
Derived from %c.,
[global_cardinality]).

ctr_arguments(
cardinality_atmost,
[’ATMOST’-dvar,

’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
cardinality_atmost,
[’ATMOST’>=0,

’ATMOST’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
cardinality_atmost,
cardinality_atmost(

2,
[[var-2],[var-1],[var-7],[var-1],[var-2]],
[[val-5],[val-7],[val-2],[val-9]])).

ctr_typical(
cardinality_atmost,
[’ATMOST’>0,

’ATMOST’<size(’VARIABLES’),
size(’VARIABLES’)>1,
size(’VALUES’)>0,
size(’VARIABLES’)>size(’VALUES’)]).

ctr_exchangeable(
cardinality_atmost,
[items(’VARIABLES’,all),

items(’VALUES’,all),
vals(

[’VARIABLES’ˆvar],

2104 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

all(notin(’VALUES’ˆval)),
=,
dontcare,
dontcare),

vals(
[’VARIABLES’ˆvar,’VALUES’ˆval],
int,
=\=,
all,
dontcare)]).

ctr_graph(
cardinality_atmost,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’MAX_ID’=’ATMOST’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(
cardinality_atmost,
[reformulation(cardinality_atmost_r)]).

ctr_pure_functional_dependency(cardinality_atmost,[]).

ctr_functional_dependency(cardinality_atmost,1,[2,3]).

cardinality_atmost_r(ATMOST,VARIABLES,VALUES) :-
check_type(dvar,ATMOST),
ATMOST#>=0,
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
ATMOST#=<N,
(VALUES=[] ->

true
; collection(VALUES,[int]),

length(VALUES,M),
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
all_different(VALS),
length(NOCCS,M),
fd_max(ATMOST,MAX_ATMOST),
domain(NOCCS,0,MAX_ATMOST),
get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),

2105

get_minimum(VALS,MINVALS),
get_maximum(VALS,MAXVALS),
MIN is min(MINVARS,MINVALS),
MAX is max(MAXVARS,MAXVALS),
complete_card(MIN,MAX,N,VALS,NOCCS,VN),
global_cardinality(VARS,VN)

).

2106 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.52 cardinality atmost partition

♦ META-DATA:

ctr_date(cardinality_atmost_partition,[’20030820’,’ 20060805’]).

ctr_origin(
cardinality_atmost_partition,
Derived from %c.,
[global_cardinality]).

ctr_types(
cardinality_atmost_partition,
[’VALUES’-collection(val-int)]).

ctr_arguments(
cardinality_atmost_partition,
[’ATMOST’-dvar,

’VARIABLES’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
cardinality_atmost_partition,
[size(’VALUES’)>=1,

required(’VALUES’,val),
distinct(’VALUES’,val),
’ATMOST’>=0,
’ATMOST’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_example(
cardinality_atmost_partition,
cardinality_atmost_partition(

2,
[[var-2],[var-3],[var-7],[var-1],[var-6],[var-0]],
[[p-[[val-1],[val-3]]],

[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

ctr_typical(
cardinality_atmost_partition,
[’ATMOST’>0,

’ATMOST’<size(’VARIABLES’),
size(’VARIABLES’)>1,

2107

size(’VARIABLES’)>size(’PARTITIONS’)]).

ctr_exchangeable(
cardinality_atmost_partition,
[items(’VARIABLES’,all),

items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all)]).

ctr_graph(
cardinality_atmost_partition,
[’VARIABLES’,’PARTITIONS’],
2,
[’PRODUCT’>>collection(variables,partitions)],
[variablesˆvar in partitionsˆp],
[’MAX_ID’=’ATMOST’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(
cardinality_atmost_partition,
[reformulation(cardinality_atmost_partition_r)]).

ctr_pure_functional_dependency(cardinality_atmost_p artition,[]).

ctr_functional_dependency(cardinality_atmost_partit ion,1,[2,3]).

cardinality_atmost_partition_r(ATMOST,VARIABLES,PAR TITIONS) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
check_type(dvar(0,N),ATMOST),
collection(PARTITIONS,[col_len_gteq(1,[int])]),
length(PARTITIONS,P),
P>1,
get_attr1(VARIABLES,VARS),
get_col_attr1(PARTITIONS,1,PVALS),
flattern(PVALS,VALS),
all_different(VALS),
length(PVALS,LPVALS),
LPVALS1 is LPVALS+1,
get_partition_var(VARS,PVALS,PVARS,LPVALS1,0),
complete_card_consec(1,LPVALS1,ATMOST,N,VALUES),
global_cardinality(PVARS,VALUES).

2108 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.53 change

♦ META-DATA:

ctr_date(change,[’20000128’,’20030820’,’20040530’,’ 20060805’]).

ctr_origin(change,’\\index{CHIP|indexuse}CHIP’,[]).

ctr_synonyms(change,[nbchanges,similarity]).

ctr_arguments(
change,
[’NCHANGE’-dvar,

’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
change,
[’NCHANGE’>=0,

’NCHANGE’<size(’VARIABLES’),
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
change,
[change(3,[[var-4],[var-4],[var-3],[var-4],[var-1]] ,=\=),

change(1,[[var-1],[var-2],[var-4],[var-3],[var-7]], >)]).

ctr_typical(
change,
[’NCHANGE’>0,

size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
in_list(’CTR’,[=\=])]).

ctr_exchangeable(change,[translate([’VARIABLES’ˆvar])]).

ctr_graph(
change,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[’CTR’(variables1ˆvar,variables2ˆvar)],
[’NARC’=’NCHANGE’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

2109

ctr_eval(change,[automaton(change_a)]).

ctr_pure_functional_dependency(change,[]).

ctr_functional_dependency(change,1,[2,3]).

ctr_contractible(
change,
[in_list(’CTR’,[=\=,<,>=,>,=<]),’NCHANGE’=0],
VARIABLES,
any).

ctr_contractible(
change,
[in_list(’CTR’,[=,<,>=,>,=<]),

’NCHANGE’=size(’VARIABLES’)-1],
VARIABLES,
any).

change_a(FLAG,NCHANGE,VARIABLES,CTR) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N_1 is N-1,
check_type(dvar(0,N_1),NCHANGE),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
change_signature(VARIABLES,SIGNATURE,CTR),
automaton(

SIGNATURE,
_41957,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

NCHANGE#=COUNT#<=>FLAG.

change_signature([],[],_40279).

change_signature([_40283],[],_40282) :-
!.

change_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss],=) :-
!,
VAR1#=VAR2#<=>S,
change_signature([[var-VAR2]|VARs],Ss,=).

2110 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

change_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss],=\=) :-
!,
VAR1#\=VAR2#<=>S,
change_signature([[var-VAR2]|VARs],Ss,=\=).

change_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss],<) :-
!,
VAR1#<VAR2#<=>S,
change_signature([[var-VAR2]|VARs],Ss,<).

change_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss],>=) :-
!,
VAR1#>=VAR2#<=>S,
change_signature([[var-VAR2]|VARs],Ss,>=).

change_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss],>) :-
!,
VAR1#>VAR2#<=>S,
change_signature([[var-VAR2]|VARs],Ss,>).

change_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss],=<) :-
!,
VAR1#=<VAR2#<=>S,
change_signature([[var-VAR2]|VARs],Ss,=<).

2111

B.54 changecontinuity

♦ META-DATA:

ctr_date(
change_continuity,
[’20000128’,’20030820’,’20040530’,’20060805’]).

ctr_origin(change_continuity,’N.˜Beldiceanu’,[]).

ctr_arguments(
change_continuity,
[’NB_PERIOD_CHANGE’-dvar,

’NB_PERIOD_CONTINUITY’-dvar,
’MIN_SIZE_CHANGE’-dvar,
’MAX_SIZE_CHANGE’-dvar,
’MIN_SIZE_CONTINUITY’-dvar,
’MAX_SIZE_CONTINUITY’-dvar,
’NB_CHANGE’-dvar,
’NB_CONTINUITY’-dvar,
’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
change_continuity,
[’NB_PERIOD_CHANGE’>=0,

’NB_PERIOD_CONTINUITY’>=0,
’MIN_SIZE_CHANGE’>=0,
’MAX_SIZE_CHANGE’>=’MIN_SIZE_CHANGE’,
’MIN_SIZE_CONTINUITY’>=0,
’MAX_SIZE_CONTINUITY’>=’MIN_SIZE_CONTINUITY’,
’NB_CHANGE’>=0,
’NB_CONTINUITY’>=0,
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
change_continuity,
change_continuity(

3,
2,
2,
4,
2,
4,
6,

2112 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

4,
[[var-1],

[var-3],
[var-1],
[var-8],
[var-8],
[var-4],
[var-7],
[var-7],
[var-7],
[var-7],
[var-2]],

=\=)).

ctr_typical(
change_continuity,
[’NB_PERIOD_CHANGE’>0,

’NB_PERIOD_CONTINUITY’>0,
’MIN_SIZE_CHANGE’>0,
’MIN_SIZE_CONTINUITY’>0,
’NB_CHANGE’>0,
’NB_CONTINUITY’>0,
size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
in_list(’CTR’,[=\=])]).

ctr_exchangeable(
change_continuity,
[translate([’VARIABLES’ˆvar])]).

ctr_graph(
change_continuity,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[’CTR’(variables1ˆvar,variables2ˆvar)],
[’NCC’=’NB_PERIOD_CHANGE’,

’MIN_NCC’=’MIN_SIZE_CHANGE’,
’MAX_NCC’=’MAX_SIZE_CHANGE’,
’NARC’=’NB_CHANGE’],

[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_graph(
change_continuity,
[’VARIABLES’],
2,

2113

[’PATH’>>collection(variables1,variables2)],
[#\’CTR’(variables1ˆvar,variables2ˆvar)],
[’NCC’=’NB_PERIOD_CONTINUITY’,

’MIN_NCC’=’MIN_SIZE_CONTINUITY’,
’MAX_NCC’=’MAX_SIZE_CONTINUITY’,
’NARC’=’NB_CONTINUITY’],

[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(change_continuity,[automata(change_continu ity_a)]).

ctr_functional_dependency(change_continuity,1,[9,10]).

ctr_functional_dependency(change_continuity,2,[9,10]).

ctr_functional_dependency(change_continuity,3,[9,10]).

ctr_functional_dependency(change_continuity,4,[9,10]).

ctr_functional_dependency(change_continuity,5,[9,10]).

ctr_functional_dependency(change_continuity,6,[9,10]).

ctr_functional_dependency(change_continuity,7,[9,10]).

ctr_functional_dependency(change_continuity,8,[9,10]).

change_continuity_a(
NB_PERIOD_CHANGE,
NB_PERIOD_CONTINUITY,
MIN_SIZE_CHANGE,
MAX_SIZE_CHANGE,
MIN_SIZE_CONTINUITY,
MAX_SIZE_CONTINUITY,
NB_CHANGE,
NB_CONTINUITY,
VARIABLES,
CTR) :-

check_type(dvar,NB_PERIOD_CHANGE),
check_type(dvar,NB_PERIOD_CONTINUITY),
check_type(dvar,MIN_SIZE_CHANGE),
check_type(dvar,MAX_SIZE_CHANGE),
check_type(dvar,MIN_SIZE_CONTINUITY),
check_type(dvar,MAX_SIZE_CONTINUITY),
check_type(dvar,NB_CHANGE),
check_type(dvar,NB_CONTINUITY),
collection(VARIABLES,[dvar]),

2114 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

memberchk(CTR,[=,=\=,<,>=,>,=<]),
NB_PERIOD_CHANGE#>=0,
NB_PERIOD_CONTINUITY#>=0,
MIN_SIZE_CHANGE#>=0,
MAX_SIZE_CHANGE#>=MIN_SIZE_CHANGE,
MIN_SIZE_CONTINUITY#>=0,
MAX_SIZE_CONTINUITY#>=MIN_SIZE_CONTINUITY,
NB_CHANGE#>=0,
NB_CONTINUITY#>=0,
change_continuity_signature(

VARIABLES,
SIGNATURE_CTR,
1,
CTR),

change_continuity_signature(
VARIABLES,
SIGNATURE_NOT_CTR,
0,
CTR),

change_continuity_nb_period(
NB_PERIOD_CHANGE,
SIGNATURE_CTR),

change_continuity_nb_period(
NB_PERIOD_CONTINUITY,
SIGNATURE_NOT_CTR),

change_continuity_min_size(
MIN_SIZE_CHANGE,
SIGNATURE_CTR),

change_continuity_min_size(
MIN_SIZE_CONTINUITY,
SIGNATURE_NOT_CTR),

change_continuity_max_size(
MAX_SIZE_CHANGE,
SIGNATURE_CTR),

change_continuity_max_size(
MAX_SIZE_CONTINUITY,
SIGNATURE_NOT_CTR),

change_continuity_nb(NB_CHANGE,SIGNATURE_CTR),
change_continuity_nb(NB_CONTINUITY,SIGNATURE_NOT_CT R).

change_continuity_nb_period(NB_PERIOD,SIGNATURE) :-
automaton(

SIGNATURE,
_52543,
SIGNATURE,
[source(s),sink(s),sink(i)],

2115

[arc(s,0,s),
arc(s,1,i,[C+1]),
arc(i,1,i),
arc(i,0,s)],

[C],
[0],
[NB_PERIOD]).

change_continuity_min_size(MIN_SIZE,SIGNATURE) :-
MIN_SIZE#=min(C1,D1),
MIN_SIZE#=min(C1,D1),
automaton(

SIGNATURE,
_53161,
SIGNATURE,
[source(s),sink(i),sink(j),sink(k),sink(s)],
[arc(s,0,s),

arc(s,1,i,[C,2]),
arc(i,0,j,[D,D]),
arc(i,1,i,[C,D+1]),
arc(j,0,j),
arc(j,1,k,[C,2]),
arc(k,0,j,[min(C,D),D]),
arc(k,1,k,[C,D+1])],

[C,D],
[0,1],
[C1,D1]).

change_continuity_max_size(MAX_SIZE,SIGNATURE) :-
MAX_SIZE#=max(C1,D1),
automaton(

SIGNATURE,
_52854,
SIGNATURE,
[source(s),sink(i),sink(s)],
[arc(s,0,s,[C,D]),

arc(s,1,i,[C,D+1]),
arc(i,0,i,[max(C,D),1]),
arc(i,1,i,[C,D+1])],

[C,D],
[0,1],
[C1,D1]).

change_continuity_nb(NB,SIGNATURE) :-
automaton(

SIGNATURE,

2116 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

_52501,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[NB]).

change_continuity_signature([],[],_51904,_51905).

change_continuity_signature([_51909],[],_51907,_519 08) :-
!.

change_continuity_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
1,
=) :-

!,
VAR1#=VAR2#<=>S,
change_continuity_signature([[var-VAR2]|VARs],Ss,1, =).

change_continuity_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
1,
=\=) :-

!,
VAR1#\=VAR2#<=>S,
change_continuity_signature([[var-VAR2]|VARs],Ss,1, =\=).

change_continuity_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
1,
<) :-

!,
VAR1#<VAR2#<=>S,
change_continuity_signature([[var-VAR2]|VARs],Ss,1, <).

change_continuity_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
1,
>=) :-

!,

2117

VAR1#>=VAR2#<=>S,
change_continuity_signature([[var-VAR2]|VARs],Ss,1, >=).

change_continuity_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
1,
>) :-

!,
VAR1#>VAR2#<=>S,
change_continuity_signature([[var-VAR2]|VARs],Ss,1, >).

change_continuity_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
1,
=<) :-

!,
VAR1#=<VAR2#<=>S,
change_continuity_signature([[var-VAR2]|VARs],Ss,1, =<).

change_continuity_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
0,
=) :-

!,
VAR1#\=VAR2#<=>S,
change_continuity_signature([[var-VAR2]|VARs],Ss,0, =).

change_continuity_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
0,
=\=) :-

!,
VAR1#=VAR2#<=>S,
change_continuity_signature([[var-VAR2]|VARs],Ss,0, =\=).

change_continuity_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
0,
<) :-

!,
VAR1#>=VAR2#<=>S,

2118 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

change_continuity_signature([[var-VAR2]|VARs],Ss,0, <).

change_continuity_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
0,
>=) :-

!,
VAR1#<VAR2#<=>S,
change_continuity_signature([[var-VAR2]|VARs],Ss,0, >=).

change_continuity_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
0,
>) :-

!,
VAR1#=<VAR2#<=>S,
change_continuity_signature([[var-VAR2]|VARs],Ss,0, >).

change_continuity_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
0,
=<) :-

!,
VAR1#>VAR2#<=>S,
change_continuity_signature([[var-VAR2]|VARs],Ss,0, =<).

2119

B.55 changepair

♦ META-DATA:

ctr_date(change_pair,[’20030820’,’20040530’,’200608 05’]).

ctr_origin(change_pair,’Derived from %c.’,[change]).

ctr_arguments(
change_pair,
[’NCHANGE’-dvar,

’PAIRS’-collection(x-dvar,y-dvar),
’CTRX’-atom,
’CTRY’-atom]).

ctr_restrictions(
change_pair,
[’NCHANGE’>=0,

’NCHANGE’<size(’PAIRS’),
required(’PAIRS’,[x,y]),
in_list(’CTRX’,[=,=\=,<,>=,>,=<]),
in_list(’CTRY’,[=,=\=,<,>=,>,=<])]).

ctr_example(
change_pair,
change_pair(

3,
[[x-3,y-5],

[x-3,y-7],
[x-3,y-7],
[x-3,y-8],
[x-3,y-4],
[x-3,y-7],
[x-1,y-3],
[x-1,y-6],
[x-1,y-6],
[x-3,y-7]],

=\=,
>)).

ctr_typical(
change_pair,
[’NCHANGE’>0,

size(’PAIRS’)>1,
range(’PAIRS’ˆx)>1,
range(’PAIRS’ˆy)>1]).

2120 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_exchangeable(
change_pair,
[translate([’PAIRS’ˆx]),translate([’PAIRS’ˆy])]).

ctr_graph(
change_pair,
[’PAIRS’],
2,
[’PATH’>>collection(pairs1,pairs2)],
[’CTRX’(pairs1ˆx,pairs2ˆx)#\/’CTRY’(pairs1ˆy,pairs2 ˆy)],
[’NARC’=’NCHANGE’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(change_pair,[automaton(change_pair_a)]).

ctr_pure_functional_dependency(change_pair,[]).

ctr_functional_dependency(change_pair,1,[2,3,4]).

change_pair_a(FLAG,NCHANGE,PAIRS,CTRX,CTRY) :-
collection(PAIRS,[dvar,dvar]),
length(PAIRS,N),
N_1 is N-1,
check_type(dvar(0,N_1),NCHANGE),
memberchk(CTRX,[=,=\=,<,>=,>,=<]),
memberchk(CTRY,[=,=\=,<,>=,>,=<]),
change_pair_signature(PAIRS,SIGNATURE,CTRX,CTRY),
automaton(

SIGNATURE,
_37471,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

COUNT#=NCHANGE#<=>FLAG.

change_pair_signature([],[],_35598,_35599).

change_pair_signature([_35603],[],_35601,_35602) :-
!.

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],

2121

[S|Ss],
=,
=) :-

!,
X1#=X2#\/Y1#=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=,=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=,
=\=) :-

!,
X1#=X2#\/Y1#\=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=,=\=) .

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=,
<) :-

!,
X1#=X2#\/Y1#<Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=,<).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=,
>=) :-

!,
X1#=X2#\/Y1#>=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=,>=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=,
>) :-

!,
X1#=X2#\/Y1#>Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=,>).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],

2122 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

=,
=<) :-

!,
X1#=X2#\/Y1#=<Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=,=<).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=\=,
=) :-

!,
X1#\=X2#\/Y1#=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=\=,=) .

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=\=,
=\=) :-

!,
X1#\=X2#\/Y1#\=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=\=,=\ =).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=\=,
<) :-

!,
X1#\=X2#\/Y1#<Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=\=,<) .

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=\=,
>=) :-

!,
X1#\=X2#\/Y1#>=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=\=,>=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=\=,

2123

>) :-
!,
X1#\=X2#\/Y1#>Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=\=,>) .

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=\=,
=<) :-

!,
X1#\=X2#\/Y1#=<Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=\=,=<).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
<,
=) :-

!,
X1#<X2#\/Y1#=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,<,=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
<,
=\=) :-

!,
X1#<X2#\/Y1#\=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,<,=\=) .

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
<,
<) :-

!,
X1#<X2#\/Y1#<Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,<,<).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
<,
>=) :-

2124 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

!,
X1#<X2#\/Y1#>=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,<,>=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
<,
>) :-

!,
X1#<X2#\/Y1#>Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,<,>).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
<,
=<) :-

!,
X1#<X2#\/Y1#=<Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,<,=<).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
>=,
=) :-

!,
X1#>=X2#\/Y1#=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,>=,=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
>=,
=\=) :-

!,
X1#>=X2#\/Y1#\=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,>=,=\=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
>=,
<) :-

!,

2125

X1#>=X2#\/Y1#<Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,>=,<).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
>=,
>=) :-

!,
X1#>=X2#\/Y1#>=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,>=,>=) .

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
>=,
>) :-

!,
X1#>=X2#\/Y1#>Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,>=,>).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
>=,
=<) :-

!,
X1#>=X2#\/Y1#=<Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,>=,=<) .

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
>,
=) :-

!,
X1#>X2#\/Y1#=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,>,=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
>,
=\=) :-

!,
X1#>X2#\/Y1#\=Y2#<=>S,

2126 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,>,=\=) .

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
>,
<) :-

!,
X1#>X2#\/Y1#<Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,>,<).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
>,
>=) :-

!,
X1#>X2#\/Y1#>=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,>,>=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
>,
>) :-

!,
X1#>X2#\/Y1#>Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,>,>).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
>,
=<) :-

!,
X1#>X2#\/Y1#=<Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,>,=<).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=<,
=) :-

!,
X1#=<X2#\/Y1#=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=<,=).

2127

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=<,
=\=) :-

!,
X1#=<X2#\/Y1#\=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=<,=\=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=<,
<) :-

!,
X1#=<X2#\/Y1#<Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=<,<).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=<,
>=) :-

!,
X1#=<X2#\/Y1#>=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=<,>=) .

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=<,
>) :-

!,
X1#=<X2#\/Y1#>Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=<,>).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=<,
=<) :-

!,
X1#=<X2#\/Y1#=<Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=<,=<) .

2128 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.56 changepartition

♦ META-DATA:

ctr_date(
change_partition,
[’20000128’,’20030820’,’20040530’,’20060805’]).

ctr_origin(change_partition,’Derived from %c.’,[chang e]).

ctr_types(change_partition,[’VALUES’-collection(val -int)]).

ctr_arguments(
change_partition,
[’NCHANGE’-dvar,

’VARIABLES’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
change_partition,
[size(’VALUES’)>=1,

required(’VALUES’,val),
distinct(’VALUES’,val),
’NCHANGE’>=0,
’NCHANGE’<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_example(
change_partition,
change_partition(

2,
[[var-6],

[var-6],
[var-2],
[var-1],
[var-3],
[var-3],
[var-1],
[var-6],
[var-2],
[var-2],
[var-2]],

[[p-[[val-1],[val-3]]],
[p-[[val-4]]],

2129

[p-[[val-2],[val-6]]]])).

ctr_typical(
change_partition,
[’NCHANGE’>0,

size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
size(’VARIABLES’)>size(’PARTITIONS’)]).

ctr_exchangeable(
change_partition,
[items(’VARIABLES’,reverse),

items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all),
vals(

[’VARIABLES’ˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare)]).

ctr_graph(
change_partition,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
PARTITIONS)],

[’NARC’=’NCHANGE’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_pure_functional_dependency(change_partition,[]) .

ctr_functional_dependency(change_partition,1,[2,3]) .

2130 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.57 changevectors

♦ META-DATA:

ctr_date(change_vectors,[’20110616’]).

ctr_origin(change_vectors,’Derived from %c’,[change]) .

ctr_types(
change_vectors,
[’VECTOR’-collection(var-dvar),’CTR’-atom]).

ctr_arguments(
change_vectors,
[’NCHANGE’-dvar,

’VECTORS’-collection(vec-’VECTOR’),
’CTRS’-collection(ctr-’CTR’)]).

ctr_restrictions(
change_vectors,
[size(’VECTOR’)>=1,

required(’VECTOR’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<]),
’NCHANGE’>=0,
’NCHANGE’<size(’VECTORS’),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec),
required(’CTRS’,ctr),
size(’CTRS’)=size(’VECTOR’)]).

ctr_example(
change_vectors,
change_vectors(

3,
[[vec-[[var-4],[var-0]]],

[vec-[[var-4],[var-0]]],
[vec-[[var-4],[var-5]]],
[vec-[[var-3],[var-4]]],
[vec-[[var-3],[var-4]]],
[vec-[[var-3],[var-4]]],
[vec-[[var-4],[var-0]]]],

[[ctr- =\=],[ctr- =\=]])).

ctr_typical(
change_vectors,
[in_list(’CTR’,[=\=]),

2131

size(’VECTOR’)>1,
’NCHANGE’>0,
size(’VECTORS’)>1]).

ctr_eval(change_vectors,[automaton(change_vectors_a)]).

ctr_pure_functional_dependency(change_vectors,[]).

ctr_functional_dependency(change_vectors,1,[2,3]).

change_vectors_a(FLAG,NCHANGE,VECTORS,CTRS) :-
collection(VECTORS,[col([dvar])]),
length(VECTORS,N),
N_1 is N-1,
check_type(dvar(0,N_1),NCHANGE),
collection(CTRS,[atom([=,=\=,<,>=,>,=<])]),
same_size(VECTORS),
length(CTRS,M),
VECTORS=[[_17205-VECTOR1]|_17201],
length(VECTOR1,M),
M>=1,
get_attr11(VECTORS,VECTS),
get_attr1(CTRS,LCTRS),
change_vectors_signature(VECTS,SIGNATURE,LCTRS),
AUTOMATON=
automaton(

SIGNATURE,
_20326,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[NCHANGE]),

automaton_bool(FLAG,[0,1],AUTOMATON).

change_vectors_signature([],[],_17109) :-
!.

change_vectors_signature([_17110],[],_17109) :-
!.

change_vectors_signature([VEC1,VEC2|VECs],[S|Ss],CT RS) :-
!,
build_vectors_compare_change(VEC1,VEC2,CTRS,Term),
call(Term#<=>S),

2132 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

change_vectors_signature([VEC2|VECs],Ss,CTRS).

2133

B.58 circuit

♦ META-DATA:

ctr_date(circuit,[’20030820’,’20040530’,’20060805’]).

ctr_origin(circuit,’\\cite{Lauriere78}’,[]).

ctr_synonyms(circuit,[atour,cycle]).

ctr_arguments(
circuit,
[’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
circuit,
[required(’NODES’,[index,succ]),

’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
circuit,
circuit(

[[index-1,succ-2],
[index-2,succ-3],
[index-3,succ-4],
[index-4,succ-1]])).

ctr_typical(circuit,[size(’NODES’)>2]).

ctr_exchangeable(circuit,[items(’NODES’,all)]).

ctr_graph(
circuit,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’MIN_NSCC’=size(’NODES’),’MAX_ID’=<1],
[’ONE_SUCC’]).

ctr_eval(circuit,[builtin(circuit_b)]).

2134 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

circuit_b(NODES) :-
length(NODES,N),
collection(NODES,[int(1,N),dvar(1,N)]),
get_attr1(NODES,INDEX),
all_different(INDEX),
get_attr2(NODES,SUCC),
circuit(SUCC).

2135

B.59 circuit cluster

♦ META-DATA:

ctr_date(circuit_cluster,[’20000128’,’20030820’,’20 060805’]).

ctr_origin(
circuit_cluster,
Inspired by \cite{LaporteAsefVaziriSriskandarajah96}. ,
[]).

ctr_arguments(
circuit_cluster,
[’NCIRCUIT’-dvar,

’NODES’-collection(index-int,cluster-int,succ-dvar)]).

ctr_restrictions(
circuit_cluster,
[’NCIRCUIT’>=1,

’NCIRCUIT’=<size(’NODES’),
required(’NODES’,[index,cluster,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
circuit_cluster,
[circuit_cluster(

1,
[[index-1,cluster-1,succ-1],

[index-2,cluster-1,succ-4],
[index-3,cluster-2,succ-3],
[index-4,cluster-2,succ-5],
[index-5,cluster-3,succ-8],
[index-6,cluster-3,succ-6],
[index-7,cluster-3,succ-7],
[index-8,cluster-4,succ-2],
[index-9,cluster-4,succ-9]]),

circuit_cluster(
2,
[[index-1,cluster-1,succ-1],

[index-2,cluster-1,succ-4],
[index-3,cluster-2,succ-3],
[index-4,cluster-2,succ-2],

2136 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[index-5,cluster-3,succ-5],
[index-6,cluster-3,succ-9],
[index-7,cluster-3,succ-7],
[index-8,cluster-4,succ-8],
[index-9,cluster-4,succ-6]])]).

ctr_typical(
circuit_cluster,
[’NCIRCUIT’<size(’NODES’),

size(’NODES’)>2,
range(’NODES’ˆcluster)>1]).

ctr_exchangeable(circuit_cluster,[items(’NODES’,all)]).

ctr_graph(
circuit_cluster,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=\=nodes1ˆindex,nodes1ˆsucc=nodes2ˆinde x],
[’NTREE’=0,’NSCC’=’NCIRCUIT’],
[’ONE_SUCC’],
[ALL_VERTICES>>

[variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’NODES’ˆcluster)])]],
[alldifferent(variables),

nvalues(variables,=,size(’NODES’,cluster))]).

2137

B.60 circular change

♦ META-DATA:

ctr_date(circular_change,[’20030820’,’20040530’,’20 060805’]).

ctr_origin(circular_change,’Derived from %c.’,[change]).

ctr_arguments(
circular_change,
[’NCHANGE’-dvar,

’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
circular_change,
[’NCHANGE’>=0,

’NCHANGE’=<size(’VARIABLES’),
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
circular_change,
circular_change(

4,
[[var-4],[var-4],[var-3],[var-4],[var-1]],
=\=)).

ctr_typical(
circular_change,
[’NCHANGE’>0,

size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
in_list(’CTR’,[=\=])]).

ctr_exchangeable(
circular_change,
[items(’VARIABLES’,shift),translate([’VARIABLES’ˆva r])]).

ctr_graph(
circular_change,
[’VARIABLES’],
2,
[’CIRCUIT’>>collection(variables1,variables2)],
[’CTR’(variables1ˆvar,variables2ˆvar)],
[’NARC’=’NCHANGE’],

2138 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[]).

ctr_eval(circular_change,[automaton(circular_change _a)]).

ctr_pure_functional_dependency(circular_change,[]).

ctr_functional_dependency(circular_change,1,[2,3]).

circular_change_a(FLAG,NCHANGE,VARIABLES,CTR) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
check_type(dvar(0,N),NCHANGE),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
VARIABLES=[V1|_28445],
append(VARIABLES,[V1],CVARIABLES),
circular_change_signature(CVARIABLES,SIGNATURE,CTR) ,
automaton(

SIGNATURE,
_30210,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

COUNT#=NCHANGE#<=>FLAG.

circular_change_signature([],[],_28382).

circular_change_signature([_28386],[],_28385) :-
!.

circular_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
=) :-

!,
VAR1#=VAR2#<=>S,
circular_change_signature([[var-VAR2]|VARs],Ss,=).

circular_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
=\=) :-

!,
VAR1#\=VAR2#<=>S,

2139

circular_change_signature([[var-VAR2]|VARs],Ss,=\=) .

circular_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
<) :-

!,
VAR1#<VAR2#<=>S,
circular_change_signature([[var-VAR2]|VARs],Ss,<).

circular_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
>=) :-

!,
VAR1#>=VAR2#<=>S,
circular_change_signature([[var-VAR2]|VARs],Ss,>=).

circular_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
>) :-

!,
VAR1#>VAR2#<=>S,
circular_change_signature([[var-VAR2]|VARs],Ss,>).

circular_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
=<) :-

!,
VAR1#=<VAR2#<=>S,
circular_change_signature([[var-VAR2]|VARs],Ss,=<).

2140 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.61 clauseand

♦ META-DATA:

ctr_date(clause_and,[’20090416’]).

ctr_origin(clause_and,’Logic’,[]).

ctr_synonyms(clause_and,[clause]).

ctr_arguments(
clause_and,
[’POSVARS’-collection(var-dvar),

’NEGVARS’-collection(var-dvar),
’VAR’-dvar]).

ctr_restrictions(
clause_and,
[size(’POSVARS’)+size(’NEGVARS’)>0,

required(’POSVARS’,var),
’POSVARS’ˆvar>=0,
’POSVARS’ˆvar=<1,
required(’NEGVARS’,var),
’NEGVARS’ˆvar>=0,
’NEGVARS’ˆvar=<1,
’VAR’>=0,
’VAR’=<1]).

ctr_example(
clause_and,
clause_and([[var-1],[var-0]],[[var-0]],0)).

ctr_typical(clause_and,[size(’POSVARS’)+size(’NEGVA RS’)>1]).

ctr_exchangeable(
clause_and,
[items(’POSVARS’,all),items(’NEGVARS’,all)]).

ctr_eval(clause_and,[automaton(clause_and_a)]).

ctr_extensible(clause_and,[’VAR’=0],’POSVARS’,any).

ctr_extensible(clause_and,[’VAR’=0],’NEGVARS’,any).

clause_and_a(FLAG,POSVARS,NEGVARS,VAR) :-
collection(POSVARS,[dvar(0,1)]),

2141

collection(NEGVARS,[dvar(0,1)]),
check_type(dvar(0,1),VAR),
length(POSVARS,LP),
length(NEGVARS,LN),
L is LP+LN,
L>0,
get_attr1(POSVARS,LISTP),
get_attr1(NEGVARS,LISTN),
clause_and_negate(LISTN,LISTNN),
append([VAR],LISTP,LIST),
append(LIST,LISTNN,LIST_VARIABLES),
AUTOMATON=
automaton(

LIST_VARIABLES,
_21590,
LIST_VARIABLES,
[source(s),sink(k),sink(j)],
[arc(s,0,i),

arc(s,1,j),
arc(i,0,k),
arc(i,1,i),
arc(k,0,k),
arc(k,1,k),
arc(j,1,j)],

[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

clause_and_negate([],[]).

clause_and_negate([V|R],[U|S]) :-
V#<=> #\U,
clause_and_negate(R,S).

2142 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.62 clauseor

♦ META-DATA:

ctr_date(clause_or,[’20090415’]).

ctr_origin(clause_or,’Logic’,[]).

ctr_synonyms(clause_or,[clause]).

ctr_arguments(
clause_or,
[’POSVARS’-collection(var-dvar),

’NEGVARS’-collection(var-dvar),
’VAR’-dvar]).

ctr_restrictions(
clause_or,
[size(’POSVARS’)+size(’NEGVARS’)>0,

required(’POSVARS’,var),
’POSVARS’ˆvar>=0,
’POSVARS’ˆvar=<1,
required(’NEGVARS’,var),
’NEGVARS’ˆvar>=0,
’NEGVARS’ˆvar=<1,
’VAR’>=0,
’VAR’=<1]).

ctr_example(clause_or,clause_or([[var-0],[var-0]],[[var-0]],1)).

ctr_typical(clause_or,[size(’POSVARS’)+size(’NEGVAR S’)>1]).

ctr_exchangeable(
clause_or,
[items(’POSVARS’,all),items(’NEGVARS’,all)]).

ctr_eval(clause_or,[automaton(clause_or_a)]).

ctr_extensible(clause_or,[’VAR’=1],’POSVARS’,any).

ctr_extensible(clause_or,[’VAR’=1],’NEGVARS’,any).

clause_or_a(FLAG,POSVARS,NEGVARS,VAR) :-
collection(POSVARS,[dvar(0,1)]),
collection(NEGVARS,[dvar(0,1)]),
check_type(dvar(0,1),VAR),

2143

length(POSVARS,LP),
length(NEGVARS,LN),
L is LP+LN,
L>0,
get_attr1(POSVARS,LISTP),
get_attr1(NEGVARS,LISTN),
clause_or_negate(LISTN,LISTNN),
append([VAR],LISTP,LIST),
append(LIST,LISTNN,LIST_VARIABLES),
AUTOMATON=
automaton(

LIST_VARIABLES,
_22056,
LIST_VARIABLES,
[source(s),sink(i),sink(k)],
[arc(s,0,i),

arc(s,1,j),
arc(i,0,i),
arc(j,0,j),
arc(j,1,k),
arc(k,0,k),
arc(k,1,k)],

[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

clause_or_negate([],[]).

clause_or_negate([V|R],[U|S]) :-
V#<=> #\U,
clause_or_negate(R,S).

2144 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.63 clique

♦ META-DATA:

ctr_date(clique,[’20030820’,’20040530’,’20060805’]) .

ctr_origin(clique,’\\cite{Fahle02}’,[]).

ctr_arguments(
clique,
[’SIZE_CLIQUE’-dvar,

’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
clique,
[’SIZE_CLIQUE’>=0,

’SIZE_CLIQUE’=<size(’NODES’),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
clique,
clique(

3,
[[index-1,succ-{}],

[index-2,succ-{3,5}],
[index-3,succ-{2,5}],
[index-4,succ-{}],
[index-5,succ-{2,3}]])).

ctr_typical(
clique,
[’SIZE_CLIQUE’>=2,

’SIZE_CLIQUE’<size(’NODES’),
size(’NODES’)>2]).

ctr_exchangeable(clique,[items(’NODES’,all)]).

ctr_graph(
clique,
[’NODES’],
2,

2145

[’CLIQUE’(=\=)>>collection(nodes1,nodes2)],
[nodes2ˆindex in_set nodes1ˆsucc],
[’NARC’=’SIZE_CLIQUE’ * ’SIZE_CLIQUE’-’SIZE_CLIQUE’,

’NVERTEX’=’SIZE_CLIQUE’],
[’SYMMETRIC’]).

ctr_functional_dependency(clique,1,[2]).

2146 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.64 coloredmatrix

♦ META-DATA:

ctr_predefined(colored_matrix).

ctr_date(colored_matrix,[’20031017’,’20040530’]).

ctr_origin(colored_matrix,’KOALOG’,[]).

ctr_synonyms(
colored_matrix,
[coloured_matrix,cardinality_matrix,card_matrix]).

ctr_arguments(
colored_matrix,
[’C’-int,

’L’-int,
’K’-int,
’MATRIX’-collection(column-int,line-int,var-dvar),
’CPROJ’-collection(column-int,val-int,nocc-dvar),
’LPROJ’-collection(line-int,val-int,nocc-dvar)]).

ctr_restrictions(
colored_matrix,
[’C’>=0,

’L’>=0,
’K’>=0,
required(’MATRIX’,[column,line,var]),
increasing_seq(’MATRIX’,[column,line]),
size(’MATRIX’)=’C’ * ’L’+’C’+’L’+1,
’MATRIX’ˆcolumn>=0,
’MATRIX’ˆcolumn=<’C’,
’MATRIX’ˆline>=0,
’MATRIX’ˆline=<’L’,
’MATRIX’ˆvar>=0,
’MATRIX’ˆvar=<’K’,
required(’CPROJ’,[column,val,nocc]),
increasing_seq(’CPROJ’,[column,val]),
size(’CPROJ’)=’C’ * ’K’+’C’+’K’+1,
’CPROJ’ˆcolumn>=0,
’CPROJ’ˆcolumn=<’C’,
’CPROJ’ˆval>=0,
’CPROJ’ˆval=<’K’,
required(’LPROJ’,[line,val,nocc]),
increasing_seq(’LPROJ’,[line,val]),

2147

size(’LPROJ’)=’L’ * ’K’+’L’+’K’+1,
’LPROJ’ˆline>=0,
’LPROJ’ˆline=<’L’,
’LPROJ’ˆval>=0,
’LPROJ’ˆval=<’K’]).

ctr_example(
colored_matrix,
colored_matrix(

1,
2,
4,
[[column-0,line-0,var-3],

[column-0,line-1,var-1],
[column-0,line-2,var-3],
[column-1,line-0,var-4],
[column-1,line-1,var-4],
[column-1,line-2,var-3]],

[[column-0,val-0,nocc-0],
[column-0,val-1,nocc-1],
[column-0,val-2,nocc-0],
[column-0,val-3,nocc-2],
[column-0,val-4,nocc-0],
[column-1,val-0,nocc-0],
[column-1,val-1,nocc-0],
[column-1,val-2,nocc-0],
[column-1,val-3,nocc-1],
[column-1,val-4,nocc-2]],

[[line-0,val-0,nocc-0],
[line-0,val-1,nocc-0],
[line-0,val-2,nocc-0],
[line-0,val-3,nocc-1],
[line-0,val-4,nocc-1],
[line-1,val-0,nocc-0],
[line-1,val-1,nocc-1],
[line-1,val-2,nocc-0],
[line-1,val-3,nocc-0],
[line-1,val-4,nocc-1],
[line-2,val-0,nocc-0],
[line-2,val-1,nocc-0],
[line-2,val-2,nocc-0],
[line-2,val-3,nocc-2],
[line-2,val-4,nocc-0]])).

ctr_typical(
colored_matrix,

2148 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[’C’>=1,’L’>=1,’K’>=1,range(’MATRIX’ˆvar)>1]).

ctr_pure_functional_dependency(colored_matrix,[]).

ctr_functional_dependency(colored_matrix,5-3,[1,2,3]).

ctr_functional_dependency(colored_matrix,6-3,[1,2,3]).

2149

B.65 colouredcumulative

♦ META-DATA:

ctr_date(
coloured_cumulative,
[’20000128’,’20030820’,’20060805’]).

ctr_origin(
coloured_cumulative,
Derived from %c and %c.,
[cumulative,nvalues]).

ctr_synonyms(coloured_cumulative,[colored_cumulativ e]).

ctr_arguments(
coloured_cumulative,
[TASKS-

collection(
origin-dvar,
duration-dvar,
end-dvar,
colour-dvar),

’LIMIT’-int]).

ctr_restrictions(
coloured_cumulative,
[require_at_least(2,’TASKS’,[origin,duration,end]),

required(’TASKS’,colour),
’TASKS’ˆduration>=0,
’TASKS’ˆorigin=<’TASKS’ˆend,
’LIMIT’>=0]).

ctr_example(
coloured_cumulative,
coloured_cumulative(

[[origin-1,duration-2,end-3,colour-1],
[origin-2,duration-9,end-11,colour-2],
[origin-3,duration-10,end-13,colour-3],
[origin-6,duration-6,end-12,colour-2],
[origin-7,duration-2,end-9,colour-3]],

2)).

ctr_typical(
coloured_cumulative,
[size(’TASKS’)>1,

2150 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

range(’TASKS’ˆorigin)>1,
range(’TASKS’ˆduration)>1,
range(’TASKS’ˆend)>1,
range(’TASKS’ˆcolour)>1,
’LIMIT’<nval(’TASKS’ˆcolour)]).

ctr_exchangeable(
coloured_cumulative,
[items(’TASKS’,all),

translate([’TASKS’ˆorigin,’TASKS’ˆend]),
vals([’TASKS’ˆcolour],int,=\=,all,dontcare),
vals([’LIMIT’],int,<,dontcare,dontcare)]).

ctr_graph(
coloured_cumulative,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin+tasksˆduration=tasksˆend],
[’NARC’=size(’TASKS’)],
[]).

ctr_graph(
coloured_cumulative,
[’TASKS’,’TASKS’],
2,
[’PRODUCT’>>collection(tasks1,tasks2)],
[tasks1ˆduration>0,

tasks2ˆorigin=<tasks1ˆorigin,
tasks1ˆorigin<tasks2ˆend],

[],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’],
[SUCC>>

[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’TASKS’ˆcolour)])]],
[nvalues(variables,=<,’LIMIT’)]).

ctr_eval(
coloured_cumulative,
[reformulation(coloured_cumulative_r)]).

ctr_contractible(coloured_cumulative,[],’TASKS’,any).

coloured_cumulative_r(TASKS,LIMIT) :-

2151

collection(TASKS,[dvar,dvar_gteq(0),dvar,dvar]),
integer(LIMIT),
LIMIT>=0,
get_attr1(TASKS,ORIGINS),
get_attr2(TASKS,DURATIONS),
get_attr3(TASKS,ENDS),
get_attr4(TASKS,COLOURS),
ori_dur_end(ORIGINS,DURATIONS,ENDS),
coloured_cumulative1(

ORIGINS,
ENDS,
COLOURS,
1,
ORIGINS,
ENDS,
COLOURS,
LIMIT).

coloured_cumulative1(
[],
[],
[],
_49691,
_49737,
_49783,
_49829,
_49875).

coloured_cumulative1(
[Oi|RO],
[Ei|RE],
[Ci|RC],
I,
ORIGINS,
ENDS,
COLOURS,
LIMIT) :-

coloured_cumulative2(
ORIGINS,
ENDS,
COLOURS,
1,
I,
Oi,
Ei,
Ci,

2152 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

COLi),
Ni in 1..LIMIT,
nvalue(Ni,COLi),
I1 is I+1,
coloured_cumulative1(

RO,
RE,
RC,
I1,
ORIGINS,
ENDS,
COLOURS,
LIMIT).

coloured_cumulative2(
[],
[],
[],
_49694,
_49740,
_49786,
_49832,
_49878,
[]).

coloured_cumulative2(
[_49330|RO],
[_49334|RE],
[_49338|RC],
J,
I,
Oi,
Ei,
Ci,
[Ci|R]) :-

I=J,
!,
J1 is J+1,
coloured_cumulative2(RO,RE,RC,J1,I,Oi,Ei,Ci,R).

coloured_cumulative2(
[Oj|RO],
[Ej|RE],
[Cj|RC],
J,
I,

2153

Oi,
Ei,
Ci,
[Cij|R]) :-

I=\=J,
K in 1..2,
fd_min(Ci,Ci_min),
fd_max(Ci,Ci_max),
fd_min(Cj,Cj_min),
fd_max(Cj,Cj_max),
Min is min(Ci_min,Cj_min),
Max is max(Ci_max,Cj_max),
Cij in Min..Max,
element(K,[Ci,Cj],Cij),
Oj#=<Oi#/\Ej#>Oi#/\Cij#=Cj#\/
(Oj#>Oi#\/Ej#=<Oi)#/\Cij#=Ci,
J1 is J+1,
coloured_cumulative2(RO,RE,RC,J1,I,Oi,Ei,Ci,R).

2154 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.66 colouredcumulatives

♦ META-DATA:

ctr_date(
coloured_cumulatives,
[’20000128’,’20030820’,’20060805’]).

ctr_origin(
coloured_cumulatives,
Derived from %c and %c.,
[cumulatives,nvalues]).

ctr_synonyms(coloured_cumulatives,[colored_cumulati ves]).

ctr_arguments(
coloured_cumulatives,
[TASKS-

collection(
machine-dvar,
origin-dvar,
duration-dvar,
end-dvar,
colour-dvar),

’MACHINES’-collection(id-int,capacity-int)]).

ctr_restrictions(
coloured_cumulatives,
[required(’TASKS’,[machine,colour]),

require_at_least(2,’TASKS’,[origin,duration,end]),
’TASKS’ˆduration>=0,
’TASKS’ˆorigin=<’TASKS’ˆend,
required(’MACHINES’,[id,capacity]),
distinct(’MACHINES’,id),
’MACHINES’ˆcapacity>=0]).

ctr_example(
coloured_cumulatives,
coloured_cumulatives(

[[machine-1,origin-6,duration-6,end-12,colour-1],
[machine-1,origin-2,duration-9,end-11,colour-2],
[machine-2,origin-7,duration-3,end-10,colour-2],
[machine-1,origin-1,duration-2,end-3,colour-1],
[machine-2,origin-4,duration-5,end-9,colour-2],
[machine-1,origin-3,duration-10,end-13,colour-1]],

[[id-1,capacity-2],[id-2,capacity-1]])).

2155

ctr_typical(
coloured_cumulatives,
[size(’TASKS’)>1,

range(’TASKS’ˆmachine)>1,
range(’TASKS’ˆorigin)>1,
range(’TASKS’ˆduration)>1,
range(’TASKS’ˆend)>1,
range(’TASKS’ˆcolour)>1,
’TASKS’ˆduration>0,
size(’MACHINES’)>1,
’MACHINES’ˆcapacity>0,
’MACHINES’ˆcapacity<nval(’TASKS’ˆcolour),
size(’TASKS’)>size(’MACHINES’)]).

ctr_exchangeable(
coloured_cumulatives,
[items(’TASKS’,all),

items(’MACHINES’,all),
vals([’MACHINES’ˆcapacity],int,<,dontcare,dontcare) ,
vals(

[’TASKS’ˆmachine,’MACHINES’ˆid],
int,
=\=,
all,
dontcare)]).

ctr_graph(
coloured_cumulatives,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin+tasksˆduration=tasksˆend],
[’NARC’=size(’TASKS’)],
[]).

ctr_graph(
coloured_cumulatives,
[’TASKS’,’TASKS’],
2,
foreach(’MACHINES’,[’PRODUCT’>>collection(tasks1,ta sks2)]),
[tasks1ˆmachine=’MACHINES’ˆid,

tasks1ˆmachine=tasks2ˆmachine,
tasks1ˆduration>0,
tasks2ˆorigin=<tasks1ˆorigin,
tasks1ˆorigin<tasks2ˆend],

2156 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’],
[SUCC>>

[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’TASKS’ˆcolour)])]],
[nvalues(variables,=<,’MACHINES’ˆcapacity)]).

ctr_eval(
coloured_cumulatives,
[reformulation(coloured_cumulatives_r)]).

ctr_contractible(coloured_cumulatives,[],’TASKS’,an y).

coloured_cumulatives_r(TASKS,MACHINES) :-
collection(TASKS,[dvar,dvar,dvar_gteq(0),dvar,dvar]),
get_attr1(TASKS,VMACHINES),
get_attr2(TASKS,ORIGINS),
get_attr3(TASKS,DURATIONS),
get_attr4(TASKS,ENDS),
get_attr5(TASKS,COLOURS),
ori_dur_end(ORIGINS,DURATIONS,ENDS),
collection(MACHINES,[int,int_gteq(0)]),
get_attr1(MACHINES,IDS),
get_attr2(MACHINES,CAPACITIES),
all_different(IDS),
get_maximum(CAPACITIES,CAPA_MAX),
coloured_cumulatives1(

VMACHINES,
ORIGINS,
ENDS,
COLOURS,
1,
VMACHINES,
ORIGINS,
ENDS,
COLOURS,
IDS,
CAPACITIES,
CAPA_MAX).

coloured_cumulatives1(
[],
[],
[],

2157

[],
_55777,
_55823,
_55869,
_55915,
_55961,
_56007,
_56053,
_56099).

coloured_cumulatives1(
[Mi|RM],
[Oi|RO],
[Ei|RE],
[Ci|RC],
I,
VMACHINES,
ORIGINS,
ENDS,
COLOURS,
IDS,
CAPACITIES,
CAPA_MAX) :-

coloured_cumulatives2(
VMACHINES,
ORIGINS,
ENDS,
COLOURS,
1,
I,
Mi,
Oi,
Ei,
Ci,
COLi),

LIMIT in 0..CAPA_MAX,
link_index_to_attribute(IDS,CAPACITIES,Mi,LIMIT),
Ni in 0..CAPA_MAX,
Ni#=<LIMIT,
nvalue(Ni,COLi),
I1 is I+1,
coloured_cumulatives1(

RM,
RO,
RE,
RC,

2158 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

I1,
VMACHINES,
ORIGINS,
ENDS,
COLOURS,
IDS,
CAPACITIES,
CAPA_MAX).

coloured_cumulatives2(
[],
[],
[],
[],
_55774,
_55820,
_55866,
_55912,
_55958,
_56004,
[]).

coloured_cumulatives2(
[_55362|RM],
[_55366|RO],
[_55370|RE],
[_55374|RC],
J,
I,
Mi,
Oi,
Ei,
Ci,
[Ci|R]) :-

I=J,
!,
J1 is J+1,
coloured_cumulatives2(RM,RO,RE,RC,J1,I,Mi,Oi,Ei,Ci, R).

coloured_cumulatives2(
[Mj|RM],
[Oj|RO],
[Ej|RE],
[Cj|RC],
J,
I,

2159

Mi,
Oi,
Ei,
Ci,
[Cij|R]) :-

I=\=J,
K in 1..2,
fd_min(Ci,Ci_min),
fd_max(Ci,Ci_max),
fd_min(Cj,Cj_min),
fd_max(Cj,Cj_max),
Min is min(Ci_min,Cj_min),
Max is max(Ci_max,Cj_max),
Cij in Min..Max,
element(K,[Ci,Cj],Cij),
Mj#=Mi#/\Oj#=<Oi#/\Ej#>Oi#/\Cij#=Cj#\/
(Mj#\=Mi#\/Oj#>Oi#\/Ej#=<Oi)#/\Cij#=Ci,
J1 is J+1,
coloured_cumulatives2(RM,RO,RE,RC,J1,I,Mi,Oi,Ei,Ci, R).

2160 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.67 common

♦ META-DATA:

ctr_date(common,[’20000128’,’20030820’,’20060805’]) .

ctr_origin(common,’N.˜Beldiceanu’,[]).

ctr_arguments(
common,
[’NCOMMON1’-dvar,

’NCOMMON2’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
common,
[’NCOMMON1’>=0,

’NCOMMON1’=<size(’VARIABLES1’),
’NCOMMON2’>=0,
’NCOMMON2’=<size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_example(
common,
common(

3,
4,
[[var-1],[var-9],[var-1],[var-5]],
[[var-2],[var-1],[var-9],[var-9],[var-6],[var-9]])) .

ctr_typical(
common,
[size(’VARIABLES1’)>1,

range(’VARIABLES1’ˆvar)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES2’ˆvar)>1]).

ctr_exchangeable(
common,
[args(

[[’NCOMMON1’,’NCOMMON2’],
[’VARIABLES1’,’VARIABLES2’]]),

items(’VARIABLES1’,all),
items(’VARIABLES2’,all),

2161

vals(
[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
int,
=\=,
all,
dontcare)]).

ctr_graph(
common,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSOURCE’=’NCOMMON1’,’NSINK’=’NCOMMON2’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(common,[reformulation(common_r)]).

ctr_pure_functional_dependency(common,[]).

ctr_functional_dependency(common,1,[3,4]).

ctr_functional_dependency(common,2,[3,4]).

common_r(NCOMMON1,NCOMMON2,VARIABLES1,VARIABLES2) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
check_type(dvar(0,N1),NCOMMON1),
check_type(dvar(0,N2),NCOMMON2),
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
common1(VARS1,VARS2,_MAT12,SUM1),
call(NCOMMON1#=SUM1),
common1(VARS2,VARS1,_MAT21,SUM2),
call(NCOMMON2#=SUM2).

2162 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.68 commoninterval

♦ META-DATA:

ctr_date(common_interval,[’20030820’,’20060805’]).

ctr_origin(common_interval,’Derived from %c.’,[common]).

ctr_arguments(
common_interval,
[’NCOMMON1’-dvar,

’NCOMMON2’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
common_interval,
[’NCOMMON1’>=0,

’NCOMMON1’=<size(’VARIABLES1’),
’NCOMMON2’>=0,
’NCOMMON2’=<size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’SIZE_INTERVAL’>0]).

ctr_example(
common_interval,
common_interval(

3,
2,
[[var-8],[var-6],[var-6],[var-0]],
[[var-7],[var-3],[var-3],[var-3],[var-3],[var-7]],
3)).

ctr_typical(
common_interval,
[size(’VARIABLES1’)>1,

range(’VARIABLES1’ˆvar)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES2’ˆvar)>1,
’SIZE_INTERVAL’>1,
’SIZE_INTERVAL’<range(’VARIABLES1’ˆvar),
’SIZE_INTERVAL’<range(’VARIABLES2’ˆvar)]).

ctr_exchangeable(

2163

common_interval,
[args(

[[’NCOMMON1’,’NCOMMON2’],
[’VARIABLES1’,’VARIABLES2’],
[’SIZE_INTERVAL’]]),

items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar],
intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare),

vals(
[’VARIABLES2’ˆvar],
intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare)]).

ctr_graph(
common_interval,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar/’SIZE_INTERVAL’=

variables2ˆvar/’SIZE_INTERVAL’],
[’NSOURCE’=’NCOMMON1’,’NSINK’=’NCOMMON2’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(common_interval,[reformulation(common_inte rval_r)]).

ctr_pure_functional_dependency(common_interval,[]).

ctr_functional_dependency(common_interval,1,[3,4,5]).

ctr_functional_dependency(common_interval,2,[3,4,5]).

common_interval_r(
NCOMMON1,
NCOMMON2,
VARIABLES1,
VARIABLES2,
SIZE_INTERVAL) :-

collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),

2164 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

length(VARIABLES1,N1),
length(VARIABLES2,N2),
check_type(dvar(0,N1),NCOMMON1),
check_type(dvar(0,N2),NCOMMON2),
integer(SIZE_INTERVAL),
SIZE_INTERVAL>0,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
gen_quotient(VARS1,SIZE_INTERVAL,QUOTVARS1),
gen_quotient(VARS2,SIZE_INTERVAL,QUOTVARS2),
common1(QUOTVARS1,QUOTVARS2,_MAT12,SUM1),
call(NCOMMON1#=SUM1),
common1(QUOTVARS2,QUOTVARS1,_MAT21,SUM2),
call(NCOMMON2#=SUM2).

2165

B.69 commonmodulo

♦ META-DATA:

ctr_date(common_modulo,[’20030820’,’20060806’]).

ctr_origin(common_modulo,’Derived from %c.’,[common]) .

ctr_arguments(
common_modulo,
[’NCOMMON1’-dvar,

’NCOMMON2’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’M’-int]).

ctr_restrictions(
common_modulo,
[’NCOMMON1’>=0,

’NCOMMON1’=<size(’VARIABLES1’),
’NCOMMON2’>=0,
’NCOMMON2’=<size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’M’>0]).

ctr_example(
common_modulo,
common_modulo(

3,
4,
[[var-0],[var-4],[var-0],[var-8]],
[[var-7],[var-5],[var-4],[var-9],[var-2],[var-4]],
5)).

ctr_typical(
common_modulo,
[size(’VARIABLES1’)>1,

range(’VARIABLES1’ˆvar)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES2’ˆvar)>1,
’M’>1,
’M’<maxval(’VARIABLES1’ˆvar),
’M’<maxval(’VARIABLES2’ˆvar)]).

ctr_exchangeable(

2166 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

common_modulo,
[args(

[[’NCOMMON1’,’NCOMMON2’],
[’VARIABLES1’,’VARIABLES2’],
[’M’]]),

items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals([’VARIABLES1’ˆvar],mod(’M’),=,dontcare,dontcar e),
vals([’VARIABLES2’ˆvar],mod(’M’),=,dontcare,dontcar e)]).

ctr_graph(
common_modulo,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[’NSOURCE’=’NCOMMON1’,’NSINK’=’NCOMMON2’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(common_modulo,[reformulation(common_modulo _r)]).

ctr_pure_functional_dependency(common_modulo,[]).

ctr_functional_dependency(common_modulo,1,[3,4,5]).

ctr_functional_dependency(common_modulo,2,[3,4,5]).

common_modulo_r(NCOMMON1,NCOMMON2,VARIABLES1,VARIABLES2,M) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
check_type(dvar(0,N1),NCOMMON1),
check_type(dvar(0,N2),NCOMMON2),
integer(M),
M>0,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
gen_remainder(VARS1,M,REMVARS1),
gen_remainder(VARS2,M,REMVARS2),
common1(REMVARS1,REMVARS2,_MAT12,SUM1),
call(NCOMMON1#=SUM1),
common1(REMVARS2,REMVARS1,_MAT21,SUM2),
call(NCOMMON2#=SUM2).

2167

B.70 commonpartition

♦ META-DATA:

ctr_date(common_partition,[’20030820’,’20060806’]).

ctr_origin(common_partition,’Derived from %c.’,[commo n]).

ctr_types(common_partition,[’VALUES’-collection(val -int)]).

ctr_arguments(
common_partition,
[’NCOMMON1’-dvar,

’NCOMMON2’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
common_partition,
[size(’VALUES’)>=1,

required(’VALUES’,val),
distinct(’VALUES’,val),
’NCOMMON1’>=0,
’NCOMMON1’=<size(’VARIABLES1’),
’NCOMMON2’>=0,
’NCOMMON2’=<size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_example(
common_partition,
common_partition(

3,
4,
[[var-2],[var-3],[var-6],[var-0]],
[[var-0],[var-6],[var-3],[var-3],[var-7],[var-1]],
[[p-[[val-1],[val-3]]],

[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

ctr_typical(
common_partition,
[size(’VARIABLES1’)>1,

2168 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

range(’VARIABLES1’ˆvar)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES2’ˆvar)>1,
size(’VARIABLES1’)>size(’PARTITIONS’),
size(’VARIABLES2’)>size(’PARTITIONS’)]).

ctr_exchangeable(
common_partition,
[args(

[[’NCOMMON1’,’NCOMMON2’],
[’VARIABLES1’,’VARIABLES2’],
[’PARTITIONS’]]),

items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all),
vals(

[’VARIABLES1’ˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare),

vals(
[’VARIABLES2’ˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare)]).

ctr_graph(
common_partition,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
PARTITIONS)],

[’NSOURCE’=’NCOMMON1’,’NSINK’=’NCOMMON2’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(common_partition,[reformulation(common_par tition_r)]).

ctr_pure_functional_dependency(common_partition,[]) .

ctr_functional_dependency(common_partition,1,[3,4,5]).

2169

ctr_functional_dependency(common_partition,2,[3,4,5]).

common_partition_r(
NCOMMON1,
NCOMMON2,
VARIABLES1,
VARIABLES2,
PARTITIONS) :-

collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
check_type(dvar(0,N1),NCOMMON1),
check_type(dvar(0,N2),NCOMMON2),
collection(PARTITIONS,[col_len_gteq(1,[int])]),
length(PARTITIONS,P),
P>1,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
get_col_attr1(PARTITIONS,1,PVALS),
flattern(PVALS,VALS),
all_different(VALS),
length(PVALS,LPVALS),
LPVALS1 is LPVALS+1,
get_partition_var(VARS1,PVALS,PVARS1,LPVALS1,0),
LPVALS2 is LPVALS1+1,
get_partition_var(VARS2,PVALS,PVARS2,LPVALS2,LPVALS 1),
common1(PVARS1,PVARS2,_MAT12,SUM1),
call(NCOMMON1#=SUM1),
common1(PVARS2,PVARS1,_MAT21,SUM2),
call(NCOMMON2#=SUM2).

2170 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.71 compareand count

♦ META-DATA:

ctr_predefined(compare_and_count).

ctr_date(compare_and_count,[’20110628’]).

ctr_origin(compare_and_count,’Generalise %c’,[discre pancy]).

ctr_arguments(
compare_and_count,
[’VARIABLES1’-collection(var-dvar),

’VARIABLES2’-collection(var-dvar),
’COMPARE’-atom,
’COUNT’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
compare_and_count,
[size(’VARIABLES1’)=size(’VARIABLES2’),

required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
in_list(’COMPARE’,[=,=\=,<,>=,>,=<]),
in_list(’COUNT’,[=,=\=,<,>=,>,=<]),
’LIMIT’>=0]).

ctr_example(
compare_and_count,
compare_and_count(

[[var-4],[var-5],[var-5],[var-4],[var-5]],
[[var-4],[var-2],[var-5],[var-1],[var-5]],
=,
=<,
3)).

ctr_typical(
compare_and_count,
[size(’VARIABLES1’)>1,

range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1,
in_list(’COMPARE’,[=]),
in_list(’COUNT’,[=,<,>=,>,=<]),
’LIMIT’>0,
’LIMIT’<size(’VARIABLES1’)]).

2171

ctr_eval(
compare_and_count,
[reformulation(compare_and_count_r)]).

ctr_pure_functional_dependency(
compare_and_count,
[in_list(’COUNT’,[=])]).

ctr_contractible(
compare_and_count,
[in_list(’COUNT’,[<,=<])],
[’VARIABLES1’,’VARIABLES2’],
any).

ctr_extensible(
compare_and_count,
[in_list(’COUNT’,[>=,>])],
[’VARIABLES1’,’VARIABLES2’],
any).

compare_and_count_r(VARIABLES1,VARIABLES2,COMPARE,C OUNT,LIMIT) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
N1=N2,
memberchk(COMPARE,[=,=\=,<,>=,>,=<]),
memberchk(COUNT,[=,=\=,<,>=,>,=<]),
check_type(dvar,LIMIT),
LIMIT#>=0,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
compare_and_count_r1(VARS1,VARS2,COMPARE,TERM),
compare_and_count_r2(COUNT,TERM,LIMIT).

compare_and_count_r1([],[],_13826,0).

compare_and_count_r1([V1|R1],[V2|R2],=,B+T) :-
V1#=V2#<=>B,
compare_and_count_r1(R1,R2,=,T).

compare_and_count_r1([V1|R1],[V2|R2],=\=,B+T) :-
V1#\=V2#<=>B,
compare_and_count_r1(R1,R2,=\=,T).

compare_and_count_r1([V1|R1],[V2|R2],<,B+T) :-

2172 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

V1#<V2#<=>B,
compare_and_count_r1(R1,R2,<,T).

compare_and_count_r1([V1|R1],[V2|R2],>=,B+T) :-
V1#>=V2#<=>B,
compare_and_count_r1(R1,R2,>=,T).

compare_and_count_r1([V1|R1],[V2|R2],>,B+T) :-
V1#>V2#<=>B,
compare_and_count_r1(R1,R2,>,T).

compare_and_count_r1([V1|R1],[V2|R2],=<,B+T) :-
V1#=<V2#<=>B,
compare_and_count_r1(R1,R2,=<,T).

compare_and_count_r2(=,TERM,LIMIT) :-
call(TERM#=LIMIT).

compare_and_count_r2(=\=,TERM,LIMIT) :-
call(TERM#\=LIMIT).

compare_and_count_r2(<,TERM,LIMIT) :-
call(TERM#<LIMIT).

compare_and_count_r2(>=,TERM,LIMIT) :-
call(TERM#>=LIMIT).

compare_and_count_r2(>,TERM,LIMIT) :-
call(TERM#>LIMIT).

compare_and_count_r2(=<,TERM,LIMIT) :-
call(TERM#=<LIMIT).

2173

B.72 condlex cost

♦ META-DATA:

ctr_date(cond_lex_cost,[’20060416’]).

ctr_origin(
cond_lex_cost,
Inspired by \cite{WallaceWilson06}.,
[]).

ctr_types(cond_lex_cost,[’TUPLE_OF_VALS’-collection (val-int)]).

ctr_arguments(
cond_lex_cost,
[’VECTOR’-collection(var-dvar),

’PREFERENCE_TABLE’-collection(tuple-’TUPLE_OF_VALS’),
’COST’-dvar]).

ctr_restrictions(
cond_lex_cost,
[size(’TUPLE_OF_VALS’)>=1,

required(’TUPLE_OF_VALS’,val),
required(’VECTOR’,var),
size(’VECTOR’)=size(’TUPLE_OF_VALS’),
required(’PREFERENCE_TABLE’,tuple),
same_size(’PREFERENCE_TABLE’,tuple),
distinct(’PREFERENCE_TABLE’,[]),
in_relation(’VECTOR’,’PREFERENCE_TABLE’),
’COST’>=1,
’COST’=<size(’PREFERENCE_TABLE’)]).

ctr_example(
cond_lex_cost,
cond_lex_cost(

[[var-0],[var-1]],
[[tuple-[[val-1],[val-0]]],

[tuple-[[val-0],[val-1]]],
[tuple-[[val-0],[val-0]]],
[tuple-[[val-1],[val-1]]]],

2)).

ctr_typical(
cond_lex_cost,
[size(’TUPLE_OF_VALS’)>1,

size(’VECTOR’)>1,

2174 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

size(’PREFERENCE_TABLE’)>1]).

ctr_exchangeable(
cond_lex_cost,
[items_sync(’VECTOR’,’PREFERENCE_TABLE’ˆtuple,all),

vals(
[’VECTOR’,’PREFERENCE_TABLE’ˆtuple],
int,
=\=,
all,
dontcare)]).

ctr_eval(cond_lex_cost,[automata(cond_lex_cost_a)]) .

cond_lex_cost_a(VECTOR,PREFERENCE_TABLE,COST) :-
collection(VECTOR,[dvar]),
collection(PREFERENCE_TABLE,[col([dvar])]),
same_size(PREFERENCE_TABLE),
check_type(dvar,COST),
length(PREFERENCE_TABLE,LP),
COST#>=1,
COST#=<LP,
PREFERENCE_TABLE=[[_22270-L]|_22266],
length(VECTOR,LV),
length(L,N),
N>=1,
LV=N,
create_collection(PREFERENCE_TABLE,vec,var,PREF),
eval(lex_alldifferent(PREF)),
eval(in_relation(VECTOR,PREFERENCE_TABLE)),
cond_lex(VECTOR,PREFERENCE_TABLE,COST).

2175

B.73 condlex greater

♦ META-DATA:

ctr_date(cond_lex_greater,[’20060430’]).

ctr_origin(
cond_lex_greater,
Inspired by \cite{WallaceWilson06}.,
[]).

ctr_types(
cond_lex_greater,
[’TUPLE_OF_VALS’-collection(val-int)]).

ctr_arguments(
cond_lex_greater,
[’VECTOR1’-collection(var-dvar),

’VECTOR2’-collection(var-dvar),
’PREFERENCE_TABLE’-collection(tuple-’TUPLE_OF_VALS’)]).

ctr_restrictions(
cond_lex_greater,
[size(’TUPLE_OF_VALS’)>=1,

required(’TUPLE_OF_VALS’,val),
required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’),
size(’VECTOR1’)=size(’TUPLE_OF_VALS’),
required(’PREFERENCE_TABLE’,tuple),
same_size(’PREFERENCE_TABLE’,tuple),
distinct(’PREFERENCE_TABLE’,[]),
in_relation(’VECTOR1’,’PREFERENCE_TABLE’),
in_relation(’VECTOR2’,’PREFERENCE_TABLE’)]).

ctr_example(
cond_lex_greater,
cond_lex_greater(

[[var-0],[var-0]],
[[var-1],[var-0]],
[[tuple-[[val-1],[val-0]]],

[tuple-[[val-0],[val-1]]],
[tuple-[[val-0],[val-0]]],
[tuple-[[val-1],[val-1]]]])).

ctr_typical(

2176 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

cond_lex_greater,
[size(’TUPLE_OF_VALS’)>1,

size(’VECTOR1’)>1,
size(’VECTOR2’)>1,
size(’PREFERENCE_TABLE’)>1]).

ctr_exchangeable(
cond_lex_greater,
[items_sync(

VECTOR1,
VECTOR2,
’PREFERENCE_TABLE’ˆtuple,
all),

vals(
[’VECTOR1’,’VECTOR2’,’PREFERENCE_TABLE’ˆtuple],
int,
=\=,
all,
dontcare)]).

ctr_eval(cond_lex_greater,[automata(cond_lex_greate r_a)]).

cond_lex_greater_a(VECTOR1,VECTOR2,PREFERENCE_TABLE) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
collection(PREFERENCE_TABLE,[col([dvar])]),
same_size(PREFERENCE_TABLE),
PREFERENCE_TABLE=[[_22219-L]|_R],
length(VECTOR1,LV1),
length(VECTOR2,LV2),
length(L,N),
N>=1,
LV1=LV2,
LV1=N,
create_collection(PREFERENCE_TABLE,vec,var,PREF),
eval(lex_alldifferent(PREF)),
eval(in_relation(VECTOR1,PREFERENCE_TABLE)),
eval(in_relation(VECTOR2,PREFERENCE_TABLE)),
cond_lex(VECTOR1,VECTOR2,PREFERENCE_TABLE,I,J),
I#>J.

2177

B.74 condlex greatereq

♦ META-DATA:

ctr_date(cond_lex_greatereq,[’20060416’]).

ctr_origin(
cond_lex_greatereq,
Inspired by \cite{WallaceWilson06}.,
[]).

ctr_types(
cond_lex_greatereq,
[’TUPLE_OF_VALS’-collection(val-int)]).

ctr_arguments(
cond_lex_greatereq,
[’VECTOR1’-collection(var-dvar),

’VECTOR2’-collection(var-dvar),
’PREFERENCE_TABLE’-collection(tuple-’TUPLE_OF_VALS’)]).

ctr_restrictions(
cond_lex_greatereq,
[size(’TUPLE_OF_VALS’)>=1,

required(’TUPLE_OF_VALS’,val),
required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’),
size(’VECTOR1’)=size(’TUPLE_OF_VALS’),
required(’PREFERENCE_TABLE’,tuple),
same_size(’PREFERENCE_TABLE’,tuple),
distinct(’PREFERENCE_TABLE’,[]),
in_relation(’VECTOR1’,’PREFERENCE_TABLE’),
in_relation(’VECTOR2’,’PREFERENCE_TABLE’)]).

ctr_example(
cond_lex_greatereq,
cond_lex_greatereq(

[[var-0],[var-0]],
[[var-1],[var-0]],
[[tuple-[[val-1],[val-0]]],

[tuple-[[val-0],[val-1]]],
[tuple-[[val-0],[val-0]]],
[tuple-[[val-1],[val-1]]]])).

ctr_typical(

2178 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

cond_lex_greatereq,
[size(’TUPLE_OF_VALS’)>1,

size(’VECTOR1’)>1,
size(’VECTOR2’)>1,
size(’PREFERENCE_TABLE’)>1]).

ctr_exchangeable(
cond_lex_greatereq,
[items_sync(

VECTOR1,
VECTOR2,
’PREFERENCE_TABLE’ˆtuple,
all),

vals(
[’VECTOR1’,’VECTOR2’,’PREFERENCE_TABLE’ˆtuple],
int,
=\=,
all,
dontcare)]).

ctr_eval(cond_lex_greatereq,[automata(cond_lex_grea tereq_a)]).

cond_lex_greatereq_a(VECTOR1,VECTOR2,PREFERENCE_TAB LE) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
collection(PREFERENCE_TABLE,[col([dvar])]),
same_size(PREFERENCE_TABLE),
PREFERENCE_TABLE=[[_22247-L]|_R],
length(VECTOR1,LV1),
length(VECTOR2,LV2),
length(L,N),
N>=1,
LV1=LV2,
LV1=N,
create_collection(PREFERENCE_TABLE,vec,var,PREF),
eval(lex_alldifferent(PREF)),
eval(in_relation(VECTOR1,PREFERENCE_TABLE)),
eval(in_relation(VECTOR2,PREFERENCE_TABLE)),
cond_lex(VECTOR1,VECTOR2,PREFERENCE_TABLE,I,J),
I#>=J.

2179

B.75 condlex less

♦ META-DATA:

ctr_date(cond_lex_less,[’20060430’]).

ctr_origin(
cond_lex_less,
Inspired by \cite{WallaceWilson06}.,
[]).

ctr_types(cond_lex_less,[’TUPLE_OF_VALS’-collection (val-int)]).

ctr_arguments(
cond_lex_less,
[’VECTOR1’-collection(var-dvar),

’VECTOR2’-collection(var-dvar),
’PREFERENCE_TABLE’-collection(tuple-’TUPLE_OF_VALS’)]).

ctr_restrictions(
cond_lex_less,
[size(’TUPLE_OF_VALS’)>=1,

required(’TUPLE_OF_VALS’,val),
required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’),
size(’VECTOR1’)=size(’TUPLE_OF_VALS’),
required(’PREFERENCE_TABLE’,tuple),
same_size(’PREFERENCE_TABLE’,tuple),
distinct(’PREFERENCE_TABLE’,[]),
in_relation(’VECTOR1’,’PREFERENCE_TABLE’),
in_relation(’VECTOR2’,’PREFERENCE_TABLE’)]).

ctr_example(
cond_lex_less,
cond_lex_less(

[[var-1],[var-0]],
[[var-0],[var-0]],
[[tuple-[[val-1],[val-0]]],

[tuple-[[val-0],[val-1]]],
[tuple-[[val-0],[val-0]]],
[tuple-[[val-1],[val-1]]]])).

ctr_typical(
cond_lex_less,
[size(’TUPLE_OF_VALS’)>1,

2180 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

size(’VECTOR1’)>1,
size(’VECTOR2’)>1,
size(’PREFERENCE_TABLE’)>1]).

ctr_exchangeable(
cond_lex_less,
[items_sync(

VECTOR1,
VECTOR2,
’PREFERENCE_TABLE’ˆtuple,
all),

vals(
[’VECTOR1’,’VECTOR2’,’PREFERENCE_TABLE’ˆtuple],
int,
=\=,
all,
dontcare)]).

ctr_eval(cond_lex_less,[automata(cond_lex_less_a)]) .

cond_lex_less_a(VECTOR1,VECTOR2,PREFERENCE_TABLE) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
collection(PREFERENCE_TABLE,[col([dvar])]),
same_size(PREFERENCE_TABLE),
PREFERENCE_TABLE=[[_22153-L]|_R],
length(VECTOR1,LV1),
length(VECTOR2,LV2),
length(L,N),
N>=1,
LV1=LV2,
LV1=N,
create_collection(PREFERENCE_TABLE,vec,var,PREF),
eval(lex_alldifferent(PREF)),
eval(in_relation(VECTOR1,PREFERENCE_TABLE)),
eval(in_relation(VECTOR2,PREFERENCE_TABLE)),
cond_lex(VECTOR1,VECTOR2,PREFERENCE_TABLE,I,J),
I#<J.

2181

B.76 condlex lesseq

♦ META-DATA:

ctr_date(cond_lex_lesseq,[’20060416’]).

ctr_origin(
cond_lex_lesseq,
Inspired by \cite{WallaceWilson06}.,
[]).

ctr_types(
cond_lex_lesseq,
[’TUPLE_OF_VALS’-collection(val-int)]).

ctr_arguments(
cond_lex_lesseq,
[’VECTOR1’-collection(var-dvar),

’VECTOR2’-collection(var-dvar),
’PREFERENCE_TABLE’-collection(tuple-’TUPLE_OF_VALS’)]).

ctr_restrictions(
cond_lex_lesseq,
[size(’TUPLE_OF_VALS’)>=1,

required(’TUPLE_OF_VALS’,val),
required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’),
size(’VECTOR1’)=size(’TUPLE_OF_VALS’),
required(’PREFERENCE_TABLE’,tuple),
same_size(’PREFERENCE_TABLE’,tuple),
distinct(’PREFERENCE_TABLE’,[]),
in_relation(’VECTOR1’,’PREFERENCE_TABLE’),
in_relation(’VECTOR2’,’PREFERENCE_TABLE’)]).

ctr_example(
cond_lex_lesseq,
cond_lex_lesseq(

[[var-1],[var-0]],
[[var-0],[var-0]],
[[tuple-[[val-1],[val-0]]],

[tuple-[[val-0],[val-1]]],
[tuple-[[val-0],[val-0]]],
[tuple-[[val-1],[val-1]]]])).

ctr_typical(

2182 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

cond_lex_lesseq,
[size(’TUPLE_OF_VALS’)>1,

size(’VECTOR1’)>1,
size(’VECTOR2’)>1,
size(’PREFERENCE_TABLE’)>1]).

ctr_exchangeable(
cond_lex_lesseq,
[items_sync(

VECTOR1,
VECTOR2,
’PREFERENCE_TABLE’ˆtuple,
all),

vals(
[’VECTOR1’,’VECTOR2’,’PREFERENCE_TABLE’ˆtuple],
int,
=\=,
all,
dontcare)]).

ctr_eval(cond_lex_lesseq,[automata(cond_lex_lesseq_ a)]).

cond_lex_lesseq_a(VECTOR1,VECTOR2,PREFERENCE_TABLE) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
collection(PREFERENCE_TABLE,[col([dvar])]),
same_size(PREFERENCE_TABLE),
PREFERENCE_TABLE=[[_22181-L]|_R],
length(VECTOR1,LV1),
length(VECTOR2,LV2),
length(L,N),
N>=1,
LV1=LV2,
LV1=N,
create_collection(PREFERENCE_TABLE,vec,var,PREF),
eval(lex_alldifferent(PREF)),
eval(in_relation(VECTOR1,PREFERENCE_TABLE)),
eval(in_relation(VECTOR2,PREFERENCE_TABLE)),
cond_lex(VECTOR1,VECTOR2,PREFERENCE_TABLE,I,J),
I#=<J.

2183

B.77 connectpoints

♦ META-DATA:

ctr_date(
connect_points,
[’20000128’,’20030820’,’20040530’,’20060806’]).

ctr_origin(connect_points,’N.˜Beldiceanu’,[]).

ctr_arguments(
connect_points,
[’SIZE1’-int,

’SIZE2’-int,
’SIZE3’-int,
’NGROUP’-dvar,
’POINTS’-collection(p-dvar)]).

ctr_restrictions(
connect_points,
[’SIZE1’>0,

’SIZE2’>0,
’SIZE3’>0,
’NGROUP’>=0,
’NGROUP’=<size(’POINTS’),
’SIZE1’ * ’SIZE2’ * ’SIZE3’=size(’POINTS’),
required(’POINTS’,p)]).

ctr_example(
connect_points,
connect_points(

8,
4,
2,
2,
[[p-0],

[p-0],
[p-1],
[p-1],
[p-0],
[p-2],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],

2184 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[p-1],
[p-0],
[p-2],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-1],
[p-1],
[p-1],
[p-1],
[p-1],
[p-0],
[p-2],
[p-0],
[p-1],
[p-0],
[p-2],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-2],
[p-0],
[p-0],
[p-0],
[p-2],
[p-2],
[p-2],
[p-2],
[p-2],
[p-0],
[p-0],
[p-0],

2185

[p-2],
[p-0],
[p-0],
[p-0],
[p-2],
[p-0],
[p-0]])).

ctr_typical(
connect_points,
[’SIZE1’>1,

’SIZE2’>1,
’NGROUP’>0,
’NGROUP’<size(’POINTS’),
size(’POINTS’)>3]).

ctr_exchangeable(
connect_points,
[vals([’POINTS’ˆp],int(=\=(0)),=\=,all,dontcare)]).

ctr_graph(
connect_points,
[’POINTS’],
2,
[’GRID’([’SIZE1’,’SIZE2’,’SIZE3’])>>

collection(points1,points2)],
[points1ˆp=\=0,points1ˆp=points2ˆp],
[’NSCC’=’NGROUP’],
[’SYMMETRIC’]).

ctr_functional_dependency(connect_points,4,[1,2,3,5]).

2186 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.78 connected

♦ META-DATA:

ctr_date(connected,[’20061001’]).

ctr_origin(connected,’\\cite{Dooms06}’,[]).

ctr_arguments(
connected,
[’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
connected,
[required(’NODES’,[index,succ]),

’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
connected,
connected(

[[index-1,succ-{1,2,3}],
[index-2,succ-{1,3}],
[index-3,succ-{1,2,4}],
[index-4,succ-{3,5,6}],
[index-5,succ-{4}],
[index-6,succ-{4}]])).

ctr_typical(connected,[size(’NODES’)>1]).

ctr_exchangeable(connected,[items(’NODES’,all)]).

ctr_graph(
connected,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes2ˆindex in_set nodes1ˆsucc],
[’NCC’=1],
[’SYMMETRIC’]).

2187

B.79 consecutivegroups of ones

♦ META-DATA:

ctr_date(consecutive_groups_of_ones,[’20091227’]).

ctr_origin(
consecutive_groups_of_ones,
Derived from %c,
[group]).

ctr_arguments(
consecutive_groups_of_ones,
[’GROUP_SIZES’-collection(nb-int),

’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
consecutive_groups_of_ones,
[required(’GROUP_SIZES’,nb),

size(’GROUP_SIZES’)>=1,
’GROUP_SIZES’ˆnb>=1,
’GROUP_SIZES’ˆnb=<size(’VARIABLES’),
required(’VARIABLES’,var),
size(’VARIABLES’)>=2 * size(’GROUP_SIZES’)-1,
size(’VARIABLES’)>=
sum(’GROUP_SIZES’ˆnb)+size(’GROUP_SIZES’)-1,
’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar=<1]).

ctr_example(
consecutive_groups_of_ones,
consecutive_groups_of_ones(

[[nb-2],[nb-1]],
[[var-1],

[var-1],
[var-0],
[var-0],
[var-0],
[var-1],
[var-0]])).

ctr_typical(
consecutive_groups_of_ones,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(

2188 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

consecutive_groups_of_ones,
[items_sync(’GROUP_SIZES’,’VARIABLES’,reverse)]).

ctr_eval(
consecutive_groups_of_ones,
[automaton(consecutive_groups_of_ones_a)]).

consecutive_groups_of_ones_a(FLAG,GROUP_SIZES,VARIA BLES) :-
collection(VARIABLES,[dvar(0,1)]),
length(VARIABLES,N),
collection(GROUP_SIZES,[int(1,N)]),
length(GROUP_SIZES,M),
M>=1,
N>=M,
N>=2* M-1,
get_attr1(GROUP_SIZES,SIZES),
get_attr1(VARIABLES,VARS),
get_sum(SIZES,S),
N>=S+M-1,
consecutive_groups_of_ones_transitions(

SIZES,
-1,
TRANSITIONS,
LAST),

AUTOMATON=
automaton(

VARS,
_20360,
VARS,
[source(0),sink(LAST)],
TRANSITIONS,
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

consecutive_groups_of_ones_transitions([],P,[arc(P, 0,P)],P).

consecutive_groups_of_ones_transitions([N|R],P,L,La st) :-
P1 is P+1,
PN is N+P1,
(P>=0 ->

L1=[arc(P,0,P1),arc(P1,0,P1)]
; L1=[arc(P1,0,P1)]
),
consecutive_groups_of_ones_trans(N,P1,L2),

2189

consecutive_groups_of_ones_transitions(R,PN,L3,Last),
append(L1,L2,L12),
append(L12,L3,L).

consecutive_groups_of_ones_trans(0,_17070,[]) :-
!.

consecutive_groups_of_ones_trans(I,P,[arc(P,1,P1)|R]) :-
I>0,
P1 is P+1,
I1 is I-1,
consecutive_groups_of_ones_trans(I1,P1,R).

2190 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.80 consecutivevalues

♦ META-DATA:

ctr_predefined(consecutive_values).

ctr_date(consecutive_values,[’20100106’]).

ctr_origin(
consecutive_values,
Derived from %c.,
[alldifferent_consecutive_values]).

ctr_arguments(
consecutive_values,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
consecutive_values,
[required(’VARIABLES’,var)]).

ctr_example(
consecutive_values,
consecutive_values([[var-5],[var-4],[var-3],[var-5]])).

ctr_typical(
consecutive_values,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
consecutive_values,
[items(’VARIABLES’,all),translate([’VARIABLES’ˆvar])]).

ctr_eval(
consecutive_values,
[checker(consecutive_values_c),

reformulation(consecutive_values_r)]).

consecutive_values_c([]) :-
!.

consecutive_values_c(VARIABLES) :-
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
min_member(MIN,VARS),
max_member(MAX,VARS),

2191

sort(VARS,S),
length(S,NVAL),
NVAL is MAX-MIN+1.

consecutive_values_r([]) :-
!.

consecutive_values_r(VARIABLES) :-
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
minimum(MIN,VARS),
maximum(MAX,VARS),
length(VARIABLES,N),
NVAL in 1..N,
nvalue(NVAL,VARS),
NVAL#=MAX-MIN+1.

2192 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.81 containssboxes

♦ META-DATA:

ctr_date(contains_sboxes,[’20070622’,’20090725’]).

ctr_origin(
contains_sboxes,
Geometry, derived from \cite{RandellCuiCohn92},
[]).

ctr_synonyms(contains_sboxes,[contains]).

ctr_types(
contains_sboxes,
[’VARIABLES’-collection(v-dvar),

’INTEGERS’-collection(v-int),
’POSITIVES’-collection(v-int)]).

ctr_arguments(
contains_sboxes,
[’K’-int,

’DIMS’-sint,
’OBJECTS’-collection(oid-int,sid-int,x-’VARIABLES’) ,
’SBOXES’-collection(sid-int,t-’INTEGERS’,l-’POSITIV ES’)]).

ctr_restrictions(
contains_sboxes,
[size(’VARIABLES’)>=1,

size(’INTEGERS’)>=1,
size(’POSITIVES’)>=1,
required(’VARIABLES’,v),
size(’VARIABLES’)=’K’,
required(’INTEGERS’,v),
size(’INTEGERS’)=’K’,
required(’POSITIVES’,v),
size(’POSITIVES’)=’K’,
’POSITIVES’ˆv>0,
’K’>0,
’DIMS’>=0,
’DIMS’<’K’,
increasing_seq(’OBJECTS’,[oid]),
required(’OBJECTS’,[oid,sid,x]),
’OBJECTS’ˆoid>=1,
’OBJECTS’ˆoid=<size(’OBJECTS’),
’OBJECTS’ˆsid>=1,

2193

’OBJECTS’ˆsid=<size(’SBOXES’),
size(’SBOXES’)>=1,
required(’SBOXES’,[sid,t,l]),
’SBOXES’ˆsid>=1,
’SBOXES’ˆsid=<size(’SBOXES’),
do_not_overlap(’SBOXES’)]).

ctr_example(
contains_sboxes,
contains_sboxes(

2,
{0,1},
[[oid-1,sid-1,x-[[v-1],[v-1]]],

[oid-2,sid-2,x-[[v-2],[v-2]]],
[oid-3,sid-3,x-[[v-3],[v-3]]]],

[[sid-1,t-[[v-0],[v-0]],l-[[v-5],[v-5]]],
[sid-2,t-[[v-0],[v-0]],l-[[v-3],[v-3]]],
[sid-3,t-[[v-0],[v-0]],l-[[v-1],[v-1]]]])).

ctr_typical(contains_sboxes,[size(’OBJECTS’)>1]).

ctr_exchangeable(
contains_sboxes,
[items(’SBOXES’,all),

items_sync(’OBJECTS’ˆx,’SBOXES’ˆt,’SBOXES’ˆl,all)]) .

ctr_eval(contains_sboxes,[logic(contains_sboxes_g)]).

ctr_logic(
contains_sboxes,
[DIMENSIONS,OIDS],
[(origin(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)),

(end(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)+S1ˆl(D)),
(contains_sboxes(Dims,O1,S1,O2,S2)--->

forall(
D,
Dims,
origin(O1,S1,D)#<origin(O2,S2,D)#/\
end(O2,S2,D)#<end(O1,S1,D))),

(contains_objects(Dims,O1,O2)--->
forall(

S1,
sboxes([O1ˆsid]),
exists(

S2,
sboxes([O2ˆsid]),

2194 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

contains_sboxes(Dims,O1,S1,O2,S2)))),
(all_contains(Dims,OIDS)--->

forall(
O1,
objects(OIDS),
forall(

O2,
objects(OIDS),
O1ˆoid#<O2ˆoid#=>
contains_objects(Dims,O1,O2)))),

all_contains(DIMENSIONS,OIDS)]).

ctr_contractible(contains_sboxes,[],’OBJECTS’,suffi x).

contains_sboxes_g(K,_28807,[],_28809) :-
!,
check_type(int_gteq(1),K).

contains_sboxes_g(K,_DIMS,OBJECTS,SBOXES) :-
length(OBJECTS,O),
length(SBOXES,S),
O>0,
S>0,
check_type(int_gteq(1),K),
collection(OBJECTS,[int(1,O),dvar(1,S),col(K,[dvar])]),
collection(

SBOXES,
[int(1,S),col(K,[int]),col(K,[int_gteq(1)])]),

get_attr1(OBJECTS,OIDS),
get_attr2(OBJECTS,SIDS),
get_col_attr3(OBJECTS,1,XS),
get_attr1(SBOXES,SIDES),
get_col_attr2(SBOXES,1,TS),
get_col_attr3(SBOXES,1,TL),
collection_increasing_seq(OBJECTS,[1]),
geost1(OIDS,SIDS,XS,Objects),
geost2(SIDES,TS,TL,Sboxes),
geost_dims(1,K,DIMENSIONS),
ctr_logic(contains_sboxes,[DIMENSIONS,OIDS],Rules),
geost(Objects,Sboxes,[overlap(true)],Rules).

2195

B.82 correspondence

♦ META-DATA:

ctr_date(correspondence,[’20030820’,’20060806’]).

ctr_origin(
correspondence,
Derived from %c by removing the sorting condition.,
[sort_permutation]).

ctr_arguments(
correspondence,
[’FROM’-collection(from-dvar),

’PERMUTATION’-collection(var-dvar),
’TO’-collection(tvar-dvar)]).

ctr_restrictions(
correspondence,
[size(’PERMUTATION’)=size(’FROM’),

size(’PERMUTATION’)=size(’TO’),
’PERMUTATION’ˆvar>=1,
’PERMUTATION’ˆvar=<size(’PERMUTATION’),
alldifferent(’PERMUTATION’),
required(’FROM’,from),
required(’PERMUTATION’,var),
required(’TO’,tvar)]).

ctr_example(
correspondence,
correspondence(

[[from-1],
[from-9],
[from-1],
[from-5],
[from-2],
[from-1]],

[[var-6],[var-1],[var-3],[var-5],[var-4],[var-2]],
[[tvar-9],

[tvar-1],
[tvar-1],
[tvar-2],
[tvar-5],
[tvar-1]])).

ctr_typical(

2196 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

correspondence,
[size(’FROM’)>1,range(’FROM’ˆfrom)>1]).

ctr_exchangeable(
correspondence,
[vals([’FROM’ˆfrom,’TO’ˆtvar],int,=\=,all,dontcare)]).

ctr_derived_collections(
correspondence,
[col(’FROM_PERMUTATION’-collection(from-dvar,var-dv ar),

[item(from-’FROM’ˆfrom,var-’PERMUTATION’ˆvar)])]).

ctr_graph(
correspondence,
[’FROM_PERMUTATION’,’TO’],
2,
[’PRODUCT’>>collection(from_permutation,to)],
[from_permutationˆfrom=toˆtvar,

from_permutationˆvar=toˆkey],
[’NARC’=size(’PERMUTATION’)],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(correspondence,[reformulation(corresponden ce_r)]).

correspondence_r(FROM,PERMUTATION,TO) :-
collection(FROM,[dvar]),
length(FROM,NFROM),
collection(PERMUTATION,[dvar(1,NFROM)]),
length(PERMUTATION,NPERMUTATION),
collection(TO,[dvar]),
length(TO,NTO),
NPERMUTATION=NFROM,
NPERMUTATION=NTO,
get_attr1(FROM,FROMS),
get_attr1(PERMUTATION,PERMS),
get_attr1(TO,TOS),
all_different(PERMS),
correspondence1(PERMS,FROMS,TOS).

correspondence1([],[],_41494).

correspondence1([Pi|R],[Fi|S],TOS) :-
element(Pi,TOS,Fi),
correspondence1(R,S,TOS).

2197

B.83 count

♦ META-DATA:

ctr_date(
count,
[’20000128’,’20030820’,’20040530’,’20060806’,’20100 204’]).

ctr_origin(count,’\\cite{Sicstus95}’,[]).

ctr_synonyms(count,[occurencemax,occurencemin,occur rence]).

ctr_arguments(
count,
[’VALUE’-int,

’VARIABLES’-collection(var-dvar),
’RELOP’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
count,
[required(’VARIABLES’,var),

in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_example(
count,
count(5,[[var-4],[var-5],[var-5],[var-4],[var-5]],> =,2)).

ctr_typical(
count,
[size(’VARIABLES’)>1,

range(’VARIABLES’ˆvar)>1,
in_list(’RELOP’,[=,<,>=,>,=<]),
’LIMIT’>0,
’LIMIT’<size(’VARIABLES’)]).

ctr_exchangeable(
count,
[items(’VARIABLES’,all),

vals(
[’VARIABLES’ˆvar],
int(=\=(’VALUE’)),
=\=,
dontcare,
dontcare)]).

2198 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_graph(
count,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=’VALUE’],
[’RELOP’(’NARC’,’LIMIT’)],
[]).

ctr_eval(count,[reformulation(count_r),automaton(co unt_a)]).

ctr_pure_functional_dependency(count,[in_list(’RELO P’,[=])]).

ctr_contractible(
count,
[in_list(’RELOP’,[<,=<])],
VARIABLES,
any).

ctr_extensible(count,[in_list(’RELOP’,[>=,>])],’VAR IABLES’,any).

ctr_aggregate(
count,
[in_list(’RELOP’,[<,=<,>=,>])],
[id,union,id,+]).

count_r(VALUE,VARIABLES,RELOP,LIMIT) :-
check_type(int,VALUE),
collection(VARIABLES,[dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
check_type(dvar,LIMIT),
length(VARIABLES,NVARIABLES),
N in 0..NVARIABLES,
eval(among(N,VARIABLES,[[val-VALUE]])),
call_term_relop_value(N,RELOP,LIMIT).

count_a(FLAG,VALUE,VARIABLES,RELOP,LIMIT) :-
check_type(int,VALUE),
collection(VARIABLES,[dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
check_type(dvar,LIMIT),
count_signature(VARIABLES,SIGNATURE,VALUE),
automaton(

SIGNATURE,
_39632,
SIGNATURE,

2199

[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[NIN]),

count_relop(RELOP,NIN,LIMIT,FLAG).

count_signature([],[],_38174).

count_signature([[var-VAR]|VARs],[S|Ss],VALUE) :-
VAR#=VALUE#<=>S,
count_signature(VARs,Ss,VALUE).

2200 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.84 counts

♦ META-DATA:

ctr_date(counts,[’20030820’,’20040530’,’20060806’]) .

ctr_origin(counts,’Derived from %c.’,[count]).

ctr_arguments(
counts,
[’VALUES’-collection(val-int),

’VARIABLES’-collection(var-dvar),
’RELOP’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
counts,
[required(’VALUES’,val),

distinct(’VALUES’,val),
required(’VARIABLES’,var),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_example(
counts,
counts(

[[val-1],[val-3],[val-4],[val-9]],
[[var-4],[var-5],[var-5],[var-4],[var-1],[var-5]],
=,
3)).

ctr_typical(
counts,
[size(’VALUES’)>1,

size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
size(’VARIABLES’)>size(’VALUES’),
in_list(’RELOP’,[=,<,>=,>,=<]),
’LIMIT’>0,
’LIMIT’<size(’VARIABLES’)]).

ctr_exchangeable(
counts,
[items(’VALUES’,all),

items(’VARIABLES’,all),
vals(

[’VARIABLES’ˆvar],

2201

comp(’VALUES’ˆval),
=,
dontcare,
dontcare)]).

ctr_graph(
counts,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’RELOP’(’NARC’,’LIMIT’)],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(counts,[reformulation(counts_r),automaton(counts_a)]).

ctr_pure_functional_dependency(counts,[in_list(’REL OP’,[=])]).

ctr_contractible(
counts,
[in_list(’RELOP’,[<,=<])],
VARIABLES,
any).

ctr_extensible(
counts,
[in_list(’RELOP’,[>=,>])],
VARIABLES,
any).

ctr_aggregate(
counts,
[in_list(’RELOP’,[<,=<,>=,>])],
[sunion,union,id,+]).

counts_r(VALUES,VARIABLES,RELOP,LIMIT) :-
collection(VALUES,[int]),
collection(VARIABLES,[dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
check_type(dvar,LIMIT),
get_attr1(VALUES,VALS),
all_different(VALS),
length(VARIABLES,NVARIABLES),
N in 0..NVARIABLES,
eval(among(N,VARIABLES,VALUES)),
call_term_relop_value(N,RELOP,LIMIT).

2202 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

counts_a(FLAG,VALUES,VARIABLES,RELOP,LIMIT) :-
collection(VALUES,[int]),
collection(VARIABLES,[dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
check_type(dvar,LIMIT),
get_attr1(VALUES,LIST_VALUES),
all_different(LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
counts_signature(VARIABLES,SIGNATURE,SET_OF_VALUES) ,
automaton(

SIGNATURE,
_41912,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[NIN]),

count_relop(RELOP,NIN,LIMIT,FLAG).

counts_signature([],[],_39968).

counts_signature([[var-VAR]|VARs],[S|Ss],SET_OF_VAL UES) :-
VAR in_set SET_OF_VALUES#<=>S,
counts_signature(VARs,Ss,SET_OF_VALUES).

2203

B.85 coveredbysboxes

♦ META-DATA:

ctr_date(coveredby_sboxes,[’20070622’,’20090725’]).

ctr_origin(
coveredby_sboxes,
Geometry, derived from \cite{RandellCuiCohn92},
[]).

ctr_synonyms(coveredby_sboxes,[coveredby]).

ctr_types(
coveredby_sboxes,
[’VARIABLES’-collection(v-dvar),

’INTEGERS’-collection(v-int),
’POSITIVES’-collection(v-int)]).

ctr_arguments(
coveredby_sboxes,
[’K’-int,

’DIMS’-sint,
’OBJECTS’-collection(oid-int,sid-int,x-’VARIABLES’) ,
’SBOXES’-collection(sid-int,t-’INTEGERS’,l-’POSITIV ES’)]).

ctr_restrictions(
coveredby_sboxes,
[size(’VARIABLES’)>=1,

size(’INTEGERS’)>=1,
size(’POSITIVES’)>=1,
required(’VARIABLES’,v),
size(’VARIABLES’)=’K’,
required(’INTEGERS’,v),
size(’INTEGERS’)=’K’,
required(’POSITIVES’,v),
size(’POSITIVES’)=’K’,
’POSITIVES’ˆv>0,
’K’>0,
’DIMS’>=0,
’DIMS’<’K’,
increasing_seq(’OBJECTS’,[oid]),
required(’OBJECTS’,[oid,sid,x]),
’OBJECTS’ˆoid>=1,
’OBJECTS’ˆoid=<size(’OBJECTS’),
’OBJECTS’ˆsid>=1,

2204 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

’OBJECTS’ˆsid=<size(’SBOXES’),
required(’SBOXES’,[sid,t,l]),
size(’SBOXES’)>=1,
’SBOXES’ˆsid>=1,
’SBOXES’ˆsid=<size(’SBOXES’),
do_not_overlap(’SBOXES’)]).

ctr_example(
coveredby_sboxes,
coveredby_sboxes(

2,
{0,1},
[[oid-1,sid-4,x-[[v-2],[v-3]]],

[oid-2,sid-2,x-[[v-2],[v-2]]],
[oid-3,sid-1,x-[[v-1],[v-1]]]],

[[sid-1,t-[[v-0],[v-0]],l-[[v-3],[v-3]]],
[sid-1,t-[[v-3],[v-0]],l-[[v-2],[v-2]]],
[sid-2,t-[[v-0],[v-0]],l-[[v-2],[v-2]]],
[sid-2,t-[[v-2],[v-0]],l-[[v-1],[v-1]]],
[sid-3,t-[[v-0],[v-0]],l-[[v-2],[v-2]]],
[sid-3,t-[[v-2],[v-1]],l-[[v-1],[v-1]]],
[sid-4,t-[[v-0],[v-0]],l-[[v-1],[v-1]]]])).

ctr_typical(coveredby_sboxes,[size(’OBJECTS’)>1]).

ctr_exchangeable(
coveredby_sboxes,
[items(’SBOXES’,all),

items_sync(’OBJECTS’ˆx,’SBOXES’ˆt,’SBOXES’ˆl,all)]) .

ctr_eval(coveredby_sboxes,[logic(coveredby_sboxes_g)]).

ctr_logic(
coveredby_sboxes,
[DIMENSIONS,OIDS],
[(origin(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)),

(end(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)+S1ˆl(D)),
(coveredby_sboxes(Dims,O1,S1,O2,S2)--->

forall(
D,
Dims,
origin(O2,S2,D)#=<origin(O1,S1,D)#/\
end(O1,S1,D)#=<end(O2,S2,D))#/\

exists(
D,
Dims,

2205

origin(O2,S2,D)#=origin(O1,S1,D)#\/
end(O1,S1,D)#=end(O2,S2,D))),

(coveredby_objects(Dims,O1,O2)--->
forall(

S1,
sboxes([O1ˆsid]),
exists(

S2,
sboxes([O2ˆsid]),
coveredby_sboxes(Dims,O1,S1,O2,S2)))),

(all_coveredby(Dims,OIDS)--->
forall(

O1,
objects(OIDS),
forall(

O2,
objects(OIDS),
O1ˆoid#<O2ˆoid#=>
coveredby_objects(Dims,O1,O2)))),

all_coveredby(DIMENSIONS,OIDS)]).

coveredby_sboxes_g(K,_31050,[],_31052) :-
!,
check_type(int_gteq(1),K).

coveredby_sboxes_g(K,_DIMS,OBJECTS,SBOXES) :-
length(OBJECTS,O),
length(SBOXES,S),
O>0,
S>0,
check_type(int_gteq(1),K),
collection(OBJECTS,[int(1,O),dvar(1,S),col(K,[dvar])]),
collection(

SBOXES,
[int(1,S),col(K,[int]),col(K,[int_gteq(1)])]),

get_attr1(OBJECTS,OIDS),
get_attr2(OBJECTS,SIDS),
get_col_attr3(OBJECTS,1,XS),
get_attr1(SBOXES,SIDES),
get_col_attr2(SBOXES,1,TS),
get_col_attr3(SBOXES,1,TL),
collection_increasing_seq(OBJECTS,[1]),
geost1(OIDS,SIDS,XS,Objects),
geost2(SIDES,TS,TL,Sboxes),
geost_dims(1,K,DIMENSIONS),
ctr_logic(coveredby_sboxes,[DIMENSIONS,OIDS],Rules) ,

2206 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

geost(Objects,Sboxes,[overlap(true)],Rules).

2207

B.86 coverssboxes

♦ META-DATA:

ctr_date(covers_sboxes,[’20070622’,’20090725’]).

ctr_origin(
covers_sboxes,
Geometry, derived from \cite{RandellCuiCohn92},
[]).

ctr_synonyms(covers_sboxes,[covers]).

ctr_types(
covers_sboxes,
[’VARIABLES’-collection(v-dvar),

’INTEGERS’-collection(v-int),
’POSITIVES’-collection(v-int)]).

ctr_arguments(
covers_sboxes,
[’K’-int,

’DIMS’-sint,
’OBJECTS’-collection(oid-int,sid-int,x-’VARIABLES’) ,
’SBOXES’-collection(sid-int,t-’INTEGERS’,l-’POSITIV ES’)]).

ctr_restrictions(
covers_sboxes,
[size(’VARIABLES’)>=1,

size(’INTEGERS’)>=1,
size(’POSITIVES’)>=1,
required(’VARIABLES’,v),
size(’VARIABLES’)=’K’,
required(’INTEGERS’,v),
size(’INTEGERS’)=’K’,
required(’POSITIVES’,v),
size(’POSITIVES’)=’K’,
’POSITIVES’ˆv>0,
’K’>0,
’DIMS’>=0,
’DIMS’<’K’,
increasing_seq(’OBJECTS’,[oid]),
required(’OBJECTS’,[oid,sid,x]),
’OBJECTS’ˆoid>=1,
’OBJECTS’ˆoid=<size(’OBJECTS’),
’OBJECTS’ˆsid>=1,

2208 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

’OBJECTS’ˆsid=<size(’SBOXES’),
size(’SBOXES’)>=1,
required(’SBOXES’,[sid,t,l]),
’SBOXES’ˆsid>=1,
’SBOXES’ˆsid=<size(’SBOXES’),
do_not_overlap(’SBOXES’)]).

ctr_example(
covers_sboxes,
covers_sboxes(

2,
{0,1},
[[oid-1,sid-1,x-[[v-1],[v-1]]],

[oid-2,sid-2,x-[[v-2],[v-2]]],
[oid-3,sid-4,x-[[v-2],[v-3]]]],

[[sid-1,t-[[v-0],[v-0]],l-[[v-3],[v-3]]],
[sid-1,t-[[v-3],[v-0]],l-[[v-2],[v-2]]],
[sid-2,t-[[v-0],[v-0]],l-[[v-2],[v-2]]],
[sid-2,t-[[v-2],[v-0]],l-[[v-1],[v-1]]],
[sid-3,t-[[v-0],[v-0]],l-[[v-2],[v-2]]],
[sid-3,t-[[v-2],[v-1]],l-[[v-1],[v-1]]],
[sid-4,t-[[v-0],[v-0]],l-[[v-1],[v-1]]]])).

ctr_typical(covers_sboxes,[size(’OBJECTS’)>1]).

ctr_exchangeable(
covers_sboxes,
[items(’SBOXES’,all),

items_sync(’OBJECTS’ˆx,’SBOXES’ˆt,’SBOXES’ˆl,all)]) .

ctr_eval(covers_sboxes,[logic(covers_sboxes_g)]).

ctr_logic(
covers_sboxes,
[DIMENSIONS,OIDS],
[(origin(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)),

(end(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)+S1ˆl(D)),
(covers_sboxes(Dims,O1,S1,O2,S2)--->

forall(
D,
Dims,
origin(O1,S1,D)#=<origin(O2,S2,D)#/\
end(O2,S2,D)#=<end(O1,S1,D))#/\

exists(
D,
Dims,

2209

origin(O1,S1,D)#=origin(O2,S2,D)#\/
end(O1,S1,D)#=end(O2,S2,D))),

(covers_objects(Dims,O1,O2)--->
forall(

S2,
sboxes([O2ˆsid]),
exists(

S1,
sboxes([O1ˆsid]),
covers_sboxes(Dims,O1,S1,O2,S2)))),

(all_covers(Dims,OIDS)--->
forall(

O1,
objects(OIDS),
forall(

O2,
objects(OIDS),
O1ˆoid#<O2ˆoid#=>covers_objects(Dims,O1,O2)))),

all_covers(DIMENSIONS,OIDS)]).

ctr_contractible(covers_sboxes,[],’OBJECTS’,suffix) .

covers_sboxes_g(K,_31285,[],_31287) :-
!,
check_type(int_gteq(1),K).

covers_sboxes_g(K,_DIMS,OBJECTS,SBOXES) :-
length(OBJECTS,O),
length(SBOXES,S),
O>0,
S>0,
check_type(int_gteq(1),K),
collection(OBJECTS,[int(1,O),dvar(1,S),col(K,[dvar])]),
collection(

SBOXES,
[int(1,S),col(K,[int]),col(K,[int_gteq(1)])]),

get_attr1(OBJECTS,OIDS),
get_attr2(OBJECTS,SIDS),
get_col_attr3(OBJECTS,1,XS),
get_attr1(SBOXES,SIDES),
get_col_attr2(SBOXES,1,TS),
get_col_attr3(SBOXES,1,TL),
collection_increasing_seq(OBJECTS,[1]),
geost1(OIDS,SIDS,XS,Objects),
geost2(SIDES,TS,TL,Sboxes),
geost_dims(1,K,DIMENSIONS),

2210 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_logic(covers_sboxes,[DIMENSIONS,OIDS],Rules),
geost(Objects,Sboxes,[overlap(true)],Rules).

2211

B.87 crossing

♦ META-DATA:

ctr_date(crossing,[’20000128’,’20030820’,’20060806’]).

ctr_origin(
crossing,
Inspired by \cite{CormenLeisersonRivest90}.,
[]).

ctr_arguments(
crossing,
[’NCROSS’-dvar,

’SEGMENTS’-collection(ox-dvar,oy-dvar,ex-dvar,ey-dv ar)]).

ctr_restrictions(
crossing,
[’NCROSS’>=0,

NCROSS=<
(size(’SEGMENTS’) * size(’SEGMENTS’)-size(’SEGMENTS’))/2,
required(’SEGMENTS’,[ox,oy,ex,ey])]).

ctr_example(
crossing,
crossing(

3,
[[ox-1,oy-4,ex-9,ey-2],

[ox-1,oy-1,ex-3,ey-5],
[ox-3,oy-2,ex-7,ey-4],
[ox-9,oy-1,ex-9,ey-4]])).

ctr_typical(crossing,[size(’SEGMENTS’)>1]).

ctr_exchangeable(
crossing,
[items(’SEGMENTS’,all),

attrs_sync(’SEGMENTS’,[[ox,oy],[ex,ey]]),
translate([’SEGMENTS’ˆox,’SEGMENTS’ˆex]),
translate([’SEGMENTS’ˆoy,’SEGMENTS’ˆey])]).

ctr_graph(
crossing,
[’SEGMENTS’],
2,
[’CLIQUE’(<)>>collection(s1,s2)],

2212 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[max(s1ˆox,s1ˆex)>=min(s2ˆox,s2ˆex),
max(s2ˆox,s2ˆex)>=min(s1ˆox,s1ˆex),
max(s1ˆoy,s1ˆey)>=min(s2ˆoy,s2ˆey),
max(s2ˆoy,s2ˆey)>=min(s1ˆoy,s1ˆey),
(s2ˆox-s1ˆex) * (s1ˆey-s1ˆoy)-
(s1ˆex-s1ˆox) * (s2ˆoy-s1ˆey)=
0#\/
(s2ˆex-s1ˆex) * (s2ˆoy-s1ˆoy)-
(s2ˆox-s1ˆox) * (s2ˆey-s1ˆey)=
0#\/
sign(

(s2ˆox-s1ˆex) * (s1ˆey-s1ˆoy)-
(s1ˆex-s1ˆox) * (s2ˆoy-s1ˆey))=\=

sign(
(s2ˆex-s1ˆex) * (s2ˆoy-s1ˆoy)-
(s2ˆox-s1ˆox) * (s2ˆey-s1ˆey))],

[’NARC’=’NCROSS’],
[’ACYCLIC’,’NO_LOOP’]).

ctr_pure_functional_dependency(crossing,[]).

ctr_functional_dependency(crossing,1,[2]).

2213

B.88 cumulative

♦ META-DATA:

ctr_date(
cumulative,
[’20000128’,’20030820’,’20040530’,’20060806’,’20090 923’]).

ctr_origin(cumulative,’\\cite{AggounBeldiceanu93}’, []).

ctr_synonyms(cumulative,[cumulative_max]).

ctr_arguments(
cumulative,
[TASKS-

collection(
origin-dvar,
duration-dvar,
end-dvar,
height-dvar),

’LIMIT’-int]).

ctr_restrictions(
cumulative,
[require_at_least(2,’TASKS’,[origin,duration,end]),

required(’TASKS’,height),
’TASKS’ˆduration>=0,
’TASKS’ˆorigin=<’TASKS’ˆend,
’TASKS’ˆheight>=0,
’LIMIT’>=0]).

ctr_example(
cumulative,
cumulative(

[[origin-1,duration-3,end-4,height-1],
[origin-2,duration-9,end-11,height-2],
[origin-3,duration-10,end-13,height-1],
[origin-6,duration-6,end-12,height-1],
[origin-7,duration-2,end-9,height-3]],

8)).

ctr_typical(
cumulative,
[size(’TASKS’)>1,

range(’TASKS’ˆorigin)>1,
range(’TASKS’ˆduration)>1,

2214 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

range(’TASKS’ˆend)>1,
range(’TASKS’ˆheight)>1,
’TASKS’ˆduration>0,
’TASKS’ˆheight>0,
’LIMIT’<sum(’TASKS’ˆheight)]).

ctr_exchangeable(
cumulative,
[items(’TASKS’,all),

vals([’TASKS’ˆduration],int(>=(0)),>,dontcare,dontc are),
vals([’TASKS’ˆheight],int(>=(0)),>,dontcare,dontcar e),
translate([’TASKS’ˆorigin,’TASKS’ˆend]),
vals([’LIMIT’],int,<,dontcare,dontcare)]).

ctr_graph(
cumulative,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin+tasksˆduration=tasksˆend],
[’NARC’=size(’TASKS’)],
[]).

ctr_graph(
cumulative,
[’TASKS’,’TASKS’],
2,
[’PRODUCT’>>collection(tasks1,tasks2)],
[tasks1ˆduration>0,

tasks2ˆorigin=<tasks1ˆorigin,
tasks1ˆorigin<tasks2ˆend],

[],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’],
[SUCC>>

[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’TASKS’ˆheight)])]],
[sum_ctr(variables,=<,’LIMIT’)]).

ctr_eval(cumulative,[builtin(cumulative_b)]).

ctr_contractible(cumulative,[],’TASKS’,any).

cumulative_b(TASKS,LIMIT) :-
collection(TASKS,[dvar,dvar_gteq(0),dvar,dvar_gteq(0)]),

2215

integer(LIMIT),
LIMIT>=0,
get_attr1(TASKS,ORIGINS),
get_attr2(TASKS,DURATIONS),
get_attr3(TASKS,ENDS),
get_attr4(TASKS,HEIGHTS),
gen_cum_tasks(ORIGINS,DURATIONS,ENDS,HEIGHTS,1,Task s),
cumulative(Tasks,[limit(LIMIT)]).

2216 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.89 cumulative convex

♦ META-DATA:

ctr_date(cumulative_convex,[’20050817’,’20060807’]) .

ctr_origin(cumulative_convex,’Derived from %c’,[cumul ative]).

ctr_types(cumulative_convex,[’POINTS’-collection(va r-dvar)]).

ctr_arguments(
cumulative_convex,
[’TASKS’-collection(points-’POINTS’,height-dvar),

’LIMIT’-int]).

ctr_restrictions(
cumulative_convex,
[required(’POINTS’,var),

size(’POINTS’)>0,
required(’TASKS’,[points,height]),
’TASKS’ˆheight>=0,
’LIMIT’>=0]).

ctr_example(
cumulative_convex,
cumulative_convex(

[[points-[[var-2],[var-1],[var-5]],height-1],
[points-[[var-4],[var-5],[var-7]],height-2],
[points-

[[var-14],[var-13],[var-9],[var-11],[var-10]],
height-2]],

3)).

ctr_typical(
cumulative_convex,
[size(’TASKS’)>1,

’TASKS’ˆheight>0,
’LIMIT’<sum(’TASKS’ˆheight)]).

ctr_exchangeable(
cumulative_convex,
[items(’TASKS’,all),

items(’TASKS’ˆpoints,all),
vals([’TASKS’ˆheight],int(>=(0)),>,dontcare,dontcar e),
vals([’LIMIT’],int,<,dontcare,dontcare)]).

2217

ctr_derived_collections(
cumulative_convex,
[col(’INSTANTS’-collection(instant-dvar),

[item(instant-’TASKS’ˆpointsˆvar)])]).

ctr_graph(
cumulative_convex,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[alldifferent(tasksˆpoints)],
[’NARC’=size(’TASKS’)],
[]).

ctr_graph(
cumulative_convex,
[’INSTANTS’,’TASKS’],
2,
[’PRODUCT’>>collection(instants,tasks)],
[between_min_max(instantsˆinstant,tasksˆpoints)],
[],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’],
[SUCC>>

[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’TASKS’ˆheight)])]],
[sum_ctr(variables,=<,’LIMIT’)]).

ctr_contractible(cumulative_convex,[],’TASKS’,any).

2218 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.90 cumulative product

♦ META-DATA:

ctr_date(cumulative_product,[’20030820’,’20060807’, ’20081227’]).

ctr_origin(cumulative_product,’Derived from %c.’,[cum ulative]).

ctr_arguments(
cumulative_product,
[TASKS-

collection(
origin-dvar,
duration-dvar,
end-dvar,
height-dvar),

’LIMIT’-int]).

ctr_restrictions(
cumulative_product,
[require_at_least(2,’TASKS’,[origin,duration,end]),

required(’TASKS’,height),
’TASKS’ˆduration>=0,
’TASKS’ˆorigin=<’TASKS’ˆend,
’TASKS’ˆheight>=1,
’LIMIT’>=0]).

ctr_example(
cumulative_product,
cumulative_product(

[[origin-1,duration-3,end-4,height-1],
[origin-2,duration-9,end-11,height-2],
[origin-3,duration-10,end-13,height-1],
[origin-6,duration-6,end-12,height-1],
[origin-7,duration-2,end-9,height-3]],

6)).

ctr_typical(
cumulative_product,
[size(’TASKS’)>1,

range(’TASKS’ˆorigin)>1,
range(’TASKS’ˆduration)>1,
range(’TASKS’ˆend)>1,
range(’TASKS’ˆheight)>1,
’TASKS’ˆduration>0,
’LIMIT’<prod(’TASKS’ˆheight)]).

2219

ctr_exchangeable(
cumulative_product,
[items(’TASKS’,all),

vals([’TASKS’ˆheight],int(>=(0)),>,dontcare,dontcar e),
translate([’TASKS’ˆorigin,’TASKS’ˆend]),
vals([’LIMIT’],int,<,dontcare,dontcare)]).

ctr_graph(
cumulative_product,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin+tasksˆduration=tasksˆend],
[’NARC’=size(’TASKS’)],
[]).

ctr_graph(
cumulative_product,
[’TASKS’,’TASKS’],
2,
[’PRODUCT’>>collection(tasks1,tasks2)],
[tasks1ˆduration>0,

tasks2ˆorigin=<tasks1ˆorigin,
tasks1ˆorigin<tasks2ˆend],

[],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’],
[SUCC>>

[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’ITEMS’ˆheight)])]],
[product_ctr(variables,=<,’LIMIT’)]).

ctr_eval(
cumulative_product,
[reformulation(cumulative_product_r)]).

ctr_contractible(cumulative_product,[],’TASKS’,any) .

cumulative_product_r(TASKS,LIMIT) :-
integer(LIMIT),
LIMIT>=1,
collection(

TASKS,
[dvar,dvar_gteq(0),dvar,dvar(1,LIMIT)]),

2220 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

get_attr1(TASKS,ORIGINS),
get_attr2(TASKS,DURATIONS),
get_attr3(TASKS,ENDS),
get_attr4(TASKS,HEIGHTS),
ori_dur_end(ORIGINS,DURATIONS,ENDS),
cumulative_product1(

ORIGINS,
ENDS,
HEIGHTS,
1,
ORIGINS,
ENDS,
HEIGHTS,
LIMIT).

cumulative_product1(
[],
[],
[],
_45906,
_45952,
_45998,
_46044,
_46090).

cumulative_product1(
[Oi|RO],
[Ei|RE],
[Hi|RH],
I,
ORIGINS,
ENDS,
HEIGHTS,
LIMIT) :-

cumulative_product2(
ORIGINS,
ENDS,
HEIGHTS,
1,
I,
Oi,
Ei,
Hi,
PRODi),

call(PRODi#=<LIMIT),
I1 is I+1,

2221

cumulative_product1(
RO,
RE,
RH,
I1,
ORIGINS,
ENDS,
HEIGHTS,
LIMIT).

cumulative_product2(
[],
[],
[],
_45909,
_45955,
_46001,
_46047,
_46093,
1).

cumulative_product2(
[_45545|RO],
[_45549|RE],
[_45553|RH],
J,
I,
Oi,
Ei,
Hi,
Hi * R) :-

I=J,
!,
J1 is J+1,
cumulative_product2(RO,RE,RH,J1,I,Oi,Ei,Hi,R).

cumulative_product2([Oj|RO],[Ej|RE],[Hj|RH],J,I,Oi, Ei,Hi,Hij * R) :-
I=\=J,
Hij in 1..Hj,
Oj#=<Oi#/\Ej#>Oi#/\Hij#=Hj#\/
(Oj#>Oi#\/Ej#=<Oi)#/\Hij#=1,
J1 is J+1,
cumulative_product2(RO,RE,RH,J1,I,Oi,Ei,Hi,R).

2222 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.91 cumulative two d

♦ META-DATA:

ctr_predefined(cumulative_two_d).

ctr_date(cumulative_two_d,[’20000128’,’20030820’,’2 0060807’]).

ctr_origin(
cumulative_two_d,
Inspired by %c and %c.,
[cumulative,diffn]).

ctr_arguments(
cumulative_two_d,
[RECTANGLES-

collection(
start1-dvar,
size1-dvar,
last1-dvar,
start2-dvar,
size2-dvar,
last2-dvar,
height-dvar),

’LIMIT’-int]).

ctr_restrictions(
cumulative_two_d,
[require_at_least(2,’RECTANGLES’,[start1,size1,last 1]),

require_at_least(2,’RECTANGLES’,[start2,size2,last2]),
required(’RECTANGLES’,height),
’RECTANGLES’ˆsize1>=0,
’RECTANGLES’ˆsize2>=0,
’RECTANGLES’ˆheight>=0,
’LIMIT’>=0]).

ctr_example(
cumulative_two_d,
cumulative_two_d(

[[start1-1,
size1-4,
last1-4,
start2-3,
size2-3,
last2-5,
height-4],

2223

[start1-3,
size1-2,
last1-4,
start2-1,
size2-2,
last2-2,
height-2],

[start1-1,
size1-2,
last1-2,
start2-1,
size2-2,
last2-2,
height-3],

[start1-4,
size1-1,
last1-4,
start2-1,
size2-1,
last2-1,
height-1]],

4)).

ctr_typical(
cumulative_two_d,
[size(’RECTANGLES’)>1,

’RECTANGLES’ˆsize1>0,
’RECTANGLES’ˆsize2>0,
’RECTANGLES’ˆheight>0,
’LIMIT’<sum(’RECTANGLES’ˆheight)]).

ctr_exchangeable(
cumulative_two_d,
[items(’RECTANGLES’,all),

attrs_sync(
RECTANGLES,
[[start1,start2],

[size1,size2],
[last1,last2],
[height]]),

vals(
[’RECTANGLES’ˆheight],
int(>=(0)),
>,
dontcare,
dontcare),

2224 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

translate([’RECTANGLES’ˆstart1,’RECTANGLES’ˆlast1]) ,
translate([’RECTANGLES’ˆstart2,’RECTANGLES’ˆlast2]) ,
vals([’LIMIT’],int,<,dontcare,dontcare)]).

ctr_contractible(cumulative_two_d,[],’RECTANGLES’,a ny).

2225

B.92 cumulative with level of priority

♦ META-DATA:

ctr_date(
cumulative_with_level_of_priority,
[’20040530’,’20060807’]).

ctr_origin(cumulative_with_level_of_priority,’H.˜Si monis’,[]).

ctr_arguments(
cumulative_with_level_of_priority,
[TASKS-

collection(
priority-int,
origin-dvar,
duration-dvar,
end-dvar,
height-dvar),

’PRIORITIES’-collection(id-int,capacity-int)]).

ctr_restrictions(
cumulative_with_level_of_priority,
[required(’TASKS’,[priority,height]),

require_at_least(2,’TASKS’,[origin,duration,end]),
’TASKS’ˆpriority>=1,
’TASKS’ˆpriority=<size(’PRIORITIES’),
’TASKS’ˆduration>=0,
’TASKS’ˆorigin=<’TASKS’ˆend,
’TASKS’ˆheight>=0,
required(’PRIORITIES’,[id,capacity]),
’PRIORITIES’ˆid>=1,
’PRIORITIES’ˆid=<size(’PRIORITIES’),
increasing_seq(’PRIORITIES’,id),
increasing_seq(’PRIORITIES’,capacity)]).

ctr_example(
cumulative_with_level_of_priority,
cumulative_with_level_of_priority(

[[priority-1,origin-1,duration-2,end-3,height-1],
[priority-1,origin-2,duration-3,end-5,height-1],
[priority-1,origin-5,duration-2,end-7,height-2],
[priority-2,origin-3,duration-2,end-5,height-2],
[priority-2,origin-6,duration-3,end-9,height-1]],

[[id-1,capacity-2],[id-2,capacity-3]])).

2226 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_typical(
cumulative_with_level_of_priority,
[size(’TASKS’)>1,

range(’TASKS’ˆpriority)>1,
range(’TASKS’ˆorigin)>1,
range(’TASKS’ˆduration)>1,
range(’TASKS’ˆend)>1,
range(’TASKS’ˆheight)>1,
’TASKS’ˆduration>0,
’TASKS’ˆheight>0,
size(’PRIORITIES’)>1,
’PRIORITIES’ˆcapacity>0,
’PRIORITIES’ˆcapacity<sum(’TASKS’ˆheight),
size(’TASKS’)>size(’PRIORITIES’)]).

ctr_exchangeable(
cumulative_with_level_of_priority,
[items(’TASKS’,all),

vals(
[’TASKS’ˆpriority],
int(=<(size(’PRIORITIES’))),
<,
dontcare,
dontcare),

vals([’TASKS’ˆheight],int(>=(0)),>,dontcare,dontcar e),
translate([’TASKS’ˆorigin,’TASKS’ˆend]),
vals([’PRIORITIES’ˆcapacity],int,<,dontcare,dontcar e)]).

ctr_derived_collections(
cumulative_with_level_of_priority,
[col(TIME_POINTS-

collection(idp-int,duration-dvar,point-dvar),
[item(

idp-’TASKS’ˆpriority,
duration-’TASKS’ˆduration,
point-’TASKS’ˆorigin),

item(
idp-’TASKS’ˆpriority,
duration-’TASKS’ˆduration,
point-’TASKS’ˆend)])]).

ctr_graph(
cumulative_with_level_of_priority,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],

2227

[tasksˆorigin+tasksˆduration=tasksˆend],
[’NARC’=size(’TASKS’)],
[]).

ctr_graph(
cumulative_with_level_of_priority,
[’TIME_POINTS’,’TASKS’],
2,
foreach(

PRIORITIES,
[’PRODUCT’>>collection(time_points,tasks)]),

[time_pointsˆidp=’PRIORITIES’ˆid,
time_pointsˆidp>=tasksˆpriority,
time_pointsˆduration>0,
tasksˆorigin=<time_pointsˆpoint,
time_pointsˆpoint<tasksˆend],

[],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’],
[SUCC>>

[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’TASKS’ˆheight)])]],
[sum_ctr(variables,=<,’PRIORITIES’ˆcapacity)]).

ctr_contractible(
cumulative_with_level_of_priority,
[],
TASKS,
any).

2228 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.93 cumulatives

♦ META-DATA:

ctr_date(
cumulatives,
[’20000128’,’20030820’,’20040530’,’20060807’]).

ctr_origin(cumulatives,’\\cite{BeldiceanuCarlsson02 a}’,[]).

ctr_arguments(
cumulatives,
[TASKS-

collection(
machine-dvar,
origin-dvar,
duration-dvar,
end-dvar,
height-dvar),

’MACHINES’-collection(id-int,capacity-int),
’CTR’-atom]).

ctr_restrictions(
cumulatives,
[required(’TASKS’,[machine,height]),

require_at_least(2,’TASKS’,[origin,duration,end]),
in_attr(’TASKS’,machine,’MACHINES’,id),
’TASKS’ˆduration>=0,
’TASKS’ˆorigin=<’TASKS’ˆend,
size(’MACHINES’)>0,
required(’MACHINES’,[id,capacity]),
distinct(’MACHINES’,id),
in_list(’CTR’,[=<,>=])]).

ctr_example(
cumulatives,
cumulatives(

[[machine-1,origin-2,duration-2,end-4,height- -2],
[machine-1,origin-1,duration-4,end-5,height-1],
[machine-1,origin-4,duration-2,end-6,height- -1],
[machine-1,origin-2,duration-3,end-5,height-2],
[machine-1,origin-5,duration-2,end-7,height-2],
[machine-2,origin-3,duration-2,end-5,height- -1],
[machine-2,origin-1,duration-4,end-5,height-1]],

[[id-1,capacity-0],[id-2,capacity-0]],
>=)).

2229

ctr_typical(
cumulatives,
[size(’TASKS’)>1,

range(’TASKS’ˆmachine)>1,
range(’TASKS’ˆorigin)>1,
range(’TASKS’ˆduration)>1,
range(’TASKS’ˆend)>1,
range(’TASKS’ˆheight)>1,
’TASKS’ˆduration>0,
’TASKS’ˆheight=\=0,
size(’MACHINES’)>1,
’MACHINES’ˆcapacity<sum(’TASKS’ˆheight),
size(’TASKS’)>size(’MACHINES’)]).

ctr_exchangeable(
cumulatives,
[items(’TASKS’,all),

items(’MACHINES’,all),
vals(

[’TASKS’ˆmachine,’MACHINES’ˆid],
int,
=\=,
all,
dontcare)]).

ctr_derived_collections(
cumulatives,
[col(TIME_POINTS-

collection(idm-int,duration-dvar,point-dvar),
[item(

idm-’TASKS’ˆmachine,
duration-’TASKS’ˆduration,
point-’TASKS’ˆorigin),

item(
idm-’TASKS’ˆmachine,
duration-’TASKS’ˆduration,
point-’TASKS’ˆend)])]).

ctr_graph(
cumulatives,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin+tasksˆduration=tasksˆend],
[’NARC’=size(’TASKS’)],

2230 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[]).

ctr_graph(
cumulatives,
[’TIME_POINTS’,’TASKS’],
2,
foreach(

MACHINES,
[’PRODUCT’>>collection(time_points,tasks)]),

[time_pointsˆidm=’MACHINES’ˆid,
time_pointsˆidm=tasksˆmachine,
time_pointsˆduration>0,
tasksˆorigin=<time_pointsˆpoint,
time_pointsˆpoint<tasksˆend],

[],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’],
[SUCC>>

[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’TASKS’ˆheight)])]],
[sum_ctr(variables,’CTR’,’MACHINES’ˆcapacity)]).

ctr_eval(cumulatives,[builtin(cumulatives_b)]).

ctr_contractible(
cumulatives,
[in_list(’RELOP’,[=<]),minval(’TASKS’ˆheight)>=0],
TASKS,
any).

cumulatives_b(TASKS,MACHINES,=<) :-
!,
collection(TASKS,[dvar,dvar,dvar_gteq(0),dvar,dvar]),
get_attr1(TASKS,VMACHINES),
get_attr2(TASKS,ORIGINS),
get_attr3(TASKS,DURATIONS),
get_attr4(TASKS,ENDS),
get_attr5(TASKS,HEIGHTS),
collection(MACHINES,[int,int]),
get_attr1(MACHINES,IDS),
get_attr2(MACHINES,CAPACITIES),
all_different(IDS),
cumulatives1(

VMACHINES,
ORIGINS,

2231

DURATIONS,
ENDS,
HEIGHTS,
Tasks),

cumulatives2(IDS,CAPACITIES,Machines),
cumulatives(Tasks,Machines,[bound(upper)]).

cumulatives_b(TASKS,MACHINES,>=) :-
collection(TASKS,[dvar,dvar,dvar_gteq(0),dvar,dvar]),
get_attr1(TASKS,VMACHINES),
get_attr2(TASKS,ORIGINS),
get_attr3(TASKS,DURATIONS),
get_attr4(TASKS,ENDS),
get_attr5(TASKS,HEIGHTS),
collection(MACHINES,[int,int]),
get_attr1(MACHINES,IDS),
get_attr2(MACHINES,CAPACITIES),
all_different(IDS),
cumulatives1(

VMACHINES,
ORIGINS,
DURATIONS,
ENDS,
HEIGHTS,
Tasks),

cumulatives2(IDS,CAPACITIES,Machines),
cumulatives(Tasks,Machines,[bound(lower)]).

cumulatives1([],[],[],[],[],[]).

cumulatives1(
[M|RM],
[O|RO],
[D|RD],
[E|RE],
[H|RH],
[task(O,D,E,H,M)|R]) :-

cumulatives1(RM,RO,RD,RE,RH,R).

cumulatives2([],[],[]).

cumulatives2([I|RI],[C|RC],[machine(I,C)|R]) :-
cumulatives2(RI,RC,R).

2232 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.94 cutset

♦ META-DATA:

ctr_date(cutset,[’20030820’,’20040530’,’20060807’]) .

ctr_origin(cutset,’\\cite{FagesLal03}’,[]).

ctr_arguments(
cutset,
[’SIZE_CUTSET’-dvar,

’NODES’-collection(index-int,succ-sint,bool-dvar)]) .

ctr_restrictions(
cutset,
[’SIZE_CUTSET’>=0,

’SIZE_CUTSET’=<size(’NODES’),
required(’NODES’,[index,succ,bool]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆbool>=0,
’NODES’ˆbool=<1]).

ctr_example(
cutset,
cutset(

1,
[[index-1,succ-{2,3,4},bool-1],

[index-2,succ-{3},bool-1],
[index-3,succ-{4},bool-1],
[index-4,succ-{1},bool-0]])).

ctr_typical(
cutset,
[’SIZE_CUTSET’>0,

’SIZE_CUTSET’=<size(’NODES’),
size(’NODES’)>1]).

ctr_exchangeable(cutset,[items(’NODES’,all)]).

ctr_graph(
cutset,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],

2233

[nodes2ˆindex in_set nodes1ˆsucc,
nodes1ˆbool=1,
nodes2ˆbool=1],

[’MAX_NSCC’=<1,’NVERTEX’=size(’NODES’)-’SIZE_CUTSET ’],
[’ACYCLIC’,’NO_LOOP’]).

2234 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.95 cycle

♦ META-DATA:

ctr_date(cycle,[’20000128’,’20030820’,’20060807’,’2 0111223’]).

ctr_origin(cycle,’\\cite{BeldiceanuContejean94}’,[]).

ctr_arguments(
cycle,
[’NCYCLE’-dvar,’NODES’-collection(index-int,succ-dv ar)]).

ctr_restrictions(
cycle,
[’NCYCLE’>=1,

’NCYCLE’=<size(’NODES’),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
cycle,
cycle(

2,
[[index-1,succ-2],

[index-2,succ-1],
[index-3,succ-5],
[index-4,succ-3],
[index-5,succ-4]])).

ctr_typical(cycle,[’NCYCLE’<size(’NODES’),size(’NOD ES’)>2]).

ctr_exchangeable(cycle,[items(’NODES’,all)]).

ctr_graph(
cycle,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’NTREE’=0,’NCC’=’NCYCLE’],
[’ONE_SUCC’]).

2235

ctr_eval(cycle,[checker(cycle_c),reformulation(cycl e_r)]).

ctr_functional_dependency(cycle,1,[2]).

ctr_sol(cycle,_A000142,[1,2,6,24,120,720,5040]).

cycle_c(NCYCLE,NODES) :-
length(NODES,N),
check_type(dvar(1,N),NCYCLE),
collection(NODES,[int(1,N),dvar(1,N)]),
get_attr1(NODES,INDEXES),
get_attr2(NODES,SUCCS),
length(Term,N),
list_to_tree(Term,Tree),
(for(J,1,N),

foreach(X,SUCCS),
foreach(Free,Term),foreach(J,Js),param(Tree)do
get_label(X,Tree,Free)),

sort(INDEXES,Js),
sort(SUCCS,Js),
sort(Term,Cs),
length(Cs,NCYCLE).

cycle_r(NCYCLE,NODES) :-
length(NODES,N),
check_type(dvar(1,N),NCYCLE),
collection(NODES,[int(1,N),dvar(1,N)]),
get_attr1(NODES,IND),
sort(IND,SIND),
length(SIND,N),
get_attr12(NODES,IND_SUCC),
keysort(IND_SUCC,SIND_SUCC),
remove_key_from_collection(SIND_SUCC,Succ),
all_different(Succ),
(for(I,1,N),foreach(Min,Mins),param(Succ,N)do

length([I|Ss],N),
minimum(Min,[I|Ss]),
(foreach(S2,Ss),fromto(I,S1,S2,_46112),param(Succ)d o

element(S1,Succ,S2))),
nvalue(NCYCLE,Mins).

2236 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.96 cyclecard on path

♦ META-DATA:

ctr_date(
cycle_card_on_path,
[’20000128’,’20030820’,’20040530’,’20060807’]).

ctr_origin(cycle_card_on_path,’\\index{CHIP|indexus e}CHIP’,[]).

ctr_arguments(
cycle_card_on_path,
[’NCYCLE’-dvar,

’NODES’-collection(index-int,succ-dvar,colour-dvar) ,
’ATLEAST’-int,
’ATMOST’-int,
’PATH_LEN’-int,
’VALUES’-collection(val-int)]).

ctr_restrictions(
cycle_card_on_path,
[’NCYCLE’>=1,

’NCYCLE’=<size(’NODES’),
required(’NODES’,[index,succ,colour]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’),
’ATLEAST’>=0,
’ATLEAST’=<’PATH_LEN’,
’ATMOST’>=’ATLEAST’,
’PATH_LEN’>=0,
size(’VALUES’)>=1,
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
cycle_card_on_path,
cycle_card_on_path(

2,
[[index-1,succ-7,colour-2],

[index-2,succ-4,colour-3],
[index-3,succ-8,colour-2],
[index-4,succ-9,colour-1],
[index-5,succ-1,colour-2],

2237

[index-6,succ-2,colour-1],
[index-7,succ-5,colour-1],
[index-8,succ-6,colour-1],
[index-9,succ-3,colour-1]],

1,
2,
3,
[[val-1]])).

ctr_typical(
cycle_card_on_path,
[size(’NODES’)>2,

’NCYCLE’<size(’NODES’),
’ATLEAST’<’PATH_LEN’,
’ATMOST’>0,
’PATH_LEN’>1,
size(’NODES’)>size(’VALUES’),
’ATLEAST’>0#\/’ATMOST’<’PATH_LEN’]).

ctr_exchangeable(
cycle_card_on_path,
[items(’NODES’,all),

vals(
[’NODES’ˆcolour],
comp(’VALUES’ˆval),
=,
dontcare,
dontcare),

vals([’ATLEAST’],int(>=(0)),>,dontcare,dontcare),
vals([’ATMOST’],int,<,dontcare,dontcare),
items(’VALUES’,all)]).

ctr_graph(
cycle_card_on_path,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’NTREE’=0,’NCC’=’NCYCLE’],
[’ONE_SUCC’],
[’PATH_LENGTH’(’PATH_LEN’)>>

[variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’NODES’ˆcolour)])]],
[among_low_up(’ATLEAST’,’ATMOST’,variables,’VALUES’)]).

2238 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.97 cycleor accessibility

♦ META-DATA:

ctr_date(
cycle_or_accessibility,
[’20000128’,’20030820’,’20060807’]).

ctr_origin(
cycle_or_accessibility,
Inspired by \cite{LabbeLaporteRodriguezMartin98}.,
[]).

ctr_arguments(
cycle_or_accessibility,
[’MAXDIST’-int,

’NCYCLE’-dvar,
’NODES’-collection(index-int,succ-dvar,x-int,y-int)]).

ctr_restrictions(
cycle_or_accessibility,
[’MAXDIST’>=0,

’NCYCLE’>=1,
’NCYCLE’=<size(’NODES’),
required(’NODES’,[index,succ,x,y]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=0,
’NODES’ˆsucc=<size(’NODES’),
’NODES’ˆx>=0,
’NODES’ˆy>=0]).

ctr_example(
cycle_or_accessibility,
cycle_or_accessibility(

3,
2,
[[index-1,succ-6,x-4,y-5],

[index-2,succ-0,x-9,y-1],
[index-3,succ-0,x-2,y-4],
[index-4,succ-1,x-2,y-6],
[index-5,succ-5,x-7,y-2],
[index-6,succ-4,x-4,y-7],
[index-7,succ-0,x-6,y-4]])).

2239

ctr_typical(
cycle_or_accessibility,
[’MAXDIST’>0,’NCYCLE’<size(’NODES’),size(’NODES’)>2]).

ctr_exchangeable(
cycle_or_accessibility,
[items(’NODES’,all),

attrs_sync(’NODES’,[[index],[succ],[x,y]]),
translate([’NODES’ˆx]),
translate([’NODES’ˆy])]).

ctr_graph(
cycle_or_accessibility,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’NTREE’=0,’NCC’=’NCYCLE’],
[]).

ctr_graph(
cycle_or_accessibility,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex#\/

nodes1ˆsucc=0#/\nodes2ˆsucc=\=0#/\
abs(nodes1ˆx-nodes2ˆx)+abs(nodes1ˆy-nodes2ˆy)=<’MAX DIST’],

[’NVERTEX’=size(’NODES’)],
[],
[PRED>>

[variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’NODES’ˆsucc)]),
destination]],

[nvalues_except_0(variables,=,1)]).

ctr_functional_dependency(cycle_or_accessibility,2, [3]).

2240 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.98 cycleresource

♦ META-DATA:

ctr_date(cycle_resource,[’20030820’,’20040530’,’200 60807’]).

ctr_origin(cycle_resource,’\\index{CHIP|indexuse}CH IP’,[]).

ctr_arguments(
cycle_resource,
[RESOURCE-

collection(id-int,first_task-dvar,nb_task-dvar),
’TASK’-collection(id-int,next_task-dvar,resource-dv ar)]).

ctr_restrictions(
cycle_resource,
[required(’RESOURCE’,[id,first_task,nb_task]),

’RESOURCE’ˆid>=1,
’RESOURCE’ˆid=<size(’RESOURCE’),
distinct(’RESOURCE’,id),
’RESOURCE’ˆfirst_task>=1,
’RESOURCE’ˆfirst_task=<size(’RESOURCE’)+size(’TASK’),
’RESOURCE’ˆnb_task>=0,
’RESOURCE’ˆnb_task=<size(’TASK’),
required(’TASK’,[id,next_task,resource]),
’TASK’ˆid>size(’RESOURCE’),
’TASK’ˆid=<size(’RESOURCE’)+size(’TASK’),
distinct(’TASK’,id),
’TASK’ˆnext_task>=1,
’TASK’ˆnext_task=<size(’RESOURCE’)+size(’TASK’),
’TASK’ˆresource>=1,
’TASK’ˆresource=<size(’RESOURCE’)]).

ctr_example(
cycle_resource,
cycle_resource(

[[id-1,first_task-5,nb_task-3],
[id-2,first_task-2,nb_task-0],
[id-3,first_task-8,nb_task-2]],

[[id-4,next_task-7,resource-1],
[id-5,next_task-4,resource-1],
[id-6,next_task-3,resource-3],
[id-7,next_task-1,resource-1],
[id-8,next_task-6,resource-3]])).

ctr_typical(

2241

cycle_resource,
[size(’RESOURCE’)>1,

size(’TASK’)>1,
size(’TASK’)>size(’RESOURCE’)]).

ctr_exchangeable(
cycle_resource,
[items(’RESOURCE’,all),

items(’TASK’,all),
vals([’RESOURCE’ˆid,’TASK’ˆresource],int,=\=,all,in)]).

ctr_derived_collections(
cycle_resource,
[col(RESOURCE_TASK-

collection(index-int,succ-dvar,name-dvar),
[item(

index-’RESOURCE’ˆid,
succ-’RESOURCE’ˆfirst_task,
name-’RESOURCE’ˆid),

item(
index-’TASK’ˆid,
succ-’TASK’ˆnext_task,
name-’TASK’ˆresource)])]).

ctr_graph(
cycle_resource,
[’RESOURCE_TASK’],
2,
[’CLIQUE’>>collection(resource_task1,resource_task2)],
[resource_task1ˆsucc=resource_task2ˆindex,

resource_task1ˆname=resource_task2ˆname],
[’NTREE’=0,

’NCC’=size(’RESOURCE’),
’NVERTEX’=size(’RESOURCE’)+size(’TASK’)],

[’ONE_SUCC’]).

ctr_graph(
cycle_resource,
[’RESOURCE_TASK’],
2,
foreach(

RESOURCE,
[’CLIQUE’>>collection(resource_task1,resource_task2)]),

[resource_task1ˆsucc=resource_task2ˆindex,
resource_task1ˆname=resource_task2ˆname,
resource_task1ˆname=’RESOURCE’ˆid],

2242 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[’NVERTEX’=’RESOURCE’ˆnb_task+1],
[]).

2243

B.99 cyclic change

♦ META-DATA:

ctr_date(
cyclic_change,
[’20000128’,’20030820’,’20040530’,’20060807’]).

ctr_origin(cyclic_change,’Derived from %c.’,[change]) .

ctr_arguments(
cyclic_change,
[’NCHANGE’-dvar,

’CYCLE_LENGTH’-int,
’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
cyclic_change,
[’NCHANGE’>=0,

’NCHANGE’<size(’VARIABLES’),
’CYCLE_LENGTH’>0,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar<’CYCLE_LENGTH’,
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
cyclic_change,
cyclic_change(

2,
4,
[[var-3],[var-0],[var-2],[var-3],[var-1]],
=\=)).

ctr_typical(
cyclic_change,
[’NCHANGE’>0,

size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
in_list(’CTR’,[=\=])]).

ctr_exchangeable(cyclic_change,[items(’VARIABLES’,s hift)]).

ctr_graph(
cyclic_change,

2244 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[’CTR’((variables1ˆvar+1)mod ’CYCLE_LENGTH’,

variables2ˆvar)],
[’NARC’=’NCHANGE’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(cyclic_change,[automaton(cyclic_change_a)]).

ctr_pure_functional_dependency(cyclic_change,[]).

ctr_functional_dependency(cyclic_change,1,[2,3,4]).

cyclic_change_a(FLAG,NCHANGE,CYCLE_LENGTH,VARIABLES ,CTR) :-
integer(CYCLE_LENGTH),
CYCLE_LENGTH>0,
CYCLE_LENGTH_1 is CYCLE_LENGTH-1,
collection(VARIABLES,[dvar(0,CYCLE_LENGTH_1)]),
length(VARIABLES,N),
N_1 is N-1,
check_type(dvar(0,N_1),NCHANGE),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
cyclic_change_signature(

VARIABLES,
SIGNATURE,
CYCLE_LENGTH,
CTR),

automaton(
SIGNATURE,
_34102,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

COUNT#=NCHANGE#<=>FLAG.

cyclic_change_signature([],[],_31537,_31538).

cyclic_change_signature([_31542],[],_31540,_31541) : -
!.

cyclic_change_signature(
[[var-VAR1],[var-VAR2]|VARs],

2245

[S|Ss],
CYCLE_LENGTH,
=) :-

!,
(VAR1+1)mod CYCLE_LENGTH#=VAR2#<=>S,
cyclic_change_signature(

[[var-VAR2]|VARs],
Ss,
CYCLE_LENGTH,
=).

cyclic_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
CYCLE_LENGTH,
=\=) :-

!,
(VAR1+1)mod CYCLE_LENGTH#\=VAR2#<=>S,
cyclic_change_signature(

[[var-VAR2]|VARs],
Ss,
CYCLE_LENGTH,
=\=).

cyclic_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
CYCLE_LENGTH,
<) :-

!,
(VAR1+1)mod CYCLE_LENGTH#<VAR2#<=>S,
cyclic_change_signature(

[[var-VAR2]|VARs],
Ss,
CYCLE_LENGTH,
<).

cyclic_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
CYCLE_LENGTH,
>=) :-

!,
(VAR1+1)mod CYCLE_LENGTH#>=VAR2#<=>S,
cyclic_change_signature(

[[var-VAR2]|VARs],

2246 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

Ss,
CYCLE_LENGTH,
>=).

cyclic_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
CYCLE_LENGTH,
>) :-

!,
(VAR1+1)mod CYCLE_LENGTH#>VAR2#<=>S,
cyclic_change_signature(

[[var-VAR2]|VARs],
Ss,
CYCLE_LENGTH,
>).

cyclic_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
CYCLE_LENGTH,
=<) :-

!,
(VAR1+1)mod CYCLE_LENGTH#=<VAR2#<=>S,
cyclic_change_signature(

[[var-VAR2]|VARs],
Ss,
CYCLE_LENGTH,
=<).

2247

B.100 cyclicchangejoker

♦ META-DATA:

ctr_date(
cyclic_change_joker,
[’20000128’,’20030820’,’20040530’,’20060807’]).

ctr_origin(
cyclic_change_joker,
Derived from %c.,
[cyclic_change]).

ctr_arguments(
cyclic_change_joker,
[’NCHANGE’-dvar,

’CYCLE_LENGTH’-int,
’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
cyclic_change_joker,
[’NCHANGE’>=0,

’NCHANGE’<size(’VARIABLES’),
’CYCLE_LENGTH’>0,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0,
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
cyclic_change_joker,
cyclic_change_joker(

2,
4,
[[var-3],

[var-0],
[var-2],
[var-4],
[var-4],
[var-4],
[var-3],
[var-1],
[var-4]],

=\=)).

ctr_typical(

2248 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

cyclic_change_joker,
[’NCHANGE’>0,

’CYCLE_LENGTH’>1,
size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
maxval(’VARIABLES’ˆvar)>=’CYCLE_LENGTH’,
in_list(’CTR’,[=\=])]).

ctr_exchangeable(
cyclic_change_joker,
[items(’VARIABLES’,shift)]).

ctr_graph(
cyclic_change_joker,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[’CTR’((variables1ˆvar+1)mod ’CYCLE_LENGTH’,

variables2ˆvar),
variables1ˆvar<’CYCLE_LENGTH’,
variables2ˆvar<’CYCLE_LENGTH’],

[’NARC’=’NCHANGE’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(
cyclic_change_joker,
[automaton(cyclic_change_joker_a)]).

ctr_pure_functional_dependency(cyclic_change_joker, []).

ctr_functional_dependency(cyclic_change_joker,1,[2, 3,4]).

cyclic_change_joker_a(FLAG,NCHANGE,CYCLE_LENGTH,VAR IABLES,CTR) :-
integer(CYCLE_LENGTH),
CYCLE_LENGTH>0,
collection(VARIABLES,[dvar_gteq(0)]),
length(VARIABLES,N),
N_1 is N-1,
check_type(dvar(0,N_1),NCHANGE),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
cyclic_change_joker_signature(

VARIABLES,
SIGNATURE,
CYCLE_LENGTH,
CTR),

automaton(

2249

SIGNATURE,
_37169,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

COUNT#=NCHANGE#<=>FLAG.

cyclic_change_joker_signature([],[],_34819,_34820).

cyclic_change_joker_signature([_34824],[],_34822,_3 4823) :-
!.

cyclic_change_joker_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
CYCLE_LENGTH,
=) :-

!,
(VAR1+1)mod CYCLE_LENGTH#=VAR2#/\
VAR1#<CYCLE_LENGTH#/\
VAR2#<CYCLE_LENGTH#<=>
S,
cyclic_change_joker_signature(

[[var-VAR2]|VARs],
Ss,
CYCLE_LENGTH,
=).

cyclic_change_joker_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
CYCLE_LENGTH,
=\=) :-

!,
(VAR1+1)mod CYCLE_LENGTH#\=VAR2#/\
VAR1#<CYCLE_LENGTH#/\
VAR2#<CYCLE_LENGTH#<=>
S,
cyclic_change_joker_signature(

[[var-VAR2]|VARs],
Ss,
CYCLE_LENGTH,
=\=).

2250 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

cyclic_change_joker_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
CYCLE_LENGTH,
<) :-

!,
(VAR1+1)mod CYCLE_LENGTH#<VAR2#/\
VAR1#<CYCLE_LENGTH#/\
VAR2#<CYCLE_LENGTH#<=>
S,
cyclic_change_joker_signature(

[[var-VAR2]|VARs],
Ss,
CYCLE_LENGTH,
<).

cyclic_change_joker_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
CYCLE_LENGTH,
>=) :-

!,
(VAR1+1)mod CYCLE_LENGTH#>=VAR2#/\
VAR1#<CYCLE_LENGTH#/\
VAR2#<CYCLE_LENGTH#<=>
S,
cyclic_change_joker_signature(

[[var-VAR2]|VARs],
Ss,
CYCLE_LENGTH,
>=).

cyclic_change_joker_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
CYCLE_LENGTH,
>) :-

!,
(VAR1+1)mod CYCLE_LENGTH#>VAR2#/\
VAR1#<CYCLE_LENGTH#/\
VAR2#<CYCLE_LENGTH#<=>
S,
cyclic_change_joker_signature(

[[var-VAR2]|VARs],
Ss,

2251

CYCLE_LENGTH,
>).

cyclic_change_joker_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
CYCLE_LENGTH,
=<) :-

!,
(VAR1+1)mod CYCLE_LENGTH#=<VAR2#/\
VAR1#<CYCLE_LENGTH#/\
VAR2#<CYCLE_LENGTH#<=>
S,
cyclic_change_joker_signature(

[[var-VAR2]|VARs],
Ss,
CYCLE_LENGTH,
=<).

2252 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.101 dag

♦ META-DATA:

ctr_date(dag,[’20061001’]).

ctr_origin(dag,’\\cite{Dooms06}’,[]).

ctr_arguments(dag,[’NODES’-collection(index-int,suc c-svar)]).

ctr_restrictions(
dag,
[required(’NODES’,[index,succ]),

’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
dag,
dag([[index-1,succ-{2,4}],

[index-2,succ-{3,4}],
[index-3,succ-{}],
[index-4,succ-{}],
[index-5,succ-{6}],
[index-6,succ-{}]])).

ctr_typical(dag,[size(’NODES’)>2]).

ctr_exchangeable(dag,[items(’NODES’,all)]).

ctr_graph(
dag,
[’NODES’],
1,
[’SELF’>>collection(nodes)],
[nodesˆkey in_set nodesˆsucc],
[’NARC’=0],
[]).

ctr_graph(
dag,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],

2253

[nodes2ˆindex in_set nodes1ˆsucc],
[’MAX_NSCC’=<1],
[]).

2254 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.102 decreasing

♦ META-DATA:

ctr_date(decreasing,[’20040814’,’20060808’]).

ctr_origin(decreasing,’Inspired by %c.’,[increasing]) .

ctr_arguments(decreasing,[’VARIABLES’-collection(va r-dvar)]).

ctr_restrictions(decreasing,[required(’VARIABLES’,v ar)]).

ctr_example(
decreasing,
decreasing([[var-8],[var-4],[var-1],[var-1]])).

ctr_typical(
decreasing,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(decreasing,[translate([’VARIABLES’ ˆvar])]).

ctr_graph(
decreasing,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar>=variables2ˆvar],
[’NARC’=size(’VARIABLES’)-1],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(
decreasing,
[checker(decreasing_c),automaton(decreasing_a)]).

ctr_contractible(decreasing,[],’VARIABLES’,any).

decreasing_c([]) :-
!.

decreasing_c(VARIABLES) :-
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
decreasing_c1(VARS).

decreasing_c1([]) :-

2255

!.

decreasing_c1([_30505]) :-
!.

decreasing_c1([X,Y|R]) :-
X>=Y,
decreasing_c1([Y|R]).

decreasing_a(1,[]) :-
!.

decreasing_a(0,[]) :-
!,
fail.

decreasing_a(FLAG,VARIABLES) :-
collection(VARIABLES,[dvar]),
decreasing_signature(VARIABLES,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_31636,
SIGNATURE,
[source(s),sink(s)],
[arc(s,1,s)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

decreasing_signature([_30506],[]) :-
!.

decreasing_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss]) :-
S in 0..1,
VAR1#>=VAR2#<=>S,
decreasing_signature([[var-VAR2]|VARs],Ss).

2256 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.103 deepestvalley

♦ META-DATA:

ctr_date(deepest_valley,[’20040530’]).

ctr_origin(deepest_valley,’Derived from %c.’,[valley]).

ctr_arguments(
deepest_valley,
[’DEPTH’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
deepest_valley,
[’DEPTH’>=0,’VARIABLES’ˆvar>=0,required(’VARIABLES’ ,var)]).

ctr_example(
deepest_valley,
deepest_valley(

2,
[[var-5],

[var-3],
[var-4],
[var-8],
[var-8],
[var-2],
[var-7],
[var-1]])).

ctr_typical(
deepest_valley,
[’DEPTH’=<maxval(’VARIABLES’ˆvar),

size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(deepest_valley,[items(’VARIABLES’, reverse)]).

ctr_eval(deepest_valley,[automaton(deepest_valley_a)]).

deepest_valley_a(FLAG,DEPTH,VARIABLES) :-
check_type(dvar_gteq(0),DEPTH),
collection(VARIABLES,[dvar_gteq(0)]),
MAXINT=1000000,
deepest_valley_signature(VARIABLES,SIGNATURE,PAIRS) ,
automaton(

PAIRS,

2257

VAR1-_VAR2,
SIGNATURE,
[source(s),sink(s),sink(u)],
[arc(s,0,s),

arc(s,1,s),
arc(s,2,u),
arc(u,0,s,[min(C,VAR1)]),
arc(u,1,u),
arc(u,2,u)],

[C],
[MAXINT],
[COUNT]),

COUNT#=DEPTH#<=>FLAG.

deepest_valley_signature([],[],[]).

deepest_valley_signature([_14415],[],[]) :-
!.

deepest_valley_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
[VAR1-VAR2|PAIRS]) :-

S in 0..2,
VAR1#<VAR2#<=>S#=0,
VAR1#=VAR2#<=>S#=1,
VAR1#>VAR2#<=>S#=2,
deepest_valley_signature([[var-VAR2]|VARs],Ss,PAIRS).

2258 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.104 derangement

♦ META-DATA:

ctr_date(
derangement,
[’20000128’,’20030820’,’20040530’,’20060808’]).

ctr_origin(derangement,’Derived from %c.’,[cycle]).

ctr_arguments(
derangement,
[’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
derangement,
[size(’NODES’)>1,

required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
derangement,
derangement(

[[index-1,succ-2],
[index-2,succ-1],
[index-3,succ-5],
[index-4,succ-3],
[index-5,succ-4]])).

ctr_typical(derangement,[size(’NODES’)>2]).

ctr_exchangeable(
derangement,
[items(’NODES’,all),attrs_sync(’NODES’,[[index,succ]])]).

ctr_graph(
derangement,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex,nodes1ˆsucc=\=nodes1ˆinde x],
[’NTREE’=0],

2259

[’ONE_SUCC’]).

ctr_eval(derangement,[reformulation(derangement_r)]).

derangement_r(NODES) :-
length(NODES,N),
collection(NODES,[int(1,N),dvar(1,N)]),
get_attr1(NODES,INDEXES),
get_attr2(NODES,SUCCS),
all_different(INDEXES),
derangement1(SUCCS,INDEXES),
all_different(SUCCS).

2260 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.105 differ from at least k pos

♦ META-DATA:

ctr_date(
differ_from_at_least_k_pos,
[’20030820’,’20040530’,’20060808’]).

ctr_origin(
differ_from_at_least_k_pos,
Inspired by \cite{Frutos97}.,
[]).

ctr_types(
differ_from_at_least_k_pos,
[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
differ_from_at_least_k_pos,
[’K’-int,’VECTOR1’-’VECTOR’,’VECTOR2’-’VECTOR’]).

ctr_restrictions(
differ_from_at_least_k_pos,
[size(’VECTOR’)>=1,

required(’VECTOR’,var),
’K’>=0,
’K’=<size(’VECTOR1’),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_example(
differ_from_at_least_k_pos,
differ_from_at_least_k_pos(

2,
[[var-2],[var-5],[var-2],[var-0]],
[[var-3],[var-6],[var-2],[var-1]])).

ctr_typical(
differ_from_at_least_k_pos,
[’K’>0,size(’VECTOR1’)>1]).

ctr_exchangeable(
differ_from_at_least_k_pos,
[args([[’K’],[’VECTOR1’,’VECTOR2’]]),

vals([’K’],int(>=(0)),>,dontcare,dontcare),
items_sync(’VECTOR1’,’VECTOR2’,all)]).

2261

ctr_graph(
differ_from_at_least_k_pos,
[’VECTOR1’,’VECTOR2’],
2,
[’PRODUCT’(=)>>collection(vector1,vector2)],
[vector1ˆvar=\=vector2ˆvar],
[’NARC’>=’K’],
[]).

ctr_eval(
differ_from_at_least_k_pos,
[reformulation(differ_from_at_least_k_pos_r),

automaton(differ_from_at_least_k_pos_a)]).

ctr_extensible(
differ_from_at_least_k_pos,
[],
[’VARIABLES1’,’VARIABLES2’],
any).

differ_from_at_least_k_pos_r(K,VECTOR1,VECTOR2) :-
integer(K),
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,N1),
length(VECTOR2,N2),
K>=0,
K=<N1,
N1=N2,
N1>=1,
differ_from_at_least_k_pos1(VECTOR1,VECTOR2,SumBool),
call(K#=<SumBool).

differ_from_at_least_k_pos1([],[],0).

differ_from_at_least_k_pos1(
[[_31657-V1]|R1],
[[_31668-V2]|R2],
B+R) :-

V1#\=V2#<=>B,
differ_from_at_least_k_pos1(R1,R2,R).

differ_from_at_least_k_pos_a(FLAG,K,VECTOR1,VECTOR2) :-
integer(K),
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),

2262 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

length(VECTOR1,N1),
length(VECTOR2,N2),
K>=0,
K=<N1,
N1=N2,
N1>=1,
differ_from_at_least_k_pos_signature(

VECTOR1,
VECTOR2,
SIGNATURE),

automaton(
SIGNATURE,
_34217,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s,[C+1]),arc(s,1,s)],
[C],
[0],
[COUNT]),

COUNT#>=K#<=>FLAG.

differ_from_at_least_k_pos_signature([],[],[]).

differ_from_at_least_k_pos_signature(
[[var-VAR1]|VARS1],
[[var-VAR2]|VARS2],
[S|Ss]) :-

VAR1#=VAR2#<=>S,
differ_from_at_least_k_pos_signature(VARS1,VARS2,Ss).

2263

B.106 diffn

♦ META-DATA:

ctr_date(
diffn,
[’20000128’,’20030820’,’20040530’,’20051001’,’20060 808’]).

ctr_origin(diffn,’\\cite{BeldiceanuContejean94}’,[]).

ctr_synonyms(diffn,[disjoint,disjoint1,disjoint2,di ff2]).

ctr_types(
diffn,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
diffn,
[’ORTHOTOPES’-collection(orth-’ORTHOTOPE’)]).

ctr_restrictions(
diffn,
[size(’ORTHOTOPE’)>0,

require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
’ORTHOTOPE’ˆori=<’ORTHOTOPE’ˆend,
required(’ORTHOTOPES’,orth),
same_size(’ORTHOTOPES’,orth)]).

ctr_example(
diffn,
diffn(

[[orth-[[ori-2,siz-2,end-4],[ori-1,siz-3,end-4]]],
[orth-[[ori-4,siz-4,end-8],[ori-3,siz-3,end-6]]],
[orth-[[ori-9,siz-2,end-11],[ori-4,siz-3,end-7]]]])).

ctr_typical(
diffn,
[size(’ORTHOTOPE’)>1,

’ORTHOTOPE’ˆsiz>0,
size(’ORTHOTOPES’)>1]).

ctr_exchangeable(
diffn,
[items(’ORTHOTOPES’,all),

items_sync(’ORTHOTOPES’ˆorth,all),

2264 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

vals(
[’ORTHOTOPES’ˆorthˆsiz],
int(>=(0)),
>,
dontcare,
dontcare),

translate([’ORTHOTOPES’ˆorthˆori,’ORTHOTOPES’ˆorthˆ end])]).

ctr_graph(
diffn,
[’ORTHOTOPES’],
1,
[’SELF’>>collection(orthotopes)],
[orth_link_ori_siz_end(orthotopesˆorth)],
[’NARC’=size(’ORTHOTOPES’)],
[]).

ctr_graph(
diffn,
[’ORTHOTOPES’],
2,
[’CLIQUE’(=\=)>>collection(orthotopes1,orthotopes2)],
[two_orth_do_not_overlap(

orthotopes1ˆorth,
orthotopes2ˆorth)],

[NARC=
size(’ORTHOTOPES’) * size(’ORTHOTOPES’)-size(’ORTHOTOPES’)],

[]).

ctr_eval(diffn,[reformulation(diffn_r)]).

ctr_contractible(diffn,[],’ORTHOTOPES’,any).

diffn_r([]) :-
!.

diffn_r(ORTHOTOPES) :-
ORTHOTOPES=[[_65238-ORTH1]|_65234],
length(ORTH1,K),
collection(

ORTHOTOPES,
[col(K,[dvar,dvar_gteq(0),dvar])]),

get_col_attr1(ORTHOTOPES,1,ORIS),
get_col_attr1(ORTHOTOPES,2,SIZS),
get_col_attr1(ORTHOTOPES,3,ENDS),
(K=2 ->

2265

diffn0(ORIS,SIZS,ENDS,RECTS),
disjoint2(RECTS)

; diffn_fixed_size(SIZS) ->
length(Zeros,K),
domain(Zeros,0,0),
diffn5(ORIS,SIZS,ENDS,1,Zeros,OBJS,SHAPES),
geost(OBJS,SHAPES)

; diffn1(ORIS,SIZS,ENDS)
).

diffn_fixed_size([]).

diffn_fixed_size([L|R]) :-
diffn_fixed_size1(L),
diffn_fixed_size(R).

diffn_fixed_size1([]).

diffn_fixed_size1([S|R]) :-
integer(S),
diffn_fixed_size1(R).

diffn0([],[],[],[]).

diffn0([[X,Y]|ORIS],[[L,H]|SIZS],[END|ENDS],[t(X,L, Y,H)|R]) :-
diffn2([X,Y],[L,H],END),
diffn0(ORIS,SIZS,ENDS,R).

diffn1([ORI1],[SIZ1],[END1]) :-
!,
diffn2(ORI1,SIZ1,END1).

diffn1([ORI1,ORI2|ORIS],[SIZ1,SIZ2|SIZS],[END1,END2 |ENDS]) :-
diffn2(ORI1,SIZ1,END1),
diffn3([ORI2|ORIS],[END2|ENDS],ORI1,END1),
diffn1([ORI2|ORIS],[SIZ2|SIZS],[END2|ENDS]).

diffn2([],[],[]).

diffn2([O|RO],[S|RS],[E|RE]) :-
E#=O+S,
diffn2(RO,RS,RE).

diffn3([],[],_65223,_65224).

diffn3([ORI2|ORIS],[END2|ENDS],ORI1,END1) :-

2266 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

diffn4(ORI1,END1,ORI2,END2,Disjunction),
call(Disjunction),
diffn3(ORIS,ENDS,ORI1,END1).

diffn4([],[],[],[],0).

diffn4([O1|R],[E1|S],[O2|T],[E2|U],E1#=<O2#\/E2#=<O 1#\/V) :-
diffn4(R,S,T,U,V).

diffn5([],[],[],_65224,_65225,[],[]).

diffn5(
[ORI|ORIS],
[SIZ|SIZS],
[END|ENDS],
I,
Zeros,
[object(I,I,ORI)|OBJS],
[sbox(I,Zeros,SIZ)|SHAPES]) :-

diffn2(ORI,SIZ,END),
I1 is I+1,
diffn5(ORIS,SIZS,ENDS,I1,Zeros,OBJS,SHAPES).

2267

B.107 diffn column

♦ META-DATA:

ctr_date(diffn_column,[’20030820’]).

ctr_origin(
diffn_column,
\index{CHIP|indexuse}CHIP: option guillotine cut (colum n) of %c.,
[diffn]).

ctr_types(
diffn_column,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
diffn_column,
[’ORTHOTOPES’-collection(orth-’ORTHOTOPE’),’DIM’-in t]).

ctr_restrictions(
diffn_column,
[size(’ORTHOTOPE’)>0,

require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
’ORTHOTOPE’ˆori=<’ORTHOTOPE’ˆend,
required(’ORTHOTOPES’,orth),
same_size(’ORTHOTOPES’,orth),
’DIM’>0,
’DIM’=<size(’ORTHOTOPE’),
diffn(’ORTHOTOPES’)]).

ctr_example(
diffn_column,
diffn_column(

[[orth-[[ori-1,siz-3,end-4],[ori-3,siz-2,end-5]]],
[orth-[[ori-9,siz-1,end-10],[ori-4,siz-3,end-7]]],
[orth-[[ori-4,siz-2,end-6],[ori-3,siz-4,end-7]]],
[orth-[[ori-1,siz-3,end-4],[ori-6,siz-1,end-7]]],
[orth-[[ori-6,siz-2,end-8],[ori-1,siz-4,end-5]]],
[orth-[[ori-10,siz-1,end-11],[ori-1,siz-1,end-2]]],
[orth-[[ori-9,siz-1,end-10],[ori-1,siz-1,end-2]]],
[orth-[[ori-6,siz-2,end-8],[ori-6,siz-1,end-7]]]],

1)).

ctr_typical(
diffn_column,

2268 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[size(’ORTHOTOPE’)>1,
’ORTHOTOPE’ˆsiz>0,
size(’ORTHOTOPES’)>1]).

ctr_exchangeable(
diffn_column,
[items(’ORTHOTOPES’,all),

translate([’ORTHOTOPES’ˆorthˆori,’ORTHOTOPES’ˆorthˆ end])]).

ctr_graph(
diffn_column,
[’ORTHOTOPES’],
2,
[’CLIQUE’(<)>>collection(orthotopes1,orthotopes2)],
[two_orth_column(orthotopes1ˆorth,orthotopes2ˆorth, ’DIM’)],
[’NARC’=size(’ORTHOTOPES’) * (size(’ORTHOTOPES’)-1)/2],
[]).

ctr_eval(diffn_column,[reformulation(diffn_column_r)]).

ctr_contractible(diffn_column,[],’ORTHOTOPES’,any).

diffn_column_r([],DIM) :-
integer(DIM),
DIM>0.

diffn_column_r(ORTHOTOPES,DIM) :-
ORTHOTOPES=[[_32290-ORTH1]|_32286],
length(ORTH1,K),
collection(

ORTHOTOPES,
[col(K,[dvar,dvar_gteq(0),dvar])]),

check_type(int(1,K),DIM),
eval(diffn(ORTHOTOPES)),
get_attr1(ORTHOTOPES,ORTHOTOPES1),
diffn_column1(ORTHOTOPES1,DIM).

diffn_column1([],_32271).

diffn_column1([_32275],_32274) :-
!.

diffn_column1([O1,O2|R],DIM) :-
eval(two_orth_column(O1,O2,DIM)),
diffn_column1([O2|R],DIM).

2269

B.108 diffn include

♦ META-DATA:

ctr_date(diffn_include,[’20030820’,’20090523’]).

ctr_origin(
diffn_include,
\index{CHIP|indexuse}CHIP: option guillotine cut (inclu de) of %c.,
[diffn]).

ctr_types(
diffn_include,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
diffn_include,
[’ORTHOTOPES’-collection(orth-’ORTHOTOPE’),’DIM’-in t]).

ctr_restrictions(
diffn_include,
[size(’ORTHOTOPE’)>0,

require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
’ORTHOTOPE’ˆori=<’ORTHOTOPE’ˆend,
required(’ORTHOTOPES’,orth),
same_size(’ORTHOTOPES’,orth),
’DIM’>0,
’DIM’=<size(’ORTHOTOPE’),
diffn(’ORTHOTOPES’)]).

ctr_example(
diffn_include,
diffn_include(

[[orth-[[ori-8,siz-1,end-9],[ori-4,siz-1,end-5]]],
[orth-[[ori-9,siz-1,end-10],[ori-4,siz-3,end-7]]],
[orth-[[ori-6,siz-3,end-9],[ori-5,siz-2,end-7]]],
[orth-[[ori-1,siz-3,end-4],[ori-6,siz-1,end-7]]],
[orth-[[ori-4,siz-2,end-6],[ori-3,siz-4,end-7]]],
[orth-[[ori-6,siz-4,end-10],[ori-1,siz-1,end-2]]],
[orth-[[ori-10,siz-1,end-11],[ori-1,siz-1,end-2]]],
[orth-[[ori-6,siz-5,end-11],[ori-2,siz-2,end-4]]],
[orth-[[ori-6,siz-2,end-8],[ori-4,siz-1,end-5]]],
[orth-[[ori-1,siz-5,end-6],[ori-1,siz-2,end-3]]],
[orth-[[ori-1,siz-3,end-4],[ori-3,siz-2,end-5]]],
[orth-[[ori-1,siz-2,end-3],[ori-5,siz-1,end-6]]]],

2270 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

1)).

ctr_typical(
diffn_include,
[size(’ORTHOTOPE’)>1,

’ORTHOTOPE’ˆsiz>0,
size(’ORTHOTOPES’)>1]).

ctr_exchangeable(
diffn_include,
[items(’ORTHOTOPES’,all),

translate([’ORTHOTOPES’ˆorthˆori,’ORTHOTOPES’ˆorthˆ end])]).

ctr_graph(
diffn_include,
[’ORTHOTOPES’],
2,
[’CLIQUE’(<)>>collection(orthotopes1,orthotopes2)],
[two_orth_include(

orthotopes1ˆorth,
orthotopes2ˆorth,
DIM)],

[’NARC’=size(’ORTHOTOPES’) * (size(’ORTHOTOPES’)-1)/2],
[]).

ctr_eval(diffn_include,[reformulation(diffn_include _r)]).

ctr_contractible(diffn_include,[],’ORTHOTOPES’,any) .

diffn_include_r([],DIM) :-
integer(DIM),
DIM>0.

diffn_include_r(ORTHOTOPES,DIM) :-
ORTHOTOPES=[[_34299-ORTH1]|_34295],
length(ORTH1,K),
collection(

ORTHOTOPES,
[col(K,[dvar,dvar_gteq(0),dvar])]),

check_type(int(1,K),DIM),
eval(diffn(ORTHOTOPES)),
get_attr1(ORTHOTOPES,ORTHOTOPES1),
diffn_include1(ORTHOTOPES1,DIM).

diffn_include1([],_34280).

2271

diffn_include1([_34284],_34283) :-
!.

diffn_include1([O1,O2|R],DIM) :-
eval(two_orth_include(O1,O2,DIM)),
diffn_include1([O2|R],DIM).

2272 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.109 discrepancy

♦ META-DATA:

ctr_date(discrepancy,[’20050506’,’20060808’]).

ctr_origin(
discrepancy,
\cite{Focacci01} and \cite{vanHoeve05},
[]).

ctr_arguments(
discrepancy,
[’VARIABLES’-collection(var-dvar,bad-sint),’K’-int]).

ctr_restrictions(
discrepancy,
[required(’VARIABLES’,var),

required(’VARIABLES’,bad),
’K’>=0,
’K’=<size(’VARIABLES’)]).

ctr_example(
discrepancy,
discrepancy(

[[var-4,bad-{1,4,6}],
[var-5,bad-{0,1}],
[var-5,bad-{1,6,9}],
[var-4,bad-{1,4}],
[var-1,bad-{}]],

2)).

ctr_typical(
discrepancy,
[size(’VARIABLES’)>1,’K’<size(’VARIABLES’)]).

ctr_exchangeable(
discrepancy,
[items(’VARIABLES’,all),

vals(
[’VARIABLES’ˆvar,’VARIABLES’ˆbad],
int,
=\=,
all,
dontcare)]).

2273

ctr_graph(
discrepancy,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar in_set variablesˆbad],
[’NARC’=’K’],
[]).

ctr_pure_functional_dependency(discrepancy,[]).

ctr_functional_dependency(discrepancy,2,[1]).

ctr_aggregate(discrepancy,[],[union,+]).

2274 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.110 disj

♦ META-DATA:

ctr_date(disj,[’20070527’]).

ctr_origin(disj,’\\cite{MonetteDevilleDupont07}’,[]).

ctr_arguments(
disj,
[TASKS-

collection(
start-dvar,
duration-dvar,
before-svar,
position-dvar)]).

ctr_restrictions(
disj,
[required(’TASKS’,[start,duration,before,position]) ,

’TASKS’ˆduration>=1,
’TASKS’ˆposition>=0,
’TASKS’ˆposition<size(’TASKS’)]).

ctr_example(
disj,
disj(

[[start-1,duration-3,before-{},position-0],
[start-9,duration-1,before-{1,3,4},position-3],
[start-7,duration-2,before-{1,4},position-2],
[start-4,duration-1,before-{1},position-1]])).

ctr_typical(disj,[size(’TASKS’)>1]).

ctr_exchangeable(
disj,
[translate([’TASKS’ˆstart]),

vals([’TASKS’ˆduration],int(>=(1)),>,dontcare,dontc are)]).

ctr_graph(
disj,
[’TASKS’],
2,
[’CLIQUE’(=\=)>>collection(tasks1,tasks2)],
[tasks1ˆstart+tasks1ˆduration=<tasks2ˆstart#\/

tasks2ˆstart+tasks2ˆduration=<tasks1ˆstart,

2275

tasks1ˆstart+tasks1ˆduration=<tasks2ˆstart#<=>
tasks1ˆkey in_set tasks2ˆbefore,
tasks1ˆstart+tasks1ˆduration=<tasks2ˆstart#<=>
tasks1ˆposition<tasks2ˆposition],

[’NARC’=size(’TASKS’) * size(’TASKS’)-size(’TASKS’)],
[]).

2276 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.111 disjoint

♦ META-DATA:

ctr_date(
disjoint,
[’20000315’,’20031017’,’20040530’,’20060808’]).

ctr_origin(disjoint,’Derived from %c.’,[alldifferent]).

ctr_arguments(
disjoint,
[’VARIABLES1’-collection(var-dvar),

’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
disjoint,
[required(’VARIABLES1’,var),required(’VARIABLES2’,v ar)]).

ctr_example(
disjoint,
disjoint(

[[var-1],[var-9],[var-1],[var-5]],
[[var-2],[var-7],[var-7],[var-0],[var-6],[var-8]])) .

ctr_typical(
disjoint,
[size(’VARIABLES1’)>1,size(’VARIABLES2’)>1]).

ctr_exchangeable(
disjoint,
[args([[’VARIABLES1’,’VARIABLES2’]]),

items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals([’VARIABLES1’ˆvar],int,=\=,dontcare,in),
vals([’VARIABLES2’ˆvar],int,=\=,dontcare,in),
vals(

[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
int,
=\=,
all,
dontcare)]).

ctr_graph(
disjoint,
[’VARIABLES1’,’VARIABLES2’],

2277

2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NARC’=0],
[]).

ctr_eval(disjoint,[reformulation(disjoint_r)]).

ctr_contractible(disjoint,[],’VARIABLES1’,any).

ctr_contractible(disjoint,[],’VARIABLES2’,any).

disjoint_r(VARIABLES1,VARIABLES2) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
disjoint1_(VARS1,VARS2).

disjoint1_([],_33614).

disjoint1_([V|R],VARS2) :-
disjoint2_(VARS2,V),
disjoint1_(R,VARS2).

disjoint2_([],_33614).

disjoint2_([U|R],V) :-
U#\=V,
disjoint2_(R,V).

2278 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.112 disjoint sboxes

♦ META-DATA:

ctr_date(disjoint_sboxes,[’20070622’,’20090725’]).

ctr_origin(
disjoint_sboxes,
Geometry, derived from \cite{RandellCuiCohn92},
[]).

ctr_synonyms(disjoint_sboxes,[disjoint]).

ctr_types(
disjoint_sboxes,
[’VARIABLES’-collection(v-dvar),

’INTEGERS’-collection(v-int),
’POSITIVES’-collection(v-int)]).

ctr_arguments(
disjoint_sboxes,
[’K’-int,

’DIMS’-sint,
’OBJECTS’-collection(oid-int,sid-int,x-’VARIABLES’) ,
’SBOXES’-collection(sid-int,t-’INTEGERS’,l-’POSITIV ES’)]).

ctr_restrictions(
disjoint_sboxes,
[size(’VARIABLES’)>=1,

size(’INTEGERS’)>=1,
size(’POSITIVES’)>=1,
required(’VARIABLES’,v),
size(’VARIABLES’)=’K’,
required(’INTEGERS’,v),
size(’INTEGERS’)=’K’,
required(’POSITIVES’,v),
size(’POSITIVES’)=’K’,
’POSITIVES’ˆv>0,
’K’>0,
’DIMS’>=0,
’DIMS’<’K’,
increasing_seq(’OBJECTS’,[oid]),
required(’OBJECTS’,[oid,sid,x]),
’OBJECTS’ˆoid>=1,
’OBJECTS’ˆoid=<size(’OBJECTS’),
’OBJECTS’ˆsid>=1,

2279

’OBJECTS’ˆsid=<size(’SBOXES’),
size(’SBOXES’)>=1,
required(’SBOXES’,[sid,t,l]),
’SBOXES’ˆsid>=1,
’SBOXES’ˆsid=<size(’SBOXES’),
do_not_overlap(’SBOXES’)]).

ctr_example(
disjoint_sboxes,
disjoint_sboxes(

2,
{0,1},
[[oid-1,sid-1,x-[[v-1],[v-1]]],

[oid-2,sid-2,x-[[v-4],[v-1]]],
[oid-3,sid-4,x-[[v-2],[v-4]]]],

[[sid-1,t-[[v-0],[v-0]],l-[[v-1],[v-2]]],
[sid-2,t-[[v-0],[v-0]],l-[[v-1],[v-1]]],
[sid-2,t-[[v-1],[v-0]],l-[[v-1],[v-3]]],
[sid-2,t-[[v-0],[v-2]],l-[[v-1],[v-1]]],
[sid-3,t-[[v-0],[v-0]],l-[[v-3],[v-1]]],
[sid-3,t-[[v-0],[v-1]],l-[[v-1],[v-1]]],
[sid-3,t-[[v-2],[v-1]],l-[[v-1],[v-1]]],
[sid-4,t-[[v-0],[v-0]],l-[[v-1],[v-1]]]])).

ctr_typical(disjoint_sboxes,[size(’OBJECTS’)>1]).

ctr_exchangeable(
disjoint_sboxes,
[items(’OBJECTS’,all),

items(’SBOXES’,all),
vals([’SBOXES’ˆlˆv],int(>=(1)),>,dontcare,dontcare)]).

ctr_eval(disjoint_sboxes,[logic(disjoint_sboxes_g)]).

ctr_logic(
disjoint_sboxes,
[DIMENSIONS,OIDS],
[(origin(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)),

(end(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)+S1ˆl(D)),
(disjoint_sboxes(Dims,O1,S1,O2,S2)--->

exists(
D,
Dims,
origin(O1,S1,D)#>end(O2,S2,D)#\/
origin(O2,S2,D)#>end(O1,S1,D))),

(disjoint_objects(Dims,O1,O2)--->

2280 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

forall(
S1,
sboxes([O1ˆsid]),
forall(

S2,
sboxes([O2ˆsid]),
disjoint_sboxes(Dims,O1,S1,O2,S2)))),

(all_disjoint(Dims,OIDS)--->
forall(

O1,
objects(OIDS),
forall(

O2,
objects(OIDS),
O1ˆoid#<O2ˆoid#=>
disjoint_objects(Dims,O1,O2)))),

all_disjoint(DIMENSIONS,OIDS)]).

ctr_contractible(disjoint_sboxes,[],’OBJECTS’,suffi x).

disjoint_sboxes_g(K,_30642,[],_30644) :-
!,
check_type(int_gteq(1),K).

disjoint_sboxes_g(K,_DIMS,OBJECTS,SBOXES) :-
length(OBJECTS,O),
length(SBOXES,S),
O>0,
S>0,
check_type(int_gteq(1),K),
collection(OBJECTS,[int(1,O),dvar(1,S),col(K,[dvar])]),
collection(

SBOXES,
[int(1,S),col(K,[int]),col(K,[int_gteq(1)])]),

get_attr1(OBJECTS,OIDS),
get_attr2(OBJECTS,SIDS),
get_col_attr3(OBJECTS,1,XS),
get_attr1(SBOXES,SIDES),
get_col_attr2(SBOXES,1,TS),
get_col_attr3(SBOXES,1,TL),
collection_increasing_seq(OBJECTS,[1]),
geost1(OIDS,SIDS,XS,Objects),
geost2(SIDES,TS,TL,Sboxes),
geost_dims(1,K,DIMENSIONS),
ctr_logic(disjoint_sboxes,[DIMENSIONS,OIDS],Rules),
geost(Objects,Sboxes,[overlap(true)],Rules).

2281

2282 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.113 disjoint tasks

♦ META-DATA:

ctr_date(disjoint_tasks,[’20030820’,’20060808’]).

ctr_origin(disjoint_tasks,’Derived from %c.’,[disjoin t]).

ctr_arguments(
disjoint_tasks,
[’TASKS1’-collection(origin-dvar,duration-dvar,end- dvar),

’TASKS2’-collection(origin-dvar,duration-dvar,end-d var)]).

ctr_restrictions(
disjoint_tasks,
[require_at_least(2,’TASKS1’,[origin,duration,end]) ,

’TASKS1’ˆduration>=0,
’TASKS1’ˆorigin=<’TASKS1’ˆend,
require_at_least(2,’TASKS2’,[origin,duration,end]),
’TASKS2’ˆduration>=0,
’TASKS2’ˆorigin=<’TASKS2’ˆend]).

ctr_example(
disjoint_tasks,
disjoint_tasks(

[[origin-6,duration-5,end-11],
[origin-8,duration-2,end-10]],

[[origin-2,duration-2,end-4],
[origin-3,duration-3,end-6],
[origin-12,duration-1,end-13]])).

ctr_typical(
disjoint_tasks,
[size(’TASKS1’)>1,

’TASKS1’ˆduration>0,
size(’TASKS2’)>1,
’TASKS2’ˆduration>0]).

ctr_exchangeable(
disjoint_tasks,
[args([[’TASKS1’,’TASKS2’]]),

items(’TASKS1’,all),
items(’TASKS2’,all),
translate(

[’TASKS1’ˆorigin,
’TASKS1’ˆend,

2283

’TASKS2’ˆorigin,
’TASKS2’ˆend])]).

ctr_graph(
disjoint_tasks,
[’TASKS1’],
1,
[’SELF’>>collection(tasks1)],
[tasks1ˆorigin+tasks1ˆduration=tasks1ˆend],
[’NARC’=size(’TASKS1’)],
[]).

ctr_graph(
disjoint_tasks,
[’TASKS2’],
1,
[’SELF’>>collection(tasks2)],
[tasks2ˆorigin+tasks2ˆduration=tasks2ˆend],
[’NARC’=size(’TASKS2’)],
[]).

ctr_graph(
disjoint_tasks,
[’TASKS1’,’TASKS2’],
2,
[’PRODUCT’>>collection(tasks1,tasks2)],
[tasks1ˆduration>0,

tasks2ˆduration>0,
tasks1ˆorigin<tasks2ˆend,
tasks2ˆorigin<tasks1ˆend],

[’NARC’=0],
[]).

ctr_eval(disjoint_tasks,[reformulation(disjoint_tas ks_r)]).

ctr_contractible(disjoint_tasks,[],’TASKS1’,any).

ctr_contractible(disjoint_tasks,[],’TASKS2’,any).

disjoint_tasks_r(TASKS1,TASKS2) :-
collection(TASKS1,[dvar,dvar_gteq(0),dvar]),
collection(TASKS2,[dvar,dvar_gteq(0),dvar]),
get_attr1(TASKS1,ORIGINS1),
get_attr2(TASKS1,DURATIONS1),
get_attr3(TASKS1,ENDS1),
ori_dur_end(ORIGINS1,DURATIONS1,ENDS1),

2284 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

get_attr1(TASKS2,ORIGINS2),
get_attr2(TASKS2,DURATIONS2),
get_attr3(TASKS2,ENDS2),
ori_dur_end(ORIGINS2,DURATIONS2,ENDS2),
disjoint_tasks1(ORIGINS1,ENDS1,ORIGINS2,ENDS2).

disjoint_tasks1([],[],_35491,_35492).

disjoint_tasks1([O|R],[E|S],ORIGINS2,ENDS2) :-
disjoint_tasks2(ORIGINS2,ENDS2,O,E),
disjoint_tasks1(R,S,ORIGINS2,ENDS2).

disjoint_tasks2([],[],_35491,_35492).

disjoint_tasks2([Oj|R],[Ej|S],Oi,Ei) :-
Ei#=<Oj#\/Ej#=<Oi,
disjoint_tasks2(R,S,Oi,Ei).

2285

B.114 disjunctive

♦ META-DATA:

ctr_date(disjunctive,[’20050506’,’20060808’]).

ctr_origin(disjunctive,’\\cite{Carlier82}’,[]).

ctr_synonyms(disjunctive,[one_machine]).

ctr_arguments(
disjunctive,
[’TASKS’-collection(origin-dvar,duration-dvar)]).

ctr_restrictions(
disjunctive,
[required(’TASKS’,[origin,duration]),’TASKS’ˆdurati on>=0]).

ctr_example(
disjunctive,
disjunctive(

[[origin-1,duration-3],
[origin-2,duration-0],
[origin-7,duration-2],
[origin-4,duration-1]])).

ctr_typical(disjunctive,[size(’TASKS’)>1,’TASKS’ˆdu ration>=1]).

ctr_exchangeable(
disjunctive,
[items(’TASKS’,all),

vals([’TASKS’ˆduration],int(>=(0)),>,dontcare,dontc are),
translate([’TASKS’ˆorigin])]).

ctr_graph(
disjunctive,
[’TASKS’],
2,
[’CLIQUE’(<)>>collection(tasks1,tasks2)],
[tasks1ˆduration=0#\/tasks2ˆduration=0#\/

tasks1ˆorigin+tasks1ˆduration=<tasks2ˆorigin#\/
tasks2ˆorigin+tasks2ˆduration=<tasks1ˆorigin],

[’NARC’=size(’TASKS’) * (size(’TASKS’)-1)/2],
[]).

ctr_eval(disjunctive,[builtin(disjunctive_b)]).

2286 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_contractible(disjunctive,[],’TASKS’,any).

disjunctive_b([]) :-
!.

disjunctive_b(TASKS) :-
length(TASKS,N),
N>1,
collection(TASKS,[dvar,dvar_gteq(0)]),
(N=1 ->

true
; get_attr1(TASKS,ORIGINS),

get_attr2(TASKS,DURATIONS),
length(ENDS,N),
ori_dur_end(ORIGINS,DURATIONS,ENDS),
length(HEIGHTS,N),
domain(HEIGHTS,1,1),
gen_cum_tasks(

ORIGINS,
DURATIONS,
ENDS,
HEIGHTS,
1,
Tasks),

cumulative(Tasks,[limit(1)])
).

2287

B.115 disjunctive or sameend

♦ META-DATA:

ctr_date(disjunctive_or_same_end,[’20120205’]).

ctr_origin(disjunctive_or_same_end,’Scheduling.’,[]).

ctr_synonyms(
disjunctive_or_same_end,
[same_end_or_disjunctive,

non_overlap_or_same_end,
same_end_or_non_overlap]).

ctr_arguments(
disjunctive_or_same_end,
[’TASKS’-collection(origin-dvar,duration-dvar)]).

ctr_restrictions(
disjunctive_or_same_end,
[required(’TASKS’,[origin,duration]),’TASKS’ˆdurati on>=0]).

ctr_example(
disjunctive_or_same_end,
disjunctive_or_same_end(

[[origin-4,duration-3],
[origin-7,duration-2],
[origin-5,duration-2]])).

ctr_typical(
disjunctive_or_same_end,
[size(’TASKS’)>1,’TASKS’ˆduration>=1]).

ctr_exchangeable(
disjunctive_or_same_end,
[items(’TASKS’,all),

vals([’TASKS’ˆduration],int(>=(0)),>,dontcare,dontc are),
translate([’TASKS’ˆorigin])]).

ctr_graph(
disjunctive_or_same_end,
[’TASKS’],
2,
[’CLIQUE’(<)>>collection(tasks1,tasks2)],
[tasks1ˆduration=0#\/tasks2ˆduration=0#\/

tasks1ˆorigin+tasks1ˆduration=<tasks2ˆorigin#\/

2288 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

tasks2ˆorigin+tasks2ˆduration=<tasks1ˆorigin#\/
tasks1ˆorigin+tasks1ˆduration=
tasks2ˆorigin+tasks2ˆduration],

[’NARC’=size(’TASKS’) * (size(’TASKS’)-1)/2],
[]).

ctr_eval(
disjunctive_or_same_end,
[builtin(disjunctive_or_same_end_r)]).

ctr_contractible(disjunctive_or_same_end,[],’TASKS’ ,any).

disjunctive_or_same_end_r([]) :-
!.

disjunctive_or_same_end_r(TASKS) :-
collection(TASKS,[dvar,dvar_gteq(0)]),
get_attr1(TASKS,ORIGINS),
get_attr2(TASKS,DURATIONS),
disjunctive_or_same_end1(ORIGINS,DURATIONS).

disjunctive_or_same_end1([],[]).

disjunctive_or_same_end1([ORI|RO],[DUR|RD]) :-
disjunctive_or_same_end2(RO,RD,ORI,DUR),
disjunctive_or_same_end1(RO,RD).

disjunctive_or_same_end2([],[],_27246,_27247).

disjunctive_or_same_end2([O2|RO],[D2|RD],O1,D1) :-
D1#=0#\/D2#=0#\/O1+D1#=<O2#\/O2+D2#=<O1#\/O1+D1#=O2 +D2,
disjunctive_or_same_end2(RO,RD,O1,D1).

2289

B.116 disjunctive or samestart

♦ META-DATA:

ctr_date(disjunctive_or_same_start,[’20120205’]).

ctr_origin(disjunctive_or_same_start,’Scheduling.’, []).

ctr_synonyms(
disjunctive_or_same_start,
[same_start_or_disjunctive,

non_overlap_or_same_start,
same_start_or_non_overlap]).

ctr_arguments(
disjunctive_or_same_start,
[’TASKS’-collection(origin-dvar,duration-dvar)]).

ctr_restrictions(
disjunctive_or_same_start,
[required(’TASKS’,[origin,duration]),’TASKS’ˆdurati on>=0]).

ctr_example(
disjunctive_or_same_start,
disjunctive_or_same_start(

[[origin-4,duration-3],
[origin-7,duration-2],
[origin-4,duration-1]])).

ctr_typical(
disjunctive_or_same_start,
[size(’TASKS’)>1,’TASKS’ˆduration>=1]).

ctr_exchangeable(
disjunctive_or_same_start,
[items(’TASKS’,all),

vals([’TASKS’ˆduration],int(>=(0)),>,dontcare,dontc are),
translate([’TASKS’ˆorigin])]).

ctr_graph(
disjunctive_or_same_start,
[’TASKS’],
2,
[’CLIQUE’(<)>>collection(tasks1,tasks2)],
[tasks1ˆduration=0#\/tasks2ˆduration=0#\/

tasks1ˆorigin+tasks1ˆduration=<tasks2ˆorigin#\/

2290 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

tasks2ˆorigin+tasks2ˆduration=<tasks1ˆorigin#\/
tasks1ˆorigin=tasks2ˆorigin],

[’NARC’=size(’TASKS’) * (size(’TASKS’)-1)/2],
[]).

ctr_eval(
disjunctive_or_same_start,
[builtin(disjunctive_or_same_start_r)]).

ctr_contractible(disjunctive_or_same_start,[],’TASK S’,any).

disjunctive_or_same_start_r([]) :-
!.

disjunctive_or_same_start_r(TASKS) :-
collection(TASKS,[dvar,dvar_gteq(0)]),
get_attr1(TASKS,ORIGINS),
get_attr2(TASKS,DURATIONS),
disjunctive_or_same_start1(ORIGINS,DURATIONS).

disjunctive_or_same_start1([],[]).

disjunctive_or_same_start1([ORI|RO],[DUR|RD]) :-
disjunctive_or_same_start2(RO,RD,ORI,DUR),
disjunctive_or_same_start1(RO,RD).

disjunctive_or_same_start2([],[],_27082,_27083).

disjunctive_or_same_start2([O2|RO],[D2|RD],O1,D1) :-
D1#=0#\/D2#=0#\/O1+D1#=<O2#\/O2+D2#=<O1#\/O1#=O2,
disjunctive_or_same_start2(RO,RD,O1,D1).

2291

B.117 distance

♦ META-DATA:

ctr_predefined(distance).

ctr_date(distance,[’20090416’]).

ctr_origin(distance,’Arithmetic constraint.’,[]).

ctr_arguments(distance,[’X’-dvar,’Y’-dvar,’Z’-dvar]).

ctr_restrictions(distance,[’Z’>=0]).

ctr_example(distance,distance(5,7,2)).

ctr_typical(distance,[’Z’>0]).

ctr_exchangeable(distance,[args([[’X’,’Y’],[’Z’]])]).

ctr_eval(distance,[builtin(distance_b)]).

ctr_pure_functional_dependency(distance,[]).

ctr_functional_dependency(distance,3,[1,2]).

distance_b(X,Y,Z) :-
check_type(dvar,X),
check_type(dvar,Y),
check_type(dvar_gteq(0),Z),
Z#=abs(X-Y).

2292 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.118 distancebetween

♦ META-DATA:

ctr_date(
distance_between,
[’20000128’,’20030820’,’20060808’,’20090428’]).

ctr_origin(distance_between,’N.˜Beldiceanu’,[]).

ctr_synonyms(distance_between,[distance]).

ctr_arguments(
distance_between,
[’DIST’-dvar,

’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
distance_between,
[’DIST’>=0,

DIST=<
size(’VARIABLES1’) * size(’VARIABLES2’)-size(’VARIABLES1’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
size(’VARIABLES1’)=size(’VARIABLES2’),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
distance_between,
distance_between(

2,
[[var-3],[var-4],[var-6],[var-2],[var-4]],
[[var-2],[var-6],[var-9],[var-3],[var-6]],
<)).

ctr_typical(
distance_between,
[’DIST’>0,

DIST<
size(’VARIABLES1’) * size(’VARIABLES2’)-size(’VARIABLES1’),
size(’VARIABLES1’)>1,
in_list(’CTR’,[=,=\=])]).

ctr_exchangeable(

2293

distance_between,
[args([[’DIST’],[’VARIABLES1’,’VARIABLES2’],[’CTR’]]),

items_sync(’VARIABLES1’,’VARIABLES2’,all),
translate([’VARIABLES1’ˆvar]),
translate([’VARIABLES2’ˆvar])]).

ctr_graph(
distance_between,
[[’VARIABLES1’],[’VARIABLES2’]],
2,
[’CLIQUE’(=\=)>>collection(variables1,variables2)],
[’CTR’(variables1ˆvar,variables2ˆvar)],
[’DISTANCE’=’DIST’],
[]).

ctr_eval(distance_between,[reformulation(distance_b etween_r)]).

ctr_pure_functional_dependency(distance_between,[]) .

ctr_functional_dependency(distance_between,1,[2,3,4]).

distance_between_r(DIST,VARIABLES1,VARIABLES2,CTR) : -
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,L1),
length(VARIABLES2,L2),
L1=L2,
L12 is L1 * L2-L1,
check_type(dvar(0,L12),DIST),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
distance_between1(VARS1,VARS2,1,VARS1,VARS2,CTR,TER M),
call(DIST#=TERM).

distance_between1([],[],_28792,_28793,_28794,_28795 ,0).

distance_between1(
[VAR1|RVARS1],
[VAR2|RVARS2],
IVAR,
VARS1,
VARS2,
CTR,
TERM+R) :-

distance_between2(

2294 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

VARS1,
VARS2,
VAR1,
VAR2,
IVAR,
1,
CTR,
TERM),

IVAR1 is IVAR+1,
distance_between1(

RVARS1,
RVARS2,
IVAR1,
VARS1,
VARS2,
CTR,
R).

distance_between2([],[],_28792,_28793,_28794,_28795 ,_28796,0).

distance_between2(
[UAR1|RUARS1],
[UAR2|RUARS2],
VAR1,
VAR2,
IVAR,
IUAR,
=,
B12+S) :-

!,
(IVAR=\=IUAR ->

B12#<=>
VAR1#=UAR1#/\VAR2#\=UAR2#\/VAR1#\=UAR1#/\VAR2#=UAR2

; B12=0
),
IUAR1 is IUAR+1,
distance_between2(

RUARS1,
RUARS2,
VAR1,
VAR2,
IVAR,
IUAR1,
=,
S).

2295

distance_between2(
[UAR1|RUARS1],
[UAR2|RUARS2],
VAR1,
VAR2,
IVAR,
IUAR,
=\=,
B12+S) :-

!,
(IVAR=\=IUAR ->

B12#<=>
VAR1#\=UAR1#/\VAR2#=UAR2#\/VAR1#=UAR1#/\VAR2#\=UAR2

; B12=0
),
IUAR1 is IUAR+1,
distance_between2(

RUARS1,
RUARS2,
VAR1,
VAR2,
IVAR,
IUAR1,
=\=,
S).

distance_between2(
[UAR1|RUARS1],
[UAR2|RUARS2],
VAR1,
VAR2,
IVAR,
IUAR,
<,
B12+S) :-

!,
(IVAR=\=IUAR ->

B12#<=>
VAR1#<UAR1#/\VAR2#>=UAR2#\/VAR1#>=UAR1#/\VAR2#<UAR2

; B12=0
),
IUAR1 is IUAR+1,
distance_between2(

RUARS1,
RUARS2,
VAR1,

2296 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

VAR2,
IVAR,
IUAR1,
<,
S).

distance_between2(
[UAR1|RUARS1],
[UAR2|RUARS2],
VAR1,
VAR2,
IVAR,
IUAR,
>=,
B12+S) :-

!,
(IVAR=\=IUAR ->

B12#<=>
VAR1#>=UAR1#/\VAR2#<UAR2#\/VAR1#<UAR1#/\VAR2#>=UAR2

; B12=0
),
IUAR1 is IUAR+1,
distance_between2(

RUARS1,
RUARS2,
VAR1,
VAR2,
IVAR,
IUAR1,
>=,
S).

distance_between2(
[UAR1|RUARS1],
[UAR2|RUARS2],
VAR1,
VAR2,
IVAR,
IUAR,
>,
B12+S) :-

!,
(IVAR=\=IUAR ->

B12#<=>
VAR1#>UAR1#/\VAR2#=<UAR2#\/VAR1#=<UAR1#/\VAR2#>UAR2

; B12=0

2297

),
IUAR1 is IUAR+1,
distance_between2(

RUARS1,
RUARS2,
VAR1,
VAR2,
IVAR,
IUAR1,
>,
S).

distance_between2(
[UAR1|RUARS1],
[UAR2|RUARS2],
VAR1,
VAR2,
IVAR,
IUAR,
=<,
B12+S) :-

(IVAR=\=IUAR ->
B12#<=>
VAR1#=<UAR1#/\VAR2#>UAR2#\/VAR1#>UAR1#/\VAR2#=<UAR2

; B12=0
),
IUAR1 is IUAR+1,
distance_between2(

RUARS1,
RUARS2,
VAR1,
VAR2,
IVAR,
IUAR1,
=<,
S).

2298 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.119 distancechange

♦ META-DATA:

ctr_date(
distance_change,
[’20000128’,’20030820’,’20040530’,’20060808’]).

ctr_origin(distance_change,’Derived from %c.’,[change]).

ctr_synonyms(distance_change,[distance]).

ctr_arguments(
distance_change,
[’DIST’-dvar,

’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
distance_change,
[’DIST’>=0,

’DIST’<size(’VARIABLES1’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
size(’VARIABLES1’)=size(’VARIABLES2’),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
distance_change,
distance_change(

1,
[[var-3],[var-3],[var-1],[var-2],[var-2]],
[[var-4],[var-4],[var-3],[var-3],[var-3]],
=\=)).

ctr_typical(
distance_change,
[’DIST’>0,size(’VARIABLES1’)>1,in_list(’CTR’,[=,=\=])]).

ctr_exchangeable(
distance_change,
[args([[’DIST’],[’VARIABLES1’,’VARIABLES2’],[’CTR’]]),

translate([’VARIABLES1’ˆvar]),
translate([’VARIABLES2’ˆvar])]).

2299

ctr_graph(
distance_change,
[[’VARIABLES1’],[’VARIABLES2’]],
2,
[’PATH’>>collection(variables1,variables2)],
[’CTR’(variables1ˆvar,variables2ˆvar)],
[’DISTANCE’=’DIST’],
[]).

ctr_eval(
distance_change,
[reformulation(distance_change_r),

automaton(distance_change_a)]).

ctr_pure_functional_dependency(distance_change,[]).

ctr_functional_dependency(distance_change,1,[2,3,4]).

distance_change_r(DIST,VARIABLES1,VARIABLES2,CTR) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,L1),
length(VARIABLES2,L2),
L1=L2,
L is L1-1,
check_type(dvar(0,L),DIST),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
distance_change1(VARS1,VARS2,CTR,TERM),
call(DIST#=TERM).

distance_change1([],[],_28727,0).

distance_change1([_28732],[_28734],_28730,0) :-
!.

distance_change1([UAR1,UAR2|R],[VAR1,VAR2|S],=,B12+ T) :-
!,
B12#<=>
UAR1#=UAR2#/\VAR1#\=VAR2#\/UAR1#\=UAR2#/\VAR1#=VAR2 ,
distance_change1([UAR2|R],[VAR2|S],=,T).

distance_change1([UAR1,UAR2|R],[VAR1,VAR2|S],=\=,B1 2+T) :-
!,
B12#<=>

2300 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

UAR1#\=UAR2#/\VAR1#=VAR2#\/UAR1#=UAR2#/\VAR1#\=VAR2 ,
distance_change1([UAR2|R],[VAR2|S],=\=,T).

distance_change1([UAR1,UAR2|R],[VAR1,VAR2|S],<,B12+ T) :-
!,
B12#<=>
UAR1#<UAR2#/\VAR1#>=VAR2#\/UAR1#>=UAR2#/\VAR1#<VAR2 ,
distance_change1([UAR2|R],[VAR2|S],<,T).

distance_change1([UAR1,UAR2|R],[VAR1,VAR2|S],>=,B12 +T) :-
!,
B12#<=>
UAR1#>=UAR2#/\VAR1#<VAR2#\/UAR1#<UAR2#/\VAR1#>=VAR2 ,
distance_change1([UAR2|R],[VAR2|S],>=,T).

distance_change1([UAR1,UAR2|R],[VAR1,VAR2|S],>,B12+ T) :-
!,
B12#<=>
UAR1#>UAR2#/\VAR1#=<VAR2#\/UAR1#=<UAR2#/\VAR1#>VAR2 ,
distance_change1([UAR2|R],[VAR2|S],>,T).

distance_change1([UAR1,UAR2|R],[VAR1,VAR2|S],=<,B12 +T) :-
B12#<=>
UAR1#=<UAR2#/\VAR1#>VAR2#\/UAR1#>UAR2#/\VAR1#=<VAR2 ,
distance_change1([UAR2|R],[VAR2|S],=<,T).

distance_change_a(FLAG,DIST,VARIABLES1,VARIABLES2,C TR) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,L1),
length(VARIABLES2,L2),
L1=L2,
L is L1-1,
check_type(dvar(0,L),DIST),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
distance_change_signature(

VARIABLES1,
VARIABLES2,
SIGNATURE,
CTR),

automaton(
SIGNATURE,
_31244,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],

2301

[C],
[0],
[COUNT]),

COUNT#=DIST#<=>FLAG.

distance_change_signature([],[],[],_28728).

distance_change_signature([_28732],[_28734],[],_287 31) :-
!.

distance_change_signature(
[[var-VAR1i],[var-VAR1j]|VAR1s],
[[var-VAR2i],[var-VAR2j]|VAR2s],
[S|Ss],
=) :-

!,
VAR1i#=VAR1j#/\VAR2i#\=VAR2j#\/
VAR1i#\=VAR1j#/\VAR2i#=VAR2j#<=>
S,
distance_change_signature(

[[var-VAR1j]|VAR1s],
[[var-VAR2j]|VAR2s],
Ss,
=).

distance_change_signature(
[[var-VAR1i],[var-VAR1j]|VAR1s],
[[var-VAR2i],[var-VAR2j]|VAR2s],
[S|Ss],
=\=) :-

!,
VAR1i#\=VAR1j#/\VAR2i#=VAR2j#\/
VAR1i#=VAR1j#/\VAR2i#\=VAR2j#<=>
S,
distance_change_signature(

[[var-VAR1j]|VAR1s],
[[var-VAR2j]|VAR2s],
Ss,
=\=).

distance_change_signature(
[[var-VAR1i],[var-VAR1j]|VAR1s],
[[var-VAR2i],[var-VAR2j]|VAR2s],
[S|Ss],
<) :-

!,

2302 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

VAR1i#<VAR1j#/\VAR2i#>=VAR2j#\/
VAR1i#>=VAR1j#/\VAR2i#<VAR2j#<=>
S,
distance_change_signature(

[[var-VAR1j]|VAR1s],
[[var-VAR2j]|VAR2s],
Ss,
<).

distance_change_signature(
[[var-VAR1i],[var-VAR1j]|VAR1s],
[[var-VAR2i],[var-VAR2j]|VAR2s],
[S|Ss],
>=) :-

!,
VAR1i#>=VAR1j#/\VAR2i#<VAR2j#\/
VAR1i#<VAR1j#/\VAR2i#>=VAR2j#<=>
S,
distance_change_signature(

[[var-VAR1j]|VAR1s],
[[var-VAR2j]|VAR2s],
Ss,
>=).

distance_change_signature(
[[var-VAR1i],[var-VAR1j]|VAR1s],
[[var-VAR2i],[var-VAR2j]|VAR2s],
[S|Ss],
>) :-

!,
VAR1i#>VAR1j#/\VAR2i#=<VAR2j#\/
VAR1i#=<VAR1j#/\VAR2i#>VAR2j#<=>
S,
distance_change_signature(

[[var-VAR1j]|VAR1s],
[[var-VAR2j]|VAR2s],
Ss,
>).

distance_change_signature(
[[var-VAR1i],[var-VAR1j]|VAR1s],
[[var-VAR2i],[var-VAR2j]|VAR2s],
[S|Ss],
=<) :-

!,
VAR1i#=<VAR1j#/\VAR2i#>VAR2j#\/

2303

VAR1i#>VAR1j#/\VAR2i#=<VAR2j#<=>
S,
distance_change_signature(

[[var-VAR1j]|VAR1s],
[[var-VAR2j]|VAR2s],
Ss,
=<).

2304 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.120 divisible

♦ META-DATA:

ctr_predefined(divisible).

ctr_date(divisible,[’20110612’]).

ctr_origin(divisible,’Arithmetic.’,[]).

ctr_synonyms(divisible,[div]).

ctr_arguments(divisible,[’Q’-dvar,’D’-dvar]).

ctr_restrictions(divisible,[’Q’>=0,’D’>0]).

ctr_example(divisible,divisible(12,4)).

ctr_typical(divisible,[’Q’>1,’D’<’Q’]).

ctr_eval(divisible,[builtin(divisible_b)]).

divisible_b(Q,D) :-
check_type(dvar,Q),
check_type(dvar,D),
Q#>=0,
D#>0,
Q mod D#=0.

2305

B.121 divisible or

♦ META-DATA:

ctr_predefined(divisible_or).

ctr_date(divisible_or,[’20120212’]).

ctr_origin(divisible_or,’Arithmetic.’,[]).

ctr_synonyms(divisible_or,[div_or]).

ctr_arguments(divisible_or,[’C’-dvar,’D’-dvar]).

ctr_restrictions(divisible_or,[’C’>0,’D’>0]).

ctr_example(divisible_or,divisible_or(4,12)).

ctr_eval(divisible_or,[builtin(divisible_or_b)]).

divisible_or_b(C,D) :-
check_type(dvar,C),
check_type(dvar,D),
C#>0,
D#>0,
C mod D#=0#\/D mod C#=0.

2306 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.122 domreachability

♦ META-DATA:

ctr_predefined(dom_reachability).

ctr_date(dom_reachability,[’20061011’]).

ctr_origin(
dom_reachability,
\cite{QuesadaVanRoyDevilleCollet06},
[]).

ctr_arguments(
dom_reachability,
[’SOURCE’-int,

’FLOW_GRAPH’-collection(index-int,succ-svar),
’DOMINATOR_GRAPH’-collection(index-int,succ-sint),
TRANSITIVE_CLOSURE_GRAPH-
collection(index-int,succ-svar)]).

ctr_restrictions(
dom_reachability,
[’SOURCE’>=1,

’SOURCE’=<size(’FLOW_GRAPH’),
required(’FLOW_GRAPH’,[index,succ]),
’FLOW_GRAPH’ˆindex>=1,
’FLOW_GRAPH’ˆindex=<size(’FLOW_GRAPH’),
’FLOW_GRAPH’ˆsucc>=1,
’FLOW_GRAPH’ˆsucc=<size(’FLOW_GRAPH’),
distinct(’FLOW_GRAPH’,index),
required(’DOMINATOR_GRAPH’,[index,succ]),
size(’DOMINATOR_GRAPH’)=size(’FLOW_GRAPH’),
’DOMINATOR_GRAPH’ˆindex>=1,
’DOMINATOR_GRAPH’ˆindex=<size(’DOMINATOR_GRAPH’),
’DOMINATOR_GRAPH’ˆsucc>=1,
’DOMINATOR_GRAPH’ˆsucc=<size(’DOMINATOR_GRAPH’),
distinct(’DOMINATOR_GRAPH’,index),
required(’TRANSITIVE_CLOSURE_GRAPH’,[index,succ]),
size(’TRANSITIVE_CLOSURE_GRAPH’)=size(’FLOW_GRAPH’) ,
’TRANSITIVE_CLOSURE_GRAPH’ˆindex>=1,
’TRANSITIVE_CLOSURE_GRAPH’ˆindex=<
size(’TRANSITIVE_CLOSURE_GRAPH’),
’TRANSITIVE_CLOSURE_GRAPH’ˆsucc>=1,
’TRANSITIVE_CLOSURE_GRAPH’ˆsucc=<
size(’TRANSITIVE_CLOSURE_GRAPH’),

2307

distinct(’TRANSITIVE_CLOSURE_GRAPH’,index)]).

ctr_example(
dom_reachability,
dom_reachability(

1,
[[index-1,succ-{2}],

[index-2,succ-{3,4}],
[index-3,succ-{}],
[index-4,succ-{}]],

[[index-1,succ-{2,3,4}],
[index-2,succ-{3,4}],
[index-3,succ-{}],
[index-4,succ-{}]],

[[index-1,succ-{1,2,3,4}],
[index-2,succ-{2,3,4}],
[index-3,succ-{3}],
[index-4,succ-{4}]])).

ctr_typical(dom_reachability,[size(’FLOW_GRAPH’)>2]).

ctr_exchangeable(
dom_reachability,
[items(’FLOW_GRAPH’,all),

items(’DOMINATOR_GRAPH’,all),
items(’TRANSITIVE_CLOSURE_GRAPH’,all)]).

2308 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.123 domain

♦ META-DATA:

ctr_predefined(domain).

ctr_date(domain,[’20070821’]).

ctr_origin(domain,’Domain definition.’,[]).

ctr_synonyms(domain,[dom]).

ctr_arguments(
domain,
[’VARIABLES’-collection(var-dvar),’LOW’-int,’UP’-in t]).

ctr_restrictions(
domain,
[required(’VARIABLES’,var),’LOW’=<’UP’]).

ctr_example(domain,domain([[var-2],[var-8],[var-2]] ,1,9)).

ctr_typical(domain,[size(’VARIABLES’)>1,’LOW’<’UP’]).

ctr_exchangeable(
domain,
[items(’VARIABLES’,all),

vals(
[’VARIABLES’ˆvar],
int(’LOW’ in ’UP’),
=\=,
dontcare,
dontcare),

vals([’LOW’],int,>,dontcare,dontcare),
vals([’UP’],int,<,dontcare,dontcare),
translate([’VARIABLES’ˆvar,’LOW’,’UP’])]).

ctr_eval(domain,[builtin(domain_b)]).

ctr_contractible(domain,[],’VARIABLES’,any).

domain_b(VARIABLES,LOW,UP) :-
check_type(int,LOW),
check_type(int,UP),
LOW=<UP,
collection(VARIABLES,[fdvar(LOW,UP)]),

2309

get_attr1(VARIABLES,VARS),
domain(VARS,LOW,UP).

2310 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.124 domainconstraint

♦ META-DATA:

ctr_date(domain_constraint,[’20030820’,’20040530’,’ 20060808’]).

ctr_origin(domain_constraint,’\\cite{Refalo00}’,[]) .

ctr_synonyms(domain_constraint,[domain]).

ctr_arguments(
domain_constraint,
[’VAR’-dvar,’VALUES’-collection(var01-dvar,value-in t)]).

ctr_restrictions(
domain_constraint,
[required(’VALUES’,[var01,value]),

’VALUES’ˆvar01>=0,
’VALUES’ˆvar01=<1,
distinct(’VALUES’,value)]).

ctr_example(
domain_constraint,
domain_constraint(

5,
[[var01-0,value-9],

[var01-1,value-5],
[var01-0,value-2],
[var01-0,value-7]])).

ctr_typical(domain_constraint,[size(’VALUES’)>1]).

ctr_exchangeable(domain_constraint,[items(’VALUES’, all)]).

ctr_derived_collections(
domain_constraint,
[col(’VALUE’-collection(var01-int,value-dvar),

[item(var01-1,value-’VAR’)])]).

ctr_graph(
domain_constraint,
[’VALUE’,’VALUES’],
2,
[’PRODUCT’>>collection(value,values)],
[valueˆvalue=valuesˆvalue#<=>valuesˆvar01=1],
[’NARC’=size(’VALUES’)],

2311

[]).

ctr_eval(
domain_constraint,
[reformulation(domain_constraint_r),

automaton(domain_constraint_a)]).

domain_constraint_r(VAR,VALUES) :-
check_type(dvar,VAR),
collection(VALUES,[dvar(0,1),int]),
get_attr1(VALUES,VARS01),
get_attr2(VALUES,VALS),
all_different(VALS),
domain_constraint1(VARS01,VALS,VAR,Term),
call(Term).

domain_constraint1([],[],_35825,0).

domain_constraint1(
[VAR01|R],
[VAL|S],
VAR,
VAR#=VAL#/\VAR01#=1#\/T) :-

domain_constraint1(R,S,VAR,T).

domain_constraint_a(FLAG,VAR,VALUES) :-
check_type(dvar,VAR),
collection(VALUES,[dvar(0,1),int]),
get_attr2(VALUES,VALS),
all_different(VALS),
domain_constraint_signature(VALUES,SIGNATURE,VAR),
AUTOMATON=
automaton(

SIGNATURE,
_37464,
SIGNATURE,
[source(s),sink(s)],
[arc(s,1,s)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

domain_constraint_signature([],[],_35825).

domain_constraint_signature(

2312 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[[var01-VAR01,value-VALUE]|VALUES],
[S|Ss],
VAR) :-

VAR#=VALUE#<=>VAR01#<=>S,
domain_constraint_signature(VALUES,Ss,VAR).

2313

B.125 elem

♦ META-DATA:

ctr_date(elem,[’20030820’,’20040530’,’20060808’]).

ctr_origin(elem,’Derived from %c.’,[element]).

ctr_usual_name(elem,element).

ctr_synonyms(elem,[nth,array]).

ctr_arguments(
elem,
[’ITEM’-collection(index-dvar,value-dvar),

’TABLE’-collection(index-int,value-dvar)]).

ctr_restrictions(
elem,
[required(’ITEM’,[index,value]),

’ITEM’ˆindex>=1,
’ITEM’ˆindex=<size(’TABLE’),
size(’ITEM’)=1,
size(’TABLE’)>0,
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
distinct(’TABLE’,index)]).

ctr_example(
elem,
elem(

[[index-3,value-2]],
[[index-1,value-6],

[index-2,value-9],
[index-3,value-2],
[index-4,value-9]])).

ctr_typical(elem,[size(’TABLE’)>1,range(’TABLE’ˆval ue)>1]).

ctr_exchangeable(
elem,
[items(’TABLE’,all),

vals([’ITEM’ˆvalue,’TABLE’ˆvalue],int,=\=,all,dontc are)]).

ctr_graph(

2314 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

elem,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆindex=tableˆindex,itemˆvalue=tableˆvalue],
[’NARC’=1],
[]).

ctr_eval(elem,[builtin(elem_b),automaton(elem_a)]).

ctr_pure_functional_dependency(elem,[]).

ctr_functional_dependency(elem,1-2,[1-1,2]).

elem_b(ITEM,TABLE) :-
length(ITEM,1),
length(TABLE,N),
collection(ITEM,[dvar(1,N),dvar]),
collection(TABLE,[int(1,N),dvar]),
get_attr1(ITEM,[INDEX]),
get_attr2(ITEM,[VALUE]),
get_attr1(TABLE,INDEXES),
get_attr2(TABLE,VALUES),
all_different(INDEXES),
element(INDEX,VALUES,VALUE).

elem_a(FLAG,ITEM,TABLE) :-
length(ITEM,1),
length(TABLE,N),
collection(ITEM,[dvar(1,N),dvar]),
collection(TABLE,[int(1,N),dvar]),
get_attr1(TABLE,INDEXES),
all_different(INDEXES),
ITEM=[[index-ITEM_INDEX,value-ITEM_VALUE]],
elem_signature(TABLE,SIGNATURE,ITEM_INDEX,ITEM_VALU E),
AUTOMATON=
automaton(

SIGNATURE,
_44555,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t),arc(t,0,t),arc(t,1,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

2315

elem_signature([],[],_42235,_42236).

elem_signature(
[[index-TABLE_INDEX,value-TABLE_VALUE]|TABLEs],
[S|Ss],
ITEM_INDEX,
ITEM_VALUE) :-

ITEM_INDEX#=TABLE_INDEX#/\ITEM_VALUE#=TABLE_VALUE#<=>S,
elem_signature(TABLEs,Ss,ITEM_INDEX,ITEM_VALUE).

2316 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.126 elemfrom to

♦ META-DATA:

ctr_date(elem_from_to,[’20091115’]).

ctr_origin(elem_from_to,’Derived from %c.’,[elem]).

ctr_synonyms(elem_from_to,[element_from_to]).

ctr_arguments(
elem_from_to,
[ITEM-

collection(
from-dvar,
cst_from-int,
to-dvar,
cst_to-int,
value-dvar),

’TABLE’-collection(index-int,value-dvar)]).

ctr_restrictions(
elem_from_to,
[required(’ITEM’,[from,cst_from,to,cst_to,value]),

’ITEM’ˆfrom>=1,
’ITEM’ˆfrom=<size(’TABLE’),
’ITEM’ˆto>=1,
’ITEM’ˆto=<size(’TABLE’),
’ITEM’ˆfrom=<’ITEM’ˆto,
size(’ITEM’)=1,
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
increasing_seq(’TABLE’,[index])]).

ctr_example(
elem_from_to,
elem_from_to(

[[from-1,cst_from-1,to-4,cst_to- -1,value-2]],
[[index-1,value-6],

[index-2,value-2],
[index-3,value-2],
[index-4,value-9],
[index-5,value-9]])).

ctr_typical(

2317

elem_from_to,
[’ITEM’ˆcst_from>=0,

’ITEM’ˆcst_from=<1,
’ITEM’ˆcst_to>= -1,
’ITEM’ˆcst_to=<1,
size(’TABLE’)>1,
range(’TABLE’ˆvalue)>1]).

ctr_exchangeable(
elem_from_to,
[vals([’ITEM’ˆvalue,’TABLE’ˆvalue],int,=\=,all,dont care)]).

ctr_eval(elem_from_to,[automaton(elem_from_to_a)]).

elem_from_to_a(FLAG,ITEM,TABLE) :-
length(TABLE,N),
collection(ITEM,[dvar(1,N),int,dvar(1,N),int,dvar]) ,
collection(TABLE,[int(1,N),dvar]),
collection_increasing_seq(TABLE,[1]),
ITEM=
[[from-FROM,

cst_from-CST_FROM,
to-TO,
cst_to-CST_TO,
value-VALUE]],

FROM#=<TO,
F#=max(1,FROM+CST_FROM),
T#=min(N,TO+CST_TO),
elem_from_to_signature(

TABLE,
SIGNATURE,
N,
FROM,
TO,
F,
T,
VALUE),

AUTOMATON=
automaton(

SIGNATURE,
_24943,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s),arc(s,2,s),arc(s,3,s)],
[],
[],

2318 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[]),
automaton_bool(FLAG,[0,1,2,3,4],AUTOMATON).

elem_from_to_signature(
[],
[],
_20482,
_20528,
_20574,
_20620,
_20666,
_20712).

elem_from_to_signature(
[[index-TABLE_INDEX,value-TABLE_VALUE]|TABLEs],
[S|Ss],
N,
FROM,
TO,
F,
T,
VALUE) :-

S in 0..4,
1#=<FROM#/\FROM#=<TO#/\TO#=<N#/\F#>T#<=>S#=0,
1#=<FROM#/\FROM#=<TO#/\TO#=<N#/\F#=<T#/\
F#>TABLE_INDEX#<=>
S#=1,
1#=<FROM#/\FROM#=<TO#/\TO#=<N#/\F#=<T#/\
T#<TABLE_INDEX#<=>
S#=2,
1#=<FROM#/\FROM#=<TO#/\TO#=<N#/\F#=<T#/\
F#=<TABLE_INDEX#/\
TABLE_INDEX#=<T#/\
VALUE#=TABLE_VALUE#<=>
S#=3,
1#=<FROM#/\FROM#=<TO#/\TO#=<N#/\F#=<T#/\
F#=<TABLE_INDEX#/\
TABLE_INDEX#=<T#/\
VALUE#\=TABLE_VALUE#<=>
S#=4,
elem_from_to_signature(TABLEs,Ss,N,FROM,TO,F,T,VALU E).

2319

B.127 element

♦ META-DATA:

ctr_date(
element,
[’20000128’,’20030820’,’20040530’,’20060808’,’20090 923’]).

ctr_origin(element,’\\cite{VanHentenryckCarillon88} ’,[]).

ctr_synonyms(element,[nth,element_var,array]).

ctr_arguments(
element,
[’INDEX’-dvar,’TABLE’-collection(value-dvar),’VALUE ’-dvar]).

ctr_restrictions(
element,
[’INDEX’>=1,

’INDEX’=<size(’TABLE’),
size(’TABLE’)>0,
required(’TABLE’,value)]).

ctr_example(
element,
element(3,[[value-6],[value-9],[value-2],[value-9]] ,2)).

ctr_typical(element,[size(’TABLE’)>1,range(’TABLE’ˆ value)>1]).

ctr_exchangeable(
element,
[vals([’TABLE’ˆvalue,’VALUE’],int,=\=,all,dontcare)]).

ctr_derived_collections(
element,
[col(’ITEM’-collection(index-dvar,value-dvar),

[item(index-’INDEX’,value-’VALUE’)])]).

ctr_graph(
element,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆindex=tableˆkey,itemˆvalue=tableˆvalue],
[’NARC’=1],
[]).

2320 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_eval(element,[builtin(element_b),automaton(elem ent_a)]).

ctr_pure_functional_dependency(element,[]).

ctr_functional_dependency(element,3,[1,2]).

ctr_extensible(element,[],’TABLE’,suffix).

element_b(INDEX,TABLE,VALUE) :-
check_type(dvar,INDEX),
collection(TABLE,[dvar]),
check_type(dvar,VALUE),
length(TABLE,N),
N>0,
INDEX#>=1,
INDEX#=<N,
get_attr1(TABLE,VALUES),
element(INDEX,VALUES,VALUE).

element_a(FLAG,INDEX,TABLE,VALUE) :-
check_type(dvar,INDEX),
collection(TABLE,[dvar]),
check_type(dvar,VALUE),
length(TABLE,N),
N>0,
INDEX#>=1,
INDEX#=<N,
element_signature(TABLE,INDEX,VALUE,1,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_47234,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t),arc(t,0,t),arc(t,1,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

element_signature([],_44978,_44979,_44980,[]).

element_signature(
[[value-TABLE_VALUE]|Ts],
INDEX,

2321

VALUE,
TABLE_KEY,
[B|Bs]) :-

INDEX#=TABLE_KEY#/\VALUE#=TABLE_VALUE#<=>B,
TABLE_KEY1 is TABLE_KEY+1,
element_signature(Ts,INDEX,VALUE,TABLE_KEY1,Bs).

2322 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.128 elementgreatereq

♦ META-DATA:

ctr_date(element_greatereq,[’20030820’,’20040530’,’ 20060808’]).

ctr_origin(
element_greatereq,
\cite{OttossonThorsteinssonHooker99},
[]).

ctr_arguments(
element_greatereq,
[’ITEM’-collection(index-dvar,value-dvar),

’TABLE’-collection(index-int,value-int)]).

ctr_restrictions(
element_greatereq,
[required(’ITEM’,[index,value]),

’ITEM’ˆindex>=1,
’ITEM’ˆindex=<size(’TABLE’),
size(’ITEM’)=1,
size(’TABLE’)>0,
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
distinct(’TABLE’,index)]).

ctr_example(
element_greatereq,
element_greatereq(

[[index-1,value-8]],
[[index-1,value-6],

[index-2,value-9],
[index-3,value-2],
[index-4,value-9]])).

ctr_typical(
element_greatereq,
[size(’TABLE’)>1,range(’TABLE’ˆvalue)>1]).

ctr_exchangeable(
element_greatereq,
[items(’TABLE’,all),

vals([’ITEM’ˆvalue,’TABLE’ˆvalue],int,=\=,all,dontc are)]).

2323

ctr_graph(
element_greatereq,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆindex=tableˆindex,itemˆvalue>=tableˆvalue],
[’NARC’=1],
[]).

ctr_eval(
element_greatereq,
[reformulation(element_greatereq_r),

automaton(element_greatereq_a)]).

element_greatereq_r(ITEM,TABLE) :-
length(ITEM,1),
length(TABLE,N),
N>0,
collection(ITEM,[dvar(1,N),dvar]),
collection(TABLE,[int(1,N),dvar]),
get_attr1(ITEM,[INDEX]),
get_attr2(ITEM,[VALUE]),
get_attr1(TABLE,INDEXES),
get_attr2(TABLE,VALUES),
all_different(INDEXES),
element(INDEX,VALUES,VAL),
VALUE#>=VAL.

element_greatereq_a(FLAG,ITEM,TABLE) :-
length(ITEM,1),
length(TABLE,N),
N>0,
collection(ITEM,[dvar(1,N),dvar]),
collection(TABLE,[int(1,N),dvar]),
get_attr1(TABLE,INDEXES),
all_different(INDEXES),
ITEM=[[index-ITEM_INDEX,value-ITEM_VALUE]],
element_greatereq_signature(

TABLE,
SIGNATURE,
ITEM_INDEX,
ITEM_VALUE),

AUTOMATON=
automaton(

SIGNATURE,
_36545,

2324 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t),arc(t,0,t),arc(t,1,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

element_greatereq_signature([],[],_33731,_33732).

element_greatereq_signature(
[[index-TABLE_INDEX,value-TABLE_VALUE]|TABLEs],
[S|Ss],
ITEM_INDEX,
ITEM_VALUE) :-

ITEM_INDEX#=TABLE_INDEX#/\ITEM_VALUE#>=TABLE_VALUE#<=>S,
element_greatereq_signature(

TABLEs,
Ss,
ITEM_INDEX,
ITEM_VALUE).

2325

B.129 elementlesseq

♦ META-DATA:

ctr_date(element_lesseq,[’20030820’,’20040530’,’200 60808’]).

ctr_origin(
element_lesseq,
\cite{OttossonThorsteinssonHooker99},
[]).

ctr_arguments(
element_lesseq,
[’ITEM’-collection(index-dvar,value-dvar),

’TABLE’-collection(index-int,value-int)]).

ctr_restrictions(
element_lesseq,
[required(’ITEM’,[index,value]),

’ITEM’ˆindex>=1,
’ITEM’ˆindex=<size(’TABLE’),
size(’ITEM’)=1,
size(’TABLE’)>0,
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
distinct(’TABLE’,index)]).

ctr_example(
element_lesseq,
element_lesseq(

[[index-3,value-1]],
[[index-1,value-6],

[index-2,value-9],
[index-3,value-2],
[index-4,value-9]])).

ctr_typical(
element_lesseq,
[size(’TABLE’)>1,range(’TABLE’ˆvalue)>1]).

ctr_exchangeable(
element_lesseq,
[items(’TABLE’,all),

vals([’ITEM’ˆvalue,’TABLE’ˆvalue],int,=\=,all,dontc are)]).

2326 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_graph(
element_lesseq,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆindex=tableˆindex,itemˆvalue=<tableˆvalue],
[’NARC’=1],
[]).

ctr_eval(
element_lesseq,
[reformulation(element_lesseq_r),

automaton(element_lesseq_a)]).

element_lesseq_r(ITEM,TABLE) :-
length(ITEM,1),
length(TABLE,N),
N>0,
collection(ITEM,[dvar(1,N),dvar]),
collection(TABLE,[int(1,N),dvar]),
get_attr1(ITEM,[INDEX]),
get_attr2(ITEM,[VALUE]),
get_attr1(TABLE,INDEXES),
get_attr2(TABLE,VALUES),
all_different(INDEXES),
element(INDEX,VALUES,VAL),
VALUE#=<VAL.

element_lesseq_a(FLAG,ITEM,TABLE) :-
length(ITEM,1),
length(TABLE,N),
N>0,
collection(ITEM,[dvar(1,N),dvar]),
collection(TABLE,[int(1,N),dvar]),
get_attr1(TABLE,INDEXES),
all_different(INDEXES),
ITEM=[[index-ITEM_INDEX,value-ITEM_VALUE]],
element_lesseq_signature(

TABLE,
SIGNATURE,
ITEM_INDEX,
ITEM_VALUE),

AUTOMATON=
automaton(

SIGNATURE,
_36443,

2327

SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t),arc(t,0,t),arc(t,1,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

element_lesseq_signature([],[],_33629,_33630).

element_lesseq_signature(
[[index-TABLE_INDEX,value-TABLE_VALUE]|TABLEs],
[S|Ss],
ITEM_INDEX,
ITEM_VALUE) :-

ITEM_INDEX#=TABLE_INDEX#/\ITEM_VALUE#=<TABLE_VALUE#<=>S,
element_lesseq_signature(

TABLEs,
Ss,
ITEM_INDEX,
ITEM_VALUE).

2328 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.130 elementmatrix

♦ META-DATA:

ctr_date(element_matrix,[’20031101’,’20060808’]).

ctr_origin(element_matrix,’\\index{CHIP|indexuse}CH IP’,[]).

ctr_synonyms(element_matrix,[elem_matrix,matrix]).

ctr_arguments(
element_matrix,
[’MAX_I’-int,

’MAX_J’-int,
’INDEX_I’-dvar,
’INDEX_J’-dvar,
’MATRIX’-collection(i-int,j-int,v-int),
’VALUE’-dvar]).

ctr_restrictions(
element_matrix,
[’MAX_I’>=1,

’MAX_J’>=1,
’INDEX_I’>=1,
’INDEX_I’=<’MAX_I’,
’INDEX_J’>=1,
’INDEX_J’=<’MAX_J’,
required(’MATRIX’,[i,j,v]),
increasing_seq(’MATRIX’,[i,j]),
’MATRIX’ˆi>=1,
’MATRIX’ˆi=<’MAX_I’,
’MATRIX’ˆj>=1,
’MATRIX’ˆj=<’MAX_J’,
size(’MATRIX’)=’MAX_I’ * ’MAX_J’]).

ctr_example(
element_matrix,
element_matrix(

4,
3,
1,
3,
[[i-1,j-1,v-4],

[i-1,j-2,v-1],
[i-1,j-3,v-7],
[i-2,j-1,v-1],

2329

[i-2,j-2,v-0],
[i-2,j-3,v-8],
[i-3,j-1,v-3],
[i-3,j-2,v-2],
[i-3,j-3,v-1],
[i-4,j-1,v-0],
[i-4,j-2,v-0],
[i-4,j-3,v-6]],

7)).

ctr_typical(
element_matrix,
[’MAX_I’>1,

’MAX_J’>1,
size(’MATRIX’)>3,
maxval(’MATRIX’ˆi)>1,
maxval(’MATRIX’ˆj)>1,
range(’MATRIX’ˆv)>1]).

ctr_exchangeable(
element_matrix,
[vals([’MATRIX’ˆv,’VALUE’],int,=\=,all,dontcare)]).

ctr_derived_collections(
element_matrix,
[col(ITEM-

collection(index_i-dvar,index_j-dvar,value-dvar),
[item(

index_i-’INDEX_I’,
index_j-’INDEX_J’,
value-’VALUE’)])]).

ctr_graph(
element_matrix,
[’ITEM’,’MATRIX’],
2,
[’PRODUCT’>>collection(item,matrix)],
[itemˆindex_i=matrixˆi,

itemˆindex_j=matrixˆj,
itemˆvalue=matrixˆv],

[’NARC’=1],
[]).

ctr_eval(
element_matrix,
[reformulation(element_matrix_r),

2330 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

automaton(element_matrix_a)]).

element_matrix_r(MAX_I,MAX_J,INDEX_I,INDEX_J,MATRIX ,VALUE) :-
check_type(int,MAX_I),
MAX_I>=1,
check_type(int,MAX_J),
MAX_J>=1,
check_type(dvar,INDEX_I),
INDEX_I#>=1,
INDEX_I#=<MAX_I,
check_type(dvar,INDEX_J),
INDEX_J#>=1,
INDEX_J#=<MAX_J,
collection(MATRIX,[int(1,MAX_I),int(1,MAX_J),int]),
length(MATRIX,N),
N is MAX_I * MAX_J,
collection_increasing_seq(MATRIX,[1,2]),
check_type(dvar,VALUE),
get_attr3(MATRIX,VALUES),
element_matrix1(MAX_I,MAX_J,INDEX_J,VALUES,TABLE_VA RS),
element(INDEX_I,TABLE_VARS,VALUE).

element_matrix1(0,_40963,_40964,_40965,[]) :-
!.

element_matrix1(I,MAX_J,INDEX_J,VALUES,[V_J|R]) :-
I>0,
element_matrix2(MAX_J,VALUES,TABLE_VALS,REST_VALUES),
element(INDEX_J,TABLE_VALS,V_J),
I1 is I-1,
element_matrix1(I1,MAX_J,INDEX_J,REST_VALUES,R).

element_matrix2(0,VALUES,[],VALUES) :-
!.

element_matrix2(J,[V|R],[V|S],REST_VALUES) :-
J>0,
J1 is J-1,
element_matrix2(J1,R,S,REST_VALUES).

element_matrix_a(FLAG,MAX_I,MAX_J,INDEX_I,INDEX_J,M ATRIX,VALUE) :-
check_type(int,MAX_I),
MAX_I>=1,
check_type(int,MAX_J),
MAX_J>=1,
check_type(dvar,INDEX_I),

2331

INDEX_I#>=1,
INDEX_I#=<MAX_I,
check_type(dvar,INDEX_J),
INDEX_J#>=1,
INDEX_J#=<MAX_J,
collection(MATRIX,[int(1,MAX_I),int(1,MAX_J),int]),
length(MATRIX,N),
N is MAX_I * MAX_J,
collection_increasing_seq(MATRIX,[1,2]),
check_type(dvar,VALUE),
element_matrix_signature(

MATRIX,
INDEX_I,
INDEX_J,
VALUE,
SIGNATURE),

AUTOMATON=
automaton(

SIGNATURE,
_45037,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t),arc(t,0,t),arc(t,1,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

element_matrix_signature([],_40960,_40961,_40962,[]).

element_matrix_signature(
[[i-I,j-J,v-V]|Ms],
INDEX_I,
INDEX_J,
VALUE,
[S|Ss]) :-

INDEX_I#=I#/\INDEX_J#=J#/\VALUE#=V#<=>S,
element_matrix_signature(Ms,INDEX_I,INDEX_J,VALUE,S s).

2332 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.131 elementproduct

♦ META-DATA:

ctr_date(element_product,[’20051229’,’20060808’]).

ctr_origin(
element_product,
\cite{OttossonThorsteinsson00},
[]).

ctr_synonyms(element_product,[element]).

ctr_arguments(
element_product,
[’Y’-dvar,’TABLE’-collection(value-int),’X’-dvar,’Z ’-dvar]).

ctr_restrictions(
element_product,
[’Y’>=1,

’Y’=<size(’TABLE’),
’X’>=0,
’Z’>=0,
required(’TABLE’,value),
’TABLE’ˆvalue>=0]).

ctr_example(
element_product,
element_product(

3,
[[value-6],[value-9],[value-2],[value-9]],
5,
10)).

ctr_typical(
element_product,
[’X’>0,

’Z’>0,
size(’TABLE’)>1,
range(’TABLE’ˆvalue)>1,
’TABLE’ˆvalue>0]).

ctr_derived_collections(
element_product,
[col(’ITEM’-collection(y-dvar,x-dvar,z-dvar),

[item(y-’Y’,x-’X’,z-’Z’)])]).

2333

ctr_graph(
element_product,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆy=tableˆkey,itemˆz=itemˆx * tableˆvalue],
[’NARC’=1],
[]).

ctr_eval(element_product,[reformulation(element_pro duct_r)]).

ctr_pure_functional_dependency(element_product,[]).

ctr_functional_dependency(element_product,4,[1,2,3]).

ctr_extensible(element_product,[],’TABLE’,suffix).

element_product_r(Y,TABLE,X,Z) :-
check_type(dvar,Y),
collection(TABLE,[int_gteq(0)]),
check_type(dvar,X),
check_type(dvar,Z),
length(TABLE,N),
Y#>=1,
Y#=<N,
X#>=0,
Z#>=0,
get_attr1(TABLE,VALUES),
element(Y,VALUES,VAL),
Z#=VAL* X.

2334 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.132 elementsparse

♦ META-DATA:

ctr_date(element_sparse,[’20030820’,’20040530’,’200 60808’]).

ctr_origin(element_sparse,’\\index{CHIP|indexuse}CH IP’,[]).

ctr_usual_name(element_sparse,element).

ctr_arguments(
element_sparse,
[’ITEM’-collection(index-dvar,value-dvar),

’TABLE’-collection(index-int,value-int),
’DEFAULT’-int]).

ctr_restrictions(
element_sparse,
[required(’ITEM’,[index,value]),

’ITEM’ˆindex>=1,
size(’ITEM’)=1,
size(’TABLE’)>0,
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
distinct(’TABLE’,index)]).

ctr_example(
element_sparse,
element_sparse(

[[index-2,value-5]],
[[index-1,value-6],

[index-2,value-5],
[index-4,value-2],
[index-8,value-9]],

5)).

ctr_typical(
element_sparse,
[size(’TABLE’)>1,range(’TABLE’ˆvalue)>1]).

ctr_exchangeable(
element_sparse,
[items(’TABLE’,all),

vals(
[’ITEM’ˆvalue,’TABLE’ˆvalue,’DEFAULT’],
int,

2335

=\=,
all,
dontcare)]).

ctr_derived_collections(
element_sparse,
[col(’DEF’-collection(index-int,value-int),

[item(index-0,value-’DEFAULT’)]),
col(’TABLE_DEF’-collection(index-dvar,value-dvar),

[item(index-’TABLE’ˆindex,value-’TABLE’ˆvalue),
item(index-’DEF’ˆindex,value-’DEF’ˆvalue)])]).

ctr_graph(
element_sparse,
[’ITEM’,’TABLE_DEF’],
2,
[’PRODUCT’>>collection(item,table_def)],
[itemˆvalue=table_defˆvalue,

itemˆindex=table_defˆindex#\/table_defˆindex=0],
[’NARC’>=1],
[]).

ctr_eval(
element_sparse,
[reformulation(element_sparse_r),

automaton(element_sparse_a)]).

element_sparse_r(ITEM,TABLE,DEFAULT) :-
length(ITEM,1),
length(TABLE,N),
N>0,
collection(ITEM,[dvar_gteq(1),dvar]),
collection(TABLE,[int_gteq(1),dvar]),
check_type(int,DEFAULT),
get_attr1(ITEM,[I]),
get_attr2(ITEM,[V]),
get_attr1(TABLE,INDEXES),
get_attr2(TABLE,VALUES),
all_different(INDEXES),
element_sparse1(INDEXES,VALUES,I,V,DEFAULT,Term1,Te rm2),
call(Term1#\/Term2).

element_sparse1([],[],_37831,V,DEFAULT,0,V#=DEFAULT).

element_sparse1(
[IND|R],

2336 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[VAL|S],
I,
V,
DEFAULT,
I#=IND#/\V#=VAL#\/T,
I#\=IND#/\U) :-

element_sparse1(R,S,I,V,DEFAULT,T,U).

element_sparse_a(FLAG,ITEM,TABLE,DEFAULT) :-
length(ITEM,1),
length(TABLE,N),
N>0,
collection(ITEM,[dvar_gteq(1),dvar]),
collection(TABLE,[int_gteq(1),dvar]),
check_type(int,DEFAULT),
get_attr1(TABLE,INDEXES),
all_different(INDEXES),
ITEM=[[index-ITEM_INDEX,value-ITEM_VALUE]],
element_sparse_signature(

TABLE,
SIGNATURE,
ITEM_INDEX,
ITEM_VALUE,
DEFAULT),

AUTOMATON=
automaton(

SIGNATURE,
_40987,
SIGNATURE,
[source(s),sink(d),sink(t)],
[arc(s,0,s),

arc(s,1,t),
arc(s,2,d),
arc(d,1,t),
arc(d,2,d),
arc(t,0,t),
arc(t,1,t),
arc(t,2,t)],

[],
[],
[]),

automaton_bool(FLAG,[0,1,2],AUTOMATON).

element_sparse_signature([],[],_37831,_37832,_37833).

element_sparse_signature(

2337

[[index-TABLE_INDEX,value-TABLE_VALUE]|TABLEs],
[S|Ss],
ITEM_INDEX,
ITEM_VALUE,
DEFAULT) :-

S in 0..2,
ITEM_INDEX#\=TABLE_INDEX#/\ITEM_VALUE#\=DEFAULT#<=> S#=0,
ITEM_INDEX#=TABLE_INDEX#/\ITEM_VALUE#=TABLE_VALUE#<=>
S#=1,
ITEM_INDEX#\=TABLE_INDEX#/\ITEM_VALUE#=DEFAULT#<=>S #=2,
element_sparse_signature(

TABLEs,
Ss,
ITEM_INDEX,
ITEM_VALUE,
DEFAULT).

2338 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.133 elementn

♦ META-DATA:

ctr_date(elementn,[’20061004’]).

ctr_origin(elementn,’P. Flener’,[]).

ctr_arguments(
elementn,
[’INDEX’-dvar,

’TABLE’-collection(value-int),
’ENTRIES’-collection(entry-dvar)]).

ctr_restrictions(
elementn,
[’INDEX’>=1,

’INDEX’=<size(’TABLE’)-size(’ENTRIES’)+1,
size(’TABLE’)>0,
size(’ENTRIES’)>0,
size(’TABLE’)>=size(’ENTRIES’),
required(’TABLE’,value),
required(’ENTRIES’,entry)]).

ctr_example(
elementn,
elementn(

3,
[[value-6],[value-9],[value-2],[value-9]],
[[entry-2],[entry-9]])).

ctr_typical(
elementn,
[size(’TABLE’)>1,range(’TABLE’ˆvalue)>1,size(’ENTRI ES’)>1]).

ctr_exchangeable(
elementn,
[vals(

[’TABLE’ˆvalue,’ENTRIES’ˆentry],
int,
=\=,
all,
dontcare)]).

ctr_eval(
elementn,

2339

[reformulation(elementn_r),automaton(elementn_a)]).

ctr_extensible(elementn,[],’TABLE’,suffix).

elementn_r(INDEX,TABLE,ENTRIES) :-
length(TABLE,N),
length(ENTRIES,M),
N>0,
M>0,
N>=M,
NM is N-M+1,
check_type(dvar(1,NM),INDEX),
collection(TABLE,[int]),
collection(ENTRIES,[dvar]),
get_attr1(TABLE,TAB),
get_attr1(ENTRIES,VALS),
elementn1(VALS,0,INDEX,TAB).

elementn1([],_17950,_17951,_17952).

elementn1([V|R],K,INDEX,TAB) :-
IND#=INDEX+K,
element(IND,TAB,V),
K1 is K+1,
elementn1(R,K1,INDEX,TAB).

elementn_a(FLAG,INDEX,TABLE,ENTRIES) :-
length(TABLE,T),
length(ENTRIES,E),
T>0,
E>0,
T>=E,
TE is T-E+1,
check_type(dvar(1,TE),INDEX),
collection(TABLE,[int]),
collection(ENTRIES,[dvar]),
elementn_get_para(TABLE,Table),
elementn_get_para(ENTRIES,Entries),
elementn_gen_val(1,TE,LV),
elementn_gen_arc(1,TE,E,LV,Table,Arcs),
append([INDEX],Entries,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_21210,
SIGNATURE,

2340 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[source(s),sink(t)],
Arcs,
[],
[],
[]),

union_dom_list_int(SIGNATURE,ALPHABET),
automaton_bool(FLAG,ALPHABET,AUTOMATON).

elementn_get_para([],[]).

elementn_get_para([[_17959-P]|R],[P|S]) :-
elementn_get_para(R,S).

elementn_gen_val(I,I,[I]) :-
!.

elementn_gen_val(I,J,[I|R]) :-
I<J,
I1 is I+1,
elementn_gen_val(I1,J,R).

elementn_gen_arc(I,J,_17954,_17955,_17956,[]) :-
I>J,
!.

elementn_gen_arc(I,J,E,[I|S],[F|T],Arcs) :-
I=<J,
K is 1+E * (I-1),
A0=[arc(s,I,K)],
elementn_gen_arc1(1,E,K,[F|T],A1),
I1 is I+1,
elementn_gen_arc(I1,J,E,S,T,A),
append(A0,A1,A2),
append(A2,A,Arcs).

elementn_gen_arc1(J,E,K,[F|T],[arc(K,F,K1)|R]) :-
J<E,
!,
K1 is K+1,
J1 is J+1,
elementn_gen_arc1(J1,E,K1,T,R).

elementn_gen_arc1(E,E,K,[F|_17959],[arc(K,F,t)]).

2341

B.134 elements

♦ META-DATA:

ctr_date(elements,[’20030820’,’20060808’]).

ctr_origin(elements,’Derived from %c.’,[element]).

ctr_arguments(
elements,
[’ITEMS’-collection(index-dvar,value-dvar),

’TABLE’-collection(index-int,value-dvar)]).

ctr_restrictions(
elements,
[required(’ITEMS’,[index,value]),

’ITEMS’ˆindex>=1,
’ITEMS’ˆindex=<size(’TABLE’),
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
distinct(’TABLE’,index)]).

ctr_example(
elements,
elements(

[[index-4,value-9],[index-1,value-6]],
[[index-1,value-6],

[index-2,value-9],
[index-3,value-2],
[index-4,value-9]])).

ctr_typical(
elements,
[size(’ITEMS’)>1,

range(’ITEMS’ˆindex)>1,
size(’TABLE’)>1,
range(’TABLE’ˆvalue)>1]).

ctr_exchangeable(
elements,
[items(’ITEMS’,all),

items(’TABLE’,all),
vals([’ITEMS’ˆvalue,’TABLE’ˆvalue],int,=\=,all,dont care)]).

ctr_graph(

2342 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

elements,
[’ITEMS’,’TABLE’],
2,
[’PRODUCT’>>collection(items,table)],
[itemsˆindex=tableˆindex,itemsˆvalue=tableˆvalue],
[’NARC’=size(’ITEMS’)],
[]).

ctr_eval(elements,[reformulation(elements_r)]).

ctr_pure_functional_dependency(elements,[]).

ctr_functional_dependency(elements,1-2,[1-1,2]).

elements_r(ITEMS,TABLE) :-
length(TABLE,N),
collection(ITEMS,[dvar(1,N),dvar]),
collection(TABLE,[int(1,N),dvar]),
get_attr1(TABLE,INDEXES),
all_different(INDEXES),
sort(TABLE,STAB),
get_attr2(STAB,VALUES),
get_attr1(ITEMS,INDS),
get_attr2(ITEMS,VALS),
elements1(INDS,VALS,VALUES).

elements1([],[],_32251).

elements1([IND|R],[VAL|S],VALUES) :-
element(IND,VALUES,VAL),
elements1(R,S,VALUES).

2343

B.135 elementsalldifferent

♦ META-DATA:

ctr_date(elements_alldifferent,[’20030820’,’2006080 9’]).

ctr_origin(
elements_alldifferent,
Derived from %c and %c.,
[elements,alldifferent]).

ctr_synonyms(
elements_alldifferent,
[elements_alldiff,elements_alldistinct]).

ctr_arguments(
elements_alldifferent,
[’ITEMS’-collection(index-dvar,value-dvar),

’TABLE’-collection(index-int,value-dvar)]).

ctr_restrictions(
elements_alldifferent,
[required(’ITEMS’,[index,value]),

’ITEMS’ˆindex>=1,
’ITEMS’ˆindex=<size(’TABLE’),
size(’ITEMS’)=size(’TABLE’),
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
distinct(’TABLE’,index)]).

ctr_example(
elements_alldifferent,
elements_alldifferent(

[[index-2,value-9],
[index-1,value-6],
[index-4,value-9],
[index-3,value-2]],

[[index-1,value-6],
[index-2,value-9],
[index-3,value-2],
[index-4,value-9]])).

ctr_typical(
elements_alldifferent,
[size(’ITEMS’)>1,

2344 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

range(’ITEMS’ˆvalue)>1,
size(’TABLE’)>1,
range(’TABLE’ˆvalue)>1]).

ctr_exchangeable(
elements_alldifferent,
[args([[’ITEMS’,’TABLE’]]),

items(’ITEMS’,all),
items(’TABLE’,all),
vals([’ITEMS’ˆvalue,’TABLE’ˆvalue],int,=\=,all,dont care)]).

ctr_graph(
elements_alldifferent,
[’ITEMS’,’TABLE’],
2,
[’PRODUCT’>>collection(items,table)],
[itemsˆindex=tableˆindex,itemsˆvalue=tableˆvalue],
[’NVERTEX’=size(’ITEMS’)+size(’TABLE’)],
[]).

ctr_eval(
elements_alldifferent,
[reformulation(elements_alldifferent_r)]).

ctr_functional_dependency(elements_alldifferent,1-2 ,[1-1,2]).

elements_alldifferent_r(ITEMS,TABLE) :-
length(TABLE,N),
collection(ITEMS,[dvar(1,N),dvar]),
collection(TABLE,[int(1,N),dvar]),
get_attr1(TABLE,INDEXES),
all_different(INDEXES),
sort(TABLE,STAB),
get_attr2(STAB,VALUES),
get_attr1(ITEMS,INDS),
get_attr2(ITEMS,VALS),
all_different(INDS),
elements_alldifferent1(INDS,VALS,VALUES).

elements_alldifferent1([],[],_38083).

elements_alldifferent1([IND|R],[VAL|S],VALUES) :-
element(IND,VALUES,VAL),
elements_alldifferent1(R,S,VALUES).

2345

B.136 elementssparse

♦ META-DATA:

ctr_date(elements_sparse,[’20030820’,’20060809’]).

ctr_origin(elements_sparse,’Derived from %c.’,[elemen t_sparse]).

ctr_arguments(
elements_sparse,
[’ITEMS’-collection(index-dvar,value-dvar),

’TABLE’-collection(index-int,value-int),
’DEFAULT’-int]).

ctr_restrictions(
elements_sparse,
[required(’ITEMS’,[index,value]),

’ITEMS’ˆindex>=1,
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
distinct(’TABLE’,index)]).

ctr_example(
elements_sparse,
elements_sparse(

[[index-8,value-9],
[index-3,value-5],
[index-2,value-5]],

[[index-1,value-6],
[index-2,value-5],
[index-4,value-2],
[index-8,value-9]],

5)).

ctr_typical(
elements_sparse,
[size(’ITEMS’)>1,

range(’ITEMS’ˆvalue)>1,
size(’TABLE’)>1,
range(’TABLE’ˆvalue)>1]).

ctr_exchangeable(
elements_sparse,
[items(’ITEMS’,all),

items(’TABLE’,all),
vals(

2346 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[’ITEMS’ˆvalue,’TABLE’ˆvalue,’DEFAULT’],
int,
=\=,
all,
dontcare)]).

ctr_derived_collections(
elements_sparse,
[col(’DEF’-collection(index-int,value-int),

[item(index-0,value-’DEFAULT’)]),
col(’TABLE_DEF’-collection(index-dvar,value-dvar),

[item(index-’TABLE’ˆindex,value-’TABLE’ˆindex),
item(index-’DEF’ˆindex,value-’DEF’ˆvalue)])]).

ctr_graph(
elements_sparse,
[’ITEMS’,’TABLE_DEF’],
2,
[’PRODUCT’>>collection(items,table_def)],
[itemsˆvalue=table_defˆvalue,

itemsˆindex=table_defˆindex#\/table_defˆindex=0],
[’NSOURCE’=size(’ITEMS’)],
[]).

ctr_eval(elements_sparse,[reformulation(elements_sp arse_r)]).

elements_sparse_r(ITEMS,TABLE,DEFAULT) :-
collection(ITEMS,[dvar_gteq(1),dvar]),
collection(TABLE,[int_gteq(1),dvar]),
check_type(int,DEFAULT),
get_attr1(ITEMS,IS),
get_attr2(ITEMS,VS),
get_attr1(TABLE,INDEXES),
get_attr2(TABLE,VALUES),
all_different(INDEXES),
elements_sparse1(IS,VS,INDEXES,VALUES,DEFAULT).

elements_sparse1([],[],_38157,_38158,_38159).

elements_sparse1([I|R],[V|S],INDEXES,VALUES,DEFAULT) :-
elements_sparse2(

INDEXES,
VALUES,
I,
V,
DEFAULT,

2347

Term1,
Term2),

call(Term1#\/Term2),
elements_sparse1(R,S,INDEXES,VALUES,DEFAULT).

elements_sparse2([],[],_38157,V,DEFAULT,0,V#=DEFAUL T).

elements_sparse2(
[IND|R],
[VAL|S],
I,
V,
DEFAULT,
I#=IND#/\V#=VAL#\/T,
I#\=IND#/\U) :-

elements_sparse2(R,S,I,V,DEFAULT,T,U).

2348 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.137 eq

♦ META-DATA:

ctr_predefined(eq).

ctr_date(eq,[’20070821’]).

ctr_origin(eq,’Arithmetic.’,[]).

ctr_synonyms(eq,[xeqy]).

ctr_arguments(eq,[’VAR1’-dvar,’VAR2’-dvar]).

ctr_restrictions(eq,[]).

ctr_example(eq,eq(8,8)).

ctr_exchangeable(
eq,
[args([[’VAR1’,’VAR2’]]),

vals([’VAR1’,’VAR2’],int,=\=,all,dontcare)]).

ctr_eval(eq,[builtin(eq_b)]).

ctr_pure_functional_dependency(eq,[]).

ctr_functional_dependency(eq,2,[1]).

ctr_functional_dependency(eq,1,[2]).

eq_b(VAR1,VAR2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
VAR1#=VAR2.

2349

B.138 eqcst

♦ META-DATA:

ctr_predefined(eq_cst).

ctr_date(eq_cst,[’20090923’]).

ctr_origin(eq_cst,’Arithmetic.’,[]).

ctr_arguments(eq_cst,[’VAR1’-dvar,’VAR2’-dvar,’CST2 ’-int]).

ctr_example(eq_cst,eq_cst(8,2,6)).

ctr_typical(eq_cst,[’CST2’=\=0]).

ctr_exchangeable(
eq_cst,
[args([[’VAR1’],[’VAR2’,’CST2’]]),

translate([’VAR1’,’VAR2’]),
translate([’VAR1’,’CST2’])]).

ctr_eval(eq_cst,[builtin(eq_cst_b)]).

ctr_pure_functional_dependency(eq_cst,[]).

ctr_functional_dependency(eq_cst,1,[2,3]).

ctr_functional_dependency(eq_cst,2,[1,3]).

ctr_functional_dependency(eq_cst,3,[1,2]).

eq_cst_b(VAR1,VAR2,CST2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
check_type(int,CST2),
VAR1#=VAR2+CST2.

2350 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.139 eqset

♦ META-DATA:

ctr_predefined(eq_set).

ctr_date(eq_set,[’20030820’]).

ctr_origin(
eq_set,
Used for defining %c.,
[alldifferent_between_sets]).

ctr_arguments(eq_set,[’SET1’-svar,’SET2’-svar]).

ctr_example(eq_set,eq_set({3,5},{3,5})).

ctr_exchangeable(
eq_set,
[args([[’SET1’,’SET2’]]),

vals([’SET1’,’SET2’],int,=\=,all,dontcare)]).

2351

B.140 equalsboxes

♦ META-DATA:

ctr_date(equal_sboxes,[’20070622’,’20090725’]).

ctr_origin(
equal_sboxes,
Geometry, derived from \cite{RandellCuiCohn92},
[]).

ctr_synonyms(equal_sboxes,[equal]).

ctr_types(
equal_sboxes,
[’VARIABLES’-collection(v-dvar),

’INTEGERS’-collection(v-int),
’POSITIVES’-collection(v-int)]).

ctr_arguments(
equal_sboxes,
[’K’-int,

’DIMS’-sint,
’OBJECTS’-collection(oid-int,sid-int,x-’VARIABLES’) ,
’SBOXES’-collection(sid-int,t-’INTEGERS’,l-’POSITIV ES’)]).

ctr_restrictions(
equal_sboxes,
[size(’VARIABLES’)>=1,

size(’INTEGERS’)>=1,
size(’POSITIVES’)>=1,
required(’VARIABLES’,v),
size(’VARIABLES’)=’K’,
required(’INTEGERS’,v),
size(’INTEGERS’)=’K’,
required(’POSITIVES’,v),
size(’POSITIVES’)=’K’,
’POSITIVES’ˆv>0,
’K’>0,
’DIMS’>=0,
’DIMS’<’K’,
increasing_seq(’OBJECTS’,[oid]),
required(’OBJECTS’,[oid,sid,x]),
’OBJECTS’ˆoid>=1,
’OBJECTS’ˆoid=<size(’OBJECTS’),
’OBJECTS’ˆsid>=1,

2352 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

’OBJECTS’ˆsid=<size(’SBOXES’),
size(’SBOXES’)>=1,
required(’SBOXES’,[sid,t,l]),
’SBOXES’ˆsid>=1,
’SBOXES’ˆsid=<size(’SBOXES’),
do_not_overlap(’SBOXES’)]).

ctr_example(
equal_sboxes,
equal_sboxes(

2,
{0,1},
[[oid-1,sid-2,x-[[v-4],[v-1]]],

[oid-2,sid-2,x-[[v-4],[v-1]]],
[oid-3,sid-2,x-[[v-4],[v-1]]]],

[[sid-1,t-[[v-0],[v-0]],l-[[v-1],[v-2]]],
[sid-2,t-[[v-0],[v-0]],l-[[v-1],[v-1]]],
[sid-2,t-[[v-1],[v-0]],l-[[v-1],[v-3]]],
[sid-2,t-[[v-0],[v-2]],l-[[v-1],[v-1]]],
[sid-3,t-[[v-0],[v-0]],l-[[v-3],[v-1]]],
[sid-3,t-[[v-0],[v-1]],l-[[v-1],[v-1]]],
[sid-3,t-[[v-2],[v-1]],l-[[v-1],[v-1]]],
[sid-4,t-[[v-0],[v-0]],l-[[v-1],[v-1]]]])).

ctr_typical(equal_sboxes,[size(’OBJECTS’)>1]).

ctr_exchangeable(
equal_sboxes,
[items(’OBJECTS’,all),

items(’SBOXES’,all),
items_sync(’OBJECTS’ˆx,’SBOXES’ˆt,’SBOXES’ˆl,all)]) .

ctr_eval(equal_sboxes,[logic(equal_sboxes_g)]).

ctr_logic(
equal_sboxes,
[DIMENSIONS,OIDS],
[(origin(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)),

(end(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)+S1ˆl(D)),
(equal_sboxes(Dims,O1,S1,O2,S2)--->

forall(
D,
Dims,
origin(O1,S1,D)#=origin(O2,S2,D)#/\
end(O1,S1,D)#=end(O2,S2,D))),

(equal_objects(Dims,O1,O2)--->

2353

forall(
S1,
sboxes([O1ˆsid]),
exists(

S2,
sboxes([O2ˆsid]),
equal_sboxes(Dims,O1,S1,O2,S2)))),

(all_equal(Dims,OIDS)--->
forall(

O1,
objects(OIDS),
forall(

O2,
objects(OIDS),
O1ˆoid#=O2ˆoid-1#=>equal_objects(Dims,O1,O2)))),

all_equal(DIMENSIONS,OIDS)]).

ctr_contractible(equal_sboxes,[],’OBJECTS’,suffix).

equal_sboxes_g(K,_30671,[],_30673) :-
!,
check_type(int_gteq(1),K).

equal_sboxes_g(K,_DIMS,OBJECTS,SBOXES) :-
length(OBJECTS,O),
length(SBOXES,S),
O>0,
S>0,
check_type(int_gteq(1),K),
collection(OBJECTS,[int(1,O),dvar(1,S),col(K,[dvar])]),
collection(

SBOXES,
[int(1,S),col(K,[int]),col(K,[int_gteq(1)])]),

get_attr1(OBJECTS,OIDS),
get_attr2(OBJECTS,SIDS),
get_col_attr3(OBJECTS,1,XS),
get_attr1(SBOXES,SIDES),
get_col_attr2(SBOXES,1,TS),
get_col_attr3(SBOXES,1,TL),
collection_increasing_seq(OBJECTS,[1]),
geost1(OIDS,SIDS,XS,Objects),
geost2(SIDES,TS,TL,Sboxes),
geost_dims(1,K,DIMENSIONS),
ctr_logic(equal_sboxes,[DIMENSIONS,OIDS],Rules),
geost(Objects,Sboxes,[overlap(true)],Rules).

2354 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.141 equivalent

♦ META-DATA:

ctr_date(equivalent,[’20051226’]).

ctr_origin(equivalent,’Logic’,[]).

ctr_synonyms(equivalent,[eq]).

ctr_arguments(
equivalent,
[’VAR’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
equivalent,
[’VAR’>=0,

’VAR’=<1,
size(’VARIABLES’)=2,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar=<1]).

ctr_example(
equivalent,
[equivalent(1,[[var-0],[var-0]]),

equivalent(0,[[var-0],[var-1]]),
equivalent(0,[[var-1],[var-0]]),
equivalent(1,[[var-1],[var-1]])]).

ctr_exchangeable(
equivalent,
[items(’VARIABLES’,all),

vals([’VAR’,’VARIABLES’ˆvar],int(0 in 1),<,all,dontca re)]).

ctr_eval(
equivalent,
[reformulation(equivalent_r),automaton(equivalent_a)]).

ctr_pure_functional_dependency(equivalent,[]).

ctr_functional_dependency(equivalent,1,[2]).

equivalent_r(VAR,VARIABLES) :-
check_type(dvar(0,1),VAR),
collection(VARIABLES,[dvar(0,1)]),

2355

length(VARIABLES,2),
get_attr1(VARIABLES,[VAR1,VAR2]),
VAR#<=>(VAR1#<=>VAR2).

equivalent_a(FLAG,VAR,VARIABLES) :-
check_type(dvar(0,1),VAR),
collection(VARIABLES,[dvar(0,1)]),
length(VARIABLES,2),
get_attr1(VARIABLES,LIST),
append([VAR],LIST,LIST_VARIABLES),
AUTOMATON=
automaton(

LIST_VARIABLES,
_20298,
LIST_VARIABLES,
[source(s),sink(t)],
[arc(s,0,i),

arc(s,1,j),
arc(i,0,l),
arc(i,1,k),
arc(j,0,k),
arc(j,1,l),
arc(k,0,t),
arc(l,1,t)],

[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

2356 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.142 exactly

♦ META-DATA:

ctr_date(exactly,[’20040807’,’20060809’]).

ctr_origin(exactly,’Derived from %c and %c.’,[atleast,a tmost]).

ctr_synonyms(exactly,[count]).

ctr_arguments(
exactly,
[’N’-int,’VARIABLES’-collection(var-dvar),’VALUE’-i nt]).

ctr_restrictions(
exactly,
[’N’>=0,’N’=<size(’VARIABLES’),required(’VARIABLES’ ,var)]).

ctr_example(
exactly,
exactly(2,[[var-4],[var-2],[var-4],[var-5]],4)).

ctr_typical(
exactly,
[’N’>0,’N’<size(’VARIABLES’),size(’VARIABLES’)>1]).

ctr_exchangeable(
exactly,
[items(’VARIABLES’,all),

vals(
[’VARIABLES’ˆvar],
int(=\=(’VALUE’)),
=\=,
dontcare,
dontcare)]).

ctr_graph(
exactly,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=’VALUE’],
[’NARC’=’N’],
[]).

ctr_eval(

2357

exactly,
[reformulation(exactly_r),automaton(exactly_a)]).

ctr_pure_functional_dependency(exactly,[]).

ctr_functional_dependency(exactly,1,[2,3]).

ctr_aggregate(exactly,[],[+,union,id]).

exactly_r(N,VARIABLES,VALUE) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,NVAR),
check_type(int(0,NVAR),N),
integer(VALUE),
get_attr1(VARIABLES,VARS),
get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),
MIN is min(MINVARS,VALUE),
MAX is max(MAXVARS,VALUE),
complete_card(MIN,MAX,NVAR,[VALUE],[N],VN),
global_cardinality(VARS,VN).

exactly_a(FLAG,N,VARIABLES,VALUE) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,NVAR),
check_type(int(0,NVAR),N),
integer(VALUE),
exactly_signature(VARIABLES,SIGNATURE,VALUE),
automaton(

SIGNATURE,
_33126,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

COUNT#=N#<=>FLAG.

exactly_signature([],[],_31677).

exactly_signature([[var-VAR]|VARs],[S|Ss],VALUE) :-
VAR#=VALUE#<=>S,
exactly_signature(VARs,Ss,VALUE).

2358 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.143 gcd

♦ META-DATA:

ctr_predefined(gcd).

ctr_date(gcd,[’20070930’]).

ctr_origin(gcd,’\\cite{DenmatGotliebDucasse07}’,[]) .

ctr_arguments(gcd,[’X’-dvar,’Y’-dvar,’Z’-dvar]).

ctr_restrictions(gcd,[’X’>0,’Y’>0,’Z’>0]).

ctr_example(gcd,gcd(24,60,12)).

ctr_typical(gcd,[’X’>1,’Y’>1]).

ctr_exchangeable(gcd,[args([[’X’,’Y’],[’Z’]])]).

ctr_eval(gcd,[checker(gcd_c)]).

ctr_pure_functional_dependency(gcd,[]).

ctr_functional_dependency(gcd,1,[2,3]).

gcd_c(X,Y,Z) :-
check_type(int_gteq(1),X),
check_type(int_gteq(1),Y),
check_type(int_gteq(1),Z),
Z is gcd(X,Y).

2359

B.144 geost

♦ META-DATA:

ctr_predefined(geost).

ctr_date(geost,[’20060919’,’20080609’,’20090116’,’2 0090725’]).

ctr_origin(geost,’Generalisation of %c.’,[diffn]).

ctr_types(
geost,
[’VARIABLES’-collection(v-dvar),

’INTEGERS’-collection(v-int),
’POSITIVES’-collection(v-int)]).

ctr_arguments(
geost,
[’K’-int,

’OBJECTS’-collection(oid-int,sid-dvar,x-’VARIABLES’),
’SBOXES’-collection(sid-int,t-’INTEGERS’,l-’POSITIV ES’)]).

ctr_restrictions(
geost,
[size(’VARIABLES’)>=1,

size(’INTEGERS’)>=1,
size(’POSITIVES’)>=1,
required(’VARIABLES’,v),
size(’VARIABLES’)=’K’,
required(’INTEGERS’,v),
size(’INTEGERS’)=’K’,
required(’POSITIVES’,v),
size(’POSITIVES’)=’K’,
’POSITIVES’ˆv>0,
’K’>0,
required(’OBJECTS’,[oid,sid,x]),
distinct(’OBJECTS’,oid),
’OBJECTS’ˆoid>=1,
’OBJECTS’ˆoid=<size(’OBJECTS’),
’OBJECTS’ˆsid>=1,
’OBJECTS’ˆsid=<size(’SBOXES’),
size(’SBOXES’)>=1,
required(’SBOXES’,[sid,t,l]),
’SBOXES’ˆsid>=1,
’SBOXES’ˆsid=<size(’SBOXES’),
do_not_overlap(’SBOXES’)]).

2360 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_example(
geost,
geost(

2,
[[oid-1,sid-1,x-[[v-1],[v-2]]],

[oid-2,sid-5,x-[[v-2],[v-1]]],
[oid-3,sid-8,x-[[v-4],[v-1]]]],

[[sid-1,t-[[v-0],[v-0]],l-[[v-2],[v-1]]],
[sid-1,t-[[v-0],[v-1]],l-[[v-1],[v-2]]],
[sid-1,t-[[v-1],[v-2]],l-[[v-3],[v-1]]],
[sid-2,t-[[v-0],[v-0]],l-[[v-3],[v-1]]],
[sid-2,t-[[v-0],[v-1]],l-[[v-1],[v-3]]],
[sid-2,t-[[v-2],[v-1]],l-[[v-1],[v-1]]],
[sid-3,t-[[v-0],[v-0]],l-[[v-2],[v-1]]],
[sid-3,t-[[v-1],[v-1]],l-[[v-1],[v-2]]],
[sid-3,t-[[v- -2],[v-2]],l-[[v-3],[v-1]]],
[sid-4,t-[[v-0],[v-0]],l-[[v-3],[v-1]]],
[sid-4,t-[[v-0],[v-1]],l-[[v-1],[v-1]]],
[sid-4,t-[[v-2],[v-1]],l-[[v-1],[v-3]]],
[sid-5,t-[[v-0],[v-0]],l-[[v-2],[v-1]]],
[sid-5,t-[[v-1],[v-1]],l-[[v-1],[v-1]]],
[sid-5,t-[[v-0],[v-2]],l-[[v-2],[v-1]]],
[sid-6,t-[[v-0],[v-0]],l-[[v-3],[v-1]]],
[sid-6,t-[[v-0],[v-1]],l-[[v-1],[v-1]]],
[sid-6,t-[[v-2],[v-1]],l-[[v-1],[v-1]]],
[sid-7,t-[[v-0],[v-0]],l-[[v-3],[v-2]]],
[sid-8,t-[[v-0],[v-0]],l-[[v-2],[v-3]]]])).

ctr_typical(geost,[size(’OBJECTS’)>1]).

ctr_exchangeable(
geost,
[items(’OBJECTS’,all),

items(’SBOXES’,all),
items_sync(’OBJECTS’ˆx,’SBOXES’ˆt,’SBOXES’ˆl,all),
vals([’SBOXES’ˆlˆv],int(>=(1)),>,dontcare,dontcare)]).

ctr_eval(geost,[builtin(geost_b)]).

geost_b(K,[],_44598) :-
!,
check_type(int_gteq(1),K).

geost_b(K,OBJECTS,SBOXES) :-
length(OBJECTS,O),

2361

length(SBOXES,S),
O>0,
S>0,
check_type(int_gteq(1),K),
collection(OBJECTS,[int(1,O),dvar(1,S),col(K,[dvar])]),
collection(

SBOXES,
[int(1,S),col(K,[int]),col(K,[int_gteq(1)])]),

get_attr1(OBJECTS,OIDS),
get_attr2(OBJECTS,SIDS),
get_col_attr3(OBJECTS,1,XS),
get_attr1(SBOXES,SIDES),
get_col_attr2(SBOXES,1,TS),
get_col_attr3(SBOXES,1,TL),
geost1(OIDS,SIDS,XS,Objects),
geost2(SIDES,TS,TL,Sboxes),
catch(geost(Objects,Sboxes),_Flag,fail).

2362 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.145 geosttime

♦ META-DATA:

ctr_predefined(geost_time).

ctr_date(geost_time,[’20060919’]).

ctr_origin(geost_time,’Generalisation of %c.’,[diffn]).

ctr_types(
geost_time,
[’VARIABLES’-collection(v-dvar),

’INTEGERS’-collection(v-int),
’POSITIVES’-collection(v-int)]).

ctr_arguments(
geost_time,
[’K’-int,

’DIMS’-sint,
OBJECTS-
collection(

oid-int,
sid-dvar,
x-’VARIABLES’,
start-dvar,
duration-dvar,
end-dvar),

’SBOXES’-collection(sid-int,t-’INTEGERS’,l-’POSITIV ES’)]).

ctr_restrictions(
geost_time,
[size(’VARIABLES’)>=1,

size(’INTEGERS’)>=1,
size(’POSITIVES’)>=1,
required(’VARIABLES’,v),
size(’VARIABLES’)=’K’,
required(’INTEGERS’,v),
size(’INTEGERS’)=’K’,
required(’POSITIVES’,v),
size(’POSITIVES’)=’K’,
’POSITIVES’ˆv>0,
’K’>=0,
’DIMS’>=0,
’DIMS’<’K’,
distinct(’OBJECTS’,oid),

2363

required(’OBJECTS’,[oid,sid,x]),
require_at_least(2,’OBJECTS’,[start,duration,end]),
’OBJECTS’ˆoid>=1,
’OBJECTS’ˆoid=<size(’OBJECTS’),
’OBJECTS’ˆsid>=1,
’OBJECTS’ˆsid=<size(’SBOXES’),
’OBJECTS’ˆduration>=0,
size(’SBOXES’)>=1,
required(’SBOXES’,[sid,t,l]),
’SBOXES’ˆsid>=1,
’SBOXES’ˆsid=<size(’SBOXES’),
do_not_overlap(’SBOXES’)]).

ctr_example(
geost_time,
geost_time(

2,
{0,1},
[[oid-1,

sid-1,
x-[[v-1],[v-2]],
start-0,
duration-1,
end-1],

[oid-2,
sid-5,
x-[[v-2],[v-1]],
start-0,
duration-1,
end-1],

[oid-3,
sid-8,
x-[[v-4],[v-1]],
start-0,
duration-1,
end-1]],

[[sid-1,t-[[v-0],[v-0]],l-[[v-2],[v-1]]],
[sid-1,t-[[v-0],[v-1]],l-[[v-1],[v-2]]],
[sid-1,t-[[v-1],[v-2]],l-[[v-3],[v-1]]],
[sid-2,t-[[v-0],[v-0]],l-[[v-3],[v-1]]],
[sid-2,t-[[v-0],[v-1]],l-[[v-1],[v-3]]],
[sid-2,t-[[v-2],[v-1]],l-[[v-1],[v-1]]],
[sid-3,t-[[v-0],[v-0]],l-[[v-2],[v-1]]],
[sid-3,t-[[v-1],[v-1]],l-[[v-1],[v-2]]],
[sid-3,t-[[v- -2],[v-2]],l-[[v-3],[v-1]]],
[sid-4,t-[[v-0],[v-0]],l-[[v-3],[v-1]]],

2364 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[sid-4,t-[[v-0],[v-1]],l-[[v-1],[v-1]]],
[sid-4,t-[[v-2],[v-1]],l-[[v-1],[v-3]]],
[sid-5,t-[[v-0],[v-0]],l-[[v-2],[v-1]]],
[sid-5,t-[[v-1],[v-1]],l-[[v-1],[v-1]]],
[sid-5,t-[[v-0],[v-2]],l-[[v-2],[v-1]]],
[sid-6,t-[[v-0],[v-0]],l-[[v-3],[v-1]]],
[sid-6,t-[[v-0],[v-1]],l-[[v-1],[v-1]]],
[sid-6,t-[[v-2],[v-1]],l-[[v-1],[v-1]]],
[sid-7,t-[[v-0],[v-0]],l-[[v-3],[v-2]]],
[sid-8,t-[[v-0],[v-0]],l-[[v-2],[v-3]]]])).

ctr_typical(geost_time,[size(’OBJECTS’)>1]).

ctr_exchangeable(
geost_time,
[items(’OBJECTS’,all),

items(’SBOXES’,all),
items_sync(’OBJECTS’ˆx,’SBOXES’ˆt,’SBOXES’ˆl,all),
vals([’SBOXES’ˆlˆv],int(>=(1)),>,dontcare,dontcare) ,
translate([’OBJECTS’ˆstart,’OBJECTS’ˆend])]).

2365

B.146 geq

♦ META-DATA:

ctr_predefined(geq).

ctr_date(geq,[’20070821’]).

ctr_origin(geq,’Arithmetic.’,[]).

ctr_synonyms(geq,[rel,xgteqy]).

ctr_arguments(geq,[’VAR1’-dvar,’VAR2’-dvar]).

ctr_example(geq,geq(8,1)).

ctr_typical(geq,[’VAR1’>’VAR2’]).

ctr_exchangeable(
geq,
[vals([’VAR1’],int(>=(’VAR2’)),=\=,all,dontcare),

vals([’VAR2’],int(=<(’VAR1’)),=\=,all,dontcare)]).

ctr_eval(geq,[builtin(geq_b)]).

geq_b(VAR1,VAR2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
VAR1#>=VAR2.

2366 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.147 geqcst

♦ META-DATA:

ctr_predefined(geq_cst).

ctr_date(geq_cst,[’20090912’]).

ctr_origin(geq_cst,’Arithmetic.’,[]).

ctr_arguments(geq_cst,[’VAR1’-dvar,’VAR2’-dvar,’CST 2’-int]).

ctr_example(geq_cst,geq_cst(8,1,7)).

ctr_typical(geq_cst,[’CST2’=\=0,’VAR1’>’VAR2’+’CST2 ’]).

ctr_exchangeable(
geq_cst,
[args([[’VAR1’],[’VAR2’,’CST2’]]),

vals([’VAR1’],int(>=(’VAR2’+’CST2’)),=\=,all,dontca re),
vals([’VAR2’],int(=<(’VAR1’-’CST2’)),=\=,all,dontca re),
vals([’CST2’],int(=<(’VAR1’-’VAR2’)),=\=,all,dontca re)]).

ctr_eval(geq_cst,[builtin(geq_cst_b)]).

geq_cst_b(VAR1,VAR2,CST2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
check_type(int,CST2),
VAR1#>=VAR2+CST2.

2367

B.148 globalcardinality

♦ META-DATA:

ctr_date(
global_cardinality,
[’20030820’,’20040530’,’20060809’,’20091218’]).

ctr_origin(
global_cardinality,
\index{CHARME|indexuse}CHARME \cite{OplobeduMarcovit chTourbier89},
[]).

ctr_synonyms(
global_cardinality,
[count,

distribute,
distribution,
gcc,
card_var_gcc,
egcc,
extended_global_cardinality]).

ctr_arguments(
global_cardinality,
[’VARIABLES’-collection(var-dvar),

’VALUES’-collection(val-int,noccurrence-dvar)]).

ctr_restrictions(
global_cardinality,
[required(’VARIABLES’,var),

required(’VALUES’,[val,noccurrence]),
distinct(’VALUES’,val),
’VALUES’ˆnoccurrence>=0,
’VALUES’ˆnoccurrence=<size(’VARIABLES’)]).

ctr_example(
global_cardinality,
global_cardinality(

[[var-3],[var-3],[var-8],[var-6]],
[[val-3,noccurrence-2],

[val-5,noccurrence-0],
[val-6,noccurrence-1]])).

ctr_typical(
global_cardinality,

2368 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
size(’VALUES’)>1,
size(’VARIABLES’)>=size(’VALUES’),
in_attr(’VARIABLES’,var,’VALUES’,val)]).

ctr_exchangeable(
global_cardinality,
[items(’VARIABLES’,all),

items(’VALUES’,all),
vals(

[’VARIABLES’ˆvar],
all(notin(’VALUES’ˆval)),
=,
dontcare,
dontcare),

vals(
[’VARIABLES’ˆvar,’VALUES’ˆval],
int,
=\=,
all,
dontcare)]).

ctr_graph(
global_cardinality,
[’VARIABLES’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval],
[’NVERTEX’=’VALUES’ˆnoccurrence],
[]).

ctr_eval(global_cardinality,[builtin(global_cardina lity_b)]).

ctr_pure_functional_dependency(global_cardinality,[]).

ctr_functional_dependency(global_cardinality,2-2,[1 ,2-1]).

ctr_contractible(global_cardinality,[],’VALUES’,any).

global_cardinality_b(VARIABLES,VALUES) :-
length(VARIABLES,N),
collection(VARIABLES,[dvar]),
collection(VALUES,[int,dvar(0,N)]),
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),

2369

get_attr2(VALUES,NOCCS),
all_different(VALS),
get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),
get_minimum(VALS,MINVALS),
get_maximum(VALS,MAXVALS),
MIN is min(MINVARS,MINVALS),
MAX is max(MAXVARS,MAXVALS),
complete_card(MIN,MAX,N,VALS,NOCCS,VN),
global_cardinality(VARS,VN).

2370 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.149 globalcardinality low up

♦ META-DATA:

ctr_date(
global_cardinality_low_up,
[’20031008’,’20040530’,’20060809’,’20090521’]).

ctr_origin(
global_cardinality_low_up,
Used for defining %c.,
[sliding_distribution]).

ctr_synonyms(global_cardinality_low_up,[gcc_low_up, gcc]).

ctr_arguments(
global_cardinality_low_up,
[’VARIABLES’-collection(var-dvar),

’VALUES’-collection(val-int,omin-int,omax-int)]).

ctr_restrictions(
global_cardinality_low_up,
[required(’VARIABLES’,var),

size(’VALUES’)>0,
required(’VALUES’,[val,omin,omax]),
distinct(’VALUES’,val),
’VALUES’ˆomin>=0,
’VALUES’ˆomax=<size(’VARIABLES’),
’VALUES’ˆomin=<’VALUES’ˆomax]).

ctr_example(
global_cardinality_low_up,
global_cardinality_low_up(

[[var-3],[var-3],[var-8],[var-6]],
[[val-3,omin-2,omax-3],

[val-5,omin-0,omax-1],
[val-6,omin-1,omax-2]])).

ctr_typical(
global_cardinality_low_up,
[size(’VARIABLES’)>1,

range(’VARIABLES’ˆvar)>1,
size(’VALUES’)>1,
’VALUES’ˆomin=<size(’VARIABLES’),
’VALUES’ˆomax>0,
’VALUES’ˆomax<size(’VARIABLES’),

2371

size(’VARIABLES’)>size(’VALUES’),
in_attr(’VARIABLES’,var,’VALUES’,val)]).

ctr_exchangeable(
global_cardinality_low_up,
[items(’VARIABLES’,all),

vals(
[’VARIABLES’ˆvar],
all(notin(’VALUES’ˆval)),
=,
dontcare,
dontcare),

items(’VALUES’,all),
vals([’VALUES’ˆomin],int(>=(0)),>,dontcare,dontcare),
vals(

[’VALUES’ˆomax],
int(=<(size(’VARIABLES’))),
<,
dontcare,
dontcare),

vals(
[’VARIABLES’ˆvar,’VALUES’ˆval],
int,
=\=,
all,
dontcare)]).

ctr_graph(
global_cardinality_low_up,
[’VARIABLES’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval],
[’NVERTEX’>=’VALUES’ˆomin,’NVERTEX’=<’VALUES’ˆomax] ,
[]).

ctr_eval(
global_cardinality_low_up,
[reformulation(global_cardinality_low_up_r)]).

ctr_contractible(global_cardinality_low_up,[],’VALU ES’,any).

global_cardinality_low_up_r(VARIABLES,VALUES) :-
length(VARIABLES,N),
collection(VARIABLES,[dvar]),
collection(VALUES,[int,int(0,N),int(0,N)]),

2372 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

length(VALUES,M),
M>0,
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
get_attr2(VALUES,OMINS),
get_attr3(VALUES,OMAXS),
all_different(VALS),
get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),
get_minimum(VALS,MINVALS),
get_maximum(VALS,MAXVALS),
MIN is min(MINVARS,MINVALS),
MAX is max(MAXVARS,MAXVALS),
complete_card_low_up(MIN,MAX,N,VALS,OMINS,OMAXS,VN) ,
global_cardinality(VARS,VN).

2373

B.150 globalcardinality low up no loop

♦ META-DATA:

ctr_date(
global_cardinality_low_up_no_loop,
[’20051218’,’20060809’]).

ctr_origin(
global_cardinality_low_up_no_loop,
Derived from %c and %c.,
[global_cardinality_low_up,tree]).

ctr_synonyms(
global_cardinality_low_up_no_loop,
[gcc_low_up_no_loop]).

ctr_arguments(
global_cardinality_low_up_no_loop,
[’MINLOOP’-int,

’MAXLOOP’-int,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,omin-int,omax-int)]).

ctr_restrictions(
global_cardinality_low_up_no_loop,
[’MINLOOP’>=0,

’MINLOOP’=<’MAXLOOP’,
’MAXLOOP’=<size(’VARIABLES’),
required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,omin,omax]),
distinct(’VALUES’,val),
’VALUES’ˆomin>=0,
’VALUES’ˆomax=<size(’VARIABLES’),
’VALUES’ˆomin=<’VALUES’ˆomax]).

ctr_example(
global_cardinality_low_up_no_loop,
global_cardinality_low_up_no_loop(

1,
1,
[[var-1],[var-1],[var-8],[var-6]],
[[val-1,omin-1,omax-1],

[val-5,omin-0,omax-0],
[val-6,omin-1,omax-2]])).

2374 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_typical(
global_cardinality_low_up_no_loop,
[size(’VARIABLES’)>1,

range(’VARIABLES’ˆvar)>1,
size(’VALUES’)>1,
’VALUES’ˆomin=<size(’VARIABLES’),
’VALUES’ˆomax>0,
’VALUES’ˆomax<size(’VARIABLES’),
size(’VARIABLES’)>size(’VALUES’)]).

ctr_exchangeable(
global_cardinality_low_up_no_loop,
[items(’VALUES’,all),

vals([’VALUES’ˆomin],int(>=(0)),>,dontcare,dontcare),
vals(

[’VALUES’ˆomax],
int(=<(size(’VARIABLES’))),
<,
dontcare,
dontcare)]).

ctr_graph(
global_cardinality_low_up_no_loop,
[’VARIABLES’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval,variablesˆkey=\=’VALUES ’ˆval],
[’NVERTEX’>=’VALUES’ˆomin,’NVERTEX’=<’VALUES’ˆomax] ,
[]).

ctr_graph(
global_cardinality_low_up_no_loop,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=variablesˆkey],
[’NARC’>=’MINLOOP’,’NARC’=<’MAXLOOP’],
[]).

ctr_eval(
global_cardinality_low_up_no_loop,
[reformulation(global_cardinality_low_up_no_loop_r)]).

global_cardinality_low_up_no_loop_r(
MINLOOP,

2375

MAXLOOP,
VARIABLES,
VALUES) :-

check_type(int_gteq(0),MINLOOP),
check_type(int_gteq(MINLOOP),MAXLOOP),
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
collection(VALUES,[int,int(0,N),int(0,N)]),
length(VALUES,M),
M>0,
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
get_attr2(VALUES,OMINS),
get_attr3(VALUES,OMAXS),
all_different(VALS),
gcc_no_loop1(VARS,1,SUMLOOP),
call(SUMLOOP#>=MINLOOP),
call(SUMLOOP#=<MAXLOOP),
global_cardinality_low_up_no_loop1(

1,
M,
N,
VALS,
OMINS,
OMAXS,
VARS).

global_cardinality_low_up_no_loop1(I,M,_37127,[],[] ,[],_37131) :-
I>M,
!.

global_cardinality_low_up_no_loop1(
I,
M,
N,
[VAL|RVAL],
[OMIN|ROMIN],
[OMAX|ROMAX],
VARS) :-

I=<M,
gcc_no_loop2(1,N,I,VARS,VAL,SUMI),
call(SUMI#>=OMIN),
call(SUMI#=<OMAX),
I1 is I+1,
global_cardinality_low_up_no_loop1(

I1,

2376 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

M,
N,
RVAL,
ROMIN,
ROMAX,
VARS).

2377

B.151 globalcardinality no loop

♦ META-DATA:

ctr_date(global_cardinality_no_loop,[’20051104’,’20 060809’]).

ctr_origin(
global_cardinality_no_loop,
Derived from %c and %c.,
[global_cardinality,tree]).

ctr_synonyms(global_cardinality_no_loop,[gcc_no_loo p]).

ctr_arguments(
global_cardinality_no_loop,
[’NLOOP’-dvar,

’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,noccurrence-dvar)]).

ctr_restrictions(
global_cardinality_no_loop,
[’NLOOP’>=0,

’NLOOP’=<size(’VARIABLES’),
required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,noccurrence]),
distinct(’VALUES’,val),
’VALUES’ˆnoccurrence>=0,
’VALUES’ˆnoccurrence=<size(’VARIABLES’)]).

ctr_example(
global_cardinality_no_loop,
global_cardinality_no_loop(

1,
[[var-1],[var-1],[var-8],[var-6]],
[[val-1,noccurrence-1],

[val-5,noccurrence-0],
[val-6,noccurrence-1]])).

ctr_typical(
global_cardinality_no_loop,
[size(’VARIABLES’)>1,

range(’VARIABLES’ˆvar)>1,
size(’VALUES’)>1,
size(’VARIABLES’)>size(’VALUES’)]).

2378 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_exchangeable(
global_cardinality_no_loop,
[items(’VALUES’,all)]).

ctr_graph(
global_cardinality_no_loop,
[’VARIABLES’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval,variablesˆkey=\=’VALUES ’ˆval],
[’NVERTEX’=’VALUES’ˆnoccurrence],
[]).

ctr_graph(
global_cardinality_no_loop,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=variablesˆkey],
[’NARC’=’NLOOP’],
[]).

ctr_eval(
global_cardinality_no_loop,
[reformulation(global_cardinality_no_loop_r)]).

ctr_pure_functional_dependency(global_cardinality_n o_loop,[]).

ctr_functional_dependency(global_cardinality_no_loo p,1,[2]).

ctr_functional_dependency(
global_cardinality_no_loop,
3-2,
[2,3-1]).

global_cardinality_no_loop_r(NLOOP,VARIABLES,VALUES) :-
check_type(dvar_gteq(0),NLOOP),
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
NLOOP#=<N,
collection(VALUES,[int,dvar(0,N)]),
length(VALUES,M),
M>0,
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
get_attr2(VALUES,NOCCURRENCES),

2379

all_different(VALS),
gcc_no_loop1(VARS,1,SUMLOOP),
call(SUMLOOP#=NLOOP),
global_cardinality_no_loop1(

1,
M,
N,
VALS,
NOCCURRENCES,
VARS).

global_cardinality_no_loop1(I,M,_36389,[],[],_36392) :-
I>M,
!.

global_cardinality_no_loop1(
I,
M,
N,
[VAL|RVAL],
[NOCCURRENCE|RNOCCURRENCE],
VARS) :-

I=<M,
gcc_no_loop2(1,N,I,VARS,VAL,SUMI),
call(SUMI#=NOCCURRENCE),
I1 is I+1,
global_cardinality_no_loop1(

I1,
M,
N,
RVAL,
RNOCCURRENCE,
VARS).

2380 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.152 globalcardinality with costs

♦ META-DATA:

ctr_date(
global_cardinality_with_costs,
[’20030820’,’20040530’,’20060809’,’20090425’]).

ctr_origin(global_cardinality_with_costs,’\\cite{Re gin99a}’,[]).

ctr_synonyms(global_cardinality_with_costs,[gccc,co st_gcc]).

ctr_arguments(
global_cardinality_with_costs,
[’VARIABLES’-collection(var-dvar),

’VALUES’-collection(val-int,noccurrence-dvar),
’MATRIX’-collection(i-int,j-int,c-int),
’COST’-dvar]).

ctr_restrictions(
global_cardinality_with_costs,
[required(’VARIABLES’,var),

size(’VALUES’)>0,
required(’VALUES’,[val,noccurrence]),
distinct(’VALUES’,val),
’VALUES’ˆnoccurrence>=0,
’VALUES’ˆnoccurrence=<size(’VARIABLES’),
required(’MATRIX’,[i,j,c]),
increasing_seq(’MATRIX’,[i,j]),
’MATRIX’ˆi>=1,
’MATRIX’ˆi=<size(’VARIABLES’),
’MATRIX’ˆj>=1,
’MATRIX’ˆj=<size(’VALUES’),
size(’MATRIX’)=size(’VARIABLES’) * size(’VALUES’)]).

ctr_example(
global_cardinality_with_costs,
global_cardinality_with_costs(

[[var-3],[var-3],[var-3],[var-6]],
[[val-3,noccurrence-3],

[val-5,noccurrence-0],
[val-6,noccurrence-1]],

[[i-1,j-1,c-4],
[i-1,j-2,c-1],
[i-1,j-3,c-7],
[i-2,j-1,c-1],

2381

[i-2,j-2,c-0],
[i-2,j-3,c-8],
[i-3,j-1,c-3],
[i-3,j-2,c-2],
[i-3,j-3,c-1],
[i-4,j-1,c-0],
[i-4,j-2,c-0],
[i-4,j-3,c-6]],

14)).

ctr_typical(
global_cardinality_with_costs,
[size(’VARIABLES’)>1,

range(’VARIABLES’ˆvar)>1,
size(’VALUES’)>1,
range(’VALUES’ˆnoccurrence)>1,
range(’MATRIX’ˆc)>1,
size(’VARIABLES’)>size(’VALUES’)]).

ctr_graph(
global_cardinality_with_costs,
[’VARIABLES’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval],
[’NVERTEX’=’VALUES’ˆnoccurrence],
[]).

ctr_graph(
global_cardinality_with_costs,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’SUM_WEIGHT_ARC’(

MATRIX@
((variablesˆkey-1) * size(’VALUES’)+valuesˆkey)ˆ
c)=

COST],
[]).

ctr_eval(
global_cardinality_with_costs,
[reformulation(global_cardinality_with_costs_r)]).

ctr_pure_functional_dependency(

2382 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

global_cardinality_with_costs,
[]).

ctr_functional_dependency(
global_cardinality_with_costs,
2-2,
[1]).

ctr_functional_dependency(
global_cardinality_with_costs,
4,
[1,2,3]).

global_cardinality_with_costs_r(VARIABLES,VALUES,MA TRIX,COST) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
collection(VALUES,[int,dvar(0,N)]),
length(VALUES,M),
M>0,
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
all_different(VALS),
collection(MATRIX,[int(1,N),int(1,M),int]),
collection_increasing_seq(MATRIX,[1,2]),
eval(global_cardinality(VARIABLES,VALUES)),
get_attr3(MATRIX,CS),
global_cardinality_with_costs1(VARS,VALS,M,CS,TERM) ,
call(TERM#=COST).

global_cardinality_with_costs1([],_47767,_47768,_47 769,0).

global_cardinality_with_costs1([VAR|R],VALS,M,CMAT, C+S) :-
global_cardinality_with_costs2(

M,
CMAT,
ELEMTABLE,
RESTCMAT),

element(IVAL,VALS,VAR),
element(IVAL,ELEMTABLE,C),
global_cardinality_with_costs1(R,VALS,M,RESTCMAT,S) .

global_cardinality_with_costs2(0,CMAT,[],CMAT) :-
!.

global_cardinality_with_costs2(I,[C|R],[C|S],T) :-
I>0,

2383

I1 is I-1,
global_cardinality_with_costs2(I1,R,S,T).

2384 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.153 globalcontiguity

♦ META-DATA:

ctr_date(global_contiguity,[’20030820’,’20040530’,’ 20060809’]).

ctr_origin(global_contiguity,’\\cite{Maher02}’,[]).

ctr_synonyms(global_contiguity,[contiguity]).

ctr_arguments(
global_contiguity,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
global_contiguity,
[required(’VARIABLES’,var),

’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar=<1]).

ctr_example(
global_contiguity,
global_contiguity([[var-0],[var-1],[var-1],[var-0]])).

ctr_typical(
global_contiguity,
[size(’VARIABLES’)>2,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
global_contiguity,
[items(’VARIABLES’,reverse)]).

ctr_graph(
global_contiguity,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2),

’LOOP’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar,variables1ˆvar=1],
[’NCC’=<1],
[]).

ctr_eval(
global_contiguity,
[checker(global_contiguity_c),

automaton(global_contiguity_a)]).

2385

ctr_contractible(global_contiguity,[],’VARIABLES’,a ny).

global_contiguity_c([]) :-
!.

global_contiguity_c(VARIABLES) :-
collection(VARIABLES,[int(0,1)]),
get_attr1(VARIABLES,VARS),
global_contiguity_c1(VARS).

global_contiguity_c1([]) :-
!.

global_contiguity_c1([0|R]) :-
!,
global_contiguity_c1(R).

global_contiguity_c1([1|R]) :-
global_contiguity_c2(R).

global_contiguity_c2([]) :-
!.

global_contiguity_c2([1|R]) :-
!,
global_contiguity_c2(R).

global_contiguity_c2([0|R]) :-
global_contiguity_c3(R).

global_contiguity_c3([]) :-
!.

global_contiguity_c3([0|R]) :-
global_contiguity_c3(R).

global_contiguity_a(1,[]) :-
!.

global_contiguity_a(0,[]) :-
!,
fail.

global_contiguity_a(FLAG,VARIABLES) :-
collection(VARIABLES,[dvar(0,1)]),

2386 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

get_attr1(VARIABLES,LIST_VARIABLES),
AUTOMATON=
automaton(

LIST_VARIABLES,
_32003,
LIST_VARIABLES,
[source(s),sink(m),sink(z),sink(s)],
[arc(s,0,s),

arc(s,1,m),
arc(m,0,z),
arc(m,1,m),
arc(z,0,z)],

[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

2387

B.154 golomb

♦ META-DATA:

ctr_date(golomb,[’20000128’,’20030820’,’20040530’,’ 20060809’]).

ctr_origin(golomb,’Inspired by \\cite{Golomb72}.’,[]) .

ctr_arguments(golomb,[’VARIABLES’-collection(var-dv ar)]).

ctr_restrictions(
golomb,
[required(’VARIABLES’,var),

’VARIABLES’ˆvar>=0,
strictly_increasing(’VARIABLES’)]).

ctr_example(golomb,golomb([[var-0],[var-1],[var-4], [var-6]])).

ctr_typical(golomb,[size(’VARIABLES’)>2]).

ctr_exchangeable(golomb,[translate([’VARIABLES’ˆvar])]).

ctr_derived_collections(
golomb,
[col(’PAIRS’-collection(x-dvar,y-dvar),

[> -item(x-’VARIABLES’ˆvar,y-’VARIABLES’ˆvar)])]).

ctr_graph(
golomb,
[’PAIRS’],
2,
[’CLIQUE’>>collection(pairs1,pairs2)],
[pairs1ˆy-pairs1ˆx=pairs2ˆy-pairs2ˆx],
[’MAX_NSCC’=<1],
[]).

ctr_eval(golomb,[checker(golomb_c),reformulation(go lomb_r)]).

ctr_contractible(golomb,[],’VARIABLES’,any).

golomb_c([]) :-
!.

golomb_c(VARIABLES) :-
collection(VARIABLES,[dvar_gteq(0)]),
collection_increasing_seq(VARIABLES,[1]),

2388 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

get_attr1(VARIABLES,VARS),
golomb3(VARS,D),
sort(D,SD),
length(D,N),
length(SD,N).

golomb_r([]) :-
!.

golomb_r(VARIABLES) :-
collection(VARIABLES,[dvar_gteq(0)]),
collection_increasing_seq(VARIABLES,[1]),
get_attr1(VARIABLES,VARS),
golomb1(VARS,D),
all_different(D).

golomb1([_33420],[]) :-
!.

golomb1([U,V|R],Diffs) :-
golomb2([V|R],U,D),
golomb1([V|R],Diff),
append(D,Diff,Diffs).

golomb2([],_33416,[]).

golomb2([Vi|R],Vj,[D|S]) :-
D#=Vi-Vj,
golomb2(R,Vj,S).

golomb3([_33420],[]) :-
!.

golomb3([U,V|R],Diffs) :-
golomb4([V|R],U,D),
golomb3([V|R],Diff),
append(D,Diff,Diffs).

golomb4([],_33416,[]).

golomb4([Vi|R],Vj,[D|S]) :-
D is Vi-Vj,
golomb4(R,Vj,S).

2389

B.155 graph crossing

♦ META-DATA:

ctr_date(
graph_crossing,
[’20000128’,’20030820’,’20040530’,’20060809’]).

ctr_origin(graph_crossing,’N.˜Beldiceanu’,[]).

ctr_synonyms(graph_crossing,[crossing,ncross]).

ctr_arguments(
graph_crossing,
[’NCROSS’-dvar,’NODES’-collection(succ-dvar,x-int,y -int)]).

ctr_restrictions(
graph_crossing,
[’NCROSS’>=0,

required(’NODES’,[succ,x,y]),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
graph_crossing,
graph_crossing(

2,
[[succ-1,x-4,y-7],

[succ-1,x-2,y-5],
[succ-1,x-7,y-6],
[succ-2,x-1,y-2],
[succ-3,x-2,y-2],
[succ-2,x-5,y-3],
[succ-3,x-8,y-2],
[succ-9,x-6,y-2],
[succ-10,x-10,y-6],
[succ-8,x-10,y-1]])).

ctr_typical(
graph_crossing,
[size(’NODES’)>1,

range(’NODES’ˆsucc)>1,
range(’NODES’ˆx)>1,
range(’NODES’ˆy)>1]).

ctr_exchangeable(

2390 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

graph_crossing,
[attrs_sync(’NODES’,[[succ],[x,y]]),

translate([’NODES’ˆx]),
translate([’NODES’ˆy])]).

ctr_graph(
graph_crossing,
[’NODES’],
2,
[’CLIQUE’(<)>>collection(n1,n2)],
[max(n1ˆx,’NODES’@(n1ˆsucc)ˆx)>=

min(n2ˆx,’NODES’@(n2ˆsucc)ˆx),
max(n2ˆx,’NODES’@(n2ˆsucc)ˆx)>=
min(n1ˆx,’NODES’@(n1ˆsucc)ˆx),
max(n1ˆy,’NODES’@(n1ˆsucc)ˆy)>=
min(n2ˆy,’NODES’@(n2ˆsucc)ˆy),
max(n2ˆy,’NODES’@(n2ˆsucc)ˆy)>=
min(n1ˆy,’NODES’@(n1ˆsucc)ˆy),
(n2ˆx-’NODES’@(n1ˆsucc)ˆx) *
(’NODES’@(n1ˆsucc)ˆy-n1ˆy)-
(’NODES’@(n1ˆsucc)ˆx-n1ˆx) * (n2ˆy-’NODES’@(n1ˆsucc)ˆy)=\=
0,
(’NODES’@(n2ˆsucc)ˆx-’NODES’@(n1ˆsucc)ˆx) *
(n2ˆy-n1ˆy)-
(n2ˆx-n1ˆx) * (’NODES’@(n2ˆsucc)ˆy-’NODES’@(n1ˆsucc)ˆy)=\=
0,
sign(

(n2ˆx-’NODES’@(n1ˆsucc)ˆx) *
(’NODES’@(n1ˆsucc)ˆy-n1ˆy)-
(’NODES’@(n1ˆsucc)ˆx-n1ˆx) *
(n2ˆy-’NODES’@(n1ˆsucc)ˆy))=\=

sign(
(’NODES’@(n2ˆsucc)ˆx-’NODES’@(n1ˆsucc)ˆx) *
(n2ˆy-n1ˆy)-
(n2ˆx-n1ˆx) *
(’NODES’@(n2ˆsucc)ˆy-’NODES’@(n1ˆsucc)ˆy))],

[’NARC’=’NCROSS’],
[]).

ctr_pure_functional_dependency(graph_crossing,[]).

ctr_functional_dependency(graph_crossing,1,[2]).

2391

B.156 graph isomorphism

♦ META-DATA:

ctr_predefined(graph_isomorphism).

ctr_date(graph_isomorphism,[’20090822’]).

ctr_origin(graph_isomorphism,’\\cite{Gregor79}’,[]) .

ctr_arguments(
graph_isomorphism,
[’NODES_PATTERN’-collection(index-int,succ-sint),

’NODES_TARGET’-collection(index-int,succ-sint),
’FUNCTION’-collection(image-dvar)]).

ctr_restrictions(
graph_isomorphism,
[required(’NODES_PATTERN’,[index,succ]),

’NODES_PATTERN’ˆindex>=1,
’NODES_PATTERN’ˆindex=<size(’NODES_PATTERN’),
distinct(’NODES_PATTERN’,index),
’NODES_PATTERN’ˆsucc>=1,
’NODES_PATTERN’ˆsucc=<size(’NODES_PATTERN’),
required(’NODES_TARGET’,[index,succ]),
’NODES_TARGET’ˆindex>=1,
’NODES_TARGET’ˆindex=<size(’NODES_TARGET’),
distinct(’NODES_TARGET’,index),
’NODES_TARGET’ˆsucc>=1,
’NODES_TARGET’ˆsucc=<size(’NODES_TARGET’),
size(’NODES_TARGET’)=size(’NODES_PATTERN’),
required(’FUNCTION’,[image]),
’FUNCTION’ˆimage>=1,
’FUNCTION’ˆimage=<size(’NODES_TARGET’),
distinct(’FUNCTION’,image),
size(’FUNCTION’)=size(’NODES_PATTERN’)]).

ctr_example(
graph_isomorphism,
graph_isomorphism(

[[index-1,succ-{2,4}],
[index-2,succ-{1,3,4}],
[index-3,succ-{}],
[index-4,succ-{}]],

[[index-1,succ-{}],
[index-2,succ-{1,3,4}],

2392 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[index-3,succ-{}],
[index-4,succ-{1,2}]],

[[image-4],[image-2],[image-3],[image-1]])).

ctr_typical(graph_isomorphism,[size(’NODES_PATTERN’)>1]).

ctr_exchangeable(
graph_isomorphism,
[items(’NODES_PATTERN’,all),items(’NODES_TARGET’,al l)]).

2393

B.157 group

♦ META-DATA:

ctr_date(group,[’20000128’,’20030820’,’20040530’,’2 0060809’]).

ctr_origin(group,’\\index{CHIP|indexuse}CHIP’,[]).

ctr_arguments(
group,
[’NGROUP’-dvar,

’MIN_SIZE’-dvar,
’MAX_SIZE’-dvar,
’MIN_DIST’-dvar,
’MAX_DIST’-dvar,
’NVAL’-dvar,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
group,
[’NGROUP’>=0,

’MIN_SIZE’>=0,
’MAX_SIZE’>=’MIN_SIZE’,
’MIN_DIST’>=0,
’MAX_DIST’>=’MIN_DIST’,
’MAX_DIST’=<size(’VARIABLES’),
’NVAL’>=’MAX_SIZE’,
’NVAL’>=’NGROUP’,
’NVAL’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
group,
group(

2,
1,
2,
2,
4,
3,
[[var-2],

[var-8],
[var-1],

2394 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[var-7],
[var-4],
[var-5],
[var-1],
[var-1],
[var-1]],

[[val-0],[val-2],[val-4],[val-6],[val-8]])).

ctr_typical(
group,
[’NGROUP’>0,

’MIN_SIZE’>0,
’MAX_SIZE’>’MIN_SIZE’,
’MIN_DIST’>0,
’MAX_DIST’>’MIN_DIST’,
’MAX_DIST’<size(’VARIABLES’),
’NVAL’>’MAX_SIZE’,
’NVAL’>’NGROUP’,
’NVAL’<size(’VARIABLES’),
size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
size(’VALUES’)>0,
size(’VARIABLES’)>size(’VALUES’)]).

ctr_exchangeable(
group,
[items(’VARIABLES’,reverse),

items(’VALUES’,all),
vals(

[’VARIABLES’ˆvar],
comp(’VALUES’ˆval),
=,
dontcare,
dontcare)]).

ctr_graph(
group,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2),

’LOOP’>>collection(variables1,variables2)],
[variables1ˆvar in ’VALUES’,variables2ˆvar in ’VALUES’] ,
[’NCC’=’NGROUP’,

’MIN_NCC’=’MIN_SIZE’,
’MAX_NCC’=’MAX_SIZE’,
’NVERTEX’=’NVAL’],

2395

[]).

ctr_graph(
group,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2),

’LOOP’>>collection(variables1,variables2)],
[not_in(variables1ˆvar,’VALUES’),

not_in(variables2ˆvar,’VALUES’)],
[’MIN_NCC’=’MIN_DIST’,’MAX_NCC’=’MAX_DIST’],
[]).

ctr_eval(group,[automata(group_a)]).

ctr_functional_dependency(group,1,[7,8]).

ctr_functional_dependency(group,2,[7,8]).

ctr_functional_dependency(group,3,[7,8]).

ctr_functional_dependency(group,4,[7,8]).

ctr_functional_dependency(group,5,[7,8]).

ctr_functional_dependency(group,6,[7,8]).

group_a(
NGROUP,
MIN_SIZE,
MAX_SIZE,
MIN_DIST,
MAX_DIST,
NVAL,
VARIABLES,
VALUES) :-

check_type(dvar,NGROUP),
check_type(dvar,MIN_SIZE),
check_type(dvar,MAX_SIZE),
check_type(dvar,MIN_DIST),
check_type(dvar,MAX_DIST),
check_type(dvar,NVAL),
collection(VARIABLES,[dvar]),
collection(VALUES,[int]),
length(VARIABLES,N),
get_attr1(VALUES,VALS),

2396 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

NGROUP#>=0,
MIN_SIZE#>=0,
MAX_SIZE#>=MIN_SIZE,
MIN_DIST#>=0,
MAX_DIST#>=MIN_DIST,
MAX_DIST#=<N,
NVAL#>=MAX_SIZE,
NVAL#>=NGROUP,
NVAL#=<N,
all_different(VALS),
group_ngroup(NGROUP,VARIABLES,VALUES),
group_min_size(MIN_SIZE,VARIABLES,VALUES),
group_max_size(MAX_SIZE,VARIABLES,VALUES),
group_min_dist(MIN_DIST,VARIABLES,VALUES),
group_max_dist(MAX_DIST,VARIABLES,VALUES),
group_nval(NVAL,VARIABLES,VALUES).

group_ngroup(NGROUP,VARIABLES,VALUES) :-
get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
group_signature_in(VARIABLES,SIGNATURE,SET_OF_VALUE S),
automaton(

SIGNATURE,
_52392,
SIGNATURE,
[source(s),sink(i),sink(s)],
[arc(s,0,s),

arc(s,1,i,[C+1]),
arc(i,1,i),
arc(i,0,s)],

[C],
[0],
[NGROUP]).

group_min_size(MIN_SIZE,VARIABLES,VALUES) :-
length(VARIABLES,NVAR),
get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
group_signature_in(VARIABLES,SIGNATURE,SET_OF_VALUE S),
MIN_SIZE#=min(C1,D1),
automaton(

SIGNATURE,
_52882,
SIGNATURE,
[source(s),sink(j),sink(k),sink(s)],
[arc(s,0,s),

2397

arc(s,1,j,[NVAR,D]),
arc(j,1,j,[C,D+1]),
arc(j,0,k,[min(C,D),D]),
arc(k,0,k),
arc(k,1,j,[C,1])],

[C,D],
[0,1],
[C1,D1]).

group_max_size(MAX_SIZE,VARIABLES,VALUES) :-
get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
group_signature_in(VARIABLES,SIGNATURE,SET_OF_VALUE S),
MAX_SIZE#=max(C1,D1),
automaton(

SIGNATURE,
_52600,
SIGNATURE,
[source(s),sink(s)],
[arc(s,1,s,[C,D+1]),arc(s,0,s,[max(C,D),0])],
[C,D],
[0,0],
[C1,D1]).

group_min_dist(MIN_DIST,VARIABLES,VALUES) :-
length(VARIABLES,NVAR),
get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
group_signature_not_in(

VARIABLES,
SIGNATURE,
SET_OF_VALUES),

MIN_DIST#=min(C1,D1),
automaton(

SIGNATURE,
_53141,
SIGNATURE,
[source(s),sink(j),sink(k),sink(s)],
[arc(s,0,s),

arc(s,1,j,[NVAR,D]),
arc(j,1,j,[C,D+1]),
arc(j,0,k,[min(C,D),D]),
arc(k,0,k),
arc(k,1,j,[C,1])],

[C,D],
[0,1],

2398 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[C1,D1]).

group_max_dist(MAX_DIST,VARIABLES,VALUES) :-
get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
group_signature_not_in(

VARIABLES,
SIGNATURE,
SET_OF_VALUES),

MAX_DIST#=max(C1,D1),
automaton(

SIGNATURE,
_52859,
SIGNATURE,
[source(s),sink(s)],
[arc(s,1,s,[C,D+1]),arc(s,0,s,[max(C,D),0])],
[C,D],
[0,0],
[C1,D1]).

group_nval(NVAL,VARIABLES,VALUES) :-
get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
group_signature_in(VARIABLES,SIGNATURE,SET_OF_VALUE S),
automaton(

SIGNATURE,
_52350,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[NVAL]).

group_signature_in([],[],_51245).

group_signature_in([[var-VAR]|VARs],[S|Ss],SET_OF_V ALUES) :-
VAR in_set SET_OF_VALUES#<=>S,
group_signature_in(VARs,Ss,SET_OF_VALUES).

group_signature_not_in([],[],_51245).

group_signature_not_in([[var-VAR]|VARs],[S|Ss],SET_ OF_VALUES) :-
VAR in_set SET_OF_VALUES#<=> #\S,
group_signature_not_in(VARs,Ss,SET_OF_VALUES).

2399

B.158 group skip isolated item

♦ META-DATA:

ctr_date(
group_skip_isolated_item,
[’20000128’,’20030820’,’20040530’,’20060809’]).

ctr_origin(group_skip_isolated_item,’Derived from %c. ’,[group]).

ctr_arguments(
group_skip_isolated_item,
[’NGROUP’-dvar,

’MIN_SIZE’-dvar,
’MAX_SIZE’-dvar,
’NVAL’-dvar,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
group_skip_isolated_item,
[’NGROUP’>=0,

’MIN_SIZE’>=0,
’MAX_SIZE’>=’MIN_SIZE’,
’NVAL’>=’MAX_SIZE’,
’NVAL’>=’NGROUP’,
’NVAL’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
group_skip_isolated_item,
group_skip_isolated_item(

1,
2,
2,
3,
[[var-2],

[var-8],
[var-1],
[var-7],
[var-4],
[var-5],
[var-1],
[var-1],

2400 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[var-1]],
[[val-0],[val-2],[val-4],[val-6],[val-8]])).

ctr_typical(
group_skip_isolated_item,
[’NGROUP’>0,

’MIN_SIZE’>0,
’NVAL’>’MAX_SIZE’,
’NVAL’>’NGROUP’,
’NVAL’<size(’VARIABLES’),
size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
size(’VALUES’)>0,
size(’VARIABLES’)>size(’VALUES’)]).

ctr_exchangeable(
group_skip_isolated_item,
[items(’VARIABLES’,reverse),

items(’VALUES’,all),
vals(

[’VARIABLES’ˆvar],
comp(’VALUES’ˆval),
=,
dontcare,
dontcare)]).

ctr_graph(
group_skip_isolated_item,
[’VARIABLES’],
2,
[’CHAIN’>>collection(variables1,variables2)],
[variables1ˆvar in ’VALUES’,variables2ˆvar in ’VALUES’] ,
[’NSCC’=’NGROUP’,

’MIN_NSCC’=’MIN_SIZE’,
’MAX_NSCC’=’MAX_SIZE’,
’NVERTEX’=’NVAL’],

[]).

ctr_eval(
group_skip_isolated_item,
[automata(group_skip_isolated_item_a)]).

ctr_functional_dependency(group_skip_isolated_item, 1,[5,6]).

ctr_functional_dependency(group_skip_isolated_item, 2,[5,6]).

2401

ctr_functional_dependency(group_skip_isolated_item, 3,[5,6]).

ctr_functional_dependency(group_skip_isolated_item, 4,[5,6]).

group_skip_isolated_item_a(
NGROUP,
MIN_SIZE,
MAX_SIZE,
NVAL,
VARIABLES,
VALUES) :-

check_type(dvar,NGROUP),
check_type(dvar,MIN_SIZE),
check_type(dvar,MAX_SIZE),
check_type(dvar,NVAL),
collection(VARIABLES,[dvar]),
collection(VALUES,[int]),
length(VARIABLES,N),
get_attr1(VALUES,VALS),
NGROUP#>=0,
MIN_SIZE#>=0,
MAX_SIZE#>=MIN_SIZE,
NVAL#>=MAX_SIZE,
NVAL#>=NGROUP,
NVAL#=<N,
all_different(VALS),
group_skip_isolated_item_ngroup(

NGROUP,
VARIABLES,
VALUES),

group_skip_isolated_item_min_size(
MIN_SIZE,
VARIABLES,
VALUES),

group_skip_isolated_item_max_size(
MAX_SIZE,
VARIABLES,
VALUES),

group_skip_isolated_item_nval(NVAL,VARIABLES,VALUES).

group_skip_isolated_item_ngroup(NGROUP,VARIABLES,VA LUES) :-
get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
group_skip_isolated_item_signature(

VARIABLES,
SIGNATURE,

2402 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

SET_OF_VALUES),
automaton(

SIGNATURE,
_40963,
SIGNATURE,
[source(s),sink(i),sink(j),sink(s)],
[arc(s,0,s),

arc(s,1,i),
arc(i,0,s),
arc(i,1,j,[C+1]),
arc(j,1,j),
arc(j,0,s)],

[C],
[0],
[NGROUP]).

group_skip_isolated_item_min_size(MIN_SIZE,VARIABLE S,VALUES) :-
length(VARIABLES,NVAR),
get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
group_skip_isolated_item_signature(

VARIABLES,
SIGNATURE,
SET_OF_VALUES),

MIN_SIZE#=min(C1,D1),
automaton(

SIGNATURE,
_41495,
SIGNATURE,
[source(s),

sink(j),
sink(k),
sink(l),
sink(m),
sink(s)],

[arc(s,0,s),
arc(s,1,j),
arc(j,0,s),
arc(j,1,k,[NVAR,D]),
arc(k,1,k,[C,D+1]),
arc(k,0,l,[min(C,D),D]),
arc(l,0,l),
arc(l,1,m),
arc(m,0,l),
arc(m,1,k,[C,2])],

[C,D],

2403

[0,2],
[C1,D1]).

group_skip_isolated_item_max_size(MAX_SIZE,VARIABLE S,VALUES) :-
get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
group_skip_isolated_item_signature(

VARIABLES,
SIGNATURE,
SET_OF_VALUES),

MAX_SIZE#=max(C1,D1),
automaton(

SIGNATURE,
_41188,
SIGNATURE,
[source(s),sink(i),sink(s)],
[arc(s,0,s),

arc(s,1,i,[C,1]),
arc(i,0,s,[max(C,D),D]),
arc(i,1,i,[C,D+1])],

[C,D],
[0,0],
[C1,D1]).

group_skip_isolated_item_nval(NVAL,VARIABLES,VALUES) :-
get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
group_skip_isolated_item_signature(

VARIABLES,
SIGNATURE,
SET_OF_VALUES),

automaton(
SIGNATURE,
_40879,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[NVAL]).

group_skip_isolated_item_signature([],[],_39515).

group_skip_isolated_item_signature(
[[var-VAR]|VARs],
[S|Ss],

2404 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

SET_OF_VALUES) :-
VAR in_set SET_OF_VALUES#<=>S,
group_skip_isolated_item_signature(

VARs,
Ss,
SET_OF_VALUES).

2405

B.159 gt

♦ META-DATA:

ctr_predefined(gt).

ctr_date(gt,[’20070821’]).

ctr_origin(gt,’Arithmetic.’,[]).

ctr_synonyms(gt,[rel,xgty]).

ctr_arguments(gt,[’VAR1’-dvar,’VAR2’-dvar]).

ctr_example(gt,gt(8,1)).

ctr_exchangeable(
gt,
[vals([’VAR1’],int(>(’VAR2’)),=\=,all,dontcare),

vals([’VAR2’],int(<(’VAR1’)),=\=,all,dontcare)]).

ctr_eval(gt,[builtin(gt_b)]).

gt_b(VAR1,VAR2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
VAR1#>VAR2.

2406 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.160 highestpeak

♦ META-DATA:

ctr_date(highest_peak,[’20040530’]).

ctr_origin(highest_peak,’Derived from %c.’,[peak]).

ctr_arguments(
highest_peak,
[’HEIGHT’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
highest_peak,
[’HEIGHT’>=0,’VARIABLES’ˆvar>=0,required(’VARIABLES ’,var)]).

ctr_example(
highest_peak,
highest_peak(

8,
[[var-1],

[var-1],
[var-4],
[var-8],
[var-6],
[var-2],
[var-7],
[var-1]])).

ctr_typical(
highest_peak,
[’HEIGHT’>0,size(’VARIABLES’)>2,range(’VARIABLES’ˆv ar)>1]).

ctr_exchangeable(highest_peak,[items(’VARIABLES’,re verse)]).

ctr_eval(highest_peak,[automaton(highest_peak_a)]).

highest_peak_a(FLAG,HEIGHT,VARIABLES) :-
check_type(dvar_gteq(0),HEIGHT),
collection(VARIABLES,[dvar_gteq(0)]),
highest_peak_signature(VARIABLES,SIGNATURE,PAIRS),
automaton(

PAIRS,
VAR1-_VAR2,
SIGNATURE,
[source(s),sink(u),sink(s)],

2407

[arc(s,0,s),
arc(s,1,s),
arc(s,2,u),
arc(u,0,s,[max(C,VAR1)]),
arc(u,1,u),
arc(u,2,u)],

[C],
[0],
[COUNT]),

COUNT#=HEIGHT#<=>FLAG.

highest_peak_signature([],[],[]).

highest_peak_signature([_13976],[],[]) :-
!.

highest_peak_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
[VAR1-VAR2|PAIRS]) :-

S in 0..2,
VAR1#>VAR2#<=>S#=0,
VAR1#=VAR2#<=>S#=1,
VAR1#<VAR2#<=>S#=2,
highest_peak_signature([[var-VAR2]|VARs],Ss,PAIRS).

2408 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.161 imply

♦ META-DATA:

ctr_date(imply,[’20051226’,’20091016’]).

ctr_origin(imply,’Logic’,[]).

ctr_synonyms(imply,[rel,ifthen]).

ctr_arguments(
imply,
[’VAR’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
imply,
[’VAR’>=0,

’VAR’=<1,
size(’VARIABLES’)=2,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar=<1]).

ctr_example(
imply,
[imply(1,[[var-0],[var-0]]),

imply(1,[[var-0],[var-1]]),
imply(0,[[var-1],[var-0]]),
imply(1,[[var-1],[var-1]])]).

ctr_exchangeable(
imply,
[vals([’VAR’,’VARIABLES’ˆvar],int(0 in 1),<,all,dontc are)]).

ctr_eval(imply,[reformulation(imply_r),automaton(im ply_a)]).

ctr_pure_functional_dependency(imply,[]).

ctr_functional_dependency(imply,1,[2]).

imply_r(VAR,VARIABLES) :-
check_type(dvar(0,1),VAR),
collection(VARIABLES,[dvar(0,1)]),
length(VARIABLES,2),
get_attr1(VARIABLES,VARS),
VARS=[VAR1,VAR2],

2409

VAR#<=>VAR1#=>VAR2.

imply_a(FLAG,VAR,VARIABLES) :-
check_type(dvar(0,1),VAR),
collection(VARIABLES,[dvar(0,1)]),
length(VARIABLES,2),
get_attr1(VARIABLES,LIST),
append([VAR],LIST,LIST_VARIABLES),
AUTOMATON=
automaton(

LIST_VARIABLES,
_20420,
LIST_VARIABLES,
[source(s),sink(t)],
[arc(s,0,i),

arc(s,1,j),
arc(i,1,k),
arc(j,0,t),
arc(j,1,l),
arc(k,0,t),
arc(l,1,t),
arc(t,0,t),
arc(t,1,t)],

[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

2410 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.162 in

♦ META-DATA:

ctr_date(in,[’20030820’,’20040530’,’20060810’]).

ctr_origin(in,’Domain definition.’,[]).

ctr_synonyms(in,[dom,in_set,member]).

ctr_arguments(in,[’VAR’-dvar,’VALUES’-collection(va l-int)]).

ctr_restrictions(
in,
[size(’VALUES’)>0,

required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(in,3 in[[val-1],[val-3]]).

ctr_typical(in,[size(’VALUES’)>1]).

ctr_exchangeable(
in,
[items(’VALUES’,all),

vals([’VAR’],int([’VAR’,’VALUES’ˆval]),=\=,all,dont care),
translate([’VAR’,’VALUES’ˆval])]).

ctr_derived_collections(
in,
[col(’VARIABLES’-collection(var-dvar),[item(var-’VA R’)])]).

ctr_graph(
in,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’NARC’=1],
[]).

ctr_eval(in,[reformulation(in_r),automaton(in_a)]).

ctr_extensible(in,[],’VALUES’,any).

in_r(VAR,VALUES) :-

2411

check_type(dvar,VAR),
collection(VALUES,[int]),
length(VALUES,L),
L>0,
get_attr1(VALUES,VALS),
all_different(VALS),
build_or_var_in_values(VALS,VAR,TERM),
call(TERM).

in_a(FLAG,VAR,VALUES) :-
check_type(dvar,VAR),
collection(VALUES,[int]),
length(VALUES,L),
L>0,
get_attr1(VALUES,VALS),
all_different(VALS),
in_signature(VALUES,SIGNATURE,VAR),
AUTOMATON=
automaton(

SIGNATURE,
_38467,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t),arc(t,0,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

in_signature([],[],_36450).

in_signature([[val-VAL]|VALs],[S|Ss],VAR) :-
VAR#=VAL#<=>S,
in_signature(VALs,Ss,VAR).

2412 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.163 in interval

♦ META-DATA:

ctr_date(in_interval,[’20060317’,’20060810’]).

ctr_origin(in_interval,’Domain definition.’,[]).

ctr_synonyms(in_interval,[dom,in]).

ctr_arguments(in_interval,[’VAR’-dvar,’LOW’-int,’UP ’-int]).

ctr_restrictions(in_interval,[’LOW’=<’UP’]).

ctr_example(in_interval,in_interval(3,2,5)).

ctr_typical(in_interval,[’LOW’<’UP’,’VAR’>’LOW’,’VA R’<’UP’]).

ctr_exchangeable(
in_interval,
[vals([’LOW’],int,>,dontcare,dontcare),

vals([’UP’],int,<,dontcare,dontcare),
vals([’VAR’],int(’LOW’ in ’UP’),=\=,dontcare,dontcare),
translate([’VAR’,’LOW’,’UP’])]).

ctr_derived_collections(
in_interval,
[col(’VARIABLE’-collection(var-dvar),[item(var-’VAR ’)]),

col(’INTERVAL’-collection(low-int,up-int),
[item(low-’LOW’,up-’UP’)])]).

ctr_graph(
in_interval,
[’VARIABLE’,’INTERVAL’],
2,
[’PRODUCT’>>collection(variable,interval)],
[variableˆvar>=intervalˆlow,variableˆvar=<intervalˆ up],
[’NARC’=1],
[]).

ctr_eval(
in_interval,
[reformulation(in_interval_r),automaton(in_interval _a)]).

in_interval_r(VAR,LOW,UP) :-
check_type(fdvar,VAR),

2413

check_type(int,LOW),
check_type(int,UP),
LOW=<UP,
VAR#>=LOW,
VAR#=<UP.

in_interval_a(FLAG,VAR,LOW,UP) :-
check_type(fdvar,VAR),
check_type(int,LOW),
check_type(int,UP),
LOW=<UP,
VAR#>=LOW#/\VAR#=<UP#<=>S,
AUTOMATON=
automaton(

[S],
_33636,
[S],
[source(s),sink(t)],
[arc(s,1,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

2414 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.164 in interval reified

♦ META-DATA:

ctr_predefined(in_interval_reified).

ctr_date(in_interval_reified,[’20100916’]).

ctr_origin(
in_interval_reified,
Reified version of %c.,
[in_interval]).

ctr_synonyms(in_interval_reified,[dom_reified,in_re ified]).

ctr_arguments(
in_interval_reified,
[’VAR’-dvar,’LOW’-int,’UP’-int,’B’-dvar]).

ctr_restrictions(
in_interval_reified,
[’LOW’=<’UP’,’B’>=0,’B’=<1]).

ctr_example(in_interval_reified,in_interval_reified (3,2,5,1)).

ctr_typical(
in_interval_reified,
[’VAR’=\=’LOW’,’VAR’=\=’UP’,’LOW’<’UP’]).

ctr_exchangeable(
in_interval_reified,
[vals([’VAR’],comp(’LOW’ in ’UP’),=,dontcare,dontcare),

translate([’VAR’,’LOW’,’UP’])]).

ctr_eval(
in_interval_reified,
[reformulation(in_interval_reified_r)]).

in_interval_reified_r(VAR,LOW,UP,B) :-
check_type(dvar,VAR),
check_type(int,LOW),
check_type(int,UP),
check_type(dvar(0,1),B),
LOW=<UP,
VAR in LOW..UP#<=>B.

2415

B.165 in intervals

♦ META-DATA:

ctr_predefined(in_intervals).

ctr_date(in_intervals,[’20080610’]).

ctr_origin(in_intervals,’Domain definition.’,[]).

ctr_synonyms(in_intervals,[in]).

ctr_arguments(
in_intervals,
[’VAR’-dvar,’INTERVALS’-collection(low-int,up-int)]).

ctr_restrictions(
in_intervals,
[required(’INTERVALS’,[low,up]),

’INTERVALS’ˆlow=<’INTERVALS’ˆup,
size(’INTERVALS’)>0]).

ctr_example(
in_intervals,
in_intervals(5,[[low-1,up-1],[low-3,up-5],[low-8,up -8]])).

ctr_typical(in_intervals,[size(’INTERVALS’)>1]).

ctr_exchangeable(
in_intervals,
[items(’INTERVALS’,all),

vals([’INTERVALS’ˆlow],int,>,dontcare,dontcare),
vals([’INTERVALS’ˆup],int,<,dontcare,dontcare),
translate([’VAR’,’INTERVALS’ˆlow,’INTERVALS’ˆup])]) .

ctr_eval(in_intervals,[reformulation(in_intervals_r)]).

ctr_extensible(in_intervals,[],’INTERVALS’,any).

in_intervals_r(VAR,INTERVALS) :-
check_type(dvar,VAR),
collection(INTERVALS,[int,int]),
length(INTERVALS,L),
L>0,
get_attr1(INTERVALS,LOWS),
get_attr2(INTERVALS,UPS),

2416 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

check_lesseq(LOWS,UPS),
in_intervals1(LOWS,UPS,VAR,TERM),
call(TERM).

in_intervals1([],[],_16549,0).

in_intervals1([LOW|RLOW],[UP|RUP],VAR,VAR#>=LOW#/\V AR#=<UP#\/R) :-
in_intervals1(RLOW,RUP,VAR,R).

2417

B.166 in relation

♦ META-DATA:

ctr_date(in_relation,[’20030820’,’20040530’,’200608 10’]).

ctr_origin(
in_relation,
Constraint explicitly defined by tuples of values.,
[]).

ctr_synonyms(
in_relation,
[case,

extension,
extensional,
extensional_support,
extensional_supportva,
extensional_supportmdd,
extensional_supportstr,
feastupleac,
table]).

ctr_types(
in_relation,
[’TUPLE_OF_VARS’-collection(var-dvar),

’TUPLE_OF_VALS’-collection(val-int)]).

ctr_arguments(
in_relation,
[’VARIABLES’-’TUPLE_OF_VARS’,

’TUPLES_OF_VALS’-collection(tuple-’TUPLE_OF_VALS’)]).

ctr_restrictions(
in_relation,
[required(’TUPLE_OF_VARS’,var),

size(’TUPLE_OF_VARS’)>=1,
size(’TUPLE_OF_VALS’)>=1,
size(’TUPLE_OF_VALS’)=size(’VARIABLES’),
required(’TUPLE_OF_VALS’,val),
required(’TUPLES_OF_VALS’,tuple)]).

ctr_example(
in_relation,
in_relation(

[[var-5],[var-3],[var-3]],

2418 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[[tuple-[[val-5],[val-2],[val-3]]],
[tuple-[[val-5],[val-2],[val-6]]],
[tuple-[[val-5],[val-3],[val-3]]]])).

ctr_typical(in_relation,[size(’TUPLE_OF_VARS’)>1]).

ctr_exchangeable(
in_relation,
[items(’TUPLES_OF_VALS’,all),

items_sync(’VARIABLES’,’TUPLES_OF_VALS’ˆtuple,all),
vals(

[’VARIABLES’,’TUPLES_OF_VALS’ˆtuple],
int,
=\=,
all,
dontcare)]).

ctr_derived_collections(
in_relation,
[col(’TUPLES_OF_VARS’-collection(vec-’TUPLE_OF_VARS ’),

[item(vec-’VARIABLES’)])]).

ctr_graph(
in_relation,
[’TUPLES_OF_VARS’,’TUPLES_OF_VALS’],
2,
[’PRODUCT’>>collection(tuples_of_vars,tuples_of_val s)],
[vec_eq_tuple(tuples_of_varsˆvec,tuples_of_valsˆtup le)],
[’NARC’>=1],
[]).

ctr_eval(in_relation,[reformulation(in_relation_r)]).

ctr_extensible(in_relation,[],’TUPLES_OF_VALS’,any) .

in_relation_r(VARIABLES,TUPLES_OF_VALS) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
collection(TUPLES_OF_VALS,[col(N,[int])]),
get_attr1(VARIABLES,VARS),
get_col_attr1(TUPLES_OF_VALS,1,TUPLES),
table([VARS],TUPLES).

2419

B.167 in samepartition

♦ META-DATA:

ctr_date(in_same_partition,[’20030820’,’20040530’,’ 20060810’]).

ctr_origin(
in_same_partition,
Used for defining several entries of this catalog.,
[]).

ctr_types(in_same_partition,[’VALUES’-collection(va l-int)]).

ctr_arguments(
in_same_partition,
[’VAR1’-dvar,

’VAR2’-dvar,
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
in_same_partition,
[size(’VALUES’)>=1,

required(’VALUES’,val),
distinct(’VALUES’,val),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_example(
in_same_partition,
in_same_partition(

6,
2,
[[p-[[val-1],[val-3]]],

[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

ctr_typical(in_same_partition,[’VAR1’=\=’VAR2’]).

ctr_exchangeable(
in_same_partition,
[args([[’VAR1’,’VAR2’],[’PARTITIONS’]]),

items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all)]).

ctr_derived_collections(
in_same_partition,

2420 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[col(’VARIABLES’-collection(var-dvar),
[item(var-’VAR1’),item(var-’VAR2’)])]).

ctr_graph(
in_same_partition,
[’VARIABLES’,’PARTITIONS’],
2,
[’PRODUCT’>>collection(variables,partitions)],
[variablesˆvar in partitionsˆp],
[’NSOURCE’=2,’NSINK’=1],
[]).

ctr_eval(
in_same_partition,
[reformulation(in_same_partition_r),

automaton(in_same_partition_a)]).

ctr_extensible(in_same_partition,[],’PARTITIONS’,an y).

in_same_partition_r(VAR1,VAR2,PARTITIONS) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
collection(PARTITIONS,[col_len_gteq(1,[int])]),
length(PARTITIONS,P),
P>1,
collection_distinct(PARTITIONS,1),
get_col_attr1(PARTITIONS,1,PVALS),
in_same_partition1(PVALS,VAR1,VAR2,TERM),
call(TERM).

in_same_partition1([],_35297,_35298,0).

in_same_partition1([VALS|R],VAR1,VAR2,TERM1#/\TERM2 #\/TERM) :-
build_or_var_in_values(VALS,VAR1,TERM1),
build_or_var_in_values(VALS,VAR2,TERM2),
in_same_partition1(R,VAR1,VAR2,TERM).

in_same_partition_a(FLAG,VAR1,VAR2,PARTITIONS) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
collection(PARTITIONS,[col_len_gteq(1,[int])]),
length(PARTITIONS,P),
P>1,
collection_distinct(PARTITIONS,1),
in_same_partition_signature(

PARTITIONS,

2421

SIGNATURE,
VAR1,
VAR2),

AUTOMATON=
automaton(

SIGNATURE,
_37686,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t),arc(t,0,t),arc(t,1,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

in_same_partition_signature([],[],_35298,_35299).

in_same_partition_signature(
[[p-VALUES]|PARTITIONs],
[S|Ss],
VAR1,
VAR2) :-

get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
VAR1 in_set SET_OF_VALUES#/\
VAR2 in_set SET_OF_VALUES#<=>
S,
in_same_partition_signature(PARTITIONs,Ss,VAR1,VAR2).

2422 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.168 in set

♦ META-DATA:

ctr_predefined(in_set).

ctr_date(in_set,[’20030820’]).

ctr_origin(
in_set,
Used for defining constraints with set variables.,
[]).

ctr_synonyms(in_set,[dom,member]).

ctr_arguments(in_set,[’VAL’-dvar,’SET’-svar]).

ctr_example(in_set,3 in_set{1,3}).

2423

B.169 incomparable

♦ META-DATA:

ctr_predefined(incomparable).

ctr_date(incomparable,[’20120202’]).

ctr_origin(
incomparable,
Inspired by incomparable rectangles.,
[]).

ctr_synonyms(incomparable,[incomparables]).

ctr_arguments(
incomparable,
[’VECTOR1’-collection(var-dvar),

’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
incomparable,
[required(’VECTOR1’,var),

required(’VECTOR2’,var),
size(’VECTOR1’)>=1,
size(’VECTOR2’)>=1,
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_example(
incomparable,
[incomparable([[var-16],[var-2]],[[var-4],[var-11]])]).

ctr_typical(incomparable,[size(’VECTOR1’)>1]).

ctr_eval(incomparable,[reformulation(incomparable_r)]).

incomparable_r(VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L),
length(VECTOR2,L),
get_attr1(VECTOR1,VECT1),
get_attr1(VECTOR2,VECT2),
incomparable(VECT1,VECT2).

incomparable([U1,U2],[V1,V2]) :-

2424 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

!,
U1#<V1#/\U2#>V2#\/U1#>V1#/\U2#<V2.

incomparable(U,V) :-
length(U,N),
length(V,N),
N>1,
length(PU,N),
length(PV,N),
domain(PU,1,N),
domain(PV,1,N),
get_minimum(U,MinU),
get_maximum(U,MaxU),
get_minimum(V,MinV),
get_maximum(V,MaxV),
length(SU,N),
length(SV,N),
domain(SU,MinU,MaxU),
domain(SV,MinV,MaxV),
sorting(U,PU,SU),
sorting(V,PV,SV),
incomparable(SU,SV,Or1),
call(Or1),
incomparable(SV,SU,Or2),
call(Or2).

incomparable([],[],0).

incomparable([U|R],[V|S],U#>V#\/T) :-
incomparable(R,S,T).

2425

B.170 increasing

♦ META-DATA:

ctr_date(increasing,[’20040814’,’20060810’,’2009110 5’]).

ctr_origin(increasing,’KOALOG’,[]).

ctr_arguments(increasing,[’VARIABLES’-collection(va r-dvar)]).

ctr_restrictions(increasing,[required(’VARIABLES’,v ar)]).

ctr_example(
increasing,
increasing([[var-1],[var-1],[var-4],[var-8]])).

ctr_typical(
increasing,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(increasing,[translate([’VARIABLES’ ˆvar])]).

ctr_graph(
increasing,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar=<variables2ˆvar],
[’NARC’=size(’VARIABLES’)-1],
[]).

ctr_eval(
increasing,
[checker(increasing_c),

reformulation(increasing_r),
automaton(increasing_a)]).

ctr_contractible(increasing,[],’VARIABLES’,any).

increasing_c([]) :-
!.

increasing_c(VARIABLES) :-
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
increasing_c1(VARS).

2426 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

increasing_c1([]) :-
!.

increasing_c1([_30966]) :-
!.

increasing_c1([X,Y|R]) :-
X=<Y,
increasing_c1([Y|R]).

increasing_r([]) :-
!.

increasing_r(VARIABLES) :-
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
increasing1(VARS).

increasing1([_30966]) :-
!.

increasing1([V1,V2|R]) :-
V1#=<V2,
increasing1([V2|R]).

increasing_a(1,[]) :-
!.

increasing_a(0,[]) :-
!,
fail.

increasing_a(FLAG,VARIABLES) :-
collection(VARIABLES,[dvar]),
increasing_signature(VARIABLES,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_32097,
SIGNATURE,
[source(s),sink(s)],
[arc(s,1,s)],
[],
[],
[]),

2427

automaton_bool(FLAG,[0,1],AUTOMATON).

increasing_signature([_30967],[]) :-
!.

increasing_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss]) :-
S in 0..1,
VAR1#=<VAR2#<=>S,
increasing_signature([[var-VAR2]|VARs],Ss).

2428 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.171 increasingglobal cardinality

♦ META-DATA:

ctr_date(increasing_global_cardinality,[’20091015’]).

ctr_origin(
increasing_global_cardinality,
Conjoin %c and %c.,
[global_cardinality_low_up,increasing]).

ctr_synonyms(
increasing_global_cardinality,
[increasing_global_cardinality_low_up,

increasing_gcc,
increasing_gcc_low_up]).

ctr_arguments(
increasing_global_cardinality,
[’VARIABLES’-collection(var-dvar),

’VALUES’-collection(val-int,omin-int,omax-int)]).

ctr_restrictions(
increasing_global_cardinality,
[required(’VARIABLES’,var),

increasing(’VARIABLES’),
size(’VALUES’)>0,
required(’VALUES’,[val,omin,omax]),
distinct(’VALUES’,val),
’VALUES’ˆomin>=0,
’VALUES’ˆomax=<size(’VARIABLES’),
’VALUES’ˆomin=<’VALUES’ˆomax]).

ctr_example(
increasing_global_cardinality,
increasing_global_cardinality(

[[var-3],[var-3],[var-6],[var-8]],
[[val-3,omin-2,omax-3],

[val-5,omin-0,omax-1],
[val-6,omin-1,omax-2]])).

ctr_typical(
increasing_global_cardinality,
[size(’VARIABLES’)>1,

range(’VARIABLES’ˆvar)>1,
size(’VALUES’)>1,

2429

’VALUES’ˆomin=<size(’VARIABLES’),
’VALUES’ˆomax>0,
’VALUES’ˆomax=<size(’VARIABLES’),
size(’VARIABLES’)>size(’VALUES’)]).

ctr_exchangeable(
increasing_global_cardinality,
[items(’VALUES’,all)]).

ctr_graph(
increasing_global_cardinality,
[’VARIABLES’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval],
[’NVERTEX’>=’VALUES’ˆomin,’NVERTEX’=<’VALUES’ˆomax] ,
[]).

ctr_eval(
increasing_global_cardinality,
[reformulation(increasing_global_cardinality_r),

automaton(increasing_global_cardinality_a)]).

ctr_functional_dependency(increasing_nvalue,1,[2]).

increasing_global_cardinality_r(VARIABLES,VALUES) :-
eval(increasing(VARIABLES)),
eval(global_cardinality_low_up(VARIABLES,VALUES)).

increasing_global_cardinality_a(FLAG,VARIABLES,VALU ES) :-
increasing_global_cardinality_get_a(

VARIABLES,
VALUES,
AUTOMATON,
ALPHABET),

automaton_bool(FLAG,ALPHABET,AUTOMATON).

increasing_global_cardinality_get_a(
VARIABLES,
VALUES,
AUTOMATON,
ALPHABET) :-

length(VARIABLES,N),
collection(VARIABLES,[dvar]),
collection(VALUES,[int,int(0,N),int(0,N)]),
length(VALUES,M),

2430 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

M>0,
sort_collection(VALUES,val,SVALUES),
get_attr1(VARIABLES,VARS),
get_attr1(SVALUES,VALS),
get_attr2(SVALUES,OMINS),
get_attr3(SVALUES,OMAXS),
all_different(VALS),
check_lesseq(OMINS,OMAXS),
get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),
get_minimum(VALS,MINVALS),
get_maximum(VALS,MAXVALS),
MIN is min(MINVARS,MINVALS),
MAX is max(MAXVARS,MAXVALS),
get_sum(OMINS,SUM_OMINS),
REST is N-SUM_OMINS,
REST>=0,
increasing_global_cardinality_complete_values(

MIN,
MAX,
SVALUES,
REST,
CVALUES,
SUM_OMAXS),

reverse(CVALUES,RVALUES),
increasing_global_cardinality_term_states(

RVALUES,
SUM_OMAXS,
TERMINALS),

append([source(0)],TERMINALS,STATES),
increasing_global_cardinality_source_trans(

CVALUES,
1,
TRANSITIONS_FROM_SOURCE),

increasing_global_cardinality_horiz_trans(
CVALUES,
1,
TRANSITIONS_HORIZONTAL),

increasing_global_cardinality_vert_trans(
CVALUES,
1,
TRANSITIONS_VERTICAL),

append(
TRANSITIONS_FROM_SOURCE,
TRANSITIONS_HORIZONTAL,
T1),

2431

append(T1,TRANSITIONS_VERTICAL,ALL_TRANSITIONS),
AUTOMATON=
automaton(

VARS,
_45074,
VARS,
STATES,
ALL_TRANSITIONS,
[],
[],
[]),

append(VARS,VALS,ALL),
union_dom_list_int(ALL,ALPHABET).

increasing_global_cardinality_complete_values(
MIN,
MAX,
VALUES,
_REST,
VALUES,
0) :-

MIN>MAX,
(VALUES=[] ->

true
; write(problem),

nl,
abort

),
!.

increasing_global_cardinality_complete_values(
MIN,
MAX,
[],
REST,
[[constrained-CTR,val-MIN,omin-0,omax-OOMAX]|S],
SUM) :-

MIN=<MAX,
!,
(REST>1 ->

CTR=0,
OOMAX=1

; CTR=1,
OOMAX is max(1,REST)

),
MIN1 is MIN+1,

2432 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

increasing_global_cardinality_complete_values(
MIN1,
MAX,
[],
REST,
S,
TSUM),

SUM is TSUM+OOMAX.

increasing_global_cardinality_complete_values(
MIN,
MAX,
[[val-VAL,omin-OMIN,omax-OMAX]|R],
REST,
[[constrained-CTR,val-VAL,omin-OMIN,omax-OOMAX]|S],
SUM) :-

MIN=<MAX,
MIN=VAL,
!,
(OMAX>1,

OMAX>=REST+OMIN ->
CTR=0,
OOMAX is max(1,OMIN)

; CTR=1,
OOMAX is max(1,OMAX)

),
MIN1 is MIN+1,
increasing_global_cardinality_complete_values(

MIN1,
MAX,
R,
REST,
S,
TSUM),

SUM is TSUM+OOMAX.

increasing_global_cardinality_complete_values(
MIN,
MAX,
[[val-VAL,omin-OMIN,omax-OMAX]|R],
REST,
[[constrained-CTR,val-MIN,omin-0,omax-OOMAX]|S],
SUM) :-

MIN=<MAX,
MIN<VAL,
(REST>1 ->

2433

CTR=0,
OOMAX=1

; CTR=1,
OOMAX is max(1,REST)

),
MIN1 is MIN+1,
increasing_global_cardinality_complete_values(

MIN1,
MAX,
[[val-VAL,omin-OMIN,omax-OMAX]|R],
REST,
S,
TSUM),

SUM is TSUM+OOMAX.

increasing_global_cardinality_term_states([],_37153 ,[]).

increasing_global_cardinality_term_states(
[[constrained-_37164,val-_VAL,omin-OMIN,omax-OMAX]| R],
LAST_STATE_ID,
RES) :-

I is LAST_STATE_ID-OMAX+max(1,OMIN),
increasing_global_cardinality_term_states1(

I,
LAST_STATE_ID,
TERMS),

LAST_STATE_ID1 is LAST_STATE_ID-OMAX,
(OMIN=0 ->

increasing_global_cardinality_term_states(
R,
LAST_STATE_ID1,
S),

append(S,TERMS,RES)
; RES=TERMS
).

increasing_global_cardinality_term_states1(I,MAX,[]) :-
I>MAX,
!.

increasing_global_cardinality_term_states1(I,MAX,[s ink(I)|R]) :-
I=<MAX,
I1 is I+1,
increasing_global_cardinality_term_states1(I1,MAX,R).

increasing_global_cardinality_source_trans([],_3715 3,[]).

2434 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

increasing_global_cardinality_source_trans(
[[constrained-_37164,val-VAL,omin-OMIN,omax-OMAX]|R],
CUR_ID,
[arc(0,VAL,CUR_ID)|S]) :-

CUR_ID1 is CUR_ID+OMAX,
(OMIN=0 ->

increasing_global_cardinality_source_trans(
R,
CUR_ID1,
S)

; S=[]
).

increasing_global_cardinality_horiz_trans([],_37153 ,[]).

increasing_global_cardinality_horiz_trans(
[[constrained-CTR,val-VAL,omin-_37178,omax-OMAX]|R] ,
CUR_ID,
RESULT) :-

increasing_global_cardinality_horiz_trans1(
1,
OMAX,
CTR,
VAL,
CUR_ID,
TR),

CUR_ID1 is CUR_ID+OMAX,
increasing_global_cardinality_horiz_trans(R,CUR_ID1 ,S),
append(TR,S,RESULT).

increasing_global_cardinality_horiz_trans1(
I,
OMAX,
1,
_37540,
_37586,
[]) :-

I>=OMAX,
!.

increasing_global_cardinality_horiz_trans1(
I,
OMAX,
0,
VAL,

2435

ID,
[arc(ID,VAL,ID)]) :-

I>=OMAX,
!.

increasing_global_cardinality_horiz_trans1(
I,
OMAX,
CTR,
VAL,
ID,
[arc(ID,VAL,ID1)|R]) :-

I<OMAX,
ID1 is ID+1,
I1 is I+1,
increasing_global_cardinality_horiz_trans1(

I1,
OMAX,
CTR,
VAL,
ID1,
R).

increasing_global_cardinality_vert_trans([_37158],_ 37156,[]) :-
!.

increasing_global_cardinality_vert_trans(
[[constrained-_37164,val-_VAL,omin-OMIN,omax-OMAX]| R],
CUR_ID,
RESULT) :-

I is CUR_ID+max(0,OMIN-1),
CUR_ID1 is CUR_ID+OMAX,
increasing_global_cardinality_vert_trans1(

R,
CUR_ID1,
I,
CUR_ID1,
S),

increasing_global_cardinality_vert_trans(R,CUR_ID1, T),
append(S,T,RESULT).

increasing_global_cardinality_vert_trans1(
[],
_37428,
_37474,
_37520,

2436 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[]).

increasing_global_cardinality_vert_trans1(
[[constrained-_37166,val-VAL,omin-OMIN,omax-OMAX]|R],
CUR_ID,
I,
MAX,
RESULT) :-

increasing_global_cardinality_vert_trans2(
I,
MAX,
CUR_ID,
VAL,
RES1),

CUR_ID1 is CUR_ID+OMAX,
(OMIN=0 ->

increasing_global_cardinality_vert_trans1(
R,
CUR_ID1,
I,
MAX,
RES2),

append(RES1,RES2,RESULT)
; RESULT=RES1
).

increasing_global_cardinality_vert_trans2(
MAX,
MAX,
_37485,
_37531,
[]) :-

!.

increasing_global_cardinality_vert_trans2(
I,
MAX,
CUR_ID,
VAL,
[arc(I,VAL,CUR_ID)|R]) :-

I<MAX,
I1 is I+1,
increasing_global_cardinality_vert_trans2(

I1,
MAX,
CUR_ID,

2437

VAL,
R).

2438 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.172 increasingnvalue

♦ META-DATA:

ctr_date(increasing_nvalue,[’20091104’]).

ctr_origin(
increasing_nvalue,
Conjoin %c and %c.,
[nvalue,increasing]).

ctr_arguments(
increasing_nvalue,
[’NVAL’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
increasing_nvalue,
[’NVAL’>=min(1,size(’VARIABLES’)),

’NVAL’=<size(’VARIABLES’),
required(’VARIABLES’,var),
increasing(’VARIABLES’)]).

ctr_example(
increasing_nvalue,
increasing_nvalue(

2,
[[var-6],[var-6],[var-8],[var-8],[var-8]])).

ctr_typical(
increasing_nvalue,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
increasing_nvalue,
[translate([’VARIABLES’ˆvar])]).

ctr_graph(
increasing_nvalue,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSCC’=’NVAL’],
[’EQUIVALENCE’]).

ctr_eval(

2439

increasing_nvalue,
[reformulation(increasing_nvalue_r),

automata(increasing_nvalue_a)]).

increasing_nvalue_r(0,[]) :-
!.

increasing_nvalue_r(NVAL,VARIABLES) :-
eval(increasing(VARIABLES)),
eval(nvalue(NVAL,VARIABLES)).

increasing_nvalue_a(0,[]) :-
!.

increasing_nvalue_a(NVAL,VARIABLES) :-
check_type(dvar,NVAL),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
length(VARIABLES,N),
NVAL#>=min(1,N),
NVAL#=<N,
get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),
SIZE is MAXVARS-MINVARS+1,
fd_min(NVAL,MINNVAL),
fd_max(NVAL,MAXNVAL),
D is min(N,min(SIZE,MAXNVAL)),
fd_set(NVAL,SVAL),
fdset_to_list(SVAL,VALUES),
increasing_nvalue_states(VALUES,SIZE,MINNVAL,STATES),
gen_automaton_state(s,0,0,S_00),
increasing_nvalue_class1(

1,
SIZE,
MINNVAL,
MINVARS,
S_00,
TRANS1),

increasing_nvalue_class2(
1,
D,
SIZE,
MINNVAL,
MINVARS,
TRANS2),

increasing_nvalue_class3(

2440 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

1,
D,
SIZE,
MINNVAL,
MINVARS,
TRANS3),

append(TRANS1,TRANS2,TRANS12),
append(TRANS12,TRANS3,ALL_TRANSITIONS),
automaton(

VARS,
_45260,
VARS,
STATES,
ALL_TRANSITIONS,
[],
[],
[]),

eval(nvalue(NVAL,VARIABLES)).

increasing_nvalue_states([],_39743,_39744,[source(S _00)]) :-
gen_automaton_state(s,0,0,S_00).

increasing_nvalue_states([V|R],SIZE,MINNVAL,STATES) :-
increasing_nvalue_states1(V,SIZE,V,MINNVAL,STATES1) ,
increasing_nvalue_states(R,SIZE,MINNVAL,STATES2),
append(STATES1,STATES2,STATES).

increasing_nvalue_states1(J,SIZE,_39744,_39745,[]) : -
J>SIZE,
!.

increasing_nvalue_states1(J,SIZE,I,MINNVAL,[sink(S_ IJ)|STATES]) :-
J=<SIZE,
I_SIZE_J is I+SIZE-J,
I_SIZE_J>=MINNVAL,
!,
gen_automaton_state(s,I,J,S_IJ),
J1 is J+1,
increasing_nvalue_states1(J1,SIZE,I,MINNVAL,STATES) .

increasing_nvalue_states1(J,SIZE,I,MINNVAL,STATES) : -
J=<SIZE,
J1 is J+1,
increasing_nvalue_states1(J1,SIZE,I,MINNVAL,STATES) .

increasing_nvalue_class1(J,SIZE,_39744,_39745,_3974 6,[]) :-

2441

J>SIZE,
!.

increasing_nvalue_class1(
J,
SIZE,
MINNVAL,
MINVARS,
S_00,
[arc(S_00,LABEL,S_1J)|TRANS]) :-

J=<SIZE,
I_SIZE_J is 1+SIZE-J,
I_SIZE_J>=MINNVAL,
!,
gen_automaton_state(s,1,J,S_1J),
LABEL is MINVARS+J-1,
J1 is J+1,
increasing_nvalue_class1(

J1,
SIZE,
MINNVAL,
MINVARS,
S_00,
TRANS).

increasing_nvalue_class1(J,SIZE,MINNVAL,MINVARS,S_0 0,TRANS) :-
J=<SIZE,
J1 is J+1,
increasing_nvalue_class1(

J1,
SIZE,
MINNVAL,
MINVARS,
S_00,
TRANS).

increasing_nvalue_class2(I,D,_SIZE,_MINNVAL,_MINVAR S,[]) :-
I>D,
!.

increasing_nvalue_class2(I,D,SIZE,MINNVAL,MINVARS,T RANS) :-
I=<D,
increasing_nvalue_class21(

I,
SIZE,
I,

2442 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

MINNVAL,
MINVARS,
TRANS1),

I1 is I+1,
increasing_nvalue_class2(

I1,
D,
SIZE,
MINNVAL,
MINVARS,
TRANS2),

append(TRANS1,TRANS2,TRANS).

increasing_nvalue_class21(J,SIZE,_I,_MINNVAL,_MINVA RS,[]) :-
J>SIZE,
!.

increasing_nvalue_class21(
J,
SIZE,
I,
MINNVAL,
MINVARS,
[arc(S_IJ,LABEL,S_IJ)|TRANS]) :-

J=<SIZE,
I_SIZE_J is I+SIZE-J,
I_SIZE_J>=MINNVAL,
!,
gen_automaton_state(s,I,J,S_IJ),
LABEL is MINVARS+J-1,
J1 is J+1,
increasing_nvalue_class21(

J1,
SIZE,
I,
MINNVAL,
MINVARS,
TRANS).

increasing_nvalue_class21(J,SIZE,I,MINNVAL,MINVARS, TRANS) :-
J=<SIZE,
J1 is J+1,
increasing_nvalue_class21(

J1,
SIZE,
I,

2443

MINNVAL,
MINVARS,
TRANS).

increasing_nvalue_class3(I,D,_39744,_39745,_39746,[]) :-
I>=D,
!.

increasing_nvalue_class3(I,D,SIZE,MINNVAL,MINVARS,T RANS) :-
I<D,
increasing_nvalue_class31(

I,
SIZE,
I,
MINNVAL,
MINVARS,
TRANS1),

I1 is I+1,
increasing_nvalue_class3(

I1,
D,
SIZE,
MINNVAL,
MINVARS,
TRANS2),

append(TRANS1,TRANS2,TRANS).

increasing_nvalue_class31(J,SIZE,_39744,_39745,_397 46,[]) :-
J>SIZE,
!.

increasing_nvalue_class31(J,SIZE,I,MINNVAL,MINVARS, TRANS) :-
J=<SIZE,
I_SIZE_J is I+SIZE-J,
I_SIZE_J>=MINNVAL,
!,
gen_automaton_state(s,I,J,S_IJ),
J1 is J+1,
increasing_nvalue_class32(

J1,
SIZE,
I,
J,
S_IJ,
MINNVAL,
MINVARS,

2444 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

TRANS1),
increasing_nvalue_class31(

J1,
SIZE,
I,
MINNVAL,
MINVARS,
TRANS2),

append(TRANS1,TRANS2,TRANS).

increasing_nvalue_class31(J,SIZE,I,MINNVAL,MINVARS, TRANS) :-
J=<SIZE,
J1 is J+1,
increasing_nvalue_class31(

J1,
SIZE,
I,
MINNVAL,
MINVARS,
TRANS).

increasing_nvalue_class32(
K,
SIZE,
_40089,
_40135,
_40181,
_40227,
_40273,
[]) :-

K>SIZE,
!.

increasing_nvalue_class32(
K,
SIZE,
I,
J,
S_IJ,
MINNVAL,
MINVARS,
[arc(S_IJ,LABEL,S_I1K)|TRANS]) :-

K=<SIZE,
I1 is I+1,
I1_SIZE_K is I1+SIZE-K,
I1_SIZE_K>=MINNVAL,

2445

!,
gen_automaton_state(s,I1,K,S_I1K),
LABEL is MINVARS+K-1,
K1 is K+1,
increasing_nvalue_class32(

K1,
SIZE,
I,
J,
S_IJ,
MINNVAL,
MINVARS,
TRANS).

increasing_nvalue_class32(
K,
SIZE,
I,
J,
S_IJ,
MINNVAL,
MINVARS,
TRANS) :-

K=<SIZE,
K1 is K+1,
increasing_nvalue_class32(

K1,
SIZE,
I,
J,
S_IJ,
MINNVAL,
MINVARS,
TRANS).

2446 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.173 increasingnvalue chain

♦ META-DATA:

ctr_date(increasing_nvalue_chain,[’20091118’]).

ctr_origin(
increasing_nvalue_chain,
Derived from %c.,
[increasing_nvalue]).

ctr_arguments(
increasing_nvalue_chain,
[’NVAL’-dvar,’VARIABLES’-collection(b-dvar,var-dvar)]).

ctr_restrictions(
increasing_nvalue_chain,
[’NVAL’>=min(1,size(’VARIABLES’)),

’NVAL’=<size(’VARIABLES’),
required(’VARIABLES’,[b,var]),
’VARIABLES’ˆb>=0,
’VARIABLES’ˆb=<1]).

ctr_example(
increasing_nvalue_chain,
increasing_nvalue_chain(

6,
[[b-0,var-2],

[b-1,var-4],
[b-1,var-4],
[b-1,var-4],
[b-0,var-4],
[b-1,var-8],
[b-0,var-1],
[b-0,var-7],
[b-1,var-7]])).

ctr_typical(
increasing_nvalue_chain,
[size(’VARIABLES’)>1,

range(’VARIABLES’ˆb)>1,
range(’VARIABLES’ˆvar)>1]).

ctr_graph(
increasing_nvalue_chain,
[’VARIABLES’],

2447

2,
[’PATH’>>collection(variables1,variables2)],
[variables2ˆb=0#\/variables1ˆvar=<variables2ˆvar],
[’NARC’=size(’VARIABLES’)-1],
[]).

ctr_graph(
increasing_nvalue_chain,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables2ˆb=0#\/variables1ˆvar<variables2ˆvar],
[’NARC’=’NVAL’-1],
[]).

ctr_eval(
increasing_nvalue_chain,
[reformulation(increasing_nvalue_chain_r)]).

increasing_nvalue_chain_r(_32696,_32697).

2448 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.174 increasingsum

♦ META-DATA:

ctr_predefined(increasing_sum).

ctr_date(increasing_sum,[’20110617’]).

ctr_origin(
increasing_sum,
Conjoin %c and %c.,
[increasing,sum_ctr]).

ctr_synonyms(
increasing_sum,
[increasing_sum_ctr,increasing_sum_eq]).

ctr_arguments(
increasing_sum,
[’VARIABLES’-collection(var-dvar),’S’-dvar]).

ctr_restrictions(
increasing_sum,
[required(’VARIABLES’,var),increasing(’VARIABLES’)]).

ctr_example(
increasing_sum,
increasing_sum([[var-3],[var-3],[var-6],[var-8]],20)).

ctr_typical(
increasing_sum,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_eval(increasing_sum,[reformulation(increasing_s um_r)]).

increasing_sum_r(VARIABLES,S) :-
eval(increasing(VARIABLES)),
eval(sum_ctr(VARIABLES,=,S)).

2449

B.175 indexedsum

♦ META-DATA:

ctr_date(indexed_sum,[’20040814’,’20060810’,’200904 22’]).

ctr_origin(indexed_sum,’N.˜Beldiceanu’,[]).

ctr_arguments(
indexed_sum,
[’ITEMS’-collection(index-dvar,weight-dvar),

’TABLE’-collection(index-int,summation-dvar)]).

ctr_restrictions(
indexed_sum,
[size(’ITEMS’)>0,

size(’TABLE’)>0,
required(’ITEMS’,[index,weight]),
’ITEMS’ˆindex>=1,
’ITEMS’ˆindex=<size(’TABLE’),
required(’TABLE’,[index,summation]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
increasing_seq(’TABLE’,index)]).

ctr_example(
indexed_sum,
indexed_sum(

[[index-3,weight- -4],
[index-1,weight-6],
[index-3,weight-1]],

[[index-1,summation-6],
[index-2,summation-0],
[index-3,summation- -3]])).

ctr_typical(
indexed_sum,
[size(’ITEMS’)>1,

range(’ITEMS’ˆindex)>1,
size(’TABLE’)>1,
range(’TABLE’ˆsummation)>1]).

ctr_exchangeable(
indexed_sum,
[items(’ITEMS’,all),items(’TABLE’,all)]).

2450 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_graph(
indexed_sum,
[’ITEMS’,’TABLE’],
2,
foreach(’TABLE’,[’PRODUCT’>>collection(items,table)]),
[itemsˆindex=tableˆindex],
[],
[],
[SUCC>>

[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’ITEMS’ˆweight)])]],
[sum_ctr(variables,=,’TABLE’ˆsummation)]).

ctr_eval(indexed_sum,[reformulation(indexed_sum_r)]).

indexed_sum_r(ITEMS,TABLE) :-
length(ITEMS,I),
length(TABLE,T),
I>0,
T>0,
collection(ITEMS,[dvar(1,T),dvar]),
collection(TABLE,[int(1,T),dvar]),
collection_increasing_seq(TABLE,[1]),
get_attr1(ITEMS,ITEMS_INDEXES),
get_attr2(ITEMS,ITEMS_WEIGHTS),
get_attr2(TABLE,TABLE_TSUMS),
indexed_sum1(

1,
T,
TABLE_TSUMS,
ITEMS_INDEXES,
ITEMS_WEIGHTS).

indexed_sum1(I,T,[],_32611,_32612) :-
I>T,
!.

indexed_sum1(I,T,[SUM|R],ITEMS_INDEXES,ITEMS_WEIGHT S) :-
indexed_sum2(ITEMS_INDEXES,ITEMS_WEIGHTS,I,TERM),
call(SUM#=TERM),
I1 is I+1,
indexed_sum1(I1,T,R,ITEMS_INDEXES,ITEMS_WEIGHTS).

indexed_sum2([],[],_32607,0).

2451

indexed_sum2([J|R],[W|S],I,W * B+T) :-
B#<=>J#=I,
indexed_sum2(R,S,I,T).

2452 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.176 inflexion

♦ META-DATA:

ctr_date(inflexion,[’20000128’,’20030820’,’20040530 ’]).

ctr_origin(inflexion,’N.˜Beldiceanu’,[]).

ctr_arguments(
inflexion,
[’N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
inflexion,
[’N’>=0,

’N’=<max(0,size(’VARIABLES’)-2),
required(’VARIABLES’,var)]).

ctr_example(
inflexion,
inflexion(

3,
[[var-1],

[var-1],
[var-4],
[var-8],
[var-8],
[var-2],
[var-7],
[var-1]])).

ctr_typical(
inflexion,
[’N’>0,size(’VARIABLES’)>2,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
inflexion,
[items(’VARIABLES’,reverse),translate([’VARIABLES’ˆ var])]).

ctr_eval(inflexion,[automaton(inflexion_a)]).

inflexion_a(FLAG,N,VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
MAX is max(0,L-2),
check_type(dvar(0,MAX),N),

2453

inflexion_signature(VARIABLES,SIGNATURE),
automaton(

SIGNATURE,
_17580,
SIGNATURE,
[source(s),sink(i),sink(j),sink(s)],
[arc(s,1,s),

arc(s,2,i),
arc(s,0,j),
arc(i,1,i),
arc(i,2,i),
arc(i,0,j,[C+1]),
arc(j,1,j),
arc(j,0,j),
arc(j,2,i,[C+1])],

[C],
[0],
[COUNT]),

COUNT#=N#<=>FLAG.

inflexion_signature([],[]).

inflexion_signature([_15918],[]) :-
!.

inflexion_signature([[var-VAR1],[var-VAR2]|VARs],[S |Ss]) :-
S in 0..2,
VAR1#>VAR2#<=>S#=0,
VAR1#=VAR2#<=>S#=1,
VAR1#<VAR2#<=>S#=2,
inflexion_signature([[var-VAR2]|VARs],Ss).

2454 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.177 insidesboxes

♦ META-DATA:

ctr_date(inside_sboxes,[’20070622’,’20090725’]).

ctr_origin(
inside_sboxes,
Geometry, derived from \cite{RandellCuiCohn92},
[]).

ctr_synonyms(inside_sboxes,[inside]).

ctr_types(
inside_sboxes,
[’VARIABLES’-collection(v-dvar),

’INTEGERS’-collection(v-int),
’POSITIVES’-collection(v-int)]).

ctr_arguments(
inside_sboxes,
[’K’-int,

’DIMS’-sint,
’OBJECTS’-collection(oid-int,sid-int,x-’VARIABLES’) ,
’SBOXES’-collection(sid-int,t-’INTEGERS’,l-’POSITIV ES’)]).

ctr_restrictions(
inside_sboxes,
[size(’VARIABLES’)>=1,

size(’INTEGERS’)>=1,
size(’POSITIVES’)>=1,
required(’VARIABLES’,v),
size(’VARIABLES’)=’K’,
required(’INTEGERS’,v),
size(’INTEGERS’)=’K’,
required(’POSITIVES’,v),
size(’POSITIVES’)=’K’,
’POSITIVES’ˆv>0,
’K’>0,
’DIMS’>=0,
’DIMS’<’K’,
increasing_seq(’OBJECTS’,[oid]),
required(’OBJECTS’,[oid,sid,x]),
’OBJECTS’ˆoid>=1,
’OBJECTS’ˆoid=<size(’OBJECTS’),
’OBJECTS’ˆsid>=1,

2455

’OBJECTS’ˆsid=<size(’SBOXES’),
size(’SBOXES’)>=1,
required(’SBOXES’,[sid,t,l]),
’SBOXES’ˆsid>=1,
’SBOXES’ˆsid=<size(’SBOXES’),
do_not_overlap(’SBOXES’)]).

ctr_example(
inside_sboxes,
inside_sboxes(

2,
{0,1},
[[oid-1,sid-1,x-[[v-3],[v-3]]],

[oid-2,sid-2,x-[[v-2],[v-2]]],
[oid-3,sid-3,x-[[v-1],[v-1]]]],

[[sid-1,t-[[v-0],[v-0]],l-[[v-1],[v-1]]],
[sid-2,t-[[v-0],[v-0]],l-[[v-3],[v-3]]],
[sid-3,t-[[v-0],[v-0]],l-[[v-5],[v-5]]]])).

ctr_typical(inside_sboxes,[size(’OBJECTS’)>1]).

ctr_exchangeable(
inside_sboxes,
[items(’SBOXES’,all),

items_sync(’OBJECTS’ˆx,’SBOXES’ˆt,’SBOXES’ˆl,all)]) .

ctr_eval(inside_sboxes,[logic(inside_sboxes_g)]).

ctr_logic(
inside_sboxes,
[DIMENSIONS,OIDS],
[(origin(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)),

(end(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)+S1ˆl(D)),
(inside_sboxes(Dims,O1,S1,O2,S2)--->

forall(
D,
Dims,
origin(O2,S2,D)#<origin(O1,S1,D)#/\
end(O1,S1,D)#<end(O2,S2,D))),

(inside_objects(Dims,O1,O2)--->
forall(

S1,
sboxes([O1ˆsid]),
exists(

S2,
sboxes([O2ˆsid]),

2456 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

inside_sboxes(Dims,O1,S1,O2,S2)))),
(all_inside(Dims,OIDS)--->

forall(
O1,
objects(OIDS),
forall(

O2,
objects(OIDS),
O1ˆoid#<O2ˆoid#=>inside_objects(Dims,O1,O2)))),

all_inside(DIMENSIONS,OIDS)]).

ctr_contractible(inside_sboxes,[],’OBJECTS’,suffix) .

inside_sboxes_g(K,_28723,[],_28725) :-
!,
check_type(int_gteq(1),K).

inside_sboxes_g(K,_DIMS,OBJECTS,SBOXES) :-
length(OBJECTS,O),
length(SBOXES,S),
O>0,
S>0,
check_type(int_gteq(1),K),
collection(OBJECTS,[int(1,O),dvar(1,S),col(K,[dvar])]),
collection(

SBOXES,
[int(1,S),col(K,[int]),col(K,[int_gteq(1)])]),

get_attr1(OBJECTS,OIDS),
get_attr2(OBJECTS,SIDS),
get_col_attr3(OBJECTS,1,XS),
get_attr1(SBOXES,SIDES),
get_col_attr2(SBOXES,1,TS),
get_col_attr3(SBOXES,1,TL),
collection_increasing_seq(OBJECTS,[1]),
geost1(OIDS,SIDS,XS,Objects),
geost2(SIDES,TS,TL,Sboxes),
geost_dims(1,K,DIMENSIONS),
ctr_logic(inside_sboxes,[DIMENSIONS,OIDS],Rules),
geost(Objects,Sboxes,[overlap(true)],Rules).

2457

B.178 int value precede

♦ META-DATA:

ctr_date(int_value_precede,[’20041003’]).

ctr_origin(int_value_precede,’\\cite{YatChiuLawJimm yLee04}’,[]).

ctr_synonyms(
int_value_precede,
[precede,precedence,value_precede]).

ctr_arguments(
int_value_precede,
[’S’-int,’T’-int,’VARIABLES’-collection(var-dvar)]) .

ctr_restrictions(
int_value_precede,
[’S’=\=’T’,required(’VARIABLES’,var)]).

ctr_example(
int_value_precede,
int_value_precede(

0,
1,
[[var-4],[var-0],[var-6],[var-1],[var-0]])).

ctr_typical(
int_value_precede,
[’S’<’T’,

size(’VARIABLES’)>1,
atleast(1,’VARIABLES’,’S’),
atleast(1,’VARIABLES’,’T’)]).

ctr_exchangeable(
int_value_precede,
[vals(

[’VARIABLES’ˆvar],
int(notin([’S’,’T’])),
=\=,
dontcare,
dontcare),

vals(
[’S’,’T’,’VARIABLES’ˆvar],
int([’S’,’T’]),
=\=,

2458 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

all,
in)]).

ctr_eval(int_value_precede,[automaton(int_value_pre cede_a)]).

ctr_contractible(int_value_precede,[],’VARIABLES’,s uffix).

ctr_aggregate(int_value_precede,[],[id,id,union]).

int_value_precede_a(1,S,T,[]) :-
!,
check_type(int,S),
check_type(int,T),
S=\=T.

int_value_precede_a(0,_S,_T,[]) :-
!,
fail.

int_value_precede_a(FLAG,S,T,VARIABLES) :-
check_type(int,S),
check_type(int,T),
S=\=T,
collection(VARIABLES,[dvar]),
int_value_precede_signature(VARIABLES,SIGNATURE,S,T),
AUTOMATON=
automaton(

SIGNATURE,
_22909,
SIGNATURE,
[source(s),sink(s),sink(t)],
[arc(s,3,s),

arc(s,1,t),
arc(t,1,t),
arc(t,2,t),
arc(t,3,t)],

[],
[],
[]),

automaton_bool(FLAG,[1,2,3],AUTOMATON).

int_value_precede_signature([],[],_21127,_21128).

int_value_precede_signature([[var-VAR]|VARs],[SI|SI s],S,T) :-
SI in 1..3,
VAR#=S#<=>SI#=1,

2459

VAR#=T#<=>SI#=2,
VAR#\=S#/\VAR#\=T#<=>SI#=3,
int_value_precede_signature(VARs,SIs,S,T).

2460 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.179 int value precedechain

♦ META-DATA:

ctr_date(
int_value_precede_chain,
[’20041003’,’20090728’,’20090822’]).

ctr_origin(
int_value_precede_chain,
\cite{YatChiuLawJimmyLee04},
[]).

ctr_synonyms(
int_value_precede_chain,
[precede,precedence,value_precede_chain]).

ctr_arguments(
int_value_precede_chain,
[’VALUES’-collection(var-int),

’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
int_value_precede_chain,
[required(’VALUES’,var),

distinct(’VALUES’,var),
required(’VARIABLES’,var)]).

ctr_example(
int_value_precede_chain,
int_value_precede_chain(

[[var-4],[var-0],[var-1]],
[[var-4],[var-0],[var-6],[var-1],[var-0]])).

ctr_typical(
int_value_precede_chain,
[size(’VALUES’)>1,

strictly_increasing(’VALUES’),
size(’VARIABLES’)>size(’VALUES’),
range(’VARIABLES’ˆvar)>1,
used_by(’VARIABLES’,’VALUES’)]).

ctr_exchangeable(
int_value_precede_chain,
[vals(

[’VARIABLES’ˆvar],

2461

int(notin(’VALUES’ˆvar)),
=\=,
dontcare,
dontcare)]).

ctr_eval(
int_value_precede_chain,
[automaton(int_value_precede_chain_a)]).

ctr_contractible(int_value_precede_chain,[],’VALUES ’,any).

ctr_contractible(int_value_precede_chain,[],’VARIAB LES’,suffix).

ctr_aggregate(int_value_precede_chain,[],[id,union]).

int_value_precede_chain_a(FLAG,[],VARIABLES) :-
!,
collection(VARIABLES,[dvar]),
(FLAG=1 ->

true
; fail
).

int_value_precede_chain_a(FLAG,VALUES,[]) :-
!,
collection(VALUES,[int]),
get_attr1(VALUES,VALS),
all_different(VALS),
(FLAG=1 ->

true
; fail
).

int_value_precede_chain_a(FLAG,VALUES,VARIABLES) :-
collection(VALUES,[int]),
collection(VARIABLES,[dvar]),
length(VALUES,1),
!,
(FLAG=1 ->

true
; fail
).

int_value_precede_chain_a(FLAG,VALUES,VARIABLES) :-
collection(VALUES,[int]),
collection(VARIABLES,[dvar]),

2462 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

get_attr1(VALUES,VALS),
all_different(VALS),
length(VALS,N),
get_attr1(VARIABLES,VARS),
int_value_precede_chain_gen_complement(

VARS,
VALS,
COMPLEMENT),

int_value_precede_chain_gen_states1(0,N,STATES),
int_value_precede_chain_gen_transitions(

N,
VALS,
COMPLEMENT,
STATES,
TRANSITIONS),

nth0(0,STATES,S0),
int_value_precede_chain_gen_states2(

STATES,
S0,
AUTOMATON_STATES),

AUTOMATON=
automaton(

VARS,
_26927,
VARS,
AUTOMATON_STATES,
TRANSITIONS,
[],
[],
[]),

append(VALS,COMPLEMENT,ALPHABET),
automaton_bool(FLAG,ALPHABET,AUTOMATON).

int_value_precede_chain_gen_states2([],S0,[source(S 0)]) :-
!.

int_value_precede_chain_gen_states2([S|R],S0,[sink(S)|T]) :-
int_value_precede_chain_gen_states2(R,S0,T).

int_value_precede_chain_gen_complement(VARS,VALS,CO MPLEMENT) :-
union_dom_set(VARS,UNION),
list_to_fdset(VALS,VALUES),
fdset_subtract(UNION,VALUES,DIFFERENCE),
fdset_to_list(DIFFERENCE,COMPLEMENT).

int_value_precede_chain_gen_states1(I,N,[]) :-

2463

I>N,
!.

int_value_precede_chain_gen_states1(I,N,[INAME|R]) : -
I=<N,
number_codes(I,ICODE),
atom_codes(IATOM,ICODE),
atom_concat(s,IATOM,INAME),
I1 is I+1,
int_value_precede_chain_gen_states1(I1,N,R).

int_value_precede_chain_gen_transitions(
N,
VALS,
COMPLEMENT,
STATES,
TRANSITIONS) :-

N1 is N-1,
int_value_precede_chain_gen_transitions1(

0,
N1,
VALS,
STATES,
TR1),

int_value_precede_chain_gen_transitions2(
1,
N,
VALS,
STATES,
TR2),

int_value_precede_chain_gen_transitions3(
0,
N,
VALS,
STATES,
COMPLEMENT,
TR3),

append(TR1,TR2,TR12),
append(TR12,TR3,TRANSITIONS).

int_value_precede_chain_gen_transitions1(I,N1,_2342 3,_23424,[]) :-
I>N1,
!.

int_value_precede_chain_gen_transitions1(
I,

2464 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

N1,
VALS,
STATES,
[arc(Si,Vii,Sii)|R]) :-

I=<N1,
I1 is I+1,
nth0(I,STATES,Si),
nth1(I1,VALS,Vii),
nth0(I1,STATES,Sii),
int_value_precede_chain_gen_transitions1(

I1,
N1,
VALS,
STATES,
R).

int_value_precede_chain_gen_transitions2(I,N1,_2342 3,_23424,[]) :-
I>N1,
!.

int_value_precede_chain_gen_transitions2(
I,
N1,
VALS,
STATES,
TRANSITIONS) :-

I=<N1,
int_value_precede_chain_gen_transitions21(

1,
I,
VALS,
STATES,
TR),

I1 is I+1,
int_value_precede_chain_gen_transitions2(

I1,
N1,
VALS,
STATES,
R),

append(TR,R,TRANSITIONS).

int_value_precede_chain_gen_transitions21(J,I,_2342 3,_23424,[]) :-
J>I,
!.

2465

int_value_precede_chain_gen_transitions21(
J,
I,
VALS,
STATES,
[arc(Si,Vj,Si)|R]) :-

J=<I,
nth0(I,STATES,Si),
nth1(J,VALS,Vj),
J1 is J+1,
int_value_precede_chain_gen_transitions21(

J1,
I,
VALS,
STATES,
R).

int_value_precede_chain_gen_transitions3(
_23656,
_23702,
_23748,
_23794,
[],
[]) :-

!.

int_value_precede_chain_gen_transitions3(
I,
N1,
_23762,
_23808,
_23854,
[]) :-

I>N1,
!.

int_value_precede_chain_gen_transitions3(
I,
N1,
VALS,
STATES,
[C|CC],
TRANSITIONS) :-

I=<N1,
length([C|CC],LC),
int_value_precede_chain_gen_transitions31(

2466 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

1,
LC,
I,
[C|CC],
STATES,
TR),

I1 is I+1,
int_value_precede_chain_gen_transitions3(

I1,
N1,
VALS,
STATES,
[C|CC],
R),

append(TR,R,TRANSITIONS).

int_value_precede_chain_gen_transitions31(
J,
LC,
_23762,
_23808,
_23854,
[]) :-

J>LC,
!.

int_value_precede_chain_gen_transitions31(
J,
LC,
I,
C,
STATES,
[arc(Si,Cj,Si)|R]) :-

J=<LC,
nth0(I,STATES,Si),
nth1(J,C,Cj),
J1 is J+1,
int_value_precede_chain_gen_transitions31(

J1,
LC,
I,
C,
STATES,
R).

2467

B.180 interval and count

♦ META-DATA:

ctr_date(
interval_and_count,
[’20000128’,’20030820’,’20040530’,’20060810’]).

ctr_origin(interval_and_count,’\\cite{Cousin93}’,[]).

ctr_arguments(
interval_and_count,
[’ATMOST’-int,

’COLOURS’-collection(val-int),
’TASKS’-collection(origin-dvar,colour-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
interval_and_count,
[’ATMOST’>=0,

required(’COLOURS’,val),
distinct(’COLOURS’,val),
required(’TASKS’,[origin,colour]),
’TASKS’ˆorigin>=0,
’SIZE_INTERVAL’>0]).

ctr_example(
interval_and_count,
interval_and_count(

2,
[[val-4]],
[[origin-1,colour-4],

[origin-0,colour-9],
[origin-10,colour-4],
[origin-4,colour-4]],

5)).

ctr_typical(
interval_and_count,
[’ATMOST’>0,

’ATMOST’<size(’TASKS’),
size(’COLOURS’)>0,
size(’TASKS’)>1,
range(’TASKS’ˆorigin)>1,
range(’TASKS’ˆcolour)>1,
’SIZE_INTERVAL’>1]).

2468 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_exchangeable(
interval_and_count,
[vals([’ATMOST’],int,<,dontcare,dontcare),

items(’COLOURS’,all),
items(’TASKS’,all),
translate([’TASKS’ˆorigin]),
vals(

[’TASKS’ˆorigin],
intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare),

vals(
[’TASKS’ˆcolour],
comp(’COLOURS’ˆval),
=,
dontcare,
dontcare)]).

ctr_graph(
interval_and_count,
[’TASKS’,’TASKS’],
2,
[’PRODUCT’>>collection(tasks1,tasks2)],
[tasks1ˆorigin/’SIZE_INTERVAL’=

tasks2ˆorigin/’SIZE_INTERVAL’],
[],
[],
[SUCC>>

[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’TASKS’ˆcolour)])]],
[among_low_up(0,’ATMOST’,variables,’COLOURS’)]).

ctr_eval(
interval_and_count,
[reformulation(interval_and_count_r)]).

ctr_contractible(interval_and_count,[],’COLOURS’,an y).

ctr_contractible(interval_and_count,[],’TASKS’,any) .

interval_and_count_r(ATMOST,COLOURS,TASKS,SIZE_INTE RVAL) :-
check_type(int_gteq(0),ATMOST),

2469

collection(COLOURS,[int]),
get_attr1(COLOURS,COLS),
all_different(COLS),
collection(TASKS,[dvar_gteq(0),dvar]),
check_type(int_gteq(1),SIZE_INTERVAL),
(COLOURS=[] ->

true
; TASKS=[] ->

true
; get_attr1(TASKS,TORIS),

get_attr2(TASKS,TCOLS),
interval_and_count1(TCOLS,COLS,LB),
get_maximum(TORIS,MAX),
MAXK is(MAX+SIZE_INTERVAL-1)//SIZE_INTERVAL,
interval_and_count2(

0,
MAXK,
SIZE_INTERVAL,
ATMOST,
LB,
TORIS)

).

interval_and_count1([],_41670,[]).

interval_and_count1([TC|R],COLS,[B|S]) :-
build_or_var_in_values(COLS,TC,TERM),
call(B#<=>TERM),
interval_and_count1(R,COLS,S).

interval_and_count2(K,MAXK,_41674,_41675,_41676,_41 677) :-
K>MAXK,
!.

interval_and_count2(K,MAXK,SIZE_INTERVAL,ATMOST,LB, TORIS) :-
K=<MAXK,
interval_and_count3(LB,TORIS,K,SIZE_INTERVAL,SUMB),
call(SUMB#=<ATMOST),
K1 is K+1,
interval_and_count2(

K1,
MAXK,
SIZE_INTERVAL,
ATMOST,
LB,
TORIS).

2470 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

interval_and_count3([],[],_41671,_41672,0).

interval_and_count3([B|R],[O|S],K,SIZE_INTERVAL,BK+ T) :-
SK is K * SIZE_INTERVAL,
TK is SK+SIZE_INTERVAL-1,
BK#<=>B#/\O#>=SK#/\O#=<TK,
interval_and_count3(R,S,K,SIZE_INTERVAL,T).

2471

B.181 interval and sum

♦ META-DATA:

ctr_date(interval_and_sum,[’20000128’,’20030820’,’2 0060810’]).

ctr_origin(interval_and_sum,’Derived from %c.’,[cumul ative]).

ctr_arguments(
interval_and_sum,
[’SIZE_INTERVAL’-int,

’TASKS’-collection(origin-dvar,height-dvar),
’LIMIT’-int]).

ctr_restrictions(
interval_and_sum,
[’SIZE_INTERVAL’>0,

required(’TASKS’,[origin,height]),
’TASKS’ˆorigin>=0,
’TASKS’ˆheight>=0,
’LIMIT’>=0]).

ctr_example(
interval_and_sum,
interval_and_sum(

5,
[[origin-1,height-2],

[origin-10,height-2],
[origin-10,height-3],
[origin-4,height-1]],

5)).

ctr_typical(
interval_and_sum,
[’SIZE_INTERVAL’>1,

size(’TASKS’)>1,
range(’TASKS’ˆorigin)>1,
range(’TASKS’ˆheight)>1,
’LIMIT’<sum(’TASKS’ˆheight)]).

ctr_exchangeable(
interval_and_sum,
[items(’TASKS’,all),

translate([’TASKS’ˆorigin]),
vals(

[’TASKS’ˆorigin],

2472 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare),

vals([’TASKS’ˆheight],int(>=(0)),>,dontcare,dontcar e),
vals([’LIMIT’],int,<,dontcare,dontcare)]).

ctr_graph(
interval_and_sum,
[’TASKS’,’TASKS’],
2,
[’PRODUCT’>>collection(tasks1,tasks2)],
[tasks1ˆorigin/’SIZE_INTERVAL’=

tasks2ˆorigin/’SIZE_INTERVAL’],
[],
[],
[SUCC>>

[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’TASKS’ˆheight)])]],
[sum_ctr(variables,=<,’LIMIT’)]).

ctr_eval(interval_and_sum,[reformulation(interval_a nd_sum_r)]).

ctr_contractible(interval_and_sum,[],’TASKS’,any).

interval_and_sum_r(SIZE_INTERVAL,TASKS,LIMIT) :-
check_type(int_gteq(1),SIZE_INTERVAL),
collection(TASKS,[dvar_gteq(0),dvar_gteq(0)]),
check_type(int_gteq(0),LIMIT),
(TASKS=[] ->

true
; get_attr1(TASKS,ORIS),

get_attr2(TASKS,HEIGHTS),
get_maximum(ORIS,MAX),
MAXK is(MAX+SIZE_INTERVAL-1)//SIZE_INTERVAL,
interval_and_sum1(

0,
MAXK,
SIZE_INTERVAL,
LIMIT,
ORIS,
HEIGHTS)

).

2473

interval_and_sum1(K,MAXK,_38784,_38785,_38786,_3878 7) :-
K>MAXK,
!.

interval_and_sum1(K,MAXK,SIZE_INTERVAL,LIMIT,ORIS,H EIGHTS) :-
K=<MAXK,
interval_and_sum2(ORIS,HEIGHTS,K,SIZE_INTERVAL,SUM) ,
call(SUM#=<LIMIT),
K1 is K+1,
interval_and_sum1(

K1,
MAXK,
SIZE_INTERVAL,
LIMIT,
ORIS,
HEIGHTS).

interval_and_sum2([],[],_38781,_38782,0).

interval_and_sum2([O|R],[H|S],K,SIZE_INTERVAL,H * B+T) :-
SK is K * SIZE_INTERVAL,
TK is SK+SIZE_INTERVAL-1,
B#<=>O#>=SK#/\O#=<TK,
interval_and_sum2(R,S,K,SIZE_INTERVAL,T).

2474 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.182 inverse

♦ META-DATA:

ctr_date(inverse,[’20000128’,’20030820’,’20040530’, ’20060810’]).

ctr_origin(inverse,’\\index{CHIP|indexuse}CHIP’,[]) .

ctr_synonyms(inverse,[assignment,channel,inverse_ch anneling]).

ctr_arguments(
inverse,
[’NODES’-collection(index-int,succ-dvar,pred-dvar)]).

ctr_restrictions(
inverse,
[required(’NODES’,[index,succ,pred]),

’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’),
’NODES’ˆpred>=1,
’NODES’ˆpred=<size(’NODES’)]).

ctr_example(
inverse,
inverse(

[[index-1,succ-2,pred-2],
[index-2,succ-1,pred-1],
[index-3,succ-5,pred-4],
[index-4,succ-3,pred-5],
[index-5,succ-4,pred-3]])).

ctr_typical(inverse,[size(’NODES’)>1]).

ctr_exchangeable(
inverse,
[items(’NODES’,all),

attrs_sync(’NODES’,[[index],[succ,pred]])]).

ctr_graph(
inverse,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],

2475

[nodes1ˆsucc=nodes2ˆindex,nodes2ˆpred=nodes1ˆindex] ,
[’NARC’=size(’NODES’)],
[]).

ctr_eval(inverse,[reformulation(inverse_r)]).

ctr_pure_functional_dependency(inverse,[]).

ctr_functional_dependency(inverse,1-2,[1-1,1-3]).

ctr_functional_dependency(inverse,1-3,[1-1,1-2]).

inverse_r([]) :-
!.

inverse_r(NODES) :-
length(NODES,N),
collection(NODES,[int(1,N),dvar(1,N),dvar(1,N)]),
get_attr1(NODES,INDEXES),
get_attr2(NODES,SUCCS),
get_attr3(NODES,PREDS),
all_different(INDEXES),
all_different(SUCCS),
all_different(PREDS),
inverse1(SUCCS,INDEXES,PREDS,INDEXES).

inverse1([],[],_44185,_44186).

inverse1([S_I|R],[I|S],PREDS,INDEXES) :-
inverse2(PREDS,INDEXES,S_I,I),
inverse1(R,S,PREDS,INDEXES).

inverse2([],[],_44185,_44186).

inverse2([P_J|R],[J|S],S_I,I) :-
S_I#=J#<=>P_J#=I,
inverse2(R,S,S_I,I).

2476 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.183 inverseoffset

♦ META-DATA:

ctr_date(inverse_offset,[’20091404’]).

ctr_origin(inverse_offset,’\\index{Gecode|indexuse} Gecode’,[]).

ctr_synonyms(inverse_offset,[channel]).

ctr_arguments(
inverse_offset,
[’SOFFSET’-int,

’POFFSET’-int,
’NODES’-collection(index-int,succ-dvar,pred-dvar)]) .

ctr_restrictions(
inverse_offset,
[required(’NODES’,[index,succ,pred]),

’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1+’SOFFSET’,
’NODES’ˆsucc=<size(’NODES’)+’SOFFSET’,
’NODES’ˆpred>=1+’POFFSET’,
’NODES’ˆpred=<size(’NODES’)+’POFFSET’]).

ctr_example(
inverse_offset,
inverse_offset(

-1,
0,
[[index-1,succ-4,pred-3],

[index-2,succ-2,pred-5],
[index-3,succ-0,pred-2],
[index-4,succ-6,pred-8],
[index-5,succ-1,pred-1],
[index-6,succ-7,pred-7],
[index-7,succ-5,pred-4],
[index-8,succ-3,pred-6]])).

ctr_typical(
inverse_offset,
[’SOFFSET’>= -1,

’SOFFSET’=<1,
’POFFSET’>= -1,

2477

’POFFSET’=<1,
size(’NODES’)>1]).

ctr_exchangeable(inverse_offset,[items(’NODES’,all)]).

ctr_graph(
inverse_offset,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc-’SOFFSET’=nodes2ˆindex,

nodes2ˆpred-’POFFSET’=nodes1ˆindex],
[’NARC’=size(’NODES’)],
[]).

ctr_pure_functional_dependency(inverse_offset,[]).

ctr_functional_dependency(inverse_offset,3-2,[1,2,3 -1,3-3]).

ctr_functional_dependency(inverse_offset,3-3,[1,2,3 -1,3-2]).

2478 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.184 inverseset

♦ META-DATA:

ctr_date(inverse_set,[’20041211’,’20060810’]).

ctr_origin(inverse_set,’Derived from %c.’,[inverse]).

ctr_arguments(
inverse_set,
[’X’-collection(index-int,set-svar),

’Y’-collection(index-int,set-svar)]).

ctr_restrictions(
inverse_set,
[required(’X’,[index,set]),

required(’Y’,[index,set]),
increasing_seq(’X’,index),
increasing_seq(’Y’,index),
’X’ˆindex>=1,
’X’ˆindex=<size(’X’),
’Y’ˆindex>=1,
’Y’ˆindex=<size(’Y’),
’X’ˆset>=1,
’X’ˆset=<size(’Y’),
’Y’ˆset>=1,
’Y’ˆset=<size(’X’)]).

ctr_example(
inverse_set,
inverse_set(

[[index-1,set-{2,4}],
[index-2,set-{4}],
[index-3,set-{1}],
[index-4,set-{4}]],

[[index-1,set-{3}],
[index-2,set-{1}],
[index-3,set-{}],
[index-4,set-{1,2,4}],
[index-5,set-{}]])).

ctr_typical(inverse_set,[size(’X’)>1,size(’Y’)>1]).

ctr_exchangeable(
inverse_set,
[args([[’X’,’Y’]]),items(’X’,all),items(’Y’,all)]).

2479

ctr_graph(
inverse_set,
[’X’,’Y’],
2,
[’PRODUCT’>>collection(x,y)],
[yˆindex in_set xˆset#<=>xˆindex in_set yˆset],
[’NARC’=size(’X’) * size(’Y’)],
[]).

2480 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.185 inversewithin range

♦ META-DATA:

ctr_date(inverse_within_range,[’20060517’,’20060810 ’]).

ctr_origin(inverse_within_range,’Derived from %c.’,[i nverse]).

ctr_synonyms(
inverse_within_range,
[inverse_in_range,inverse_range]).

ctr_arguments(
inverse_within_range,
[’X’-collection(var-dvar),’Y’-collection(var-dvar)]).

ctr_restrictions(
inverse_within_range,
[required(’X’,var),required(’Y’,var)]).

ctr_example(
inverse_within_range,
inverse_within_range(

[[var-9],[var-4],[var-2]],
[[var-9],[var-3],[var-9],[var-2]])).

ctr_typical(
inverse_within_range,
[size(’X’)>1,

range(’X’ˆvar)>1,
size(’Y’)>1,
range(’Y’ˆvar)>1]).

ctr_exchangeable(inverse_within_range,[args([[’X’,’ Y’]])]).

ctr_graph(
inverse_within_range,
[’X’,’Y’],
2,
[’SYMMETRIC_PRODUCT’>>collection(s1,s2)],
[s1ˆvar=s2ˆkey],
[],
[’BIPARTITE’,’NO_LOOP’,’SYMMETRIC’]).

2481

B.186 ith pos different from 0

♦ META-DATA:

ctr_date(ith_pos_different_from_0,[’20040811’]).

ctr_origin(ith_pos_different_from_0,’N.˜Beldiceanu’ ,[]).

ctr_arguments(
ith_pos_different_from_0,
[’ITH’-int,’POS’-dvar,’VARIABLES’-collection(var-dv ar)]).

ctr_restrictions(
ith_pos_different_from_0,
[’ITH’>=1,

’ITH’=<size(’VARIABLES’),
’POS’>=’ITH’,
’POS’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
ith_pos_different_from_0,
ith_pos_different_from_0(

2,
4,
[[var-3],[var-0],[var-0],[var-8],[var-6]])).

ctr_typical(
ith_pos_different_from_0,
[size(’VARIABLES’)>1,

range(’VARIABLES’ˆvar)>1,
atleast(1,’VARIABLES’,0)]).

ctr_exchangeable(
ith_pos_different_from_0,
[vals(

[’VARIABLES’ˆvar],
int(=\=(0)),
=\=,
dontcare,
dontcare)]).

ctr_eval(
ith_pos_different_from_0,
[automaton(ith_pos_different_from_0_a)]).

2482 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_extensible(ith_pos_different_from_0,[],’VARIABL ES’,suffix).

ith_pos_different_from_0_a(FLAG,ITH,POS,VARIABLES) : -
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
integer(ITH),
ITH>=1,
ITH=<N,
check_type(dvar(ITH,N),POS),
ith_pos_different_from_0_signature(VARIABLES,SIGNAT URE),
automaton(

SIGNATURE,
_16768,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s,(C#<ITH->[C+1,D+1];C#>=ITH->[C,D])),

arc(s,1,s,(C#<ITH->[C,D+1];C#>=ITH->[C,D]))],
[C,D],
[0,0],
[C1,D1]),

C1#=ITH#/\D1#=POS#<=>FLAG.

ith_pos_different_from_0_signature([],[]).

ith_pos_different_from_0_signature([[var-V]|VARs],[S|Ss]) :-
V#=0#<=>S,
ith_pos_different_from_0_signature(VARs,Ss).

2483

B.187 k alldifferent

♦ META-DATA:

ctr_date(k_alldifferent,[’20050618’,’20060811’]).

ctr_origin(
k_alldifferent,
\cite{ElbassioniKatrielKutzMahajan05},
[]).

ctr_synonyms(
k_alldifferent,
[k_alldiff,k_alldistinct,some_different]).

ctr_types(k_alldifferent,[’X’-collection(x-dvar)]).

ctr_arguments(k_alldifferent,[’VARS’-collection(var s-’X’)]).

ctr_restrictions(
k_alldifferent,
[size(’X’)>=1,

required(’X’,x),
required(’VARS’,vars),
size(’VARS’)>=1]).

ctr_example(
k_alldifferent,
k_alldifferent(

[[vars-[[x-5],[x-6],[x-0],[x-9],[x-3]]],
[vars-[[x-5],[x-6],[x-1],[x-2]]]])).

ctr_typical(k_alldifferent,[size(’X’)>1,size(’VARS’)>1]).

ctr_exchangeable(
k_alldifferent,
[items(’VARS’,all),

items(’VARS’ˆvars,all),
vals([’VARS’ˆvarsˆx],int,=\=,all,dontcare)]).

ctr_graph(
k_alldifferent,
[’VARS’ˆvars],
2,
foreach(’VARS’,[’CLIQUE’>>collection(x1,x2)]),
[x1ˆx=x2ˆx],

2484 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[’MAX_NSCC’=<1],
[]).

ctr_eval(k_alldifferent,[reformulation(k_alldiffere nt_r)]).

ctr_contractible(k_alldifferent,[],’VARS’,any).

k_alldifferent_r(VARS) :-
length(VARS,N),
N>0,
collection(VARS,[non_empty_col([dvar])]),
get_col_attr1(VARS,1,VS),
k_alldifferent1(VS).

k_alldifferent1([]).

k_alldifferent1([V|R]) :-
all_different(V),
k_alldifferent1(R).

2485

B.188 k cut

♦ META-DATA:

ctr_date(k_cut,[’20030820’,’20041230’,’20060811’]).

ctr_origin(k_cut,’E.˜Althaus’,[]).

ctr_arguments(
k_cut,
[’K’-int,’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
k_cut,
[’K’>=1,

’K’=<size(’NODES’),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
k_cut,
k_cut(

3,
[[index-1,succ-{}],

[index-2,succ-{3,5}],
[index-3,succ-{5}],
[index-4,succ-{}],
[index-5,succ-{2,3}]])).

ctr_typical(k_cut,[size(’NODES’)>1]).

ctr_exchangeable(
k_cut,
[vals([’K’],int(>=(1)),>,dontcare,dontcare),

items(’NODES’,all)]).

ctr_graph(
k_cut,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆindex=nodes2ˆindex#\/

2486 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

nodes2ˆindex in_set nodes1ˆsucc],
[’NCC’>=’K’],
[]).

2487

B.189 k disjoint

♦ META-DATA:

ctr_date(k_disjoint,[’20050816’,’20060811’]).

ctr_origin(k_disjoint,’Derived from %c’,[disjoint]).

ctr_types(k_disjoint,[’VARIABLES’-collection(var-dv ar)]).

ctr_arguments(k_disjoint,[’SETS’-collection(set-’VA RIABLES’)]).

ctr_restrictions(
k_disjoint,
[required(’VARIABLES’,var),

size(’VARIABLES’)>=1,
required(’SETS’,set),
size(’SETS’)>1]).

ctr_example(
k_disjoint,
k_disjoint(

[[set-[[var-1],[var-9],[var-1],[var-5]]],
[set-

[[var-2],[var-7],[var-7],[var-0],[var-6],[var-8]]],
[set-[[var-4],[var-4],[var-3]]]])).

ctr_typical(k_disjoint,[size(’VARIABLES’)>1]).

ctr_exchangeable(
k_disjoint,
[items(’SETS’,all),

items(’SETS’ˆset,all),
vals([’VARIABLES’ˆvar],int,=\=,dontcare,in),
vals([’SETS’ˆsetˆvar],int,=\=,all,dontcare)]).

ctr_graph(
k_disjoint,
[’SETS’],
2,
[’CLIQUE’(<)>>collection(set1,set2)],
[disjoint(set1ˆset,set2ˆset)],
[’NARC’=size(’SETS’) * (size(’SETS’)-1)/2],
[]).

ctr_eval(k_disjoint,[reformulation(k_disjoint_r)]).

2488 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_contractible(k_disjoint,[],’SETS’,any).

k_disjoint_r(SETS) :-
length(SETS,N),
N>1,
collection(SETS,[non_empty_col([dvar])]),
get_attr1(SETS,VARS),
k_disjoint1(VARS).

k_disjoint1([_25855]) :-
!.

k_disjoint1([V1,V2|R]) :-
k_disjoint2([V2|R],V1),
k_disjoint1([V2|R]).

k_disjoint2([],_25852).

k_disjoint2([U|R],V) :-
eval(disjoint(V,U)),
k_disjoint2(R,V).

2489

B.190 k same

♦ META-DATA:

ctr_date(k_same,[’20050808’,’20060811’]).

ctr_origin(k_same,’\\cite{ElbassioniKatrielKutzMaha jan05}’,[]).

ctr_types(k_same,[’VARIABLES’-collection(var-dvar)]).

ctr_arguments(k_same,[’SETS’-collection(set-’VARIAB LES’)]).

ctr_restrictions(
k_same,
[required(’VARIABLES’,var),

size(’VARIABLES’)>=1,
required(’SETS’,set),
size(’SETS’)>1,
same_size(’SETS’,set)]).

ctr_example(
k_same,
k_same(

[[set-
[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]]],

[set-
[[var-9],[var-1],[var-1],[var-1],[var-2],[var-5]]],

[set-
[[var-5],[var-2],[var-1],[var-1],[var-9],[var-1]]]])).

ctr_typical(k_same,[size(’VARIABLES’)>1]).

ctr_exchangeable(
k_same,
[items(’SETS’,all),

items(’SETS’ˆset,all),
vals([’SETS’ˆsetˆvar],int,=\=,all,dontcare)]).

ctr_graph(
k_same,
[’SETS’],
2,
[’PATH’>>collection(set1,set2)],
[same(set1ˆset,set2ˆset)],
[’NARC’=size(’SETS’)-1],
[]).

2490 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_eval(k_same,[reformulation(k_same_r)]).

ctr_contractible(k_same,[],’SETS’,any).

k_same_r(SETS) :-
length(SETS,N),
N>1,
collection(SETS,[non_empty_col([dvar])]),
get_attr1(SETS,VARS),
k_same1(VARS).

k_same1([_29598]) :-
!.

k_same1([V1,V2|R]) :-
eval(same(V1,V2)),
k_same1([V2|R]).

2491

B.191 k sameinterval

♦ META-DATA:

ctr_date(k_same_interval,[’20050810’,’20060811’]).

ctr_origin(
k_same_interval,
Derived from %c and from %c.,
[same_interval,k_same]).

ctr_types(k_same_interval,[’VARIABLES’-collection(v ar-dvar)]).

ctr_arguments(
k_same_interval,
[’SETS’-collection(set-’VARIABLES’),’SIZE_INTERVAL’ -int]).

ctr_restrictions(
k_same_interval,
[required(’VARIABLES’,var),

size(’VARIABLES’)>=1,
required(’SETS’,set),
size(’SETS’)>1,
same_size(’SETS’,set),
’SIZE_INTERVAL’>0]).

ctr_example(
k_same_interval,
k_same_interval(

[[set-
[[var-1],[var-1],[var-6],[var-0],[var-1],[var-7]]],

[set-
[[var-8],[var-8],[var-0],[var-0],[var-1],[var-2]]],

[set-
[[var-2],[var-1],[var-1],[var-2],[var-6],[var-6]]]] ,

3)).

ctr_typical(
k_same_interval,
[size(’VARIABLES’)>1,’SIZE_INTERVAL’>1]).

ctr_exchangeable(
k_same_interval,
[items(’SETS’,all),

items(’SETS’ˆset,all),
vals(

2492 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[’SETS’ˆsetˆvar],
intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare)]).

ctr_graph(
k_same_interval,
[’SETS’],
2,
[’PATH’>>collection(set1,set2)],
[same_interval(set1ˆset,set2ˆset,’SIZE_INTERVAL’)],
[’NARC’=size(’SETS’)-1],
[]).

ctr_eval(k_same_interval,[reformulation(k_same_inte rval_r)]).

ctr_contractible(k_same_interval,[],’SETS’,any).

k_same_interval_r(SETS,SIZE_INTERVAL) :-
length(SETS,N),
N>1,
collection(SETS,[non_empty_col([dvar])]),
integer(SIZE_INTERVAL),
SIZE_INTERVAL>0,
get_attr1(SETS,VARS),
k_same_interval1(VARS,SIZE_INTERVAL).

k_same_interval1([_28384],_28383) :-
!.

k_same_interval1([V1,V2|R],SIZE_INTERVAL) :-
eval(same_interval(V1,V2,SIZE_INTERVAL)),
k_same_interval1([V2|R],SIZE_INTERVAL).

2493

B.192 k samemodulo

♦ META-DATA:

ctr_date(k_same_modulo,[’20050810’,’20060811’]).

ctr_origin(
k_same_modulo,
Derived from %c and from %c.,
[same_modulo,k_same]).

ctr_types(k_same_modulo,[’VARIABLES’-collection(var -dvar)]).

ctr_arguments(
k_same_modulo,
[’SETS’-collection(set-’VARIABLES’),’M’-int]).

ctr_restrictions(
k_same_modulo,
[required(’VARIABLES’,var),

size(’VARIABLES’)>=1,
required(’SETS’,set),
size(’SETS’)>1,
same_size(’SETS’,set),
’M’>0]).

ctr_example(
k_same_modulo,
k_same_modulo(

[[set-
[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]]],

[set-
[[var-6],[var-4],[var-1],[var-1],[var-5],[var-5]]],

[set-
[[var-1],[var-3],[var-4],[var-2],[var-8],[var-7]]]] ,

3)).

ctr_typical(k_same_modulo,[size(’VARIABLES’)>1,’M’> 1]).

ctr_exchangeable(
k_same_modulo,
[items(’SETS’,all),

items(’SETS’ˆset,all),
vals([’SETS’ˆsetˆvar],mod(’M’),=,dontcare,dontcare)]).

ctr_graph(

2494 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

k_same_modulo,
[’SETS’],
2,
[’PATH’>>collection(set1,set2)],
[same_modulo(set1ˆset,set2ˆset,’M’)],
[’NARC’=size(’SETS’)-1],
[]).

ctr_eval(k_same_modulo,[reformulation(k_same_modulo _r)]).

ctr_contractible(k_same_modulo,[],’SETS’,any).

k_same_modulo_r(SETS,M) :-
length(SETS,N),
N>1,
collection(SETS,[non_empty_col([dvar])]),
integer(M),
M=\=0,
get_attr1(SETS,VARS),
k_same_modulo1(VARS,M).

k_same_modulo1([_27720],_27719) :-
!.

k_same_modulo1([V1,V2|R],M) :-
eval(same_modulo(V1,V2,M)),
k_same_modulo1([V2|R],M).

2495

B.193 k samepartition

♦ META-DATA:

ctr_date(k_same_partition,[’20050810’,’20060811’]).

ctr_origin(
k_same_partition,
Derived from %c and from %c.,
[same_partition,k_same]).

ctr_types(
k_same_partition,
[’VARIABLES’-collection(var-dvar),

’VALUES’-collection(val-int)]).

ctr_arguments(
k_same_partition,
[’SETS’-collection(set-’VARIABLES’),

’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
k_same_partition,
[required(’VARIABLES’,var),

size(’VARIABLES’)>=1,
size(’VALUES’)>=1,
required(’VALUES’,val),
distinct(’VALUES’,val),
required(’SETS’,set),
size(’SETS’)>1,
same_size(’SETS’,set),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_example(
k_same_partition,
k_same_partition(

[[set-
[[var-1],[var-2],[var-6],[var-3],[var-1],[var-2]]],

[set-
[[var-6],[var-6],[var-2],[var-3],[var-1],[var-3]]],

[set-
[[var-2],[var-2],[var-2],[var-1],[var-1],[var-1]]]] ,

[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

2496 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_typical(k_same_partition,[size(’VARIABLES’)>1]) .

ctr_exchangeable(
k_same_partition,
[items(’SETS’,all),

items(’SETS’ˆset,all),
items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all),
vals(

[’SETS’ˆsetˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare)]).

ctr_graph(
k_same_partition,
[’SETS’],
2,
[’PATH’>>collection(set1,set2)],
[same_partition(set1ˆset,set2ˆset,’PARTITIONS’)],
[’NARC’=size(’SETS’)-1],
[]).

ctr_eval(k_same_partition,[reformulation(k_same_par tition_r)]).

ctr_contractible(k_same_partition,[],’SETS’,any).

k_same_partition_r(SETS,PARTITIONS) :-
length(SETS,N),
N>1,
collection(SETS,[non_empty_col([dvar])]),
collection(PARTITIONS,[col_len_gteq(1,[int])]),
length(PARTITIONS,P),
P>1,
get_attr1(SETS,VARS),
k_same_partition1(VARS,PARTITIONS).

k_same_partition1([_29717],_29716) :-
!.

k_same_partition1([V1,V2|R],PARTITIONS) :-
eval(same_partition(V1,V2,PARTITIONS)),
k_same_partition1([V2|R],PARTITIONS).

2497

B.194 k usedby

♦ META-DATA:

ctr_date(k_used_by,[’20050814’,’20060811’]).

ctr_origin(k_used_by,’Derived from %c’,[used_by]).

ctr_types(k_used_by,[’VARIABLES’-collection(var-dva r)]).

ctr_arguments(k_used_by,[’SETS’-collection(set-’VAR IABLES’)]).

ctr_restrictions(
k_used_by,
[required(’VARIABLES’,var),

size(’VARIABLES’)>=1,
required(’SETS’,set),
size(’SETS’)>1,
non_increasing_size(’SETS’,set)]).

ctr_example(
k_used_by,
k_used_by(

[[set-
[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]]],

[set-
[[var-9],[var-1],[var-1],[var-1],[var-2],[var-5]]],

[set-[[var-1],[var-1],[var-2],[var-5]]]])).

ctr_typical(k_used_by,[size(’VARIABLES’)>1]).

ctr_exchangeable(
k_used_by,
[items(’SETS’,all),

items(’SETS’ˆset,all),
vals([’SETS’ˆsetˆvar],int,=\=,all,dontcare)]).

ctr_graph(
k_used_by,
[’SETS’],
2,
[’PATH’>>collection(set1,set2)],
[used_by(set1ˆset,set2ˆset)],
[’NARC’=size(’SETS’)-1],
[]).

2498 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_eval(k_used_by,[reformulation(k_used_by_r)]).

ctr_contractible(k_used_by,[],’SETS’,any).

k_used_by_r(SETS) :-
length(SETS,N),
N>1,
collection(SETS,[non_empty_col([dvar])]),
get_attr1(SETS,VARS),
k_used_by1(VARS).

k_used_by1([_28800]) :-
!.

k_used_by1([V1,V2|R]) :-
eval(used_by(V1,V2)),
k_used_by1([V2|R]).

2499

B.195 k usedby interval

♦ META-DATA:

ctr_date(k_used_by_interval,[’20050814’,’20060811’]).

ctr_origin(
k_used_by_interval,
Derived from %c and from %c.,
[used_by_interval,k_used_by]).

ctr_types(
k_used_by_interval,
[’VARIABLES’-collection(var-dvar)]).

ctr_arguments(
k_used_by_interval,
[’SETS’-collection(set-’VARIABLES’),’SIZE_INTERVAL’ -int]).

ctr_restrictions(
k_used_by_interval,
[required(’VARIABLES’,var),

size(’VARIABLES’)>=1,
required(’SETS’,set),
size(’SETS’)>1,
non_increasing_size(’SETS’,set),
’SIZE_INTERVAL’>0]).

ctr_example(
k_used_by_interval,
k_used_by_interval(

[[set-
[[var-1],[var-1],[var-1],[var-8],[var-6],[var-2]]],

[set-[[var-1],[var-0],[var-7],[var-7]]],
[set-[[var-1],[var-2]]]],

3)).

ctr_typical(
k_used_by_interval,
[size(’VARIABLES’)>1,’SIZE_INTERVAL’>0]).

ctr_exchangeable(
k_used_by_interval,
[items(’SETS’,all),

items(’SETS’ˆset,all),
vals(

2500 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[’SETS’ˆsetˆvar],
intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare)]).

ctr_graph(
k_used_by_interval,
[’SETS’],
2,
[’PATH’>>collection(set1,set2)],
[used_by_interval(set1ˆset,set2ˆset,’SIZE_INTERVAL’)],
[’NARC’=size(’SETS’)-1],
[]).

ctr_eval(
k_used_by_interval,
[reformulation(k_used_by_interval_r)]).

ctr_contractible(k_used_by_interval,[],’SETS’,any).

k_used_by_interval_r(SETS,SIZE_INTERVAL) :-
length(SETS,N),
N>1,
collection(SETS,[non_empty_col([dvar])]),
integer(SIZE_INTERVAL),
SIZE_INTERVAL>0,
get_attr1(SETS,VARS),
k_used_by_interval1(VARS,SIZE_INTERVAL).

k_used_by_interval1([_27341],_27340) :-
!.

k_used_by_interval1([V1,V2|R],SIZE_INTERVAL) :-
eval(used_by_interval(V1,V2,SIZE_INTERVAL)),
k_used_by_interval1([V2|R],SIZE_INTERVAL).

2501

B.196 k usedby modulo

♦ META-DATA:

ctr_date(k_used_by_modulo,[’20050814’,’20060811’]).

ctr_origin(
k_used_by_modulo,
Derived from %c and from %c.,
[used_by_modulo,k_used_by]).

ctr_types(k_used_by_modulo,[’VARIABLES’-collection(var-dvar)]).

ctr_arguments(
k_used_by_modulo,
[’SETS’-collection(set-’VARIABLES’),’M’-int]).

ctr_restrictions(
k_used_by_modulo,
[required(’VARIABLES’,var),

size(’VARIABLES’)>=1,
required(’SETS’,set),
size(’SETS’)>1,
non_increasing_size(’SETS’,set),
’M’>0]).

ctr_example(
k_used_by_modulo,
k_used_by_modulo(

[[set-
[[var-1],[var-9],[var-4],[var-5],[var-2],[var-1]]],

[set-[[var-7],[var-1],[var-2],[var-5]]],
[set-[[var-1],[var-1]]]],

3)).

ctr_typical(k_used_by_modulo,[size(’VARIABLES’)>1,’ M’>1]).

ctr_exchangeable(
k_used_by_modulo,
[items(’SETS’,all),

items(’SETS’ˆset,all),
vals([’SETS’ˆsetˆvar],mod(’M’),=,dontcare,dontcare)]).

ctr_graph(
k_used_by_modulo,
[’SETS’],

2502 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

2,
[’PATH’>>collection(set1,set2)],
[used_by_modulo(set1ˆset,set2ˆset,’M’)],
[’NARC’=size(’SETS’)-1],
[]).

ctr_eval(k_used_by_modulo,[reformulation(k_used_by_ modulo_r)]).

ctr_contractible(k_used_by_modulo,[],’SETS’,any).

k_used_by_modulo_r(SETS,M) :-
length(SETS,N),
N>1,
collection(SETS,[non_empty_col([dvar])]),
integer(M),
M=\=0,
get_attr1(SETS,VARS),
k_used_by_modulo1(VARS,M).

k_used_by_modulo1([_26982],_26981) :-
!.

k_used_by_modulo1([V1,V2|R],M) :-
eval(used_by_modulo(V1,V2,M)),
k_used_by_modulo1([V2|R],M).

2503

B.197 k usedby partition

♦ META-DATA:

ctr_date(k_used_by_partition,[’20050814’,’20060811’]).

ctr_origin(
k_used_by_partition,
Derived from %c and from %c.,
[used_by_partition,k_used_by]).

ctr_types(
k_used_by_partition,
[’VARIABLES’-collection(var-dvar),

’VALUES’-collection(val-int)]).

ctr_arguments(
k_used_by_partition,
[’SETS’-collection(set-’VARIABLES’),

’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
k_used_by_partition,
[required(’VARIABLES’,var),

size(’VARIABLES’)>=1,
size(’VALUES’)>=1,
required(’VALUES’,val),
distinct(’VALUES’,val),
required(’SETS’,set),
size(’SETS’)>1,
non_increasing_size(’SETS’,set),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_example(
k_used_by_partition,
k_used_by_partition(

[[set-
[[var-1],[var-9],[var-1],[var-6],[var-2],[var-3]]],

[set-[[var-1],[var-3],[var-6],[var-6]]],
[set-[[var-2],[var-2]]]],

[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

ctr_typical(k_used_by_partition,[size(’VARIABLES’)> 1]).

2504 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_exchangeable(
k_used_by_partition,
[items(’SETS’,all),

items(’SETS’ˆset,all),
items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all),
vals(

[’SETS’ˆsetˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare)]).

ctr_graph(
k_used_by_partition,
[’SETS’],
2,
[’PATH’>>collection(set1,set2)],
[used_by_partition(set1ˆset,set2ˆset,’PARTITIONS’)] ,
[’NARC’=size(’SETS’)-1],
[]).

ctr_eval(
k_used_by_partition,
[reformulation(k_used_by_partition_r)]).

ctr_contractible(k_used_by_partition,[],’SETS’,any) .

k_used_by_partition_r(SETS,PARTITIONS) :-
length(SETS,N),
N>1,
collection(SETS,[non_empty_col([dvar])]),
collection(PARTITIONS,[col_len_gteq(1,[int])]),
length(PARTITIONS,P),
P>1,
get_attr1(SETS,VARS),
k_used_by_partition1(VARS,PARTITIONS).

k_used_by_partition1([_28487],_28486) :-
!.

k_used_by_partition1([V1,V2|R],PARTITIONS) :-
eval(used_by_partition(V1,V2,PARTITIONS)),
k_used_by_partition1([V2|R],PARTITIONS).

2505

B.198 lengthfirst sequence

♦ META-DATA:

ctr_date(length_first_sequence,[’20081123’]).

ctr_origin(
length_first_sequence,
Inspired by %c,
[stretch_path]).

ctr_arguments(
length_first_sequence,
[’LEN’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
length_first_sequence,
[’LEN’>=0,

’LEN’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
length_first_sequence,
length_first_sequence(

3,
[[var-4],[var-4],[var-4],[var-5],[var-5],[var-4]])) .

ctr_typical(
length_first_sequence,
[’LEN’<size(’VARIABLES’),size(’VARIABLES’)>1]).

ctr_exchangeable(
length_first_sequence,
[vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_eval(
length_first_sequence,
[reformulation(length_first_sequence_r),

automaton(length_first_sequence_a)]).

length_first_sequence_r(LEN,VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
check_type(dvar(0,N),LEN),
get_attr1(VARIABLES,VARS),
(N=0 ->

2506 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

LEN#=0
; N=1 ->

LEN#=1
; reverse(VARS,RVARS),

length_first_sequence1(RVARS,_15813,TERM),
call(LEN#=TERM)

).

length_first_sequence1([_15740],1,1) :-
!.

length_first_sequence1([VAR1,VAR2|R],AND1,AND1+S) :-
length_first_sequence1([VAR2|R],AND2,S),
B12#<=>VAR1#=VAR2,
AND1#<=>AND2#/\B12.

length_first_sequence_a(1,0,[]) :-
!.

length_first_sequence_a(0,0,[]) :-
!,
fail.

length_first_sequence_a(1,1,[_15740]) :-
!.

length_first_sequence_a(0,1,[_15740]) :-
!,
fail.

length_first_sequence_a(FLAG,LEN,VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
check_type(dvar(0,N),LEN),
length_first_sequence_signature(VARIABLES,SIGNATURE),
automaton(

SIGNATURE,
_17056,
SIGNATURE,
[source(s),sink(s),sink(t)],
[arc(s,0,t),

arc(s,1,s,[C+1]),
arc(t,0,t),
arc(t,1,t)],

[C],
[1],

2507

[COUNT]),
COUNT#=LEN#<=>FLAG.

length_first_sequence_signature([],[]).

length_first_sequence_signature([_15739],[]) :-
!.

length_first_sequence_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss]) :-

S in 0..1,
VAR1#=VAR2#<=>S,
length_first_sequence_signature([[var-VAR2]|VARs],S s).

2508 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.199 length last sequence

♦ META-DATA:

ctr_date(length_last_sequence,[’20081123’]).

ctr_origin(
length_last_sequence,
Inspired by %c,
[stretch_path]).

ctr_arguments(
length_last_sequence,
[’LEN’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
length_last_sequence,
[’LEN’>=0,

’LEN’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
length_last_sequence,
length_last_sequence(

1,
[[var-4],[var-4],[var-4],[var-5],[var-5],[var-4]])) .

ctr_typical(
length_last_sequence,
[’LEN’<size(’VARIABLES’),size(’VARIABLES’)>1]).

ctr_exchangeable(
length_last_sequence,
[vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_eval(
length_last_sequence,
[reformulation(length_last_sequence_r),

automaton(length_last_sequence_a)]).

length_last_sequence_r(LEN,VARIABLES) :-
check_type(dvar,LEN),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
length(VARIABLES,N),
(N=0 ->

2509

LEN#=0
; N=1 ->

LEN#=1
; length_last_sequence1(VARS,_15788,TERM),

call(LEN#=TERM)
).

length_last_sequence1([_15726],1,1) :-
!.

length_last_sequence1([VAR1,VAR2|R],AND1,AND1+S) :-
length_last_sequence1([VAR2|R],AND2,S),
B12#<=>VAR1#=VAR2,
AND1#<=>AND2#/\B12.

length_last_sequence_a(1,0,[]) :-
!.

length_last_sequence_a(0,0,[]) :-
!,
fail.

length_last_sequence_a(1,1,[_15726]) :-
!.

length_last_sequence_a(0,1,[_15726]) :-
!,
fail.

length_last_sequence_a(FLAG,LEN,VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
check_type(dvar(0,N),LEN),
length_last_sequence_signature(VARIABLES,SIGNATURE) ,
automaton(

SIGNATURE,
_17006,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s,[1]),arc(s,1,s,[C+1])],
[C],
[1],
[COUNT]),

COUNT#=LEN#<=>FLAG.

length_last_sequence_signature([],[]).

2510 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

length_last_sequence_signature([_15725],[]) :-
!.

length_last_sequence_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss]) :-

S in 0..1,
VAR1#=VAR2#<=>S,
length_last_sequence_signature([[var-VAR2]|VARs],Ss).

2511

B.200 leq

♦ META-DATA:

ctr_predefined(leq).

ctr_date(leq,[’20070821’]).

ctr_origin(leq,’Arithmetic.’,[]).

ctr_synonyms(leq,[rel,xlteqy]).

ctr_arguments(leq,[’VAR1’-dvar,’VAR2’-dvar]).

ctr_example(leq,leq(1,8)).

ctr_typical(leq,[’VAR1’<’VAR2’]).

ctr_exchangeable(
leq,
[vals([’VAR1’],int(=<(’VAR2’)),=\=,all,dontcare),

vals([’VAR2’],int(>=(’VAR1’)),=\=,all,dontcare)]).

ctr_eval(leq,[builtin(leq_b)]).

leq_b(VAR1,VAR2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
VAR1#=<VAR2.

2512 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.201 leqcst

♦ META-DATA:

ctr_predefined(leq_cst).

ctr_date(leq_cst,[’20090912’]).

ctr_origin(leq_cst,’Arithmetic.’,[]).

ctr_arguments(leq_cst,[’VAR1’-dvar,’VAR2’-dvar,’CST 2’-int]).

ctr_example(leq_cst,leq_cst(5,2,4)).

ctr_typical(leq_cst,[’CST2’=\=0,’VAR1’<’VAR2’+’CST2 ’]).

ctr_exchangeable(
leq_cst,
[args([[’VAR1’],[’VAR2’,’CST2’]]),

vals([’VAR1’],int(=<(’VAR2’+’CST2’)),=\=,all,dontca re),
vals([’VAR2’],int(>=(’VAR1’-’CST2’)),=\=,all,dontca re),
vals([’CST2’],int(>=(’VAR1’-’VAR2’)),=\=,all,dontca re)]).

ctr_eval(leq_cst,[builtin(leq_cst_b)]).

leq_cst_b(VAR1,VAR2,CST2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
check_type(int,CST2),
VAR1#=<VAR2+CST2.

2513

B.202 lex2

♦ META-DATA:

ctr_predefined(lex2).

ctr_date(lex2,[’20031008’,’20040530’,’20060811’]).

ctr_origin(
lex2,
\cite{FlenerFrischHnichKiziltanMiguelPearsonWalsh02 },
[]).

ctr_synonyms(lex2,[double_lex,row_and_column_lex]).

ctr_types(lex2,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(lex2,[’MATRIX’-collection(vec-’VECTOR ’)]).

ctr_restrictions(
lex2,
[size(’VECTOR’)>=1,

required(’VECTOR’,var),
required(’MATRIX’,vec),
same_size(’MATRIX’,vec)]).

ctr_example(
lex2,
lex2(

[[vec-[[var-2],[var-2],[var-3]]],
[vec-[[var-2],[var-3],[var-1]]]])).

ctr_typical(lex2,[size(’VECTOR’)>1,size(’MATRIX’)>1]).

ctr_exchangeable(lex2,[translate([’MATRIX’ˆvecˆvar])]).

ctr_eval(lex2,[reformulation(lex2_r)]).

lex2_r(MATRIX) :-
collection(MATRIX,[col([dvar])]),
same_size(MATRIX),
get_attr11(MATRIX,MAT),
lex_chain(MAT,[op(#=<)]),
transpose(MAT,TMAT),
lex_chain(TMAT,[op(#=<)]).

2514 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.203 lexalldifferent

♦ META-DATA:

ctr_date(
lex_alldifferent,
[’20030820’,’20040530’,’20051008’,’20060811’,’20111 102’]).

ctr_origin(lex_alldifferent,’J.˜Pearson’,[]).

ctr_synonyms(
lex_alldifferent,
[lex_alldiff,

lex_alldistinct,
alldiff_on_tuples,
alldifferent_on_tuples,
alldistinct_on_tuples]).

ctr_types(lex_alldifferent,[’VECTOR’-collection(var -dvar)]).

ctr_arguments(
lex_alldifferent,
[’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
lex_alldifferent,
[size(’VECTOR’)>=1,

required(’VECTOR’,var),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
lex_alldifferent,
lex_alldifferent(

[[vec-[[var-5],[var-2],[var-3]]],
[vec-[[var-5],[var-2],[var-6]]],
[vec-[[var-5],[var-3],[var-3]]]])).

ctr_typical(
lex_alldifferent,
[size(’VECTOR’)>1,size(’VECTORS’)>1]).

ctr_exchangeable(
lex_alldifferent,
[items(’VECTORS’,all),

items_sync(’VECTORS’ˆvec,all),

2515

vals([’VECTORS’ˆvec],int,=\=,all,dontcare)]).

ctr_graph(
lex_alldifferent,
[’VECTORS’],
2,
[’CLIQUE’(<)>>collection(vectors1,vectors2)],
[lex_different(vectors1ˆvec,vectors2ˆvec)],
[’NARC’=size(’VECTORS’) * (size(’VECTORS’)-1)/2],
[]).

ctr_eval(
lex_alldifferent,
[checker(lex_alldifferent_c),

reformulation(lex_alldifferent_r)]).

ctr_contractible(lex_alldifferent,[],’VECTORS’,any) .

ctr_extensible(lex_alldifferent,[],’VECTORS’ˆvec,an y).

lex_alldifferent_c(VECTORS) :-
collection(VECTORS,[col([int])]),
length(VECTORS,L),
sort(VECTORS,SVECTORS),
length(SVECTORS,L).

lex_alldifferent_r(VECTORS) :-
collection(VECTORS,[col([dvar])]),
lex_alldifferent1(VECTORS).

lex_alldifferent1([]).

lex_alldifferent1([[_34592-VECTOR]|R]) :-
lex_alldifferent2(R,VECTOR),
lex_alldifferent1(R).

lex_alldifferent2([],_34584).

lex_alldifferent2([[_34593-VECTORi]|R],VECTOR) :-
eval(lex_different(VECTOR,VECTORi)),
lex_alldifferent2(R,VECTOR).

2516 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.204 lexbetween

♦ META-DATA:

ctr_date(lex_between,[’20030820’,’20040530’,’200608 11’]).

ctr_origin(lex_between,’\\cite{BeldiceanuCarlsson02 c}’,[]).

ctr_synonyms(lex_between,[between]).

ctr_arguments(
lex_between,
[’LOWER_BOUND’-collection(var-int),

’VECTOR’-collection(var-dvar),
’UPPER_BOUND’-collection(var-int)]).

ctr_restrictions(
lex_between,
[required(’LOWER_BOUND’,var),

required(’VECTOR’,var),
required(’UPPER_BOUND’,var),
size(’LOWER_BOUND’)=size(’VECTOR’),
size(’UPPER_BOUND’)=size(’VECTOR’),
lex_lesseq(’LOWER_BOUND’,’VECTOR’),
lex_lesseq(’VECTOR’,’UPPER_BOUND’)]).

ctr_example(
lex_between,
lex_between(

[[var-5],[var-2],[var-3],[var-9]],
[[var-5],[var-2],[var-6],[var-2]],
[[var-5],[var-2],[var-6],[var-3]])).

ctr_typical(
lex_between,
[size(’LOWER_BOUND’)>1,

lex_lesseq(’LOWER_BOUND’,’UPPER_BOUND’)]).

ctr_exchangeable(
lex_between,
[vals([’LOWER_BOUND’ˆvar],int,>,dontcare,dontcare),

vals([’UPPER_BOUND’ˆvar],int,<,dontcare,dontcare)]) .

ctr_eval(
lex_between,
[reformulation(lex_between_r),automaton(lex_between _a)]).

2517

ctr_contractible(
lex_between,
[],
[’LOWER_BOUND’,’VECTOR’,’UPPER_BOUND’],
suffix).

lex_between_r(LOWER_BOUND,VECTOR,UPPER_BOUND) :-
collection(LOWER_BOUND,[int]),
collection(VECTOR,[dvar]),
collection(UPPER_BOUND,[int]),
length(LOWER_BOUND,LB),
length(VECTOR,LV),
length(UPPER_BOUND,LU),
LB=LV,
LU=LV,
eval(lex_lesseq(LOWER_BOUND,VECTOR)),
eval(lex_lesseq(VECTOR,UPPER_BOUND)).

lex_between_a(FLAG,LOWER_BOUND,VECTOR,UPPER_BOUND) :-
collection(LOWER_BOUND,[int]),
collection(VECTOR,[dvar]),
collection(UPPER_BOUND,[int]),
length(LOWER_BOUND,LB),
length(VECTOR,LV),
length(UPPER_BOUND,LU),
LB=LV,
LU=LV,
lex_between_signature(

LOWER_BOUND,
VECTOR,
UPPER_BOUND,
SIGNATURE),

AUTOMATON=
automaton(

SIGNATURE,
_27016,
SIGNATURE,
[source(s),sink(a),sink(b),sink(s),sink(t)],
[arc(s,4,s),

arc(s,0,t),
arc(s,3,a),
arc(s,1,b),
arc(a,3,a),
arc(a,4,a),
arc(a,5,a),

2518 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

arc(a,0,t),
arc(a,1,t),
arc(a,2,t),
arc(b,1,b),
arc(b,4,b),
arc(b,7,b),
arc(b,0,t),
arc(b,3,t),
arc(b,6,t),
arc(t,0,t),
arc(t,1,t),
arc(t,2,t),
arc(t,3,t),
arc(t,4,t),
arc(t,5,t),
arc(t,6,t),
arc(t,7,t),
arc(t,8,t)],

[],
[],
[]),

automaton_bool(FLAG,[0,1,2,3,4,5,6,7,8],AUTOMATON).

lex_between_signature([],[],[],[]).

lex_between_signature(
[[var-A1]|As],
[[var-X1]|Xs],
[[var-B1]|Bs],
[L1|Ls]) :-

Adown is A1-1,
Aup is A1+1,
Bdown is B1-1,
Bup is B1+1,
(A1+1<B1 ->

case(
X-L,
[X1-L1],
[node(

-1,
X,
[(inf..Adown)-6,

(A1..A1)-3,
(Aup..Bdown)-0,
(B1..B1)-1,
(Bup..sup)-2]),

2519

node(0,L,[0..0]),
node(1,L,[1..1]),
node(2,L,[2..2]),
node(3,L,[3..3]),
node(6,L,[6..6])])

; A1<B1 ->
case(

X-L,
[X1-L1],
[node(

-1,
X,
[(inf..Adown)-6,

(A1..A1)-3,
(B1..B1)-1,
(Bup..sup)-2]),

node(1,L,[1..1]),
node(2,L,[2..2]),
node(3,L,[3..3]),
node(6,L,[6..6])])

; A1=:=B1 ->
case(

X-L,
[X1-L1],
[node(

-1,
X,
[(inf..Adown)-6,

(A1..A1)-4,
(Aup..sup)-2]),

node(2,L,[2..2]),
node(4,L,[4..4]),
node(6,L,[6..6])])

; A1=:=B1+1 ->
case(

X-L,
[X1-L1],
[node(

-1,
X,
[(inf..Bdown)-6,

(B1..B1)-7,
(A1..A1)-5,
(Aup..sup)-2]),

node(2,L,[2..2]),
node(5,L,[5..5]),

2520 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

node(6,L,[6..6]),
node(7,L,[7..7])])

; A1>B1 ->
case(

X-L,
[X1-L1],
[node(

-1,
X,
[(inf..Bdown)-6,

(B1..B1)-7,
(Bup..Adown)-8,
(A1..A1)-5,
(Aup..sup)-2]),

node(2,L,[2..2]),
node(5,L,[5..5]),
node(6,L,[6..6]),
node(7,L,[7..7]),
node(8,L,[8..8])])

),
lex_between_signature(As,Xs,Bs,Ls).

2521

B.205 lexchain less

♦ META-DATA:

ctr_date(
lex_chain_less,
[’20030820’,’20040530’,’20060811’,’20090116’]).

ctr_origin(lex_chain_less,’\\cite{BeldiceanuCarlsso n02c}’,[]).

ctr_usual_name(lex_chain_less,lex_chain).

ctr_types(lex_chain_less,[’VECTOR’-collection(var-d var)]).

ctr_arguments(
lex_chain_less,
[’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
lex_chain_less,
[size(’VECTOR’)>=1,

required(’VECTOR’,var),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
lex_chain_less,
lex_chain_less(

[[vec-[[var-5],[var-2],[var-3],[var-9]]],
[vec-[[var-5],[var-2],[var-6],[var-2]]],
[vec-[[var-5],[var-2],[var-6],[var-3]]]])).

ctr_typical(
lex_chain_less,
[size(’VECTOR’)>1,size(’VECTORS’)>1]).

ctr_graph(
lex_chain_less,
[’VECTORS’],
2,
[’PATH’>>collection(vectors1,vectors2)],
[lex_less(vectors1ˆvec,vectors2ˆvec)],
[’NARC’=size(’VECTORS’)-1],
[]).

ctr_eval(lex_chain_less,[builtin(lex_chain_less_b)]).

2522 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_contractible(lex_chain_less,[],’VECTORS’,any).

ctr_extensible(lex_chain_less,[],’VECTORS’ˆvec,suff ix).

lex_chain_less_b(VECTORS) :-
collection(VECTORS,[col([dvar])]),
same_size(VECTORS),
get_attr11(VECTORS,VECTS),
lex_chain(VECTS,[op(#<)]).

2523

B.206 lexchain lesseq

♦ META-DATA:

ctr_date(
lex_chain_lesseq,
[’20030820’,’20040530’,’20060811’,’20090116’]).

ctr_origin(lex_chain_lesseq,’\\cite{BeldiceanuCarls son02c}’,[]).

ctr_usual_name(lex_chain_lesseq,lex_chain).

ctr_types(lex_chain_lesseq,[’VECTOR’-collection(var -dvar)]).

ctr_arguments(
lex_chain_lesseq,
[’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
lex_chain_lesseq,
[size(’VECTOR’)>=1,

required(’VECTOR’,var),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
lex_chain_lesseq,
lex_chain_lesseq(

[[vec-[[var-5],[var-2],[var-3],[var-9]]],
[vec-[[var-5],[var-2],[var-6],[var-2]]],
[vec-[[var-5],[var-2],[var-6],[var-2]]]])).

ctr_typical(
lex_chain_lesseq,
[size(’VECTOR’)>1,size(’VECTORS’)>1]).

ctr_graph(
lex_chain_lesseq,
[’VECTORS’],
2,
[’PATH’>>collection(vectors1,vectors2)],
[lex_lesseq(vectors1ˆvec,vectors2ˆvec)],
[’NARC’=size(’VECTORS’)-1],
[]).

ctr_eval(lex_chain_lesseq,[builtin(lex_chain_lesseq _b)]).

2524 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_contractible(lex_chain_lesseq,[],’VECTORS’,any) .

ctr_contractible(lex_chain_lesseq,[],’VECTORS’ˆvec, suffix).

lex_chain_lesseq_b(VECTORS) :-
collection(VECTORS,[col([dvar])]),
same_size(VECTORS),
get_attr11(VECTORS,VECTS),
lex_chain(VECTS,[op(#=<)]).

2525

B.207 lexdifferent

♦ META-DATA:

ctr_date(lex_different,[’20030820’,’20040530’]).

ctr_origin(
lex_different,
Used for defining %c.,
[lex_alldifferent]).

ctr_synonyms(lex_different,[different,diff]).

ctr_arguments(
lex_different,
[’VECTOR1’-collection(var-dvar),

’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
lex_different,
[required(’VECTOR1’,var),

required(’VECTOR2’,var),
size(’VECTOR1’)>0,
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_example(
lex_different,
lex_different(

[[var-5],[var-2],[var-7],[var-1]],
[[var-5],[var-3],[var-7],[var-1]])).

ctr_typical(
lex_different,
[size(’VECTOR1’)>1,

range(’VECTOR1’ˆvar)>1,
range(’VECTOR2’ˆvar)>1]).

ctr_exchangeable(
lex_different,
[args([[’VECTOR1’,’VECTOR2’]]),

items_sync(’VECTOR1’,’VECTOR2’,all)]).

ctr_graph(
lex_different,
[’VECTOR1’,’VECTOR2’],
2,

2526 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[’PRODUCT’(=)>>collection(vector1,vector2)],
[vector1ˆvar=\=vector2ˆvar],
[’NARC’>=1],
[]).

ctr_eval(
lex_different,
[reformulation(lex_different_r),

automaton(lex_different_a)]).

ctr_extensible(lex_different,[],[’VECTOR1’,’VECTOR2 ’],any).

lex_different_r(VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L1),
L1>0,
length(VECTOR2,L2),
L1=L2,
get_attr1(VECTOR1,VECT1),
get_attr1(VECTOR2,VECT2),
lex_different1(VECT1,VECT2,Term),
call(Term).

lex_different1([],[],0).

lex_different1([V1|R1],[V2|R2],V1#\=V2#\/T) :-
lex_different1(R1,R2,T).

lex_different_a(FLAG,VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L1),
L1>0,
length(VECTOR2,L2),
L1=L2,
lex_different_signature(VECTOR1,VECTOR2,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_34223,
SIGNATURE,
[source(s),sink(t)],
[arc(s,1,s),arc(s,0,t),arc(t,0,t),arc(t,1,t)],
[],
[],

2527

[]),
automaton_bool(FLAG,[0,1],AUTOMATON).

lex_different_signature([],[],[]).

lex_different_signature([[var-VAR1]|Xs],[[var-VAR2] |Ys],[S|Ss]) :-
VAR1#=VAR2#<=>S,
lex_different_signature(Xs,Ys,Ss).

2528 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.208 lexequal

♦ META-DATA:

ctr_date(lex_equal,[’20081220’]).

ctr_origin(
lex_equal,
Initially introduced for defining %c,
[nvector]).

ctr_synonyms(lex_equal,[equal,eq]).

ctr_arguments(
lex_equal,
[’VECTOR1’-collection(var-dvar),

’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
lex_equal,
[required(’VECTOR1’,var),

required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_example(
lex_equal,
lex_equal(

[[var-1],[var-9],[var-1],[var-5]],
[[var-1],[var-9],[var-1],[var-5]])).

ctr_typical(
lex_equal,
[size(’VECTOR1’)>1,

range(’VECTOR1’ˆvar)>1,
range(’VECTOR2’ˆvar)>1]).

ctr_exchangeable(
lex_equal,
[args([[’VECTOR1’,’VECTOR2’]]),

items_sync(’VECTOR1’,’VECTOR2’,all)]).

ctr_graph(
lex_equal,
[’VECTOR1’,’VECTOR2’],
2,
[’PRODUCT’(=)>>collection(vector1,vector2)],

2529

[vector1ˆvar=vector2ˆvar],
[’NARC’=size(’VECTOR1’)],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(
lex_equal,
[reformulation(lex_equal_r),automaton(lex_equal_a)]).

ctr_contractible(lex_equal,[],[’VECTOR1’,’VECTOR2’] ,any).

lex_equal_r(VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L1),
length(VECTOR2,L2),
L1=L2,
get_attr1(VECTOR1,VECT1),
get_attr1(VECTOR2,VECT2),
lex_equal1(VECT1,VECT2).

lex_equal1([],[]).

lex_equal1([V1|R1],[V2|R2]) :-
V1#=V2,
lex_equal1(R1,R2).

lex_equal_a(FLAG,VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L1),
length(VECTOR2,L2),
L1=L2,
lex_equal_signature(VECTOR1,VECTOR2,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_37798,
SIGNATURE,
[source(s),sink(s)],
[arc(s,1,s)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

lex_equal_signature([],[],[]).

2530 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

lex_equal_signature([[var-VAR1]|Xs],[[var-VAR2]|Ys] ,[S|Ss]) :-
S in 0..1,
VAR1#=VAR2#<=>S,
lex_equal_signature(Xs,Ys,Ss).

2531

B.209 lexgreater

♦ META-DATA:

ctr_date(lex_greater,[’20030820’,’20040530’,’200608 11’]).

ctr_origin(lex_greater,’\\index{CHIP|indexuse}CHIP’ ,[]).

ctr_synonyms(lex_greater,[lex,lex_chain,rel,greater ,gt]).

ctr_arguments(
lex_greater,
[’VECTOR1’-collection(var-dvar),

’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
lex_greater,
[required(’VECTOR1’,var),

required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_example(
lex_greater,
lex_greater(

[[var-5],[var-2],[var-7],[var-1]],
[[var-5],[var-2],[var-6],[var-2]])).

ctr_typical(lex_greater,[size(’VECTOR1’)>1]).

ctr_exchangeable(
lex_greater,
[vals([’VECTOR1’ˆvar],int,<,dontcare,dontcare),

vals([’VECTOR2’ˆvar],int,>,dontcare,dontcare)]).

ctr_derived_collections(
lex_greater,
[col(’DESTINATION’-collection(index-int,x-int,y-int),

[item(index-0,x-0,y-0)]),
col(’COMPONENTS’-collection(index-int,x-dvar,y-dvar),

[item(
index-’VECTOR1’ˆkey,
x-’VECTOR1’ˆvar,
y-’VECTOR2’ˆvar)])]).

ctr_graph(
lex_greater,

2532 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[’COMPONENTS’,’DESTINATION’],
2,
[’PRODUCT’(’PATH’,’VOID’)>>collection(item1,item2)] ,
[item2ˆindex>0#/\item1ˆx=item1ˆy#\/

item2ˆindex=0#/\item1ˆx>item1ˆy],
[’PATH_FROM_TO’(index,1,0)=1],
[]).

ctr_eval(
lex_greater,
[builtin(lex_greater_b),automaton(lex_greater_a)]).

ctr_extensible(lex_greater,[],[’VECTOR1’,’VECTOR2’] ,suffix).

lex_greater_b(VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L1),
length(VECTOR2,L2),
L1=L2,
get_attr1(VECTOR1,VECT1),
get_attr1(VECTOR2,VECT2),
lex_chain([VECT2,VECT1],[op(#<)]).

lex_greater_a(FLAG,VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L1),
length(VECTOR2,L2),
L1=L2,
lex_greater_signature(VECTOR1,VECTOR2,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_47469,
SIGNATURE,
[source(s),sink(t)],
[arc(s,2,s),

arc(s,3,t),
arc(t,1,t),
arc(t,2,t),
arc(t,3,t)],

[],
[],
[]),

automaton_bool(FLAG,[1,2,3],AUTOMATON).

2533

lex_greater_signature([],[],[]).

lex_greater_signature([[var-VAR1]|Xs],[[var-VAR2]|Y s],[S|Ss]) :-
S in 1..3,
VAR1#<VAR2#<=>S#=1,
VAR1#=VAR2#<=>S#=2,
VAR1#>VAR2#<=>S#=3,
lex_greater_signature(Xs,Ys,Ss).

2534 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.210 lexgreatereq

♦ META-DATA:

ctr_date(lex_greatereq,[’20030820’,’20040530’,’2006 0811’]).

ctr_origin(lex_greatereq,’\\index{CHIP|indexuse}CHI P’,[]).

ctr_synonyms(
lex_greatereq,
[lexeq,lex_chain,rel,greatereq,geq,lex_geq]).

ctr_arguments(
lex_greatereq,
[’VECTOR1’-collection(var-dvar),

’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
lex_greatereq,
[required(’VECTOR1’,var),

required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_example(
lex_greatereq,
[lex_greatereq(

[[var-5],[var-2],[var-8],[var-9]],
[[var-5],[var-2],[var-6],[var-2]]),

lex_greatereq(
[[var-5],[var-2],[var-3],[var-9]],
[[var-5],[var-2],[var-3],[var-9]])]).

ctr_typical(lex_greatereq,[size(’VECTOR1’)>1]).

ctr_exchangeable(
lex_greatereq,
[vals([’VECTOR1’ˆvar],int,<,dontcare,dontcare),

vals([’VECTOR2’ˆvar],int,>,dontcare,dontcare)]).

ctr_derived_collections(
lex_greatereq,
[col(’DESTINATION’-collection(index-int,x-int,y-int),

[item(index-0,x-0,y-0)]),
col(’COMPONENTS’-collection(index-int,x-dvar,y-dvar),

[item(
index-’VECTOR1’ˆkey,

2535

x-’VECTOR1’ˆvar,
y-’VECTOR2’ˆvar)])]).

ctr_graph(
lex_greatereq,
[’COMPONENTS’,’DESTINATION’],
2,
[’PRODUCT’(’PATH’,’VOID’)>>collection(item1,item2)] ,
[item2ˆindex>0#/\item1ˆx=item1ˆy#\/

item1ˆindex<size(’VECTOR1’)#/\item2ˆindex=0#/\
item1ˆx>item1ˆy#\/
item1ˆindex=size(’VECTOR1’)#/\item2ˆindex=0#/\
item1ˆx>=item1ˆy],

[’PATH_FROM_TO’(index,1,0)=1],
[]).

ctr_eval(
lex_greatereq,
[builtin(lex_greatereq_b),automaton(lex_greatereq_a)]).

ctr_contractible(lex_greatereq,[],[’VECTOR1’,’VECTO R2’],suffix).

lex_greatereq_b(VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L1),
length(VECTOR2,L2),
L1=L2,
get_attr1(VECTOR1,VECT1),
get_attr1(VECTOR2,VECT2),
lex_chain([VECT2,VECT1],[op(#=<)]).

lex_greatereq_a(FLAG,VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L1),
length(VECTOR2,L2),
L1=L2,
lex_greatereq_signature(VECTOR1,VECTOR2,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_50073,
SIGNATURE,
[source(s),sink(s),sink(t)],
[arc(s,2,s),

2536 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

arc(s,3,t),
arc(t,1,t),
arc(t,2,t),
arc(t,3,t)],

[],
[],
[]),

automaton_bool(FLAG,[1,2,3],AUTOMATON).

lex_greatereq_signature([],[],[]).

lex_greatereq_signature([[var-VAR1]|Xs],[[var-VAR2] |Ys],[S|Ss]) :-
S in 1..3,
VAR1#<VAR2#<=>S#=1,
VAR1#=VAR2#<=>S#=2,
VAR1#>VAR2#<=>S#=3,
lex_greatereq_signature(Xs,Ys,Ss).

2537

B.211 lex less

♦ META-DATA:

ctr_date(lex_less,[’20030820’,’20040530’,’20060811’]).

ctr_origin(lex_less,’\\index{CHIP|indexuse}CHIP’,[]).

ctr_synonyms(lex_less,[lex,lex_chain,rel,less]).

ctr_arguments(
lex_less,
[’VECTOR1’-collection(var-dvar),

’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
lex_less,
[required(’VECTOR1’,var),

required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_example(
lex_less,
lex_less(

[[var-5],[var-2],[var-3],[var-9]],
[[var-5],[var-2],[var-6],[var-2]])).

ctr_exchangeable(
lex_less,
[vals([’VECTOR1’ˆvar],int,>,dontcare,dontcare),

vals([’VECTOR2’ˆvar],int,<,dontcare,dontcare)]).

ctr_derived_collections(
lex_less,
[col(’DESTINATION’-collection(index-int,x-int,y-int),

[item(index-0,x-0,y-0)]),
col(’COMPONENTS’-collection(index-int,x-dvar,y-dvar),

[item(
index-’VECTOR1’ˆkey,
x-’VECTOR1’ˆvar,
y-’VECTOR2’ˆvar)])]).

ctr_graph(
lex_less,
[’COMPONENTS’,’DESTINATION’],
2,

2538 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[’PRODUCT’(’PATH’,’VOID’)>>collection(item1,item2)] ,
[item2ˆindex>0#/\item1ˆx=item1ˆy#\/

item2ˆindex=0#/\item1ˆx<item1ˆy],
[’PATH_FROM_TO’(index,1,0)=1],
[]).

ctr_eval(lex_less,[builtin(lex_less_b),automaton(le x_less_a)]).

ctr_extensible(lex_less,[],[’VECTOR1’,’VECTOR2’],su ffix).

lex_less_b(VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L1),
length(VECTOR2,L2),
L1=L2,
get_attr1(VECTOR1,VECT1),
get_attr1(VECTOR2,VECT2),
lex_chain([VECT1,VECT2],[op(#<)]).

lex_less_a(FLAG,VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L1),
length(VECTOR2,L2),
L1=L2,
lex_less_signature(VECTOR1,VECTOR2,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_47575,
SIGNATURE,
[source(s),sink(t)],
[arc(s,2,s),

arc(s,1,t),
arc(t,1,t),
arc(t,2,t),
arc(t,3,t)],

[],
[],
[]),

automaton_bool(FLAG,[1,2,3],AUTOMATON).

lex_less_signature([],[],[]).

lex_less_signature([[var-VAR1]|Xs],[[var-VAR2]|Ys], [S|Ss]) :-

2539

S in 1..3,
VAR1#<VAR2#<=>S#=1,
VAR1#=VAR2#<=>S#=2,
VAR1#>VAR2#<=>S#=3,
lex_less_signature(Xs,Ys,Ss).

2540 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.212 lex lesseq

♦ META-DATA:

ctr_date(lex_lesseq,[’20030820’,’20040530’,’2006081 1’]).

ctr_origin(lex_lesseq,’\\index{CHIP|indexuse}CHIP’, []).

ctr_synonyms(
lex_lesseq,
[lexeq,lex_chain,rel,lesseq,leq,lex_leq]).

ctr_arguments(
lex_lesseq,
[’VECTOR1’-collection(var-dvar),

’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
lex_lesseq,
[required(’VECTOR1’,var),

required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_example(
lex_lesseq,
[lex_lesseq(

[[var-5],[var-2],[var-3],[var-1]],
[[var-5],[var-2],[var-6],[var-2]]),

lex_lesseq(
[[var-5],[var-2],[var-3],[var-9]],
[[var-5],[var-2],[var-3],[var-9]])]).

ctr_typical(lex_lesseq,[size(’VECTOR1’)>1]).

ctr_exchangeable(
lex_lesseq,
[vals([’VECTOR1’ˆvar],int,>,dontcare,dontcare),

vals([’VECTOR2’ˆvar],int,<,dontcare,dontcare)]).

ctr_derived_collections(
lex_lesseq,
[col(’DESTINATION’-collection(index-int,x-int,y-int),

[item(index-0,x-0,y-0)]),
col(’COMPONENTS’-collection(index-int,x-dvar,y-dvar),

[item(
index-’VECTOR1’ˆkey,

2541

x-’VECTOR1’ˆvar,
y-’VECTOR2’ˆvar)])]).

ctr_graph(
lex_lesseq,
[’COMPONENTS’,’DESTINATION’],
2,
[’PRODUCT’(’PATH’,’VOID’)>>collection(item1,item2)] ,
[item2ˆindex>0#/\item1ˆx=item1ˆy#\/

item1ˆindex<size(’VECTOR1’)#/\item2ˆindex=0#/\
item1ˆx<item1ˆy#\/
item1ˆindex=size(’VECTOR1’)#/\item2ˆindex=0#/\
item1ˆx=<item1ˆy],

[’PATH_FROM_TO’(index,1,0)=1],
[]).

ctr_eval(
lex_lesseq,
[builtin(lex_lesseq_b),automaton(lex_lesseq_a)]).

ctr_contractible(lex_lesseq,[],[’VECTOR1’,’VECTOR2’],suffix).

lex_lesseq_b(VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L1),
length(VECTOR2,L2),
L1=L2,
get_attr1(VECTOR1,VECT1),
get_attr1(VECTOR2,VECT2),
lex_chain([VECT1,VECT2],[op(#=<)]).

lex_lesseq_a(FLAG,VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L1),
length(VECTOR2,L2),
L1=L2,
lex_lesseq_signature(VECTOR1,VECTOR2,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_52970,
SIGNATURE,
[source(s),sink(s),sink(t)],
[arc(s,2,s),

2542 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

arc(s,1,t),
arc(t,1,t),
arc(t,2,t),
arc(t,3,t)],

[],
[],
[]),

automaton_bool(FLAG,[1,2,3],AUTOMATON).

lex_lesseq_signature([],[],[]).

lex_lesseq_signature([[var-VAR1]|Xs],[[var-VAR2]|Ys],[S|Ss]) :-
S in 1..3,
VAR1#<VAR2#<=>S#=1,
VAR1#=VAR2#<=>S#=2,
VAR1#>VAR2#<=>S#=3,
lex_lesseq_signature(Xs,Ys,Ss).

2543

B.213 lex lesseqallperm

♦ META-DATA:

ctr_predefined(lex_lesseq_allperm).

ctr_date(lex_lesseq_allperm,[’20070916’]).

ctr_origin(
lex_lesseq_allperm,
Inspired by \cite{FlenerFrischHnichKiziltanMiguelPear sonWalsh02},
[]).

ctr_synonyms(lex_lesseq_allperm,[leximin]).

ctr_arguments(
lex_lesseq_allperm,
[’VECTOR1’-collection(var-dvar),

’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
lex_lesseq_allperm,
[required(’VECTOR1’,var),

required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_example(
lex_lesseq_allperm,
lex_lesseq_allperm(

[[var-1],[var-2],[var-3]],
[[var-3],[var-1],[var-2]])).

ctr_typical(lex_lesseq_allperm,[size(’VECTOR1’)>1]) .

ctr_exchangeable(
lex_lesseq_allperm,
[vals([’VECTOR1’ˆvar,’VECTOR2’ˆvar],int,=\=,all,don tcare)]).

ctr_contractible(
lex_lesseq_allperm,
[],
[’VECTOR1’,’VECTOR2’],
suffix).

2544 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.214 link set to booleans

♦ META-DATA:

ctr_date(link_set_to_booleans,[’20030820’,’20060811 ’]).

ctr_origin(
link_set_to_booleans,
Inspired by %c.,
[domain_constraint]).

ctr_arguments(
link_set_to_booleans,
[’SVAR’-svar,’BOOLEANS’-collection(bool-dvar,val-in t)]).

ctr_restrictions(
link_set_to_booleans,
[required(’BOOLEANS’,[bool,val]),

’BOOLEANS’ˆbool>=0,
’BOOLEANS’ˆbool=<1,
distinct(’BOOLEANS’,val)]).

ctr_example(
link_set_to_booleans,
link_set_to_booleans(

{1,3,4},
[[bool-0,val-0],

[bool-1,val-1],
[bool-0,val-2],
[bool-1,val-3],
[bool-1,val-4],
[bool-0,val-5]])).

ctr_typical(
link_set_to_booleans,
[size(’BOOLEANS’)>1,range(’BOOLEANS’ˆbool)>1]).

ctr_exchangeable(link_set_to_booleans,[items(’BOOLE ANS’,all)]).

ctr_derived_collections(
link_set_to_booleans,
[col(’SET’-collection(one-int,setvar-svar),

[item(one-1,setvar-’SVAR’)])]).

ctr_graph(
link_set_to_booleans,

2545

[’SET’,’BOOLEANS’],
2,
[’PRODUCT’>>collection(set,booleans)],
[booleansˆbool=setˆone#<=>booleansˆval in_set setˆset var],
[’NARC’=size(’BOOLEANS’)],
[]).

2546 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.215 longestchange

♦ META-DATA:

ctr_date(
longest_change,
[’20000128’,’20030820’,’20040530’,’20060811’]).

ctr_origin(longest_change,’Derived from %c.’,[change]).

ctr_arguments(
longest_change,
[’SIZE’-dvar,’VARIABLES’-collection(var-dvar),’CTR’ -atom]).

ctr_restrictions(
longest_change,
[’SIZE’>=0,

’SIZE’<size(’VARIABLES’),
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
longest_change,
longest_change(

4,
[[var-8],

[var-8],
[var-3],
[var-4],
[var-1],
[var-1],
[var-5],
[var-5],
[var-2]],

=\=)).

ctr_typical(
longest_change,
[size(’VARIABLES’)>2,

range(’VARIABLES’ˆvar)>1,
in_list(’CTR’,[=\=])]).

ctr_exchangeable(longest_change,[translate([’VARIAB LES’ˆvar])]).

ctr_graph(
longest_change,

2547

[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[’CTR’(variables1ˆvar,variables2ˆvar)],
[’MAX_NCC’=’SIZE’],
[]).

ctr_eval(longest_change,[automaton(longest_change_a)]).

ctr_pure_functional_dependency(longest_change,[]).

ctr_functional_dependency(longest_change,1,[2,3]).

longest_change_a(FLAG,SIZE,VARIABLES,CTR) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N_1 is N-1,
check_type(dvar(0,N_1),SIZE),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
longest_change_signature(VARIABLES,SIGNATURE,CTR),
automaton(

SIGNATURE,
_32993,
SIGNATURE,
[source(s),sink(s)],
[arc(s,1,s,[C,D+1]),arc(s,0,s,[max(C,D),1])],
[C,D],
[0,1],
[C1,D1]),

SIZE#=max(C1,D1)#<=>FLAG.

longest_change_signature([],[],_31257).

longest_change_signature([_31261],[],_31260) :-
!.

longest_change_signature([[var-VAR1],[var-VAR2]|VAR s],[S|Ss],=) :-
!,
VAR1#=VAR2#<=>S,
longest_change_signature([[var-VAR2]|VARs],Ss,=).

longest_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
=\=) :-

!,

2548 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

VAR1#\=VAR2#<=>S,
longest_change_signature([[var-VAR2]|VARs],Ss,=\=).

longest_change_signature([[var-VAR1],[var-VAR2]|VAR s],[S|Ss],<) :-
!,
VAR1#<VAR2#<=>S,
longest_change_signature([[var-VAR2]|VARs],Ss,<).

longest_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
>=) :-

!,
VAR1#>=VAR2#<=>S,
longest_change_signature([[var-VAR2]|VARs],Ss,>=).

longest_change_signature([[var-VAR1],[var-VAR2]|VAR s],[S|Ss],>) :-
!,
VAR1#>VAR2#<=>S,
longest_change_signature([[var-VAR2]|VARs],Ss,>).

longest_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
=<) :-

!,
VAR1#=<VAR2#<=>S,
longest_change_signature([[var-VAR2]|VARs],Ss,=<).

2549

B.216 lt

♦ META-DATA:

ctr_predefined(lt).

ctr_date(lt,[’20070821’]).

ctr_origin(lt,’Arithmetic.’,[]).

ctr_synonyms(lt,[rel,xlty]).

ctr_arguments(lt,[’VAR1’-dvar,’VAR2’-dvar]).

ctr_example(lt,lt(1,8)).

ctr_exchangeable(
lt,
[vals([’VAR1’],int(<(’VAR2’)),=\=,all,dontcare),

vals([’VAR2’],int(>(’VAR1’)),=\=,all,dontcare)]).

ctr_eval(lt,[builtin(lt_b)]).

lt_b(VAR1,VAR2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
VAR1#<VAR2.

2550 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.217 map

♦ META-DATA:

ctr_date(map,[’20000128’,’20030820’,’20060811’]).

ctr_origin(map,’Inspired by \\cite{SedgewickFlajolet9 6}’,[]).

ctr_arguments(
map,
[’NBCYCLE’-dvar,

’NBTREE’-dvar,
’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
map,
[’NBCYCLE’>=0,

’NBTREE’>=0,
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
map,
map(2,

3,
[[index-1,succ-5],

[index-2,succ-9],
[index-3,succ-8],
[index-4,succ-2],
[index-5,succ-9],
[index-6,succ-2],
[index-7,succ-9],
[index-8,succ-8],
[index-9,succ-1]])).

ctr_typical(
map,
[’NBCYCLE’>0,

’NBTREE’>0,
’NBCYCLE’<size(’NODES’),
’NBCYCLE’<’NBTREE’,
size(’NODES’)>2]).

2551

ctr_exchangeable(map,[items(’NODES’,all)]).

ctr_graph(
map,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’NCC’=’NBCYCLE’,’NTREE’=’NBTREE’],
[]).

ctr_pure_functional_dependency(map,[]).

ctr_functional_dependency(map,1,[3]).

ctr_functional_dependency(map,2,[3]).

2552 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.218 maxindex

♦ META-DATA:

ctr_date(
max_index,
[’20030820’,’20040530’,’20041230’,’20060811’]).

ctr_origin(max_index,’N.˜Beldiceanu’,[]).

ctr_arguments(
max_index,
[’MAX_INDEX’-dvar,

’VARIABLES’-collection(index-int,var-dvar)]).

ctr_restrictions(
max_index,
[size(’VARIABLES’)>0,

’MAX_INDEX’>=0,
’MAX_INDEX’=<size(’VARIABLES’),
required(’VARIABLES’,[index,var]),
’VARIABLES’ˆindex>=1,
’VARIABLES’ˆindex=<size(’VARIABLES’),
distinct(’VARIABLES’,index)]).

ctr_example(
max_index,
max_index(

3,
[[index-1,var-3],

[index-2,var-2],
[index-3,var-7],
[index-4,var-2],
[index-5,var-7]])).

ctr_typical(
max_index,
[size(’VARIABLES’)>0,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
max_index,
[items(’VARIABLES’,all),translate([’VARIABLES’ˆvar])]).

ctr_graph(
max_index,
[’VARIABLES’],

2553

2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆkey=variables2ˆkey#\/

variables1ˆvar>variables2ˆvar],
[’ORDER’(0,0,index)=’MAX_INDEX’],
[]).

2554 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.219 maxn

♦ META-DATA:

ctr_date(max_n,[’20000128’,’20030820’,’20041230’,’2 0060811’]).

ctr_origin(max_n,’\\cite{Beldiceanu01}’,[]).

ctr_arguments(
max_n,
[’MAX’-dvar,’RANK’-int,’VARIABLES’-collection(var-d var)]).

ctr_restrictions(
max_n,
[’RANK’>=0,

’RANK’<size(’VARIABLES’),
size(’VARIABLES’)>0,
required(’VARIABLES’,var)]).

ctr_example(
max_n,
max_n(6,1,[[var-3],[var-1],[var-7],[var-1],[var-6]])).

ctr_typical(
max_n,
[’RANK’>0,

’RANK’<3,
size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
max_n,
[items(’VARIABLES’,all),

translate([’MAX’,’VARIABLES’ˆvar])]).

ctr_graph(
max_n,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆkey=variables2ˆkey#\/

variables1ˆvar>variables2ˆvar],
[’ORDER’(’RANK’,’MININT’,var)=’MAX’],
[]).

ctr_eval(max_n,[reformulation(max_n_r)]).

2555

ctr_pure_functional_dependency(max_n,[]).

ctr_functional_dependency(max_n,1,[2,3]).

max_n_r(MAX,RANK,VARIABLES) :-
length(VARIABLES,N),
N>0,
N1 is N-1,
check_type(dvar,MAX),
check_type(int(0,N1),RANK),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
create_collection([MAX],var,VMAX),
create_collection(VARS,val,VALUES),
eval(among_var(1,VMAX,VALUES)),
NVAL in 0..N,
eval(nvalue(NVAL,VARIABLES)),
length(RANKS,N),
domain(RANKS,0,N1),
max_n1(VARS,RANKS,MAX,RANK,NVAL).

max_n1([],[],_31277,_31278,_31279).

max_n1([V|RV],[R|RR],MAX,RANK,NVAL) :-
R#<NVAL,
R#=RANK#<=>V#=MAX,
max_n2(RV,RR,V,R),
max_n1(RV,RR,MAX,RANK,NVAL).

max_n2([],[],_31277,_31278).

max_n2([Vj|RV],[Rj|RR],Vi,Ri) :-
Vi#>Vj#<=>Ri#<Rj,
Vi#=Vj#<=>Ri#=Rj,
Vi#<Vj#<=>Ri#>Rj,
max_n2(RV,RR,Vi,Ri).

2556 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.220 maxnvalue

♦ META-DATA:

ctr_date(max_nvalue,[’20000128’,’20030820’,’2006081 1’]).

ctr_origin(max_nvalue,’Derived from %c.’,[nvalue]).

ctr_arguments(
max_nvalue,
[’MAX’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
max_nvalue,
[’MAX’>=1,

’MAX’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
max_nvalue,
max_nvalue(

3,
[[var-9],

[var-1],
[var-7],
[var-1],
[var-1],
[var-6],
[var-7],
[var-7],
[var-4],
[var-9]])).

ctr_typical(
max_nvalue,
[’MAX’>1,

’MAX’<size(’VARIABLES’),
size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
max_nvalue,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(

2557

max_nvalue,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’MAX_NSCC’=’MAX’],
[]).

ctr_eval(max_nvalue,[reformulation(max_nvalue_r)]).

ctr_pure_functional_dependency(max_nvalue,[]).

ctr_functional_dependency(max_nvalue,1,[2]).

max_nvalue_r(0,[]) :-
!.

max_nvalue_r(MAX,VARIABLES) :-
length(VARIABLES,N),
check_type(dvar(1,N),MAX),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),
max_nvalue1(MINVARS,MAXVARS,N,VALS_OCCS,OCCS),
global_cardinality(VARS,VALS_OCCS),
maximum(MAX,OCCS).

max_nvalue1(MIN,MAX,_50292,[],[]) :-
MIN>MAX,
!.

max_nvalue1(CUR,MAX,N,[CUR-OCC|R],[OCC|S]) :-
CUR=<MAX,
OCC in 0..N,
CUR1 is CUR+1,
max_nvalue1(CUR1,MAX,N,R,S).

2558 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.221 maxsizeset of consecutivevar

♦ META-DATA:

ctr_date(
max_size_set_of_consecutive_var,
[’20030820’,’20040530’,’20060811’]).

ctr_origin(max_size_set_of_consecutive_var,’N.˜Beld iceanu’,[]).

ctr_arguments(
max_size_set_of_consecutive_var,
[’MAX’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
max_size_set_of_consecutive_var,
[’MAX’>=1,

’MAX’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
max_size_set_of_consecutive_var,
max_size_set_of_consecutive_var(

6,
[[var-3],

[var-1],
[var-3],
[var-7],
[var-4],
[var-1],
[var-2],
[var-8],
[var-7],
[var-6]])).

ctr_typical(
max_size_set_of_consecutive_var,
[’MAX’<size(’VARIABLES’),

size(’VARIABLES’)>0,
range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
max_size_set_of_consecutive_var,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],int,=\=,all,in),
translate([’VARIABLES’ˆvar])]).

2559

ctr_graph(
max_size_set_of_consecutive_var,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[abs(variables1ˆvar-variables2ˆvar)=<1],
[’MAX_NSCC’=’MAX’],
[]).

ctr_pure_functional_dependency(
max_size_set_of_consecutive_var,
[]).

ctr_functional_dependency(
max_size_set_of_consecutive_var,
1,
[2]).

2560 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.222 maximum

♦ META-DATA:

ctr_date(
maximum,
[20000128,

20030820,
20040530,
20041230,
20060811,
20090416]).

ctr_origin(maximum,’\\index{CHIP|indexuse}CHIP’,[]) .

ctr_synonyms(maximum,[max]).

ctr_arguments(
maximum,
[’MAX’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
maximum,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_example(
maximum,
maximum(7,[[var-3],[var-2],[var-7],[var-2],[var-6]])).

ctr_typical(
maximum,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
maximum,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],int,=\=,all,in),
translate([’MAX’,’VARIABLES’ˆvar])]).

ctr_graph(
maximum,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆkey=variables2ˆkey#\/

variables1ˆvar>variables2ˆvar],

2561

[’ORDER’(0,’MININT’,var)=’MAX’],
[]).

ctr_eval(maximum,[builtin(maximum_b),automaton(maxi mum_a)]).

ctr_pure_functional_dependency(maximum,[]).

ctr_functional_dependency(maximum,1,[2]).

ctr_aggregate(maximum,[],[max,union]).

maximum_b(MAX,VARIABLES) :-
check_type(dvar,MAX),
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>0,
get_attr1(VARIABLES,VARS),
maximum(MAX,VARS).

maximum_a(FLAG,MAX,VARIABLES) :-
check_type(dvar,MAX),
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>0,
maximum_signature(VARIABLES,SIGNATURE,MAX),
AUTOMATON=
automaton(

SIGNATURE,
_42452,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t),arc(t,1,t),arc(t,0,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1,2],AUTOMATON).

maximum_signature([],[],_40726).

maximum_signature([[var-VAR]|VARs],[S|Ss],MAX) :-
S in 0..2,
MAX#>VAR#<=>S#=0,
MAX#=VAR#<=>S#=1,
MAX#<VAR#<=>S#=2,
maximum_signature(VARs,Ss,MAX).

2562 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.223 maximum modulo

♦ META-DATA:

ctr_date(
maximum_modulo,
[’20000128’,’20030820’,’20041230’,’20060811’]).

ctr_origin(maximum_modulo,’Derived from %c.’,[maximum]).

ctr_arguments(
maximum_modulo,
[’MAX’-dvar,’VARIABLES’-collection(var-dvar),’M’-in t]).

ctr_restrictions(
maximum_modulo,
[size(’VARIABLES’)>0,’M’>0,required(’VARIABLES’,var)]).

ctr_example(
maximum_modulo,
maximum_modulo(

5,
[[var-9],[var-1],[var-7],[var-6],[var-5]],
3)).

ctr_typical(
maximum_modulo,
[’M’>1,

’M’<maxval(’VARIABLES’ˆvar),
size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(maximum_modulo,[items(’VARIABLES’, all)]).

ctr_graph(
maximum_modulo,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆkey=variables2ˆkey#\/

variables1ˆvar mod ’M’>variables2ˆvar mod ’M’],
[’ORDER’(0,’MININT’,var)=’MAX’],
[]).

ctr_pure_functional_dependency(maximum_modulo,[]).

2563

ctr_functional_dependency(maximum_modulo,1,[2,3]).

2564 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.224 meetsboxes

♦ META-DATA:

ctr_date(meet_sboxes,[’20070622’,’20090725’]).

ctr_origin(
meet_sboxes,
Geometry, derived from \cite{RandellCuiCohn92},
[]).

ctr_synonyms(meet_sboxes,[meet]).

ctr_types(
meet_sboxes,
[’VARIABLES’-collection(v-dvar),

’INTEGERS’-collection(v-int),
’POSITIVES’-collection(v-int)]).

ctr_arguments(
meet_sboxes,
[’K’-int,

’DIMS’-sint,
’OBJECTS’-collection(oid-int,sid-int,x-’VARIABLES’) ,
’SBOXES’-collection(sid-int,t-’INTEGERS’,l-’POSITIV ES’)]).

ctr_restrictions(
meet_sboxes,
[size(’VARIABLES’)>=1,

size(’INTEGERS’)>=1,
size(’POSITIVES’)>=1,
required(’VARIABLES’,v),
size(’VARIABLES’)=’K’,
required(’INTEGERS’,v),
size(’INTEGERS’)=’K’,
required(’POSITIVES’,v),
size(’POSITIVES’)=’K’,
’POSITIVES’ˆv>0,
’K’>0,
’DIMS’>=0,
’DIMS’<’K’,
increasing_seq(’OBJECTS’,[oid]),
required(’OBJECTS’,[oid,sid,x]),
’OBJECTS’ˆoid>=1,
’OBJECTS’ˆoid=<size(’OBJECTS’),
’OBJECTS’ˆsid>=1,

2565

’OBJECTS’ˆsid=<size(’SBOXES’),
size(’SBOXES’)>=1,
required(’SBOXES’,[sid,t,l]),
’SBOXES’ˆsid>=1,
’SBOXES’ˆsid=<size(’SBOXES’),
do_not_overlap(’SBOXES’)]).

ctr_example(
meet_sboxes,
meet_sboxes(

2,
{0,1},
[[oid-1,sid-1,x-[[v-3],[v-2]]],

[oid-2,sid-2,x-[[v-4],[v-1]]],
[oid-3,sid-4,x-[[v-3],[v-4]]]],

[[sid-1,t-[[v-0],[v-0]],l-[[v-1],[v-2]]],
[sid-2,t-[[v-0],[v-0]],l-[[v-1],[v-1]]],
[sid-2,t-[[v-1],[v-0]],l-[[v-1],[v-3]]],
[sid-2,t-[[v-0],[v-2]],l-[[v-1],[v-1]]],
[sid-3,t-[[v-0],[v-0]],l-[[v-3],[v-1]]],
[sid-3,t-[[v-0],[v-1]],l-[[v-1],[v-1]]],
[sid-3,t-[[v-2],[v-1]],l-[[v-1],[v-1]]],
[sid-4,t-[[v-0],[v-0]],l-[[v-1],[v-1]]]])).

ctr_typical(meet_sboxes,[size(’OBJECTS’)>1]).

ctr_exchangeable(
meet_sboxes,
[items(’OBJECTS’,all),

items(’SBOXES’,all),
items_sync(’OBJECTS’ˆx,’SBOXES’ˆt,’SBOXES’ˆl,all)]) .

ctr_eval(meet_sboxes,[logic(meet_sboxes_g)]).

ctr_logic(
meet_sboxes,
[DIMENSIONS,OIDS],
[(origin(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)),

(end(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)+S1ˆl(D)),
(non_overlap_sboxes(Dims,O1,S1,O2,S2)--->

exists(
D,
Dims,
end(O1,S1,D)#=<origin(O2,S2,D)#\/
end(O2,S2,D)#=<origin(O1,S1,D))),

(meet_sboxes(Dims,O1,S1,O2,S2)--->

2566 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

exists(
D,
Dims,
end(O1,S1,D)#=origin(O2,S2,D)#\/
end(O2,S2,D)#=origin(O1,S1,D))),

(meet_objects(Dims,O1,O2)--->
forall(

S1,
sboxes([O1ˆsid]),
forall(

S2,
sboxes([O2ˆsid]),
non_overlap_sboxes(Dims,O1,S1,O2,S2)))#/\

exists(
S1,
sboxes([O1ˆsid]),
exists(

S2,
sboxes([O2ˆsid]),
meet_sboxes(Dims,O1,S1,O2,S2)))),

(all_meet(Dims,OIDS)--->
forall(

O1,
objects(OIDS),
forall(

O2,
objects(OIDS),
O1ˆoid#<O2ˆoid#=>meet_objects(Dims,O1,O2)))),

all_meet(DIMENSIONS,OIDS)]).

ctr_contractible(meet_sboxes,[],’OBJECTS’,suffix).

meet_sboxes_g(K,_32954,[],_32956) :-
!,
check_type(int_gteq(1),K).

meet_sboxes_g(K,_DIMS,OBJECTS,SBOXES) :-
length(OBJECTS,O),
length(SBOXES,S),
O>0,
S>0,
check_type(int_gteq(1),K),
collection(OBJECTS,[int(1,O),dvar(1,S),col(K,[dvar])]),
collection(

SBOXES,
[int(1,S),col(K,[int]),col(K,[int_gteq(1)])]),

2567

get_attr1(OBJECTS,OIDS),
get_attr2(OBJECTS,SIDS),
get_col_attr3(OBJECTS,1,XS),
get_attr1(SBOXES,SIDES),
get_col_attr2(SBOXES,1,TS),
get_col_attr3(SBOXES,1,TL),
collection_increasing_seq(OBJECTS,[1]),
geost1(OIDS,SIDS,XS,Objects),
geost2(SIDES,TS,TL,Sboxes),
geost_dims(1,K,DIMENSIONS),
ctr_logic(meet_sboxes,[DIMENSIONS,OIDS],Rules),
geost(Objects,Sboxes,[overlap(true)],Rules).

2568 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.225 min index

♦ META-DATA:

ctr_date(
min_index,
[’20030820’,’20040530’,’20041230’,’20060811’]).

ctr_origin(min_index,’N.˜Beldiceanu’,[]).

ctr_arguments(
min_index,
[’MIN_INDEX’-dvar,

’VARIABLES’-collection(index-int,var-dvar)]).

ctr_restrictions(
min_index,
[size(’VARIABLES’)>0,

’MIN_INDEX’>=0,
’MIN_INDEX’=<size(’VARIABLES’),
required(’VARIABLES’,[index,var]),
’VARIABLES’ˆindex>=1,
’VARIABLES’ˆindex=<size(’VARIABLES’),
distinct(’VARIABLES’,index)]).

ctr_example(
min_index,
[min_index(

2,
[[index-1,var-3],

[index-2,var-2],
[index-3,var-7],
[index-4,var-2],
[index-5,var-6]]),

min_index(
4,
[[index-1,var-3],

[index-2,var-2],
[index-3,var-7],
[index-4,var-2],
[index-5,var-6]])]).

ctr_typical(
min_index,
[size(’VARIABLES’)>0,range(’VARIABLES’ˆvar)>1]).

2569

ctr_exchangeable(
min_index,
[items(’VARIABLES’,all),translate([’VARIABLES’ˆvar])]).

ctr_graph(
min_index,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆkey=variables2ˆkey#\/

variables1ˆvar<variables2ˆvar],
[’ORDER’(0,0,index)=’MIN_INDEX’],
[]).

2570 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.226 min n

♦ META-DATA:

ctr_date(
min_n,
[’20000128’,’20030820’,’20040530’,’20041230’,’20060 811’]).

ctr_origin(min_n,’\\cite{Beldiceanu01}’,[]).

ctr_arguments(
min_n,
[’MIN’-dvar,’RANK’-int,’VARIABLES’-collection(var-d var)]).

ctr_restrictions(
min_n,
[size(’VARIABLES’)>0,

’RANK’>=0,
’RANK’<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
min_n,
min_n(3,1,[[var-3],[var-1],[var-7],[var-1],[var-6]])).

ctr_typical(
min_n,
[’RANK’>0,

’RANK’<3,
size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
min_n,
[items(’VARIABLES’,all),

translate([’MIN’,’VARIABLES’ˆvar])]).

ctr_graph(
min_n,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆkey=variables2ˆkey#\/

variables1ˆvar<variables2ˆvar],
[’ORDER’(’RANK’,’MAXINT’,var)=’MIN’],
[]).

2571

ctr_eval(min_n,[reformulation(min_n_r)]).

ctr_pure_functional_dependency(min_n,[]).

ctr_functional_dependency(min_n,1,[2,3]).

min_n_r(MIN,RANK,VARIABLES) :-
length(VARIABLES,N),
N>0,
N1 is N-1,
check_type(dvar,MIN),
check_type(int(0,N1),RANK),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
create_collection([MIN],var,VMIN),
create_collection(VARS,val,VALUES),
eval(among_var(1,VMIN,VALUES)),
NVAL in 0..N,
eval(nvalue(NVAL,VARIABLES)),
length(RANKS,N),
domain(RANKS,0,N1),
min_n1(VARS,RANKS,MIN,RANK,NVAL).

min_n1([],[],_33802,_33803,_33804).

min_n1([V|RV],[R|RR],MIN,RANK,NVAL) :-
R#<NVAL,
R#=RANK#<=>V#=MIN,
min_n2(RV,RR,V,R),
min_n1(RV,RR,MIN,RANK,NVAL).

min_n2([],[],_33802,_33803).

min_n2([Vj|RV],[Rj|RR],Vi,Ri) :-
Vi#<Vj#<=>Ri#<Rj,
Vi#=Vj#<=>Ri#=Rj,
Vi#>Vj#<=>Ri#>Rj,
min_n2(RV,RR,Vi,Ri).

2572 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.227 min nvalue

♦ META-DATA:

ctr_date(min_nvalue,[’20000128’,’20030820’,’2006081 1’]).

ctr_origin(min_nvalue,’N.˜Beldiceanu’,[]).

ctr_arguments(
min_nvalue,
[’MIN’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
min_nvalue,
[’MIN’>=1,

’MIN’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
min_nvalue,
min_nvalue(

2,
[[var-9],

[var-1],
[var-7],
[var-1],
[var-1],
[var-7],
[var-7],
[var-7],
[var-7],
[var-9]])).

ctr_typical(
min_nvalue,
[2 * ’MIN’=<size(’VARIABLES’),

size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
min_nvalue,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
min_nvalue,

2573

[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’MIN_NSCC’=’MIN’],
[]).

ctr_eval(min_nvalue,[reformulation(min_nvalue_r)]).

ctr_pure_functional_dependency(min_nvalue,[]).

ctr_functional_dependency(min_nvalue,1,[2]).

min_nvalue_r(0,[]) :-
!.

min_nvalue_r(MIN,VARIABLES) :-
length(VARIABLES,N),
check_type(dvar(1,N),MIN),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),
max_nvalue1(MINVARS,MAXVARS,N,VALS_OCCS,OCCS),
global_cardinality(VARS,VALS_OCCS),
append([0],OCCS,OCCS0),
create_collection(OCCS0,var,VOCCS0),
eval(min_n(MIN,1,VOCCS0)).

2574 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.228 min sizeset of consecutivevar

♦ META-DATA:

ctr_date(
min_size_set_of_consecutive_var,
[’20030820’,’20040530’,’20060811’]).

ctr_origin(min_size_set_of_consecutive_var,’N.˜Beld iceanu’,[]).

ctr_arguments(
min_size_set_of_consecutive_var,
[’MIN’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
min_size_set_of_consecutive_var,
[’MIN’>=1,

’MIN’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
min_size_set_of_consecutive_var,
min_size_set_of_consecutive_var(

4,
[[var-3],

[var-1],
[var-3],
[var-7],
[var-4],
[var-1],
[var-2],
[var-8],
[var-7],
[var-6]])).

ctr_typical(
min_size_set_of_consecutive_var,
[’MIN’>1,

’MIN’<size(’VARIABLES’),
size(’VARIABLES’)>0,
range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
min_size_set_of_consecutive_var,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],int,=\=,all,in),

2575

translate([’VARIABLES’ˆvar])]).

ctr_graph(
min_size_set_of_consecutive_var,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[abs(variables1ˆvar-variables2ˆvar)=<1],
[’MIN_NSCC’=’MIN’],
[]).

ctr_pure_functional_dependency(
min_size_set_of_consecutive_var,
[]).

ctr_functional_dependency(
min_size_set_of_consecutive_var,
1,
[2]).

2576 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.229 minimum

♦ META-DATA:

ctr_date(
minimum,
[20000128,

20030820,
20040530,
20041230,
20060811,
20090416]).

ctr_origin(minimum,’\\index{CHIP|indexuse}CHIP’,[]) .

ctr_synonyms(minimum,[min]).

ctr_arguments(
minimum,
[’MIN’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
minimum,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_example(
minimum,
minimum(2,[[var-3],[var-2],[var-7],[var-2],[var-6]])).

ctr_typical(
minimum,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
minimum,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],int,=\=,all,in),
translate([’MIN’,’VARIABLES’ˆvar])]).

ctr_graph(
minimum,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆkey=variables2ˆkey#\/

variables1ˆvar<variables2ˆvar],

2577

[’ORDER’(0,’MAXINT’,var)=’MIN’],
[]).

ctr_eval(minimum,[builtin(minimum_b),automaton(mini mum_a)]).

ctr_pure_functional_dependency(minimum,[]).

ctr_functional_dependency(minimum,1,[2]).

ctr_aggregate(minimum,[],[min,union]).

minimum_b(MIN,VARIABLES) :-
check_type(dvar,MIN),
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>0,
get_attr1(VARIABLES,VARS),
minimum(MIN,VARS).

minimum_a(FLAG,MIN,VARIABLES) :-
check_type(dvar,MIN),
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>0,
minimum_signature(VARIABLES,SIGNATURE,MIN),
AUTOMATON=
automaton(

SIGNATURE,
_43615,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t),arc(t,1,t),arc(t,0,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1,2],AUTOMATON).

minimum_signature([],[],_41889).

minimum_signature([[var-VAR]|VARs],[S|Ss],MIN) :-
S in 0..2,
MIN#<VAR#<=>S#=0,
MIN#=VAR#<=>S#=1,
MIN#>VAR#<=>S#=2,
minimum_signature(VARs,Ss,MIN).

2578 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.230 minimum except0

♦ META-DATA:

ctr_date(
minimum_except_0,
[’20030820’,’20040530’,’20041230’,’20060812’,’20090 101’]).

ctr_origin(minimum_except_0,’Derived from %c.’,[minim um]).

ctr_arguments(
minimum_except_0,
[’MIN’-dvar,

’VARIABLES’-collection(var-dvar),
’DEFAULT’-int]).

ctr_restrictions(
minimum_except_0,
[’MIN’>0,

’MIN’=<’DEFAULT’,
size(’VARIABLES’)>0,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar=<’DEFAULT’,
’DEFAULT’>0]).

ctr_example(
minimum_except_0,
[minimum_except_0(

3,
[[var-3],[var-7],[var-6],[var-7],[var-4],[var-7]],
1000000),

minimum_except_0(
2,
[[var-3],[var-2],[var-0],[var-7],[var-2],[var-6]],
1000000),

minimum_except_0(
1000000,
[[var-0],[var-0],[var-0],[var-0],[var-0],[var-0]],
1000000)]).

ctr_typical(
minimum_except_0,
[size(’VARIABLES’)>1,

range(’VARIABLES’ˆvar)>1,
atleast(1,’VARIABLES’,0)]).

2579

ctr_exchangeable(
minimum_except_0,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],int,=\=,all,in)]).

ctr_graph(
minimum_except_0,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=\=0,

variables2ˆvar=\=0,
variables1ˆkey=variables2ˆkey#\/
variables1ˆvar<variables2ˆvar],

[’ORDER’(0,’DEFAULT’,var)=’MIN’],
[]).

ctr_eval(
minimum_except_0,
[reformulation(minimum_except_0_r),

automaton(minimum_except_0_a)]).

ctr_pure_functional_dependency(minimum_except_0,[]) .

ctr_functional_dependency(minimum_except_0,1,[2,3]) .

minimum_except_0_r(MIN,VARIABLES,DEFAULT) :-
check_type(int_gteq(1),DEFAULT),
check_type(dvar(1,DEFAULT),MIN),
collection(VARIABLES,[dvar(0,DEFAULT)]),
length(VARIABLES,N),
N>0,
get_attr1(VARIABLES,VARS),
minimum_except_01(VARS,ALLZEROS),
call(ALLZEROS#=>MIN#=DEFAULT),
append([0],VARS,VARS0),
N1 is N+1,
length(RANKS,N1),
domain(RANKS,0,N),
min_n1(VARS0,RANKS,MIN,1).

minimum_except_01([],1).

minimum_except_01([V|R],V#=0#/\S) :-
minimum_except_01(R,S).

2580 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

minimum_except_0_a(FLAG,MIN,VARIABLES,DEFAULT) :-
check_type(int_gteq(1),DEFAULT),
check_type(dvar(1,DEFAULT),MIN),
collection(VARIABLES,[dvar(0,DEFAULT)]),
length(VARIABLES,N),
N>0,
minimum_except_0_signature(

VARIABLES,
SIGNATURE,
MIN,
DEFAULT),

AUTOMATON=
automaton(

SIGNATURE,
_40221,
SIGNATURE,
[source(s),sink(j),sink(k)],
[arc(s,0,s),

arc(s,3,s),
arc(s,2,j),
arc(s,1,k),
arc(j,0,j),
arc(j,1,j),
arc(j,2,j),
arc(j,3,j),
arc(k,1,k)],

[],
[],
[]),

automaton_bool(FLAG,[0,1,2,3,4],AUTOMATON).

minimum_except_0_signature([],[],_37817,_37818).

minimum_except_0_signature([[var-VAR]|VARs],[S|Ss], MIN,DEFAULT) :-
S in 0..4,
VAR#=0#/\MIN#\=DEFAULT#<=>S#=0,
VAR#=0#/\MIN#=DEFAULT#<=>S#=1,
VAR#\=0#/\MIN#=VAR#<=>S#=2,
VAR#\=0#/\MIN#<VAR#<=>S#=3,
VAR#\=0#/\MIN#>VAR#<=>S#=4,
minimum_except_0_signature(VARs,Ss,MIN,DEFAULT).

2581

B.231 minimum greater than

♦ META-DATA:

ctr_date(minimum_greater_than,[’20030820’,’20060812 ’]).

ctr_origin(minimum_greater_than,’N.˜Beldiceanu’,[]) .

ctr_arguments(
minimum_greater_than,
[’VAR1’-dvar,’VAR2’-dvar,’VARIABLES’-collection(var -dvar)]).

ctr_restrictions(
minimum_greater_than,
[’VAR1’>’VAR2’,

size(’VARIABLES’)>0,
required(’VARIABLES’,var)]).

ctr_example(
minimum_greater_than,
minimum_greater_than(

5,
3,
[[var-8],[var-5],[var-3],[var-8]])).

ctr_typical(
minimum_greater_than,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(minimum_greater_than,[items(’VARIA BLES’,all)]).

ctr_derived_collections(
minimum_greater_than,
[col(’ITEM’-collection(var-dvar),[item(var-’VAR2’)])]).

ctr_graph(
minimum_greater_than,
[’ITEM’,’VARIABLES’],
2,
[’PRODUCT’>>collection(item,variables)],
[itemˆvar<variablesˆvar],
[’NARC’>0],
[],
[’SUCC’>>[source,variables]],
[minimum(’VAR1’,variables)]).

2582 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_eval(
minimum_greater_than,
[reformulation(minimum_greater_than_r),

automaton(minimum_greater_than_a)]).

ctr_aggregate(minimum_greater_than,[],[min,id,union]).

minimum_greater_than_r(VAR1,VAR2,VARIABLES) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>0,
get_attr1(VARIABLES,VARS),
maximum(MAX,VARS),
VAR1#>VAR2,
VAR1#=<MAX,
minimum_greater_than1(VARS,VAR2,MAX,UARS),
minimum(VAR1,UARS).

minimum_greater_than1([],_31290,_31291,[]).

minimum_greater_than1([V|R],VAR2,MAX,[U|S]) :-
fd_min(V,Min),
fd_max(MAX,Max),
U in Min..Max,
V#=<VAR2#=>U#=MAX,
V#>VAR2#=>U#=V,
minimum_greater_than1(R,VAR2,MAX,S).

minimum_greater_than_a(FLAG,VAR1,VAR2,VARIABLES) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>0,
VAR1#>VAR2,
minimum_greater_than_signature(

VARIABLES,
SIGNATURE,
VAR1,
VAR2),

AUTOMATON=
automaton(

SIGNATURE,
_33851,

2583

SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),

arc(s,1,s),
arc(s,2,s),
arc(s,5,s),
arc(s,4,t),
arc(t,0,t),
arc(t,1,t),
arc(t,2,t),
arc(t,4,t),
arc(t,5,t)],

[],
[],
[]),

automaton_bool(FLAG,[0,1,2,3,4,5],AUTOMATON).

minimum_greater_than_signature([],[],_31291,_31292) .

minimum_greater_than_signature(
[[var-VAR]|VARs],
[S|Ss],
VAR1,
VAR2) :-

S in 0..5,
VAR#<VAR1#/\VAR#=<VAR2#<=>S#=0,
VAR#=VAR1#/\VAR#=<VAR2#<=>S#=1,
VAR#>VAR1#/\VAR#=<VAR2#<=>S#=2,
VAR#<VAR1#/\VAR#>VAR2#<=>S#=3,
VAR#=VAR1#/\VAR#>VAR2#<=>S#=4,
VAR#>VAR1#/\VAR#>VAR2#<=>S#=5,
minimum_greater_than_signature(VARs,Ss,VAR1,VAR2).

2584 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.232 minimum modulo

♦ META-DATA:

ctr_date(
minimum_modulo,
[’20000128’,’20030820’,’20041230’,’20060812’]).

ctr_origin(minimum_modulo,’Derived from %c.’,[minimum]).

ctr_arguments(
minimum_modulo,
[’MIN’-dvar,’VARIABLES’-collection(var-dvar),’M’-in t]).

ctr_restrictions(
minimum_modulo,
[size(’VARIABLES’)>0,’M’>0,required(’VARIABLES’,var)]).

ctr_example(
minimum_modulo,
[minimum_modulo(

6,
[[var-9],[var-1],[var-7],[var-6],[var-5]],
3),

minimum_modulo(
9,
[[var-9],[var-1],[var-7],[var-6],[var-5]],
3)]).

ctr_typical(
minimum_modulo,
[size(’VARIABLES’)>1,

range(’VARIABLES’ˆvar)>1,
’M’>1,
’M’<maxval(’VARIABLES’ˆvar)]).

ctr_exchangeable(minimum_modulo,[items(’VARIABLES’, all)]).

ctr_graph(
minimum_modulo,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆkey=variables2ˆkey#\/

variables1ˆvar mod ’M’<variables2ˆvar mod ’M’],
[’ORDER’(0,’MAXINT’,var)=’MIN’],

2585

[]).

ctr_pure_functional_dependency(minimum_modulo,[]).

ctr_functional_dependency(minimum_modulo,1,[2,3]).

2586 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.233 minimum weight alldifferent

♦ META-DATA:

ctr_date(
minimum_weight_alldifferent,
[’20030820’,’20040530’,’20060812’]).

ctr_origin(
minimum_weight_alldifferent,
\cite{FocacciLodiMilano99},
[]).

ctr_synonyms(
minimum_weight_alldifferent,
[minimum_weight_alldiff,

minimum_weight_alldistinct,
min_weight_alldiff,
min_weight_alldifferent,
min_weight_alldistinct]).

ctr_arguments(
minimum_weight_alldifferent,
[’VARIABLES’-collection(var-dvar),

’MATRIX’-collection(i-int,j-int,c-int),
’COST’-dvar]).

ctr_restrictions(
minimum_weight_alldifferent,
[size(’VARIABLES’)>0,

required(’VARIABLES’,var),
’VARIABLES’ˆvar>=1,
’VARIABLES’ˆvar=<size(’VARIABLES’),
required(’MATRIX’,[i,j,c]),
increasing_seq(’MATRIX’,[i,j]),
’MATRIX’ˆi>=1,
’MATRIX’ˆi=<size(’VARIABLES’),
’MATRIX’ˆj>=1,
’MATRIX’ˆj=<size(’VARIABLES’),
size(’MATRIX’)=size(’VARIABLES’) * size(’VARIABLES’)]).

ctr_example(
minimum_weight_alldifferent,
minimum_weight_alldifferent(

[[var-2],[var-3],[var-1],[var-4]],
[[i-1,j-1,c-4],

2587

[i-1,j-2,c-1],
[i-1,j-3,c-7],
[i-1,j-4,c-0],
[i-2,j-1,c-1],
[i-2,j-2,c-0],
[i-2,j-3,c-8],
[i-2,j-4,c-2],
[i-3,j-1,c-3],
[i-3,j-2,c-2],
[i-3,j-3,c-1],
[i-3,j-4,c-6],
[i-4,j-1,c-0],
[i-4,j-2,c-0],
[i-4,j-3,c-6],
[i-4,j-4,c-5]],

17)).

ctr_typical(
minimum_weight_alldifferent,
[size(’VARIABLES’)>1,range(’MATRIX’ˆc)>1,’MATRIX’ˆc >0]).

ctr_graph(
minimum_weight_alldifferent,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆkey],
[’NTREE’=0,

’SUM_WEIGHT_ARC’(
MATRIX@
((variables1ˆkey-1) * size(’VARIABLES’)+

variables1ˆvar)ˆ
c)=

COST],
[]).

ctr_functional_dependency(minimum_weight_alldiffere nt,3,[1,2]).

2588 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.234 multi global contiguity

♦ META-DATA:

ctr_predefined(multi_global_contiguity).

ctr_date(multi_global_contiguity,[’20120212’]).

ctr_origin(
multi_global_contiguity,
Derived from %c.,
[global_contiguity]).

ctr_synonyms(multi_global_contiguity,[multi_contigu ity]).

ctr_arguments(
multi_global_contiguity,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
multi_global_contiguity,
[required(’VARIABLES’,var),’VARIABLES’ˆvar>=0]).

ctr_example(
multi_global_contiguity,
multi_global_contiguity(

[[var-0],
[var-2],
[var-2],
[var-1],
[var-1],
[var-0],
[var-0],
[var-5]])).

ctr_typical(
multi_global_contiguity,
[size(’VARIABLES’)>2,range(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
multi_global_contiguity,
[items(’VARIABLES’,reverse)]).

ctr_eval(
multi_global_contiguity,
[reformulation(multi_global_contiguity_c)]).

2589

ctr_contractible(multi_global_contiguity,[],’VARIAB LES’,any).

multi_global_contiguity_c([]) :-
!.

multi_global_contiguity_c(VARIABLES) :-
collection(VARIABLES,[int_gteq(0)]),
get_kattr1(VARIABLES,1,VARKEYS),
sort(VARKEYS,SVARKEYS),
multi_global_contiguity_c1(SVARKEYS).

multi_global_contiguity_c1([]) :-
!.

multi_global_contiguity_c1([_13208]) :-
!.

multi_global_contiguity_c1([0-_13212|R]) :-
!,
multi_global_contiguity_c1(R).

multi_global_contiguity_c1([I-P,I-Q|R]) :-
!,
Q is P+1,
multi_global_contiguity_c1([I-Q|R]).

multi_global_contiguity_c1([_13208,J-Q|R]) :-
multi_global_contiguity_c1([J-Q|R]).

2590 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.235 multi inter distance

♦ META-DATA:

ctr_predefined(multi_inter_distance).

ctr_date(multi_inter_distance,[’20110814’]).

ctr_origin(multi_inter_distance,’\\cite{OuelletQuim per11}’,[]).

ctr_synonyms(
multi_inter_distance,
[multi_all_min_distance,

multi_all_min_dist,
sliding_atmost,
atmost_sliding]).

ctr_arguments(
multi_inter_distance,
[’VARIABLES’-collection(var-dvar),’LIMIT’-int,’DIST ’-int]).

ctr_restrictions(
multi_inter_distance,
[required(’VARIABLES’,var),’LIMIT’>0,’DIST’>0]).

ctr_example(
multi_inter_distance,
multi_inter_distance(

[[var-4],[var-0],[var-9],[var-4],[var-7]],
2,
3)).

ctr_typical(
multi_inter_distance,
[’LIMIT’>1,

’LIMIT’<size(’VARIABLES’),
’DIST’>1,
’DIST’<range(’VARIABLES’ˆvar)]).

ctr_exchangeable(
multi_inter_distance,
[items(’VARIABLES’,all),

translate([’VARIABLES’ˆvar]),
vals([’LIMIT’],int,<,dontcare,dontcare),
vals([’MINDIST’],int(>=(1)),>,dontcare,dontcare)]).

2591

ctr_eval(
multi_inter_distance,
[reformulation(multi_inter_distance_r)]).

ctr_contractible(multi_inter_distance,[],’VARIABLES ’,any).

multi_inter_distance_r([],LIMIT,DIST) :-
!,
integer(LIMIT),
integer(DIST),
LIMIT>0,
DIST>0.

multi_inter_distance_r(VARIABLES,LIMIT,DIST) :-
collection(VARIABLES,[dvar]),
integer(LIMIT),
integer(DIST),
LIMIT>0,
DIST>0,
get_attr1(VARIABLES,ORIGINS),
length(VARIABLES,N),
length(DURATIONS,N),
length(ENDS,N),
length(HEIGHTS,N),
domain(DURATIONS,DIST,DIST),
domain(HEIGHTS,1,1),
ori_dur_end(ORIGINS,DURATIONS,ENDS),
gen_cum_tasks(ORIGINS,DURATIONS,ENDS,HEIGHTS,1,Task s),
cumulative(Tasks,[limit(LIMIT)]).

2592 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.236 nand

♦ META-DATA:

ctr_date(nand,[’20051226’]).

ctr_origin(nand,’Logic’,[]).

ctr_synonyms(nand,[clause]).

ctr_arguments(
nand,
[’VAR’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
nand,
[’VAR’>=0,

’VAR’=<1,
size(’VARIABLES’)>=2,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar=<1]).

ctr_example(
nand,
[nand(1,[[var-0],[var-0]]),

nand(1,[[var-0],[var-1]]),
nand(1,[[var-1],[var-0]]),
nand(0,[[var-1],[var-1]]),
nand(1,[[var-1],[var-0],[var-1]])]).

ctr_exchangeable(nand,[items(’VARIABLES’,all)]).

ctr_eval(nand,[automaton(nand_a)]).

ctr_pure_functional_dependency(nand,[]).

ctr_functional_dependency(nand,1,[2]).

ctr_contractible(nand,[’VAR’=0],’VARIABLES’,any).

ctr_extensible(nand,[’VAR’=1],’VARIABLES’,any).

ctr_aggregate(nand,[],[#\/,union]).

nand_a(FLAG,VAR,VARIABLES) :-

2593

check_type(dvar(0,1),VAR),
collection(VARIABLES,[dvar(0,1)]),
length(VARIABLES,L),
L>1,
get_attr1(VARIABLES,LIST),
append([VAR],LIST,LIST_VARIABLES),
AUTOMATON=
automaton(

LIST_VARIABLES,
_20905,
LIST_VARIABLES,
[source(s),sink(j),sink(k)],
[arc(s,1,i),

arc(s,0,j),
arc(i,0,k),
arc(i,1,i),
arc(k,0,k),
arc(k,1,k),
arc(j,1,j)],

[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

2594 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.237 nclass

♦ META-DATA:

ctr_date(nclass,[’20000128’,’20030820’,’20060812’]) .

ctr_origin(nclass,’Derived from %c.’,[nvalue]).

ctr_types(nclass,[’VALUES’-collection(val-int)]).

ctr_arguments(
nclass,
[’NCLASS’-dvar,

’VARIABLES’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
nclass,
[size(’VALUES’)>=1,

required(’VALUES’,val),
distinct(’VALUES’,val),
’NCLASS’>=0,
’NCLASS’=<min(size(’VARIABLES’),size(’PARTITIONS’)) ,
’NCLASS’=<range(’VARIABLES’ˆvar),
required(’VARIABLES’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_example(
nclass,
nclass(

2,
[[var-3],[var-2],[var-7],[var-2],[var-6]],
[[p-[[val-1],[val-3]]],

[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

ctr_typical(
nclass,
[’NCLASS’>1,

’NCLASS’<size(’VARIABLES’),
’NCLASS’<range(’VARIABLES’ˆvar),
size(’VARIABLES’)>size(’PARTITIONS’)]).

ctr_exchangeable(
nclass,

2595

[items(’VARIABLES’,all),
items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all),
vals(

[’VARIABLES’ˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare),

vals(
[’VARIABLES’ˆvar,’PARTITIONS’ˆpˆval],
int,
=\=,
all,
dontcare)]).

ctr_graph(
nclass,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
PARTITIONS)],

[’NSCC’=’NCLASS’],
[]).

ctr_pure_functional_dependency(nclass,[]).

ctr_functional_dependency(nclass,1,[2,3]).

ctr_extensible(
nclass,
[’NCLASS’=size(’PARTITIONS’)],
VARIABLES,
any).

2596 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.238 neq

♦ META-DATA:

ctr_predefined(neq).

ctr_date(neq,[’20070821’]).

ctr_origin(neq,’Arithmetic.’,[]).

ctr_synonyms(neq,[rel]).

ctr_arguments(neq,[’VAR1’-dvar,’VAR2’-dvar]).

ctr_example(neq,neq(1,8)).

ctr_exchangeable(
neq,
[args([[’VAR1’,’VAR2’]]),

vals([’VAR1’,’VAR2’],int,=\=,all,dontcare)]).

ctr_eval(neq,[builtin(neq_b)]).

neq_b(VAR1,VAR2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
VAR1#\=VAR2.

2597

B.239 neqcst

♦ META-DATA:

ctr_predefined(neq_cst).

ctr_date(neq_cst,[’20090923’]).

ctr_origin(neq_cst,’Arithmetic.’,[]).

ctr_arguments(neq_cst,[’VAR1’-dvar,’VAR2’-dvar,’CST 2’-int]).

ctr_example(neq_cst,neq_cst(8,2,7)).

ctr_typical(neq_cst,[’CST2’=\=0,’VAR1’=\=’VAR2’+’CS T2’]).

ctr_exchangeable(
neq_cst,
[args([[’VAR1’],[’VAR2’,’CST2’]]),

translate([’VAR1’,’VAR2’]),
translate([’VAR1’,’CST2’])]).

ctr_eval(neq_cst,[builtin(neq_cst_b)]).

neq_cst_b(VAR1,VAR2,CST2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
check_type(int,CST2),
VAR1#\=VAR2+CST2.

2598 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.240 nequivalence

♦ META-DATA:

ctr_date(nequivalence,[’20000128’,’20030820’,’20060 812’]).

ctr_origin(nequivalence,’Derived from %c.’,[nvalue]).

ctr_arguments(
nequivalence,
[’NEQUIV’-dvar,’M’-int,’VARIABLES’-collection(var-d var)]).

ctr_restrictions(
nequivalence,
[required(’VARIABLES’,var),

’NEQUIV’>=min(1,size(’VARIABLES’)),
’NEQUIV’=<min(’M’,size(’VARIABLES’)),
’NEQUIV’=<range(’VARIABLES’ˆvar),
’M’>0]).

ctr_example(
nequivalence,
nequivalence(

2,
3,
[[var-3],

[var-2],
[var-5],
[var-6],
[var-15],
[var-3],
[var-3]])).

ctr_typical(
nequivalence,
[’NEQUIV’>1,

’NEQUIV’<size(’VARIABLES’),
’NEQUIV’<range(’VARIABLES’ˆvar),
’M’>1,
’M’<maxval(’VARIABLES’ˆvar)]).

ctr_exchangeable(
nequivalence,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],mod(’M’),=,dontcare,dontcare)]).

2599

ctr_graph(
nequivalence,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[’NSCC’=’NEQUIV’],
[]).

ctr_pure_functional_dependency(nequivalence,[]).

ctr_functional_dependency(nequivalence,1,[2,3]).

ctr_contractible(
nequivalence,
[’NEQUIV’=1,size(’VARIABLES’)>0],
VARIABLES,
any).

ctr_contractible(
nequivalence,
[’NEQUIV’=size(’VARIABLES’)],
VARIABLES,
any).

ctr_extensible(nequivalence,[’NEQUIV’=’M’],’VARIABL ES’,any).

2600 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.241 nextelement

♦ META-DATA:

ctr_date(next_element,[’20030820’,’20040530’,’20060 812’]).

ctr_origin(next_element,’N.˜Beldiceanu’,[]).

ctr_arguments(
next_element,
[’THRESHOLD’-dvar,

’INDEX’-dvar,
’TABLE’-collection(index-int,value-dvar),
’VAL’-dvar]).

ctr_restrictions(
next_element,
[’INDEX’>=1,

’INDEX’=<size(’TABLE’),
’THRESHOLD’<’INDEX’,
required(’TABLE’,[index,value]),
size(’TABLE’)>0,
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
distinct(’TABLE’,index)]).

ctr_example(
next_element,
next_element(

2,
3,
[[index-1,value-1],

[index-2,value-8],
[index-3,value-9],
[index-4,value-5],
[index-5,value-9]],

9)).

ctr_typical(
next_element,
[size(’TABLE’)>1,range(’TABLE’ˆvalue)>1]).

ctr_derived_collections(
next_element,
[col(’ITEM’-collection(index-dvar,value-dvar),

[item(index-’THRESHOLD’,value-’VAL’)])]).

2601

ctr_graph(
next_element,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆindex<tableˆindex,itemˆvalue=tableˆvalue],
[’NARC’>0],
[],
[SUCC>>

[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’TABLE’ˆindex)])]],
[minimum(’INDEX’,variables)]).

ctr_eval(next_element,[automaton(next_element_a)]).

next_element_a(FLAG,THRESHOLD,INDEX,TABLE,VAL) :-
length(TABLE,N),
N>0,
check_type(dvar,THRESHOLD),
check_type(dvar(1,N),INDEX),
collection(TABLE,[int(1,N),dvar]),
check_type(dvar,VAL),
THRESHOLD#<INDEX,
get_attr1(TABLE,INDEXES),
all_different(INDEXES),
next_element_signature(

TABLE,
SIGNATURE,
THRESHOLD,
INDEX,
VAL),

AUTOMATON=
automaton(

SIGNATURE,
_35603,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),

arc(s,1,s),
arc(s,2,s),
arc(s,3,s),
arc(s,4,s),
arc(s,5,s),

2602 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

arc(s,7,s),
arc(s,9,s),
arc(s,10,s),
arc(s,11,s),
arc(s,8,t),
arc(t,0,t),
arc(t,1,t),
arc(t,2,t),
arc(t,3,t),
arc(t,4,t),
arc(t,5,t),
arc(t,7,t),
arc(t,8,t),
arc(t,9,t),
arc(t,10,t),
arc(t,11,t)],

[],
[],
[]),

automaton_bool(
FLAG,
[0,1,2,3,4,5,6,7,8,9,10,11],
AUTOMATON).

next_element_signature([],[],_32135,_32136,_32137).

next_element_signature(
[[index-I,value-V]|Ts],
[S|Ss],
THRESHOLD,
INDEX,
VAL) :-

S in 0..11,
I#=<THRESHOLD#/\I#<INDEX#/\V#=VAL#<=>S#=0,
I#=<THRESHOLD#/\I#<INDEX#/\V#\=VAL#<=>S#=1,
I#=<THRESHOLD#/\I#=INDEX#/\V#=VAL#<=>S#=2,
I#=<THRESHOLD#/\I#=INDEX#/\V#\=VAL#<=>S#=3,
I#=<THRESHOLD#/\I#>INDEX#/\V#=VAL#<=>S#=4,
I#=<THRESHOLD#/\I#>INDEX#/\V#\=VAL#<=>S#=5,
I#>THRESHOLD#/\I#<INDEX#/\V#=VAL#<=>S#=6,
I#>THRESHOLD#/\I#<INDEX#/\V#\=VAL#<=>S#=7,
I#>THRESHOLD#/\I#=INDEX#/\V#=VAL#<=>S#=8,
I#>THRESHOLD#/\I#=INDEX#/\V#\=VAL#<=>S#=9,
I#>THRESHOLD#/\I#>INDEX#/\V#=VAL#<=>S#=10,
I#>THRESHOLD#/\I#>INDEX#/\V#\=VAL#<=>S#=11,
next_element_signature(Ts,Ss,THRESHOLD,INDEX,VAL).

2603

2604 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.242 nextgreater element

♦ META-DATA:

ctr_date(
next_greater_element,
[’20030820’,’20040530’,’20060812’]).

ctr_origin(next_greater_element,’M.˜Carlsson’,[]).

ctr_arguments(
next_greater_element,
[’VAR1’-dvar,’VAR2’-dvar,’VARIABLES’-collection(var -dvar)]).

ctr_restrictions(
next_greater_element,
[’VAR1’<’VAR2’,

size(’VARIABLES’)>0,
required(’VARIABLES’,var)]).

ctr_example(
next_greater_element,
next_greater_element(

7,
8,
[[var-3],[var-5],[var-8],[var-9]])).

ctr_typical(
next_greater_element,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_derived_collections(
next_greater_element,
[col(’V’-collection(var-dvar),[item(var-’VAR1’)])]) .

ctr_graph(
next_greater_element,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar<variables2ˆvar],
[’NARC’=size(’VARIABLES’)-1],
[]).

ctr_graph(
next_greater_element,

2605

[’V’,’VARIABLES’],
2,
[’PRODUCT’>>collection(v,variables)],
[vˆvar<variablesˆvar],
[’NARC’>0],
[],
[’SUCC’>>[source,variables]],
[minimum(’VAR2’,variables)]).

ctr_eval(
next_greater_element,
[reformulation(next_greater_element_r)]).

next_greater_element_r(VAR1,VAR2,VARIABLES) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>0,
get_attr1(VARIABLES,VARS),
maximum(MAX,VARS),
VAR2#>VAR1,
VAR2#=<MAX,
next_greater_element1(VARS,VAR1,MAX,UARS),
minimum(VAR2,UARS).

next_greater_element1([V],VAR1,MAX,[U]) :-
!,
fd_min(V,Min),
fd_max(MAX,Max),
U in Min..Max,
V#=<VAR1#=>U#=MAX,
V#>VAR1#=>U#=V.

next_greater_element1([V1,V2|R],VAR1,MAX,[U1|S]) :-
V1#<V2,
fd_min(V1,Min),
fd_max(MAX,Max),
U1 in Min..Max,
V1#=<VAR1#=>U1#=MAX,
V1#>VAR1#=>U1#=V1,
next_greater_element1([V2|R],VAR1,MAX,S).

2606 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.243 ninterval

♦ META-DATA:

ctr_date(ninterval,[’20030820’,’20040530’,’20060812 ’]).

ctr_origin(ninterval,’Derived from %c.’,[nvalue]).

ctr_arguments(
ninterval,
[’NVAL’-dvar,

’VARIABLES’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
ninterval,
[’NVAL’>=min(1,size(’VARIABLES’)),

’NVAL’=<size(’VARIABLES’),
required(’VARIABLES’,var),
’SIZE_INTERVAL’>0]).

ctr_example(
ninterval,
ninterval(2,[[var-3],[var-1],[var-9],[var-1],[var-9]],4)).

ctr_typical(
ninterval,
[’NVAL’>1,

’NVAL’<size(’VARIABLES’),
’SIZE_INTERVAL’>1,
’SIZE_INTERVAL’<range(’VARIABLES’ˆvar)]).

ctr_exchangeable(
ninterval,
[items(’VARIABLES’,all),

vals(
[’VARIABLES’ˆvar],
intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare)]).

ctr_graph(
ninterval,
[’VARIABLES’],
2,

2607

[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar/’SIZE_INTERVAL’=

variables2ˆvar/’SIZE_INTERVAL’],
[’NSCC’=’NVAL’],
[]).

ctr_pure_functional_dependency(ninterval,[]).

ctr_functional_dependency(ninterval,1,[2,3]).

ctr_contractible(
ninterval,
[’NVAL’=1,size(’VARIABLES’)>0],
VARIABLES,
any).

ctr_contractible(
ninterval,
[’NVAL’=size(’VARIABLES’)],
VARIABLES,
any).

2608 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.244 nopeak

♦ META-DATA:

ctr_date(no_peak,[’20031101’,’20040530’]).

ctr_origin(no_peak,’Derived from %c.’,[peak]).

ctr_arguments(no_peak,[’VARIABLES’-collection(var-d var)]).

ctr_restrictions(
no_peak,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_example(
no_peak,
no_peak([[var-1],[var-1],[var-4],[var-8],[var-8]])) .

ctr_typical(
no_peak,
[size(’VARIABLES’)>2,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
no_peak,
[items(’VARIABLES’,reverse),translate([’VARIABLES’ˆ var])]).

ctr_eval(no_peak,[automaton(no_peak_a)]).

ctr_contractible(no_peak,[],’VARIABLES’,any).

no_peak_a(FLAG,VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>0,
no_peak_signature(VARIABLES,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_16572,
SIGNATURE,
[source(s),sink(t),sink(s)],
[arc(s,1,s),

arc(s,2,s),
arc(s,0,t),
arc(t,0,t),
arc(t,1,t)],

2609

[],
[],
[]),

automaton_bool(FLAG,[0,1,2],AUTOMATON).

no_peak_signature([],[]).

no_peak_signature([_14981],[]) :-
!.

no_peak_signature([[var-VAR1],[var-VAR2]|VARs],[S|S s]) :-
S in 0..2,
VAR1#<VAR2#<=>S#=0,
VAR1#=VAR2#<=>S#=1,
VAR1#>VAR2#<=>S#=2,
no_peak_signature([[var-VAR2]|VARs],Ss).

2610 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.245 novalley

♦ META-DATA:

ctr_date(no_valley,[’20031101’,’20040530’]).

ctr_origin(no_valley,’Derived from %c.’,[valley]).

ctr_arguments(no_valley,[’VARIABLES’-collection(var -dvar)]).

ctr_restrictions(
no_valley,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_example(
no_valley,
no_valley(

[[var-1],[var-1],[var-4],[var-8],[var-8],[var-2]])) .

ctr_typical(
no_valley,
[size(’VARIABLES’)>2,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
no_valley,
[items(’VARIABLES’,reverse),translate([’VARIABLES’ˆ var])]).

ctr_eval(no_valley,[automaton(no_valley_a)]).

ctr_contractible(no_valley,[],’VARIABLES’,any).

no_valley_a(FLAG,VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>0,
no_valley_signature(VARIABLES,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_17219,
SIGNATURE,
[source(s),sink(t),sink(s)],
[arc(s,0,s),

arc(s,1,s),
arc(s,2,t),
arc(t,1,t),

2611

arc(t,2,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1,2],AUTOMATON).

no_valley_signature([],[]).

no_valley_signature([_15628],[]) :-
!.

no_valley_signature([[var-VAR1],[var-VAR2]|VARs],[S |Ss]) :-
S in 0..2,
VAR1#<VAR2#<=>S#=0,
VAR1#=VAR2#<=>S#=1,
VAR1#>VAR2#<=>S#=2,
no_valley_signature([[var-VAR2]|VARs],Ss).

2612 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.246 nonoverlap sboxes

♦ META-DATA:

ctr_date(non_overlap_sboxes,[’20070622’,’20090725’]).

ctr_origin(
non_overlap_sboxes,
Geometry, derived from \cite{BeldiceanuCarlssonPoderSa dekTruchet07},
[]).

ctr_synonyms(non_overlap_sboxes,[non_overlap,non_ov erlapping]).

ctr_types(
non_overlap_sboxes,
[’VARIABLES’-collection(v-dvar),

’INTEGERS’-collection(v-int),
’POSITIVES’-collection(v-int)]).

ctr_arguments(
non_overlap_sboxes,
[’K’-int,

’DIMS’-sint,
’OBJECTS’-collection(oid-int,sid-int,x-’VARIABLES’) ,
’SBOXES’-collection(sid-int,t-’INTEGERS’,l-’POSITIV ES’)]).

ctr_restrictions(
non_overlap_sboxes,
[size(’VARIABLES’)>=1,

size(’INTEGERS’)>=1,
size(’POSITIVES’)>=1,
required(’VARIABLES’,v),
size(’VARIABLES’)=’K’,
required(’INTEGERS’,v),
size(’INTEGERS’)=’K’,
required(’POSITIVES’,v),
size(’POSITIVES’)=’K’,
’POSITIVES’ˆv>0,
’K’>0,
’DIMS’>=0,
’DIMS’<’K’,
increasing_seq(’OBJECTS’,[oid]),
required(’OBJECTS’,[oid,sid,x]),
’OBJECTS’ˆoid>=1,
’OBJECTS’ˆoid=<size(’OBJECTS’),
’OBJECTS’ˆsid>=1,

2613

’OBJECTS’ˆsid=<size(’SBOXES’),
required(’SBOXES’,[sid,t,l]),
’SBOXES’ˆsid>=1,
’SBOXES’ˆsid=<size(’SBOXES’)]).

ctr_example(
non_overlap_sboxes,
non_overlap_sboxes(

2,
{0,1},
[[oid-1,sid-1,x-[[v-4],[v-1]]],

[oid-2,sid-3,x-[[v-2],[v-2]]],
[oid-3,sid-4,x-[[v-5],[v-4]]]],

[[sid-1,t-[[v-0],[v-0]],l-[[v-1],[v-1]]],
[sid-1,t-[[v-1],[v-0]],l-[[v-1],[v-3]]],
[sid-1,t-[[v-0],[v-2]],l-[[v-1],[v-1]]],
[sid-2,t-[[v-0],[v-0]],l-[[v-3],[v-1]]],
[sid-2,t-[[v-0],[v-1]],l-[[v-1],[v-1]]],
[sid-2,t-[[v-2],[v-1]],l-[[v-1],[v-1]]],
[sid-3,t-[[v-0],[v-0]],l-[[v-1],[v-2]]],
[sid-4,t-[[v-0],[v-0]],l-[[v-1],[v-1]]]])).

ctr_typical(non_overlap_sboxes,[size(’OBJECTS’)>1]) .

ctr_exchangeable(
non_overlap_sboxes,
[items(’OBJECTS’,all),

items(’SBOXES’,all),
items_sync(’OBJECTS’ˆx,’SBOXES’ˆt,’SBOXES’ˆl,all),
vals([’SBOXES’ˆlˆv],int(>=(1)),>,dontcare,dontcare)]).

ctr_eval(non_overlap_sboxes,[logic(non_overlap_sbox es_g)]).

ctr_logic(
non_overlap_sboxes,
[DIMENSIONS,OIDS],
[(origin(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)),

(end(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)+S1ˆl(D)),
(non_overlap_sboxes(Dims,O1,S1,O2,S2)--->

exists(
D,
Dims,
end(O1,S1,D)#=<origin(O2,S2,D)#\/
end(O2,S2,D)#=<origin(O1,S1,D))),

(non_overlap_objects(Dims,O1,O2)--->
forall(

2614 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

S1,
sboxes([O1ˆsid]),
forall(

S2,
sboxes([O2ˆsid]),
non_overlap_sboxes(Dims,O1,S1,O2,S2)))),

(all_non_overlap(Dims,OIDS)--->
forall(

O1,
objects(OIDS),
forall(

O2,
objects(OIDS),
O1ˆoid#<O2ˆoid#=>
non_overlap_objects(Dims,O1,O2)))),

all_non_overlap(DIMENSIONS,OIDS)]).

ctr_contractible(non_overlap_sboxes,[],’OBJECTS’,su ffix).

non_overlap_sboxes_g(K,_32773,[],_32775) :-
!,
check_type(int_gteq(1),K).

non_overlap_sboxes_g(K,_DIMS,OBJECTS,SBOXES) :-
length(OBJECTS,O),
length(SBOXES,S),
O>0,
S>0,
check_type(int_gteq(1),K),
collection(OBJECTS,[int(1,O),dvar(1,S),col(K,[dvar])]),
collection(

SBOXES,
[int(1,S),col(K,[int]),col(K,[int_gteq(1)])]),

get_attr1(OBJECTS,OIDS),
get_attr2(OBJECTS,SIDS),
get_col_attr3(OBJECTS,1,XS),
get_attr1(SBOXES,SIDES),
get_col_attr2(SBOXES,1,TS),
get_col_attr3(SBOXES,1,TL),
collection_increasing_seq(OBJECTS,[1]),
geost1(OIDS,SIDS,XS,Objects),
geost2(SIDES,TS,TL,Sboxes),
geost_dims(1,K,DIMENSIONS),
ctr_logic(non_overlap_sboxes,[DIMENSIONS,OIDS],Rule s),
geost(Objects,Sboxes,[overlap(true)],Rules).

2615

B.247 nor

♦ META-DATA:

ctr_date(nor,[’20051226’]).

ctr_origin(nor,’Logic’,[]).

ctr_synonyms(nor,[clause]).

ctr_arguments(
nor,
[’VAR’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
nor,
[’VAR’>=0,

’VAR’=<1,
size(’VARIABLES’)>=2,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar=<1]).

ctr_example(
nor,
[nor(1,[[var-0],[var-0]]),

nor(0,[[var-0],[var-1]]),
nor(0,[[var-1],[var-0]]),
nor(0,[[var-1],[var-1]]),
nor(0,[[var-1],[var-0],[var-1]])]).

ctr_exchangeable(nor,[items(’VARIABLES’,all)]).

ctr_eval(nor,[automaton(nor_a)]).

ctr_pure_functional_dependency(nor,[]).

ctr_functional_dependency(nor,1,[2]).

ctr_contractible(nor,[’VAR’=1],’VARIABLES’,any).

ctr_extensible(nor,[’VAR’=0],’VARIABLES’,any).

ctr_aggregate(nor,[],[#/\,union]).

nor_a(FLAG,VAR,VARIABLES) :-

2616 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

check_type(dvar(0,1),VAR),
collection(VARIABLES,[dvar(0,1)]),
length(VARIABLES,L),
L>1,
get_attr1(VARIABLES,LIST),
append([VAR],LIST,LIST_VARIABLES),
AUTOMATON=
automaton(

LIST_VARIABLES,
_20931,
LIST_VARIABLES,
[source(s),sink(i),sink(k)],
[arc(s,0,j),

arc(s,1,i),
arc(i,0,i),
arc(j,0,j),
arc(j,1,k),
arc(k,0,k),
arc(k,1,k)],

[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

2617

B.248 not all equal

♦ META-DATA:

ctr_date(
not_all_equal,
[’20030820’,’20040530’,’20040726’,’20060812’,’20100 418’]).

ctr_origin(not_all_equal,’\\index{CHIP|indexuse}CHI P’,[]).

ctr_arguments(not_all_equal,[’VARIABLES’-collection (var-dvar)]).

ctr_restrictions(
not_all_equal,
[required(’VARIABLES’,var),size(’VARIABLES’)>1]).

ctr_example(
not_all_equal,
not_all_equal([[var-3],[var-1],[var-3],[var-3],[var -3]])).

ctr_typical(not_all_equal,[size(’VARIABLES’)>2]).

ctr_exchangeable(
not_all_equal,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
not_all_equal,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSCC’>1],
[]).

ctr_eval(
not_all_equal,
[checker(not_all_equal_c),

reformulation(not_all_equal_r),
automaton(not_all_equal_a)]).

ctr_extensible(not_all_equal,[],’VARIABLES’,any).

not_all_equal_c(VARIABLES) :-
collection(VARIABLES,[int]),

2618 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

length(VARIABLES,N),
N>1,
get_attr1(VARIABLES,VARS),
sort(VARS,S),
S=[_35970,_35972|_35973].

not_all_equal_r(VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>1,
get_attr1(VARIABLES,VARS),
NVAL in 2..N,
nvalue(NVAL,VARS).

not_all_equal_a(FLAG,VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>1,
not_all_equal_signature(VARIABLES,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_37475,
SIGNATURE,
[source(s),sink(t)],
[arc(s,1,s),arc(s,0,t),arc(t,0,t),arc(t,1,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

not_all_equal_signature([],[]).

not_all_equal_signature([_35928],[]) :-
!.

not_all_equal_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss]) :-
VAR1#=VAR2#<=>S,
not_all_equal_signature([[var-VAR2]|VARs],Ss).

2619

B.249 not in

♦ META-DATA:

ctr_date(not_in,[’20030820’,’20040530’,’20060812’]) .

ctr_origin(not_in,’Derived from %c.’,[in]).

ctr_arguments(not_in,[’VAR’-dvar,’VALUES’-collectio n(val-int)]).

ctr_restrictions(
not_in,
[required(’VALUES’,val),distinct(’VALUES’,val)]).

ctr_example(not_in,not_in(2,[[val-1],[val-3]])).

ctr_typical(not_in,[size(’VALUES’)>1]).

ctr_exchangeable(
not_in,
[items(’VALUES’,all),translate([’VAR’,’VALUES’ˆval])]).

ctr_derived_collections(
not_in,
[col(’VARIABLES’-collection(var-dvar),[item(var-’VA R’)])]).

ctr_graph(
not_in,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’NARC’=0],
[]).

ctr_eval(not_in,[automaton(not_in_a)]).

ctr_contractible(not_in,[],’VALUES’,any).

not_in_a(FLAG,VAR,VALUES) :-
check_type(dvar,VAR),
collection(VALUES,[int]),
get_attr1(VALUES,VALS),
all_different(VALS),
not_in_signature(VALUES,SIGNATURE,VAR),
AUTOMATON=

2620 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

automaton(
SIGNATURE,
_29845,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

not_in_signature([],[],_28219).

not_in_signature([[val-VAL]|VALs],[S|Ss],VAR) :-
VAR#=VAL#<=>S,
not_in_signature(VALs,Ss,VAR).

2621

B.250 npair

♦ META-DATA:

ctr_date(npair,[’20030820’,’20060812’]).

ctr_origin(npair,’Derived from %c.’,[nvalue]).

ctr_arguments(
npair,
[’NPAIRS’-dvar,’PAIRS’-collection(x-dvar,y-dvar)]).

ctr_restrictions(
npair,
[’NPAIRS’>=min(1,size(’PAIRS’)),

’NPAIRS’=<size(’PAIRS’),
required(’PAIRS’,[x,y])]).

ctr_example(
npair,
npair(

2,
[[x-3,y-1],[x-1,y-5],[x-3,y-1],[x-3,y-1],[x-1,y-5]])).

ctr_typical(
npair,
[’NPAIRS’>1,

’NPAIRS’<size(’PAIRS’),
size(’PAIRS’)>1,
range(’PAIRS’ˆx)>1,
range(’PAIRS’ˆy)>1]).

ctr_exchangeable(
npair,
[items(’PAIRS’,all),

attrs_sync(’PAIRS’,[[x,y]]),
vals([’NPAIRS’],int,=\=,all,dontcare)]).

ctr_graph(
npair,
[’PAIRS’],
2,
[’CLIQUE’>>collection(pairs1,pairs2)],
[pairs1ˆx=pairs2ˆx,pairs1ˆy=pairs2ˆy],
[’NSCC’=’NPAIRS’],
[]).

2622 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_pure_functional_dependency(npair,[]).

ctr_functional_dependency(npair,1,[2]).

ctr_contractible(
npair,
[’NPAIRS’=1,size(’PAIRS’)>0],
PAIRS,
any).

ctr_contractible(npair,[’NPAIRS’=size(’PAIRS’)],’PA IRS’,any).

2623

B.251 nsetof consecutivevalues

♦ META-DATA:

ctr_date(
nset_of_consecutive_values,
[’20030820’,’20040530’,’20060812’]).

ctr_origin(nset_of_consecutive_values,’N.˜Beldicean u’,[]).

ctr_arguments(
nset_of_consecutive_values,
[’N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
nset_of_consecutive_values,
[’N’>=1,’N’=<size(’VARIABLES’),required(’VARIABLES’ ,var)]).

ctr_example(
nset_of_consecutive_values,
nset_of_consecutive_values(

2,
[[var-3],

[var-1],
[var-7],
[var-1],
[var-1],
[var-2],
[var-8]])).

ctr_typical(
nset_of_consecutive_values,
[’N’>1,size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
nset_of_consecutive_values,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],int,=\=,all,in),
translate([’VARIABLES’ˆvar])]).

ctr_graph(
nset_of_consecutive_values,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[abs(variables1ˆvar-variables2ˆvar)=<1],

2624 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[’NSCC’=’N’],
[]).

ctr_pure_functional_dependency(nset_of_consecutive_ values,[]).

ctr_functional_dependency(nset_of_consecutive_value s,1,[2]).

2625

B.252 nvalue

♦ META-DATA:

ctr_date(
nvalue,
[20000128,

20030820,
20040530,
20051001,
20060812,
20091105]).

ctr_origin(nvalue,’\\cite{PachetRoy99}’,[]).

ctr_synonyms(nvalue,[cardinality_on_attributes_valu es,values]).

ctr_arguments(
nvalue,
[’NVAL’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
nvalue,
[required(’VARIABLES’,var),

’NVAL’>=min(1,size(’VARIABLES’)),
’NVAL’=<size(’VARIABLES’),
’NVAL’=<range(’VARIABLES’ˆvar)]).

ctr_example(
nvalue,
nvalue(4,[[var-3],[var-1],[var-7],[var-1],[var-6]])).

ctr_typical(
nvalue,
[’NVAL’>1,

’NVAL’<size(’VARIABLES’),
’NVAL’<range(’VARIABLES’ˆvar),
size(’VARIABLES’)>1,
’NVAL’<0#\/’NVAL’>1]).

ctr_exchangeable(
nvalue,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(

2626 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

nvalue,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSCC’=’NVAL’],
[’EQUIVALENCE’]).

ctr_eval(nvalue,[builtin(nvalue_b)]).

ctr_pure_functional_dependency(nvalue,[]).

ctr_functional_dependency(nvalue,1,[2]).

ctr_contractible(
nvalue,
[’NVAL’=1,size(’VARIABLES’)>0],
VARIABLES,
any).

ctr_contractible(
nvalue,
[’NVAL’=size(’VARIABLES’)],
VARIABLES,
any).

nvalue_b(NVAL,VARIABLES) :-
check_type(dvar,NVAL),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
length(VARIABLES,N),
NVAL#>=min(1,N),
NVAL#=<N,
list_dvar_range(VARS,R),
NVAL#=<R,
nvalue(NVAL,VARS).

2627

B.253 nvalueon intersection

♦ META-DATA:

ctr_date(nvalue_on_intersection,[’20040530’,’200608 12’]).

ctr_origin(
nvalue_on_intersection,
Derived from %c and %c.,
[common,nvalue]).

ctr_arguments(
nvalue_on_intersection,
[’NVAL’-dvar,

’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
nvalue_on_intersection,
[required(’VARIABLES1’,var),

required(’VARIABLES2’,var),
’NVAL’>=0,
’NVAL’=<size(’VARIABLES1’),
’NVAL’=<size(’VARIABLES2’),
’NVAL’=<range(’VARIABLES1’ˆvar),
’NVAL’=<range(’VARIABLES2’ˆvar)]).

ctr_example(
nvalue_on_intersection,
nvalue_on_intersection(

2,
[[var-1],[var-9],[var-1],[var-5]],
[[var-2],[var-1],[var-9],[var-9],[var-6],[var-9]])) .

ctr_typical(
nvalue_on_intersection,
[’NVAL’>0,

’NVAL’<size(’VARIABLES1’),
’NVAL’<size(’VARIABLES2’),
’NVAL’<range(’VARIABLES1’ˆvar),
’NVAL’<range(’VARIABLES2’ˆvar),
size(’VARIABLES1’)>1,
size(’VARIABLES2’)>1]).

ctr_exchangeable(
nvalue_on_intersection,

2628 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[args([[’NVAL’],[’VARIABLES1’,’VARIABLES2’]]),
items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
int,
=\=,
all,
dontcare)]).

ctr_graph(
nvalue_on_intersection,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NCC’=’NVAL’],
[]).

ctr_pure_functional_dependency(nvalue_on_intersecti on,[]).

ctr_functional_dependency(nvalue_on_intersection,1, [2,3]).

ctr_contractible(
nvalue_on_intersection,
[’NVAL’=0],
VARIABLES1,
any).

ctr_contractible(
nvalue_on_intersection,
[’NVAL’=0],
VARIABLES2,
any).

2629

B.254 nvalues

♦ META-DATA:

ctr_date(nvalues,[’20030820’,’20060812’]).

ctr_origin(nvalues,’Inspired by %c and %c.’,[nvalue,cou nt]).

ctr_arguments(
nvalues,
[’VARIABLES’-collection(var-dvar),

’RELOP’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
nvalues,
[required(’VARIABLES’,var),

in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_example(
nvalues,
nvalues(

[[var-4],[var-5],[var-5],[var-4],[var-1],[var-5]],
=,
3)).

ctr_typical(
nvalues,
[size(’VARIABLES’)>1,

’LIMIT’>1,
’LIMIT’<size(’VARIABLES’),
in_list(’RELOP’,[=,<,>=,>,=<])]).

ctr_exchangeable(
nvalues,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
nvalues,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’RELOP’(’NSCC’,’LIMIT’)],
[’EQUIVALENCE’]).

2630 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_eval(nvalues,[reformulation(nvalues_r)]).

ctr_pure_functional_dependency(nvalues,[in_list(’RE LOP’,[=])]).

ctr_contractible(
nvalues,
[in_list(’RELOP’,[<,=<])],
VARIABLES,
any).

ctr_contractible(
nvalues,
[in_list(’RELOP’,[=]),’LIMIT’=1,size(’VARIABLES’)>0],
VARIABLES,
any).

ctr_contractible(
nvalues,
[in_list(’RELOP’,[=]),’LIMIT’=size(’VARIABLES’)],
VARIABLES,
any).

ctr_extensible(
nvalues,
[in_list(’RELOP’,[>=,>])],
VARIABLES,
any).

nvalues_r(VARIABLES,RELOP,LIMIT) :-
collection(VARIABLES,[dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
check_type(dvar,LIMIT),
length(VARIABLES,N),
NVAL in 0..N,
get_attr1(VARIABLES,VARS),
nvalue(NVAL,VARS),
call_term_relop_value(NVAL,RELOP,LIMIT).

2631

B.255 nvaluesexcept0

♦ META-DATA:

ctr_date(nvalues_except_0,[’20030820’,’20060812’]).

ctr_origin(nvalues_except_0,’Derived from %c.’,[nvalu es]).

ctr_arguments(
nvalues_except_0,
[’VARIABLES’-collection(var-dvar),

’RELOP’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
nvalues_except_0,
[required(’VARIABLES’,var),

in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_example(
nvalues_except_0,
nvalues_except_0(

[[var-4],[var-5],[var-5],[var-4],[var-0],[var-1]],
=,
3)).

ctr_typical(
nvalues_except_0,
[size(’VARIABLES’)>1,

’LIMIT’>1,
’LIMIT’<size(’VARIABLES’),
atleast(1,’VARIABLES’,0),
in_list(’RELOP’,[=,<,>=,>,=<])]).

ctr_exchangeable(
nvalues_except_0,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],int(=\=(0)),=\=,all,dontcare)]).

ctr_graph(
nvalues_except_0,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=\=0,variables1ˆvar=variables2ˆvar],
[’RELOP’(’NSCC’,’LIMIT’)],

2632 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[]).

ctr_eval(nvalues_except_0,[reformulation(nvalues_ex cept_0_r)]).

ctr_contractible(
nvalues_except_0,
[in_list(’RELOP’,[<,=<])],
VARIABLES,
any).

ctr_extensible(
nvalues_except_0,
[in_list(’RELOP’,[>=,>])],
VARIABLES,
any).

nvalues_except_0_r(VARIABLES,RELOP,LIMIT) :-
collection(VARIABLES,[dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
check_type(dvar,LIMIT),
length(VARIABLES,N),
N1 is N+1,
NVAL1 in 1..N1,
get_attr1(VARIABLES,VARS),
append([0],VARS,VARS0),
nvalue(NVAL1,VARS0),
NVAL1#=NVAL+1,
call_term_relop_value(NVAL,RELOP,LIMIT).

2633

B.256 nvector

♦ META-DATA:

ctr_date(nvector,[’20081220’]).

ctr_origin(
nvector,
Introduced by G.˜Chabert as a generalisation of %c,
[nvalue]).

ctr_synonyms(nvector,[nvectors,npoint,npoints]).

ctr_types(nvector,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
nvector,
[’NVEC’-dvar,’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
nvector,
[size(’VECTOR’)>=1,

’NVEC’>=min(1,size(’VECTORS’)),
’NVEC’=<size(’VECTORS’),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
nvector,
nvector(

2,
[[vec-[[var-5],[var-6]]],

[vec-[[var-5],[var-6]]],
[vec-[[var-9],[var-3]]],
[vec-[[var-5],[var-6]]],
[vec-[[var-9],[var-3]]]])).

ctr_typical(
nvector,
[size(’VECTOR’)>1,

’NVEC’>1,
’NVEC’<size(’VECTORS’),
size(’VECTORS’)>1]).

ctr_exchangeable(
nvector,

2634 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[items(’VECTORS’,all),
items_sync(’VECTORS’ˆvec,all),
vals([’VECTORS’ˆvec],int,=\=,all,dontcare)]).

ctr_graph(
nvector,
[’VECTORS’],
2,
[’CLIQUE’>>collection(vectors1,vectors2)],
[lex_equal(vectors1ˆvec,vectors2ˆvec)],
[’NSCC’=’NVEC’],
[’EQUIVALENCE’]).

ctr_eval(nvector,[reformulation(nvector_r)]).

ctr_pure_functional_dependency(nvector,[]).

ctr_functional_dependency(nvector,1,[2]).

ctr_contractible(
nvector,
[’NVEC’=1,size(’VECTORS’)>0],
VECTORS,
any).

ctr_contractible(
nvector,
[’NVEC’=size(’VECTORS’)],
VECTORS,
any).

nvector_r(0,[]) :-
!.

nvector_r(NVEC,VECTORS) :-
check_type(dvar,NVEC),
collection(VECTORS,[col([dvar])]),
same_size(VECTORS),
length(VECTORS,N),
NVEC#>=min(1,N),
NVEC#=<N,
nvector_common(NVEC,VECTORS).

2635

B.257 nvectors

♦ META-DATA:

ctr_date(nvectors,[’20081226’]).

ctr_origin(nvectors,’Inspired by %c and %c.’,[nvector,c ount]).

ctr_synonyms(nvectors,[npoints]).

ctr_types(nvectors,[’VECTOR’-collection(var-dvar)]) .

ctr_arguments(
nvectors,
[’VECTORS’-collection(vec-’VECTOR’),

’RELOP’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
nvectors,
[size(’VECTOR’)>=1,

required(’VECTORS’,vec),
same_size(’VECTORS’,vec),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_example(
nvectors,
nvectors(

[[vec-[[var-5],[var-6]]],
[vec-[[var-5],[var-6]]],
[vec-[[var-9],[var-3]]],
[vec-[[var-5],[var-6]]],
[vec-[[var-9],[var-3]]]],

=,
2)).

ctr_typical(
nvectors,
[size(’VECTOR’)>1,

size(’VECTORS’)>1,
in_list(’RELOP’,[=,<,>=,>,=<]),
’LIMIT’>1,
’LIMIT’<size(’VECTORS’)]).

ctr_exchangeable(
nvectors,

2636 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[items(’VECTORS’,all),
items_sync(’VECTORS’ˆvec,all),
vals([’VECTORS’ˆvec],int,=\=,all,dontcare)]).

ctr_graph(
nvectors,
[’VECTORS’],
2,
[’CLIQUE’>>collection(vectors1,vectors2)],
[lex_equal(vectors1ˆvec,vectors2ˆvec)],
[’RELOP’(’NSCC’,’LIMIT’)],
[’EQUIVALENCE’]).

ctr_eval(nvectors,[reformulation(nvectors_r)]).

ctr_pure_functional_dependency(nvectors,[in_list(’R ELOP’,[=])]).

ctr_contractible(
nvectors,
[in_list(’RELOP’,[<,=<])],
VECTORS,
any).

ctr_extensible(
nvectors,
[in_list(’RELOP’,[>=,>])],
VECTORS,
any).

nvectors_r(VECTORS,RELOP,LIMIT) :-
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
check_type(dvar,LIMIT),
length(VECTORS,N),
NV in 0..N,
eval(nvector(NV,VECTORS)),
call_term_relop_value(NV,RELOP,LIMIT).

2637

B.258 nvisible from end

♦ META-DATA:

ctr_date(nvisible_from_end,[’20111228’]).

ctr_origin(
nvisible_from_end,
Derived from %c,
[nvisible_from_start]).

ctr_synonyms(nvisible_from_end,[nvisible,nvisible_f rom_right]).

ctr_arguments(
nvisible_from_end,
[’N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
nvisible_from_end,
[required(’VARIABLES’,var),

’N’>=min(1,size(’VARIABLES’)),
’N’=<size(’VARIABLES’)]).

ctr_example(
nvisible_from_end,
nvisible_from_end(

2,
[[var-1],

[var-6],
[var-2],
[var-1],
[var-4],
[var-8],
[var-2]])).

ctr_typical(nvisible_from_end,[size(’VARIABLES’)>2]).

ctr_exchangeable(
nvisible_from_end,
[translate([’VARIABLES’ˆvar])]).

ctr_eval(nvisible_from_end,[automaton(nvisible_from _end_a)]).

ctr_pure_functional_dependency(nvisible_from_end,[]).

ctr_functional_dependency(nvisible_from_end,1,[2]).

2638 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

nvisible_from_end_a(FLAG,N,VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
MIN is min(1,L),
check_type(dvar(MIN,L),N),
get_attr1(VARIABLES,VARS),
reverse(VARS,RVARS),
(foreach(_13828,VARS),foreach(0,SIGNATURE)do true),
automaton(

RVARS,
Vi,
SIGNATURE,
[source(s),sink(s),sink(t)],
[arc(s,0,t,[Vi,1]),

arc(t,0,t,(M#<Vi->[Vi,C+1];M#>=Vi->[M,C]))],
[M,C],
[0,0],
[_13917,COUNT]),

COUNT#=N#<=>FLAG.

2639

B.259 nvisible from start

♦ META-DATA:

ctr_date(nvisible_from_start,[’20111227’]).

ctr_origin(
nvisible_from_start,
Derived from a puzzle called skyscraper,
[]).

ctr_synonyms(nvisible_from_start,[nvisible,nvisible _from_left]).

ctr_arguments(
nvisible_from_start,
[’N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
nvisible_from_start,
[required(’VARIABLES’,var),

’N’>=min(1,size(’VARIABLES’)),
’N’=<size(’VARIABLES’)]).

ctr_example(
nvisible_from_start,
nvisible_from_start(

3,
[[var-1],

[var-6],
[var-2],
[var-1],
[var-4],
[var-8],
[var-2]])).

ctr_typical(nvisible_from_start,[size(’VARIABLES’)> 2]).

ctr_exchangeable(
nvisible_from_start,
[translate([’VARIABLES’ˆvar])]).

ctr_eval(
nvisible_from_start,
[automaton(nvisible_from_start_a)]).

ctr_pure_functional_dependency(nvisible_from_start, []).

2640 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_functional_dependency(nvisible_from_start,1,[2]).

nvisible_from_start_a(FLAG,N,VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
MIN is min(1,L),
check_type(dvar(MIN,L),N),
get_attr1(VARIABLES,VARS),
(foreach(_13684,VARS),foreach(0,SIGNATURE)do true),
automaton(

VARS,
Vi,
SIGNATURE,
[source(s),sink(s),sink(t)],
[arc(s,0,t,[Vi,1]),

arc(t,0,t,(M#<Vi->[Vi,C+1];M#>=Vi->[M,C]))],
[M,C],
[0,0],
[_13773,COUNT]),

COUNT#=N#<=>FLAG.

2641

B.260 openalldifferent

♦ META-DATA:

ctr_date(open_alldifferent,[’20060824’,’20090524’]) .

ctr_origin(open_alldifferent,’\\cite{HoeveRegin06}’ ,[]).

ctr_synonyms(
open_alldifferent,
[open_alldiff,open_alldistinct,open_distinct]).

ctr_arguments(
open_alldifferent,
[’S’-svar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
open_alldifferent,
[’S’>=1,’S’=<size(’VARIABLES’),required(’VARIABLES’ ,var)]).

ctr_example(
open_alldifferent,
open_alldifferent(

{2,3,4},
[[var-9],[var-1],[var-9],[var-3]])).

ctr_typical(open_alldifferent,[size(’VARIABLES’)>2]).

ctr_exchangeable(
open_alldifferent,
[vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
open_alldifferent,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar,

variables1ˆkey in_set ’S’,
variables2ˆkey in_set ’S’],

[’MAX_NSCC’=<1],
[’ONE_SUCC’]).

ctr_contractible(open_alldifferent,[],’VARIABLES’,s uffix).

2642 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.261 openamong

♦ META-DATA:

ctr_date(open_among,[’20060824’]).

ctr_origin(
open_among,
Derived from %c and %c.,
[among,open_global_cardinality]).

ctr_arguments(
open_among,
[’S’-svar,

’NVAR’-dvar,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
open_among,
[’S’>=1,

’S’=<size(’VARIABLES’),
’NVAR’>=0,
’NVAR’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
open_among,
open_among(

{2,3,4,5},
3,
[[var-8],[var-5],[var-5],[var-4],[var-1]],
[[val-1],[val-5],[val-8]])).

ctr_typical(
open_among,
[’NVAR’>0,

’NVAR’<size(’VARIABLES’),
size(’VARIABLES’)>1,
size(’VALUES’)>1,
size(’VARIABLES’)>size(’VALUES’)]).

ctr_exchangeable(
open_among,

2643

[items(’VALUES’,all),
vals(

[’VARIABLES’ˆvar],
comp(’VALUES’ˆval),
=,
dontcare,
dontcare)]).

ctr_graph(
open_among,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar in ’VALUES’,variablesˆkey in_set ’S’],
[’NARC’=’NVAR’],
[]).

ctr_functional_dependency(open_among,2,[1,3,4]).

ctr_contractible(open_among,[’NVAR’=0],’VARIABLES’, suffix).

2644 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.262 openatleast

♦ META-DATA:

ctr_date(open_atleast,[’20060824’]).

ctr_origin(
open_atleast,
Derived from %c and %c.,
[atleast,open_global_cardinality]).

ctr_arguments(
open_atleast,
[’S’-svar,

’N’-int,
’VARIABLES’-collection(var-dvar),
’VALUE’-int]).

ctr_restrictions(
open_atleast,
[’S’>=1,

’S’=<size(’VARIABLES’),
’N’>=0,
’N’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
open_atleast,
open_atleast(

{2,3,4},
2,
[[var-4],[var-2],[var-4],[var-4]],
4)).

ctr_typical(
open_atleast,
[’N’>0,’N’<size(’VARIABLES’),size(’VARIABLES’)>1]).

ctr_exchangeable(
open_atleast,
[vals([’N’],int(>=(0)),>,dontcare,dontcare),

vals(
[’VARIABLES’ˆvar],
comp(’VALUE’),
>=,
dontcare,

2645

dontcare)]).

ctr_graph(
open_atleast,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=’VALUE’,variablesˆkey in_set ’S’],
[’NARC’>=’N’],
[]).

ctr_extensible(open_atleast,[],’VARIABLES’,suffix).

2646 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.263 openatmost

♦ META-DATA:

ctr_date(open_atmost,[’20060824’]).

ctr_origin(
open_atmost,
Derived from %c and %c.,
[atmost,open_global_cardinality]).

ctr_arguments(
open_atmost,
[’S’-svar,

’N’-int,
’VARIABLES’-collection(var-dvar),
’VALUE’-int]).

ctr_restrictions(
open_atmost,
[’S’>=1,

’S’=<size(’VARIABLES’),
’N’>=0,
required(’VARIABLES’,var)]).

ctr_example(
open_atmost,
open_atmost({2,3,4},1,[[var-2],[var-2],[var-4],[var -5]],2)).

ctr_typical(
open_atmost,
[’N’>0,’N’<size(’VARIABLES’),size(’VARIABLES’)>1]).

ctr_exchangeable(
open_atmost,
[vals([’N’],int,<,dontcare,dontcare),

vals(
[’VARIABLES’ˆvar],
comp(’VALUE’),
=<,
dontcare,
dontcare)]).

ctr_graph(
open_atmost,
[’VARIABLES’],

2647

1,
[’SELF’>>collection(variables)],
[variablesˆvar=’VALUE’,variablesˆkey in_set ’S’],
[’NARC’=<’N’],
[]).

ctr_contractible(open_atmost,[],’VARIABLES’,suffix) .

2648 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.264 openglobal cardinality

♦ META-DATA:

ctr_date(open_global_cardinality,[’20060824’]).

ctr_origin(open_global_cardinality,’\\cite{HoeveReg in06}’,[]).

ctr_synonyms(open_global_cardinality,[open_gcc,ogcc]).

ctr_arguments(
open_global_cardinality,
[’S’-svar,

’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,noccurrence-dvar)]).

ctr_restrictions(
open_global_cardinality,
[’S’>=1,

’S’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,[val,noccurrence]),
distinct(’VALUES’,val),
’VALUES’ˆnoccurrence>=0,
’VALUES’ˆnoccurrence=<size(’VARIABLES’)]).

ctr_example(
open_global_cardinality,
open_global_cardinality(

{2,3,4},
[[var-3],[var-3],[var-8],[var-6]],
[[val-3,noccurrence-1],

[val-5,noccurrence-0],
[val-6,noccurrence-1]])).

ctr_typical(
open_global_cardinality,
[size(’VARIABLES’)>1,

range(’VARIABLES’ˆvar)>1,
size(’VALUES’)>1,
range(’VALUES’ˆnoccurrence)>1,
size(’VARIABLES’)>size(’VALUES’)]).

ctr_exchangeable(
open_global_cardinality,
[items(’VALUES’,all),

2649

vals(
[’VARIABLES’ˆvar],
all(notin(’VALUES’ˆval)),
=,
dontcare,
dontcare)]).

ctr_graph(
open_global_cardinality,
[’VARIABLES’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval,variablesˆkey in_set ’S’] ,
[’NVERTEX’=’VALUES’ˆnoccurrence],
[]).

2650 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.265 openglobal cardinality low up

♦ META-DATA:

ctr_date(open_global_cardinality_low_up,[’20060824’]).

ctr_origin(
open_global_cardinality_low_up,
\cite{HoeveRegin06},
[]).

ctr_arguments(
open_global_cardinality_low_up,
[’S’-svar,

’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,omin-int,omax-int)]).

ctr_restrictions(
open_global_cardinality_low_up,
[’S’>=1,

’S’=<size(’VARIABLES’),
required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,omin,omax]),
distinct(’VALUES’,val),
’VALUES’ˆomin>=0,
’VALUES’ˆomax=<size(’VARIABLES’),
’VALUES’ˆomin=<’VALUES’ˆomax]).

ctr_example(
open_global_cardinality_low_up,
open_global_cardinality_low_up(

{2,3,4},
[[var-3],[var-3],[var-8],[var-6]],
[[val-3,omin-1,omax-3],

[val-5,omin-0,omax-1],
[val-6,omin-1,omax-2]])).

ctr_typical(
open_global_cardinality_low_up,
[size(’VARIABLES’)>1,

range(’VARIABLES’ˆvar)>1,
size(’VALUES’)>1,
’VALUES’ˆomin=<size(’VARIABLES’),
’VALUES’ˆomax>0,
’VALUES’ˆomax=<size(’VARIABLES’),

2651

size(’VARIABLES’)>size(’VALUES’)]).

ctr_exchangeable(
open_global_cardinality_low_up,
[items(’VALUES’,all),

vals(
[’VARIABLES’ˆvar],
all(notin(’VALUES’ˆval)),
=,
dontcare,
dontcare)]).

ctr_graph(
open_global_cardinality_low_up,
[’VARIABLES’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval,variablesˆkey in_set ’S’] ,
[’NVERTEX’>=’VALUES’ˆomin,’NVERTEX’=<’VALUES’ˆomax] ,
[]).

2652 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.266 openmaximum

♦ META-DATA:

ctr_date(open_maximum,[’20090507’]).

ctr_origin(open_maximum,’Derived from %c’,[maximum]).

ctr_arguments(
open_maximum,
[’MAX’-dvar,’VARIABLES’-collection(var-dvar,bool-dv ar)]).

ctr_restrictions(
open_maximum,
[size(’VARIABLES’)>0,

required(’VARIABLES’,[var,bool]),
’VARIABLES’ˆbool>=0,
’VARIABLES’ˆbool=<1]).

ctr_example(
open_maximum,
open_maximum(

5,
[[var-3,bool-1],

[var-1,bool-0],
[var-7,bool-0],
[var-5,bool-1],
[var-5,bool-1]])).

ctr_typical(
open_maximum,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
open_maximum,
[items(’VARIABLES’,all),

translate([’MAX’,’VARIABLES’ˆvar])]).

ctr_eval(open_maximum,[automaton(open_maximum_a)]).

open_maximum_a(FLAG,MAX,VARIABLES) :-
check_type(dvar,MAX),
collection(VARIABLES,[dvar,dvar(0,1)]),
length(VARIABLES,N),
N>0,
open_maximum_signature(VARIABLES,SIGNATURE,MAX),

2653

AUTOMATON=
automaton(

SIGNATURE,
_17774,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),

arc(s,1,t),
arc(s,3,s),
arc(s,4,s),
arc(s,5,s),
arc(t,1,t),
arc(t,0,t),
arc(t,3,t),
arc(t,4,t),
arc(t,5,t)],

[],
[],
[]),

automaton_bool(FLAG,[0,1,2,3,4,5],AUTOMATON).

open_maximum_signature([],[],_15873).

open_maximum_signature([[var-VAR,bool-B]|VARs],[S|S s],MAX) :-
S in 0..5,
B#=1#/\MAX#>VAR#<=>S#=0,
B#=1#/\MAX#=VAR#<=>S#=1,
B#=1#/\MAX#<VAR#<=>S#=2,
B#=0#/\MAX#>VAR#<=>S#=3,
B#=0#/\MAX#=VAR#<=>S#=4,
B#=0#/\MAX#<VAR#<=>S#=5,
open_maximum_signature(VARs,Ss,MAX).

2654 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.267 openminimum

♦ META-DATA:

ctr_date(open_minimum,[’20090506’]).

ctr_origin(open_minimum,’Derived from %c’,[minimum]).

ctr_arguments(
open_minimum,
[’MIN’-dvar,’VARIABLES’-collection(var-dvar,bool-dv ar)]).

ctr_restrictions(
open_minimum,
[size(’VARIABLES’)>0,

required(’VARIABLES’,[var,bool]),
’VARIABLES’ˆbool>=0,
’VARIABLES’ˆbool=<1]).

ctr_example(
open_minimum,
open_minimum(

3,
[[var-3,bool-1],

[var-1,bool-0],
[var-7,bool-0],
[var-5,bool-1],
[var-5,bool-1]])).

ctr_typical(
open_minimum,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
open_minimum,
[items(’VARIABLES’,all),

translate([’MIN’,’VARIABLES’ˆvar])]).

ctr_eval(open_minimum,[automaton(open_minimum_a)]).

open_minimum_a(FLAG,MIN,VARIABLES) :-
check_type(dvar,MIN),
collection(VARIABLES,[dvar,dvar(0,1)]),
length(VARIABLES,N),
N>0,
open_minimum_signature(VARIABLES,SIGNATURE,MIN),

2655

AUTOMATON=
automaton(

SIGNATURE,
_19018,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),

arc(s,1,t),
arc(s,3,s),
arc(s,4,s),
arc(s,5,s),
arc(t,1,t),
arc(t,0,t),
arc(t,3,t),
arc(t,4,t),
arc(t,5,t)],

[],
[],
[]),

automaton_bool(FLAG,[0,1,2,3,4,5],AUTOMATON).

open_minimum_signature([],[],_17117).

open_minimum_signature([[var-VAR,bool-B]|VARs],[S|S s],MIN) :-
S in 0..5,
B#=1#/\MIN#<VAR#<=>S#=0,
B#=1#/\MIN#=VAR#<=>S#=1,
B#=1#/\MIN#>VAR#<=>S#=2,
B#=0#/\MIN#<VAR#<=>S#=3,
B#=0#/\MIN#=VAR#<=>S#=4,
B#=0#/\MIN#>VAR#<=>S#=5,
open_minimum_signature(VARs,Ss,MIN).

2656 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.268 oppositesign

♦ META-DATA:

ctr_predefined(opposite_sign).

ctr_date(opposite_sign,[’20100821’]).

ctr_origin(opposite_sign,’Arithmetic.’,[]).

ctr_arguments(opposite_sign,[’VAR1’-dvar,’VAR2’-dva r]).

ctr_restrictions(opposite_sign,[]).

ctr_example(opposite_sign,opposite_sign(6,-3)).

ctr_typical(opposite_sign,[’VAR1’=\=0]).

ctr_exchangeable(opposite_sign,[args([[’VAR1’,’VAR2 ’]])]).

ctr_eval(opposite_sign,[builtin(opposite_sign_b)]).

opposite_sign_b(VAR1,VAR2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
VAR1#>=0#/\VAR2#=<0#\/VAR2#>=0#/\VAR1#=<0.

2657

B.269 or

♦ META-DATA:

ctr_date(or,[’20051226’]).

ctr_origin(or,’Logic’,[]).

ctr_synonyms(or,[rel]).

ctr_arguments(or,[’VAR’-dvar,’VARIABLES’-collection (var-dvar)]).

ctr_restrictions(
or,
[’VAR’>=0,

’VAR’=<1,
size(’VARIABLES’)>=2,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar=<1]).

ctr_example(
or,
[or(0,[[var-0],[var-0]]),

or(1,[[var-0],[var-1]]),
or(1,[[var-1],[var-0]]),
or(1,[[var-1],[var-1]]),
or(1,[[var-1],[var-0],[var-1]])]).

ctr_exchangeable(or,[items(’VARIABLES’,all)]).

ctr_eval(or,[automaton(or_a)]).

ctr_pure_functional_dependency(or,[]).

ctr_functional_dependency(or,1,[2]).

ctr_contractible(or,[’VAR’=0],’VARIABLES’,any).

ctr_extensible(or,[’VAR’=1],’VARIABLES’,any).

ctr_aggregate(or,[],[#\/,union]).

or_a(FLAG,VAR,VARIABLES) :-
check_type(dvar(0,1),VAR),
collection(VARIABLES,[dvar(0,1)]),

2658 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

length(VARIABLES,L),
L>1,
get_attr1(VARIABLES,LIST),
append([VAR],LIST,LIST_VARIABLES),
AUTOMATON=
automaton(

LIST_VARIABLES,
_21931,
LIST_VARIABLES,
[source(s),sink(i),sink(k)],
[arc(s,0,i),

arc(s,1,j),
arc(i,0,i),
arc(j,0,j),
arc(j,1,k),
arc(k,0,k),
arc(k,1,k)],

[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

2659

B.270 orchard

♦ META-DATA:

ctr_date(orchard,[’20000128’,’20030820’]).

ctr_origin(orchard,’\\cite{Jackson1821}’,[]).

ctr_arguments(
orchard,
[’NROW’-dvar,’TREES’-collection(index-int,x-dvar,y- dvar)]).

ctr_restrictions(
orchard,
[’NROW’>=0,

’TREES’ˆindex>=1,
’TREES’ˆindex=<size(’TREES’),
required(’TREES’,[index,x,y]),
distinct(’TREES’,index),
’TREES’ˆx>=0,
’TREES’ˆy>=0]).

ctr_example(
orchard,
orchard(

10,
[[index-1,x-0,y-0],

[index-2,x-4,y-0],
[index-3,x-8,y-0],
[index-4,x-2,y-4],
[index-5,x-4,y-4],
[index-6,x-6,y-4],
[index-7,x-0,y-8],
[index-8,x-4,y-8],
[index-9,x-8,y-8]])).

ctr_typical(orchard,[’NROW’>0,size(’TREES’)>3]).

ctr_exchangeable(
orchard,
[items(’TREES’,all),

attrs_sync(’TREES’,[[index],[x,y]]),
translate([’TREES’ˆx]),
translate([’TREES’ˆy])]).

ctr_graph(

2660 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

orchard,
[’TREES’],
3,
[’CLIQUE’(<)>>collection(trees1,trees2,trees3)],
[trees1ˆx * trees2ˆy-trees1ˆx * trees3ˆy+

trees1ˆy * trees3ˆx-trees1ˆy * trees2ˆx+
trees2ˆx * trees3ˆy-trees2ˆy * trees3ˆx=
0],

[’NARC’=’NROW’],
[]).

ctr_pure_functional_dependency(orchard,[]).

ctr_functional_dependency(orchard,1,[2]).

2661

B.271 orderedatleast nvector

♦ META-DATA:

ctr_date(ordered_atleast_nvector,[’20080921’]).

ctr_origin(
ordered_atleast_nvector,
Conjoin %c and %c.,
[atleast_nvector,lex_chain_lesseq]).

ctr_synonyms(
ordered_atleast_nvector,
[ordered_atleast_nvectors,

ordered_atleast_npoint,
ordered_atleast_npoints]).

ctr_types(
ordered_atleast_nvector,
[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
ordered_atleast_nvector,
[’NVEC’-dvar,’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
ordered_atleast_nvector,
[size(’VECTOR’)>=1,

’NVEC’>=0,
’NVEC’=<size(’VECTORS’),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
ordered_atleast_nvector,
ordered_atleast_nvector(

2,
[[vec-[[var-5],[var-6]]],

[vec-[[var-5],[var-6]]],
[vec-[[var-5],[var-6]]],
[vec-[[var-9],[var-3]]],
[vec-[[var-9],[var-4]]]])).

ctr_typical(
ordered_atleast_nvector,
[size(’VECTOR’)>1,

2662 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

’NVEC’>0,
’NVEC’<size(’VECTORS’),
size(’VECTORS’)>1]).

ctr_exchangeable(
ordered_atleast_nvector,
[vals([’NVEC’],int(>=(0)),>,dontcare,dontcare)]).

ctr_graph(
ordered_atleast_nvector,
[’VECTORS’],
2,
[’PATH’>>collection(vectors1,vectors2)],
[lex_lesseq(vectors1ˆvec,vectors2ˆvec)],
[’NARC’=size(’VECTORS’)-1],
[]).

ctr_graph(
ordered_atleast_nvector,
[’VECTORS’],
2,
[’PATH’>>collection(vectors1,vectors2)],
[lex_less(vectors1ˆvec,vectors2ˆvec)],
[’NCC’>=’NVEC’],
[]).

ctr_eval(
ordered_atleast_nvector,
[reformulation(ordered_atleast_nvector_r)]).

ordered_atleast_nvector_r(0,[]) :-
!.

ordered_atleast_nvector_r(NVEC,VECTORS) :-
eval(atleast_nvector(NVEC,VECTORS)),
eval(lex_chain_lesseq(VECTORS)).

2663

B.272 orderedatmost nvector

♦ META-DATA:

ctr_date(ordered_atmost_nvector,[’20080921’]).

ctr_origin(
ordered_atmost_nvector,
Conjoin %c and %c.,
[atmost_nvector,lex_chain_lesseq]).

ctr_synonyms(
ordered_atmost_nvector,
[ordered_atmost_nvectors,

ordered_atmost_npoint,
ordered_atmost_npoints]).

ctr_types(
ordered_atmost_nvector,
[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
ordered_atmost_nvector,
[’NVEC’-dvar,’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
ordered_atmost_nvector,
[size(’VECTOR’)>=1,

’NVEC’>=min(1,size(’VECTORS’)),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
ordered_atmost_nvector,
ordered_atmost_nvector(

3,
[[vec-[[var-5],[var-6]]],

[vec-[[var-5],[var-6]]],
[vec-[[var-5],[var-6]]],
[vec-[[var-9],[var-3]]],
[vec-[[var-9],[var-3]]]])).

ctr_typical(
ordered_atmost_nvector,
[size(’VECTOR’)>1,

’NVEC’>1,

2664 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

’NVEC’<size(’VECTORS’),
size(’VECTORS’)>1]).

ctr_exchangeable(
ordered_atmost_nvector,
[vals([’NVEC’],int,<,dontcare,dontcare)]).

ctr_graph(
ordered_atmost_nvector,
[’VECTORS’],
2,
[’PATH’>>collection(vectors1,vectors2)],
[lex_lesseq(vectors1ˆvec,vectors2ˆvec)],
[’NARC’=size(’VECTORS’)-1],
[]).

ctr_graph(
ordered_atmost_nvector,
[’VECTORS’],
2,
[’PATH’>>collection(vectors1,vectors2)],
[lex_less(vectors1ˆvec,vectors2ˆvec)],
[’NCC’=<’NVEC’],
[]).

ctr_eval(
ordered_atmost_nvector,
[reformulation(ordered_atmost_nvector_r)]).

ctr_contractible(ordered_atmost_nvector,[],’VECTORS ’,any).

ordered_atmost_nvector_r(0,[]) :-
!.

ordered_atmost_nvector_r(NVEC,VECTORS) :-
eval(atmost_nvector(NVEC,VECTORS)),
eval(lex_chain_lesseq(VECTORS)).

2665

B.273 orderedglobal cardinality

♦ META-DATA:

ctr_date(ordered_global_cardinality,[’20090911’]).

ctr_origin(
ordered_global_cardinality,
\cite{PetitRegin09},
[]).

ctr_usual_name(ordered_global_cardinality,ordgcc).

ctr_synonyms(ordered_global_cardinality,[ordered_gc c]).

ctr_arguments(
ordered_global_cardinality,
[’VARIABLES’-collection(var-dvar),

’VALUES’-collection(val-int,omax-int)]).

ctr_restrictions(
ordered_global_cardinality,
[required(’VARIABLES’,var),

size(’VALUES’)>0,
required(’VALUES’,[val,omax]),
increasing_seq(’VALUES’,[val]),
’VALUES’ˆomax>=0,
’VALUES’ˆomax=<size(’VARIABLES’)]).

ctr_example(
ordered_global_cardinality,
ordered_global_cardinality(

[[var-2],[var-0],[var-1],[var-0],[var-0]],
[[val-0,omax-5],[val-1,omax-3],[val-2,omax-1]])).

ctr_exchangeable(
ordered_global_cardinality,
[items(’VARIABLES’,all)]).

ctr_graph(
ordered_global_cardinality,
[’VARIABLES’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar>=’VALUES’ˆval],
[’NVERTEX’=<’VALUES’ˆomax],

2666 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[]).

ctr_eval(
ordered_global_cardinality,
[reformulation(ordered_global_cardinality_r)]).

ctr_contractible(ordered_global_cardinality,[],’VAL UES’,any).

ordered_global_cardinality_r(VARIABLES,VALUES) :-
length(VARIABLES,N),
collection(VARIABLES,[dvar]),
collection(VALUES,[int,int(0,N)]),
length(VALUES,M),
M>0,
collection_increasing_seq(VALUES,[1]),
(N=0 ->

true
; get_attr1(VALUES,VALS),

get_attr2(VALUES,OMAXS),
length(OCCS,M),
domain(OCCS,0,N),
create_collection(

VALS,
OCCS,
val,
noccurrence,
VALUES_GC),

eval(global_cardinality(VARIABLES,VALUES_GC)),
reverse(OCCS,ROCCS),
build_sliding_sums(ROCCS,0,SUMS),
reverse(OMAXS,ROMAXS),
ordered_global_cardinality1(SUMS,ROMAXS)

).

ordered_global_cardinality1([],[]).

ordered_global_cardinality1([V|R],[L|S]) :-
V#=<L,
ordered_global_cardinality1(R,S).

2667

B.274 orderednvector

♦ META-DATA:

ctr_date(ordered_nvector,[’20080919’]).

ctr_origin(ordered_nvector,’Derived from %c.’,[nvecto r]).

ctr_synonyms(
ordered_nvector,
[ordered_nvectors,ordered_npoint,ordered_npoints]).

ctr_types(ordered_nvector,[’VECTOR’-collection(var- dvar)]).

ctr_arguments(
ordered_nvector,
[’NVEC’-dvar,’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
ordered_nvector,
[size(’VECTOR’)>=1,

’NVEC’>=min(1,size(’VECTORS’)),
’NVEC’=<size(’VECTORS’),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
ordered_nvector,
ordered_nvector(

2,
[[vec-[[var-5],[var-6]]],

[vec-[[var-5],[var-6]]],
[vec-[[var-5],[var-6]]],
[vec-[[var-9],[var-3]]],
[vec-[[var-9],[var-3]]]])).

ctr_typical(
ordered_nvector,
[size(’VECTOR’)>1,

’NVEC’>1,
’NVEC’<size(’VECTORS’),
size(’VECTORS’)>1]).

ctr_graph(
ordered_nvector,
[’VECTORS’],

2668 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

2,
[’PATH’>>collection(vectors1,vectors2)],
[lex_lesseq(vectors1ˆvec,vectors2ˆvec)],
[’NARC’=size(’VECTORS’)-1],
[]).

ctr_graph(
ordered_nvector,
[’VECTORS’],
2,
[’PATH’>>collection(vectors1,vectors2)],
[lex_less(vectors1ˆvec,vectors2ˆvec)],
[’NCC’=’NVEC’],
[]).

ctr_eval(ordered_nvector,[reformulation(ordered_nve ctor_r)]).

ctr_functional_dependency(ordered_nvector,1,[2]).

ctr_contractible(
ordered_nvector,
[’NVEC’=1,size(’VECTORS’)>0],
VECTORS,
any).

ctr_contractible(
ordered_nvector,
[’NVEC’=size(’VECTORS’)],
VECTORS,
any).

ordered_nvector_r(0,[]) :-
!.

ordered_nvector_r(NVEC,VECTORS) :-
eval(nvector(NVEC,VECTORS)),
eval(lex_chain_lesseq(VECTORS)).

2669

B.275 orth link ori siz end

♦ META-DATA:

ctr_date(orth_link_ori_siz_end,[’20030820’,’2006081 2’]).

ctr_origin(
orth_link_ori_siz_end,
Used by several constraints between orthotopes,
[]).

ctr_arguments(
orth_link_ori_siz_end,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_restrictions(
orth_link_ori_siz_end,
[size(’ORTHOTOPE’)>0,

require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
’ORTHOTOPE’ˆori=<’ORTHOTOPE’ˆend]).

ctr_example(
orth_link_ori_siz_end,
orth_link_ori_siz_end(

[[ori-2,siz-2,end-4],[ori-1,siz-3,end-4]])).

ctr_typical(
orth_link_ori_siz_end,
[size(’ORTHOTOPE’)>1,’ORTHOTOPE’ˆsiz>0]).

ctr_exchangeable(
orth_link_ori_siz_end,
[items(’ORTHOTOPE’,all),

translate([’ORTHOTOPE’ˆori,’ORTHOTOPE’ˆend]),
translate([’ORTHOTOPE’ˆsiz,’ORTHOTOPE’ˆend])]).

ctr_graph(
orth_link_ori_siz_end,
[’ORTHOTOPE’],
1,
[’SELF’>>collection(orthotope)],
[orthotopeˆori+orthotopeˆsiz=orthotopeˆend],
[’NARC’=size(’ORTHOTOPE’)],
[]).

2670 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_eval(
orth_link_ori_siz_end,
[reformulation(orth_link_ori_siz_end_r)]).

ctr_pure_functional_dependency(orth_link_ori_siz_en d,[]).

ctr_functional_dependency(orth_link_ori_siz_end,1-1 ,[1-2,1-3]).

ctr_functional_dependency(orth_link_ori_siz_end,1-2 ,[1-1,1-3]).

ctr_functional_dependency(orth_link_ori_siz_end,1-3 ,[1-1,1-2]).

ctr_contractible(orth_link_ori_siz_end,[],’ORTHOTOP E’,any).

orth_link_ori_siz_end_r(ORTHOTOPE) :-
collection(ORTHOTOPE,[dvar,dvar_gteq(0),dvar]),
length(ORTHOTOPE,N),
N>0,
get_attr1(ORTHOTOPE,ORIGINS),
get_attr2(ORTHOTOPE,SIZES),
get_attr3(ORTHOTOPE,ENDS),
gen_varcst(ORIGINS,SIZES,ENDS).

2671

B.276 orth on the ground

♦ META-DATA:

ctr_date(orth_on_the_ground,[’20030820’,’20040726’, ’20060812’]).

ctr_origin(
orth_on_the_ground,
Used for defining %c.,
[place_in_pyramid]).

ctr_arguments(
orth_on_the_ground,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar) ,

’VERTICAL_DIM’-int]).

ctr_restrictions(
orth_on_the_ground,
[size(’ORTHOTOPE’)>0,

require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
’ORTHOTOPE’ˆori=<’ORTHOTOPE’ˆend,
’VERTICAL_DIM’>=1,
’VERTICAL_DIM’=<size(’ORTHOTOPE’),
orth_link_ori_siz_end(’ORTHOTOPE’)]).

ctr_example(
orth_on_the_ground,
orth_on_the_ground(

[[ori-1,siz-2,end-3],[ori-2,siz-3,end-5]],
1)).

ctr_typical(
orth_on_the_ground,
[size(’ORTHOTOPE’)>1,’ORTHOTOPE’ˆsiz>0]).

ctr_graph(
orth_on_the_ground,
[’ORTHOTOPE’],
1,
[’SELF’>>collection(orthotope)],
[orthotopeˆkey=’VERTICAL_DIM’,orthotopeˆori=1],
[’NARC’=1],
[]).

2672 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.277 orth on top of orth

♦ META-DATA:

ctr_date(
orth_on_top_of_orth,
[’20030820’,’20040726’,’20060812’]).

ctr_origin(
orth_on_top_of_orth,
Used for defining %c.,
[place_in_pyramid]).

ctr_types(
orth_on_top_of_orth,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
orth_on_top_of_orth,
[’ORTHOTOPE1’-’ORTHOTOPE’,

’ORTHOTOPE2’-’ORTHOTOPE’,
’VERTICAL_DIM’-int]).

ctr_restrictions(
orth_on_top_of_orth,
[size(’ORTHOTOPE’)>0,

require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
’ORTHOTOPE’ˆori=<’ORTHOTOPE’ˆend,
size(’ORTHOTOPE1’)=size(’ORTHOTOPE2’),
’VERTICAL_DIM’>=1,
’VERTICAL_DIM’=<size(’ORTHOTOPE1’),
orth_link_ori_siz_end(’ORTHOTOPE1’),
orth_link_ori_siz_end(’ORTHOTOPE2’)]).

ctr_example(
orth_on_top_of_orth,
orth_on_top_of_orth(

[[ori-5,siz-2,end-7],[ori-3,siz-3,end-6]],
[[ori-3,siz-5,end-8],[ori-1,siz-2,end-3]],
2)).

ctr_typical(
orth_on_top_of_orth,
[size(’ORTHOTOPE’)>1,’ORTHOTOPE’ˆsiz>0]).

2673

ctr_graph(
orth_on_top_of_orth,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’PRODUCT’(=)>>collection(orthotope1,orthotope2)],
[orthotope1ˆkey=\=’VERTICAL_DIM’,

orthotope2ˆori=<orthotope1ˆori,
orthotope1ˆend=<orthotope2ˆend],

[’NARC’=size(’ORTHOTOPE1’)-1],
[]).

ctr_graph(
orth_on_top_of_orth,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’PRODUCT’(=)>>collection(orthotope1,orthotope2)],
[orthotope1ˆkey=’VERTICAL_DIM’,

orthotope1ˆori=orthotope2ˆend],
[’NARC’=1],
[]).

2674 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.278 orths are connected

♦ META-DATA:

ctr_date(
orths_are_connected,
[’20000128’,’20030820’,’20060812’]).

ctr_origin(orths_are_connected,’N.˜Beldiceanu’,[]).

ctr_types(
orths_are_connected,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
orths_are_connected,
[’ORTHOTOPES’-collection(orth-’ORTHOTOPE’)]).

ctr_restrictions(
orths_are_connected,
[size(’ORTHOTOPE’)>0,

require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>0,
’ORTHOTOPE’ˆori=<’ORTHOTOPE’ˆend,
required(’ORTHOTOPES’,orth),
same_size(’ORTHOTOPES’,orth)]).

ctr_example(
orths_are_connected,
orths_are_connected(

[[orth-[[ori-2,siz-4,end-6],[ori-2,siz-2,end-4]]],
[orth-[[ori-1,siz-2,end-3],[ori-4,siz-3,end-7]]],
[orth-[[ori-7,siz-4,end-11],[ori-1,siz-2,end-3]]],
[orth-[[ori-6,siz-2,end-8],[ori-3,siz-2,end-5]]]])) .

ctr_typical(
orths_are_connected,
[size(’ORTHOTOPE’)>1,size(’ORTHOTOPES’)>1]).

ctr_exchangeable(
orths_are_connected,
[items(’ORTHOTOPES’,all),

items_sync(’ORTHOTOPES’ˆorth,all),
translate([’ORTHOTOPES’ˆorthˆori,’ORTHOTOPES’ˆorthˆ end])]).

ctr_graph(

2675

orths_are_connected,
[’ORTHOTOPES’],
1,
[’SELF’>>collection(orthotopes)],
[orth_link_ori_siz_end(orthotopesˆorth)],
[’NARC’=size(’ORTHOTOPES’)],
[]).

ctr_graph(
orths_are_connected,
[’ORTHOTOPES’],
2,
[’CLIQUE’(=\=)>>collection(orthotopes1,orthotopes2)],
[two_orth_are_in_contact(

orthotopes1ˆorth,
orthotopes2ˆorth)],

[’NVERTEX’=size(’ORTHOTOPES’),’NCC’=1],
[]).

2676 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.279 overlapsboxes

♦ META-DATA:

ctr_date(overlap_sboxes,[’20070622’,’20090725’]).

ctr_origin(
overlap_sboxes,
Geometry, derived from \cite{RandellCuiCohn92},
[]).

ctr_synonyms(overlap_sboxes,[overlap]).

ctr_types(
overlap_sboxes,
[’VARIABLES’-collection(v-dvar),

’INTEGERS’-collection(v-int),
’POSITIVES’-collection(v-int)]).

ctr_arguments(
overlap_sboxes,
[’K’-int,

’DIMS’-sint,
’OBJECTS’-collection(oid-int,sid-int,x-’VARIABLES’) ,
’SBOXES’-collection(sid-int,t-’INTEGERS’,l-’POSITIV ES’)]).

ctr_restrictions(
overlap_sboxes,
[size(’VARIABLES’)>=1,

size(’INTEGERS’)>=1,
size(’POSITIVES’)>=1,
required(’VARIABLES’,v),
size(’VARIABLES’)=’K’,
required(’INTEGERS’,v),
size(’INTEGERS’)=’K’,
required(’POSITIVES’,v),
size(’POSITIVES’)=’K’,
’POSITIVES’ˆv>0,
’K’>0,
’DIMS’>=0,
’DIMS’<’K’,
increasing_seq(’OBJECTS’,[oid]),
required(’OBJECTS’,[oid,sid,x]),
’OBJECTS’ˆoid>=1,
’OBJECTS’ˆoid=<size(’OBJECTS’),
’OBJECTS’ˆsid>=1,

2677

’OBJECTS’ˆsid=<size(’SBOXES’),
size(’SBOXES’)>=1,
required(’SBOXES’,[sid,t,l]),
’SBOXES’ˆsid>=1,
’SBOXES’ˆsid=<size(’SBOXES’),
do_not_overlap(’SBOXES’)]).

ctr_example(
overlap_sboxes,
overlap_sboxes(

2,
{0,1},
[[oid-1,sid-1,x-[[v-1],[v-1]]],

[oid-2,sid-2,x-[[v-3],[v-2]]],
[oid-3,sid-3,x-[[v-2],[v-4]]]],

[[sid-1,t-[[v-0],[v-0]],l-[[v-4],[v-5]]],
[sid-2,t-[[v-0],[v-0]],l-[[v-3],[v-3]]],
[sid-3,t-[[v-0],[v-0]],l-[[v-2],[v-1]]]])).

ctr_typical(overlap_sboxes,[size(’OBJECTS’)>1]).

ctr_exchangeable(
overlap_sboxes,
[items(’OBJECTS’,all),

items(’SBOXES’,all),
items_sync(’OBJECTS’ˆx,’SBOXES’ˆt,’SBOXES’ˆl,all),
vals([’SBOXES’ˆlˆv],int,<,dontcare,dontcare)]).

ctr_eval(overlap_sboxes,[logic(overlap_sboxes_g)]).

ctr_logic(
overlap_sboxes,
[DIMENSIONS,OIDS],
[(origin(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)),

(end(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)+S1ˆl(D)),
(overlap_sboxes(Dims,O1,S1,O2,S2)--->

forall(
D,
Dims,
end(O1,S1,D)#>origin(O2,S2,D)#/\
end(O2,S2,D)#>origin(O1,S1,D))),

(overlap_objects(Dims,O1,O2)--->
forall(

S1,
sboxes([O1ˆsid]),
exists(

2678 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

S2,
sboxes([O2ˆsid]),
overlap_sboxes(Dims,O1,S1,O2,S2)))),

(all_overlap(Dims,OIDS)--->
forall(

O1,
objects(OIDS),
forall(

O2,
objects(OIDS),
O1ˆoid#<O2ˆoid#=>overlap_objects(Dims,O1,O2)))),

all_overlap(DIMENSIONS,OIDS)]).

ctr_contractible(overlap_sboxes,[],’OBJECTS’,suffix).

overlap_sboxes_g(K,_28765,[],_28767) :-
!,
check_type(int_gteq(1),K).

overlap_sboxes_g(K,_DIMS,OBJECTS,SBOXES) :-
length(OBJECTS,O),
length(SBOXES,S),
O>0,
S>0,
check_type(int_gteq(1),K),
collection(OBJECTS,[int(1,O),dvar(1,S),col(K,[dvar])]),
collection(

SBOXES,
[int(1,S),col(K,[int]),col(K,[int_gteq(1)])]),

get_attr1(OBJECTS,OIDS),
get_attr2(OBJECTS,SIDS),
get_col_attr3(OBJECTS,1,XS),
get_attr1(SBOXES,SIDES),
get_col_attr2(SBOXES,1,TS),
get_col_attr3(SBOXES,1,TL),
collection_increasing_seq(OBJECTS,[1]),
geost1(OIDS,SIDS,XS,Objects),
geost2(SIDES,TS,TL,Sboxes),
geost_dims(1,K,DIMENSIONS),
ctr_logic(overlap_sboxes,[DIMENSIONS,OIDS],Rules),
geost(Objects,Sboxes,[overlap(true)],Rules).

2679

B.280 path

♦ META-DATA:

ctr_date(path,[’20090101’]).

ctr_origin(path,’Derived from %c.’,[binary_tree]).

ctr_arguments(
path,
[’NPATH’-dvar,’NODES’-collection(index-int,succ-dva r)]).

ctr_restrictions(
path,
[’NPATH’>=1,

’NPATH’=<size(’NODES’),
required(’NODES’,[index,succ]),
size(’NODES’)>0,
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
path,
path(

3,
[[index-1,succ-1],

[index-2,succ-3],
[index-3,succ-5],
[index-4,succ-7],
[index-5,succ-1],
[index-6,succ-6],
[index-7,succ-7],
[index-8,succ-6]])).

ctr_typical(path,[’NPATH’<size(’NODES’),size(’NODES ’)>1]).

ctr_exchangeable(path,[items(’NODES’,all)]).

ctr_graph(
path,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],

2680 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[nodes1ˆsucc=nodes2ˆindex],
[’MAX_NSCC’=<1,’NCC’=’NPATH’,’MAX_ID’=<1],
[’ONE_SUCC’]).

ctr_eval(path,[reformulation(path_r)]).

ctr_functional_dependency(path,1,[2]).

path_r(NPATH,NODES) :-
eval(tree(NPATH,NODES)),
get_attr1(NODES,INDEXES),
get_attr2(NODES,SUCCS),
k_ary_tree(INDEXES,INDEXES,SUCCS,1).

2681

B.281 path from to

♦ META-DATA:

ctr_date(path_from_to,[’20030820’,’20040530’,’20060 812’]).

ctr_origin(
path_from_to,
\cite{AlthausBockmayrElfKasperJungerMehlhorn02},
[]).

ctr_usual_name(path_from_to,path).

ctr_arguments(
path_from_to,
[’FROM’-int,

’TO’-int,
’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
path_from_to,
[’FROM’>=1,

’FROM’=<size(’NODES’),
’TO’>=1,
’TO’=<size(’NODES’),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
path_from_to,
path_from_to(

4,
3,
[[index-1,succ-{}],

[index-2,succ-{}],
[index-3,succ-{5}],
[index-4,succ-{5}],
[index-5,succ-{2,3}]])).

ctr_typical(path_from_to,[’FROM’=\=’TO’,size(’NODES ’)>2]).

ctr_exchangeable(path_from_to,[items(’NODES’,all)]) .

2682 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_graph(
path_from_to,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes2ˆindex in_set nodes1ˆsucc],
[’PATH_FROM_TO’(index,’FROM’,’TO’)=1],
[]).

2683

B.282 pattern

♦ META-DATA:

ctr_date(pattern,[’20031008’,’20090717’]).

ctr_origin(pattern,’\\cite{BourdaisGalinierPesant03 }’,[]).

ctr_types(pattern,[’PATTERN’-collection(var-int)]).

ctr_arguments(
pattern,
[’VARIABLES’-collection(var-dvar),

’PATTERNS’-collection(pat-’PATTERN’)]).

ctr_restrictions(
pattern,
[required(’PATTERN’,var),

’PATTERN’ˆvar>=0,
change(0,’PATTERN’,=),
size(’PATTERN’)>1,
required(’VARIABLES’,var),
required(’PATTERNS’,pat),
size(’PATTERNS’)>0,
same_size(’PATTERNS’,pat)]).

ctr_example(
pattern,
pattern(

[[var-1],
[var-1],
[var-2],
[var-2],
[var-2],
[var-1],
[var-3],
[var-3]],

[[pat-[[var-1],[var-2],[var-1]]],
[pat-[[var-1],[var-2],[var-3]]],
[pat-[[var-2],[var-1],[var-3]]]])).

ctr_typical(
pattern,
[size(’VARIABLES’)>2,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(

2684 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

pattern,
[items(’PATTERNS’,all),

items_sync(’VARIABLES’,’PATTERNS’ˆpat,reverse),
vals(

[’VARIABLES’ˆvar,’PATTERNS’ˆpatˆvar],
int,
=\=,
all,
dontcare)]).

ctr_eval(pattern,[automaton(pattern_a)]).

ctr_contractible(pattern,[],’VARIABLES’,prefix).

ctr_contractible(pattern,[],’VARIABLES’,suffix).

pattern_a(FLAG,VARIABLES,PATTERNS) :-
collection(VARIABLES,[dvar]),
collection(PATTERNS,[col([int_gteq(0)])]),
same_size(PATTERNS),
length(PATTERNS,NPATTERNS),
NPATTERNS>0,
get_attr1(VARIABLES,VARS),
get_col_attr1(PATTERNS,1,PATTS),
PATTS=[PATT|_22270],
length(PATT,K),
K>1,
pattern_change(PATTERNS),
remove_duplicates(PATTS,PATTS_NO_DUPLICATES),
pattern_build_tree(

PATTS_NO_DUPLICATES,
ID_PATTS,
node(-1-0,[]),
1,
_25109,
TREE),

flattern(PATTS_NO_DUPLICATES,FLAT_PATTS),
remove_duplicates(FLAT_PATTS,VALUES),
pattern_next(

ID_PATTS,
ID_PATTS,
VALUES,
ADDITIONAL_TRANSITIONS),

pattern_gen_states(TREE,STATES,TRANSITIONS),
append(

TRANSITIONS,

2685

ADDITIONAL_TRANSITIONS,
ALL_TRANSITIONS),

AUTOMATON=
automaton(

VARS,
_27181,
VARS,
STATES,
ALL_TRANSITIONS,
[],
[],
[]),

automaton_bool(FLAG,VALUES,AUTOMATON).

pattern_gen_states(
node(-1-0,LIST_SUNS),
[source(NAME),sink(NAME)|R],
TRANSITIONS) :-

!,
number_codes(-1,CODE),
atom_codes(ATOM,CODE),
atom_concat(s,ATOM,NAME),
pattern_gen_states1(LIST_SUNS,-1,R,TRANSITIONS).

pattern_gen_states(
node(ID-_VAL,LIST_SUNS),
[sink(NAME)|R],
TRANSITIONS) :-

ID>=0,
number_codes(ID,IDCODE),
atom_codes(IDATOM,IDCODE),
atom_concat(s,IDATOM,NAME),
pattern_gen_states1(LIST_SUNS,ID,R,TRANSITIONS).

pattern_gen_states1([],_22194,[],[]).

pattern_gen_states1([N|R],ID1,ST,TRANSITIONS) :-
N=node(ID2-VAL2,_22220),
pattern_gen_states(N,S,TRANSITIONS1),
pattern_gen_states1(R,ID1,T,TRANSITIONS2),
append(S,T,ST),
number_codes(ID1,IDCODE1),
atom_codes(IDATOM1,IDCODE1),
atom_concat(s,IDATOM1,IDNAME1),
number_codes(ID2,IDCODE2),
atom_codes(IDATOM2,IDCODE2),

2686 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

atom_concat(s,IDATOM2,IDNAME2),
append(

[arc(IDNAME1,VAL2,IDNAME2),
arc(IDNAME2,VAL2,IDNAME2)],

TRANSITIONS1,
T1),

append(T1,TRANSITIONS2,TRANSITIONS).

pattern_change([]).

pattern_change([[_22202-P]|R]) :-
eval(change(0,P,=)),
pattern_change(R).

pattern_next([],_22194,_22195,[]).

pattern_next([PID-P|R],ID_PATTS,VALUES,TRANSITIONS) :-
P=[_22223|RP],
pattern_next1(VALUES,PID,RP,ID_PATTS,TRANSITIONS1),
pattern_next(R,ID_PATTS,VALUES,TRANSITIONS2),
append(TRANSITIONS1,TRANSITIONS2,TRANSITIONS).

pattern_next1([],_22194,_22195,_22196,[]).

pattern_next1(
[V|R],
PID,
RP,
ID_PATTS,
[arc(PIDNAME,V,NEWPIDNAME)|S]) :-

append(RP,[V],NEWP),
pattern_search(ID_PATTS,NEWP,NEWPID),
number_codes(PID,PIDCODE),
atom_codes(PIDATOM,PIDCODE),
atom_concat(s,PIDATOM,PIDNAME),
number_codes(NEWPID,NEWPIDCODE),
atom_codes(NEWPIDATOM,NEWPIDCODE),
atom_concat(s,NEWPIDATOM,NEWPIDNAME),
!,
pattern_next1(R,PID,RP,ID_PATTS,S).

pattern_next1([_22201|R],PID,RP,ID_PATTS,S) :-
pattern_next1(R,PID,RP,ID_PATTS,S).

pattern_search([ID-PAT|_22200],PAT,ID) :-
!.

2687

pattern_search([_22199|R],PAT,ID) :-
pattern_search(R,PAT,ID).

pattern_build_tree([],[],TREE,NODE_ID,NODE_ID,TREE) .

pattern_build_tree(
[PATTERN|R],
[PATTERN_ID-PATTERN|S],
OLD_TREE,
OLD_NODE_ID,
NEW_NODE_ID,
NEW_TREE) :-

pattern_insert(
PATTERN,
OLD_TREE,
OLD_NODE_ID,
CUR_NODE_ID,
CUR_TREE,
PATTERN_ID),

pattern_build_tree(
R,
S,
CUR_TREE,
CUR_NODE_ID,
NEW_NODE_ID,
NEW_TREE).

pattern_insert([],TREE,NODE_ID,NODE_ID,TREE,_22198) .

pattern_insert(
[I|R],
OLD_TREE,
OLD_NODE_ID,
NEW_NODE_ID,
node(LABEL,NEW_TREE),
PATTERN_ID) :-

OLD_TREE=node(LABEL,LIST_NODES),
pattern_occurs(I,LIST_NODES,[],BEFORE,SUBTREE,AFTER),
!,
pattern_insert(

R,
SUBTREE,
OLD_NODE_ID,
NEW_NODE_ID,
NEW_SUBTREE,

2688 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

PATTERN_ID),
append(BEFORE,[NEW_SUBTREE],TEMPO_TREE),
append(TEMPO_TREE,AFTER,NEW_TREE).

pattern_insert(
[I|R],
node(LABEL,LIST_NODES),
OLD_NODE_ID,
NEW_NODE_ID,
node(LABEL,[BRANCH|LIST_NODES]),
PATTERN_ID) :-

pattern_create_branch(
[I|R],
OLD_NODE_ID,
NEW_NODE_ID,
BRANCH,
PATTERN_ID).

pattern_create_branch(
[I],
OLD_NODE_ID,
NEW_NODE_ID,
node(OLD_NODE_ID-I,[]),
OLD_NODE_ID) :-

!,
NEW_NODE_ID is OLD_NODE_ID+1.

pattern_create_branch(
[I,J|R],
OLD_NODE_ID,
NEW_NODE_ID,
node(OLD_NODE_ID-I,[S]),
PATTERN_ID) :-

CUR_NODE_ID is OLD_NODE_ID+1,
pattern_create_branch(

[J|R],
CUR_NODE_ID,
NEW_NODE_ID,
S,
PATTERN_ID).

pattern_occurs(
I,
[node(Id-I,L)|AFTER],
BEFORE,
BEFORE,

2689

node(Id-I,L),
AFTER) :-

!.

pattern_occurs(
I,
[NODE|AFTER_CUR],
BEFORE_CUR,
BEFORE,
NODE_FOUND,
AFTER) :-

pattern_occurs(
I,
AFTER_CUR,
[NODE|BEFORE_CUR],
BEFORE,
NODE_FOUND,
AFTER).

2690 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.283 peak

♦ META-DATA:

ctr_date(peak,[’20040530’]).

ctr_origin(peak,’Derived from %c.’,[inflexion]).

ctr_arguments(peak,[’N’-dvar,’VARIABLES’-collection (var-dvar)]).

ctr_restrictions(
peak,
[’N’>=0,

2* ’N’=<max(size(’VARIABLES’)-1,0),
required(’VARIABLES’,var)]).

ctr_example(
peak,
peak(

2,
[[var-1],

[var-1],
[var-4],
[var-8],
[var-6],
[var-2],
[var-7],
[var-1]])).

ctr_typical(
peak,
[size(’VARIABLES’)>2,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
peak,
[items(’VARIABLES’,reverse),translate([’VARIABLES’ˆ var])]).

ctr_eval(peak,[automaton(peak_a)]).

ctr_contractible(peak,[’N’=0],’VARIABLES’,any).

peak_a(FLAG,N,VARIABLES) :-
check_type(dvar_gteq(0),N),
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
MAX is max(L-1,0),

2691

2* N#=<MAX,
peak_signature(VARIABLES,SIGNATURE),
automaton(

SIGNATURE,
_19173,
SIGNATURE,
[source(s),sink(u),sink(s)],
[arc(s,0,s),

arc(s,1,s),
arc(s,2,u),
arc(u,0,s,[C+1]),
arc(u,1,u),
arc(u,2,u)],

[C],
[0],
[COUNT]),

COUNT#=N#<=>FLAG.

peak_signature([],[]).

peak_signature([_17407],[]) :-
!.

peak_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss]) :-
S in 0..2,
VAR1#>VAR2#<=>S#=0,
VAR1#=VAR2#<=>S#=1,
VAR1#<VAR2#<=>S#=2,
peak_signature([[var-VAR2]|VARs],Ss).

2692 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.284 period

♦ META-DATA:

ctr_predefined(period).

ctr_date(period,[’20000128’,’20030820’,’20040530’,’ 20060812’]).

ctr_origin(period,’N.˜Beldiceanu’,[]).

ctr_arguments(
period,
[’PERIOD’-dvar,

’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
period,
[’PERIOD’>=1,

’PERIOD’=<size(’VARIABLES’),
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
period,
period(

3,
[[var-1],

[var-1],
[var-4],
[var-1],
[var-1],
[var-4],
[var-1],
[var-1]],

=)).

ctr_typical(
period,
[’PERIOD’>1,

’PERIOD’<size(’VARIABLES’),
size(’VARIABLES’)>2,
range(’VARIABLES’ˆvar)>1,
in_list(’CTR’,[=])]).

ctr_exchangeable(

2693

period,
[items(’VARIABLES’,reverse),

items(’VARIABLES’,shift),
vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_eval(period,[reformulation(period_r)]).

ctr_pure_functional_dependency(period,[]).

ctr_functional_dependency(period,1,[2,3]).

ctr_contractible(
period,
[in_list(’CTR’,[=]),’PERIOD’=1],
VARIABLES,
any).

ctr_contractible(period,[],’VARIABLES’,prefix).

ctr_contractible(period,[],’VARIABLES’,suffix).

period_r(PERIOD,VARIABLES,CTR) :-
check_type(dvar,PERIOD),
collection(VARIABLES,[dvar]),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
length(VARIABLES,N),
PERIOD#>=1,
PERIOD#=<N,
get_attr1(VARIABLES,VARS),
period1(N,VARS,LISTS),
period4(LISTS,1,CTR,BOOLS),
reverse(BOOLS,RBOOLS),
period7(RBOOLS,1,PERIOD,1,EXPR),
call(EXPR).

2694 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.285 period except0

♦ META-DATA:

ctr_predefined(period_except_0).

ctr_date(period_except_0,[’20030820’,’20040530’,’20 060813’]).

ctr_origin(period_except_0,’Derived from %c.’,[period]).

ctr_arguments(
period_except_0,
[’PERIOD’-dvar,

’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
period_except_0,
[’PERIOD’>=1,

’PERIOD’=<size(’VARIABLES’),
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
period_except_0,
period_except_0(

3,
[[var-1],

[var-1],
[var-4],
[var-1],
[var-1],
[var-0],
[var-1],
[var-1]],

=)).

ctr_typical(
period_except_0,
[’PERIOD’>1,

’PERIOD’<size(’VARIABLES’),
size(’VARIABLES’)>2,
range(’VARIABLES’ˆvar)>1,
atleast(1,’VARIABLES’,0),
in_list(’CTR’,[=])]).

2695

ctr_exchangeable(
period_except_0,
[items(’VARIABLES’,reverse),

items(’VARIABLES’,shift),
vals([’VARIABLES’ˆvar],int(=\=(0)),=\=,all,dontcare)]).

ctr_eval(period_except_0,[reformulation(period_exce pt_0_r)]).

ctr_pure_functional_dependency(period_except_0,[]).

ctr_functional_dependency(period_except_0,1,[2,3]).

ctr_contractible(
period_except_0,
[in_list(’CTR’,[=]),’PERIOD’=1],
VARIABLES,
any).

ctr_contractible(period_except_0,[],’VARIABLES’,pre fix).

ctr_contractible(period_except_0,[],’VARIABLES’,suf fix).

period_except_0_r(PERIOD,VARIABLES,CTR) :-
check_type(dvar,PERIOD),
collection(VARIABLES,[dvar]),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
length(VARIABLES,N),
PERIOD#>=1,
PERIOD#=<N,
get_attr1(VARIABLES,VARS),
period1(N,VARS,LISTS),
period4(LISTS,0,CTR,BOOLS),
reverse(BOOLS,RBOOLS),
period7(RBOOLS,1,PERIOD,1,EXPR),
call(EXPR).

2696 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.286 period vectors

♦ META-DATA:

ctr_predefined(period_vectors).

ctr_date(period_vectors,[’20110614’]).

ctr_origin(period_vectors,’Derived from %c’,[period]) .

ctr_types(
period_vectors,
[’VECTOR’-collection(var-dvar),’CTR’-atom]).

ctr_arguments(
period_vectors,
[’PERIOD’-dvar,

’VECTORS’-collection(vec-’VECTOR’),
’CTRS’-collection(ctr-’CTR’)]).

ctr_restrictions(
period_vectors,
[size(’VECTOR’)>=1,

required(’VECTOR’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<]),
’PERIOD’>=1,
’PERIOD’=<size(’VECTORS’),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec),
required(’CTRS’,ctr),
size(’CTRS’)=size(’VECTOR’)]).

ctr_example(
period_vectors,
period_vectors(

3,
[[vec-[[var-1],[var-0]]],

[vec-[[var-1],[var-5]]],
[vec-[[var-4],[var-4]]],
[vec-[[var-1],[var-0]]],
[vec-[[var-1],[var-5]]],
[vec-[[var-4],[var-4]]],
[vec-[[var-1],[var-0]]],
[vec-[[var-1],[var-5]]]],

[[ctr- =],[ctr- =]])).

2697

ctr_typical(
period_vectors,
[in_list(’CTR’,[=]),

size(’VECTOR’)>1,
’PERIOD’>1,
’PERIOD’<size(’VECTORS’),
size(’VECTORS’)>2]).

ctr_exchangeable(period_vectors,[items(’VECTORS’,re verse)]).

ctr_eval(period_vectors,[reformulation(period_vecto rs_r)]).

ctr_pure_functional_dependency(period_vectors,[]).

ctr_functional_dependency(period_vectors,1,[2,3]).

ctr_contractible(period_vectors,[],’VECTORS’,prefix).

ctr_contractible(period_vectors,[],’VECTORS’,suffix).

period_vectors_r(PERIOD,VECTORS,CTRS) :-
check_type(dvar,PERIOD),
collection(VECTORS,[col([dvar])]),
collection(CTRS,[atom([=,=\=,<,>=,>,=<])]),
length(VECTORS,N),
PERIOD#>=1,
PERIOD#=<N,
get_attr11(VECTORS,VECTS),
get_attr1(CTRS,LCTRS),
period1(N,VECTS,LISTS),
period4(LISTS,2,LCTRS,BOOLS),
reverse(BOOLS,RBOOLS),
period7(RBOOLS,1,PERIOD,1,EXPR),
call(EXPR).

2698 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.287 permutation

♦ META-DATA:

ctr_date(permutation,[’20111210’]).

ctr_origin(
permutation,
Derived from %c.,
[alldifferent_consecutive_values]).

ctr_arguments(permutation,[’VARIABLES’-collection(v ar-dvar)]).

ctr_restrictions(
permutation,
[required(’VARIABLES’,var),

minval(’VARIABLES’ˆvar)=1,
maxval(’VARIABLES’ˆvar)=size(’VARIABLES’)]).

ctr_example(
permutation,
permutation([[var-3],[var-2],[var-1],[var-4]])).

ctr_typical(permutation,[size(’VARIABLES’)>2]).

ctr_exchangeable(
permutation,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],int,=\=,all,in)]).

ctr_graph(
permutation,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’MAX_NSCC’=<1],
[’ONE_SUCC’]).

ctr_eval(
permutation,
[checker(permutation_c),reformulation(permutation_r)]).

permutation_c([]) :-
!.

2699

permutation_c(VARIABLES) :-
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
min_member(MIN,VARS),
MIN=1,
length(VARS,N),
max_member(MAX,VARS),
MAX=N,
sort(VARS,SVARS),
length(SVARS,N).

permutation_r([]) :-
!.

permutation_r(VARIABLES) :-
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
all_different(VARS),
minimum(1,VARS),
length(VARIABLES,N),
maximum(N,VARS).

2700 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.288 placein pyramid

♦ META-DATA:

ctr_date(
place_in_pyramid,
[’20000128’,’20030820’,’20041230’,’20060813’]).

ctr_origin(place_in_pyramid,’N.˜Beldiceanu’,[]).

ctr_types(
place_in_pyramid,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
place_in_pyramid,
[’ORTHOTOPES’-collection(orth-’ORTHOTOPE’),

’VERTICAL_DIM’-int]).

ctr_restrictions(
place_in_pyramid,
[size(’ORTHOTOPE’)>0,

require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
’ORTHOTOPE’ˆori=<’ORTHOTOPE’ˆend,
required(’ORTHOTOPES’,orth),
same_size(’ORTHOTOPES’,orth),
’VERTICAL_DIM’>=1,
diffn(’ORTHOTOPES’)]).

ctr_example(
place_in_pyramid,
place_in_pyramid(

[[orth-[[ori-1,siz-3,end-4],[ori-1,siz-2,end-3]]],
[orth-[[ori-1,siz-2,end-3],[ori-3,siz-3,end-6]]],
[orth-[[ori-5,siz-6,end-11],[ori-1,siz-2,end-3]]],
[orth-[[ori-5,siz-2,end-7],[ori-3,siz-2,end-5]]],
[orth-[[ori-8,siz-3,end-11],[ori-3,siz-2,end-5]]],
[orth-[[ori-8,siz-2,end-10],[ori-5,siz-2,end-7]]]],

2)).

ctr_typical(
place_in_pyramid,
[size(’ORTHOTOPE’)>1,

’ORTHOTOPE’ˆsiz>0,
size(’ORTHOTOPES’)>1]).

2701

ctr_exchangeable(place_in_pyramid,[items(’ORTHOTOPE S’,all)]).

ctr_graph(
place_in_pyramid,
[’ORTHOTOPES’],
2,
[’CLIQUE’>>collection(orthotopes1,orthotopes2)],
[orthotopes1ˆkey=orthotopes2ˆkey#/\

orth_on_the_ground(orthotopes1ˆorth,’VERTICAL_DIM’) #\/
orthotopes1ˆkey=\=orthotopes2ˆkey#/\
orth_on_top_of_orth(

orthotopes1ˆorth,
orthotopes2ˆorth,
VERTICAL_DIM)],

[’NARC’=size(’ORTHOTOPES’)],
[]).

2702 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.289 polyomino

♦ META-DATA:

ctr_date(polyomino,[’20000128’,’20030820’,’20060813 ’]).

ctr_origin(polyomino,’Inspired by \\cite{Golomb65}.’, []).

ctr_arguments(
polyomino,
[CELLS-

collection(
index-int,
right-dvar,
left-dvar,
up-dvar,
down-dvar)]).

ctr_restrictions(
polyomino,
[’CELLS’ˆindex>=1,

’CELLS’ˆindex=<size(’CELLS’),
size(’CELLS’)>=1,
required(’CELLS’,[index,right,left,up,down]),
distinct(’CELLS’,index),
’CELLS’ˆright>=0,
’CELLS’ˆright=<size(’CELLS’),
’CELLS’ˆleft>=0,
’CELLS’ˆleft=<size(’CELLS’),
’CELLS’ˆup>=0,
’CELLS’ˆup=<size(’CELLS’),
’CELLS’ˆdown>=0,
’CELLS’ˆdown=<size(’CELLS’)]).

ctr_example(
polyomino,
polyomino(

[[index-1,right-0,left-0,up-2,down-0],
[index-2,right-3,left-0,up-0,down-1],
[index-3,right-0,left-2,up-4,down-0],
[index-4,right-5,left-0,up-0,down-3],
[index-5,right-0,left-4,up-0,down-0]])).

ctr_exchangeable(
polyomino,
[items(’CELLS’,all),

2703

attrs_sync(’CELLS’,[[index],[right,left],[up],[down]]),
attrs_sync(’CELLS’,[[index],[right],[left],[up,down]]),
attrs_sync(’CELLS’,[[index],[up,left,down,right]])]).

ctr_graph(
polyomino,
[’CELLS’],
2,
[’CLIQUE’(=\=)>>collection(cells1,cells2)],
[cells1ˆright=cells2ˆindex#/\

cells2ˆleft=cells1ˆindex#\/
cells1ˆleft=cells2ˆindex#/\
cells2ˆright=cells1ˆindex#\/
cells1ˆup=cells2ˆindex#/\cells2ˆdown=cells1ˆindex#\ /
cells1ˆdown=cells2ˆindex#/\cells2ˆup=cells1ˆindex],

[’NVERTEX’=size(’CELLS’),’NCC’=1],
[]).

2704 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.290 power

♦ META-DATA:

ctr_predefined(power).

ctr_date(power,[’20070930’]).

ctr_origin(power,’\\cite{DenmatGotliebDucasse07}’,[]).

ctr_synonyms(power,[xexpyeqz]).

ctr_arguments(power,[’X’-dvar,’N’-dvar,’Y’-dvar]).

ctr_restrictions(power,[’X’>=0,’N’>=0,’Y’>=0]).

ctr_example(power,power(2,3,8)).

ctr_typical(power,[’X’>1,’N’>1,’Y’>1]).

ctr_eval(power,[reformulation(power_r)]).

ctr_pure_functional_dependency(power,[]).

ctr_functional_dependency(power,3,[1,2]).

power_r(_14329,0,Y) :-
!,
Y=1.

power_r(X,N,Y) :-
check_type(dvar_gteq(0),X),
check_type(dvar_gteq(0),N),
check_type(dvar_gteq(0),Y),
fd_min(N,Min),
fd_max(N,Max),
Min1 is max(1,Min),
power1(0,Min1,Max,1,X,Y,N,Disj),
call(Disj).

power1(I,_14330,Max,_14332,_14333,_14334,_14335,0) : -
I>Max,
!.

power1(I,Min,Max,P,X,Y,N,R) :-
I<Min,

2705

!,
I1 is I+1,
power1(I1,Min,Max,P * X,X,Y,N,R).

power1(I,Min,Max,P,X,Y,N,P#=Y#/\N#=I#\/R) :-
I>=Min,
I=<Max,
I1 is I+1,
power1(I1,Min,Max,P * X,X,Y,N,R).

2706 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.291 precedence

♦ META-DATA:

ctr_date(precedence,[’20111015’]).

ctr_origin(precedence,’Scheduling’,[]).

ctr_arguments(
precedence,
[’TASKS’-collection(origin-dvar,duration-dvar)]).

ctr_restrictions(
precedence,
[required(’TASKS’,[origin,duration]),’TASKS’ˆdurati on>=0]).

ctr_example(
precedence,
precedence(

[[origin-1,duration-3],
[origin-4,duration-0],
[origin-5,duration-2],
[origin-8,duration-1]])).

ctr_typical(precedence,[size(’TASKS’)>1,’TASKS’ˆdur ation>=1]).

ctr_exchangeable(
precedence,
[vals([’TASKS’ˆduration],int(>=(0)),>,dontcare,dont care),

translate([’TASKS’ˆorigin])]).

ctr_graph(
precedence,
[’TASKS’],
2,
[’PATH’>>collection(tasks1,tasks2)],
[tasks1ˆorigin+tasks1ˆduration=<tasks2ˆorigin],
[’NARC’=size(’TASKS’)-1],
[]).

ctr_eval(precedence,[reformulation(precedence_r)]).

ctr_contractible(precedence,[],’TASKS’,any).

precedence_r(TASKS) :-
length(TASKS,N),

2707

N>1,
collection(TASKS,[dvar,dvar_gteq(0)]),
get_attr1(TASKS,ORIGINS),
get_attr2(TASKS,DURATIONS),
gen_precedences(ORIGINS,DURATIONS).

gen_precedences([_23799],[_23801]) :-
!.

gen_precedences([O1,O2|R],[D1,D2|S]) :-
O1+D1#=<O2,
gen_precedences([O2|R],[D2|S]).

2708 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.292 product ctr

♦ META-DATA:

ctr_date(product_ctr,[’20030820’,’20060813’,’200709 02’]).

ctr_origin(product_ctr,’Arithmetic constraint.’,[]).

ctr_arguments(
product_ctr,
[’VARIABLES’-collection(var-dvar),’CTR’-atom,’VAR’- dvar]).

ctr_restrictions(
product_ctr,
[required(’VARIABLES’,var),

in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
product_ctr,
product_ctr([[var-2],[var-1],[var-4]],=,8)).

ctr_typical(
product_ctr,
[size(’VARIABLES’)>1,

size(’VARIABLES’)<10,
range(’VARIABLES’ˆvar)>1,
’VARIABLES’ˆvar=\=0,
in_list(’CTR’,[=,<,>=,>,=<]),
’VAR’=\=0]).

ctr_exchangeable(product_ctr,[items(’VARIABLES’,all)]).

ctr_graph(
product_ctr,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[’TRUE’],
[’CTR’(’PROD’(’VARIABLES’,var),’VAR’)],
[]).

ctr_eval(product_ctr,[reformulation(product_ctr_r)]).

ctr_pure_functional_dependency(
product_ctr,
[in_list(’CTR’,[=])]).

2709

ctr_contractible(
product_ctr,
[in_list(’CTR’,[<,=<]),minval(’VARIABLES’ˆvar)>0],
VARIABLES,
any).

ctr_aggregate(product_ctr,[in_list(’CTR’,[=])],[uni on,id, *]).

product_ctr_r(VARIABLES,CTR,VAR) :-
collection(VARIABLES,[dvar]),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
check_type(dvar,VAR),
get_attr1(VARIABLES,VARS),
build_prod_var(VARS,PROD),
call_term_relop_value(PROD,CTR,VAR).

2710 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.293 proper forest

♦ META-DATA:

ctr_date(proper_forest,[’20050604’,’20060813’]).

ctr_origin(
proper_forest,
Derived from %c, \cite{BeldiceanuKatrielLorca06}.,
[tree]).

ctr_arguments(
proper_forest,
[’NTREES’-dvar,

’NODES’-collection(index-int,neighbour-svar)]).

ctr_restrictions(
proper_forest,
[’NTREES’>=0,

required(’NODES’,[index,neighbour]),
size(’NODES’)mod 2=0,
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆneighbour>=1,
’NODES’ˆneighbour=<size(’NODES’),
’NODES’ˆneighbour=\=’NODES’ˆindex]).

ctr_example(
proper_forest,
proper_forest(

3,
[[index-1,neighbour-{3,6}],

[index-2,neighbour-{9}],
[index-3,neighbour-{1,5,7}],
[index-4,neighbour-{9}],
[index-5,neighbour-{3}],
[index-6,neighbour-{1}],
[index-7,neighbour-{3}],
[index-8,neighbour-{10}],
[index-9,neighbour-{2,4}],
[index-10,neighbour-{8}]])).

ctr_typical(proper_forest,[’NTREES’>0,size(’NODES’) >1]).

ctr_exchangeable(proper_forest,[items(’NODES’,all)]).

2711

ctr_graph(
proper_forest,
[’NODES’],
2,
[’CLIQUE’(=\=)>>collection(nodes1,nodes2)],
[nodes2ˆindex in_set nodes1ˆneighbour],
[’NVERTEX’=(’NARC’+2 * ’NTREES’)/2,

’NCC’=’NTREES’,
’NVERTEX’=size(’NODES’)],

[’SYMMETRIC’]).

ctr_functional_dependency(proper_forest,1,[2]).

2712 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.294 rangectr

♦ META-DATA:

ctr_date(range_ctr,[’20030820’,’20060813’]).

ctr_origin(range_ctr,’Arithmetic constraint.’,[]).

ctr_arguments(
range_ctr,
[’VARIABLES’-collection(var-dvar),’CTR’-atom,’R’-dv ar]).

ctr_restrictions(
range_ctr,
[size(’VARIABLES’)>0,

required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(range_ctr,range_ctr([[var-1],[var-9],[v ar-4]],=,9)).

ctr_typical(
range_ctr,
[size(’VARIABLES’)>1,

range(’VARIABLES’ˆvar)>1,
in_list(’CTR’,[=,<,>=,>,=<])]).

ctr_exchangeable(
range_ctr,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],int,=\=,all,in),
translate([’VARIABLES’ˆvar])]).

ctr_graph(
range_ctr,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[’TRUE’],
[’CTR’(’RANGE’(’VARIABLES’,var),’R’)],
[]).

ctr_eval(range_ctr,[reformulation(range_ctr_r)]).

ctr_pure_functional_dependency(range_ctr,[in_list(’ CTR’,[=])]).

ctr_contractible(

2713

range_ctr,
[in_list(’CTR’,[<,=<])],
VARIABLES,
any).

ctr_extensible(
range_ctr,
[in_list(’CTR’,[>=,>])],
VARIABLES,
any).

range_ctr_r(VARIABLES,CTR,R) :-
collection(VARIABLES,[dvar]),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
check_type(dvar,R),
length(VARIABLES,N),
N>0,
get_attr1(VARIABLES,VARS),
minimum(MIN,VARS),
maximum(MAX,VARS),
call_term_relop_value(MAX-MIN+1,CTR,R).

2714 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.295 relaxedsliding sum

♦ META-DATA:

ctr_date(
relaxed_sliding_sum,
[’20000128’,’20030820’,’20060813’]).

ctr_origin(relaxed_sliding_sum,’\\index{CHIP|indexu se}CHIP’,[]).

ctr_arguments(
relaxed_sliding_sum,
[’ATLEAST’-int,

’ATMOST’-int,
’LOW’-int,
’UP’-int,
’SEQ’-int,
’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
relaxed_sliding_sum,
[’ATLEAST’>=0,

’ATMOST’>=’ATLEAST’,
’ATMOST’=<size(’VARIABLES’)-’SEQ’+1,
’UP’>=’LOW’,
’SEQ’>0,
’SEQ’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
relaxed_sliding_sum,
relaxed_sliding_sum(

3,
4,
3,
7,
4,
[[var-2],

[var-4],
[var-2],
[var-0],
[var-0],
[var-3],
[var-4]])).

ctr_typical(

2715

relaxed_sliding_sum,
[’SEQ’>1,

’SEQ’<size(’VARIABLES’),
range(’VARIABLES’ˆvar)>1,
’ATLEAST’>0#\/’ATMOST’<size(’VARIABLES’)-’SEQ’+1]).

ctr_exchangeable(
relaxed_sliding_sum,
[vals([’ATLEAST’],int(>=(0)),>,dontcare,dontcare),

vals(
[’ATMOST’],
int(=<(size(’VARIABLES’)-’SEQ’+1)),
<,
dontcare,
dontcare),

items(’VARIABLES’,reverse)]).

ctr_graph(
relaxed_sliding_sum,
[’VARIABLES’],
SEQ,
[’PATH’>>collection],
[sum_ctr(collection,>=,’LOW’),sum_ctr(collection,=< ,’UP’)],
[’NARC’>=’ATLEAST’,’NARC’=<’ATMOST’],
[]).

ctr_eval(
relaxed_sliding_sum,
[reformulation(relaxed_sliding_sum_r)]).

relaxed_sliding_sum_r(ATLEAST,ATMOST,LOW,UP,SEQ,VAR IABLES) :-
integer(ATLEAST),
integer(ATMOST),
integer(LOW),
integer(UP),
integer(SEQ),
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
LIMIT is N-SEQ+1,
ATLEAST>=0,
ATMOST>=ATLEAST,
ATMOST=<LIMIT,
UP>=LOW,
SEQ>0,
SEQ=<N,
get_attr1(VARIABLES,VARS),

2716 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

relaxed_sliding_sum1(VARS,[],LOW,UP,SEQ,SUMB),
call(SUMB#>=ATLEAST),
call(SUMB#=<ATMOST).

relaxed_sliding_sum1([],_20633,_20634,_20635,_20636 ,0).

relaxed_sliding_sum1([Last|R],Seq,LOW,UP,SEQ,B+RB) : -
append(Seq,[Last],Sequence),
length(Sequence,L),
(L>SEQ ->

Sequence=[_20696|SeqCur],
build_sum_var(SeqCur,SumVar),
B in 0..1,
call(SumVar#>=LOW#/\SumVar#=<UP#<=>B),
relaxed_sliding_sum1(R,SeqCur,LOW,UP,SEQ,RB)

; L=SEQ ->
build_sum_var(Sequence,SumVar),
B in 0..1,
call(SumVar#>=LOW#/\SumVar#=<UP#<=>B),
relaxed_sliding_sum1(R,Sequence,LOW,UP,SEQ,RB)

; relaxed_sliding_sum1(R,Sequence,LOW,UP,SEQ,RB)
).

2717

B.296 remainder

♦ META-DATA:

ctr_predefined(remainder).

ctr_date(remainder,[’20110612’]).

ctr_origin(remainder,’Arithmetic.’,[]).

ctr_synonyms(remainder,[modulo,mod]).

ctr_arguments(remainder,[’Q’-dvar,’D’-dvar,’R’-dvar]).

ctr_restrictions(remainder,[’Q’>=0,’D’>0,’R’>=0,’R’ <’D’]).

ctr_example(remainder,remainder(15,2,1)).

ctr_eval(remainder,[builtin(remainder_b)]).

ctr_pure_functional_dependency(remainder,[]).

ctr_functional_dependency(remainder,3,[1,2]).

remainder_b(Q,D,R) :-
check_type(dvar,Q),
check_type(dvar,D),
check_type(dvar,R),
Q#>=0,
D#>0,
R#>=0,
R#<D,
Q mod D#=R.

2718 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.297 roots

♦ META-DATA:

ctr_date(roots,[’20070620’]).

ctr_origin(
roots,
\cite{BessiereHebrardHnichKiziltanWalsh05IJCAI},
[]).

ctr_arguments(
roots,
[’S’-svar,’T’-svar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
roots,
[’S’=<size(’VARIABLES’),required(’VARIABLES’,var)]) .

ctr_example(
roots,
roots(

{2,4,5},
{2,3,8},
[[var-1],[var-3],[var-1],[var-2],[var-3]])).

ctr_typical(
roots,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_derived_collections(
roots,
[col(’SETS’-collection(s-svar,t-svar),

[item(s-’S’,t-’T’)])]).

ctr_graph(
roots,
[’SETS’,’VARIABLES’],
2,
[’PRODUCT’>>collection(sets,variables)],
[variablesˆkey in_set setsˆs#<=>

variablesˆvar in_set setsˆt],
[’NARC’=size(’VARIABLES’)],
[]).

2719

B.298 same

♦ META-DATA:

ctr_date(same,[’20000128’,’20030820’,’20040530’,’20 060813’]).

ctr_origin(same,’N.˜Beldiceanu’,[]).

ctr_arguments(
same,
[’VARIABLES1’-collection(var-dvar),

’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
same,
[size(’VARIABLES1’)=size(’VARIABLES2’),

required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_example(
same,
same(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-2],[var-5]])) .

ctr_typical(
same,
[size(’VARIABLES1’)>1,

range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1]).

ctr_exchangeable(
same,
[args([[’VARIABLES1’,’VARIABLES2’]]),

items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
int,
=\=,
all,
dontcare)]).

ctr_graph(
same,
[’VARIABLES1’,’VARIABLES2’],

2720 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[for_all(’CC’,’NSOURCE’=’NSINK’),

’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)],

[]).

ctr_eval(same,[reformulation(same_r)]).

ctr_aggregate(same,[],[union,union]).

same_r(VARIABLES1,VARIABLES2) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
N1=N2,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
same1(VARS1,VARS2).

same1(VARS1,VARS2) :-
length(VARS1,N),
length(PERMUTATION1,N),
domain(PERMUTATION1,1,N),
length(PERMUTATION2,N),
domain(PERMUTATION2,1,N),
length(SVARS,N),
get_minimum(VARS1,MIN1),
get_maximum(VARS1,MAX1),
domain(SVARS,MIN1,MAX1),
sorting(VARS1,PERMUTATION1,SVARS),
sorting(VARS2,PERMUTATION2,SVARS).

2721

B.299 sameand global cardinality

♦ META-DATA:

ctr_date(same_and_global_cardinality,[’20040530’,’2 0060813’]).

ctr_origin(
same_and_global_cardinality,
Conjoin %c and %c,
[same,global_cardinality]).

ctr_synonyms(
same_and_global_cardinality,
[sgcc,same_gcc,same_and_gcc,swc,same_with_cardinali ties]).

ctr_arguments(
same_and_global_cardinality,
[’VARIABLES1’-collection(var-dvar),

’VARIABLES2’-collection(var-dvar),
’VALUES’-collection(val-int,noccurrence-dvar)]).

ctr_restrictions(
same_and_global_cardinality,
[size(’VARIABLES1’)=size(’VARIABLES2’),

required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’VALUES’,[val,noccurrence]),
distinct(’VALUES’,val),
’VALUES’ˆnoccurrence>=0,
’VALUES’ˆnoccurrence=<size(’VARIABLES1’)]).

ctr_example(
same_and_global_cardinality,
same_and_global_cardinality(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-2],[var-5]],
[[val-1,noccurrence-3],

[val-2,noccurrence-1],
[val-5,noccurrence-1],
[val-7,noccurrence-0],
[val-9,noccurrence-1]])).

ctr_typical(
same_and_global_cardinality,
[size(’VARIABLES1’)>1,

range(’VARIABLES1’ˆvar)>1,

2722 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

range(’VARIABLES2’ˆvar)>1,
size(’VALUES’)>1,
range(’VALUES’ˆnoccurrence)>1,
size(’VARIABLES1’)>size(’VALUES’)]).

ctr_exchangeable(
same_and_global_cardinality,
[args([[’VARIABLES1’,’VARIABLES2’],[’VALUES’]]),

items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
items(’VALUES’,all),
vals(

[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
all(notin(’VALUES’ˆval)),
=,
dontcare,
dontcare),

vals(
[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar,’VALUES’ˆval],
int,
=\=,
all,
dontcare)]).

ctr_graph(
same_and_global_cardinality,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[for_all(’CC’,’NSOURCE’=’NSINK’),

’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)],

[]).

ctr_graph(
same_and_global_cardinality,
[’VARIABLES1’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval],
[’NVERTEX’=’VALUES’ˆnoccurrence],
[]).

ctr_eval(
same_and_global_cardinality,

2723

[reformulation(same_and_global_cardinality_r)]).

ctr_contractible(same_and_global_cardinality,[],’VA LUES’,any).

same_and_global_cardinality_r(VARIABLES1,VARIABLES2 ,VALUES) :-
eval(same(VARIABLES1,VARIABLES2)),
eval(global_cardinality(VARIABLES1,VALUES)).

2724 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.300 sameand global cardinality low up

♦ META-DATA:

ctr_date(
same_and_global_cardinality_low_up,
[’20051104’,’20060813’]).

ctr_origin(
same_and_global_cardinality_low_up,
Derived from %c and %c,
[same,global_cardinality_low_up]).

ctr_arguments(
same_and_global_cardinality_low_up,
[’VARIABLES1’-collection(var-dvar),

’VARIABLES2’-collection(var-dvar),
’VALUES’-collection(val-int,omin-int,omax-int)]).

ctr_restrictions(
same_and_global_cardinality_low_up,
[size(’VARIABLES1’)=size(’VARIABLES2’),

required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’VALUES’,[val,omin,omax]),
distinct(’VALUES’,val),
’VALUES’ˆomin>=0,
’VALUES’ˆomax=<size(’VARIABLES1’),
’VALUES’ˆomin=<’VALUES’ˆomax]).

ctr_example(
same_and_global_cardinality_low_up,
same_and_global_cardinality_low_up(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-2],[var-5]],
[[val-1,omin-2,omax-3],

[val-2,omin-1,omax-1],
[val-5,omin-1,omax-1],
[val-7,omin-0,omax-2],
[val-9,omin-1,omax-1]])).

ctr_typical(
same_and_global_cardinality_low_up,
[size(’VARIABLES1’)>1,

range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1,

2725

size(’VALUES’)>1,
’VALUES’ˆomin=<size(’VARIABLES1’),
’VALUES’ˆomax>0,
’VALUES’ˆomax<size(’VARIABLES1’),
size(’VARIABLES1’)>size(’VALUES’)]).

ctr_exchangeable(
same_and_global_cardinality_low_up,
[args([[’VARIABLES1’,’VARIABLES2’],[’VALUES’]]),

items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
all(notin(’VALUES’ˆval)),
=,
dontcare,
dontcare),

items(’VALUES’,all),
vals([’VALUES’ˆomin],int(>=(0)),>,dontcare,dontcare),
vals(

[’VALUES’ˆomax],
int(=<(size(’VARIABLES1’))),
<,
dontcare,
dontcare),

vals(
[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar,’VALUES’ˆval],
int,
=\=,
all,
dontcare)]).

ctr_graph(
same_and_global_cardinality_low_up,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[for_all(’CC’,’NSOURCE’=’NSINK’),

’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)],

[]).

ctr_graph(
same_and_global_cardinality_low_up,
[’VARIABLES1’],

2726 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval],
[’NVERTEX’>=’VALUES’ˆomin,’NVERTEX’=<’VALUES’ˆomax] ,
[]).

ctr_eval(
same_and_global_cardinality_low_up,
[reformulation(same_and_global_cardinality_low_up_r)]).

ctr_contractible(
same_and_global_cardinality_low_up,
[],
VALUES,
any).

same_and_global_cardinality_low_up_r(
VARIABLES1,
VARIABLES2,
VALUES) :-

eval(same(VARIABLES1,VARIABLES2)),
eval(global_cardinality_low_up(VARIABLES1,VALUES)).

2727

B.301 sameintersection

♦ META-DATA:

ctr_date(same_intersection,[’20040530’,’20060814’]) .

ctr_origin(
same_intersection,
Derived from %c and %c.,
[same,common]).

ctr_arguments(
same_intersection,
[’VARIABLES1’-collection(var-dvar),

’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
same_intersection,
[required(’VARIABLES1’,var),required(’VARIABLES2’,v ar)]).

ctr_example(
same_intersection,
same_intersection(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-9],

[var-1],
[var-1],
[var-1],
[var-3],
[var-5],
[var-8]])).

ctr_typical(
same_intersection,
[size(’VARIABLES1’)>1,

range(’VARIABLES1’ˆvar)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES2’ˆvar)>1]).

ctr_exchangeable(
same_intersection,
[args([[’VARIABLES1’,’VARIABLES2’]]),

items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],

2728 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

int,
=\=,
all,
dontcare)]).

ctr_graph(
same_intersection,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[for_all(’CC’,’NSOURCE’=’NSINK’)],
[]).

ctr_eval(
same_intersection,
[reformulation(same_intersection_r)]).

same_intersection_r(VARIABLES1,VARIABLES2) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
(N1=0 ->

true
; N2=0 ->

true
; get_attr1(VARIABLES1,VARS1),

get_attr1(VARIABLES2,VARS2),
get_minimum(VARS1,MINVARS1),
get_minimum(VARS2,MINVARS2),
get_maximum(VARS1,MAXVARS1),
get_maximum(VARS2,MAXVARS2),
MIN is min(MINVARS1,MINVARS2),
MAX is max(MAXVARS1,MAXVARS2),
complete_card(MIN,MAX,N1,[],[],VN1),
complete_card(MIN,MAX,N2,[],[],VN2),
global_cardinality(VARS1,VN1),
global_cardinality(VARS2,VN2),
same_intersection1(VN1,VN2)

).

same_intersection1([],[]).

same_intersection1([V-O1|R],[V-O2|S]) :-
O1#>0#/\O2#>0#=>O2#=O1,

2729

same_intersection1(R,S).

2730 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.302 sameinterval

♦ META-DATA:

ctr_date(same_interval,[’20030820’,’20060814’]).

ctr_origin(same_interval,’Derived from %c.’,[same]).

ctr_arguments(
same_interval,
[’VARIABLES1’-collection(var-dvar),

’VARIABLES2’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
same_interval,
[size(’VARIABLES1’)=size(’VARIABLES2’),

required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’SIZE_INTERVAL’>0]).

ctr_example(
same_interval,
same_interval(

[[var-1],[var-7],[var-6],[var-0],[var-1],[var-7]],
[[var-8],[var-8],[var-8],[var-0],[var-1],[var-2]],
3)).

ctr_typical(
same_interval,
[size(’VARIABLES1’)>1,

range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1,
’SIZE_INTERVAL’>1,
’SIZE_INTERVAL’<range(’VARIABLES1’ˆvar),
’SIZE_INTERVAL’<range(’VARIABLES2’ˆvar)]).

ctr_exchangeable(
same_interval,
[args([[’VARIABLES1’,’VARIABLES2’],[’SIZE_INTERVAL’]]),

items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals(

[’VARIABLES’ˆvar],
intervals(’SIZE_INTERVAL’),
=,

2731

dontcare,
dontcare)]).

ctr_graph(
same_interval,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar/’SIZE_INTERVAL’=

variables2ˆvar/’SIZE_INTERVAL’],
[for_all(’CC’,’NSOURCE’=’NSINK’),

’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)],

[]).

ctr_eval(same_interval,[reformulation(same_interval _r)]).

ctr_aggregate(same_interval,[],[union,union,id]).

same_interval_r(VARIABLES1,VARIABLES2,SIZE_INTERVAL) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
N1=N2,
integer(SIZE_INTERVAL),
SIZE_INTERVAL>0,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
gen_quotient(VARS1,SIZE_INTERVAL,QUOTVARS1),
gen_quotient(VARS2,SIZE_INTERVAL,QUOTVARS2),
same1(QUOTVARS1,QUOTVARS2).

2732 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.303 samemodulo

♦ META-DATA:

ctr_date(same_modulo,[’20030820’,’20060814’]).

ctr_origin(same_modulo,’Derived from %c.’,[same]).

ctr_arguments(
same_modulo,
[’VARIABLES1’-collection(var-dvar),

’VARIABLES2’-collection(var-dvar),
’M’-int]).

ctr_restrictions(
same_modulo,
[size(’VARIABLES1’)=size(’VARIABLES2’),

required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’M’>0]).

ctr_example(
same_modulo,
same_modulo(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-6],[var-4],[var-1],[var-1],[var-5],[var-5]],
3)).

ctr_typical(
same_modulo,
[size(’VARIABLES1’)>1,

range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1,
’M’>1,
’M’<maxval(’VARIABLES1’ˆvar),
’M’<maxval(’VARIABLES2’ˆvar)]).

ctr_exchangeable(
same_modulo,
[args([[’VARIABLES1’,’VARIABLES2’],[’M’]]),

items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals([’VARIABLES’ˆvar],mod(’M’),=,dontcare,dontcare)]).

ctr_graph(
same_modulo,

2733

[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[for_all(’CC’,’NSOURCE’=’NSINK’),

’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)],

[]).

ctr_eval(same_modulo,[reformulation(same_modulo_r)]).

ctr_aggregate(same_modulo,[],[union,union,id]).

same_modulo_r(VARIABLES1,VARIABLES2,M) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
N1=N2,
integer(M),
M>0,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
gen_remainder(VARS1,M,REMVARS1),
gen_remainder(VARS2,M,REMVARS2),
same1(REMVARS1,REMVARS2).

2734 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.304 samepartition

♦ META-DATA:

ctr_date(same_partition,[’20030820’,’20060814’]).

ctr_origin(same_partition,’Derived from %c.’,[same]).

ctr_types(same_partition,[’VALUES’-collection(val-i nt)]).

ctr_arguments(
same_partition,
[’VARIABLES1’-collection(var-dvar),

’VARIABLES2’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
same_partition,
[size(’VALUES’)>=1,

required(’VALUES’,val),
distinct(’VALUES’,val),
size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_example(
same_partition,
same_partition(

[[var-1],[var-2],[var-6],[var-3],[var-1],[var-2]],
[[var-6],[var-6],[var-2],[var-3],[var-1],[var-3]],
[[p-[[val-1],[val-3]]],

[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

ctr_typical(
same_partition,
[size(’VARIABLES1’)>1,

range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1,
size(’VARIABLES1’)>size(’PARTITIONS’),
size(’VARIABLES2’)>size(’PARTITIONS’)]).

ctr_exchangeable(
same_partition,

2735

[args([[’VARIABLES1’,’VARIABLES2’],[’PARTITIONS’]]) ,
items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all),
vals(

[’VARIABLES’ˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare)]).

ctr_graph(
same_partition,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
PARTITIONS)],

[for_all(’CC’,’NSOURCE’=’NSINK’),
’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)],

[]).

ctr_eval(same_partition,[reformulation(same_partiti on_r)]).

ctr_aggregate(same_partition,[],[union,union,id]).

same_partition_r(VARIABLES1,VARIABLES2,PARTITIONS) : -
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
N1=N2,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
get_col_attr1(PARTITIONS,1,PVALS),
flattern(PVALS,VALS),
all_different(VALS),
length(PARTITIONS,P),
P>1,
length(PVALS,LPVALS),
LPVALS1 is LPVALS+1,
get_partition_var(VARS1,PVALS,PVARS1,LPVALS1,0),

2736 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

get_partition_var(VARS2,PVALS,PVARS2,LPVALS1,0),
same1(PVARS1,PVARS2).

2737

B.305 samesign

♦ META-DATA:

ctr_predefined(same_sign).

ctr_date(same_sign,[’20100821’]).

ctr_origin(same_sign,’Arithmetic.’,[]).

ctr_arguments(same_sign,[’VAR1’-dvar,’VAR2’-dvar]).

ctr_restrictions(same_sign,[]).

ctr_example(same_sign,same_sign(7,1)).

ctr_typical(same_sign,[’VAR1’=\=0,’VAR2’=\=0]).

ctr_exchangeable(same_sign,[args([[’VAR1’,’VAR2’]])]).

ctr_eval(same_sign,[builtin(same_sign_b)]).

same_sign_b(VAR1,VAR2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
VAR1#>=0#/\VAR2#>=0#\/VAR1#=<0#/\VAR2#=<0.

2738 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.306 scalarproduct

♦ META-DATA:

ctr_predefined(scalar_product).

ctr_date(scalar_product,[’20090415’]).

ctr_origin(scalar_product,’Arithmetic constraint.’,[]).

ctr_synonyms(
scalar_product,
[equation,linear,sum_weight,weightedSum]).

ctr_arguments(
scalar_product,
[’LINEARTERM’-collection(coeff-int,var-dvar),

’CTR’-atom,
’VAL’-dvar]).

ctr_restrictions(
scalar_product,
[required(’LINEARTERM’,[coeff,var]),

in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
scalar_product,
scalar_product(

[[coeff-1,var-1],[coeff-3,var-1],[coeff-1,var-4]],
=,
8)).

ctr_typical(
scalar_product,
[size(’LINEARTERM’)>1,

range(’LINEARTERM’ˆcoeff)>1,
range(’LINEARTERM’ˆvar)>1,
in_list(’CTR’,[=,<,>=,>,=<])]).

ctr_exchangeable(
scalar_product,
[items(’LINEARTERM’,all),

attrs(’LINEARTERM’,[[coeff,var]])]).

ctr_eval(scalar_product,[builtin(scalar_product_b)]).

2739

ctr_pure_functional_dependency(
scalar_product,
[in_list(’CTR’,[=])]).

ctr_contractible(
scalar_product,
[in_list(’CTR’,[<,=<]),

minval(’LINEARTERM’ˆcoeff)>=0,
minval(’LINEARTERM’ˆvar)>=0],

LINEARTERM,
any).

ctr_extensible(
scalar_product,
[in_list(’CTR’,[>=,>]),

minval(’LINEARTERM’ˆcoeff)>=0,
minval(’LINEARTERM’ˆvar)>=0],

LINEARTERM,
any).

ctr_aggregate(scalar_product,[],[union,id,+]).

scalar_product_b(LINEARTERM,=,VAR) :-
!,
collection(LINEARTERM,[int,dvar]),
check_type(dvar,VAR),
get_attr1(LINEARTERM,COEFFS),
get_attr2(LINEARTERM,VARS),
scalar_product(COEFFS,VARS,#=,VAR).

scalar_product_b(LINEARTERM,=\=,VAR) :-
!,
collection(LINEARTERM,[int,dvar]),
check_type(dvar,VAR),
get_attr1(LINEARTERM,COEFFS),
get_attr2(LINEARTERM,VARS),
scalar_product(COEFFS,VARS,#\=,VAR).

scalar_product_b(LINEARTERM,<,VAR) :-
!,
collection(LINEARTERM,[int,dvar]),
check_type(dvar,VAR),
get_attr1(LINEARTERM,COEFFS),
get_attr2(LINEARTERM,VARS),
scalar_product(COEFFS,VARS,#<,VAR).

2740 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

scalar_product_b(LINEARTERM,>=,VAR) :-
!,
collection(LINEARTERM,[int,dvar]),
check_type(dvar,VAR),
get_attr1(LINEARTERM,COEFFS),
get_attr2(LINEARTERM,VARS),
scalar_product(COEFFS,VARS,#>=,VAR).

scalar_product_b(LINEARTERM,>,VAR) :-
!,
collection(LINEARTERM,[int,dvar]),
check_type(dvar,VAR),
get_attr1(LINEARTERM,COEFFS),
get_attr2(LINEARTERM,VARS),
scalar_product(COEFFS,VARS,#>,VAR).

scalar_product_b(LINEARTERM,=<,VAR) :-
collection(LINEARTERM,[int,dvar]),
check_type(dvar,VAR),
get_attr1(LINEARTERM,COEFFS),
get_attr2(LINEARTERM,VARS),
scalar_product(COEFFS,VARS,#=<,VAR).

2741

B.307 sequencefolding

♦ META-DATA:

ctr_date(sequence_folding,[’20030820’,’20040530’,’2 0060814’]).

ctr_origin(sequence_folding,’J.˜Pearson’,[]).

ctr_arguments(
sequence_folding,
[’LETTERS’-collection(index-int,next-dvar)]).

ctr_restrictions(
sequence_folding,
[size(’LETTERS’)>=1,

required(’LETTERS’,[index,next]),
’LETTERS’ˆindex>=1,
’LETTERS’ˆindex=<size(’LETTERS’),
increasing_seq(’LETTERS’,index),
’LETTERS’ˆnext>=1,
’LETTERS’ˆnext=<size(’LETTERS’)]).

ctr_example(
sequence_folding,
sequence_folding(

[[index-1,next-1],
[index-2,next-8],
[index-3,next-3],
[index-4,next-5],
[index-5,next-5],
[index-6,next-7],
[index-7,next-7],
[index-8,next-8],
[index-9,next-9]])).

ctr_typical(
sequence_folding,
[size(’LETTERS’)>2,range(’LETTERS’ˆnext)>1]).

ctr_graph(
sequence_folding,
[’LETTERS’],
1,
[’SELF’>>collection(letters)],
[lettersˆnext>=lettersˆindex],
[’NARC’=size(’LETTERS’)],

2742 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[]).

ctr_graph(
sequence_folding,
[’LETTERS’],
2,
[’CLIQUE’(<)>>collection(letters1,letters2)],
[letters2ˆindex>=letters1ˆnext#\/

letters2ˆnext=<letters1ˆnext],
[’NARC’=size(’LETTERS’) * (size(’LETTERS’)-1)/2],
[]).

ctr_eval(sequence_folding,[automaton(sequence_foldi ng_a)]).

sequence_folding_a(FLAG,LETTERS) :-
length(LETTERS,N),
N>=1,
collection(LETTERS,[int(1,N),dvar(1,N)]),
collection_increasing_seq(LETTERS,[1]),
sequence_folding_signature(LETTERS,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_46743,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s)],
[],
[],
[]),

automaton_bool(FLAG,[0,1,2],AUTOMATON).

sequence_folding_signature([],[]).

sequence_folding_signature([_45054],[]) :-
!.

sequence_folding_signature([L1,L2|R],S) :-
sequence_folding_signature([L2|R],L1,S1),
sequence_folding_signature([L2|R],S2),
append(S1,S2,S).

sequence_folding_signature([],_45050,[]).

sequence_folding_signature([L2|R],L1,[S|Ss]) :-
L1=[index-INDEX1,next-NEXT1],

2743

L2=[index-INDEX2,next-NEXT2],
INDEX1#=<NEXT1#/\INDEX2#=<NEXT2#/\NEXT1#=<INDEX2#<= >
S#=0,
INDEX1#=<NEXT1#/\INDEX2#=<NEXT2#/\NEXT1#>INDEX2#/\
NEXT2#=<NEXT1#<=>
S#=1,
sequence_folding_signature(R,L1,Ss).

2744 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.308 setvalue precede

♦ META-DATA:

ctr_predefined(set_value_precede).

ctr_date(set_value_precede,[’20041003’]).

ctr_origin(set_value_precede,’\\cite{YatChiuLawJimm yLee04}’,[]).

ctr_arguments(
set_value_precede,
[’S’-int,’T’-int,’VARIABLES’-collection(var-svar)]) .

ctr_restrictions(
set_value_precede,
[’S’=\=’T’,required(’VARIABLES’,var)]).

ctr_example(
set_value_precede,
[set_value_precede(

2,
1,
[[var-{0,2}],[var-{0,1}],[var-{}],[var-{1}]]),

set_value_precede(
0,
1,
[[var-{0,2}],[var-{0,1}],[var-{}],[var-{1}]]),

set_value_precede(
0,
2,
[[var-{0,2}],[var-{0,1}],[var-{}],[var-{1}]]),

set_value_precede(
0,
4,
[[var-{0,2}],[var-{0,1}],[var-{}],[var-{1}]])]).

ctr_typical(set_value_precede,[’S’<’T’,size(’VARIAB LES’)>1]).

ctr_contractible(set_value_precede,[],’VARIABLES’,s uffix).

2745

B.309 shift

♦ META-DATA:

ctr_date(shift,[’20030820’,’20060814’,’20090531’]).

ctr_origin(shift,’N.˜Beldiceanu’,[]).

ctr_arguments(
shift,
[’MIN_BREAK’-int,

’MAX_RANGE’-int,
’TASKS’-collection(origin-dvar,end-dvar)]).

ctr_restrictions(
shift,
[’MIN_BREAK’>0,

’MAX_RANGE’>0,
required(’TASKS’,[origin,end]),
’TASKS’ˆorigin<’TASKS’ˆend]).

ctr_example(
shift,
shift(

6,
8,
[[origin-17,end-20],

[origin-7,end-10],
[origin-2,end-4],
[origin-21,end-22],
[origin-5,end-6]])).

ctr_typical(
shift,
[’MIN_BREAK’>1,

’MAX_RANGE’>1,
’MIN_BREAK’<’MAX_RANGE’,
size(’TASKS’)>2]).

ctr_exchangeable(
shift,
[items(’TASKS’,all),translate([’TASKS’ˆorigin])]).

ctr_graph(
shift,
[’TASKS’],

2746 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

1,
[’SELF’>>collection(tasks)],
[tasksˆend>=tasksˆorigin,

tasksˆend-tasksˆorigin=<’MAX_RANGE’],
[’NARC’=size(’TASKS’)],
[]).

ctr_graph(
shift,
[’TASKS’],
2,
[’CLIQUE’>>collection(tasks1,tasks2)],
[tasks2ˆorigin>=tasks1ˆend#/\

tasks2ˆorigin-tasks1ˆend=<’MIN_BREAK’#\/
tasks1ˆorigin>=tasks2ˆend#/\
tasks1ˆorigin-tasks2ˆend=<’MIN_BREAK’#\/
tasks2ˆorigin<tasks1ˆend#/\tasks1ˆorigin<tasks2ˆend],

[],
[],
[CC>>

[variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’TASKS’ˆorigin),item(var-’TASKS’ˆend)])]] ,
[range_ctr(variables,=<,’MAX_RANGE’)]).

ctr_eval(shift,[reformulation(shift_r)]).

shift_r(MIN_BREAK,MAX_RANGE,TASKS) :-
integer(MIN_BREAK),
MIN_BREAK>0,
integer(MAX_RANGE),
MAX_RANGE>0,
collection(TASKS,[dvar,dvar]),
get_attr1(TASKS,ORIGINS),
get_attr2(TASKS,ENDS),
get_minimum(ORIGINS,MINO),
get_maximum(ORIGINS,MAXO),
get_minimum(ENDS,MINE),
get_maximum(ENDS,MAXE),
shift1(

ORIGINS,
ENDS,
ORIGINS,
ENDS,
MINO,
MAXO,

2747

MINE,
MAXE,
MIN_BREAK,
MAX_RANGE).

shift1(
[],
[],
_36899,
_36945,
_36991,
_37037,
_37083,
_37129,
_37175,
_37221).

shift1(
[O|RO],
[E|RE],
ORIGINS,
ENDS,
MINO,
MAXO,
MINE,
MAXE,
MIN_BREAK,
MAX_RANGE) :-

shift2(
ORIGINS,
ENDS,
O,
E,
MIN_BREAK,
MAX_RANGE,
ORIBOOLS,
ENDBOOLS),

MIN in MINO..MAXO,
MAX in MINE..MAXE,
eval(open_minimum(MIN,ORIBOOLS)),
eval(open_maximum(MAX,ENDBOOLS)),
MAX-MIN#=<MAX_RANGE,
shift1(

RO,
RE,
ORIGINS,

2748 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ENDS,
MINO,
MAXO,
MINE,
MAXE,
MIN_BREAK,
MAX_RANGE).

shift2([],[],_36566,_36567,_36568,_36569,[],[]).

shift2(
[Oj|RO],
[Ej|RE],
Oi,
Ei,
MIN_BREAK,
MAX_RANGE,
[[var-Oj,bool-Bij]|ROB],
[[var-Ej,bool-Bij]|REB]) :-

Oi#<Ei,
Bij#<=>
Oj#>=Ei#/\Oj-Ei#=<MIN_BREAK#\/
Oi#>=Ej#/\Oi-Ej#=<MIN_BREAK#\/
Oj#<Ei#/\Oi#<Ej,
shift2(RO,RE,Oi,Ei,MIN_BREAK,MAX_RANGE,ROB,REB).

2749

B.310 signof

♦ META-DATA:

ctr_predefined(sign_of).

ctr_date(sign_of,[’20110612’]).

ctr_origin(sign_of,’Arithmetic.’,[]).

ctr_usual_name(sign_of,sign).

ctr_arguments(sign_of,[’S’-dvar,’X’-dvar]).

ctr_restrictions(sign_of,[’S’>= -1,’S’=<1]).

ctr_example(sign_of,[sign_of(-1,-8),sign_of(0,0),si gn_of(1,8)]).

ctr_typical(sign_of,[’S’=\=0,’X’=\=0]).

ctr_eval(sign_of,[builtin(sign_of_b)]).

ctr_pure_functional_dependency(sign_of,[]).

ctr_functional_dependency(sign_of,1,[2]).

sign_of_b(S,X) :-
check_type(dvar,S),
check_type(dvar,X),
S#>= -1,
S#=<1,
X#<0#/\S#= -1#\/X#=0#/\S#=0#\/X#>0#/\S#=1.

2750 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.311 sizemax seqalldifferent

♦ META-DATA:

ctr_date(size_max_seq_alldifferent,[’20030820’,’200 60814’]).

ctr_origin(size_max_seq_alldifferent,’N.˜Beldiceanu ’,[]).

ctr_synonyms(
size_max_seq_alldifferent,
[size_maximal_sequence_alldiff,

size_maximal_sequence_alldistinct,
size_maximal_sequence_alldifferent]).

ctr_arguments(
size_max_seq_alldifferent,
[’SIZE’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
size_max_seq_alldifferent,
[’SIZE’>=0,

’SIZE’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
size_max_seq_alldifferent,
size_max_seq_alldifferent(

4,
[[var-2],

[var-2],
[var-4],
[var-5],
[var-2],
[var-7],
[var-4]])).

ctr_typical(
size_max_seq_alldifferent,
[’SIZE’>2,

’SIZE’<size(’VARIABLES’),
range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
size_max_seq_alldifferent,
[translate([’VARIABLES’ˆvar])]).

2751

ctr_graph(
size_max_seq_alldifferent,
[’VARIABLES’],

* ,
[’PATH_N’>>collection],
[alldifferent(collection)],
[’NARC’=’SIZE’],
[]).

ctr_eval(
size_max_seq_alldifferent,
[reformulation(size_max_seq_alldifferent_r)]).

ctr_pure_functional_dependency(size_max_seq_alldiff erent,[]).

ctr_functional_dependency(size_max_seq_alldifferent ,1,[2]).

size_max_seq_alldifferent_r(SIZE,VARIABLES) :-
length(VARIABLES,N),
check_type(dvar(0,N),SIZE),
collection(VARIABLES,[dvar]),
size_max_seq_alldifferent1(VARIABLES,N,SIZES),
eval(maximum(SIZE,SIZES)).

size_max_seq_alldifferent1([],_21684,[]).

size_max_seq_alldifferent1([AV|R],N,[[var-SIZE]|S]) :-
SIZE in 0..N,
eval(size_max_starting_seq_alldifferent(SIZE,[AV|R])),
N1 is N-1,
size_max_seq_alldifferent1(R,N1,S).

2752 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.312 sizemax starting seqalldifferent

♦ META-DATA:

ctr_date(
size_max_starting_seq_alldifferent,
[’20030820’,’20060814’,’20090524’]).

ctr_origin(
size_max_starting_seq_alldifferent,
Inspired by %c.,
[size_max_seq_alldifferent]).

ctr_synonyms(
size_max_starting_seq_alldifferent,
[size_maximal_starting_sequence_alldiff,

size_maximal_starting_sequence_alldistinct,
size_maximal_starting_sequence_alldifferent]).

ctr_arguments(
size_max_starting_seq_alldifferent,
[’SIZE’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
size_max_starting_seq_alldifferent,
[’SIZE’>=0,

’SIZE’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
size_max_starting_seq_alldifferent,
size_max_starting_seq_alldifferent(

4,
[[var-9],

[var-2],
[var-4],
[var-5],
[var-2],
[var-7],
[var-4]])).

ctr_typical(
size_max_starting_seq_alldifferent,
[’SIZE’>2,

’SIZE’<size(’VARIABLES’),
range(’VARIABLES’ˆvar)>1]).

2753

ctr_exchangeable(
size_max_starting_seq_alldifferent,
[translate([’VARIABLES’ˆvar])]).

ctr_graph(
size_max_starting_seq_alldifferent,
[’VARIABLES’],

* ,
[’PATH_1’>>collection],
[alldifferent(collection)],
[’NARC’=’SIZE’],
[]).

ctr_eval(
size_max_starting_seq_alldifferent,
[reformulation(size_max_starting_seq_alldifferent_r)]).

ctr_pure_functional_dependency(
size_max_starting_seq_alldifferent,
[]).

ctr_functional_dependency(
size_max_starting_seq_alldifferent,
1,
[2]).

size_max_starting_seq_alldifferent_r(SIZE,VARIABLES) :-
length(VARIABLES,N),
check_type(dvar(0,N),SIZE),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
size_max_starting_seq_alldifferent1(VARS,[],1,SUMB) ,
call(SIZE#=SUMB).

size_max_starting_seq_alldifferent1([],_23436,_2343 7,0).

size_max_starting_seq_alldifferent1([VAR|RVARS],L,B PREV,B+SUM) :-
size_max_starting_seq_alldifferent2(L,VAR,BPREV,CON J),
call(B#<=>CONJ),
size_max_starting_seq_alldifferent1(

RVARS,
[VAR|L],
B,
SUM).

2754 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

size_max_starting_seq_alldifferent2([],_23436,BPREV ,BPREV).

size_max_starting_seq_alldifferent2(
[VAR2|RVARS],
VAR1,
BPREV,
VAR1#\=VAR2#/\R) :-

size_max_starting_seq_alldifferent2(RVARS,VAR1,BPRE V,R).

2755

B.313 sliding card skip0

♦ META-DATA:

ctr_date(
sliding_card_skip0,
[’20000128’,’20030820’,’20040530’,’20060815’]).

ctr_origin(sliding_card_skip0,’N.˜Beldiceanu’,[]).

ctr_arguments(
sliding_card_skip0,
[’ATLEAST’-int,

’ATMOST’-int,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
sliding_card_skip0,
[’ATLEAST’>=0,

’ATLEAST’=<size(’VARIABLES’),
’ATMOST’>=0,
’ATMOST’=<size(’VARIABLES’),
’ATMOST’>=’ATLEAST’,
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val),
’VALUES’ˆval=\=0]).

ctr_example(
sliding_card_skip0,
sliding_card_skip0(

2,
3,
[[var-0],

[var-7],
[var-2],
[var-9],
[var-0],
[var-0],
[var-9],
[var-4],
[var-9]],

[[val-7],[val-9]])).

ctr_typical(

2756 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

sliding_card_skip0,
[size(’VARIABLES’)>1,

size(’VALUES’)>0,
size(’VARIABLES’)>size(’VALUES’),
atleast(1,’VARIABLES’,0),
’ATLEAST’>0#\/’ATMOST’<size(’VARIABLES’)]).

ctr_exchangeable(
sliding_card_skip0,
[vals([’ATLEAST’],int(>=(0)),>,dontcare,dontcare),

vals(
[’ATMOST’],
int(=<(size(’VARIABLES’))),
<,
dontcare,
dontcare),

items(’VARIABLES’,reverse),
vals(

[’VARIABLES’ˆvar],
comp_diff(’VALUES’ˆval,=\=(0)),
=,
dontcare,
dontcare)]).

ctr_graph(
sliding_card_skip0,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2),

’LOOP’>>collection(variables1,variables2)],
[variables1ˆvar=\=0,variables2ˆvar=\=0],
[],
[],
[’CC’>>[variables]],
[among_low_up(’ATLEAST’,’ATMOST’,variables,’VALUES’)]).

ctr_eval(sliding_card_skip0,[automaton(sliding_card _skip0_a)]).

sliding_card_skip0_a(FLAG,ATLEAST,ATMOST,VARIABLES, VALUES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
check_type(int(0,N),ATLEAST),
check_type(int(0,N),ATMOST),
ATMOST>=ATLEAST,
collection(VALUES,[int_diff(0)]),
get_attr1(VALUES,LIST_VALUES),

2757

all_different(LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
sliding_card_skip0_signature(

VARIABLES,
SIGNATURE,
SET_OF_VALUES),

automaton(
SIGNATURE,
_41100,
SIGNATURE,
[source(s),sink(i),sink(s)],
[arc(s,0,s),

arc(s,1,i,[0,L,U]),
arc(s,2,i,[1,L,U]),
arc(i,0,s,[C,min(L,C),max(U,C)]),
arc(i,1,i),
arc(i,2,i,[C+1,L,U])],

[C,L,U],
[ATLEAST,ATLEAST,ATMOST],
[C1,L1,U1]),

min(C1,L1)#>=ATLEAST#/\max(C1,U1)#=<ATMOST#<=>FLAG.

sliding_card_skip0_signature([],[],_38290).

sliding_card_skip0_signature(
[[var-VAR]|VARs],
[S|Ss],
SET_OF_VALUES) :-

VAR#\=0#<=>NZ,
VAR in_set SET_OF_VALUES#<=>In,
S in 0..2,
S#=max(2 * NZ+In-1,0),
sliding_card_skip0_signature(VARs,Ss,SET_OF_VALUES) .

2758 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.314 sliding distribution

♦ META-DATA:

ctr_date(
sliding_distribution,
[’20031008’,’20060815’,’20090524’]).

ctr_origin(sliding_distribution,’\\cite{ReginPuget9 7}’,[]).

ctr_arguments(
sliding_distribution,
[’SEQ’-int,

’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,omin-int,omax-int)]).

ctr_restrictions(
sliding_distribution,
[’SEQ’>0,

’SEQ’=<size(’VARIABLES’),
required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,omin,omax]),
distinct(’VALUES’,val),
’VALUES’ˆomin>=0,
’VALUES’ˆomax=<’SEQ’,
’VALUES’ˆomin=<’VALUES’ˆomax]).

ctr_example(
sliding_distribution,
sliding_distribution(

4,
[[var-0],

[var-5],
[var-0],
[var-6],
[var-5],
[var-0],
[var-0]],

[[val-0,omin-1,omax-2],
[val-1,omin-0,omax-4],
[val-4,omin-0,omax-4],
[val-5,omin-1,omax-2],
[val-6,omin-0,omax-2]])).

ctr_typical(

2759

sliding_distribution,
[’SEQ’>1,

’SEQ’<size(’VARIABLES’),
size(’VARIABLES’)>size(’VALUES’)]).

ctr_exchangeable(
sliding_distribution,
[items(’VARIABLES’,reverse),

vals(
[’VARIABLES’ˆvar],
all(notin(’VALUES’ˆval)),
=,
dontcare,
dontcare),

items(’VALUES’,all),
vals([’VALUES’ˆomin],int(>=(0)),>,dontcare,dontcare),
vals([’VALUES’ˆomax],int(=<(’SEQ’)),<,dontcare,dont care),
vals(

[’VARIABLES’ˆvar,’VALUES’ˆval],
int,
=\=,
all,
dontcare)]).

ctr_graph(
sliding_distribution,
[’VARIABLES’],
SEQ,
[’PATH’>>collection],
[global_cardinality_low_up(collection,’VALUES’)],
[’NARC’=size(’VARIABLES’)-’SEQ’+1],
[]).

ctr_eval(
sliding_distribution,
[reformulation(sliding_distribution_r)]).

ctr_contractible(
sliding_distribution,
[’SEQ’=1],
VARIABLES,
any).

ctr_contractible(sliding_distribution,[],’VARIABLES ’,prefix).

ctr_contractible(sliding_distribution,[],’VARIABLES ’,suffix).

2760 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_contractible(sliding_distribution,[],’VALUES’,a ny).

sliding_distribution_r(SEQ,VARIABLES,VALUES) :-
integer(SEQ),
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
SEQ>0,
SEQ=<L,
collection(VALUES,[int,int(0,L),int(0,L)]),
length(VALUES,M),
M>0,
sliding_distribution1(VARIABLES,[],VALUES,SEQ).

sliding_distribution1([],_24062,_24063,_24064).

sliding_distribution1([Last|R],Seq,VALUES,SEQ) :-
append(Seq,[Last],Sequence),
length(Sequence,L),
(L>SEQ ->

Sequence=[_24114|SeqCur],
eval(global_cardinality_low_up(SeqCur,VALUES)),
sliding_distribution1(R,SeqCur,VALUES,SEQ)

; L=SEQ ->
eval(global_cardinality_low_up(Sequence,VALUES)),
sliding_distribution1(R,Sequence,VALUES,SEQ)

; sliding_distribution1(R,Sequence,VALUES,SEQ)
).

2761

B.315 sliding sum

♦ META-DATA:

ctr_date(sliding_sum,[’20000128’,’20030820’,’200608 15’]).

ctr_origin(sliding_sum,’\\index{CHIP|indexuse}CHIP’ ,[]).

ctr_synonyms(sliding_sum,[sequence]).

ctr_arguments(
sliding_sum,
[’LOW’-int,

’UP’-int,
’SEQ’-int,
’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
sliding_sum,
[’UP’>=’LOW’,

’SEQ’>0,
’SEQ’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
sliding_sum,
sliding_sum(

3,
7,
4,
[[var-1],

[var-4],
[var-2],
[var-0],
[var-0],
[var-3],
[var-4]])).

ctr_typical(
sliding_sum,
[’LOW’>=0,

’UP’>0,
’SEQ’>1,
’SEQ’<size(’VARIABLES’),
’VARIABLES’ˆvar>=0,
’UP’<sum(’VARIABLES’ˆvar)]).

2762 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_exchangeable(sliding_sum,[items(’VARIABLES’,rev erse)]).

ctr_graph(
sliding_sum,
[’VARIABLES’],
SEQ,
[’PATH’>>collection],
[sum_ctr(collection,>=,’LOW’),sum_ctr(collection,=< ,’UP’)],
[’NARC’=size(’VARIABLES’)-’SEQ’+1],
[]).

ctr_eval(sliding_sum,[reformulation(sliding_sum_r)]).

ctr_contractible(sliding_sum,[’SEQ’=1],’VARIABLES’, any).

ctr_contractible(sliding_sum,[],’VARIABLES’,prefix) .

ctr_contractible(sliding_sum,[],’VARIABLES’,suffix) .

sliding_sum_r(LOW,UP,SEQ,VARIABLES) :-
integer(LOW),
integer(UP),
integer(SEQ),
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
UP>=LOW,
SEQ>0,
SEQ=<L,
sliding_sum1(VARIABLES,[],LOW,UP,SEQ).

sliding_sum1([],_24744,_24745,_24746,_24747).

sliding_sum1([Last|R],Seq,LOW,UP,SEQ) :-
append(Seq,[Last],Sequence),
length(Sequence,L),
(L>SEQ ->

Sequence=[_24799|SeqCur],
eval(sum_ctr(SeqCur,>=,LOW)),
eval(sum_ctr(SeqCur,=<,UP)),
sliding_sum1(R,SeqCur,LOW,UP,SEQ)

; L=SEQ ->
eval(sum_ctr(Sequence,>=,LOW)),
eval(sum_ctr(Sequence,=<,UP)),
sliding_sum1(R,Sequence,LOW,UP,SEQ)

; sliding_sum1(R,Sequence,LOW,UP,SEQ)

2763

).

2764 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.316 sliding time window

♦ META-DATA:

ctr_date(
sliding_time_window,
[’20030820’,’20060815’,’20090530’]).

ctr_origin(sliding_time_window,’N.˜Beldiceanu’,[]).

ctr_arguments(
sliding_time_window,
[’WINDOW_SIZE’-int,

’LIMIT’-int,
’TASKS’-collection(origin-dvar,duration-dvar)]).

ctr_restrictions(
sliding_time_window,
[’WINDOW_SIZE’>0,

’LIMIT’>=0,
required(’TASKS’,[origin,duration]),
’TASKS’ˆduration>=0]).

ctr_example(
sliding_time_window,
sliding_time_window(

9,
6,
[[origin-10,duration-3],

[origin-5,duration-1],
[origin-6,duration-2],
[origin-14,duration-2],
[origin-2,duration-2]])).

ctr_typical(
sliding_time_window,
[’WINDOW_SIZE’>1,

’LIMIT’>0,
’LIMIT’<sum(’TASKS’ˆduration),
size(’TASKS’)>1,
’TASKS’ˆduration>0]).

ctr_exchangeable(
sliding_time_window,
[vals([’WINDOW_SIZE’],int,>,dontcare,dontcare),

vals([’LIMIT’],int,<,dontcare,dontcare),

2765

items(’TASKS’,all),
translate([’TASKS’ˆorigin]),
vals([’TASKS’ˆduration],int(>=(0)),>,dontcare,dontc are)]).

ctr_graph(
sliding_time_window,
[’TASKS’],
2,
[’CLIQUE’>>collection(tasks1,tasks2)],
[tasks1ˆorigin=<tasks2ˆorigin,

tasks2ˆorigin-tasks1ˆorigin<’WINDOW_SIZE’],
[],
[],
[’SUCC’>>[source,tasks]],
[sliding_time_window_from_start(

WINDOW_SIZE,
LIMIT,
tasks,
sourceˆorigin)]).

ctr_eval(
sliding_time_window,
[reformulation(sliding_time_window_r)]).

ctr_contractible(sliding_time_window,[],’TASKS’,any).

sliding_time_window_r(WINDOW_SIZE,LIMIT,TASKS) :-
integer(WINDOW_SIZE),
WINDOW_SIZE>0,
integer(LIMIT),
LIMIT>=0,
collection(TASKS,[dvar,dvar_gteq(0)]),
get_attr1(TASKS,ORIGINS),
get_attr2(TASKS,DURATIONS),
sliding_time_window1(

ORIGINS,
DURATIONS,
1,
ORIGINS,
DURATIONS,
WINDOW_SIZE,
LIMIT).

2766 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.317 sliding time window from start

♦ META-DATA:

ctr_date(
sliding_time_window_from_start,
[’20030820’,’20060815’,’20090530’]).

ctr_origin(
sliding_time_window_from_start,
Used for defining %c.,
[sliding_time_window]).

ctr_arguments(
sliding_time_window_from_start,
[’WINDOW_SIZE’-int,

’LIMIT’-int,
’TASKS’-collection(origin-dvar,duration-dvar),
’START’-dvar]).

ctr_restrictions(
sliding_time_window_from_start,
[’WINDOW_SIZE’>0,

’LIMIT’>=0,
required(’TASKS’,[origin,duration]),
’TASKS’ˆduration>=0]).

ctr_example(
sliding_time_window_from_start,
sliding_time_window_from_start(

9,
6,
[[origin-10,duration-3],

[origin-5,duration-1],
[origin-6,duration-2]],

5)).

ctr_typical(
sliding_time_window_from_start,
[’WINDOW_SIZE’>1,

’LIMIT’>0,
’LIMIT’<’WINDOW_SIZE’,
size(’TASKS’)>1,
’TASKS’ˆduration>0]).

ctr_exchangeable(

2767

sliding_time_window_from_start,
[vals([’WINDOW_SIZE’],int,>,dontcare,dontcare),

vals([’LIMIT’],int,<,dontcare,dontcare),
items(’TASKS’,all),
vals([’TASKS’ˆduration],int(>=(0)),>,dontcare,dontc are),
translate([’START’,’TASKS’ˆorigin])]).

ctr_derived_collections(
sliding_time_window_from_start,
[col(’S’-collection(var-dvar),[item(var-’START’)])]).

ctr_graph(
sliding_time_window_from_start,
[’S’,’TASKS’],
2,
[’PRODUCT’>>collection(s,tasks)],
[’TRUE’],
[’SUM_WEIGHT_ARC’(

max(0,
min(sˆvar+’WINDOW_SIZE’,

tasksˆorigin+tasksˆduration)-
max(sˆvar,tasksˆorigin)))=<

LIMIT],
[]).

ctr_eval(
sliding_time_window_from_start,
[reformulation(sliding_time_window_from_start_r)]).

ctr_contractible(sliding_time_window_from_start,[], ’TASKS’,any).

sliding_time_window_from_start_r(WINDOW_SIZE,LIMIT, TASKS,START) :-
integer(WINDOW_SIZE),
WINDOW_SIZE>0,
integer(LIMIT),
LIMIT>=0,
collection(TASKS,[dvar,dvar_gteq(0)]),
check_type(dvar,START),
get_attr1(TASKS,ORIGINS),
get_attr2(TASKS,DURATIONS),
sliding_time_window1(

[START],
[WINDOW_SIZE],
0,
ORIGINS,
DURATIONS,

2768 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

WINDOW_SIZE,
LIMIT).

2769

B.318 sliding time window sum

♦ META-DATA:

ctr_date(
sliding_time_window_sum,
[’20030820’,’20060815’,’20090530’]).

ctr_origin(
sliding_time_window_sum,
Derived from %c.,
[sliding_time_window]).

ctr_arguments(
sliding_time_window_sum,
[’WINDOW_SIZE’-int,

’LIMIT’-int,
’TASKS’-collection(origin-dvar,end-dvar,npoint-dvar)]).

ctr_restrictions(
sliding_time_window_sum,
[’WINDOW_SIZE’>0,

’LIMIT’>=0,
required(’TASKS’,[origin,end,npoint]),
’TASKS’ˆorigin=<’TASKS’ˆend,
’TASKS’ˆnpoint>=0]).

ctr_example(
sliding_time_window_sum,
sliding_time_window_sum(

9,
16,
[[origin-10,end-13,npoint-2],

[origin-5,end-6,npoint-3],
[origin-6,end-8,npoint-4],
[origin-14,end-16,npoint-5],
[origin-2,end-4,npoint-6]])).

ctr_typical(
sliding_time_window_sum,
[’WINDOW_SIZE’>1,

’LIMIT’>0,
’LIMIT’<sum(’TASKS’ˆnpoint),
size(’TASKS’)>1,
’TASKS’ˆorigin<’TASKS’ˆend,
’TASKS’ˆnpoint>0]).

2770 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_exchangeable(
sliding_time_window_sum,
[vals([’WINDOW_SIZE’],int,>,dontcare,dontcare),

vals([’LIMIT’],int,<,dontcare,dontcare),
items(’TASKS’,all),
vals([’TASKS’ˆnpoint],int(>=(0)),>,dontcare,dontcar e),
translate([’TASKS’ˆorigin,’TASKS’ˆend])]).

ctr_graph(
sliding_time_window_sum,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin=<tasksˆend],
[’NARC’=size(’TASKS’)],
[]).

ctr_graph(
sliding_time_window_sum,
[’TASKS’],
2,
[’CLIQUE’>>collection(tasks1,tasks2)],
[tasks1ˆend=<tasks2ˆend,

tasks2ˆorigin-tasks1ˆend<’WINDOW_SIZE’-1],
[],
[],
[SUCC>>

[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’TASKS’ˆnpoint)])]],
[sum_ctr(variables,=<,’LIMIT’)]).

ctr_eval(
sliding_time_window_sum,
[reformulation(sliding_time_window_sum_r)]).

ctr_contractible(sliding_time_window_sum,[],’TASKS’ ,any).

sliding_time_window_sum_r(WINDOW_SIZE,LIMIT,TASKS) : -
integer(WINDOW_SIZE),
WINDOW_SIZE>0,
integer(LIMIT),
LIMIT>=0,
collection(TASKS,[dvar,dvar,dvar_gteq(0)]),

2771

get_attr1(TASKS,ORIGINS),
get_attr2(TASKS,ENDS),
get_attr3(TASKS,NPOINTS),
sliding_time_window_sum1(

ORIGINS,
ENDS,
NPOINTS,
1,
ORIGINS,
ENDS,
NPOINTS,
WINDOW_SIZE,
LIMIT).

sliding_time_window_sum1(
[],
[],
[],
_38356,
_38402,
_38448,
_38494,
_38540,
_38586).

sliding_time_window_sum1(
[Oi|RO],
[Ei|RE],
[Pi|RP],
I,
ORIGINS,
ENDS,
NPOINTS,
WINDOW_SIZE,
LIMIT) :-

Oi#=<Ei,
sliding_time_window_sum2(

ORIGINS,
ENDS,
NPOINTS,
1,
Oi,
Ei,
Pi,
I,
WINDOW_SIZE,

2772 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

LIMIT,
SUM_NPOINTS),

call(SUM_NPOINTS#=<LIMIT),
I1 is I+1,
sliding_time_window_sum1(

RO,
RE,
RP,
I1,
ORIGINS,
ENDS,
NPOINTS,
WINDOW_SIZE,
LIMIT).

sliding_time_window_sum2(
[],
[],
[],
_38365,
_38411,
_38457,
_38503,
_38549,
_38595,
_38641,
0) :-

!.

sliding_time_window_sum2(
[_37994|RO],
[_37998|RE],
[_38002|RP],
J,
Oi,
Ei,
Pi,
I,
WINDOW_SIZE,
LIMIT,
Pi+SUM) :-

I=J,
!,
J1 is J+1,
sliding_time_window_sum2(

RO,

2773

RE,
RP,
J1,
Oi,
Ei,
Pi,
I,
WINDOW_SIZE,
LIMIT,
SUM).

sliding_time_window_sum2(
[_37994|RO],
[Ej|RE],
[_38004|RP],
J,
Oi,
Ei,
Pi,
I,
WINDOW_SIZE,
LIMIT,
SUM) :-

I=\=J,
fd_max(Ej,MaxEj),
fd_min(Oi,MinOi),
MaxEj<MinOi,
!,
J1 is J+1,
sliding_time_window_sum2(

RO,
RE,
RP,
J1,
Oi,
Ei,
Pi,
I,
WINDOW_SIZE,
LIMIT,
SUM).

sliding_time_window_sum2(
[Oj|RO],
[_38000|RE],
[_38004|RP],

2774 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

J,
Oi,
Ei,
Pi,
I,
WINDOW_SIZE,
LIMIT,
SUM) :-

I=\=J,
fd_min(Oj,MinOj),
fd_max(Oi,MaxOi),
E is MaxOi+WINDOW_SIZE-1,
MinOj>E,
!,
J1 is J+1,
sliding_time_window_sum2(

RO,
RE,
RP,
J1,
Oi,
Ei,
Pi,
I,
WINDOW_SIZE,
LIMIT,
SUM).

sliding_time_window_sum2(
[Oj|RO],
[Ej|RE],
[Pj|RP],
J,
Oi,
Ei,
Pi,
I,
WINDOW_SIZE,
LIMIT,
min(1,max(0,min(Oi+WINDOW_SIZE,Ej)-max(Oi,Oj))) * Pj+SUM) :-

J1 is J+1,
sliding_time_window_sum2(

RO,
RE,
RP,
J1,

2775

Oi,
Ei,
Pi,
I,
WINDOW_SIZE,
LIMIT,
SUM).

2776 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.319 smooth

♦ META-DATA:

ctr_date(smooth,[’20000128’,’20030820’,’20040530’,’ 20060815’]).

ctr_origin(smooth,’Derived from %c.’,[change]).

ctr_arguments(
smooth,
[’NCHANGE’-dvar,

’TOLERANCE’-int,
’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
smooth,
[’NCHANGE’>=0,

’NCHANGE’<size(’VARIABLES’),
’TOLERANCE’>=0,
required(’VARIABLES’,var)]).

ctr_example(
smooth,
smooth(1,2,[[var-1],[var-3],[var-4],[var-5],[var-2]])).

ctr_typical(
smooth,
[’NCHANGE’>0,

’TOLERANCE’>0,
size(’VARIABLES’)>2,
range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
smooth,
[items(’VARIABLES’,reverse),translate([’VARIABLES’ˆ var])]).

ctr_graph(
smooth,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[abs(variables1ˆvar-variables2ˆvar)>’TOLERANCE’],
[’NARC’=’NCHANGE’],
[]).

ctr_eval(smooth,[automaton(smooth_a)]).

2777

ctr_pure_functional_dependency(smooth,[]).

ctr_functional_dependency(smooth,1,[2,3]).

ctr_contractible(smooth,[’NCHANGE’=0],’VARIABLES’,p refix).

ctr_contractible(smooth,[’NCHANGE’=0],’VARIABLES’,s uffix).

ctr_contractible(
smooth,
[’NCHANGE’=size(’VARIABLES’)-1],
VARIABLES,
prefix).

ctr_contractible(
smooth,
[’NCHANGE’=size(’VARIABLES’)-1],
VARIABLES,
suffix).

smooth_a(FLAG,NCHANGE,TOLERANCE,VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N_1 is N-1,
check_type(dvar(0,N_1),NCHANGE),
integer(TOLERANCE),
TOLERANCE>=0,
smooth_signature(VARIABLES,SIGNATURE,TOLERANCE),
automaton(

SIGNATURE,
_34799,
SIGNATURE,
[source(s),sink(s)],
[arc(s,1,s,[C+1]),arc(s,0,s)],
[C],
[0],
[COUNT]),

COUNT#=NCHANGE#<=>FLAG.

smooth_signature([],[],_32967).

smooth_signature([_32971],[],_32970) :-
!.

smooth_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss],TOLERANCE) :-

2778 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

abs(VAR1-VAR2)#>TOLERANCE#<=>S#=1,
smooth_signature([[var-VAR2]|VARs],Ss,TOLERANCE).

2779

B.320 softall equal max var

♦ META-DATA:

ctr_date(soft_all_equal_max_var,[’20090926’]).

ctr_origin(
soft_all_equal_max_var,
\cite{HebrardMarxSullivanRazgon09},
[]).

ctr_arguments(
soft_all_equal_max_var,
[’N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
soft_all_equal_max_var,
[’N’>=0,’N’=<size(’VARIABLES’),required(’VARIABLES’ ,var)]).

ctr_example(
soft_all_equal_max_var,
soft_all_equal_max_var(

1,
[[var-5],[var-1],[var-5],[var-5]])).

ctr_typical(
soft_all_equal_max_var,
[’N’>0,’N’<size(’VARIABLES’),size(’VARIABLES’)>1]).

ctr_exchangeable(
soft_all_equal_max_var,
[vals([’N’],int(>=(0)),>,dontcare,dontcare),

items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
soft_all_equal_max_var,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’MAX_NSCC’=<size(’VARIABLES’)-’N’],
[]).

ctr_eval(
soft_all_equal_max_var,

2780 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[reformulation(soft_all_equal_max_var_r)]).

soft_all_equal_max_var_r(N,VARIABLES) :-
check_type(dvar_gteq(0),N),
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
get_attr1(VARIABLES,VARS),
get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),
complete_card(MINVARS,MAXVARS,L,OCC,VAL_OCC),
global_cardinality(VARS,VAL_OCC),
MAX_OCC in 0..L,
eval(maximum(MAX_OCC,OCC)),
call(N#=<L-MAX_OCC).

2781

B.321 softall equal min ctr

♦ META-DATA:

ctr_date(soft_all_equal_min_ctr,[’20081004’]).

ctr_origin(
soft_all_equal_min_ctr,
\cite{HebrardSullivanRazgon08},
[]).

ctr_synonyms(
soft_all_equal_min_ctr,
[soft_alldiff_max_ctr,

soft_alldifferent_max_ctr,
soft_alldistinct_max_ctr]).

ctr_arguments(
soft_all_equal_min_ctr,
[’N’-int,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
soft_all_equal_min_ctr,
[’N’>=0,

N=<
size(’VARIABLES’) * size(’VARIABLES’)-size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
soft_all_equal_min_ctr,
soft_all_equal_min_ctr(

6,
[[var-5],[var-1],[var-5],[var-5]])).

ctr_typical(
soft_all_equal_min_ctr,
[’N’>0,

N<
size(’VARIABLES’) * size(’VARIABLES’)-size(’VARIABLES’),
size(’VARIABLES’)>1]).

ctr_exchangeable(
soft_all_equal_min_ctr,
[vals([’N’],int(>=(0)),>,dontcare,dontcare),

items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

2782 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_graph(
soft_all_equal_min_ctr,
[’VARIABLES’],
2,
[’CLIQUE’(=\=)>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NARC’>=’N’],
[]).

ctr_eval(
soft_all_equal_min_ctr,
[reformulation(soft_all_equal_min_ctr_r)]).

soft_all_equal_min_ctr_r(N,VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
L2 is L * L-L,
check_type(dvar(0,L2),N),
get_attr1(VARIABLES,VARS),
soft_all_equal_min_ctr1(VARS,TERM),
call(N#=<TERM).

soft_all_equal_min_ctr1([],0).

soft_all_equal_min_ctr1([V|R],S+T) :-
soft_all_equal_min_ctr2(R,V,S),
soft_all_equal_min_ctr1(R,T).

soft_all_equal_min_ctr2([],_29900,0).

soft_all_equal_min_ctr2([U|R],V,2 * B+T) :-
B#<=>U#=V,
soft_all_equal_min_ctr2(R,V,T).

2783

B.322 softall equal min var

♦ META-DATA:

ctr_date(soft_all_equal_min_var,[’20090926’]).

ctr_origin(
soft_all_equal_min_var,
\cite{HebrardMarxSullivanRazgon09},
[]).

ctr_arguments(
soft_all_equal_min_var,
[’N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
soft_all_equal_min_var,
[’N’>=0,required(’VARIABLES’,var)]).

ctr_example(
soft_all_equal_min_var,
soft_all_equal_min_var(

1,
[[var-5],[var-1],[var-5],[var-5]])).

ctr_typical(soft_all_equal_min_var,[’N’>0,size(’VAR IABLES’)>1]).

ctr_exchangeable(
soft_all_equal_min_var,
[vals([’N’],int,<,dontcare,dontcare),

items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
soft_all_equal_min_var,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’MAX_NSCC’>=size(’VARIABLES’)-’N’],
[]).

ctr_eval(
soft_all_equal_min_var,
[reformulation(soft_all_equal_min_var_r)]).

2784 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

soft_all_equal_min_var_r(N,VARIABLES) :-
check_type(dvar_gteq(0),N),
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
get_attr1(VARIABLES,VARS),
get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),
complete_card(MINVARS,MAXVARS,L,OCC,VAL_OCC),
global_cardinality(VARS,VAL_OCC),
MAX_OCC in 0..L,
eval(maximum(MAX_OCC,OCC)),
call(N#>=L-MAX_OCC).

2785

B.323 softalldifferent ctr

♦ META-DATA:

ctr_date(
soft_alldifferent_ctr,
[’20030820’,’20060815’,’20090926’]).

ctr_origin(
soft_alldifferent_ctr,
\cite{PetitReginBessiere01},
[]).

ctr_synonyms(
soft_alldifferent_ctr,
[soft_alldiff_ctr,

soft_alldistinct_ctr,
soft_alldiff_min_ctr,
soft_alldifferent_min_ctr,
soft_alldistinct_min_ctr,
soft_all_equal_max_ctr]).

ctr_arguments(
soft_alldifferent_ctr,
[’C’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
soft_alldifferent_ctr,
[’C’>=0,required(’VARIABLES’,var)]).

ctr_example(
soft_alldifferent_ctr,
soft_alldifferent_ctr(

4,
[[var-5],[var-1],[var-9],[var-1],[var-5],[var-5]])) .

ctr_typical(soft_alldifferent_ctr,[’C’>0,size(’VARI ABLES’)>1]).

ctr_exchangeable(
soft_alldifferent_ctr,
[vals([’C’],int,<,dontcare,dontcare),

items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
soft_alldifferent_ctr,

2786 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[’VARIABLES’],
2,
[’CLIQUE’(<)>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NARC’=<’C’],
[]).

ctr_eval(
soft_alldifferent_ctr,
[reformulation(soft_alldifferent_ctr_r)]).

soft_alldifferent_ctr_r(C,VARIABLES) :-
length(VARIABLES,N),
N2 is(N * N-N)//2,
check_type(dvar(0,N2),C),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
soft_alldifferent_ctr1(VARS,TERM),
call(C#>=TERM).

soft_alldifferent_ctr1([],0).

soft_alldifferent_ctr1([V|R],S+T) :-
soft_alldifferent_ctr2(R,V,S),
soft_alldifferent_ctr1(R,T).

soft_alldifferent_ctr2([],_35279,0).

soft_alldifferent_ctr2([U|R],V,B+T) :-
B#<=>U#=V,
soft_alldifferent_ctr2(R,V,T).

2787

B.324 softalldifferent var

♦ META-DATA:

ctr_date(
soft_alldifferent_var,
[’20030820’,’20060815’,’20090926’]).

ctr_origin(
soft_alldifferent_var,
\cite{PetitReginBessiere01},
[]).

ctr_synonyms(
soft_alldifferent_var,
[soft_alldiff_var,

soft_alldistinct_var,
soft_alldiff_min_var,
soft_alldifferent_min_var,
soft_alldistinct_min_var]).

ctr_arguments(
soft_alldifferent_var,
[’C’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
soft_alldifferent_var,
[’C’>=0,required(’VARIABLES’,var)]).

ctr_example(
soft_alldifferent_var,
soft_alldifferent_var(

3,
[[var-5],[var-1],[var-9],[var-1],[var-5],[var-5]])) .

ctr_typical(
soft_alldifferent_var,
[’C’>0,2 * ’C’=<size(’VARIABLES’),size(’VARIABLES’)>1]).

ctr_exchangeable(
soft_alldifferent_var,
[vals([’C’],int,<,dontcare,dontcare),

items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(

2788 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

soft_alldifferent_var,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSCC’>=size(’VARIABLES’)-’C’],
[]).

ctr_eval(
soft_alldifferent_var,
[reformulation(soft_alldifferent_var_r)]).

soft_alldifferent_var_r(C,VARIABLES) :-
length(VARIABLES,N),
check_type(dvar(0,N),C),
collection(VARIABLES,[dvar]),
eval(in_interval(M,1,N)),
eval(nvalue(M,VARIABLES)),
C#>=N-M.

2789

B.325 softcumulative

♦ META-DATA:

ctr_predefined(soft_cumulative).

ctr_date(soft_cumulative,[’20091121’]).

ctr_origin(soft_cumulative,’Derived from %c’,[cumulat ive]).

ctr_arguments(
soft_cumulative,
[TASKS-

collection(
origin-dvar,
duration-dvar,
end-dvar,
height-dvar),

’LIMIT’-int,
’INTERMEDIATE_LEVEL’-int,
’SURFACE_ON_TOP’-dvar]).

ctr_restrictions(
soft_cumulative,
[require_at_least(2,’TASKS’,[origin,duration,end]),

required(’TASKS’,height),
’TASKS’ˆduration>=0,
’TASKS’ˆorigin=<’TASKS’ˆend,
’TASKS’ˆheight>=0,
’LIMIT’>=0,
’INTERMEDIATE_LEVEL’>=0,
’INTERMEDIATE_LEVEL’=<’LIMIT’,
’SURFACE_ON_TOP’>=0]).

ctr_example(
soft_cumulative,
soft_cumulative(

[[origin-1,duration-4,end-5,height-1],
[origin-1,duration-1,end-3,height-2],
[origin-3,duration-3,end-6,height-2]],

3,
2,
3)).

ctr_typical(
soft_cumulative,

2790 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[size(’TASKS’)>1,
range(’TASKS’ˆorigin)>1,
range(’TASKS’ˆduration)>1,
range(’TASKS’ˆend)>1,
range(’TASKS’ˆheight)>1,
’TASKS’ˆduration>0,
’TASKS’ˆheight>0,
’LIMIT’<sum(’TASKS’ˆheight),
’INTERMEDIATE_LEVEL’>0,
’INTERMEDIATE_LEVEL’<’LIMIT’,
’SURFACE_ON_TOP’>0]).

ctr_exchangeable(
soft_cumulative,
[items(’TASKS’,all),

translate([’TASKS’ˆorigin,’TASKS’ˆend]),
vals([’LIMIT’],int,<,dontcare,dontcare)]).

2791

B.326 softsameinterval var

♦ META-DATA:

ctr_date(soft_same_interval_var,[’20050507’,’200608 15’]).

ctr_origin(
soft_same_interval_var,
Derived from %c,
[same_interval]).

ctr_synonyms(soft_same_interval_var,[soft_same_inte rval]).

ctr_arguments(
soft_same_interval_var,
[’C’-dvar,

’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
soft_same_interval_var,
[’C’>=0,

’C’=<size(’VARIABLES1’),
size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’SIZE_INTERVAL’>0]).

ctr_example(
soft_same_interval_var,
soft_same_interval_var(

4,
[[var-9],[var-9],[var-9],[var-9],[var-9],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-1],[var-8]],
3)).

ctr_typical(
soft_same_interval_var,
[’C’>0,

size(’VARIABLES1’)>1,
range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1,
’SIZE_INTERVAL’>1,
’SIZE_INTERVAL’<range(’VARIABLES1’ˆvar),
’SIZE_INTERVAL’<range(’VARIABLES2’ˆvar)]).

2792 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_exchangeable(
soft_same_interval_var,
[args(

[[’C’],
[’VARIABLES1’,’VARIABLES2’],
[’SIZE_INTERVAL’]]),

items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar],
intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare),

vals(
[’VARIABLES2’ˆvar],
intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare)]).

ctr_graph(
soft_same_interval_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar/’SIZE_INTERVAL’=

variables2ˆvar/’SIZE_INTERVAL’],
[’NSINK_NSOURCE’=size(’VARIABLES1’)-’C’],
[]).

ctr_eval(
soft_same_interval_var,
[reformulation(soft_same_interval_var_r)]).

soft_same_interval_var_r(C,VARIABLES1,VARIABLES2,SI ZE_INTERVAL) :-
length(VARIABLES1,L1),
length(VARIABLES2,L2),
L1=L2,
check_type(dvar(0,L1),C),
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
integer(SIZE_INTERVAL),
SIZE_INTERVAL>0,
get_attr1(VARIABLES1,VARS1),

2793

get_attr1(VARIABLES2,VARS2),
gen_quotient(VARS1,SIZE_INTERVAL,QUOTVARS1),
gen_quotient(VARS2,SIZE_INTERVAL,QUOTVARS2),
gen_collection(QUOTVARS1,var,CVARS1),
gen_collection(QUOTVARS2,var,CVARS2),
eval(soft_same_var(C,CVARS1,CVARS2)).

2794 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.327 softsamemodulo var

♦ META-DATA:

ctr_date(soft_same_modulo_var,[’20050507’,’20060815 ’]).

ctr_origin(
soft_same_modulo_var,
Derived from %c,
[same_modulo]).

ctr_synonyms(soft_same_modulo_var,[soft_same_modulo]).

ctr_arguments(
soft_same_modulo_var,
[’C’-dvar,

’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’M’-int]).

ctr_restrictions(
soft_same_modulo_var,
[’C’>=0,

’C’=<size(’VARIABLES1’),
size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’M’>0]).

ctr_example(
soft_same_modulo_var,
soft_same_modulo_var(

4,
[[var-9],[var-9],[var-9],[var-9],[var-9],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-1],[var-8]],
3)).

ctr_typical(
soft_same_modulo_var,
[’C’>0,

size(’VARIABLES1’)>1,
range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1,
’M’>1,
’M’<maxval(’VARIABLES1’ˆvar),
’M’<maxval(’VARIABLES2’ˆvar)]).

2795

ctr_exchangeable(
soft_same_modulo_var,
[args([[’C’],[’VARIABLES1’,’VARIABLES2’],[’M’]]),

items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals([’VARIABLES1’ˆvar],mod(’M’),=,dontcare,dontcar e),
vals([’VARIABLES2’ˆvar],mod(’M’),=,dontcare,dontcar e)]).

ctr_graph(
soft_same_modulo_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[’NSINK_NSOURCE’=size(’VARIABLES1’)-’C’],
[]).

ctr_eval(
soft_same_modulo_var,
[reformulation(soft_same_modulo_var_r)]).

soft_same_modulo_var_r(C,VARIABLES1,VARIABLES2,M) :-
length(VARIABLES1,L1),
length(VARIABLES2,L2),
L1=L2,
check_type(dvar(0,L1),C),
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
integer(M),
M>0,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
gen_remainder(VARS1,M,REMVARS1),
gen_remainder(VARS2,M,REMVARS2),
gen_collection(REMVARS1,var,CVARS1),
gen_collection(REMVARS2,var,CVARS2),
eval(soft_same_var(C,CVARS1,CVARS2)).

2796 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.328 softsamepartition var

♦ META-DATA:

ctr_date(soft_same_partition_var,[’20050507’,’20060 816’]).

ctr_origin(
soft_same_partition_var,
Derived from %c,
[same_partition]).

ctr_synonyms(soft_same_partition_var,[soft_same_par tition]).

ctr_types(
soft_same_partition_var,
[’VALUES’-collection(val-int)]).

ctr_arguments(
soft_same_partition_var,
[’C’-dvar,

’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
soft_same_partition_var,
[’C’>=0,

’C’=<size(’VARIABLES1’),
size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2,
size(’VALUES’)>=1,
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
soft_same_partition_var,
soft_same_partition_var(

4,
[[var-9],[var-9],[var-9],[var-9],[var-9],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-1],[var-8]],
[[p-[[val-1],[val-2]]],

[p-[[val-9]]],
[p-[[val-7],[val-8]]]])).

2797

ctr_typical(
soft_same_partition_var,
[’C’>0,

size(’VARIABLES1’)>1,
range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1,
size(’VARIABLES1’)>size(’PARTITIONS’),
size(’VARIABLES2’)>size(’PARTITIONS’)]).

ctr_exchangeable(
soft_same_partition_var,
[args([[’C’],[’VARIABLES1’,’VARIABLES2’],[’PARTITIO NS’]]),

items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all),
vals(

[’VARIABLES1’ˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare),

vals(
[’VARIABLES2’ˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare)]).

ctr_graph(
soft_same_partition_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
PARTITIONS)],

[’NSINK_NSOURCE’=size(’VARIABLES1’)-’C’],
[]).

ctr_eval(
soft_same_partition_var,
[reformulation(soft_same_partition_var_r)]).

2798 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

soft_same_partition_var_r(C,VARIABLES1,VARIABLES2,P ARTITIONS) :-
length(VARIABLES1,L1),
length(VARIABLES2,L2),
L1=L2,
check_type(dvar(0,L1),C),
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
collection(PARTITIONS,[col_len_gteq(1,[int])]),
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
get_col_attr1(PARTITIONS,1,PVALS),
flattern(PVALS,VALS),
all_different(VALS),
length(PARTITIONS,M),
M>1,
length(PVALS,LPVALS),
get_partition_var(VARS1,PVALS,PVARS1,LPVALS,0),
get_partition_var(VARS2,PVALS,PVARS2,LPVALS,0),
gen_collection(PVARS1,var,CVARS1),
gen_collection(PVARS2,var,CVARS2),
eval(soft_same_var(C,CVARS1,CVARS2)).

2799

B.329 softsamevar

♦ META-DATA:

ctr_date(soft_same_var,[’20050507’,’20060816’,’2009 0522’]).

ctr_origin(soft_same_var,’\\cite{vanHoeve05}’,[]).

ctr_synonyms(soft_same_var,[soft_same]).

ctr_arguments(
soft_same_var,
[’C’-dvar,

’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
soft_same_var,
[’C’>=0,

’C’=<size(’VARIABLES1’),
size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_example(
soft_same_var,
soft_same_var(

4,
[[var-9],[var-9],[var-9],[var-9],[var-9],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-1],[var-8]])) .

ctr_typical(
soft_same_var,
[’C’>0,

size(’VARIABLES1’)>1,
range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1]).

ctr_exchangeable(
soft_same_var,
[args([[’C’],[’VARIABLES1’,’VARIABLES2’]]),

items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
int,

2800 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

=\=,
all,
dontcare)]).

ctr_graph(
soft_same_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSINK_NSOURCE’=size(’VARIABLES1’)-’C’],
[]).

ctr_eval(soft_same_var,[reformulation(soft_same_var _r)]).

soft_same_var_r(C,VARIABLES1,VARIABLES2) :-
length(VARIABLES1,L1),
length(VARIABLES2,L2),
L1=L2,
check_type(dvar(0,L1),C),
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
eval(soft_used_by_var(C,VARIABLES1,VARIABLES2)).

2801

B.330 softusedby interval var

♦ META-DATA:

ctr_date(soft_used_by_interval_var,[’20050507’,’200 60816’]).

ctr_origin(
soft_used_by_interval_var,
Derived from %c.,
[used_by_interval]).

ctr_synonyms(soft_used_by_interval_var,[soft_used_b y_interval]).

ctr_arguments(
soft_used_by_interval_var,
[’C’-dvar,

’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
soft_used_by_interval_var,
[’C’>=0,

’C’=<size(’VARIABLES2’),
size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’SIZE_INTERVAL’>0]).

ctr_example(
soft_used_by_interval_var,
soft_used_by_interval_var(

2,
[[var-9],[var-1],[var-1],[var-8],[var-8]],
[[var-9],[var-9],[var-9],[var-1]],
3)).

ctr_typical(
soft_used_by_interval_var,
[’C’>0,

size(’VARIABLES1’)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1,
’SIZE_INTERVAL’>1,
’SIZE_INTERVAL’<range(’VARIABLES1’ˆvar),

2802 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

’SIZE_INTERVAL’<range(’VARIABLES2’ˆvar)]).

ctr_exchangeable(
soft_used_by_interval_var,
[items(’VARIABLES1’,all),

items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar],
intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare),

vals(
[’VARIABLES2’ˆvar],
intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare)]).

ctr_graph(
soft_used_by_interval_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar/’SIZE_INTERVAL’=

variables2ˆvar/’SIZE_INTERVAL’],
[’NSINK_NSOURCE’=size(’VARIABLES2’)-’C’],
[]).

ctr_eval(
soft_used_by_interval_var,
[reformulation(soft_used_by_interval_var_r)]).

soft_used_by_interval_var_r(
C,
VARIABLES1,
VARIABLES2,
SIZE_INTERVAL) :-

length(VARIABLES1,L1),
length(VARIABLES2,L2),
L1>=L2,
check_type(dvar(0,L2),C),
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
integer(SIZE_INTERVAL),
SIZE_INTERVAL>0,

2803

get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
gen_quotient(VARS1,SIZE_INTERVAL,QUOTVARS1),
gen_quotient(VARS2,SIZE_INTERVAL,QUOTVARS2),
gen_collection(QUOTVARS1,var,CVARS1),
gen_collection(QUOTVARS2,var,CVARS2),
eval(soft_used_by_var(C,CVARS1,CVARS2)).

2804 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.331 softusedby modulo var

♦ META-DATA:

ctr_date(soft_used_by_modulo_var,[’20050507’,’20060 816’]).

ctr_origin(
soft_used_by_modulo_var,
Derived from %c,
[used_by_modulo]).

ctr_synonyms(soft_used_by_modulo_var,[soft_used_by_ modulo]).

ctr_arguments(
soft_used_by_modulo_var,
[’C’-dvar,

’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’M’-int]).

ctr_restrictions(
soft_used_by_modulo_var,
[’C’>=0,

’C’=<size(’VARIABLES2’),
size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’M’>0]).

ctr_example(
soft_used_by_modulo_var,
soft_used_by_modulo_var(

2,
[[var-9],[var-1],[var-1],[var-8],[var-8]],
[[var-9],[var-9],[var-9],[var-1]],
3)).

ctr_typical(
soft_used_by_modulo_var,
[’C’>0,

size(’VARIABLES1’)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1,
’M’>1,
’M’<maxval(’VARIABLES1’ˆvar),

2805

’M’<maxval(’VARIABLES2’ˆvar)]).

ctr_exchangeable(
soft_used_by_modulo_var,
[items(’VARIABLES1’,all),

items(’VARIABLES2’,all),
vals([’VARIABLES1’ˆvar],mod(’M’),=,dontcare,dontcar e),
vals([’VARIABLES2’ˆvar],mod(’M’),=,dontcare,dontcar e)]).

ctr_graph(
soft_used_by_modulo_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[’NSINK_NSOURCE’=size(’VARIABLES2’)-’C’],
[]).

ctr_eval(
soft_used_by_modulo_var,
[reformulation(soft_used_by_modulo_var_r)]).

soft_used_by_modulo_var_r(C,VARIABLES1,VARIABLES2,M) :-
length(VARIABLES1,L1),
length(VARIABLES2,L2),
L1>=L2,
check_type(dvar(0,L2),C),
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
integer(M),
M>0,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
gen_remainder(VARS1,M,REMVARS1),
gen_remainder(VARS2,M,REMVARS2),
gen_collection(REMVARS1,var,CVARS1),
gen_collection(REMVARS2,var,CVARS2),
eval(soft_used_by_var(C,CVARS1,CVARS2)).

2806 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.332 softusedby partition var

♦ META-DATA:

ctr_date(soft_used_by_partition_var,[’20050507’,’20 060816’]).

ctr_origin(
soft_used_by_partition_var,
Derived from %c.,
[used_by_partition]).

ctr_synonyms(
soft_used_by_partition_var,
[soft_used_by_partition]).

ctr_types(
soft_used_by_partition_var,
[’VALUES’-collection(val-int)]).

ctr_arguments(
soft_used_by_partition_var,
[’C’-dvar,

’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
soft_used_by_partition_var,
[’C’>=0,

’C’=<size(’VARIABLES2’),
size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2,
size(’VALUES’)>=1,
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
soft_used_by_partition_var,
soft_used_by_partition_var(

2,
[[var-9],[var-1],[var-1],[var-8],[var-8]],
[[var-9],[var-9],[var-9],[var-1]],
[[p-[[val-1],[val-2]]],

2807

[p-[[val-9]]],
[p-[[val-7],[val-8]]]])).

ctr_typical(
soft_used_by_partition_var,
[’C’>0,

size(’VARIABLES1’)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1,
size(’VARIABLES1’)>size(’PARTITIONS’),
size(’VARIABLES2’)>size(’PARTITIONS’)]).

ctr_exchangeable(
soft_used_by_partition_var,
[items(’VARIABLES1’,all),

items(’VARIABLES2’,all),
items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all),
vals(

[’VARIABLES1’ˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare),

vals(
[’VARIABLES2’ˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare)]).

ctr_graph(
soft_used_by_partition_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
PARTITIONS)],

[’NSINK_NSOURCE’=size(’VARIABLES2’)-’C’],
[]).

ctr_eval(
soft_used_by_partition_var,

2808 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[reformulation(soft_used_by_partition_var_r)]).

soft_used_by_partition_var_r(
C,
VARIABLES1,
VARIABLES2,
PARTITIONS) :-

length(VARIABLES1,L1),
length(VARIABLES2,L2),
L1>=L2,
check_type(dvar(0,L2),C),
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
collection(PARTITIONS,[col_len_gteq(1,[int])]),
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
get_col_attr1(PARTITIONS,1,PVALS),
flattern(PVALS,VALS),
all_different(VALS),
length(PARTITIONS,M),
M>1,
length(PVALS,LPVALS),
get_partition_var(VARS1,PVALS,PVARS1,LPVALS,0),
get_partition_var(VARS2,PVALS,PVARS2,LPVALS,0),
gen_collection(PVARS1,var,CVARS1),
gen_collection(PVARS2,var,CVARS2),
eval(soft_used_by_var(C,CVARS1,CVARS2)).

2809

B.333 softusedby var

♦ META-DATA:

ctr_date(soft_used_by_var,[’20050507’,’20060816’]).

ctr_origin(soft_used_by_var,’Derived from %c’,[used_b y]).

ctr_synonyms(soft_used_by_var,[soft_used_by]).

ctr_arguments(
soft_used_by_var,
[’C’-dvar,

’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
soft_used_by_var,
[’C’>=0,

’C’=<size(’VARIABLES2’),
size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_example(
soft_used_by_var,
soft_used_by_var(

2,
[[var-9],[var-1],[var-1],[var-8],[var-8]],
[[var-9],[var-9],[var-9],[var-1]])).

ctr_typical(
soft_used_by_var,
[’C’>0,

size(’VARIABLES1’)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1]).

ctr_exchangeable(
soft_used_by_var,
[items(’VARIABLES1’,all),

items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
int,

2810 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

=\=,
all,
dontcare)]).

ctr_graph(
soft_used_by_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSINK_NSOURCE’=size(’VARIABLES2’)-’C’],
[]).

ctr_eval(soft_used_by_var,[reformulation(soft_used_ by_var_r)]).

soft_used_by_var_r(C,VARIABLES1,VARIABLES2) :-
length(VARIABLES1,L1),
length(VARIABLES2,L2),
L1>=L2,
check_type(dvar(0,L2),C),
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
get_attr1(VARIABLES2,VARS2),
get_minimum(VARS2,MINVARS2),
get_maximum(VARS2,MAXVARS2),
soft_used_by_var1(

MINVARS2,
MAXVARS2,
L1,
OCCS1,
OCCS2,
TERM),

eval(global_cardinality(VARIABLES1,OCCS1)),
eval(global_cardinality(VARIABLES2,OCCS2)),
call(C#=TERM).

soft_used_by_var1(I,S,_32157,[],[],0) :-
I>S,
!.

soft_used_by_var1(
I,
S,
MAX,
[[val-I,noccurrence-O1]|R1],
[[val-I,noccurrence-O2]|R2],

2811

max(O2-O1,0)+R) :-
I=<S,
O1 in 0..MAX,
O2 in 0..MAX,
I1 is I+1,
soft_used_by_var1(I1,S,MAX,R1,R2,R).

2812 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.334 someequal

♦ META-DATA:

ctr_date(some_equal,[’20110604’]).

ctr_origin(some_equal,’Derived from %c’,[alldifferent]).

ctr_synonyms(
some_equal,
[some_eq,

not_alldifferent,
not_alldiff,
not_alldistinct,
not_distinct]).

ctr_arguments(some_equal,[’VARIABLES’-collection(va r-dvar)]).

ctr_restrictions(
some_equal,
[required(’VARIABLES’,var),size(’VARIABLES’)>1]).

ctr_example(
some_equal,
some_equal([[var-1],[var-4],[var-1],[var-6]])).

ctr_typical(some_equal,[size(’VARIABLES’)>2]).

ctr_exchangeable(
some_equal,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
some_equal,
[’VARIABLES’],
2,
[’CLIQUE’(<)>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NARC’>0],
[]).

ctr_eval(
some_equal,
[checker(some_equal_c),reformulation(some_equal_r)]).

2813

ctr_extensible(some_equal,[],’VARIABLES’,any).

some_equal_c(VARIABLES) :-
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
sort(VARS,S),
length(VARS,M),
length(S,N),
N<M.

some_equal_r(VARIABLES) :-
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
length(VARS,M),
M>1,
M1 is M-1,
N in 1..M1,
nvalue(N,VARS).

2814 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.335 sort

♦ META-DATA:

ctr_date(sort,[’20030820’,’20060816’]).

ctr_origin(sort,’\\cite{OlderSwinkelsEmden95}’,[]).

ctr_synonyms(sort,[sortedness,sorted,sorting]).

ctr_arguments(
sort,
[’VARIABLES1’-collection(var-dvar),

’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
sort,
[size(’VARIABLES1’)=size(’VARIABLES2’),

required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_example(
sort,
sort(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-1],[var-1],[var-1],[var-2],[var-5],[var-9]])) .

ctr_typical(
sort,
[size(’VARIABLES1’)>1,range(’VARIABLES1’ˆvar)>1]).

ctr_exchangeable(
sort,
[items(’VARIABLES1’,all),

translate([’VARIABLES1’ˆvar,’VARIABLES2’ˆvar])]).

ctr_graph(
sort,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[for_all(’CC’,’NSOURCE’=’NSINK’),

’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)],

[]).

2815

ctr_graph(
sort,
[’VARIABLES2’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar=<variables2ˆvar],
[’NARC’=size(’VARIABLES2’)-1],
[]).

ctr_eval(sort,[reformulation(sort_r)]).

ctr_pure_functional_dependency(sort,[]).

ctr_functional_dependency(sort,2,[1]).

sort_r(VARIABLES1,VARIABLES2) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,L1),
length(VARIABLES2,L2),
L1=L2,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
length(P,L1),
domain(P,1,L1),
sorting(VARS1,P,VARS2).

2816 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.336 sort permutation

♦ META-DATA:

ctr_date(sort_permutation,[’20030820’,’20060816’,’2 0111025’]).

ctr_origin(sort_permutation,’\\cite{Zhou97}’,[]).

ctr_usual_name(sort_permutation,sort).

ctr_synonyms(
sort_permutation,
[extended_sortedness,sortedness,sorted,sorting]).

ctr_arguments(
sort_permutation,
[’FROM’-collection(var-dvar),

’PERMUTATION’-collection(var-dvar),
’TO’-collection(var-dvar)]).

ctr_restrictions(
sort_permutation,
[size(’PERMUTATION’)=size(’FROM’),

size(’PERMUTATION’)=size(’TO’),
’PERMUTATION’ˆvar>=1,
’PERMUTATION’ˆvar=<size(’PERMUTATION’),
alldifferent(’PERMUTATION’),
required(’FROM’,var),
required(’PERMUTATION’,var),
required(’TO’,var)]).

ctr_example(
sort_permutation,
sort_permutation(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-1],[var-6],[var-3],[var-5],[var-4],[var-2]],
[[var-1],[var-1],[var-1],[var-2],[var-5],[var-9]])) .

ctr_typical(
sort_permutation,
[size(’FROM’)>1,

range(’FROM’ˆvar)>1,
lex_different(’FROM’,’TO’)]).

ctr_exchangeable(
sort_permutation,

2817

[translate([’FROM’ˆvar,’TO’ˆvar])]).

ctr_derived_collections(
sort_permutation,
[col(’FROM_PERMUTATION’-collection(var-dvar,ind-dva r),

[item(var-’FROM’ˆvar,ind-’PERMUTATION’ˆvar)])]).

ctr_graph(
sort_permutation,
[’FROM_PERMUTATION’,’TO’],
2,
[’PRODUCT’>>collection(from_permutation,to)],
[from_permutationˆvar=toˆvar,from_permutationˆind=t oˆkey],
[’NARC’=size(’PERMUTATION’)],
[]).

ctr_graph(
sort_permutation,
[’TO’],
2,
[’PATH’>>collection(to1,to2)],
[to1ˆvar=<to2ˆvar],
[’NARC’=size(’TO’)-1],
[]).

ctr_eval(sort_permutation,[builtin(sort_permutation _b)]).

ctr_functional_dependency(sort_permutation,3,[1]).

ctr_functional_dependency(sort_permutation,2,[1,3]) .

sort_permutation_b(FROM,PERMUTATION,TO) :-
length(FROM,F),
length(PERMUTATION,P),
length(TO,T),
F=P,
P=T,
collection(FROM,[dvar]),
collection(PERMUTATION,[dvar(1,P)]),
collection(TO,[dvar]),
get_attr1(FROM,FVARS),
get_attr1(PERMUTATION,PVARS),
get_attr1(TO,TVARS),
sorting(FVARS,PVARS,TVARS).

2818 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.337 stablecompatibility

♦ META-DATA:

ctr_date(stable_compatibility,[’20070601’]).

ctr_origin(
stable_compatibility,
P.˜Flener, \cite{BeldiceanuFlenerLorca06},
[]).

ctr_arguments(
stable_compatibility,
[NODES-

collection(index-int,father-dvar,prec-sint,inc-sint)]).

ctr_restrictions(
stable_compatibility,
[required(’NODES’,[index,father,prec,inc]),

’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆfather>=1,
’NODES’ˆfather=<size(’NODES’),
’NODES’ˆprec>=1,
’NODES’ˆprec=<size(’NODES’),
’NODES’ˆinc>=1,
’NODES’ˆinc=<size(’NODES’),
’NODES’ˆinc>’NODES’ˆindex]).

ctr_example(
stable_compatibility,
stable_compatibility(

[[index-1,father-4,prec-{11,12},inc-{}],
[index-2,father-3,prec-{8,9},inc-{}],
[index-3,father-4,prec-{2,10},inc-{}],
[index-4,father-5,prec-{1,3},inc-{}],
[index-5,father-7,prec-{4,13},inc-{}],
[index-6,father-2,prec-{8,14},inc-{}],
[index-7,father-7,prec-{6,13},inc-{}],
[index-8,father-6,prec-{},inc-{9,10,11,12,13,14}],
[index-9,father-2,prec-{},inc-{10,11,12,13}],
[index-10,father-3,prec-{},inc-{11,12,13}],
[index-11,father-1,prec-{},inc-{12,13}],
[index-12,father-1,prec-{},inc-{13}],
[index-13,father-5,prec-{},inc-{14}],

2819

[index-14,father-6,prec-{},inc-{}]])).

ctr_typical(
stable_compatibility,
[size(’NODES’)>2,range(’NODES’ˆfather)>1]).

ctr_exchangeable(stable_compatibility,[items(’NODES ’,all)]).

ctr_graph(
stable_compatibility,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆfather=nodes2ˆindex],
[’MAX_NSCC’=<1,

’NCC’=1,
’MAX_ID’=<2,
’PATH_FROM_TO’(index,index,prec)=1,
’PATH_FROM_TO’(index,index,inc)=0,
’PATH_FROM_TO’(index,inc,index)=0],

[]).

2820 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.338 stageelement

♦ META-DATA:

ctr_date(stage_element,[’20040828’,’20060816’]).

ctr_origin(
stage_element,
\index{Choco|indexuse}Choco, derived from %c.,
[element]).

ctr_usual_name(stage_element,stage_elt).

ctr_synonyms(stage_element,[stage_elem]).

ctr_arguments(
stage_element,
[’ITEM’-collection(index-dvar,value-dvar),

’TABLE’-collection(low-int,up-int,value-int)]).

ctr_restrictions(
stage_element,
[required(’ITEM’,[index,value]),

size(’ITEM’)=1,
size(’TABLE’)>0,
required(’TABLE’,[low,up,value]),
’TABLE’ˆlow=<’TABLE’ˆup,
increasing_seq(’TABLE’,[low])]).

ctr_example(
stage_element,
stage_element(

[[index-5,value-6]],
[[low-3,up-7,value-6],

[low-8,up-8,value-9],
[low-9,up-14,value-2],
[low-15,up-19,value-9]])).

ctr_typical(
stage_element,
[size(’TABLE’)>1,

range(’TABLE’ˆvalue)>1,
’TABLE’ˆlow<’TABLE’ˆup]).

ctr_exchangeable(
stage_element,

2821

[vals([’ITEM’ˆvalue,’TABLE’ˆvalue],int,=\=,all,dont care)]).

ctr_graph(
stage_element,
[’TABLE’],
2,
[’PATH’>>collection(table1,table2)],
[table1ˆlow=<table1ˆup,

table1ˆup+1=table2ˆlow,
table2ˆlow=<table2ˆup],

[’NARC’=size(’TABLE’)-1],
[]).

ctr_graph(
stage_element,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆindex>=tableˆlow,

itemˆindex=<tableˆup,
itemˆvalue=tableˆvalue],

[’NARC’=1],
[]).

ctr_eval(stage_element,[automaton(stage_element_a)]).

ctr_pure_functional_dependency(stage_element,[]).

ctr_functional_dependency(stage_element,1-2,[1-1,2]).

ctr_extensible(stage_element,[],’TABLE’,suffix).

stage_element_a(FLAG,ITEM,TABLE) :-
collection(ITEM,[dvar,dvar]),
collection(TABLE,[int,int,int]),
length(TABLE,N),
N>0,
get_attr1(TABLE,LOWS),
get_attr2(TABLE,UPS),
check_lesseq(LOWS,UPS),
collection_increasing_seq(TABLE,[1]),
ITEM=[[index-ITEM_INDEX,value-ITEM_VALUE]],
stage_element_signature(

TABLE,
SIGNATURE,
ITEM_INDEX,

2822 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ITEM_VALUE),
AUTOMATON=
automaton(

SIGNATURE,
_38249,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t),arc(t,0,t),arc(t,1,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

stage_element_signature([],[],_35286,_35287).

stage_element_signature(
[[low-TABLE_LOW,up-TABLE_UP,value-TABLE_VALUE]|TABL Es],
[S|Ss],
ITEM_INDEX,
ITEM_VALUE) :-

TABLE_LOW#=<ITEM_INDEX#/\ITEM_INDEX#=<TABLE_UP#/\
ITEM_VALUE#=TABLE_VALUE#<=>
S,
stage_element_signature(

TABLEs,
Ss,
ITEM_INDEX,
ITEM_VALUE).

2823

B.339 stretchcircuit

♦ META-DATA:

ctr_date(stretch_circuit,[’20030820’,’20060817’,’20 090716’]).

ctr_origin(stretch_circuit,’\\cite{Pesant01}’,[]).

ctr_usual_name(stretch_circuit,stretch).

ctr_arguments(
stretch_circuit,
[’VARIABLES’-collection(var-dvar),

’VALUES’-collection(val-int,lmin-int,lmax-int)]).

ctr_restrictions(
stretch_circuit,
[size(’VARIABLES’)>0,

required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,lmin,lmax]),
distinct(’VALUES’,val),
’VALUES’ˆlmin=<’VALUES’ˆlmax,
’VALUES’ˆlmin=<size(’VARIABLES’),
sum(’VALUES’ˆlmin)=<size(’VARIABLES’)]).

ctr_example(
stretch_circuit,
stretch_circuit(

[[var-6],
[var-6],
[var-3],
[var-1],
[var-1],
[var-1],
[var-6],
[var-6]],

[[val-1,lmin-2,lmax-4],
[val-2,lmin-2,lmax-3],
[val-3,lmin-1,lmax-6],
[val-6,lmin-2,lmax-4]])).

ctr_typical(
stretch_circuit,
[size(’VARIABLES’)>1,

range(’VARIABLES’ˆvar)>1,

2824 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

size(’VARIABLES’)>size(’VALUES’),
size(’VALUES’)>1,
’VALUES’ˆlmax=<size(’VARIABLES’)]).

ctr_exchangeable(
stretch_circuit,
[items(’VARIABLES’,shift),

items(’VALUES’,all),
vals(

[’VARIABLES’ˆvar,’VALUES’ˆval],
int,
=\=,
all,
dontcare)]).

ctr_graph(
stretch_circuit,
[’VARIABLES’],
2,
foreach(

VALUES,
[’CIRCUIT’>>collection(variables1,variables2),

’LOOP’>>collection(variables1,variables2)]),
[variables1ˆvar=’VALUES’ˆval,variables2ˆvar=’VALUES ’ˆval],
[not_in(’MIN_NCC’,1,’VALUES’ˆlmin-1),

’MAX_NCC’=<’VALUES’ˆlmax],
[]).

ctr_eval(stretch_circuit,[reformulation(stretch_cir cuit_r)]).

stretch_circuit_r(VARIABLES,VALUES) :-
collection(VARIABLES,[dvar]),
collection(VALUES,[int,int,int]),
length(VARIABLES,N),
stretch_circuit1(VALUES,0,N,DELTA),
prefix_length(VARIABLES,VARS_DELTA,DELTA),
append(VARIABLES,VARS_DELTA,VARS),
ND is N+DELTA,
stretch_circuit2(VALUES,N,ND,VALS),
eval(stretch_path(VARS,VALS)).

stretch_circuit1([],C,N,DELTA) :-
DELTA is min(C,N).

stretch_circuit1([[_42300,_42302,_42307-L]|R],C,N,D ELTA) :-
M is max(L,C),

2825

stretch_circuit1(R,M,N,DELTA).

stretch_circuit2([],_42292,_42293,[]).

stretch_circuit2([[A,B,lmax-L]|R],N,ND,[[A,B,lmax-L L]|S]) :-
(L>=N ->

LL=ND
; LL=L
),
stretch_circuit2(R,N,ND,S).

2826 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.340 stretchpath

♦ META-DATA:

ctr_date(stretch_path,[’20030820’,’20060817’,’20090 712’]).

ctr_origin(stretch_path,’\\cite{Pesant01}’,[]).

ctr_usual_name(stretch_path,stretch).

ctr_arguments(
stretch_path,
[’VARIABLES’-collection(var-dvar),

’VALUES’-collection(val-int,lmin-int,lmax-int)]).

ctr_restrictions(
stretch_path,
[size(’VARIABLES’)>0,

required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,lmin,lmax]),
distinct(’VALUES’,val),
’VALUES’ˆlmin>=0,
’VALUES’ˆlmin=<’VALUES’ˆlmax,
’VALUES’ˆlmin=<size(’VARIABLES’)]).

ctr_example(
stretch_path,
stretch_path(

[[var-6],
[var-6],
[var-3],
[var-1],
[var-1],
[var-1],
[var-6],
[var-6]],

[[val-1,lmin-2,lmax-4],
[val-2,lmin-2,lmax-3],
[val-3,lmin-1,lmax-6],
[val-6,lmin-2,lmax-2]])).

ctr_typical(
stretch_path,
[size(’VARIABLES’)>1,

range(’VARIABLES’ˆvar)>1,

2827

size(’VARIABLES’)>size(’VALUES’),
size(’VALUES’)>1,
sum(’VALUES’ˆlmin)=<size(’VARIABLES’),
’VALUES’ˆlmax=<size(’VARIABLES’)]).

ctr_exchangeable(
stretch_path,
[items(’VARIABLES’,reverse),

items(’VALUES’,all),
vals(

[’VARIABLES’ˆvar,’VALUES’ˆval],
int,
=\=,
all,
dontcare)]).

ctr_graph(
stretch_path,
[’VARIABLES’],
2,
foreach(

VALUES,
[’PATH’>>collection(variables1,variables2),

’LOOP’>>collection(variables1,variables2)]),
[variables1ˆvar=’VALUES’ˆval,variables2ˆvar=’VALUES ’ˆval],
[not_in(’MIN_NCC’,1,’VALUES’ˆlmin-1),

’MAX_NCC’=<’VALUES’ˆlmax],
[]).

ctr_eval(stretch_path,[automaton(stretch_path_a)]).

stretch_path_a(FLAG,VARIABLES,VALUES) :-
stretch_path_get_a(VARIABLES,VALUES,AUTOMATON,ALPHA BET),
automaton_bool(FLAG,ALPHABET,AUTOMATON).

stretch_path_get_a(VARIABLES,VALUES,AUTOMATON,ALPHA BET) :-
length(VARIABLES,N),
N>0,
collection(VARIABLES,[dvar]),
collection(VALUES,[int,int(0,N),int]),
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
get_attr2(VALUES,LMINS),
get_attr3(VALUES,LMAXS),
length(VALS,M),
M>0,

2828 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

all_different(VALS),
check_lesseq(LMINS,LMAXS),
stretch_lmin(LMINS,LMINS1),
stretch_reduce_lmax(LMAXS,N,LMAXSR),
stretch_gen_states(LMINS1,LMAXSR,N,1,STATES),
stretch_gen_transitions(

1,
M,
LMINS1,
LMAXSR,
LMINS1,
LMAXSR,
N,
TRANSITIONS),

get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),
sort(VALS,SVALS),
SVALS=[MINVALS|_46577],
last(SVALS,MAXVALS),
VALS_RANGE is MAXVALS-MINVALS+1,
(VALS_RANGE=M,

MINVALS=<MINVARS,
MAXVARS=<MAXVALS ->
stretch_path_simplify_transitions(

TRANSITIONS,
MINVALS,
SIMPLIFIED_TRANSITIONS),

AUTOMATON=
automaton(

VARS,
_52619,
VARS,
STATES,
SIMPLIFIED_TRANSITIONS,
[],
[],
[]),

SIG in MINVALS..MAXVALS
; stretch_path_signature(VARS,VALS,M,SIGNATURE),

AUTOMATON=
automaton(

SIGNATURE,
_54066,
SIGNATURE,
STATES,
TRANSITIONS,

2829

[],
[],
[]),

SIG in 0..M
),
union_dom_list_int([SIG],ALPHABET).

stretch_path_simplify_transitions([],_46399,[]) :-
!.

stretch_path_simplify_transitions(
[arc(_46404,0,_46406)|R],
MINVALS,
S) :-

!,
stretch_path_simplify_transitions(R,MINVALS,S).

stretch_path_simplify_transitions(
[arc(Si,E,Sj)|R],
MINVALS,
[arc(Si,NE,Sj)|S]) :-

NE is MINVALS+E-1,
stretch_path_simplify_transitions(R,MINVALS,S).

stretch_path_signature([],_46396,_46397,[]).

stretch_path_signature([VAR|VARs],VALS,M,[S|Ss]) :-
S in 0..M,
stretch_path_signature1(VALS,VALS,VAR,1,S),
stretch_path_signature(VARs,VALS,M,Ss).

stretch_path_signature1([],VALS,VAR,_46401,S) :-
stretch_path_signature2(VALS,VAR,DIFF),
call(DIFF#<=>S#=0).

stretch_path_signature1([VAL|VALs],VALS,VAR,I,S) :-
VAR#=VAL#<=>S#=I,
I1 is I+1,
stretch_path_signature1(VALs,VALS,VAR,I1,S).

stretch_path_signature2([],_46396,1).

stretch_path_signature2([VAL|VALs],VAR,VAR#\=VAL#/\ R) :-
stretch_path_signature2(VALs,VAR,R).

2830 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.341 stretchpath partition

♦ META-DATA:

ctr_date(stretch_path_partition,[’20091106’]).

ctr_origin(
stretch_path_partition,
Derived from %c.,
[stretch_path]).

ctr_synonyms(stretch_path_partition,[stretch]).

ctr_types(
stretch_path_partition,
[’VALUES’-collection(val-int)]).

ctr_arguments(
stretch_path_partition,
[’VARIABLES’-collection(var-dvar),

’PARTLIMITS’-collection(p-’VALUES’,lmin-int,lmax-in t)]).

ctr_restrictions(
stretch_path_partition,
[size(’VALUES’)>=1,

required(’VALUES’,val),
distinct(’VALUES’,val),
size(’VARIABLES’)>0,
required(’VARIABLES’,var),
size(’PARTLIMITS’)>0,
required(’PARTLIMITS’,[p,lmin,lmax]),
’PARTLIMITS’ˆlmin>=0,
’PARTLIMITS’ˆlmin=<’PARTLIMITS’ˆlmax,
’PARTLIMITS’ˆlmin=<size(’VARIABLES’)]).

ctr_example(
stretch_path_partition,
stretch_path_partition(

[[var-1],
[var-2],
[var-0],
[var-0],
[var-2],
[var-2],
[var-2],
[var-0]],

2831

[[p-[[val-1],[val-2]],lmin-2,lmax-4],
[p-[[val-3]],lmin-0,lmax-2]])).

ctr_typical(
stretch_path_partition,
[size(’VARIABLES’)>1,

range(’VARIABLES’ˆvar)>1,
size(’VARIABLES’)>size(’PARTLIMITS’),
size(’PARTLIMITS’)>1,
sum(’PARTLIMITS’ˆlmin)=<size(’VARIABLES’),
’PARTLIMITS’ˆlmax=<size(’VARIABLES’)]).

ctr_exchangeable(
stretch_path_partition,
[items(’VARIABLES’,reverse),

items(’PARTLIMITS’,all),
items(’PARTLIMITS’ˆp,all),
vals(

[’VARIABLES’ˆvar,’PARLIMITS’ˆpˆval],
int,
=\=,
all,
dontcare)]).

ctr_eval(
stretch_path_partition,
[reformulation(stretch_path_partition_r),

automaton(stretch_path_partition_a)]).

stretch_path_partition_r(VARIABLES,PARTLIMITS) :-
length(VARIABLES,N),
N>0,
collection(VARIABLES,[dvar]),
collection(

PARTLIMITS,
[col_len_gteq(1,[int]),int(0,N),int]),

get_attr1(VARIABLES,VARS),
get_col_attr1(PARTLIMITS,1,PVALS),
get_attr2(PARTLIMITS,LMINS),
get_attr3(PARTLIMITS,LMAXS),
length(PVALS,M),
M>0,
check_lesseq(LMINS,LMAXS),
flattern(PVALS,VALS),
all_different(VALS),
get_partition_var(VARS,PVALS,PVARS,M),

2832 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

gen_collection(PVARS,var,PVARIABLES),
stretch_path_partition_values(PARTLIMITS,1,VALUES),
eval(stretch_path(PVARIABLES,VALUES)).

stretch_path_partition_values([],_20734,[]) :-
!.

stretch_path_partition_values(
[[_20738,lmin-LMIN,lmax-LMAX]|R],
V,
[[val-V,lmin-LMIN,lmax-LMAX]|S]) :-

V1 is V+1,
stretch_path_partition_values(R,V1,S).

stretch_path_partition_a(FLAG,VARIABLES,PARTLIMITS) :-
stretch_path_partition_get_a(

VARIABLES,
PARTLIMITS,
AUTOMATON,
ALPHABET),

automaton_bool(FLAG,ALPHABET,AUTOMATON).

stretch_path_partition_get_a(
VARIABLES,
PARTLIMITS,
AUTOMATON,
ALPHABET) :-

length(VARIABLES,N),
N>0,
collection(VARIABLES,[dvar]),
collection(

PARTLIMITS,
[col_len_gteq(1,[int]),int(0,N),int]),

get_attr1(VARIABLES,VARS),
get_col_attr1(PARTLIMITS,1,PVALS),
get_attr2(PARTLIMITS,LMINS),
get_attr3(PARTLIMITS,LMAXS),
length(PVALS,M),
M>0,
check_lesseq(LMINS,LMAXS),
flattern(PVALS,VALS),
all_different(VALS),
stretch_lmin(LMINS,LMINS1),
stretch_reduce_lmax(LMAXS,N,LMAXSR),
stretch_gen_states(LMINS1,LMAXSR,N,1,STATES),
stretch_gen_transitions(

2833

1,
M,
LMINS1,
LMAXSR,
LMINS1,
LMAXSR,
N,
TRANSITIONS),

get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),
sort(VALS,SVALS),
SVALS=[MINVALS|_20926],
last(SVALS,MAXVALS),
VALS_RANGE is MAXVALS-MINVALS+1,
(VALS_RANGE=M,

MINVALS=<MINVARS,
MAXVARS=<MAXVALS ->
COMP_VALS=[]

; stretch_path_partition_complement(
MINVARS,
MAXVARS,
VALS,
COMP_VALS)

),
stretch_path_partition_expand_transitions(

TRANSITIONS,
COMP_VALS,
PVALS,
EXPANDED_TRANSITIONS),

AUTOMATON=
automaton(

VARS,
_28426,
VARS,
STATES,
EXPANDED_TRANSITIONS,
[],
[],
[]),

append(VARS,SVALS,ALL_VALS),
union_dom_list_int(ALL_VALS,ALPHABET).

stretch_path_partition_complement(MIN,MAX,_20735,[]) :-
MIN>MAX,
!.

2834 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

stretch_path_partition_complement(MIN,MAX,VALS,C) :-
member(MIN,VALS),
!,
MIN1 is MIN+1,
stretch_path_partition_complement(MIN1,MAX,VALS,C).

stretch_path_partition_complement(MIN,MAX,VALS,[MIN |C]) :-
MIN1 is MIN+1,
stretch_path_partition_complement(MIN1,MAX,VALS,C).

stretch_path_partition_expand_transitions([],_20734 ,_20735,[]) :-
!.

stretch_path_partition_expand_transitions(
[arc(_20740,0,_20742)|R],
[],
PVALS,
S) :-

!,
stretch_path_partition_expand_transitions(R,[],PVAL S,S).

stretch_path_partition_expand_transitions(
[arc(Si,0,Sj)|R],
[CV|CR],
PVALS,
TS) :-

!,
stretch_path_partition_tr([CV|CR],arc(Si,0,Sj),T),
stretch_path_partition_expand_transitions(

R,
[CV|CR],
PVALS,
S),

append(T,S,TS).

stretch_path_partition_expand_transitions(
[arc(Si,E,Sj)|R],
CL,
PVALS,
TS) :-

nth1(E,PVALS,VALS),
stretch_path_partition_tr(VALS,arc(Si,E,Sj),T),
stretch_path_partition_expand_transitions(R,CL,PVAL S,S),
append(T,S,TS).

stretch_path_partition_tr([],_20731,[]).

2835

stretch_path_partition_tr(
[VAL|R],
arc(Si,E,Sj),
[arc(Si,VAL,Sj)|S]) :-

stretch_path_partition_tr(R,arc(Si,E,Sj),S).

2836 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.342 strict lex2

♦ META-DATA:

ctr_predefined(strict_lex2).

ctr_date(strict_lex2,[’20031016’,’20060817’]).

ctr_origin(
strict_lex2,
\cite{FlenerFrischHnichKiziltanMiguelPearsonWalsh02 },
[]).

ctr_types(strict_lex2,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(strict_lex2,[’MATRIX’-collection(vec- ’VECTOR’)]).

ctr_restrictions(
strict_lex2,
[size(’VECTOR’)>=1,

required(’VECTOR’,var),
required(’MATRIX’,vec),
same_size(’MATRIX’,vec)]).

ctr_example(
strict_lex2,
strict_lex2(

[[vec-[[var-2],[var-2],[var-3]]],
[vec-[[var-2],[var-3],[var-1]]]])).

ctr_typical(strict_lex2,[size(’VECTOR’)>1,size(’MAT RIX’)>1]).

ctr_exchangeable(strict_lex2,[translate([’MATRIX’ˆv ecˆvar])]).

ctr_eval(strict_lex2,[reformulation(strict_lex2_r)]).

strict_lex2_r(MATRIX) :-
collection(MATRIX,[col([dvar])]),
same_size(MATRIX),
get_attr11(MATRIX,MAT),
lex_chain(MAT,[op(#<)]),
transpose(MAT,TMAT),
lex_chain(TMAT,[op(#<)]).

2837

B.343 strictly decreasing

♦ META-DATA:

ctr_date(strictly_decreasing,[’20040814’,’20060817’]).

ctr_origin(
strictly_decreasing,
Derived from %c.,
[strictly_increasing]).

ctr_arguments(
strictly_decreasing,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
strictly_decreasing,
[required(’VARIABLES’,var)]).

ctr_example(
strictly_decreasing,
strictly_decreasing([[var-8],[var-4],[var-3],[var-1]])).

ctr_typical(strictly_decreasing,[size(’VARIABLES’)> 2]).

ctr_exchangeable(
strictly_decreasing,
[translate([’VARIABLES’ˆvar])]).

ctr_graph(
strictly_decreasing,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar>variables2ˆvar],
[’NARC’=size(’VARIABLES’)-1],
[]).

ctr_eval(
strictly_decreasing,
[checker(strictly_decreasing_c),

automaton(strictly_decreasing_a)]).

ctr_contractible(strictly_decreasing,[],’VARIABLES’ ,any).

strictly_decreasing_c([]) :-

2838 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

!.

strictly_decreasing_c(VARIABLES) :-
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
strictly_decreasing_c1(VARS).

strictly_decreasing_c1([]) :-
!.

strictly_decreasing_c1([_27417]) :-
!.

strictly_decreasing_c1([X,Y|R]) :-
X>Y,
strictly_decreasing_c1([Y|R]).

strictly_decreasing_a(1,[]) :-
!.

strictly_decreasing_a(0,[]) :-
!,
fail.

strictly_decreasing_a(FLAG,VARIABLES) :-
collection(VARIABLES,[dvar]),
strictly_decreasing_signature(VARIABLES,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_28548,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

strictly_decreasing_signature([_27418],[]) :-
!.

strictly_decreasing_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss]) :-

S in 0..1,

2839

VAR1#=<VAR2#<=>S,
strictly_decreasing_signature([[var-VAR2]|VARs],Ss) .

2840 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.344 strictly increasing

♦ META-DATA:

ctr_date(strictly_increasing,[’20040814’,’20060817’]).

ctr_origin(strictly_increasing,’KOALOG’,[]).

ctr_arguments(
strictly_increasing,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
strictly_increasing,
[required(’VARIABLES’,var)]).

ctr_example(
strictly_increasing,
strictly_increasing([[var-1],[var-3],[var-6],[var-8]])).

ctr_typical(strictly_increasing,[size(’VARIABLES’)> 2]).

ctr_exchangeable(
strictly_increasing,
[translate([’VARIABLES’ˆvar])]).

ctr_graph(
strictly_increasing,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar<variables2ˆvar],
[’NARC’=size(’VARIABLES’)-1],
[]).

ctr_eval(
strictly_increasing,
[checker(strictly_increasing_c),

automaton(strictly_increasing_a)]).

ctr_contractible(strictly_increasing,[],’VARIABLES’ ,any).

strictly_increasing_c([]) :-
!.

strictly_increasing_c(VARIABLES) :-

2841

collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
strictly_increasing_c1(VARS).

strictly_increasing_c1([]) :-
!.

strictly_increasing_c1([_28356]) :-
!.

strictly_increasing_c1([X,Y|R]) :-
X<Y,
strictly_increasing_c1([Y|R]).

strictly_increasing_a(1,[]) :-
!.

strictly_increasing_a(0,[]) :-
!,
fail.

strictly_increasing_a(FLAG,VARIABLES) :-
collection(VARIABLES,[dvar]),
strictly_increasing_signature(VARIABLES,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_29487,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

strictly_increasing_signature([_28357],[]) :-
!.

strictly_increasing_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss]) :-

S in 0..1,
VAR1#>=VAR2#<=>S,
strictly_increasing_signature([[var-VAR2]|VARs],Ss) .

2842 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.345 strongly connected

♦ META-DATA:

ctr_date(strongly_connected,[’20030820’,’20040726’, ’20060817’]).

ctr_origin(
strongly_connected,
\cite{AlthausBockmayrElfKasperJungerMehlhorn02},
[]).

ctr_arguments(
strongly_connected,
[’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
strongly_connected,
[required(’NODES’,[index,succ]),

’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index)]).

ctr_example(
strongly_connected,
strongly_connected(

[[index-1,succ-{2}],
[index-2,succ-{3}],
[index-3,succ-{2,5}],
[index-4,succ-{1}],
[index-5,succ-{4}]])).

ctr_typical(strongly_connected,[size(’NODES’)>2]).

ctr_exchangeable(strongly_connected,[items(’NODES’, all)]).

ctr_graph(
strongly_connected,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes2ˆindex in_set nodes1ˆsucc],
[’MIN_NSCC’=size(’NODES’)],
[]).

2843

B.346 subgraphisomorphism

♦ META-DATA:

ctr_predefined(subgraph_isomorphism).

ctr_date(subgraph_isomorphism,[’20090821’]).

ctr_origin(subgraph_isomorphism,’\\cite{Gregor79}’, []).

ctr_arguments(
subgraph_isomorphism,
[’NODES_PATTERN’-collection(index-int,succ-sint),

’NODES_TARGET’-collection(index-int,succ-svar),
’FUNCTION’-collection(image-dvar)]).

ctr_restrictions(
subgraph_isomorphism,
[required(’NODES_PATTERN’,[index,succ]),

’NODES_PATTERN’ˆindex>=1,
’NODES_PATTERN’ˆindex=<size(’NODES_PATTERN’),
distinct(’NODES_PATTERN’,index),
’NODES_PATTERN’ˆsucc>=1,
’NODES_PATTERN’ˆsucc=<size(’NODES_PATTERN’),
required(’NODES_TARGET’,[index,succ]),
’NODES_TARGET’ˆindex>=1,
’NODES_TARGET’ˆindex=<size(’NODES_TARGET’),
distinct(’NODES_TARGET’,index),
’NODES_TARGET’ˆsucc>=1,
’NODES_TARGET’ˆsucc=<size(’NODES_TARGET’),
required(’FUNCTION’,[image]),
’FUNCTION’ˆimage>=1,
’FUNCTION’ˆimage=<size(’NODES_TARGET’),
distinct(’FUNCTION’,image),
size(’FUNCTION’)=size(’NODES_PATTERN’)]).

ctr_example(
subgraph_isomorphism,
subgraph_isomorphism(

[[index-1,succ-{2,4}],
[index-2,succ-{1,3,4}],
[index-3,succ-{}],
[index-4,succ-{}]],

[[index-1,succ-{}],
[index-2,succ-{3,4,5}],
[index-3,succ-{}],

2844 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[index-4,succ-{2,5}],
[index-5,succ-{}]],

[[image-4],[image-2],[image-3],[image-5]])).

ctr_typical(
subgraph_isomorphism,
[size(’NODES_PATTERN’)>1,size(’NODES_TARGET’)>1]).

ctr_exchangeable(
subgraph_isomorphism,
[items(’NODES_PATTERN’,all),items(’NODES_TARGET’,al l)]).

2845

B.347 sum

♦ META-DATA:

ctr_date(sum,[’20030820’,’20040726’,’20060817’]).

ctr_origin(sum,’\\cite{Yunes02}.’,[]).

ctr_synonyms(sum,[sum_pred]).

ctr_arguments(
sum,
[’INDEX’-dvar,

’SETS’-collection(ind-int,set-sint),
’CONSTANTS’-collection(cst-int),
’S’-dvar]).

ctr_restrictions(
sum,
[size(’SETS’)>=1,

required(’SETS’,[ind,set]),
distinct(’SETS’,ind),
size(’CONSTANTS’)>=1,
required(’CONSTANTS’,cst)]).

ctr_example(
sum,
sum(8,

[[ind-8,set-{2,3}],
[ind-1,set-{3}],
[ind-3,set-{1,4,5}],
[ind-6,set-{2,4}]],

[[cst-4],[cst-9],[cst-1],[cst-3],[cst-1]],
10)).

ctr_typical(
sum,
[size(’SETS’)>1,

size(’CONSTANTS’)>size(’SETS’),
range(’CONSTANTS’ˆcst)>1]).

ctr_exchangeable(sum,[items(’SETS’,all)]).

ctr_graph(
sum,
[’SETS’,’CONSTANTS’],

2846 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

2,
[’PRODUCT’>>collection(sets,constants)],
[’INDEX’=setsˆind,constantsˆkey in_set setsˆset],
[’SUM’(’CONSTANTS’,cst)=’S’],
[]).

ctr_functional_dependency(sum,4,[1,2,3]).

2847

B.348 sumctr

♦ META-DATA:

ctr_date(sum_ctr,[’20030820’,’20040807’,’20060817’]).

ctr_origin(sum_ctr,’Arithmetic constraint.’,[]).

ctr_synonyms(sum_ctr,[constant_sum,sum,linear,scala r_product]).

ctr_arguments(
sum_ctr,
[’VARIABLES’-collection(var-dvar),’CTR’-atom,’VAR’- dvar]).

ctr_restrictions(
sum_ctr,
[required(’VARIABLES’,var),

in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(sum_ctr,sum_ctr([[var-1],[var-1],[var-4]],=,6)).

ctr_typical(
sum_ctr,
[size(’VARIABLES’)>1,

range(’VARIABLES’ˆvar)>1,
in_list(’CTR’,[=,<,>=,>,=<])]).

ctr_exchangeable(sum_ctr,[items(’VARIABLES’,all)]).

ctr_graph(
sum_ctr,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[’TRUE’],
[’CTR’(’SUM’(’VARIABLES’,var),’VAR’)],
[]).

ctr_eval(sum_ctr,[reformulation(sum_ctr_r)]).

ctr_pure_functional_dependency(sum_ctr,[in_list(’CT R’,[=])]).

ctr_contractible(
sum_ctr,
[in_list(’CTR’,[<,=<]),minval(’VARIABLES’ˆvar)>=0],
VARIABLES,

2848 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

any).

ctr_contractible(
sum_ctr,
[in_list(’CTR’,[>=,>]),maxval(’VARIABLES’ˆvar)=<0],
VARIABLES,
any).

ctr_extensible(
sum_ctr,
[in_list(’CTR’,[>=,>]),minval(’VARIABLES’ˆvar)>=0],
VARIABLES,
any).

ctr_extensible(
sum_ctr,
[in_list(’CTR’,[<,=<]),maxval(’VARIABLES’ˆvar)=<0],
VARIABLES,
any).

ctr_aggregate(sum_ctr,[],[union,id,+]).

sum_ctr_r(VARIABLES,CTR,VAR) :-
collection(VARIABLES,[dvar]),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
check_type(dvar,VAR),
get_attr1(VARIABLES,VARS),
build_sum_var(VARS,SUM),
call_term_relop_value(SUM,CTR,VAR).

2849

B.349 sumcubesctr

♦ META-DATA:

ctr_predefined(sum_cubes_ctr).

ctr_date(sum_cubes_ctr,[’20111111’]).

ctr_origin(sum_cubes_ctr,’Arithmetic constraint.’,[]).

ctr_synonyms(
sum_cubes_ctr,
[sum_cubes,sum_of_cubes,sum_of_cubes_ctr]).

ctr_arguments(
sum_cubes_ctr,
[’VARIABLES’-collection(var-dvar),’CTR’-atom,’VAR’- dvar]).

ctr_restrictions(
sum_cubes_ctr,
[required(’VARIABLES’,var),

in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
sum_cubes_ctr,
sum_cubes_ctr([[var-1],[var-2],[var-2]],=,17)).

ctr_typical(
sum_cubes_ctr,
[size(’VARIABLES’)>1,

range(’VARIABLES’ˆvar)>1,
in_list(’CTR’,[=,<,>=,>,=<])]).

ctr_exchangeable(sum_cubes_ctr,[items(’VARIABLES’,a ll)]).

ctr_eval(sum_cubes_ctr,[reformulation(sum_cubes_ctr _r)]).

ctr_pure_functional_dependency(
sum_cubes_ctr,
[in_list(’CTR’,[=])]).

ctr_contractible(
sum_cubes_ctr,
[in_list(’CTR’,[<,=<]),minval(’VARIABLES’ˆvar)>=0],
VARIABLES,
any).

2850 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_contractible(
sum_cubes_ctr,
[in_list(’CTR’,[>=,>]),maxval(’VARIABLES’ˆvar)=<0],
VARIABLES,
any).

ctr_extensible(
sum_cubes_ctr,
[in_list(’CTR’,[>=,>]),minval(’VARIABLES’ˆvar)>=0],
VARIABLES,
any).

ctr_extensible(
sum_cubes_ctr,
[in_list(’CTR’,[<,=<]),maxval(’VARIABLES’ˆvar)=<0],
VARIABLES,
any).

ctr_aggregate(sum_cubes_ctr,[],[union,id,+]).

sum_cubes_ctr_r(VARIABLES,CTR,VAR) :-
collection(VARIABLES,[dvar]),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
check_type(dvar,VAR),
get_attr1(VARIABLES,VARS),
build_sum_cubes_var(VARS,SUM_CUBES),
call_term_relop_value(SUM_CUBES,CTR,VAR).

2851

B.350 sumfree

♦ META-DATA:

ctr_predefined(sum_free).

ctr_date(sum_free,[’20061003’]).

ctr_origin(sum_free,’\\cite{HoeveSabharwal07}’,[]).

ctr_arguments(sum_free,[’S’-svar]).

ctr_example(sum_free,sum_free({1,3,5,9})).

2852 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.351 sumof increments

♦ META-DATA:

ctr_predefined(sum_of_increments).

ctr_date(sum_of_increments,[’20111105’]).

ctr_origin(sum_of_increments,’\\cite{Brand09}’,[]).

ctr_synonyms(
sum_of_increments,
[increments_sum,incr_sum,sum_incr,sum_increments]).

ctr_arguments(
sum_of_increments,
[’VARIABLES’-collection(var-dvar),’LIMIT’-dvar]).

ctr_restrictions(
sum_of_increments,
[required(’VARIABLES’,var),’VARIABLES’ˆvar>=0,’LIMI T’>=0]).

ctr_example(
sum_of_increments,
[sum_of_increments(

[[var-4],[var-4],[var-3],[var-4],[var-6]],
7)]).

ctr_typical(
sum_of_increments,
[size(’VARIABLES’)>2,

range(’VARIABLES’ˆvar)>1,
maxval(’VARIABLES’ˆvar)>0,
’LIMIT’>0]).

ctr_exchangeable(
sum_of_increments,
[translate([’VARIABLES’ˆvar,’LIMIT’]),

items(’VARIABLES’,reverse),
vals([’LIMIT’],int,<,dontcare,dontcare)]).

ctr_eval(
sum_of_increments,
[reformulation(sum_of_increments_r)]).

ctr_contractible(sum_of_increments,[],’VARIABLES’,p refix).

2853

ctr_contractible(sum_of_increments,[],’VARIABLES’,s uffix).

sum_of_increments_r([],_17148) :-
!.

sum_of_increments_r(VARIABLES,LIMIT) :-
collection(VARIABLES,[dvar_gteq(0)]),
check_type(dvar_gteq(0),LIMIT),
get_attr1(VARIABLES,VARS),
fd_max(LIMIT,MaxL),
sum_of_increments_r1([0|VARS],MaxL,SUM),
call(SUM#=<LIMIT).

sum_of_increments_r1([_17150],_17148,0) :-
!.

sum_of_increments_r1([V1,V2|R],MaxL,S2+S) :-
S2 in 0..MaxL,
V2-V1#=<S2,
sum_of_increments_r1([V2|R],MaxL,S).

2854 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.352 sumof weights of distinct values

♦ META-DATA:

ctr_date(
sum_of_weights_of_distinct_values,
[’20030820’,’20040726’,’20060817’]).

ctr_origin(
sum_of_weights_of_distinct_values,
\cite{BeldiceanuCarlssonThiel02},
[]).

ctr_synonyms(sum_of_weights_of_distinct_values,[swd v]).

ctr_arguments(
sum_of_weights_of_distinct_values,
[’VARIABLES’-collection(var-dvar),

’VALUES’-collection(val-int,weight-int),
’COST’-dvar]).

ctr_restrictions(
sum_of_weights_of_distinct_values,
[required(’VARIABLES’,var),

size(’VALUES’)>0,
required(’VALUES’,[val,weight]),
’VALUES’ˆweight>=0,
distinct(’VALUES’,val),
in_attr(’VARIABLES’,var,’VALUES’,val),
’COST’>=0]).

ctr_example(
sum_of_weights_of_distinct_values,
sum_of_weights_of_distinct_values(

[[var-1],[var-6],[var-1]],
[[val-1,weight-5],[val-2,weight-3],[val-6,weight-7]],
12)).

ctr_typical(
sum_of_weights_of_distinct_values,
[size(’VARIABLES’)>1,

range(’VARIABLES’ˆvar)>1,
size(’VALUES’)>1,
range(’VALUES’ˆweight)>1,
’VALUES’ˆweight>0]).

2855

ctr_exchangeable(
sum_of_weights_of_distinct_values,
[items(’VARIABLES’,all),

vals([’VARIABLES’ˆvar],int,=\=,all,in),
items(’VALUES’,all),
vals(

[’VARIABLES’ˆvar,’VALUES’ˆval],
int,
=\=,
all,
dontcare)]).

ctr_graph(
sum_of_weights_of_distinct_values,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’NSOURCE’=size(’VARIABLES’),

’SUM’(’VALUES’,weight)=’COST’],
[]).

ctr_eval(
sum_of_weights_of_distinct_values,
[reformulation(sum_of_weights_of_distinct_values_r)]).

ctr_pure_functional_dependency(
sum_of_weights_of_distinct_values,
[]).

ctr_functional_dependency(
sum_of_weights_of_distinct_values,
3,
[1,2]).

sum_of_weights_of_distinct_values_r(VARIABLES,VALUE S,COST) :-
collection(VARIABLES,[dvar]),
collection(VALUES,[int,int_gteq(0)]),
check_type(dvar_gteq(0),COST),
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
get_attr2(VALUES,WEIGHTS),
all_different(VALS),
(VALUES=[] ->

COST#=0
; sum_of_weights_of_distinct_values1(VARS,VALS),

2856 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

sum_of_weights_of_distinct_values3(
VALS,
WEIGHTS,
VARS,
TERM),

call(COST#=TERM)
).

sum_of_weights_of_distinct_values1([],_34082).

sum_of_weights_of_distinct_values1([VAR|RVAR],VALS) :-
sum_of_weights_of_distinct_values2(VALS,VAR,OR_TERM),
call(OR_TERM),
sum_of_weights_of_distinct_values1(RVAR,VALS).

sum_of_weights_of_distinct_values2([],_34082,0).

sum_of_weights_of_distinct_values2(
[VAL|RVAL],
VAR,
VAR#=VAL#\/TERM) :-

sum_of_weights_of_distinct_values2(RVAL,VAR,TERM).

sum_of_weights_of_distinct_values3([],[],_34083,0).

sum_of_weights_of_distinct_values3(
[VAL|RVAL],
[WEIGHT|RWEIGHT],
VARS,
WEIGHT* B+TERM) :-

sum_of_weights_of_distinct_values4(VARS,VAL,OR_TERM),
call(B#<=>OR_TERM),
sum_of_weights_of_distinct_values3(

RVAL,
RWEIGHT,
VARS,
TERM).

sum_of_weights_of_distinct_values4([],_34082,0).

sum_of_weights_of_distinct_values4(
[VAR|RVAR],
VAL,
VAL#=VAR#\/TERM) :-

sum_of_weights_of_distinct_values4(RVAR,VAL,TERM).

2857

B.353 sumset

♦ META-DATA:

ctr_date(sum_set,[’20031001’,’20060818’]).

ctr_origin(sum_set,’H.˜Cambazard’,[]).

ctr_arguments(
sum_set,
[’SV’-svar,

’VALUES’-collection(val-int,coef-int),
’CTR’-atom,
’VAR’-dvar]).

ctr_restrictions(
sum_set,
[required(’VALUES’,[val,coef]),

distinct(’VALUES’,val),
’VALUES’ˆcoef>=0,
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
sum_set,
sum_set(

{2,3,6},
[[val-2,coef-7],

[val-9,coef-1],
[val-5,coef-7],
[val-6,coef-2]],

=,
9)).

ctr_typical(
sum_set,
[size(’VALUES’)>1,

’VALUES’ˆcoef>0,
in_list(’CTR’,[=,<,>=,>,=<])]).

ctr_exchangeable(sum_set,[items(’VALUES’,all)]).

ctr_graph(
sum_set,
[’VALUES’],
1,
[’SELF’>>collection(values)],

2858 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[valuesˆval in_set ’SV’],
[’CTR’(’SUM’(’VALUES’,coef),’VAR’)],
[]).

2859

B.354 sumsquaresctr

♦ META-DATA:

ctr_predefined(sum_squares_ctr).

ctr_date(sum_squares_ctr,[’20110612’]).

ctr_origin(sum_squares_ctr,’Arithmetic constraint.’, []).

ctr_synonyms(
sum_squares_ctr,
[sum_squares,sum_of_squares,sum_of_squares_ctr]).

ctr_arguments(
sum_squares_ctr,
[’VARIABLES’-collection(var-dvar),’CTR’-atom,’VAR’- dvar]).

ctr_restrictions(
sum_squares_ctr,
[required(’VARIABLES’,var),

in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
sum_squares_ctr,
sum_squares_ctr([[var-1],[var-1],[var-4]],=,18)).

ctr_typical(
sum_squares_ctr,
[size(’VARIABLES’)>1,

range(’VARIABLES’ˆvar)>1,
in_list(’CTR’,[=,<,>=,>,=<])]).

ctr_exchangeable(sum_squares_ctr,[items(’VARIABLES’ ,all)]).

ctr_eval(sum_squares_ctr,[reformulation(sum_squares _ctr_r)]).

ctr_pure_functional_dependency(
sum_squares_ctr,
[in_list(’CTR’,[=])]).

ctr_contractible(
sum_squares_ctr,
[in_list(’CTR’,[<,=<])],
VARIABLES,
any).

2860 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_extensible(
sum_squares_ctr,
[in_list(’CTR’,[>=,>])],
VARIABLES,
any).

ctr_aggregate(sum_squares_ctr,[],[union,id,+]).

sum_squares_ctr_r(VARIABLES,CTR,VAR) :-
collection(VARIABLES,[dvar]),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
check_type(dvar,VAR),
get_attr1(VARIABLES,VARS),
build_sum_squares_var(VARS,SUM_SQUARES),
call_term_relop_value(SUM_SQUARES,CTR,VAR).

2861

B.355 symmetric

♦ META-DATA:

ctr_date(symmetric,[’20060930’]).

ctr_origin(symmetric,’\\cite{Dooms06}’,[]).

ctr_arguments(
symmetric,
[’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
symmetric,
[required(’NODES’,[index,succ]),

’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index)]).

ctr_example(
symmetric,
symmetric(

[[index-1,succ-{1,2,3}],
[index-2,succ-{1,3}],
[index-3,succ-{1,2}],
[index-4,succ-{5,6}],
[index-5,succ-{4}],
[index-6,succ-{4}]])).

ctr_typical(symmetric,[size(’NODES’)>2]).

ctr_exchangeable(symmetric,[items(’NODES’,all)]).

ctr_graph(
symmetric,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes2ˆindex in_set nodes1ˆsucc],
[],
[’SYMMETRIC’]).

2862 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.356 symmetricalldifferent

♦ META-DATA:

ctr_date(
symmetric_alldifferent,
[’20000128’,’20030820’,’20060818’]).

ctr_origin(symmetric_alldifferent,’\\cite{Regin99}’ ,[]).

ctr_synonyms(
symmetric_alldifferent,
[symmetric_alldiff,

symmetric_alldistinct,
symm_alldifferent,
symm_alldiff,
symm_alldistinct,
one_factor,
two_cycle]).

ctr_arguments(
symmetric_alldifferent,
[’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
symmetric_alldifferent,
[size(’NODES’)mod 2=0,

required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
symmetric_alldifferent,
symmetric_alldifferent(

[[index-1,succ-3],
[index-2,succ-4],
[index-3,succ-1],
[index-4,succ-2]])).

ctr_typical(symmetric_alldifferent,[size(’NODES’)>= 4]).

ctr_exchangeable(symmetric_alldifferent,[items(’NOD ES’,all)]).

2863

ctr_graph(
symmetric_alldifferent,
[’NODES’],
2,
[’CLIQUE’(=\=)>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex,nodes2ˆsucc=nodes1ˆindex] ,
[’NARC’=size(’NODES’)],
[]).

ctr_eval(
symmetric_alldifferent,
[reformulation(symmetric_alldifferent_r1),

reformulation(symmetric_alldifferent_r2)]).

symmetric_alldifferent_r1(NODES) :-
symmetric_alldifferent_r1a(NODES,INODES),
eval(inverse(INODES)).

symmetric_alldifferent_r1a([],[]).

symmetric_alldifferent_r1a(
[[index-INDEX,succ-SUCC]|R],
[[index-INDEX,succ-SUCC,pred-SUCC]|S]) :-

SUCC#\=INDEX,
symmetric_alldifferent_r1a(R,S).

symmetric_alldifferent_r2([]) :-
!.

symmetric_alldifferent_r2(NODES) :-
symmetric_alldifferent0(NODES,SNODES),
length(SNODES,N),
collection(SNODES,[int(1,N),dvar(1,N)]),
get_attr1(SNODES,INDEXES),
get_attr2(SNODES,SUCCS),
all_different(INDEXES),
derangement1(SUCCS,INDEXES),
symmetric_alldifferent1(SUCCS,1,SUCCS).

2864 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.357 symmetricalldifferent except0

♦ META-DATA:

ctr_predefined(symmetric_alldifferent_except_0).

ctr_date(symmetric_alldifferent_except_0,[’20120208 ’]).

ctr_origin(
symmetric_alldifferent_except_0,
Derived from %c,
[symmetric_alldifferent]).

ctr_synonyms(
symmetric_alldifferent_except_0,
[symmetric_alldiff_except_0,

symmetric_alldistinct_except_0,
symm_alldifferent_except_0,
symm_alldiff_except_0,
symm_alldistinct_except_0]).

ctr_arguments(
symmetric_alldifferent_except_0,
[’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
symmetric_alldifferent_except_0,
[required(’NODES’,[index,succ]),

’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=0,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
symmetric_alldifferent_except_0,
symmetric_alldifferent_except_0(

[[index-1,succ-3],
[index-2,succ-0],
[index-3,succ-1],
[index-4,succ-0]])).

ctr_typical(
symmetric_alldifferent_except_0,
[size(’NODES’)>=4,minval(’NODES’ˆsucc)=0]).

2865

ctr_exchangeable(
symmetric_alldifferent_except_0,
[items(’NODES’,all)]).

ctr_eval(
symmetric_alldifferent_except_0,
[reformulation(symmetric_alldifferent_except_0_r)]) .

symmetric_alldifferent_except_0_r([]) :-
!.

symmetric_alldifferent_except_0_r(NODES) :-
symmetric_alldifferent0(NODES,SNODES),
length(SNODES,N),
collection(SNODES,[int(1,N),dvar(0,N)]),
get_attr1(SNODES,INDEXES),
get_attr2(SNODES,SUCCS),
all_different(INDEXES),
derangement1(SUCCS,INDEXES),
symmetric_alldifferent1(SUCCS,1,SUCCS).

2866 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.358 symmetriccardinality

♦ META-DATA:

ctr_date(symmetric_cardinality,[’20040530’,’2006081 8’]).

ctr_origin(
symmetric_cardinality,
Derived from %c by W.˜Kocjan.,
[global_cardinality]).

ctr_arguments(
symmetric_cardinality,
[’VARS’-collection(idvar-int,var-svar,l-int,u-int),

’VALS’-collection(idval-int,val-svar,l-int,u-int)]) .

ctr_restrictions(
symmetric_cardinality,
[required(’VARS’,[idvar,var,l,u]),

size(’VARS’)>=1,
’VARS’ˆidvar>=1,
’VARS’ˆidvar=<size(’VARS’),
distinct(’VARS’,idvar),
’VARS’ˆl>=0,
’VARS’ˆl=<’VARS’ˆu,
’VARS’ˆu=<size(’VALS’),
required(’VALS’,[idval,val,l,u]),
size(’VALS’)>=1,
’VALS’ˆidval>=1,
’VALS’ˆidval=<size(’VALS’),
distinct(’VALS’,idval),
’VALS’ˆl>=0,
’VALS’ˆl=<’VALS’ˆu,
’VALS’ˆu=<size(’VARS’)]).

ctr_example(
symmetric_cardinality,
symmetric_cardinality(

[[idvar-1,var-{3},l-0,u-1],
[idvar-2,var-{1},l-1,u-2],
[idvar-3,var-{1,2},l-1,u-2],
[idvar-4,var-{1,3},l-2,u-3]],

[[idval-1,val-{2,3,4},l-3,u-4],
[idval-2,val-{3},l-1,u-1],
[idval-3,val-{1,4},l-1,u-2],
[idval-4,val-{},l-0,u-1]])).

2867

ctr_typical(
symmetric_cardinality,
[size(’VARS’)>1,size(’VALS’)>1]).

ctr_exchangeable(
symmetric_cardinality,
[items(’VARS’,all),items(’VALS’,all)]).

ctr_graph(
symmetric_cardinality,
[’VARS’,’VALS’],
2,
[’PRODUCT’>>collection(vars,vals)],
[varsˆidvar in_set valsˆval#<=>valsˆidval in_set varsˆv ar,

varsˆl=<card_set(varsˆvar),
varsˆu>=card_set(varsˆvar),
valsˆl=<card_set(valsˆval),
valsˆu>=card_set(valsˆval)],

[’NARC’=size(’VARS’) * size(’VALS’)],
[]).

2868 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.359 symmetricgcc

♦ META-DATA:

ctr_date(symmetric_gcc,[’20030820’,’20040530’,’2006 0818’]).

ctr_origin(
symmetric_gcc,
Derived from %c by W.˜Kocjan.,
[global_cardinality]).

ctr_synonyms(symmetric_gcc,[sgcc]).

ctr_arguments(
symmetric_gcc,
[’VARS’-collection(idvar-int,var-svar,nocc-dvar),

’VALS’-collection(idval-int,val-svar,nocc-dvar)]).

ctr_restrictions(
symmetric_gcc,
[required(’VARS’,[idvar,var,nocc]),

size(’VARS’)>=1,
’VARS’ˆidvar>=1,
’VARS’ˆidvar=<size(’VARS’),
distinct(’VARS’,idvar),
’VARS’ˆnocc>=0,
’VARS’ˆnocc=<size(’VALS’),
required(’VALS’,[idval,val,nocc]),
size(’VALS’)>=1,
’VALS’ˆidval>=1,
’VALS’ˆidval=<size(’VALS’),
distinct(’VALS’,idval),
’VALS’ˆnocc>=0,
’VALS’ˆnocc=<size(’VARS’)]).

ctr_example(
symmetric_gcc,
symmetric_gcc(

[[idvar-1,var-{3},nocc-1],
[idvar-2,var-{1},nocc-1],
[idvar-3,var-{1,2},nocc-2],
[idvar-4,var-{1,3},nocc-2]],

[[idval-1,val-{2,3,4},nocc-3],
[idval-2,val-{3},nocc-1],
[idval-3,val-{1,4},nocc-2],
[idval-4,val-{},nocc-0]])).

2869

ctr_typical(symmetric_gcc,[size(’VARS’)>1,size(’VAL S’)>1]).

ctr_exchangeable(
symmetric_gcc,
[items(’VARS’,all),items(’VALS’,all)]).

ctr_graph(
symmetric_gcc,
[’VARS’,’VALS’],
2,
[’PRODUCT’>>collection(vars,vals)],
[varsˆidvar in_set valsˆval#<=>valsˆidval in_set varsˆv ar,

varsˆnocc=card_set(varsˆvar),
valsˆnocc=card_set(valsˆval)],

[’NARC’=size(’VARS’) * size(’VALS’)],
[]).

2870 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.360 temporal path

♦ META-DATA:

ctr_date(
temporal_path,
[’20000128’,’20030820’,’20060818’,’20090511’]).

ctr_origin(temporal_path,’ILOG’,[]).

ctr_arguments(
temporal_path,
[’NPATH’-dvar,

NODES-
collection(index-int,succ-dvar,start-dvar,end-dvar)]).

ctr_restrictions(
temporal_path,
[’NPATH’>=1,

’NPATH’=<size(’NODES’),
required(’NODES’,[index,succ,start,end]),
size(’NODES’)>0,
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’),
’NODES’ˆstart=<’NODES’ˆend]).

ctr_example(
temporal_path,
temporal_path(

2,
[[index-1,succ-2,start-0,end-1],

[index-2,succ-6,start-3,end-5],
[index-3,succ-4,start-0,end-3],
[index-4,succ-5,start-4,end-6],
[index-5,succ-7,start-7,end-8],
[index-6,succ-6,start-7,end-9],
[index-7,succ-7,start-9,end-10]])).

ctr_typical(
temporal_path,
[’NPATH’<size(’NODES’),

size(’NODES’)>1,
’NODES’ˆstart<’NODES’ˆend]).

2871

ctr_exchangeable(
temporal_path,
[items(’NODES’,all),

translate([’NODES’ˆstart,’NODES’ˆend])]).

ctr_graph(
temporal_path,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex,

nodes1ˆsucc=nodes1ˆindex#\/nodes1ˆend=<nodes2ˆstart ,
nodes1ˆstart=<nodes1ˆend,
nodes2ˆstart=<nodes2ˆend],

[’MAX_ID’=<1,’NCC’=’NPATH’,’NVERTEX’=size(’NODES’)] ,
[]).

ctr_eval(temporal_path,[reformulation(temporal_path _r)]).

ctr_functional_dependency(temporal_path,1,[2]).

temporal_path_r(NPATH,NODES) :-
temporal_path0(NODES,SNODES),
length(SNODES,N),
N>0,
check_type(dvar(1,N),NPATH),
collection(SNODES,[int(1,N),dvar(1,N),dvar,dvar]),
get_attr1(SNODES,INDEXES),
get_attr2(SNODES,SUCCS),
get_attr3(SNODES,STARTS),
get_attr4(SNODES,ENDS),
all_different(INDEXES),
ori_end(STARTS,ENDS),
temporal_path1(INDEXES,SUCCS,TNODES),
eval(path(NPATH,TNODES)),
temporal_path2(SUCCS,ENDS,[],STARTS).

temporal_path0(NODES,SNODES) :-
temporal_path0a(NODES,L),
sort(L,S),
temporal_path0a(SNODES,S),
!.

temporal_path0a([],[]).

2872 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

temporal_path0a(
[[index-INDEX,succ-SUCC,start-START,end-END]|R],
[INDEX-(SUCC,START,END)|T]) :-

temporal_path0a(R,T).

temporal_path1([],[],[]).

temporal_path1(
[INDEX|RINDEX],
[SUCC|RSUCC],
[[index-INDEX,succ-SUCC]|RNODES]) :-

temporal_path1(RINDEX,RSUCC,RNODES).

temporal_path2([],[],_43171,_43172).

temporal_path2(
[SUCCi|RSUCC],
[ENDi|REND],
PREV_STARTS,
[_STARTi|RSTART]) :-

append(PREV_STARTS,[ENDi],NEW_PREV_STARTS),
append(NEW_PREV_STARTS,RSTART,TABLE),
element(SUCCi,TABLE,START_SUCCi),
ENDi#=<START_SUCCi,
temporal_path2(RSUCC,REND,NEW_PREV_STARTS,RSTART).

2873

B.361 tour

♦ META-DATA:

ctr_date(tour,[’20030820’,’20060819’]).

ctr_origin(
tour,
\cite{AlthausBockmayrElfKasperJungerMehlhorn02},
[]).

ctr_synonyms(tour,[atour,cycle]).

ctr_arguments(tour,[’NODES’-collection(index-int,su cc-svar)]).

ctr_restrictions(
tour,
[size(’NODES’)>=3,

required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index)]).

ctr_example(
tour,
tour(

[[index-1,succ-{2,4}],
[index-2,succ-{1,3}],
[index-3,succ-{2,4}],
[index-4,succ-{1,3}]])).

ctr_exchangeable(tour,[items(’NODES’,all)]).

ctr_graph(
tour,
[’NODES’],
2,
[’CLIQUE’(=\=)>>collection(nodes1,nodes2)],
[nodes2ˆindex in_set nodes1ˆsucc#<=>

nodes1ˆindex in_set nodes2ˆsucc],
[’NARC’=size(’NODES’) * size(’NODES’)-size(’NODES’)],
[]).

ctr_graph(
tour,
[’NODES’],

2874 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

2,
[’CLIQUE’(=\=)>>collection(nodes1,nodes2)],
[nodes2ˆindex in_set nodes1ˆsucc],
[’MIN_NSCC’=size(’NODES’),

’MIN_ID’=2,
’MAX_ID’=2,
’MIN_OD’=2,
’MAX_OD’=2],

[]).

2875

B.362 track

♦ META-DATA:

ctr_date(track,[’20030820’,’20060819’,’20090510’]).

ctr_origin(track,’\\cite{Marte01}’,[]).

ctr_arguments(
track,
[’NTRAIL’-int,

’TASKS’-collection(trail-int,origin-dvar,end-dvar)]).

ctr_restrictions(
track,
[’NTRAIL’>0,

’NTRAIL’=<size(’TASKS’),
required(’TASKS’,[trail,origin,end]),
’TASKS’ˆorigin=<’TASKS’ˆend]).

ctr_example(
track,
track(

2,
[[trail-1,origin-1,end-2],

[trail-2,origin-1,end-2],
[trail-1,origin-2,end-4],
[trail-2,origin-2,end-3],
[trail-2,origin-3,end-4]])).

ctr_typical(
track,
[’NTRAIL’<size(’TASKS’),

size(’TASKS’)>1,
range(’TASKS’ˆtrail)>1,
’TASKS’ˆorigin<’TASKS’ˆend]).

ctr_exchangeable(
track,
[items(’TASKS’,all),

vals([’TASKS’ˆtrail],int,=\=,all,dontcare),
translate([’TASKS’ˆorigin,’TASKS’ˆend])]).

ctr_derived_collections(
track,
[col(TIME_POINTS-

2876 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

collection(origin-dvar,end-dvar,point-dvar),
[item(

origin-’TASKS’ˆorigin,
end-’TASKS’ˆend,
point-’TASKS’ˆorigin),

item(
origin-’TASKS’ˆorigin,
end-’TASKS’ˆend,
point-’TASKS’ˆend-1)])]).

ctr_graph(
track,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin=<tasksˆend],
[’NARC’=size(’TASKS’)],
[]).

ctr_graph(
track,
[’TIME_POINTS’,’TASKS’],
2,
[’PRODUCT’>>collection(time_points,tasks)],
[time_pointsˆend>time_pointsˆorigin,

tasksˆorigin=<time_pointsˆpoint,
time_pointsˆpoint<tasksˆend],

[],
[],
[SUCC>>

[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’TASKS’ˆtrail)])]],
[nvalue(’NTRAIL’,variables)]).

ctr_eval(track,[reformulation(track_r)]).

track_r(NTRAIL,TASKS) :-
length(TASKS,N),
check_type(dvar(1,N),NTRAIL),
collection(TASKS,[int(1,N),dvar,dvar]),
get_attr1(TASKS,TRAILS),
get_attr2(TASKS,ORIGINS),
get_attr3(TASKS,ENDS),
ori_end(ORIGINS,ENDS),

2877

track1(
ORIGINS,
ENDS,
TRAILS,
1,
ORIGINS,
ENDS,
TRAILS,
NTRAIL),

track3(
ORIGINS,
ENDS,
TRAILS,
1,
ORIGINS,
ENDS,
TRAILS,
NTRAIL).

track1([],[],[],_49469,_49470,_49471,_49472,_49473) .

track1([Oi|RO],[Ei|RE],[Ti|TC],I,ORIGINS,ENDS,TRAIL S,NTRAIL) :-
track2(ORIGINS,ENDS,TRAILS,1,I,Oi,Ei,Ti,COLi),
nvalue(NTRAIL,COLi),
I1 is I+1,
track1(RO,RE,TC,I1,ORIGINS,ENDS,TRAILS,NTRAIL).

track2([],[],[],_49469,_49470,_49471,_49472,_49473, []).

track2([_49478|RO],[_49482|RE],[_49486|RT],J,I,Oi,E i,Ti,[Ti|R]) :-
I=J,
!,
J1 is J+1,
track2(RO,RE,RT,J1,I,Oi,Ei,Ti,R).

track2([Oj|RO],[Ej|RE],[Tj|RT],J,I,Oi,Ei,Ti,[Tij|R]) :-
I=\=J,
K in 1..2,
Min is min(Ti,Tj),
Max is max(Ti,Tj),
Tij in Min..Max,
element(K,[Ti,Tj],Tij),
Oj#=<Oi#/\Ej#>Oi#/\Tij#=Tj#\/
(Oj#>Oi#\/Ej#=<Oi)#/\Tij#=Ti,
J1 is J+1,
track2(RO,RE,RT,J1,I,Oi,Ei,Ti,R).

2878 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

track3([],[],[],_49469,_49470,_49471,_49472,_49473) .

track3([Oi|RO],[Ei|RE],[Ti|TC],I,ORIGINS,ENDS,TRAIL S,NTRAIL) :-
track4(ORIGINS,ENDS,TRAILS,1,I,Oi,Ei,Ti,COLi),
nvalue(NTRAIL,COLi),
I1 is I+1,
track3(RO,RE,TC,I1,ORIGINS,ENDS,TRAILS,NTRAIL).

track4([],[],[],_49469,_49470,_49471,_49472,_49473, []).

track4([_49478|RO],[_49482|RE],[_49486|RT],J,I,Oi,E i,Ti,[Ti|R]) :-
I=J,
!,
J1 is J+1,
track4(RO,RE,RT,J1,I,Oi,Ei,Ti,R).

track4([Oj|RO],[Ej|RE],[Tj|RT],J,I,Oi,Ei,Ti,[Tij|R]) :-
I=\=J,
K in 1..2,
Min is min(Ti,Tj),
Max is max(Ti,Tj),
Tij in Min..Max,
element(K,[Ti,Tj],Tij),
Oj#=<Ei-1#/\Ej#>Ei-1#/\Tij#=Tj#\/
(Oj#>Ei-1#\/Ej#=<Ei-1)#/\Tij#=Ti,
J1 is J+1,
track4(RO,RE,RT,J1,I,Oi,Ei,Ti,R).

2879

B.363 tree

♦ META-DATA:

ctr_date(tree,[’20000128’,’20030820’,’20060819’]).

ctr_origin(tree,’N.˜Beldiceanu’,[]).

ctr_arguments(
tree,
[’NTREES’-dvar,’NODES’-collection(index-int,succ-dv ar)]).

ctr_restrictions(
tree,
[’NTREES’>=1,

’NTREES’=<size(’NODES’),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
tree,
tree(

2,
[[index-1,succ-1],

[index-2,succ-5],
[index-3,succ-5],
[index-4,succ-7],
[index-5,succ-1],
[index-6,succ-1],
[index-7,succ-7],
[index-8,succ-5]])).

ctr_typical(tree,[’NTREES’<size(’NODES’),size(’NODE S’)>2]).

ctr_exchangeable(tree,[items(’NODES’,all)]).

ctr_graph(
tree,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],

2880 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[’MAX_NSCC’=<1,’NCC’=’NTREES’],
[]).

ctr_eval(tree,[reformulation(tree_r)]).

ctr_functional_dependency(tree,1,[2]).

ctr_sol(tree,_A000272,[1,3,16,125,1296,16807,262144]).

tree_r(NTREES,NODES) :-
length(NODES,N),
check_type(dvar(1,N),NTREES),
collection(NODES,[int(1,N),dvar(1,N)]),
get_attr1(NODES,INDEXES),
get_attr2(NODES,SUCCS),
all_different(INDEXES),
length(RANKS,N),
domain(RANKS,1,N),
tree1(SUCCS,RANKS,INDEXES,RANKS,INDEXES,Term),
call(NTREES#=Term).

tree1([],[],_48669,_48670,_48671,0).

tree1([S|U],[R|P],[I|K],RANKS,INDEXES,B+T) :-
S#=I#<=>B,
tree2(S,R,I,RANKS,INDEXES),
tree1(U,P,K,RANKS,INDEXES,T).

tree2(_48670,_48671,_48672,_48673,[]) :-
!.

tree2(S_I,R_I,I,[R_J|P],[J|K]) :-
S_I#=J#/\I#\=J#=>R_I#<R_J,
tree2(S_I,R_I,I,P,K).

2881

B.364 treerange

♦ META-DATA:

ctr_date(
tree_range,
[’20030820’,’20040727’,’20060819’,’20090923’]).

ctr_origin(tree_range,’Derived from %c.’,[tree]).

ctr_arguments(
tree_range,
[’NTREES’-dvar,

’R’-dvar,
’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
tree_range,
[’NTREES’>=0,

’R’>=0,
’R’<size(’NODES’),
size(’NODES’)>0,
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
tree_range,
tree_range(

2,
1,
[[index-1,succ-1],

[index-2,succ-5],
[index-3,succ-5],
[index-4,succ-7],
[index-5,succ-1],
[index-6,succ-1],
[index-7,succ-7],
[index-8,succ-5]])).

ctr_typical(
tree_range,
[’NTREES’<size(’NODES’),size(’NODES’)>2]).

2882 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_exchangeable(tree_range,[items(’NODES’,all)]).

ctr_graph(
tree_range,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’MAX_NSCC’=<1,’NCC’=’NTREES’,’RANGE_DRG’=’R’],
[]).

ctr_eval(tree_range,[reformulation(tree_range_r)]).

ctr_functional_dependency(tree_range,1,[3]).

ctr_functional_dependency(tree_range,2,[3]).

tree_range_r(NTREES,R,NODES) :-
tree_range0(NODES,SNODES),
length(SNODES,N),
N>0,
N1 is N-1,
check_type(dvar(1,N),NTREES),
check_type(dvar(0,N1),R),
collection(SNODES,[int(1,N),dvar(1,N)]),
get_attr1(SNODES,INDEXES),
get_attr2(SNODES,SUCCS),
all_different(INDEXES),
eval(tree(NTREES,SNODES)),
tree_range1(

INDEXES,
SUCCS,
DISTS1,
DISTS2,
OCCS1,
OCCS2,
SUCCS1,
LS,
OLS),

eval(domain(DISTS1,0,N)),
tree_range2(INDEXES,SUCCS,N,[],DISTS2),
eval(domain(OCCS1,0,N)),
eval(global_cardinality(SUCCS1,OCCS2)),
eval(domain(LS,0,1)),
tree_range3(OLS),

2883

eval(in_interval(MIN,0,N)),
eval(open_minimum(MIN,OLS)),
eval(in_interval(MAX,0,N)),
eval(maximum(MAX,DISTS1)),
eval(

scalar_product(
[[coeff-1,var-MAX],[coeff- -1,var-MIN]],
=,
R)).

tree_range0(NODES,SNODES) :-
tree_range0a(NODES,L),
sort(L,S),
tree_range0a(SNODES,S),
!.

tree_range0a([],[]).

tree_range0a([[index-I,succ-S]|R],[I-S|T]) :-
tree_range0a(R,T).

tree_range1([],[],[],[],[],[],[],[],[]).

tree_range1(
[I|RI],
[S|RS],
[[var-V]|RV1],
[[value-V]|RV2],
[[var-O]|RO],
[[val-I,noccurrence-O]|RIO],
[[var-S]|RSS],
[[var-L]|RL],
[[var-O,bool-L]|ROL]) :-

tree_range1(RI,RS,RV1,RV2,RO,RIO,RSS,RL,ROL).

tree_range2([],[],_42122,_42123,_42124).

tree_range2(
[_IND|RIND],
[SUCC|RSUCC],
N,
DISTS_BEFORE,
DISTS_AFTER) :-

append(DISTS_BEFORE,[[value-0]],TD),
DISTS_AFTER=[[value-D]|RDISTS_AFTER],
append(TD,RDISTS_AFTER,TABLE),

2884 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

eval(in_interval(DS,0,N)),
eval(element(SUCC,TABLE,DS)),
eval(

scalar_product(
[[coeff-1,var-D],[coeff- -1,var-DS]],
=,
1)),

append(DISTS_BEFORE,[[value-D]],DISTS_BEFORE1),
tree_range2(RIND,RSUCC,N,DISTS_BEFORE1,RDISTS_AFTER).

tree_range3([]).

tree_range3([[var-O,bool-L]|ROL]) :-
L#<=>O#>0,
tree_range3(ROL).

2885

B.365 treeresource

♦ META-DATA:

ctr_date(tree_resource,[’20030820’,’20060819’]).

ctr_origin(tree_resource,’Derived from %c.’,[tree]).

ctr_arguments(
tree_resource,
[’RESOURCE’-collection(id-int,nb_task-dvar),

’TASK’-collection(id-int,father-dvar,resource-dvar)]).

ctr_restrictions(
tree_resource,
[size(’RESOURCE’)>0,

required(’RESOURCE’,[id,nb_task]),
’RESOURCE’ˆid>=1,
’RESOURCE’ˆid=<size(’RESOURCE’),
distinct(’RESOURCE’,id),
’RESOURCE’ˆnb_task>=0,
’RESOURCE’ˆnb_task=<size(’TASK’),
required(’TASK’,[id,father,resource]),
’TASK’ˆid>size(’RESOURCE’),
’TASK’ˆid=<size(’RESOURCE’)+size(’TASK’),
distinct(’TASK’,id),
’TASK’ˆfather>=1,
’TASK’ˆfather=<size(’RESOURCE’)+size(’TASK’),
’TASK’ˆresource>=1,
’TASK’ˆresource=<size(’RESOURCE’)]).

ctr_example(
tree_resource,
tree_resource(

[[id-1,nb_task-4],[id-2,nb_task-0],[id-3,nb_task-1]],
[[id-4,father-8,resource-1],

[id-5,father-3,resource-3],
[id-6,father-8,resource-1],
[id-7,father-1,resource-1],
[id-8,father-1,resource-1]])).

ctr_typical(
tree_resource,
[size(’RESOURCE’)>0,size(’TASK’)>size(’RESOURCE’)]) .

ctr_exchangeable(

2886 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

tree_resource,
[items(’RESOURCE’,all),items(’TASK’,all)]).

ctr_derived_collections(
tree_resource,
[col(RESOURCE_TASK-

collection(index-int,succ-dvar,name-dvar),
[item(

index-’RESOURCE’ˆid,
succ-’RESOURCE’ˆid,
name-’RESOURCE’ˆid),

item(
index-’TASK’ˆid,
succ-’TASK’ˆfather,
name-’TASK’ˆresource)])]).

ctr_graph(
tree_resource,
[’RESOURCE_TASK’],
2,
[’CLIQUE’>>collection(resource_task1,resource_task2)],
[resource_task1ˆsucc=resource_task2ˆindex,

resource_task1ˆname=resource_task2ˆname],
[’MAX_NSCC’=<1,

’NCC’=size(’RESOURCE’),
’NVERTEX’=size(’RESOURCE’)+size(’TASK’)],

[]).

ctr_graph(
tree_resource,
[’RESOURCE_TASK’],
2,
foreach(

RESOURCE,
[’CLIQUE’>>collection(resource_task1,resource_task2)]),

[resource_task1ˆsucc=resource_task2ˆindex,
resource_task1ˆname=resource_task2ˆname,
resource_task1ˆname=’RESOURCE’ˆid],

[’NVERTEX’=’RESOURCE’ˆnb_task+1],
[]).

ctr_eval(tree_resource,[reformulation(tree_resource _r)]).

tree_resource_r(RESOURCE,TASK) :-
length(RESOURCE,R),
length(TASK,T),

2887

R>0,
collection(RESOURCE,[int(1,R),dvar(0,T)]),
get_attr1(RESOURCE,RIDS),
get_attr2(RESOURCE,RNBTASKS),
all_different(RIDS),
R1 is R+1,
RT is R+T,
collection(TASK,[int(R1,RT),dvar(1,RT),dvar(1,R)]),
get_attr1(TASK,TIDS),
get_attr2(TASK,TFATHERS),
get_attr3(TASK,TRESOURCES),
all_different(TIDS),
tree_resource1(RIDS,CNODES1),
tree_resource2(TIDS,TFATHERS,CNODES2),
append(CNODES1,CNODES2,NODES),
eval(tree(R,NODES)),
tree_resource3(TIDS,TRESOURCES,TIR),
sort(TIR,STIR),
tree_resource4(1,R,INC),
append(INC,STIR,TAB),
tree_resource5(TAB,TABR),
tree_resource6(TFATHERS,TRESOURCES,TABR),
tree_resource7(STIR,GCVARS),
tree_resource8(RIDS,RNBTASKS,GCVALS),
eval(global_cardinality(GCVARS,GCVALS)).

tree_resource1([],[]).

tree_resource1([I|R],[[index-I,succ-I]|S]) :-
tree_resource1(R,S).

tree_resource2([],[],[]).

tree_resource2([I|R],[F|S],[[index-I,succ-F]|T]) :-
tree_resource2(R,S,T).

tree_resource3([],[],[]).

tree_resource3([I|RI],[R|RR],[I-R|S]) :-
tree_resource3(RI,RR,S).

tree_resource4(I,R,[]) :-
I>R,
!.

tree_resource4(I,R,[I-I|S]) :-

2888 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

I=<R,
I1 is I+1,
tree_resource4(I1,R,S).

tree_resource5([],[]).

tree_resource5([_51558-R|S],[[value-R]|T]) :-
tree_resource5(S,T).

tree_resource6([],[],_51552).

tree_resource6([Fi|RF],[Ri|RR],TABR) :-
eval(element(Fi,TABR,Ri)),
tree_resource6(RF,RR,TABR).

tree_resource7([],[]).

tree_resource7([_51558-V|R],[[var-V]|S]) :-
tree_resource7(R,S).

tree_resource8([],[],[]).

tree_resource8([V|R],[O|S],[[val-V,noccurrence-O]|T]) :-
tree_resource8(R,S,T).

2889

B.366 twin

♦ META-DATA:

ctr_predefined(twin).

ctr_date(twin,[’20111129’]).

ctr_origin(
twin,
Pairs of variables related by hiden %c constraints sharing t he same table.,
[element]).

ctr_arguments(twin,[’PAIRS’-collection(x-dvar,y-dva r)]).

ctr_restrictions(
twin,
[required(’PAIRS’,x),required(’PAIRS’,y),size(’PAIR S’)>0]).

ctr_example(
twin,
twin(

[[x-1,y-8],
[x-9,y-6],
[x-1,y-8],
[x-5,y-0],
[x-6,y-7],
[x-9,y-6]])).

ctr_typical(
twin,
[size(’PAIRS’)>1,

size(’PAIRS’)>nval(’PAIRS’ˆx),
size(’PAIRS’)>nval(’PAIRS’ˆy),
nval(’PAIRS’ˆx)>1,
nval(’PAIRS’ˆy)>1,
nval(’PAIRS’ˆx)=nval(’PAIRS’ˆy),
nval(’PAIRS’ˆx)<size(’PAIRS’),
nval(’PAIRS’ˆy)<size(’PAIRS’)]).

ctr_eval(twin,[checker(twin_c)]).

ctr_contractible(twin,[],’PAIRS’,any).

twin_c(PAIRS) :-
collection(PAIRS,[int,int]),

2890 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

length(PAIRS,N),
N>0,
get_attr12(PAIRS,P12),
sort(P12,S12),
twin1(S12),
get_attr21(PAIRS,P21),
sort(P21,S21),
twin1(S21).

twin1([]) :-
!.

twin1([_13004]) :-
!.

twin1([X1-_13008,X2-Y|R]) :-
X1\==X2,
twin1([X2-Y|R]).

2891

B.367 two layer edgecrossing

♦ META-DATA:

ctr_date(two_layer_edge_crossing,[’20030820’,’20060 819’]).

ctr_origin(
two_layer_edge_crossing,
Inspired by \cite{HararySchwenk72}.,
[]).

ctr_arguments(
two_layer_edge_crossing,
[’NCROSS’-dvar,

’VERTICES_LAYER1’-collection(id-int,pos-dvar),
’VERTICES_LAYER2’-collection(id-int,pos-dvar),
’EDGES’-collection(id-int,vertex1-int,vertex2-int)]).

ctr_restrictions(
two_layer_edge_crossing,
[’NCROSS’>=0,

required(’VERTICES_LAYER1’,[id,pos]),
’VERTICES_LAYER1’ˆid>=1,
’VERTICES_LAYER1’ˆid=<size(’VERTICES_LAYER1’),
distinct(’VERTICES_LAYER1’,id),
distinct(’VERTICES_LAYER1’,pos),
required(’VERTICES_LAYER2’,[id,pos]),
’VERTICES_LAYER2’ˆid>=1,
’VERTICES_LAYER2’ˆid=<size(’VERTICES_LAYER2’),
distinct(’VERTICES_LAYER2’,id),
distinct(’VERTICES_LAYER2’,pos),
required(’EDGES’,[id,vertex1,vertex2]),
’EDGES’ˆid>=1,
’EDGES’ˆid=<size(’EDGES’),
distinct(’EDGES’,id),
’EDGES’ˆvertex1>=1,
’EDGES’ˆvertex1=<size(’VERTICES_LAYER1’),
’EDGES’ˆvertex2>=1,
’EDGES’ˆvertex2=<size(’VERTICES_LAYER2’)]).

ctr_example(
two_layer_edge_crossing,
two_layer_edge_crossing(

2,
[[id-1,pos-1],[id-2,pos-2]],
[[id-1,pos-3],[id-2,pos-1],[id-3,pos-2]],

2892 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[[id-1,vertex1-2,vertex2-2],
[id-2,vertex1-2,vertex2-3],
[id-3,vertex1-1,vertex2-1]])).

ctr_typical(
two_layer_edge_crossing,
[size(’VERTICES_LAYER1’)>1,

size(’VERTICES_LAYER2’)>1,
size(’EDGES’)>=size(’VERTICES_LAYER1’),
size(’EDGES’)>=size(’VERTICES_LAYER2’)]).

ctr_exchangeable(
two_layer_edge_crossing,
[args(

[[’NCROSS’],
[’VERTICES_LAYER1’,’VERTICES_LAYER2’],
[’EDGES’]]),

items(’VERTICES_LAYER1’,all),
items(’VERTICES_LAYER2’,all)]).

ctr_derived_collections(
two_layer_edge_crossing,
[col(EDGES_EXTREMITIES-

collection(layer1-dvar,layer2-dvar),
[item(

layer1-
’EDGES’ˆvertex1(’VERTICES_LAYER1’,pos,id),
layer2-
’EDGES’ˆvertex2(’VERTICES_LAYER2’,pos,id))])]).

ctr_graph(
two_layer_edge_crossing,
[’EDGES_EXTREMITIES’],
2,
[’CLIQUE’(<)>>

collection(edges_extremities1,edges_extremities2)],
[edges_extremities1ˆlayer1<

edges_extremities2ˆlayer1#/\
edges_extremities1ˆlayer2>edges_extremities2ˆlayer2 #\/
edges_extremities1ˆlayer1>edges_extremities2ˆlayer1 #/\
edges_extremities1ˆlayer2<edges_extremities2ˆlayer2],

[’NARC’=’NCROSS’],
[]).

ctr_pure_functional_dependency(two_layer_edge_cross ing,[]).

2893

ctr_functional_dependency(two_layer_edge_crossing,1 ,[2,3,4]).

2894 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.368 two orth are in contact

♦ META-DATA:

ctr_date(
two_orth_are_in_contact,
[’20030820’,’20040530’,’20060819’]).

ctr_origin(
two_orth_are_in_contact,
\cite{Roach84}, used for defining %c.,
[orths_are_connected]).

ctr_types(
two_orth_are_in_contact,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
two_orth_are_in_contact,
[’ORTHOTOPE1’-’ORTHOTOPE’,’ORTHOTOPE2’-’ORTHOTOPE’]).

ctr_restrictions(
two_orth_are_in_contact,
[size(’ORTHOTOPE’)>0,

require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>0,
’ORTHOTOPE’ˆori=<’ORTHOTOPE’ˆend,
size(’ORTHOTOPE1’)=size(’ORTHOTOPE2’),
orth_link_ori_siz_end(’ORTHOTOPE1’),
orth_link_ori_siz_end(’ORTHOTOPE2’)]).

ctr_example(
two_orth_are_in_contact,
two_orth_are_in_contact(

[[ori-1,siz-3,end-4],[ori-5,siz-2,end-7]],
[[ori-3,siz-2,end-5],[ori-2,siz-3,end-5]])).

ctr_typical(two_orth_are_in_contact,[size(’ORTHOTOP E’)>1]).

ctr_exchangeable(
two_orth_are_in_contact,
[args([[’ORTHOTOPE1’,’ORTHOTOPE2’]]),

items_sync(’ORTHOTOPE1’,’ORTHOTOPE2’,all)]).

ctr_graph(
two_orth_are_in_contact,

2895

[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’PRODUCT’(=)>>collection(orthotope1,orthotope2)],
[orthotope1ˆend>orthotope2ˆori,

orthotope2ˆend>orthotope1ˆori],
[’NARC’=size(’ORTHOTOPE1’)-1],
[]).

ctr_graph(
two_orth_are_in_contact,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’PRODUCT’(=)>>collection(orthotope1,orthotope2)],
[max(0,

max(orthotope1ˆori,orthotope2ˆori)-
min(orthotope1ˆend,orthotope2ˆend))=

0],
[’NARC’=size(’ORTHOTOPE1’)],
[]).

ctr_eval(
two_orth_are_in_contact,
[automaton(two_orth_are_in_contact_a)]).

two_orth_are_in_contact_a(FLAG,ORTHOTOPE1,ORTHOTOPE 2) :-
length(ORTHOTOPE1,D1),
length(ORTHOTOPE2,D2),
D1>0,
D2>0,
D1=D2,
collection(ORTHOTOPE1,[dvar,dvar_gteq(1),dvar]),
collection(ORTHOTOPE2,[dvar,dvar_gteq(1),dvar]),
get_attr1(ORTHOTOPE1,ORIS1),
get_attr3(ORTHOTOPE1,ENDS1),
check_lesseq(ORIS1,ENDS1),
get_attr1(ORTHOTOPE2,ORIS2),
get_attr3(ORTHOTOPE2,ENDS2),
check_lesseq(ORIS2,ENDS2),
eval(orth_link_ori_siz_end(ORTHOTOPE1)),
eval(orth_link_ori_siz_end(ORTHOTOPE2)),
two_orth_are_in_contact_signature(

ORTHOTOPE1,
ORTHOTOPE2,
SIGNATURE),

AUTOMATON=
automaton(

2896 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

SIGNATURE,
_38731,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t),arc(t,0,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1,2],AUTOMATON).

two_orth_are_in_contact_signature([],[],[]).

two_orth_are_in_contact_signature(
[[ori-ORI1,siz-SIZ1,end-END1]|Q1],
[[ori-ORI2,siz-SIZ2,end-END2]|Q2],
[S|Ss]) :-

S in 0..2,
SIZ1#>0#/\SIZ2#>0#/\END1#>ORI2#/\END2#>ORI1#<=>S#=0 ,
SIZ1#>0#/\SIZ2#>0#/\(END1#=ORI2#\/END2#=ORI1)#<=>S# =1,
two_orth_are_in_contact_signature(Q1,Q2,Ss).

2897

B.369 two orth column

♦ META-DATA:

ctr_date(two_orth_column,[’20030820’]).

ctr_origin(
two_orth_column,
Used for defining %c.,
[diffn_column]).

ctr_types(
two_orth_column,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
two_orth_column,
[’ORTHOTOPE1’-’ORTHOTOPE’,

’ORTHOTOPE2’-’ORTHOTOPE’,
’DIM’-int]).

ctr_restrictions(
two_orth_column,
[size(’ORTHOTOPE’)>0,

require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
’ORTHOTOPE’ˆori=<’ORTHOTOPE’ˆend,
size(’ORTHOTOPE1’)=size(’ORTHOTOPE2’),
orth_link_ori_siz_end(’ORTHOTOPE1’),
orth_link_ori_siz_end(’ORTHOTOPE2’),
’DIM’>0,
’DIM’=<size(’ORTHOTOPE1’)]).

ctr_example(
two_orth_column,
two_orth_column(

[[ori-1,siz-3,end-4],[ori-1,siz-1,end-2]],
[[ori-4,siz-2,end-6],[ori-1,siz-3,end-4]],
1)).

ctr_typical(two_orth_column,[size(’ORTHOTOPE’)>1]).

ctr_exchangeable(
two_orth_column,
[args([[’ORTHOTOPE1’,’ORTHOTOPE2’],[’DIM’]])]).

2898 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_graph(
two_orth_column,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’PRODUCT’(=)>>collection(orthotope1,orthotope2)],
[orthotope1ˆkey=’DIM’#/\

orthotope1ˆori<orthotope2ˆend#/\
orthotope2ˆori<orthotope1ˆend#/\
orthotope1ˆsiz>0#/\
orthotope2ˆsiz>0#=>
min(orthotope1ˆend,orthotope2ˆend)-
max(orthotope1ˆori,orthotope2ˆori)=
orthotope1ˆsiz#/\
orthotope1ˆsiz=orthotope2ˆsiz],

[’NARC’=1],
[]).

ctr_eval(two_orth_column,[reformulation(two_orth_co lumn_r)]).

two_orth_column_r(ORTHOTOPE1,ORTHOTOPE2,DIM) :-
collection(ORTHOTOPE1,[dvar,dvar_gteq(0),dvar]),
collection(ORTHOTOPE2,[dvar,dvar_gteq(0),dvar]),
length(ORTHOTOPE1,DIM1),
length(ORTHOTOPE2,DIM2),
DIM1=DIM2,
check_type(int(1,DIM1),DIM),
get_attr1(ORTHOTOPE1,ORIS1),
nth1(DIM,ORIS1,O1),
get_attr2(ORTHOTOPE1,SIZS1),
nth1(DIM,SIZS1,S1),
get_attr3(ORTHOTOPE1,ENDS1),
nth1(DIM,ENDS1,E1),
get_attr1(ORTHOTOPE2,ORIS2),
nth1(DIM,ORIS2,O2),
get_attr2(ORTHOTOPE2,SIZS2),
nth1(DIM,SIZS2,S2),
get_attr3(ORTHOTOPE2,ENDS2),
nth1(DIM,ENDS2,E2),
O1#<E2#/\O2#<E1#/\S1#>0#/\S2#>0#=>
min(E1,E2)-max(O1,O2)#=S1#/\S1#=S2.

2899

B.370 two orth do not overlap

♦ META-DATA:

ctr_date(
two_orth_do_not_overlap,
[’20030820’,’20040530’,’20060819’]).

ctr_origin(
two_orth_do_not_overlap,
Used for defining %c.,
[diffn]).

ctr_types(
two_orth_do_not_overlap,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
two_orth_do_not_overlap,
[’ORTHOTOPE1’-’ORTHOTOPE’,’ORTHOTOPE2’-’ORTHOTOPE’]).

ctr_restrictions(
two_orth_do_not_overlap,
[size(’ORTHOTOPE’)>0,

require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
’ORTHOTOPE’ˆori=<’ORTHOTOPE’ˆend,
size(’ORTHOTOPE1’)=size(’ORTHOTOPE2’),
orth_link_ori_siz_end(’ORTHOTOPE1’),
orth_link_ori_siz_end(’ORTHOTOPE2’)]).

ctr_example(
two_orth_do_not_overlap,
two_orth_do_not_overlap(

[[ori-2,siz-2,end-4],[ori-1,siz-3,end-4]],
[[ori-4,siz-4,end-8],[ori-3,siz-3,end-6]])).

ctr_typical(two_orth_do_not_overlap,[size(’ORTHOTOP E’)>1]).

ctr_exchangeable(
two_orth_do_not_overlap,
[args([[’ORTHOTOPE1’,’ORTHOTOPE2’]]),

items_sync(’ORTHOTOPE1’,’ORTHOTOPE2’,all),
vals([’ORTHOTOPE1’ˆsiz],int(>=(0)),>,dontcare,dontc are),
vals([’ORTHOTOPE2’ˆsiz],int(>=(0)),>,dontcare,dontc are)]).

2900 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_graph(
two_orth_do_not_overlap,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’SYMMETRIC_PRODUCT’(=)>>

collection(orthotope1,orthotope2)],
[orthotope1ˆend=<orthotope2ˆori#\/orthotope1ˆsiz=0] ,
[’NARC’>=1],
[’BIPARTITE’,’NO_LOOP’]).

ctr_eval(
two_orth_do_not_overlap,
[automaton(two_orth_do_not_overlap_a)]).

two_orth_do_not_overlap_a(FLAG,ORTHOTOPE1,ORTHOTOPE 2) :-
length(ORTHOTOPE1,D1),
length(ORTHOTOPE2,D2),
D1>0,
D2>0,
D1=D2,
collection(ORTHOTOPE1,[dvar,dvar_gteq(0),dvar]),
collection(ORTHOTOPE2,[dvar,dvar_gteq(0),dvar]),
get_attr1(ORTHOTOPE1,ORIS1),
get_attr3(ORTHOTOPE1,ENDS1),
check_lesseq(ORIS1,ENDS1),
get_attr1(ORTHOTOPE2,ORIS2),
get_attr3(ORTHOTOPE2,ENDS2),
check_lesseq(ORIS2,ENDS2),
eval(orth_link_ori_siz_end(ORTHOTOPE1)),
eval(orth_link_ori_siz_end(ORTHOTOPE2)),
two_orth_do_not_overlap_signature(

ORTHOTOPE1,
ORTHOTOPE2,
SIGNATURE),

AUTOMATON=
automaton(

SIGNATURE,
_35847,
SIGNATURE,
[source(s),sink(t)],
[arc(s,1,s),arc(s,0,t),arc(t,0,t),arc(t,1,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

2901

two_orth_do_not_overlap_signature([],[],[]).

two_orth_do_not_overlap_signature(
[[ori-ORI1,siz-SIZ1,end-END1]|Q1],
[[ori-ORI2,siz-SIZ2,end-END2]|Q2],
[S|Ss]) :-

SIZ1#>0#/\SIZ2#>0#/\END1#>ORI2#/\END2#>ORI1#<=>S,
two_orth_do_not_overlap_signature(Q1,Q2,Ss).

2902 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.371 two orth include

♦ META-DATA:

ctr_date(two_orth_include,[’20030820’,’20090524’]).

ctr_origin(
two_orth_include,
Used for defining %c.,
[diffn_include]).

ctr_types(
two_orth_include,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
two_orth_include,
[’ORTHOTOPE1’-’ORTHOTOPE’,

’ORTHOTOPE2’-’ORTHOTOPE’,
’DIM’-int]).

ctr_restrictions(
two_orth_include,
[size(’ORTHOTOPE’)>0,

require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
’ORTHOTOPE’ˆori=<’ORTHOTOPE’ˆend,
size(’ORTHOTOPE1’)=size(’ORTHOTOPE2’),
orth_link_ori_siz_end(’ORTHOTOPE1’),
orth_link_ori_siz_end(’ORTHOTOPE2’),
’DIM’>0,
’DIM’=<size(’ORTHOTOPE1’)]).

ctr_example(
two_orth_include,
two_orth_include(

[[ori-1,siz-3,end-4],[ori-1,siz-1,end-2]],
[[ori-1,siz-2,end-3],[ori-2,siz-3,end-5]],
1)).

ctr_typical(two_orth_include,[size(’ORTHOTOPE’)>1]) .

ctr_exchangeable(
two_orth_include,
[args([[’ORTHOTOPE1’,’ORTHOTOPE2’],[’DIM’]])]).

2903

ctr_graph(
two_orth_include,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’PRODUCT’(=)>>collection(orthotope1,orthotope2)],
[orthotope1ˆkey=’DIM’#/\

orthotope1ˆori<orthotope2ˆend#/\
orthotope2ˆori<orthotope1ˆend#/\
orthotope1ˆsiz>0#/\
orthotope2ˆsiz>0#=>
min(orthotope1ˆend,orthotope2ˆend)-
max(orthotope1ˆori,orthotope2ˆori)=
min(orthotope1ˆsiz,orthotope2ˆsiz)],

[’NARC’=1],
[]).

ctr_eval(two_orth_include,[reformulation(two_orth_i nclude_r)]).

two_orth_include_r(ORTHOTOPE1,ORTHOTOPE2,DIM) :-
collection(ORTHOTOPE1,[dvar,dvar_gteq(0),dvar]),
collection(ORTHOTOPE2,[dvar,dvar_gteq(0),dvar]),
length(ORTHOTOPE1,DIM1),
length(ORTHOTOPE2,DIM2),
DIM1=DIM2,
check_type(int(1,DIM1),DIM),
get_attr1(ORTHOTOPE1,ORIS1),
nth1(DIM,ORIS1,O1),
get_attr2(ORTHOTOPE1,SIZS1),
nth1(DIM,SIZS1,S1),
get_attr3(ORTHOTOPE1,ENDS1),
nth1(DIM,ENDS1,E1),
get_attr1(ORTHOTOPE2,ORIS2),
nth1(DIM,ORIS2,O2),
get_attr2(ORTHOTOPE2,SIZS2),
nth1(DIM,SIZS2,S2),
get_attr3(ORTHOTOPE2,ENDS2),
nth1(DIM,ENDS2,E2),
O1#<E2#/\O2#<E1#/\S1#>0#/\S2#>0#=>
min(E1,E2)-max(O1,O2)#=min(S1,S2).

2904 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.372 usedby

♦ META-DATA:

ctr_date(used_by,[’20000128’,’20030820’,’20040530’, ’20060820’]).

ctr_origin(used_by,’N.˜Beldiceanu’,[]).

ctr_arguments(
used_by,
[’VARIABLES1’-collection(var-dvar),

’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
used_by,
[size(’VARIABLES1’)>=size(’VARIABLES2’),

required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_example(
used_by,
used_by(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-1],[var-1],[var-2],[var-5]])).

ctr_typical(
used_by,
[size(’VARIABLES1’)>1,

range(’VARIABLES1’ˆvar)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES2’ˆvar)>1]).

ctr_exchangeable(
used_by,
[items(’VARIABLES1’,all),

items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
int,
=\=,
all,
dontcare)]).

ctr_graph(
used_by,
[’VARIABLES1’,’VARIABLES2’],

2905

2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[for_all(’CC’,’NSOURCE’>=’NSINK’),

’NSINK’=size(’VARIABLES2’)],
[]).

ctr_eval(used_by,[reformulation(used_by_r)]).

ctr_contractible(used_by,[],’VARIABLES2’,any).

ctr_extensible(used_by,[],’VARIABLES1’,any).

ctr_aggregate(used_by,[],[union,union]).

used_by_r(VARIABLES1,VARIABLES2) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
N1>=N2,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
used_by_reified(VARS2,VARS1,VARS2).

2906 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.373 usedby interval

♦ META-DATA:

ctr_date(used_by_interval,[’20030820’,’20060820’]).

ctr_origin(used_by_interval,’Derived from %c.’,[used_ by]).

ctr_arguments(
used_by_interval,
[’VARIABLES1’-collection(var-dvar),

’VARIABLES2’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
used_by_interval,
[size(’VARIABLES1’)>=size(’VARIABLES2’),

required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’SIZE_INTERVAL’>0]).

ctr_example(
used_by_interval,
used_by_interval(

[[var-1],[var-9],[var-1],[var-8],[var-6],[var-2]],
[[var-1],[var-0],[var-7],[var-7]],
3)).

ctr_typical(
used_by_interval,
[size(’VARIABLES1’)>1,

range(’VARIABLES1’ˆvar)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES2’ˆvar)>1,
’SIZE_INTERVAL’>1,
’SIZE_INTERVAL’<range(’VARIABLES1’ˆvar),
’SIZE_INTERVAL’<range(’VARIABLES2’ˆvar)]).

ctr_exchangeable(
used_by_interval,
[items(’VARIABLES1’,all),

items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar],
intervals(’SIZE_INTERVAL’),
=,

2907

dontcare,
dontcare),

vals(
[’VARIABLES2’ˆvar],
intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare)]).

ctr_graph(
used_by_interval,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar/’SIZE_INTERVAL’=

variables2ˆvar/’SIZE_INTERVAL’],
[for_all(’CC’,’NSOURCE’>=’NSINK’),

’NSINK’=size(’VARIABLES2’)],
[]).

ctr_eval(used_by_interval,[reformulation(used_by_in terval_r)]).

ctr_contractible(used_by_interval,[],’VARIABLES2’,a ny).

ctr_extensible(used_by_interval,[],’VARIABLES1’,any).

ctr_aggregate(used_by_interval,[],[union,union,id]) .

used_by_interval_r(VARIABLES1,VARIABLES2,SIZE_INTER VAL) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
N1>=N2,
integer(SIZE_INTERVAL),
SIZE_INTERVAL>0,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
gen_quotient(VARS1,SIZE_INTERVAL,QUOTVARS1),
gen_quotient(VARS2,SIZE_INTERVAL,QUOTVARS2),
used_by_reified(QUOTVARS2,QUOTVARS1,QUOTVARS2).

2908 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.374 usedby modulo

♦ META-DATA:

ctr_date(used_by_modulo,[’20030820’,’20060820’]).

ctr_origin(used_by_modulo,’Derived from %c.’,[used_by]).

ctr_arguments(
used_by_modulo,
[’VARIABLES1’-collection(var-dvar),

’VARIABLES2’-collection(var-dvar),
’M’-int]).

ctr_restrictions(
used_by_modulo,
[size(’VARIABLES1’)>=size(’VARIABLES2’),

required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’M’>0]).

ctr_example(
used_by_modulo,
used_by_modulo(

[[var-1],[var-9],[var-4],[var-5],[var-2],[var-1]],
[[var-7],[var-1],[var-2],[var-5]],
3)).

ctr_typical(
used_by_modulo,
[size(’VARIABLES1’)>1,

range(’VARIABLES1’ˆvar)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES2’ˆvar)>1,
’M’>1,
’M’<maxval(’VARIABLES1’ˆvar),
’M’<maxval(’VARIABLES2’ˆvar)]).

ctr_exchangeable(
used_by_modulo,
[items(’VARIABLES1’,all),

items(’VARIABLES2’,all),
vals([’VARIABLES1’ˆvar],mod(’M’),=,dontcare,dontcar e),
vals([’VARIABLES2’ˆvar],mod(’M’),=,dontcare,dontcar e)]).

ctr_graph(

2909

used_by_modulo,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[for_all(’CC’,’NSOURCE’>=’NSINK’),

’NSINK’=size(’VARIABLES2’)],
[]).

ctr_eval(used_by_modulo,[reformulation(used_by_modu lo_r)]).

ctr_contractible(used_by_modulo,[],’VARIABLES2’,any).

ctr_extensible(used_by_modulo,[],’VARIABLES1’,any).

ctr_aggregate(used_by_modulo,[],[union,union,id]).

used_by_modulo_r(VARIABLES1,VARIABLES2,M) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
N1>=N2,
integer(M),
M>0,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
gen_remainder(VARS1,M,REMVARS1),
gen_remainder(VARS2,M,REMVARS2),
used_by_reified(REMVARS2,REMVARS1,REMVARS2).

2910 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.375 usedby partition

♦ META-DATA:

ctr_date(used_by_partition,[’20030820’,’20060820’]) .

ctr_origin(used_by_partition,’Derived from %c.’,[used _by]).

ctr_types(used_by_partition,[’VALUES’-collection(va l-int)]).

ctr_arguments(
used_by_partition,
[’VARIABLES1’-collection(var-dvar),

’VARIABLES2’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
used_by_partition,
[size(’VALUES’)>=1,

required(’VALUES’,val),
distinct(’VALUES’,val),
size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_example(
used_by_partition,
used_by_partition(

[[var-1],[var-9],[var-1],[var-6],[var-2],[var-3]],
[[var-1],[var-3],[var-6],[var-6]],
[[p-[[val-1],[val-3]]],

[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

ctr_typical(
used_by_partition,
[size(’VARIABLES1’)>1,

range(’VARIABLES1’ˆvar)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES2’ˆvar)>1,
size(’VARIABLES1’)>size(’PARTITIONS’),
size(’VARIABLES2’)>size(’PARTITIONS’)]).

ctr_exchangeable(

2911

used_by_partition,
[items(’VARIABLES1’,all),

items(’VARIABLES2’,all),
items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all),
vals(

[’VARIABLES1’ˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare),

vals(
[’VARIABLES2’ˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare)]).

ctr_graph(
used_by_partition,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
PARTITIONS)],

[for_all(’CC’,’NSOURCE’>=’NSINK’),
’NSINK’=size(’VARIABLES2’)],

[]).

ctr_eval(
used_by_partition,
[reformulation(used_by_partition_r)]).

ctr_aggregate(used_by_partition,[],[union,union,id]).

ctr_contractible(used_by_partition,[],’VARIABLES2’, any).

ctr_extensible(used_by_partition,[],’VARIABLES1’,an y).

used_by_partition_r(VARIABLES1,VARIABLES2,PARTITION S) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
collection(PARTITIONS,[col_len_gteq(1,[int])]),
length(VARIABLES1,N1),

2912 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

length(VARIABLES2,N2),
N1>=N2,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
get_col_attr1(PARTITIONS,1,PVALS),
flattern(PVALS,VALS),
all_different(VALS),
length(PARTITIONS,P),
P>1,
length(PVALS,LPVALS),
LPVALS1 is LPVALS+1,
get_partition_var(VARS1,PVALS,PVARS1,LPVALS1,0),
get_partition_var(VARS2,PVALS,PVARS2,LPVALS1,0),
used_by_reified(PVARS2,PVARS1,PVARS2).

2913

B.376 uses

♦ META-DATA:

ctr_date(uses,[’20050917’,’20060820’]).

ctr_origin(
uses,
\cite{BessiereHebrardHnichKiziltanWalsh05IJCAI},
[]).

ctr_arguments(
uses,
[’VARIABLES1’-collection(var-dvar),

’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
uses,
[min(1,size(’VARIABLES1’))>=min(1,size(’VARIABLES2’)),

required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_example(
uses,
uses(

[[var-3],[var-3],[var-4],[var-6]],
[[var-3],[var-4],[var-4],[var-4],[var-4]])).

ctr_typical(
uses,
[size(’VARIABLES1’)>1,

range(’VARIABLES1’ˆvar)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES2’ˆvar)>1,
size(’VARIABLES1’)=<size(’VARIABLES2’)]).

ctr_exchangeable(
uses,
[items(’VARIABLES1’,all),

items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
int,
=\=,
all,
dontcare)]).

2914 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_graph(
uses,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSINK’=size(’VARIABLES2’)],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(uses,[reformulation(uses_r)]).

ctr_contractible(uses,[],’VARIABLES2’,any).

ctr_extensible(uses,[],’VARIABLES1’,any).

ctr_aggregate(uses,[],[union,union]).

uses_r(VARIABLES1,VARIABLES2) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,L1),
length(VARIABLES2,L2),
M1 is min(1,L1),
M2 is min(1,L2),
M1>=M2,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
uses1(VARS2,VARS1).

uses1([],_35047).

uses1([VAR2|R],VARS1) :-
uses2(VARS1,VAR2,TERM),
call(TERM),
uses1(R,VARS1).

uses2([],_35047,0).

uses2([VAR1|R],VAR2,VAR2#=VAR1#\/S) :-
uses2(R,VAR2,S).

2915

B.377 valley

♦ META-DATA:

ctr_date(valley,[’20040530’]).

ctr_origin(valley,’Derived from %c.’,[inflexion]).

ctr_arguments(
valley,
[’N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
valley,
[’N’>=0,

2* ’N’=<max(size(’VARIABLES’)-1,0),
required(’VARIABLES’,var)]).

ctr_example(
valley,
valley(

1,
[[var-1],

[var-1],
[var-4],
[var-8],
[var-8],
[var-2],
[var-7],
[var-1]])).

ctr_typical(
valley,
[size(’VARIABLES’)>2,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
valley,
[items(’VARIABLES’,reverse),translate([’VARIABLES’ˆ var])]).

ctr_eval(valley,[automaton(valley_a)]).

ctr_contractible(valley,[’N’=0],’VARIABLES’,any).

valley_a(FLAG,N,VARIABLES) :-
check_type(dvar_gteq(0),N),
collection(VARIABLES,[dvar]),

2916 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

length(VARIABLES,L),
MAX is max(L-1,0),
2* N#=<MAX,
valley_signature(VARIABLES,SIGNATURE),
automaton(

SIGNATURE,
_19215,
SIGNATURE,
[source(s),sink(u),sink(s)],
[arc(s,0,s),

arc(s,1,s),
arc(s,2,u),
arc(u,0,s,[C+1]),
arc(u,1,u),
arc(u,2,u)],

[C],
[0],
[COUNT]),

COUNT#=N#<=>FLAG.

valley_signature([],[]).

valley_signature([_17449],[]) :-
!.

valley_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss]) :-
S in 0..2,
VAR1#<VAR2#<=>S#=0,
VAR1#=VAR2#<=>S#=1,
VAR1#>VAR2#<=>S#=2,
valley_signature([[var-VAR2]|VARs],Ss).

2917

B.378 veceq tuple

♦ META-DATA:

ctr_date(vec_eq_tuple,[’20030820’,’20060820’]).

ctr_origin(vec_eq_tuple,’Used for defining %c.’,[in_re lation]).

ctr_arguments(
vec_eq_tuple,
[’VARIABLES’-collection(var-dvar),

’TUPLE’-collection(val-int)]).

ctr_restrictions(
vec_eq_tuple,
[required(’VARIABLES’,var),

required(’TUPLE’,val),
size(’VARIABLES’)=size(’TUPLE’)]).

ctr_example(
vec_eq_tuple,
vec_eq_tuple(

[[var-5],[var-3],[var-3]],
[[val-5],[val-3],[val-3]])).

ctr_typical(
vec_eq_tuple,
[size(’VARIABLES’)>1,

range(’VARIABLES’ˆvar)>1,
range(’TUPLE’ˆval)>1]).

ctr_exchangeable(
vec_eq_tuple,
[args([[’VARIABLES’,’TUPLE’]]),

items_sync(’VARIABLES’,’TUPLE’,all)]).

ctr_graph(
vec_eq_tuple,
[’VARIABLES’,’TUPLE’],
2,
[’PRODUCT’(=)>>collection(variables,tuple)],
[variablesˆvar=tupleˆval],
[’NARC’=size(’VARIABLES’)],
[]).

ctr_eval(vec_eq_tuple,[reformulation(vec_eq_tuple_r)]).

2918 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_contractible(vec_eq_tuple,[],[’VARIABLES’,’TUPL E’],any).

vec_eq_tuple_r(VARIABLES,TUPLE) :-
collection(VARIABLES,[dvar]),
collection(TUPLE,[int]),
length(VARIABLES,N),
length(TUPLE,M),
N=M,
get_attr1(VARIABLES,VARS),
get_attr1(TUPLE,VALS),
vec_eq_tuple1(VARS,VALS).

vec_eq_tuple1([],[]).

vec_eq_tuple1([VAR|R],[VAL|S]) :-
VAR#=VAL,
vec_eq_tuple1(R,S).

2919

B.379 visible

♦ META-DATA:

ctr_predefined(visible).

ctr_date(visible,[’20071013’]).

ctr_origin(
visible,
Extension of \emph{accessibility} parameter of %c.,
[diffn]).

ctr_types(
visible,
[’VARIABLES’-collection(v-dvar),

’INTEGERS’-collection(v-int),
’POSITIVES’-collection(v-int),
’DIMDIR’-collection(dim-int,dir-int)]).

ctr_arguments(
visible,
[’K’-int,

’DIMS’-sint,
’FROM’-’DIMDIR’,
OBJECTS-
collection(

oid-int,
sid-dvar,
x-’VARIABLES’,
start-dvar,
duration-dvar,
end-dvar),

SBOXES-
collection(

sid-int,
t-’INTEGERS’,
l-’POSITIVES’,
f-’DIMDIR’)]).

ctr_restrictions(
visible,
[size(’VARIABLES’)>=1,

size(’INTEGERS’)>=1,
size(’POSITIVES’)>=1,
required(’VARIABLES’,v),

2920 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

size(’VARIABLES’)=’K’,
required(’INTEGERS’,v),
size(’INTEGERS’)=’K’,
required(’POSITIVES’,v),
size(’POSITIVES’)=’K’,
’POSITIVES’ˆv>0,
required(’DIMDIR’,[dim,dir]),
size(’DIMDIR’)>0,
size(’DIMDIR’)=<’K’+’K’,
distinct(’DIMDIR’,[]),
’DIMDIR’ˆdim>=0,
’DIMDIR’ˆdim<’K’,
’DIMDIR’ˆdir>=0,
’DIMDIR’ˆdir=<1,
’K’>=0,
’DIMS’>=0,
’DIMS’<’K’,
distinct(’OBJECTS’,oid),
required(’OBJECTS’,[oid,sid,x]),
require_at_least(2,’OBJECTS’,[start,duration,end]),
’OBJECTS’ˆoid>=1,
’OBJECTS’ˆoid=<size(’OBJECTS’),
’OBJECTS’ˆsid>=1,
’OBJECTS’ˆsid=<size(’SBOXES’),
’OBJECTS’ˆduration>=0,
size(’SBOXES’)>=1,
required(’SBOXES’,[sid,t,l]),
’SBOXES’ˆsid>=1,
’SBOXES’ˆsid=<size(’SBOXES’),
do_not_overlap(’SBOXES’)]).

ctr_example(
visible,
[visible(

2,
{0,1},
[[dim-0,dir-1]],
[[oid-1,

sid-1,
x-[[v-1],[v-2]],
start-8,
duration-8,
end-16],

[oid-2,
sid-2,
x-[[v-4],[v-2]],

2921

start-1,
duration-15,
end-16]],

[[sid-1,
t-[[v-0],[v-0]],
l-[[v-1],[v-2]],
f-[[dim-0,dir-1]]],

[sid-2,
t-[[v-0],[v-0]],
l-[[v-2],[v-3]],
f-[[dim-0,dir-1]]]]),

visible(
2,
{0,1},
[[dim-0,dir-1]],
[[oid-1,

sid-1,
x-[[v-1],[v-2]],
start-1,
duration-8,
end-9],

[oid-2,
sid-2,
x-[[v-4],[v-2]],
start-1,
duration-15,
end-16]],

[[sid-1,
t-[[v-0],[v-0]],
l-[[v-1],[v-2]],
f-[[dim-0,dir-1]]],

[sid-2,
t-[[v-0],[v-0]],
l-[[v-2],[v-3]],
f-[[dim-0,dir-1]]]]),

visible(
2,
{0,1},
[[dim-0,dir-1]],
[[oid-1,

sid-1,
x-[[v-1],[v-1]],
start-1,
duration-15,
end-16],

[oid-2,

2922 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

sid-2,
x-[[v-2],[v-2]],
start-6,
duration-6,
end-12]],

[[sid-1,
t-[[v-0],[v-0]],
l-[[v-1],[v-2]],
f-[[dim-0,dir-1]]],

[sid-2,
t-[[v-0],[v-0]],
l-[[v-2],[v-3]],
f-[[dim-0,dir-1]]]]),

visible(
2,
{0,1},
[[dim-0,dir-1]],
[[oid-1,

sid-1,
x-[[v-4],[v-1]],
start-1,
duration-8,
end-9],

[oid-2,
sid-2,
x-[[v-1],[v-2]],
start-1,
duration-15,
end-16]],

[[sid-1,
t-[[v-0],[v-0]],
l-[[v-1],[v-2]],
f-[[dim-0,dir-1]]],

[sid-2,
t-[[v-0],[v-0]],
l-[[v-2],[v-3]],
f-[[dim-0,dir-1]]]]),

visible(
2,
{0},
[[dim-0,dir-1]],
[[oid-1,

sid-1,
x-[[v-2],[v-1]],
start-1,
duration-8,

2923

end-9],
[oid-2,

sid-2,
x-[[v-4],[v-3]],
start-1,
duration-15,
end-16]],

[[sid-1,
t-[[v-0],[v-0]],
l-[[v-1],[v-2]],
f-[[dim-0,dir-1]]],

[sid-2,
t-[[v-0],[v-0]],
l-[[v-2],[v-2]],
f-[[dim-0,dir-1]]]])]).

ctr_typical(visible,[size(’OBJECTS’)>1]).

ctr_exchangeable(
visible,
[items(’OBJECTS’,all),items(’SBOXES’,all)]).

2924 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.380 weightedpartial alldiff

♦ META-DATA:

ctr_date(
weighted_partial_alldiff,
[’20040814’,’20060820’,’20090503’]).

ctr_origin(
weighted_partial_alldiff,
\cite[page 71]{Thiel04},
[]).

ctr_synonyms(
weighted_partial_alldiff,
[weighted_partial_alldifferent,

weighted_partial_alldistinct,
wpa]).

ctr_arguments(
weighted_partial_alldiff,
[’VARIABLES’-collection(var-dvar),

’UNDEFINED’-int,
’VALUES’-collection(val-int,weight-int),
’COST’-dvar]).

ctr_restrictions(
weighted_partial_alldiff,
[required(’VARIABLES’,var),

size(’VALUES’)>0,
required(’VALUES’,[val,weight]),
in_attr(’VARIABLES’,var,’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
weighted_partial_alldiff,
weighted_partial_alldiff(

[[var-4],[var-0],[var-1],[var-2],[var-0],[var-0]],
0,
[[val-0,weight-0],

[val-1,weight-2],
[val-2,weight- -1],
[val-4,weight-7],
[val-5,weight- -8],
[val-6,weight-2]],

8)).

2925

ctr_typical(
weighted_partial_alldiff,
[size(’VARIABLES’)>0,

atleast(1,’VARIABLES’,’UNDEFINED’),
size(’VARIABLES’)=<size(’VALUES’)+2]).

ctr_exchangeable(
weighted_partial_alldiff,
[items(’VARIABLES’,all),

items(’VALUES’,all),
vals(

[’VARIABLES’ˆvar,’VALUES’ˆval],
int(=\=(’UNDEFINED’)),
=\=,
all,
dontcare)]).

ctr_graph(
weighted_partial_alldiff,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=\=’UNDEFINED’,variablesˆvar=valuesˆv al],
[’MAX_ID’=<1,’SUM’(’VALUES’,weight)=’COST’],
[]).

ctr_eval(
weighted_partial_alldiff,
[reformulation(weighted_partial_alldiff_r)]).

ctr_functional_dependency(weighted_partial_alldiff, 4,[1,3]).

weighted_partial_alldiff_r(VARIABLES,UNDEFINED,VALU ES,COST) :-
collection(VARIABLES,[dvar]),
integer(UNDEFINED),
collection(VALUES,[int,int]),
length(VALUES,N),
N>0,
check_type(dvar,COST),
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
get_attr2(VALUES,WEIGHTS),
all_different(VALS),
get_proj1(VALUES,CVALS),
weighted_partial_alldiff0(VALS,WEIGHTS,UNDEFINED),

2926 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

weighted_partial_alldiff1(VARS,CVALS),
weighted_partial_alldiff2(VARS,UNDEFINED),
weighted_partial_alldiff4(VALS,WEIGHTS,VARS,TERM),
call(COST#=TERM).

weighted_partial_alldiff0(
[UNDEFINED|_44173],
[0|_44177],
UNDEFINED) :-

!.

weighted_partial_alldiff0([_V|R],[_W|S],UNDEFINED) : -
weighted_partial_alldiff0(R,S,UNDEFINED).

weighted_partial_alldiff1([],_44167).

weighted_partial_alldiff1([VAR|R],VALUES) :-
eval(VAR in VALUES),
weighted_partial_alldiff1(R,VALUES).

weighted_partial_alldiff2([],_44167).

weighted_partial_alldiff2([_44171],_44170) :-
!.

weighted_partial_alldiff2([VAR|R],UNDEFINED) :-
weighted_partial_alldiff3(R,VAR,UNDEFINED),
weighted_partial_alldiff2(R,UNDEFINED).

weighted_partial_alldiff3([],_44167,_44168).

weighted_partial_alldiff3([UAR|R],VAR,UNDEFINED) :-
UAR#\=VAR#\/UAR#=UNDEFINED,
weighted_partial_alldiff3(R,VAR,UNDEFINED).

weighted_partial_alldiff4([],[],_44168,0).

weighted_partial_alldiff4([VAL|R],[WEIGHT|S],VARS,W EIGHT* B+T) :-
weighted_partial_alldiff5(VARS,VAL,WEIGHT,TERM),
call(B#<=>TERM),
weighted_partial_alldiff4(R,S,VARS,T).

weighted_partial_alldiff5([],_44167,_44168,0).

weighted_partial_alldiff5([VAR|R],VAL,WEIGHT,VAR#=V AL#\/T) :-
weighted_partial_alldiff5(R,VAL,WEIGHT,T).

2927

2928 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.381 xor

♦ META-DATA:

ctr_date(xor,[’20051226’]).

ctr_origin(xor,’Logic’,[]).

ctr_synonyms(xor,[rel]).

ctr_arguments(
xor,
[’VAR’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
xor,
[’VAR’>=0,

’VAR’=<1,
size(’VARIABLES’)=2,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar=<1]).

ctr_example(
xor,
[xor(0,[[var-0],[var-0]]),

xor(1,[[var-0],[var-1]]),
xor(1,[[var-1],[var-0]]),
xor(0,[[var-1],[var-1]])]).

ctr_exchangeable(xor,[items(’VARIABLES’,all)]).

ctr_eval(xor,[automaton(xor_a)]).

ctr_pure_functional_dependency(xor,[]).

ctr_functional_dependency(xor,1,[2]).

xor_a(FLAG,VAR,VARIABLES) :-
check_type(dvar(0,1),VAR),
collection(VARIABLES,[dvar(0,1)]),
length(VARIABLES,2),
get_attr1(VARIABLES,LIST),
append([VAR],LIST,LIST_VARIABLES),
AUTOMATON=
automaton(

2929

LIST_VARIABLES,
_19859,
LIST_VARIABLES,
[source(s),sink(t)],
[arc(s,0,i),

arc(s,1,j),
arc(i,0,k),
arc(i,1,l),
arc(j,0,l),
arc(j,1,k),
arc(k,0,t),
arc(l,1,t)],

[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

2930 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.382 Utilities

:- use_module(library(lists)).
:- use_module(library(ordsets)).
:- use_module(library(clpfd)).
:- use_module(library(plunit)).
:- use_module(library(trees)).

% to use when everything is not necessarly ground
eval(Ctr) :-
Ctr =..[Name|Args],
ctr_eval(Name, Methods),
(member(builtin(Pred), Methods) -> Goal =..[Pred|Args]
;member(automaton(Pred), Methods) -> Goal =..[Pred,1|Ar gs]
;member(automata(Pred), Methods) -> Goal =..[Pred|Args] % defined by a
;member(reformulation(Pred), Methods) -> Goal =..[Pred| Args]
;member(logic(Pred), Methods) -> Goal =..[Pred|Args]
), !,
call(Goal).

% to use when everything is ground: call first a checker if it e xist (since
checker(Ctr) :-
Ctr =..[Name|Args],
ctr_eval(Name, Methods),
(member(checker(Pred), Methods) -> Goal =..[Pred|Args]
;member(builtin(Pred), Methods) -> Goal =..[Pred|Args]
;member(automaton(Pred), Methods) -> Goal =..[Pred,1|Ar gs]
;member(automata(Pred), Methods) -> Goal =..[Pred|Args] % defined by a
;member(reformulation(Pred), Methods) -> Goal =..[Pred| Args]
;member(logic(Pred), Methods) -> Goal =..[Pred|Args]
), !,
call(Goal).

% to use to evaluate the negation of a constraint, use:
% . reified automaton or
% . reified constraint for pure functional dependency or
% . existing constraint of the catalog with exactly same argu ments
neg_eval(Ctr) :-
Ctr =..[Name|Args],
ctr_pure_functional_dependency(Name),
!,
NegCtr =..[Name,0|Args],
reified_ctr_pure_functional_dependency(NegCtr),
!.
neg_eval(Ctr) :-
Ctr =..[Name|Args],

2931

ctr_eval(Name, Methods),
(member(automaton(Pred), Methods) -> Goal =..[Pred,0|Ar gs]
),
!,
call(Goal),
!.
neg_eval(Ctr) :-
Ctr =..[Name|Args],
ctr_see_also(Name, Links),
member(link(negation, NegName, _, _), Links),
!,
NegCtr =..[NegName|Args],
eval(NegCtr),
!.

% reified version for constraints that can be described in te rm of pure functional dependency
reified_ctr_pure_functional_dependency(Ctr) :-
Ctr =..[Name,Bool|Args],
ctr_pure_functional_dependency(Name),
ctr_arguments(Name, ListArgsCtr),
findall(F, ctr_functional_dependency(Name,F,_), LF),
sort(LF, SLF),
length(Args, NArgs),
build_args_ctr(1, NArgs, Args, ListArgsCtr, SLF, NewArgs , AndExpr),
NewCtr =..[Name|NewArgs],
eval(NewCtr),
call(AndExpr #<=> Bool).

build_args_ctr(I, N, [], [], [], [], 1) :-
I > N,
!.
build_args_ctr(I, N, [Arg|RArg], [ArgType|RArgType], [F |RF], [Var|R], Var#=Arg #/\ S)
I =< N,
I = F,
ArgType = _-dvar,
!,
Var in -1000000..1000000,
I1 is I+1,
build_args_ctr(I1, N, RArg, RArgType, RF, R, S).
build_args_ctr(I, N, [Arg|RArg], [_|RArgType], LF, [Arg| R], S) :-
I =< N,
!,
I1 is I+1,
build_args_ctr(I1, N, RArg, RArgType, LF, R, S).

% depending on the flag, call positive automaton, or compute s negative automaton and

2932 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

automaton_bool(1, _ALPHABET, POS_AUTOMATON) :-
!,
call(POS_AUTOMATON).
automaton_bool(0, ALPHABET, POS_AUTOMATON) :-

negaut(POS_AUTOMATON, ALPHABET, NEG_AUTOMATON, NEG_AUXILIARY),
call(NEG_AUTOMATON),
call(NEG_AUXILIARY).

%-- --- ---------------------
% An utility for negating an automaton (WARNING: only valid i f everything expressed
%
% negaut(+PosAutomaton, +Alphabet, -NegAutomaton, -AuxC onstraint)
% PosAutomaton: automaton/8 constraint
% Alphabet: list of atom
% NegAutomaton: automaton/8 constraint
% AuxConstraint: constraint
%
% Semantics:
% - (NegAutomaton, AuxConstraint) expresses the negation o f PosAutomaton.
%
% Synopsis:
% - If necessary, add a nonsink state ’fail’, and:
% * for every letter A of the alphabet: add an arc from ’fail’ over
% A to ’fail’;
% * for every state S and letter A of the alphabet, if there is no
% outgoing arc from S over A, add an arc from S over A to ’fail’.
%
% - If the automaton is counter-free, compute NegAutomaton b y swapping
% sinks and nonsinks. AuxConstraint is ’true’.
%
% - Otherwise with counters [C1,...,Cn]:
% * Suppose that the final counter values are [V1,...,Vn].
% * Add a first counter C0 so that C0=0 iff the original automaton stops in
% a sink state.
% * Convert arcs as follows:
% arc(S1,A,S2) --> arc(S1,A,S2,[0,C1,...,Cn]) if S2 is sin k
% arc(S1,A,S2) --> arc(S1,A,S2,[1,C1,...,Cn]) if S2 is non sink
% arc(S1,A,S2,[Y1,...,Yn]) --> arc(S1,A,S2,[0,Y1,...,Y n]) if S2 is sink
% arc(S1,A,S2,[Y1,...,Yn]) --> arc(S1,A,S2,[1,Y1,...,Y n]) if S2 is nonsink
% * The counters for arcs with conditions are augmented similar ly.
% * For every arc with a condition:
% arc(S1,A,_,(P1 -> Q1 ; ... ; Pm -> Qm))
% such that (P1 #\/ ... #\/ Pm) could be false, add an arc:
% arc(S1,A,fail,((#\P1 #/\ ... #/\ #\Pm) -> [1,C1,...,Cn])
% * Conpute NegAutomaton by making all states sinks.
% * Let the final counter values of NegAutomaton be [X0,X1,..., Xn].

2933

% * AuxConstraint is (X0 #= 1 #\/ X1 #\= V1 #\/ ... #\/ Xn #\= Vn).

negaut(PosAut, Alphabet1, NegAut, Aux) :-
PosAut = automaton(Args, Arg, Signature,

PosSourcesSinks, PosArcs,
Counters, Initial, Final),

NegAut = automaton(Args, Arg, Signature,
NegSourcesSinks, NegArcs,
NegCounters, NegInitial, NegFinal),

(foreach(SS1, PosSourcesSinks),
fromto(Sources1,Sources1b,Sources1c,[]),
fromto(Sinks1,Sinks1b,Sinks1c,[])

do (SS1 = source(SS2) -> Sources1b = [SS2|Sources1c], Sinks 1b = Sinks1c
; SS1 = sink(SS2) -> Sinks1b = [SS2|Sinks1c], Sources1b = Sou rces1c
)

),
(foreach(Arc,PosArcs),

fromto(States1,[S1,S2|States1c],States1c,[])
do (Arc = arc(S1,_,S2) -> true

; Arc = arc(S1,_,S2,_)
)

),
sort(Alphabet1, Alphabet2),
sort(Sources1, Sources2),
sort(Sinks1, Sinks2),
sort(States1, States2),
(foreach(P,Final),

foreach(N,NegFinalT),
foreach(N #\= P,NeqsT)

do true
),
(Counters==[] ->

NegCounters = [],
NegInitial = [],
NegFinal = [],
Aux = true,
negaut_simple(PosArcs, NegSourcesSinks, NegArcs,

Sources2, Sinks2, States2, Alphabet2)
; NegCounters = [_|Counters],

NegInitial = [0|Initial],
NegFinal = [FlagT|NegFinalT],
Neqs = [FlagT #= 1|NeqsT],
orify(Neqs, Aux),
negaut_counters(PosArcs, NegSourcesSinks, NegArcs,
Sources2, Sinks2, States2, Alphabet2, Counters)

).

2934 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

negaut_simple(PosArcs, NegSourcesSinks, NegArcs,
Sources1, Sinks1, States1, Alphabet) :-

ord_subtract(States1, Sinks1, Sinks2),
(foreach(S1,Sources1),

foreach(source(S1),Sources2)
do true
),
(foreach(S2,Sinks2),

foreach(sink(S2),Sinks3)
do true
),
(foreach(arc(S3,K,_),PosArcs),

foreach(S3-K,KL1)
do true
),
keysort(KL1, KL2),
keyclumped(KL2, KL3),
(foreach(S4-Set1,KL3),

fromto(NegArcs4,NegArcs5,NegArcs7,NegArcs8),
param(Alphabet)

do ord_subtract(Alphabet, Set1, CSet1),
(foreach(C,CSet1),

fromto(NegArcs5,[arc(S4,C,fail)|NegArcs6],NegArcs6, NegArcs7),
param(S4)

do true
)

),
(NegArcs4 == NegArcs8 ->

NegArcs8 = [],
append(Sources2, Sinks3, NegSourcesSinks)

; (foreach(A,Alphabet),
foreach(arc(fail,A,fail),NegArcs8)

do true
),
append(Sources2, [sink(fail)|Sinks3], NegSourcesSinks)

),
append(NegArcs4, PosArcs, NegArcs).

negaut_counters(PosArcs1, NegSourcesSinks, NegArcs,
Sources1, Sinks1, States1, Alphabet, Counters) :-
(foreach(S1,Sources1),

foreach(source(S1),Sources2)
do true
),
(foreach(S2,States1),

2935

foreach(sink(S2),Sinks3)
do true
),
(foreach(Arc1,PosArcs1),

foreach(Arc2,PosArcs2),
fromto(NegArcs1,NegArcs2,NegArcs3,NegArcs4),
foreach(S3-K,KL1),
param(Sinks1,Counters)

do Arc1 =.. [arc,S3,K|_],
(ord_member(S3, Sinks1) -> F=0 ; F=1),
augment_arc(Arc1, F, Counters, Arc2, NegArcs2, NegArcs3)

),
keysort(KL1, KL2),
keyclumped(KL2, KL3),
(foreach(S4-Set1,KL3),

fromto(NegArcs4,NegArcs5,NegArcs7,NegArcs8),
param(Alphabet,Counters)

do ord_subtract(Alphabet, Set1, CSet1),
(foreach(C,CSet1),

fromto(NegArcs5,[arc(S4,C,fail,[1|Counters])|NegArc s6],NegArcs6,NegArcs7),
param(S4,Counters)

do true
)

),
(NegArcs1 == NegArcs8 ->

NegArcs8 = [],
append(Sources2, Sinks3, NegSourcesSinks)

; (foreach(A,Alphabet),
foreach(arc(fail,A,fail),NegArcs8)

do true
),
append(Sources2, [sink(fail)|Sinks3], NegSourcesSinks)

),
append(NegArcs4, PosArcs2, NegArcs).

augment_arc(arc(S1,K,S2), F, Ctrs, arc(S1,K,S2,[F|Ctrs])) --> [].
augment_arc(arc(S1,K,S2,(P1->Q1 ; P2->Q2)), F, _, arc(S1 ,K,S2,(P1->[F|Q1] ; P2->[F|Q2])))
[].
augment_arc(arc(S1,K,S2,(P1->Q1)), F, Ctrs, arc(S1,K,S 2,(P1->[F|Q1]))) --> !,
{neg_arith(P1, P2)},
[arc(S1,K,fail,(P2->[1|Ctrs]))].
augment_arc(arc(S1,K,S2,Ctrs), F, _, arc(S1,K,S2,[F|Ct rs])) --> [].

neg_arith(X #= Y, X #\= Y).
neg_arith(X #\= Y, X #= Y).
neg_arith(X #< Y, X #>= Y).

2936 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

neg_arith(X #=< Y, X #> Y).
neg_arith(X #> Y, X #=< Y).
neg_arith(X #>= Y, X #< Y).

orify([], true).
orify([X|L], Disj) :- orify(L, X, Disj).

orify([], X, X).
orify([Y|L], X, (X #\/ Disj)) :- orify(L, Y, Disj).
%-- --- ---------------------

union_dom_list_int(Dvars, Union) :-
(foreach(V,Dvars),

foreach(S,Sets)
do fd_set(V, S)
),
fdset_union(Sets, U),
fdset_to_list(U, Union).

union_dom_set([], []).
union_dom_set([V|R], S) :-

fd_set(V, SetValuesOfV),
union_dom_set(R, Set),
fdset_union(SetValuesOfV, Set, S).

same_size([]).
same_size([[_-L]|R]) :-
length(L, N),
same_size(R, N).

same_size([], _).
same_size([[_-L]|R], N) :-
length(L, N),
same_size(R, N).

sort_collection(COL, ATTR, SORTED_COL) :-
build_key_collection(COL, ATTR, KEY_COL),
keysort(KEY_COL, SORTED_KEY_COL),
remove_key_from_collection(SORTED_KEY_COL, SORTED_CO L).

build_key_collection([], _, []).
build_key_collection([ITEM|RCOL], ATTR, [KEY-ITEM|R]) :-

extract_attr_value(ITEM, ATTR, KEY),
build_key_collection(RCOL, ATTR, R).

extract_attr_value([ATTR-VALUE|_], ATTR, VALUE) :-

2937

!.
extract_attr_value([_|RITEM], ATTR, VALUE) :-

extract_attr_value(RITEM, ATTR, VALUE).

remove_key_from_collection([], []).
remove_key_from_collection([_-ITEM|R], [ITEM|S]) :-

remove_key_from_collection(R, S).

list_dvar_range([], 0) :- !.
list_dvar_range([X|Y], R) :-

get_minimum([X|Y], Minimum),
get_maximum([X|Y], Maximum),
Min in Minimum..Maximum,
Max in Minimum..Maximum,
minimum(Min, [X|Y]),
maximum(Max, [X|Y]),
R #= Max-Min+1.

collection_distinct([], _).
collection_distinct([ITEM|R], ATTR) :-

nth1(ATTR, ITEM, _-A),
get_attr1(A, L),
all_different(L),
collection_distinct(R, ATTR).

collection_increasing_seq(COL, ATTRS) :-
collection_increasing_seq1(COL, ATTRS, A),
lex_chain(A, [op(#<)]).

collection_increasing_seq1([], _, []).
collection_increasing_seq1([ITEM|R], ATTRS, [ITEM_ATT RS|S]) :-

collection_increasing_seq2(ATTRS, ITEM, ITEM_ATTRS),
collection_increasing_seq1(R, ATTRS, S).

collection_increasing_seq2([], _, []).
collection_increasing_seq2([ATTR|R], ITEM, [A|S]) :-

nth1(ATTR, ITEM, _-A),
collection_increasing_seq2(R, ITEM, S).

collection([], _) :- !.
collection([Item|R], Types) :-
check_item(Types, Item),
collection(R, Types).

create_collection([], _, []).
create_collection([V|R], ATTR, [[ATTR-V]|S]) :-

2938 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

create_collection(R, ATTR, S).

create_collection([], [], _, _, []).
create_collection([V1|R1], [V2|R2], ATTR1, ATTR2, [[ATT R1-V1,ATTR2-V2]|S]) :-

create_collection(R1, R2, ATTR1, ATTR2, S).

create_collection([], _, _, []).
create_collection([[_-L]|R], ATTR1, ATTR2, [[ATTR1-C]| S]) :-
get_attr1(L, A),
create_collection(A, ATTR2, C),
create_collection(R, ATTR1, ATTR2, S).

check_item([], []) :- !.
check_item([T|S], [_-V|R]) :-
check_type(T, V),
check_item(S, R).

check_type(atom, V) :-
atom(V),
!.
check_type(atom(L), V) :-
atom(V),
member(V, L),
!.
check_type(int, V) :-
integer(V),
!.
check_type(int_gteq(VAL), V) :-
integer(V),
V >= VAL,
!.
check_type(int_diff(VAL), V) :-
integer(V),
V =\= VAL,
!.
check_type(dvar, V) :-
integer(V),
!.
check_type(dvar, V) :-
fd_var(V),
!.
check_type(fdvar, V) :-
var(V),
!.
check_type(fdvar, V) :-
integer(V),

2939

!.
check_type(fdvar, V) :-
fd_var(V),
!.
check_type(dvar_gteq(VAL), V) :-
integer(V),
V >= VAL,
!.
check_type(dvar_gteq(VAL), V) :-
fd_var(V),
V #>= VAL,
!.
check_type(int(Low,Up), V) :-
integer(V),
V >= Low,
V =< Up,
!.
check_type(dvar(Low,Up), V) :-
integer(V),
V >= Low,
V =< Up,
!.
check_type(dvar(Low,Up), V) :-
fd_var(V),
V #>= Low,
V #=< Up,
!.
check_type(fdvar(Low,Up), V) :-
integer(V),
V >= Low,
V =< Up,
!.
check_type(fdvar(Low,Up), V) :-
fd_var(V),
V #>= Low,
V #=< Up,
!.
check_type(fdvar(Low,Up), V) :-
var(V),
V #>= Low,
V #=< Up,
!.
check_type(col(Types), C) :-

collection(C, Types),
!.

check_type(col(Len,Types), C) :-

2940 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

length(C, Len),
collection(C, Types),
!.

check_type(col_len_gteq(Len,Types), C) :-
length(C, L),
L >= Len,
collection(C, Types),
!.

check_type(non_empty_col(Types), C) :-
length(C, L),
L > 0,
collection(C, Types),
!.

check_type(sint, _V) :- % TODO
!.
check_type(svar, _V) :- % TODO
!.

get_col_attr1([], _, []).
get_col_attr1([[_-C|_]|R], 1, [D|S]) :- !,

get_attr1(C, D),
get_col_attr1(R, 1, S).
get_col_attr1([[_-C|_]|R], 2, [D|S]) :- !,

get_attr2(C, D),
get_col_attr1(R, 2, S).
get_col_attr1([[_-C|_]|R], 3, [D|S]) :-

get_attr3(C, D),
get_col_attr1(R, 3, S).

get_col_attr2([], _, []).
get_col_attr2([[_,_-C|_]|R], 1, [D|S]) :- !,

get_attr1(C, D),
get_col_attr2(R, 1, S).
get_col_attr2([[_,_-C|_]|R], 2, [D|S]) :- !,

get_attr2(C, D),
get_col_attr2(R, 2, S).
get_col_attr2([[_,_-C|_]|R], 3, [D|S]) :-

get_attr3(C, D),
get_col_attr2(R, 3, S).

get_col_attr3([], _, []).
get_col_attr3([[_,_,_-C|_]|R], 1, [D|S]) :- !,

get_attr1(C, D),
get_col_attr3(R, 1, S).
get_col_attr3([[_,_,_-C|_]|R], 2, [D|S]) :- !,

2941

get_attr2(C, D),
get_col_attr3(R, 2, S).
get_col_attr3([[_,_,_-C|_]|R], 3, [D|S]) :-

get_attr3(C, D),
get_col_attr3(R, 3, S).

get_attr12([], []).
get_attr12([[_-V1,_-V2|_]|R], [V1-V2|S]) :-
get_attr12(R, S).

get_attr21([], []).
get_attr21([[_-V1,_-V2|_]|R], [V2-V1|S]) :-
get_attr21(R, S).

get_kattr1([], _, []).
get_kattr1([[_-V|_]|R], K, [V-K|S]) :-
K1 is K+1,
get_kattr1(R, K1, S).

get_attr1([], []).
get_attr1([[_-V|_]|R], [V|S]) :-
get_attr1(R, S).

get_attr2([], []).
get_attr2([[_,_-V|_]|R], [V|S]) :-
get_attr2(R, S).

get_attr3([], []).
get_attr3([[_,_,_-V|_]|R], [V|S]) :-
get_attr3(R, S).

get_attr4([], []).
get_attr4([[_,_,_,_-V|_]|R], [V|S]) :-
get_attr4(R, S).

get_attr5([], []).
get_attr5([[_,_,_,_,_-V|_]|R], [V|S]) :-
get_attr5(R, S).

get_attr6([], []).
get_attr6([[_,_,_,_,_,_-V|_]|R], [V|S]) :-
get_attr6(R, S).

get_attr7([], []).
get_attr7([[_,_,_,_,_,_,_-V|_]|R], [V|S]) :-
get_attr7(R, S).

2942 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

get_attr8([], []).
get_attr8([[_,_,_,_,_,_,_,_-V|_]|R], [V|S]) :-
get_attr8(R, S).

get_attr11([], []).
get_attr11([[_-V|_]|R], [U|S]) :-

get_attr1(V, U),
get_attr11(R, S).

get_proj1([], []).
get_proj1([[A-V|_]|R], [[A-V]|S]) :-
get_proj1(R, S).

get_minimum([], 0).
get_minimum([V|R], M) :-
fd_min(V, Min),
get_minimum1(R, Min, M).

get_minimum1([], Min, Min).
get_minimum1([V|R], Min, M) :-
fd_min(V, MinV),
MinV < Min,
!,
get_minimum1(R, MinV, M).
get_minimum1([_|R], Min, M) :-
get_minimum1(R, Min, M).

get_maximum([], 0).
get_maximum([V|R], M) :-
fd_max(V, Max),
get_maximum1(R, Max, M).

get_maximum1([], Max, Max).
get_maximum1([V|R], Max, M) :-
fd_max(V, MaxV),
MaxV > Max,
!,
get_maximum1(R, MaxV, M).
get_maximum1([_|R], Max, M) :-
get_maximum1(R, Max, M).

gen_collection([], _, []).
gen_collection([V|R], ATTR, [[ATTR-V]|S]) :-

gen_collection(R, ATTR, S).

2943

gen_varcst([], [], []).
gen_varcst([V|R], [C|S], [VC|T]) :-
VC #= V+C,
gen_varcst(R, S, T).

gen_quotient([], _, []).
gen_quotient([V|R], Size, [Q|T]) :-
Size1 is Size-1,
Remainder in 0.. Size1,
V #= Size * Q+ Remainder,
gen_quotient(R, Size, T).

gen_remainder([], _, []).
gen_remainder([V|R], M, [Remainder |T]) :-
M1 is M-1,
Remainder in 0.. M1,
V #= M* _+ Remainder,
gen_remainder(R, M, T).

flattern([], []).
flattern([L|R], S) :-
flattern(R, T),
append(L, T, S).

get_partition_var([], _, [], _).
get_partition_var([V|R], PVALS, [P|S], MAX) :-

P in 0..MAX,
gen_part_var(PVALS, 1, V, P),
get_partition_var(R, PVALS, S, MAX).

get_partition_var([], _, [], _, _).
get_partition_var([V|R], PVALS, [P|S], MAX, DIFF) :-

P in 1..MAX,
P #\= DIFF,

gen_part_var(PVALS, 1, V, P),
get_partition_var(R, PVALS, S, MAX, DIFF).

gen_part_var([], _, _, _).
gen_part_var([L|R], N, V, P) :-
gen_part_var1(L, N, V, P, Vdiff),
call(Vdiff #=> P #\= N),
N1 is N+1,
gen_part_var(R, N1, V, P).

gen_part_var1([], _, _, _, 1).
gen_part_var1([U|R], N, V, P, V #\= U #/\ S) :-

2944 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

V #= U #=> P #= N,
gen_part_var1(R, N, V, P, S).

set_to_list({}, []).
set_to_list({S}, L) :-
set_to_list(S, L, []).

set_to_list((X,Y)) --> !,
set_to_list(X),
set_to_list(Y).
set_to_list(X) --> [X].

list_to_set([], {}).
list_to_set([H|T], {S}) :-
list_to_set(T, H, S).

list_to_set([], X, X).
list_to_set([H|T], X, (X,S)) :-
list_to_set(T, H, S).

count_var_notin_values([], _, 0) :-
!.

count_var_notin_values([VAR|RVAR], SORTED_VALS, NOUT) :-
fd_set(VAR, S),
fdset_to_list(S, L),
(ord_intersect(L, SORTED_VALS) -> I=0 ; I=1),
count_var_notin_values(RVAR, SORTED_VALS, N),
NOUT is N+I.

complete_card(MIN, MAX, _, [], []) :-
MIN > MAX,
!.

complete_card(MIN, MAX, L, [[var-OCC]|R], [MIN-OCC|S]) : -
MIN =< MAX,
OCC in 0..L,
MIN1 is MIN+1,
complete_card(MIN1, MAX, L, R, S).

complete_card(MIN, MIN, NVARS, VALS, NOCCS, [V-N]) :- !,
complete_card1(MIN, VALS, NOCCS, V_N),
(V_N=[] -> V=MIN, N in 0..NVARS ; V_N=V-N).

complete_card(MIN, MAX, NVARS, VALS, NOCCS, [V-N|R]) :-
MIN < MAX,
complete_card1(MIN, VALS, NOCCS, V_N),
(V_N=[] -> V=MIN, N in 0..NVARS ; V_N=V-N),
MIN1 is MIN + 1,

2945

complete_card(MIN1, MAX, NVARS, VALS, NOCCS, R).

complete_card1(_, [], [], []) :- !.
complete_card1(MIN, [MIN|_], [NOCC|_], MIN-NOCC) :- !.
complete_card1(MIN, [VAL|R], [_NOCC|S], MN) :-

MIN =\= VAL,
complete_card1(MIN, R, S, MN).

complete_card_low_up(MIN, MIN, NVARS, VALS, OMINS, OMAXS , [V-N]) :- !,
complete_card_low_up1(MIN, VALS, OMINS, OMAXS, V_N),
(V_N=[] -> V=MIN, N in 0..NVARS ; V_N=V-N).

complete_card_low_up(MIN, MAX, NVARS, VALS, OMINS, OMAXS , [V-N|R]) :-
MIN < MAX,
complete_card_low_up1(MIN, VALS, OMINS, OMAXS, V_N),
(V_N=[] -> V=MIN, N in 0..NVARS ; V_N=V-N),
MIN1 is MIN + 1,
complete_card_low_up(MIN1, MAX, NVARS, VALS, OMINS, OMAX S, R).

complete_card_low_up1(_, [], [], [], []) :- !.
complete_card_low_up1(MIN, [MIN|_], [OMIN|_], [OMAX|_] , MIN-NOCC) :- !,

NOCC in OMIN..OMAX.
complete_card_low_up1(MIN, [VAL|R], [_|S], [_|T], MN) :-

MIN =\= VAL,
complete_card_low_up1(MIN, R, S, T, MN).

complete_card_consec(LOW, UP, ATMOST, NVAR, [LOW-N|R]) : -
LOW < UP, !,
N in 0..ATMOST,
LOW1 is LOW+1,
complete_card_consec(LOW1, UP, ATMOST, NVAR, R).

complete_card_consec(LOW, LOW, _, NVAR, [LOW-N]) :-
N in 0..NVAR.

build_or_var_in_values([], _, true).
build_or_var_in_values([U], V, (V#=U)) :- !.
build_or_var_in_values([U1,U2|R], V, (V#=U1) #\/ S) :-
build_or_var_in_values([U2|R], V, S).

call_term_relop_value(TERM, =, VALUE) :- !,
call(TERM #= VALUE).

call_term_relop_value(TERM, =\=, VALUE) :- !,
call(TERM #\= VALUE).

call_term_relop_value(TERM, <, VALUE) :- !,
call(TERM #< VALUE).

call_term_relop_value(TERM, >=, VALUE) :- !,
call(TERM #>= VALUE).

2946 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

call_term_relop_value(TERM, >, VALUE) :- !,
call(TERM #> VALUE).

call_term_relop_value(TERM, =<, VALUE) :-
call(TERM #=< VALUE).

gen_matrix_bool(MINBINS, MAXBINS, _, []) :-
MINBINS > MAXBINS, !.

gen_matrix_bool(MINBINS, MAXBINS, BINS, [LINE|RLINES]) :-
MINBINS =< MAXBINS,
gen_matrix_bool1(BINS, MINBINS, LINE),
MINBINS1 is MINBINS+1,
gen_matrix_bool(MINBINS1, MAXBINS, BINS, RLINES).

gen_matrix_bool1([], _, []).
gen_matrix_bool1([BIN|RBINS], IDBIN, [B|R]) :-

BIN #= IDBIN #<=> B,
gen_matrix_bool1(RBINS, IDBIN, R).

common1([], _, [], 0).
common1([V|R], VARS2, [LINE|S], SB+T) :-

common2(VARS2, V, LINE, SUM),
call(SUM #> 0 #<=> SB),
common1(R, VARS2, S, T).

common2([], _, [], 0).
common2([U|R], V, [B|S], B+T) :-

U #= V #<=> B,
common2(R, V, S, T).

gen_cum_tasks([], [], [], [], _, []).
gen_cum_tasks([O|RO], [D|RD], [E|RE], [H|RH],

T, [task(O,D,E,H,T)|R]) :-
T1 is T+1,
gen_cum_tasks(RO, RD, RE, RH, T1, R).

k_ary_tree([], _, _, _).
k_ary_tree([J|R], INDEXES, SUCCS, K) :-

k_ary_tree1(INDEXES, SUCCS, J, Term),
call(Term #=< K),
k_ary_tree(R, INDEXES, SUCCS, K).

k_ary_tree1([], [], _, 0).
k_ary_tree1([I|S], [S_I|R], J, B_IJ+T) :-

S_I #= J #/\ I #\= J #<=> B_IJ,
k_ary_tree1(S, R, J, T).

2947

ori_dur_end([], [], []).
ori_dur_end([O|RO], [D|RD], [E|RE]) :-

O + D #= E,
ori_dur_end(RO, RD, RE).

ori_end([], []).
ori_end([O|RO], [E|RE]) :-

O #=< E,
ori_end(RO, RE).

link_index_to_attribute([], [], _, _).
link_index_to_attribute([ID|RID], [ATT|RATT], Vi, Ai) : -

Vi #= ID #<=> Ai #= ATT,
link_index_to_attribute(RID, RATT, Vi, Ai).

get_sliding_prod([], _, []).
get_sliding_prod([V|R], P, [P|S]) :-

Q is V * P,
get_sliding_prod(R, Q, S).

get_min_list_list_dvar([], []).
get_min_list_list_dvar([L|R], [Min|S]) :-

get_min_list_dvar(L, _, Min),
get_min_list_list_dvar(R, S).

get_min_list_dvar([], Min, Min).
get_min_list_dvar([V|R], Cur, Min) :-

fd_min(V, Vmin),
(integer(Cur) -> Next is min(Cur,Vmin) ; Next = Vmin),
get_min_list_dvar(R, Next, Min).

get_max_list_list_dvar([], []).
get_max_list_list_dvar([L|R], [Min|S]) :-

get_max_list_dvar(L, _, Min),
get_max_list_list_dvar(R, S).

get_max_list_dvar([], Max, Max).
get_max_list_dvar([V|R], Cur, Max) :-

fd_max(V, Vmax),
(integer(Cur) -> Next is max(Cur,Vmax) ; Next = Vmax),
get_max_list_dvar(R, Next, Max).

get_ranges([], [], []).
get_ranges([A|R], [B|S], [C|T]) :-

C is B-A+1,
get_ranges(R, S, T).

2948 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

create_matrix(N, Inf, Sup, MB) :-
length(MB, N),
create_matrix1(MB, N, Inf, Sup).

create_matrix1([], _, _, _).
create_matrix1([L|R], N, Inf, Sup) :-

length(L, N),
domain(L, Inf, Sup),
create_matrix1(R, N, Inf, Sup).

count_relop(= , NIN, LIMIT, FLAG) :- NIN #= LIMIT #<=> FLAG.
count_relop(=\=, NIN, LIMIT, FLAG) :- NIN #\= LIMIT #<=> FLA G.
count_relop(< , NIN, LIMIT, FLAG) :- NIN #< LIMIT #<=> FLAG.
count_relop(>= , NIN, LIMIT, FLAG) :- NIN #>= LIMIT #<=> FLAG .
count_relop(> , NIN, LIMIT, FLAG) :- NIN #> LIMIT #<=> FLAG.
count_relop(=< , NIN, LIMIT, FLAG) :- NIN #=< LIMIT #<=> FLAG .

used_by_reified([], _, _).
used_by_reified([V|R], VARS1, VARS2) :-

used_by_reified1(VARS1, V, Term1),
used_by_reified1(VARS2, V, Term2),
call(Term1 #>= Term2),
used_by_reified(R, VARS1, VARS2).

used_by_reified1([], _, 0).
used_by_reified1([U|R], V, B+T) :-

U #= V #<=> B,
used_by_reified1(R, V, T).

remove_duplicates([], []).
remove_duplicates([X|R], S) :-

member(X, R),
!,
remove_duplicates(R, S).

remove_duplicates([X|R], [X|S]) :-
remove_duplicates(R, S).

gcc_no_loop1([], _, 0).
gcc_no_loop1([VAR|RVAR], J, BJ+S) :-

BJ #<=> VAR #= J,
J1 is J+1,
gcc_no_loop1(RVAR, J1, S).

gcc_no_loop2(J, N, _, [], _, 0) :-
J > N, !.

2949

gcc_no_loop2(J, N, I, [VAR|RVAR], VAL, BIJ+S) :-
J =< N,
J =\= I, !,
BIJ #<=> VAR #= VAL,
J1 is J+1,
gcc_no_loop2(J1, N, I, RVAR, VAL, S).

gcc_no_loop2(J, N, I, [_|RVAR], VAL, 0+S) :-
J =< N,
J = I,
J1 is J+1,
gcc_no_loop2(J1, N, I, RVAR, VAL, S).

% cond_lex/5 is used in order to state automata associated to constraints
% cond_lex_greatereq, cond_lex_greater, cond_lex_lesse q and cond_lex_less.
% cond_lex/3 is used in order to state the automaton associat ed to
% constraint cond_lex_cost.
cond_lex(VECTOR1, VECTOR2, PREFERENCE_TABLE, O1, O2) :-

cond_lex_signature(VECTOR1, VECT1),
cond_lex_signature(VECTOR2, VECT2),
% from each item extract a tuple of values and add key at the end
gen_tuples(PREFERENCE_TABLE, 1, T1),
% sort in lexicographic order
sort(T1, T2),
% to each tuple of value add state variables
gen_tuples_var(T2, T3),
% get arity of the tuples
T1 = [T|_], functor(T, _, N),
retractall(num_state(_)),
% initial state number minus 1
assert(num_state(0)),
% fix the states variables
gen_state(1, N, T3),
% get last state
num_state(LastS),
% generate the list of states of the automaton
gen_states(0, LastS, States),
% generate the list of transitions of the automaton
gen_transitions(1, N, T3, Transitions),
% get number of tuples of preference table
length(PREFERENCE_TABLE, NbTuples),
% O1 indicates position of tuple associated to VECTOR1
% O2 indicates position of tuple associated to VECTOR2
domain([O1,O2], 1, NbTuples),
% build signature variables for the automaton computing O1
append(VECT1,[O1],VECTOR_O1),
% build signature variables for the automaton computing O2

2950 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

append(VECT2,[O2],VECTOR_O2),
% state automaton that computes O1
automaton(VECTOR_O1, _,

VECTOR_O1,
States,
Transitions,
[], [], []),

% state automaton that computes O2
automaton(VECTOR_O2, _,

VECTOR_O2,
States,
Transitions,
[], [], []).

cond_lex(VECTOR, PREFERENCE_TABLE, O) :-
cond_lex_signature(VECTOR, VECT),
% from each item extract a tuple of values and add key at the end
gen_tuples(PREFERENCE_TABLE, 1, T1),
% sort in lexicographic order
sort(T1, T2),
% to each tuple of value add state variables
gen_tuples_var(T2, T3),
% get arity of the tuples
T1 = [T|_], functor(T, _, N),
retractall(num_state(_)),
% initial state number minus 1
assert(num_state(0)),
% fix the states variables
gen_state(1, N, T3),
% get last state
num_state(LastS),
% generate the list of states of the automaton
gen_states(0, LastS, States),
% generate the list of transitions of the automaton
gen_transitions(1, N, T3, Transitions),
% get number of tuples of preference table
length(PREFERENCE_TABLE, NbTuples),
% O indicates position of tuple associated to VECTOR
domain([O], 1, NbTuples),
% build signature variables for the automaton computing O
append(VECT,[O],VECTOR_O),
% state automaton that computes O
automaton(VECTOR_O, _,

VECTOR_O,
States,
Transitions,

2951

[], [], []).

cond_lex_signature([], []).
cond_lex_signature([[var-VAR]|R], [VAR|S]) :-
cond_lex_signature(R, S).

gen_tuples([], _, []).
gen_tuples([[_-X]|Y], I, [U|V]) :-
gen_tuple(X, I, U),
J is I + 1,
gen_tuples(Y, J, V).

gen_tuple(X, I, U) :-
gen_tup(X, Y),
append(Y, [I], Y1),
append([t], Y1, Z),
U =.. Z.

gen_tup([], []).
gen_tup([[_-I]|R], [I|S]) :-
gen_tup(R, S).

gen_tuples_var([], []).
gen_tuples_var([A|B], [C|D]) :-
A =.. LA,
LA = [TA|RA],
add_var_to_list_elem(RA, RC),
LC = [TA|RC],
C =.. LC,
gen_tuples_var(B, D).

add_var_to_list_elem([], []).
add_var_to_list_elem([A|RA], [A-_|R]) :-
add_var_to_list_elem(RA, R).

gen_state(I, N, L) :-
I < N, !,
gen_state1(L, [], I, 1, 1),
J is I + 1,
gen_state(J, N, L).
gen_state(N, N, L) :-
gen_state1(L, [], N, 1, 0).

gen_state1([], _, _, _, _) :- !.
gen_state1([F|R], [], I, Inc, Inc1) :-
!,

2952 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

arg(I, F, FI),
FI = _-S1,
num_state(S),
S1 is S + Inc,
retract(num_state(S)),
assert(num_state(S1)),
gen_state1(R, F, I, Inc1, Inc1).
gen_state1([F|R], P, I, Inc, Inc1) :-
arg(I, F, FI),
arg(I, P, PI),
FI = VI-SI1,
PI = UI-_,
UI =\= VI,
!,
num_state(SI),
SI1 is SI + Inc,
retract(num_state(SI)),
assert(num_state(SI1)),
gen_state1(R, F, I, Inc1, Inc1).
gen_state1([F|R], P, I, Inc, Inc1) :-
I > 1,
J is I - 1,
arg(J, F, FJ),
arg(J, P, PJ),
FJ = _-SJ,
PJ = _-RJ,
SJ =\= RJ,
!,
arg(I, F, FI),
FI = _-SI1,
num_state(SI),
SI1 is SI + Inc,
retract(num_state(SI)),
assert(num_state(SI1)),
gen_state1(R, F, I, Inc1, Inc1).
gen_state1([F|R], _, I, _, Inc1) :-
arg(I, F, FI),
FI = _-SI,
num_state(SI),
gen_state1(R, F, I, Inc1, Inc1).

gen_states(0, J, [source(0)|R]) :- !,
gen_states(1, J, R).
gen_states(I, J, R / * [node(I)|R] * /) :-
I > 0,
I < J, !,

2953

I1 is I + 1,
gen_states(I1, J, R).
gen_states(J, J, [sink(J)]) :-
J > 0.

gen_transitions(I, N, L, T) :-
I =< N, !,
gen_transitions1(L, [], I, T1),
J is I + 1,
gen_transitions(J, N, L, T2),
append(T1, T2, T).
gen_transitions(I, N, _, []) :-
I > N.

gen_transitions1([F|R], [], 1, [arc(0,V1,S1)|Rarc]) :-
!,
arg(1, F, F1),
F1 = V1-S1,
gen_transitions1(R, F, 1, Rarc).
gen_transitions1([F|R], [], I, [arc(SJ,VI,SI)|Rarc]) :-
I > 1,
!,
J is I - 1,
arg(J, F, FJ),
arg(I, F, FI),
FJ = _-SJ,
FI = VI-SI,
gen_transitions1(R, F, I, Rarc).
gen_transitions1([F|R], P, I, [arc(SJ,VI,SI)|Rarc]) :-
arg(I, F, FI),
arg(I, P, PI),
FI = VI-SI,
PI = UI-RI,
(SI =\= RI -> true ; VI=\=UI),
!,
(I=1 -> SJ=0 ; J is I-1, arg(J,F,FJ), FJ=_-SJ),
gen_transitions1(R, F, I, Rarc).
gen_transitions1([F|R], _, I, Rarc) :-
!,
gen_transitions1(R, F, I, Rarc).
gen_transitions1([], _, _, []).

sliding_time_window1([], [], _, _, _, _, _).
sliding_time_window1([Oi|RO], [Di|RD], I, ORIGINS, DURA TIONS, WINDOW_SIZE, LIMIT) :-

sliding_time_window2(ORIGINS, DURATIONS, 1, Oi, Di, I,
WINDOW_SIZE, LIMIT, SUM_INTER),

2954 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

call(SUM_INTER #=< LIMIT),
I1 is I+1,
sliding_time_window1(RO, RD, I1, ORIGINS, DURATIONS,

WINDOW_SIZE, LIMIT).

sliding_time_window2([], [], _, _, _, _, _, _, 0) :-
!.

sliding_time_window2([_|RO], [_|RD], J, Oi, Di, I,
WINDOW_SIZE, LIMIT, min(Di,WINDOW_SIZE)+SUM) :-

I = J,
!,
J1 is J+1,
sliding_time_window2(RO, RD, J1, Oi, Di, I,

WINDOW_SIZE, LIMIT, SUM).
sliding_time_window2([Oj|RO], [Dj|RD], J, Oi, Di, I,

WINDOW_SIZE, LIMIT, SUM) :-
I =\= J,
fd_max(Oj, MaxOj),
fd_max(Dj, MaxDj),
fd_min(Oi, MinOi),
MaxEj is MaxOj+MaxDj,
MaxEj < MinOi,
!,
J1 is J+1,
sliding_time_window2(RO, RD, J1, Oi, Di, I,

WINDOW_SIZE, LIMIT, SUM).
sliding_time_window2([Oj|RO], [_Dj|RD], J, Oi, Di, I,

WINDOW_SIZE, LIMIT, SUM) :-
I =\= J,
fd_min(Oj,MinOj),
fd_max(Oi,MaxOi),
E is MaxOi+WINDOW_SIZE-1,
MinOj > E,
!,
J1 is J+1,
sliding_time_window2(RO, RD, J1, Oi, Di, I,

WINDOW_SIZE, LIMIT, SUM).
sliding_time_window2([Oj|RO], [Dj|RD], J, Oi, Di, I, WIND OW_SIZE,

LIMIT, max(0,min(Oi+WINDOW_SIZE,Oj+Dj)-max(Oi,Oj))+S UM) :-
J1 is J+1,
sliding_time_window2(RO, RD, J1, Oi, Di, I,

WINDOW_SIZE, LIMIT, SUM).

gen_automaton_state(ATOM, I, J, STATE) :-
number_codes(I, ICODE), atom_codes(IATOM, ICODE),
number_codes(J, JCODE), atom_codes(JATOM, JCODE),

2955

atom_concat(ATOM, ’_’, SH),
atom_concat(SH, IATOM, SI),
atom_concat(SI, ’_’, SJ),
atom_concat(SJ, JATOM, STATE).

check_lesseq([], []).
check_lesseq([U|R], [V|S]) :-

U =< V,
check_lesseq(R, S).

get_sum([], 0).
get_sum([V|R], S) :-

get_sum(R, T),
S is V+T.

build_sum_var([], 0).
build_sum_var([V|R], V+S) :-

build_sum_var(R, S).

build_sum_squares_var([], 0).
build_sum_squares_var([V|R], V * V+S) :-

build_sum_squares_var(R, S).

build_sum_cubes_var([], 0).
build_sum_cubes_var([V|R], V * V* V+S) :-

build_sum_cubes_var(R, S).

build_prod_var([], 1).
build_prod_var([V|R], V * S) :-

build_prod_var(R, S).

build_sliding_sums([], _, []).
build_sliding_sums([V|R], P, [PV|S]) :-

PV #= P+V,
build_sliding_sums(R, PV, S).

period1(0, _, []) :- !.
period1(P, L, [R|S]) :-

P > 0,
period2(L, 0, P, R),
P1 is P-1,
period1(P1, L, S).

period2([], _, 0, []) :- !.
period2([], I, P, [[]|R]) :-

P > 0,

2956 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

P1 is P-1,
period2([], I, P1, R).

period2([X|Y], I, P, R) :-
I1 is (I+1) mod P,
period2(Y, I1, P, S),
period3(X, I, S, R).

period3(X, 0, [U|V], [W|V]) :- !,
append([X], U, W).

period3(X, I, [U|V], [U|W]) :-
I > 0,
I1 is I-1,
period3(X, I1, V, W).

period4([], _, _, []).
period4([L|LL], Z, CTR, [B|S]) :-

period5(L, Z, CTR, R),
call(R #<=> B),
period4(LL, Z, CTR, S).

period5([], _, _, 1).
period5([L|R], Z, CTR, T #/\ S) :-

period6(L, Z, CTR, T),
period5(R, Z, CTR, S).

period6([], _, _, 1) :- !.
period6([_], _, _, 1) :- !.
period6([X,Y|R], 1, =, X#=Y #/\ S) :- !,

period6([Y|R], 1, =, S).
period6([X,Y|R], 1, =\=, X#\=Y #/\ S) :- !,

period6([Y|R], 1, =\=, S).
period6([X,Y|R], 1, <, X#<Y #/\ S) :- !,

period6([Y|R], 1, <, S).
period6([X,Y|R], 1, >=, X#>=Y #/\ S) :- !,

period6([Y|R], 1, >=, S).
period6([X,Y|R], 1, >, X#>Y #/\ S) :- !,

period6([Y|R], 1, >, S).
period6([X,Y|R], 1, =<, X#=<Y #/\ S) :- !,

period6([Y|R], 1, =<, S).
period6([X,Y|R], 0, =, (X#=0 #\/ Y#=0 #\/ X#=Y) #/\ S) :- !,

period6([Y|R], 0, =, S).
period6([X,Y|R], 0, =\=, (X#=0 #\/ Y#=0 #\/ X#\=Y) #/\ S) :- ! ,

period6([Y|R], 0, =\=, S).
period6([X,Y|R], 0, <, (X#=0 #\/ Y#=0 #\/ X#<Y) #/\ S) :- !,

period6([Y|R], 0, <, S).
period6([X,Y|R], 0, >=, (X#=0 #\/ Y#=0 #\/ X#>=Y) #/\ S) :- !,

2957

period6([Y|R], 0, >=, S).
period6([X,Y|R], 0, >, (X#=0 #\/ Y#=0 #\/ X#>Y) #/\ S) :- !,

period6([Y|R], 0, >, S).
period6([X,Y|R], 0, =<, (X#=0 #\/ Y#=0 #\/ X#=<Y) #/\ S) :- !,

period6([Y|R], 0, =<, S).
period6([X,Y|R], 2, CTRS, Term #/\ S) :- !,

build_vectors_compare(X, Y, CTRS, Term),
period6([Y|R], 2, CTRS, S).

period7([], _, _, _, 0).
period7([B|R], I, P, N, (N #/\ B #/\ P#=I) #\/ S) :- !,

I1 is I+1,
period7(R, I1, P, N #/\ #\B, S).

build_vectors_compare([], [], [], 1) :- !.
build_vectors_compare([X|RX], [Y|RY], [=|RCTR], X#=Y #/ \ R) :-
build_vectors_compare(RX, RY, RCTR, R).
build_vectors_compare([X|RX], [Y|RY], [=\=|RCTR], X#\= Y #/\ R) :-
build_vectors_compare(RX, RY, RCTR, R).
build_vectors_compare([X|RX], [Y|RY], [<|RCTR], X#<Y #/ \ R) :-
build_vectors_compare(RX, RY, RCTR, R).
build_vectors_compare([X|RX], [Y|RY], [>=|RCTR], X#>=Y #/\ R) :-
build_vectors_compare(RX, RY, RCTR, R).
build_vectors_compare([X|RX], [Y|RY], [>|RCTR], X#>Y #/ \ R) :-
build_vectors_compare(RX, RY, RCTR, R).
build_vectors_compare([X|RX], [Y|RY], [=<|RCTR], X#=<Y #/\ R) :-
build_vectors_compare(RX, RY, RCTR, R).

build_vectors_compare_change([], [], [], 0) :- !.
build_vectors_compare_change([X|RX], [Y|RY], [=|RCTR] , X#=Y #\/ R) :- !,
build_vectors_compare_change(RX, RY, RCTR, R).
build_vectors_compare_change([X|RX], [Y|RY], [=\=|RCT R], X#\=Y #\/ R) :- !,
build_vectors_compare_change(RX, RY, RCTR, R).
build_vectors_compare_change([X|RX], [Y|RY], [<|RCTR] , X#<Y #\/ R) :- !,
build_vectors_compare_change(RX, RY, RCTR, R).
build_vectors_compare_change([X|RX], [Y|RY], [>=|RCTR], X#>=Y #\/ R) :- !,
build_vectors_compare_change(RX, RY, RCTR, R).
build_vectors_compare_change([X|RX], [Y|RY], [>|RCTR] , X#>Y #\/ R) :- !,
build_vectors_compare_change(RX, RY, RCTR, R).
build_vectors_compare_change([X|RX], [Y|RY], [=<|RCTR], X#=<Y #\/ R) :- !,
build_vectors_compare_change(RX, RY, RCTR, R).

geost_dims(D, D, [D]) :-
!.

geost_dims(D, K, [D|R]) :-
D < K,

2958 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

D1 is D+1,
geost_dims(D1, K, R).

geost1([], [], [], []).
geost1([OID|R], [SID|S], [X|T], [object(OID,SID,X)|U]) :-

geost1(R, S, T, U).

geost2([], [], [], []).
geost2([SID|R], [T|S], [L|U], [sbox(SID,T,L)|V]) :-

geost2(R, S, U, V).

bin_packing1([], _, []).
bin_packing1([[_-B,_-W]|R], I, [task(B,1,B1,W,I)|RT]) :-

I1 is I+1,
B1 #= B+1,
bin_packing1(R, I1, RT).

nvector_common(NVEC, VECTORS) :-
get_col_attr1(VECTORS, 1, VECTS),
transpose(VECTS, TVECTS),
get_min_list_list_dvar(TVECTS, MINS),
get_max_list_list_dvar(TVECTS, MAXS),
get_ranges(MINS, MAXS, RANGES),
reverse(RANGES, RRANGES),
get_sliding_prod(RRANGES, 1, PRODS),
reverse(MINS, RMINS),
nvector_common1(VECTS, RMINS, PRODS, VARS),
nvalue(NVEC, VARS).

nvector_common1([], _, _, []).
nvector_common1([VECT|R], RMINS, PRODS, [V|S]) :-

reverse(VECT, RVECT),
nvector_common2(RVECT, RMINS, PRODS, Term),
call(V #= Term),
nvector_common1(R, RMINS, PRODS, S).

nvector_common2([], _, _, 0).
nvector_common2([V|R], [MIN|S], [PROD|T], PROD * V-Q+E) :-

Q is PROD* MIN,
nvector_common2(R, S, T, E).

stretch_lmin([], []) :-
!.

stretch_lmin([0|R], [1|S]) :-
!,
stretch_lmin(R, S).

2959

stretch_lmin([L|R], [L|S]) :-
L > 0,
stretch_lmin(R, S).

stretch_reduce_lmax([], _, []).
stretch_reduce_lmax([L|R], N, [M|S]) :-

M is min(L,N),
stretch_reduce_lmax(R, N, S).

stretch_gen_states([], [], _, _, [sink(s),source(s)]).
stretch_gen_states([LMIN|LMINs], [LMAX|LMAXs], NVAR, I , STATES) :-

LMIN =< LMAX,
(LMIN =< 1, LMAX >= NVAR -> STATES1 = [] ; stretch_gen_states1 (LMIN, LMAX, I, STATES1)),
I1 is I+1,
stretch_gen_states(LMINs, LMAXs, NVAR, I1, STATES2),
append(STATES1, STATES2, STATES).

stretch_gen_states1(LCUR, LMAX, _, []) :-
LCUR > LMAX, !.

stretch_gen_states1(LCUR, LMAX, I, [sink(S)|R]) :-
LCUR =< LMAX,
gen_automaton_state(’s’,I,LCUR,S),
LCUR1 is LCUR+1,
stretch_gen_states1(LCUR1, LMAX, I, R).

stretch_gen_transitions(I, M, [], [], _, _, _, [arc(s,0,s)]) :-
I > M, !.

stretch_gen_transitions(I, M, [LMIN|LMINs], [LMAX|LMAX s], LLMIN, LLMAX, NVAR, TRANSITIONS)
I =< M,
(LMIN =< 1, LMAX >= NVAR ->

T0 = [arc(s,I,s)],
LT1 = [],
LT2 = []
;
gen_automaton_state(’s’,I,1,S_I_1),
T0 = [arc(s,I,S_I_1)],
stretch_gen_transitions1(1, LMAX, LMIN, I, M, LLMIN, LLMA X, NVAR, LT1),
LMAX1 is LMAX-1,
stretch_gen_transitions2(1, LMAX1, I, M, LT2)

),
I1 is I+1,
stretch_gen_transitions(I1, M, LMINs, LMAXs, LLMIN, LLMA X, NVAR, LT0),
append(T0, LT0, T1),
append(T1, LT1, T2),
append(T2, LT2, TRANSITIONS).

2960 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

stretch_gen_transitions1(J, LMAX, _, _, _, _, _, _, []) :-
J > LMAX, !.

stretch_gen_transitions1(J, LMAX, LMIN, I, M, LLMIN, LLMA X, NVAR, TRANSITIONS)
J =< LMAX,
gen_automaton_state(’s’,I,J,S_I_J),
(J >= LMIN -> stretch_gen_transitions11(1, M, I, J, LLMIN, L LMAX, NVAR,
J1 is J+1,
stretch_gen_transitions1(J1, LMAX, LMIN, I, M, LLMIN, LLM AX, NVAR, LT0),
(J >= LMIN -> append([arc(S_I_J,0,s)], LT0, T1) ; T1 = LT0),
append(T1, LT1, TRANSITIONS).

stretch_gen_transitions11(K, M, _, _, _, _, _, []) :-
K > M,
!.

stretch_gen_transitions11(K, M, I, J, [_|LMINs], [_|LMAX s], NVAR, R) :-
K = I,
!,
K1 is K+1,
stretch_gen_transitions11(K1, M, I, J, LMINs, LMAXs, NVAR , R).

stretch_gen_transitions11(K, M, I, J, [LMIN|LMINs], [LMA X|LMAXs], NVAR, [arc(S_I_J,K,S_K_1)|R])
K =< M,
K =\= I,
gen_automaton_state(’s’,I,J,S_I_J),
(LMIN =< 1, LMAX >= NVAR ->

S_K_1 = ’s’
;
gen_automaton_state(’s’,K,1,S_K_1)

),
K1 is K+1,
stretch_gen_transitions11(K1, M, I, J, LMINs, LMAXs, NVAR , R).

stretch_gen_transitions2(J, LMAX, _, _, []) :-
J > LMAX, !.

stretch_gen_transitions2(J, LMAX, I, M, [arc(S_I_J,I,S_ I_J1)|R]) :-
J =< LMAX,
gen_automaton_state(’s’,I,J,S_I_J),
J1 is J+1,
gen_automaton_state(’s’,I,J1,S_I_J1),
stretch_gen_transitions2(J1, LMAX, I, M, R).

symmetric_alldifferent0(NODES, SNODES) :-
symmetric_alldifferent0a(NODES, L),
sort(L, S),
symmetric_alldifferent0a(SNODES, S).

2961

symmetric_alldifferent0a([], []).
symmetric_alldifferent0a([[index-INDEX,succ-SUCC]|R], [INDEX-SUCC|S]) :-

symmetric_alldifferent0a(R, S).

symmetric_alldifferent1([], _, _).
symmetric_alldifferent1([Si|RS], I, SUCCS) :-

symmetric_alldifferent2(SUCCS, 1, Si, I),
I1 is I+1,
symmetric_alldifferent1(RS, I1, SUCCS).

symmetric_alldifferent2([], _, _, _).
symmetric_alldifferent2([Sj|RS], J, Si, I) :-

Si #= J #<=> Sj #= I,
J1 is J+1,
symmetric_alldifferent2(RS, J1, Si, I).

derangement1([], []).
derangement1([S|R], [I|T]) :-

S #\= I,
derangement1(R, T).

2962 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

Appendix C

Systems Correspondence Tables

2963

2964 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

C.1 From the Catalog to Choco

2965

Catalog Choco
abs value abs
all equal atMostNValue
alldifferent allDifferent
among among
among var among
and reifiedAnd
arith eq

neq
geq
gt
leq
lt

atleast occurenceMin
atmost occurenceMax
atmost nvalue atMostNValue
bin packing pack
bin packing capa pack
clause and reifiedAnd

clause
clause or reifiedOr

clause
count occurence
cumulative cumulativeMax
cumulative two d geost
decreasing increasingNValue
diffn geost
disjoint tasks disjoint
disjunctive disjunctive
distance distanceEQ
domain member
domain constraint domainChanneling
elem nth
element nth
element matrix nth
eq eq
eq set eq
equivalent ifOnlyIf
exactly occurence
geost geost
geost time geost
geq geq
global cardinality globalCardinality
global cardinality low up globalCardinality
gt gt
imply reifiedLeftImp
in member
in interval member

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf

2966 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

Catalog Choco
in relation feasPairAC

infeasPairAC
relationPairAC
feasTupleAC
infeasTupleAC
relationTupleAC

in set member
increasing increasingNValue
increasing nvalue increasingNValue
inverse inverseChanneling
inverse offset inverseChanneling
inverse set inverseSet
leq leq
lex between lexChainEq
lex chain less lexChain
lex chain lesseq lexChainEq
lex greater lex
lex greatereq lexEq
lex less lex
lex lesseq lexEq
lex lesseq allperm leximin
lt lt
maximum max
minimum min
nand clause
neq neq
nor reifiedXnor
not in notMember
or reifiedOr
proper forest tree
scalar product equation
setDisjoint disjoint
sort sorting
stretch path stretchPath
strictly decreasing increasingNValue
strictly increasing increasingNValue
sum ctr equation
tree tree
xor reifiedXor

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf

2967

C.2 From the Catalog to Gecode

2968 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

Catalog Gecode
abs value abs
all equal rel
alldifferent linear
alldifferent cst linear
among count
among seq sequence
among var count
and rel
arith rel
atleast count

atleast
atmost count

atmost
bin packing binpacking
bin packing capa binpacking
circuit circuit
clause and clause
clause or clause
count count
counts count
cumulative cumulative
cumulatives cumulatives
decreasing rel
diffn nooverlap
disjunctive unary
domain dom
domain constraint channel
elem element
element element
element matrix element
eq rel
eq set rel
equivalent rel
exactly count

exactly
geq rel
global cardinality count
gt rel
imply rel
in rel

dom
in interval dom
in intervals dom
in relation extensional
in set rel

dom
increasing rel
int value precede precede

http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntArith.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntDistinct.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntDistinct.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntCount.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntSequence.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntCount.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelBool.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntCount.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelMiniModelIntAlias.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntCount.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelMiniModelIntAlias.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntBinPacking.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntBinPacking.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntGraph.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelBool.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelBool.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntCount.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntCount.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntScheduling.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntScheduling.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntGeoPacking.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntScheduling.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntDomain.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntChannel.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntElement.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntElement.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelMiniModel.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelSetRel.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelBool.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntCount.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelMiniModelIntAlias.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntCount.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelBool.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelSetRel.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntDomain.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntDomain.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntDomain.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntExt.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelSetRel.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntDomain.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntPrecede.html

2969

Catalog Gecode
int value precede chain precede
inverse channel
inverse offset channel
leq rel
lex lex
lex greater rel
lex greatereq rel
lex less rel
lex lesseq rel
link set to booleans channel
lt rel
maximum max
minimum min
nand clause
neq rel
nor clause
not all equal rel
not in rel
nvalue nvalues
nvalues nvalues
or rel
roots roots
scalar product linear
set value precede precede
sort sorted
sort permutation sorted
strictly decreasing rel
strictly increasing rel
sum ctr linear
sum set weights
xor rel

http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntPrecede.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntChannel.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntChannel.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelMiniModelIntAlias.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelSetConnect.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntArith.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntArith.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelBool.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelBool.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelSetRel.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntNValues.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntNValues.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelBool.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelMiniModelSetAlias.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntLI.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelSetPrecede.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntSorted.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntSorted.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntLI.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelSetConnect.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelBool.html

2970 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

C.3 From the Catalog to JaCoP

Catalog JaCoP
alldifferent alldifferent

alldiff
alldistinct

among among
among seq sequence
among var amongvar
and andbool
atleast count
atmost count
circuit circuit
count count
cumulative cumulative
diffn diff2

diff
disjoint
disjointconditional

distance distance
distance2

elem element
element element
eq xeqy
equivalent eqbool
exactly count
geost geost
geost time geost
geq xgteqy
global cardinality gcc
gt xgty
imply ifthenbool
in in
in interval in
in intervals in
in relation extensionalsupportVA

extensionalsupportMDD
extensionalsupportSTR

leq xlteqy
lt xlty
maximum max
minimum min
or orbool
power xexpyeqz
scalar product sumweight
stretch path stretch
xor xorbool

http://jacopapi.osolpro.com/JaCoP/constraints/Alldifferent.html
http://jacopapi.osolpro.com/JaCoP/constraints/Alldiff.html
http://jacopapi.osolpro.com/JaCoP/constraints/Alldistinct.html
http://jacopapi.osolpro.com/JaCoP/constraints/Among.html
http://jacopapi.osolpro.com/JaCoP/constraints/Sequence.html
http://jacopapi.osolpro.com/JaCoP/constraints/AmongVar.html
http://jacopapi.osolpro.com/JaCoP/constraints/AndBool.html
http://jacopapi.osolpro.com/JaCoP/constraints/Count.html
http://jacopapi.osolpro.com/JaCoP/constraints/Count.html
http://jacopapi.osolpro.com/JaCoP/constraints/Circuit.html
http://jacopapi.osolpro.com/JaCoP/constraints/Count.html
http://jacopapi.osolpro.com/JaCoP/constraints/Cumulative.html
http://jacopapi.osolpro.com/JaCoP/constraints/Diff2.html
http://jacopapi.osolpro.com/JaCoP/constraints/Diff.html
http://jacopapi.osolpro.com/JaCoP/constraints/Disjoint.html
http://jacopapi.osolpro.com/JaCoP/constraints/DisjointConditional.html
http://jacopapi.osolpro.com/JaCoP/constraints/Distance.html
http://jacopapi.osolpro.com/JaCoP/constraints/Distance2.html
http://jacopapi.osolpro.com/JaCoP/constraints/Element.html
http://jacopapi.osolpro.com/JaCoP/constraints/Element.html
http://jacopapi.osolpro.com/JaCoP/constraints/XeqY.html
http://jacopapi.osolpro.com/JaCoP/constraints/EqBool.html
http://jacopapi.osolpro.com/JaCoP/constraints/Count.html
http://jacopapi.osolpro.com/JaCoP/constraints/geost/Geost.html
http://jacopapi.osolpro.com/JaCoP/constraints/geost/Geost.html
http://jacopapi.osolpro.com/JaCoP/constraints/XgteqY.html
http://jacopapi.osolpro.com/JaCoP/constraints/GCC.html
http://jacopapi.osolpro.com/JaCoP/constraints/XgtY.html
http://jacopapi.osolpro.com/JaCoP/constraints/IfThenBool.html
http://jacopapi.osolpro.com/JaCoP/constraints/In.html
http://jacopapi.osolpro.com/JaCoP/constraints/In.html
http://jacopapi.osolpro.com/JaCoP/constraints/In.html
http://jacopapi.osolpro.com/JaCoP/constraints/ExtensionalSupportVA.html
http://jacopapi.osolpro.com/JaCoP/constraints/ExtensionalSupportMDD.html
http://jacopapi.osolpro.com/JaCoP/constraints/ExtensionalSupportSTR.html
http://jacopapi.osolpro.com/JaCoP/constraints/XlteqY.html
http://jacopapi.osolpro.com/JaCoP/constraints/XltY.html
http://jacopapi.osolpro.com/JaCoP/constraints/Max.html
http://jacopapi.osolpro.com/JaCoP/constraints/Min.html
http://jacopapi.osolpro.com/JaCoP/constraints/OrBool.html
http://jacopapi.osolpro.com/JaCoP/constraints/XexpYeqZ.html
http://jacopapi.osolpro.com/JaCoP/constraints/SumWeight.html
http://jacopapi.osolpro.com/JaCoP/constraints/geost/Stretch.html
http://jacopapi.osolpro.com/JaCoP/constraints/XorBool.html

2971

C.4 From the Catalog to MiniZinc

Catalog MiniZinc
all equal all equal
alldifferent all different
among among
atleast at least
atmost at most
atmost1 at most1
bin packing bin packing
bin packing capa bin packing capa
count count
cumulative cumulative
decreasing decreasing
diffn diffn
element element
exactly exactly
global cardinality global cardinality
global cardinality low up global cardinality low up
in member
in relation table
increasing increasing
int value precede value precede
int value precede chain value precede chain
inverse inverse
inverse set inverse set
lex2 lex2
lex greater lex greater
lex greatereq lex greatereq
lex less lex less
lex lesseq lex lesseq
link set to booleans link set to booleans
maximum maximum
minimum minimum
nvalue nvalue
roots roots
sliding sum sliding sum
sort sort
strict lex2 strict lex2
sum sum pred

http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#all_equal
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#all_different
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#among
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#at_least
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#at_most
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#at_most1
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#bin_packing
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#bin_packing_capa
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#count
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#cumulative
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#decreasing
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#diffn
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#element
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#exactly
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#global_cardinality
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#global_cardinality_low_up
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#member
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#table
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#increasing
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#value_precede
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#value_precede_chain
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#inverse
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#inverse_set
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#lex2
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#lex_greater
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#lex_greatereq
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#lex_less
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#lex_lesseq
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#link_set_to_booleans
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#maximum
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#minimum
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#nvalue
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#roots
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#sliding_sum
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#sort
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#strict_lex2
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#sum_pred

2972 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

C.5 From the Catalog to SICStus

2973

Catalog SICStus
alldifferent all different

all distinct
and #/\
arith #<

#=<
#>
#>=
#=
#\=

atleast count
atmost count
circuit circuit
count count
cumulative cumulative
cumulatives cumulatives
domain domain
domain constraint in

in set
elem element
element element
eq #=
equivalent #<=>
exactly count
geost geost
geq #>=
global cardinality global cardinality
global cardinality with costs global cardinality
gt #>
imply #=>
in in

in set
in interval in
in intervals in
in relation case

relation
table

inverse assignment
leq #=<
lex between lex chain
lex chain less lex chain
lex chain lesseq lex chain
lex greater lex chain
lex greatereq lex chain
lex less lex chain
lex lesseq lex chain
lt #<
maximum maximum
minimum minimum

http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html

2974 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

Catalog SICStus
minimum weight alldifferent all different

all distinct
nand #/\
neq #\=
nor #\/
nvalue nvalue
or #\/
scalar product scalar product
sort sorting
sort permutation sorting
sum ctr scalar product
xor #\

http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html

2975

C.6 From Choco to the Catalog

2976 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

Choco Catalog
abs abs value
allDifferent alldifferent
among among

among var
atMostNValue all equal

atmost nvalue
clause clause and

clause or
nand

cumulativeMax cumulative
disjoint disjoint tasks

setDisjoint
disjunctive disjunctive
distanceEQ distance
domainChanneling domain constraint
eq arith

eq
eq set

equation scalar product
sum ctr

feasPairAC in relation
feasTupleAC in relation
geost cumulative two d

diffn
geost
geost time

geq arith
geq

globalCardinality global cardinality
global cardinality low up

gt arith
gt

ifOnlyIf equivalent
increasingNValue decreasing

increasing
increasing nvalue
strictly decreasing
strictly increasing

infeasPairAC in relation
infeasTupleAC in relation
inverseChanneling inverse

inverse offset
inverseSet inverse set
leq arith

leq
lex lex greater

lex less
lexChain lex chain less

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf

2977

Choco Catalog
lexChainEq lex between

lex chain lesseq
lexEq lex greatereq

lex lesseq
leximin lex lesseq allperm
lt arith

lt
max maximum
member domain

in
in interval
in set

min minimum
neq arith

neq
notMember not in
nth elem

element
element matrix

occurence count
exactly

occurenceMax atmost
occurenceMin atleast
pack bin packing

bin packing capa
reifiedAnd and

clause and
reifiedLeftImp imply
reifiedOr clause or

or
reifiedXnor nor
reifiedXor xor
relationPairAC in relation
relationTupleAC in relation
sorting sort
stretchPath stretch path
tree proper forest

tree

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf

2978 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

C.7 From Gecode to the Catalog

2979

Gecode Catalog
abs abs value
atleast atleast
atmost atmost
binpacking bin packing

bin packing capa
channel domain constraint

inverse
inverse offset

channel link set to booleans
circuit circuit
clause clause and

clause or
nand
nor

count among
among var
atleast
atmost
count
counts
exactly
global cardinality

cumulative cumulative
cumulatives cumulatives
dom domain

in
in interval
in intervals
in set

element elem
element

element element matrix
exactly exactly
extensional in relation
lex lex
linear alldifferent

alldifferent cst
linear scalar product

sum ctr
max maximum
min minimum
nooverlap diffn
nvalues nvalue

nvalues
precede int value precede

int value precede chain
precede set value precede

http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntArith.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelMiniModelIntAlias.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelMiniModelIntAlias.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntBinPacking.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntChannel.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelSetConnect.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntGraph.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelBool.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntCount.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntScheduling.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntScheduling.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntDomain.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntElement.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelMiniModel.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelMiniModelIntAlias.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntExt.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelMiniModelIntAlias.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntDistinct.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntLI.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntArith.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntArith.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntGeoPacking.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntNValues.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntPrecede.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelSetPrecede.html

2980 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

Gecode Catalog
rel and

equivalent
imply
or
xor

rel all equal
arith
decreasing
eq
geq
gt
increasing
leq
lex greater
lex greatereq
lex less
lex lesseq
lt
neq
not all equal
strictly decreasing
strictly increasing

rel eq set
in
in set
not in

roots roots
sequence among seq
sorted sort

sort permutation
unary disjunctive
weights sum set

http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelBool.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelInt.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelSetRel.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelMiniModelSetAlias.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntSequence.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntSorted.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntScheduling.html
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelSetConnect.html

2981

C.8 From JaCoP to the Catalog

JaCoP Catalog
alldiff alldifferent
alldifferent alldifferent
alldistinct alldifferent
among among
amongvar among var
andbool and
circuit circuit
count atleast

atmost
count
exactly

cumulative cumulative
diff diffn
diff2 diffn
disjoint diffn
disjointconditional diffn
distance distance
distance2 distance
element elem

element
eqbool equivalent
extensionalsupportMDD in relation
extensionalsupportSTR in relation
extensionalsupportVA in relation
gcc global cardinality
geost geost

geost time
ifthenbool imply
in in

in interval
in intervals

max maximum
min minimum
orbool or
sequence among seq
stretch stretch path
sumweight scalar product
xeqy eq
xexpyeqz power
xgteqy geq
xgty gt
xlteqy leq
xlty lt
xorbool xor

http://jacopapi.osolpro.com/JaCoP/constraints/Alldiff.html
http://jacopapi.osolpro.com/JaCoP/constraints/Alldifferent.html
http://jacopapi.osolpro.com/JaCoP/constraints/Alldistinct.html
http://jacopapi.osolpro.com/JaCoP/constraints/Among.html
http://jacopapi.osolpro.com/JaCoP/constraints/AmongVar.html
http://jacopapi.osolpro.com/JaCoP/constraints/AndBool.html
http://jacopapi.osolpro.com/JaCoP/constraints/Circuit.html
http://jacopapi.osolpro.com/JaCoP/constraints/Count.html
http://jacopapi.osolpro.com/JaCoP/constraints/Cumulative.html
http://jacopapi.osolpro.com/JaCoP/constraints/Diff.html
http://jacopapi.osolpro.com/JaCoP/constraints/Diff2.html
http://jacopapi.osolpro.com/JaCoP/constraints/Disjoint.html
http://jacopapi.osolpro.com/JaCoP/constraints/DisjointConditional.html
http://jacopapi.osolpro.com/JaCoP/constraints/Distance.html
http://jacopapi.osolpro.com/JaCoP/constraints/Distance2.html
http://jacopapi.osolpro.com/JaCoP/constraints/Element.html
http://jacopapi.osolpro.com/JaCoP/constraints/EqBool.html
http://jacopapi.osolpro.com/JaCoP/constraints/ExtensionalSupportMDD.html
http://jacopapi.osolpro.com/JaCoP/constraints/ExtensionalSupportSTR.html
http://jacopapi.osolpro.com/JaCoP/constraints/ExtensionalSupportVA.html
http://jacopapi.osolpro.com/JaCoP/constraints/GCC.html
http://jacopapi.osolpro.com/JaCoP/constraints/geost/Geost.html
http://jacopapi.osolpro.com/JaCoP/constraints/IfThenBool.html
http://jacopapi.osolpro.com/JaCoP/constraints/In.html
http://jacopapi.osolpro.com/JaCoP/constraints/Max.html
http://jacopapi.osolpro.com/JaCoP/constraints/Min.html
http://jacopapi.osolpro.com/JaCoP/constraints/OrBool.html
http://jacopapi.osolpro.com/JaCoP/constraints/Sequence.html
http://jacopapi.osolpro.com/JaCoP/constraints/geost/Stretch.html
http://jacopapi.osolpro.com/JaCoP/constraints/SumWeight.html
http://jacopapi.osolpro.com/JaCoP/constraints/XeqY.html
http://jacopapi.osolpro.com/JaCoP/constraints/XexpYeqZ.html
http://jacopapi.osolpro.com/JaCoP/constraints/XgteqY.html
http://jacopapi.osolpro.com/JaCoP/constraints/XgtY.html
http://jacopapi.osolpro.com/JaCoP/constraints/XlteqY.html
http://jacopapi.osolpro.com/JaCoP/constraints/XltY.html
http://jacopapi.osolpro.com/JaCoP/constraints/XorBool.html

2982 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

C.9 From MiniZinc to the Catalog

MiniZinc Catalog
all different alldifferent
all equal all equal
among among
at least atleast
at most atmost
at most1 atmost1
bin packing bin packing
bin packing capa bin packing capa
count count
cumulative cumulative
decreasing decreasing
diffn diffn
element element
exactly exactly
global cardinality global cardinality
global cardinality low up global cardinality low up
increasing increasing
inverse inverse
inverse set inverse set
lex2 lex2
lex greater lex greater
lex greatereq lex greatereq
lex less lex less
lex lesseq lex lesseq
link set to booleans link set to booleans
maximum maximum
member in
minimum minimum
nvalue nvalue
roots roots
sliding sum sliding sum
sort sort
strict lex2 strict lex2
sum pred sum
table in relation
value precede int value precede
value precede chain int value precede chain

http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#all_different
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#all_equal
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#among
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#at_least
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#at_most
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#at_most1
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#bin_packing
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#bin_packing_capa
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#count
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#cumulative
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#decreasing
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#diffn
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#element
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#exactly
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#global_cardinality
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#global_cardinality_low_up
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#increasing
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#inverse
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#inverse_set
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#lex2
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#lex_greater
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#lex_greatereq
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#lex_less
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#lex_lesseq
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#link_set_to_booleans
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#maximum
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#member
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#minimum
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#nvalue
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#roots
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#sliding_sum
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#sort
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#strict_lex2
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#sum_pred
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#table
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#value_precede
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#value_precede_chain

2983

C.10 From SICStus to the Catalog

SICStus Catalog
#/\ and

nand
#< arith

lt
#<=> equivalent
#= arith

eq
#=< arith

leq
#=> imply
#> arith

gt
#>= arith

geq
#\ xor
#\/ nor

or
#\= arith

neq
all different alldifferent

minimum weight alldifferent
all distinct alldifferent

minimum weight alldifferent
assignment inverse
case in relation
circuit circuit
count atleast

atmost
count
exactly

cumulative cumulative
cumulatives cumulatives
domain domain
element elem

element
geost geost
global cardinality global cardinality

global cardinality with costs
in domain constraint

in
in interval
in intervals

in set domain constraint
in

http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html

2984 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

SICStus Catalog
lex chain lex between

lex chain less
lex chain lesseq
lex greater
lex greatereq
lex less
lex lesseq

maximum maximum
minimum minimum
nvalue nvalue
relation in relation
scalar product scalar product

sum ctr
sorting sort

sort permutation
table in relation

http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html

Bibliography

[1] A. Aggoun and N. Beldiceanu. Extending CHIP in order to Solve Complex
Scheduling and Placement Problems.Mathl. Comput. Modelling, 17(7):57–73,
1993.186, 242, 317, 595, 786

[2] M. Ågren, M. Carlsson, N. Beldiceanu, M. Sbihi, C. Truchet, andS. Zampelli.
Six Ways of Integrating Symmetries within Non-Overlapping Constraints. Tech-
nical Report T2009-01, Swedish Institute of Computer Science, 2009. 1021,
1277, 1281

[3] A. V. Aho, Y. Sagiv, T. Szymanski, and J. D. Ullman. Inferring a tree from
lowest common ancestor with an application to the optimization of relational
expressions.SIAM Journal of Computing, 10(3):405–421, 1981.1788

[4] E. Althaus, A. Bockmayr, M. Elf, T. Kasper, M. Jünger, and K. Mehlhorn.
SCIL—Symbolic Constraints in Integer Linear Programming. In 10th Euro-
pean Symposium on Algorithms (ESA’02), volume 2461 ofLNCS, pages 75–87.
Springer-Verlag, September 2002.662, 1570, 1824, 1874

[5] R. Alvarez-Valdes, F. Parreno, and J. M. Tamarit. A tabu search algorithm for
the pallet loading problem.OR Spectrum, 27(1):43–61, 2005.277

[6] J. Amilhastre. Repŕesentation par automate d’ensemble de solutions de
problèmes de satisfaction de contraintes. PhD thesis, Montpellier II University,
France, 1999. In French.ii

[7] G. Appa, D. Magos, and I. Mourtos. LP Relaxations of Multiple alldifferent
Predicates. In J.-C. Ŕegin and M. Rueher, editors,First International Confer-
ence on Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (CPAIOR’04), volume 3011 ofLNCS,
pages 364–369, Nice, France, April 2004. Springer-Verlag.1212

[8] G. Appa, D. Magos, and L. Mourtos. On the system of twoalldifferent predi-
cates.Information Processing Letters, 94(3):99–105, 2005.1212

[9] K. R. Apt and M. G. Wallace.Constraint Logic Programming using ECLiPSe.
Cambridge University Press, New York, NY, USA, 2007.99, 406

2985

2986 BIBLIOGRAPHY

[10] K. Artiouchine and P. Baptiste. Inter-Distance Constraint: An Extension of
the All-Different Constraint for Scheduling Equal Length Jobs. In P van Beek,
editor,Principles and Practice of Constraint Programming (CP’2005), volume
3709 ofLNCS, pages 62–76. Springer-Verlag, 2005.430, 431, 913

[11] K. Artiouchine and P. Baptiste. Arc-B-Consistency of the Inter-Distance Con-
straint. Constraints (Special Issue on Global Constraints), 12(1):3–19, 2007.
431

[12] S. Asaf, H. Eran, Y. Richter, D. P. Connors, D. L. Gresh, J. Ortega, and M. J.
Mcinnis. Applying Constraint Programming to Identification and Assignment of
Service Professionals. In D. Cohen, editor,Principles and Practice of Constraint
Programming (CP’2010), volume 6308 ofLNCS, pages 24–37, St Andrews,
Scotland, 2010. Springer-Verlag.1209

[13] A. S. Asratian, T. M. J. Denley, and R. Häggkvist. Bipartite Graphs and their
Applications. Cambridge University Press, 1998.435

[14] F. Bacchus. GAC Via Unit Propagation. In C. Bessière, editor,Principles and
Practice of Constraint Programming (CP’2007), volume 4741 ofLNCS, pages
133–147. Springer-Verlag, 2007.297

[15] P. Baptiste and S. Demassey. Tight LP Bounds for Resource Constrained Project
Scheduling.OR Spectrum, 26:251–262, 2004.788

[16] P. Baptiste and C. Le Pape. Constraint Propagation and Decomposition Tech-
niques for Highly Disjunctive and Highly Cumulative Project Scheduling Prob-
lems.Constraints, 5(1–2):119–139, 2000.788

[17] P. Baptiste, C. Le Pape, and L. Peridy. Global Constraints for Partial CSPs:
A Case-Study of Resource and Due Date Constraints. In M. J. Maher and J.-
F. Puget, editors,Principles and Practice of Constraint Programming (CP’98),
volume 1520 ofLNCS, pages 87–101. Springer-Verlag, 1998.913

[18] F. W. Barnes. Packing the maximum number ofm×n tiles in ap× q rectangle.
Discrete Mathematics, 26:93–100, 1979.276

[19] N. Barnier and P. Brisset. Graph Coloring for Air TrafficFlow Management.
In 4th Int. Workshop on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CPAIOR’02), pages
133–147, Le Croisic, France, 2002.1209

[20] R. Bart́ak. Dynamic Global Constraints in Backtracking Based Environments.
Annals of Operations Research, 118(1–4):101–119, 2003.273

[21] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis.Graph Drawing: Al-
gorithms for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs, NJ,
1999.1900

BIBLIOGRAPHY 2987

[22] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic
database schemes.JACM, 30:479–513, 1983.175

[23] N. Beldiceanu. Parallel Machine Scheduling with Calendar Rules. In6th Inter-
national Workshop on Project Management and Scheduling (PMS’98), Istanbul,
Turkey, 1998.181

[24] N. Beldiceanu. Global Constraints as Graph Propertieson a Structured Network
of Elementary Constraints of the Same Type. In R. Dechter, editor, Principles
and Practice of Constraint Programming (CP’2000), volume 1894 ofLNCS,
pages 52–66. Springer-Verlag, 2000. Preprint available asSICS Tech Report
T2000-01.ii , 78, 344

[25] N. Beldiceanu. Global Constraints as Graph Propertieson Structured Network of
Elementary Constraints of the Same Type. Technical Report T2000-01, Swedish
Institute of Computer Science, 2000.i, iii , 344, 610

[26] N. Beldiceanu. Pruning for theminimumConstraint Family and for thenumber
of distinct valuesConstraint Family. In T. Walsh, editor,Principles and Practice
of Constraint Programming (CP’2001), volume 2239 ofLNCS, pages 211–224.
Springer-Verlag, 2001. Preprint available as SICS Tech Report T2000-10.78,
552, 899, 1334, 1348, 1364, 1379, 1407, 1415, 1429, 1468

[27] N. Beldiceanu. Deriving Filtering Algorithms from Constraints Checkers. Slides
presented at the Principles and Practice of Constraint Programming (CP’2004)
Conference, September 2004.1173

[28] N. Beldiceanu,́E. Bourreau, P. Chan, and D. Rivreau. Partial Search Strategy in
CHIP. In 2nd international conference on metaheuristics - MIC97, pages 1–8.
INRIA & PRiSM-Versailles, July 1997.310

[29] N. Beldiceanu and M. Carlsson. Revisiting thecardinality Operator and In-
troducing thecardinality-pathConstraint Family. In P. Codognet, editor,Int.
Conf. on Logic Programming (ICLP’2001), volume 2237 ofLNCS, pages 59–
73. Springer-Verlag, 2001. Preprint available as SICS TechReport T2000-11A.
503, 633, 657, 1613, 1691, 1709

[30] N. Beldiceanu and M. Carlsson. Sweep as a Generic Pruning Technique Applied
to Constraint Relaxation. InCP’01 3rd Workshop on Soft Constraints (Soft’01),
pages 43–55, Paphos, Cyprus, 2001.326

[31] N. Beldiceanu and M. Carlsson. Sweep as a Generic Pruning Technique Applied
to the Non-Overlapping Rectangles Constraints. In T. Walsh, editor,Principles
and Practice of Constraint Programming (CP’2001), volume 2239 ofLNCS,
pages 377–391. Springer-Verlag, 2001. Preprint availableas SICS Tech Report
T2001-13.324, 874

[32] N. Beldiceanu and M. Carlsson. A New Multi-ResourcecumulativesConstraint
with Negative Heights. In P. Van Hentenryck, editor,Principles and Practice

2988 BIBLIOGRAPHY

of Constraint Programming (CP’2002), volume 2470 ofLNCS, pages 63–79.
Springer-Verlag, 2002. Preprint available as SICS Tech Report T2001-11.818,
820

[33] N. Beldiceanu, M. Carlsson, P. Flener, and J. Pearson. On the Reification of
Global Constraints. Technical Report T2012-02, Swedish Institute of Computer
Science, 2012.292

[34] N. Beldiceanu, M. Carlsson, and T. Petit. Deriving Filtering Algorithms from
Constraint Checkers. In M. G. Wallace, editor,Principles and Practice of
Constraint Programming (CP’2004), volume 3258 ofLNCS, pages 107–122.
Springer-Verlag, 2004. Preprint available as SICS Tech Report T2004-08.ii , 5,
78, 172, 305

[35] N. Beldiceanu, M. Carlsson, and E. Poder. New Filteringfor the cumulative
Constraint in the Context of Non-Overlapping Rectangles. In L. Perron and
M. A. Trick, editors, International Conference on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Prob-
lems (CPAIOR’08), volume 5015 ofLNCS, pages 21–35, Paris, France, May
2008. Springer-Verlag.203, 242, 317, 788

[36] N. Beldiceanu, M. Carlsson, E. Poder, R. Sadek, and C. Truchet. A Generic
Geometrical Constraint Kernel in Space and Time for Handling Polymorphic
k-Dimensional Objects. In C. Bessière, editor,Principles and Practice of
Constraint Programming (CP’2007), volume 4741 ofLNCS, pages 180–194.
Springer-Verlag, 2007.279, 317, 326, 1021, 1027, 1269, 1440

[37] N. Beldiceanu, M. Carlsson, and J.-X. Rampon. Global
Constraint Catalog. Technical Report T2005-08, Swedish
Institute of Computer Science, 2005. Available at
ftp://ftp.sics.se/pub/SICS-reports/Reports/SICS-T-- 2005-08--SE.pdf .
i

[38] N. Beldiceanu, M. Carlsson, and S. Thiel. Cost-Filtering Algorithms for the
two Sides of thesum of weights of distinct valuesConstraint. Technical Report
T2002-14, Swedish Institute of Computer Science, 2002.552, 899, 1407, 1415,
1429, 1468, 1844

[39] N. Beldiceanu and E. Contejean. Introducing Global Constraints in CHIP.
Mathl. Comput. Modelling, 20(12):97–123, 1994.78, 478, 494, 502, 828, 866,
872, 1855, 1869

[40] N. Beldiceanu, P. Flener, and X. Lorca. ThetreeConstraint. In R. Bart́ak and
M. Milano, editors,International Conference on Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization Problems
(CP-AI-OR’05), volume 3524 ofLNCS, pages 64–78, Prague, Czech Republic,
May 2005. Springer-Verlag.1885

ftp://ftp.sics.se/pub/SICS-reports/Reports/SICS-T--2005-08--SE.pdf

BIBLIOGRAPHY 2989

[41] N. Beldiceanu, P. Flener, and X. Lorca. Combining tree partitioning, precedence,
incomparability, and degree constraints, with an application to phylogenetic and
ordered-path problems. Technical Report Technical Report2006-020, Depart-
ment of Information Technology, Uppsala University, Sweden, 2006. Available
at http://www.it.uu.se/research/publications/reports/2 006-020 . 1784

[42] N. Beldiceanu, Q. Guo, and S. Thiel. Non-overlapping Constraints be-
tween Convex Polytopes. In T. Walsh, editor,Principles and Practice of
Constraint Programming (CP’2001), volume 2239 ofLNCS, pages 392–407.
Springer-Verlag, 2001. Preprint available as SICS Tech Report T2001-12.186,
874

[43] N. Beldiceanu, F. Hermenier, X. Lorca, and T. Petit. TheincreasingnvalueCon-
straint. In A. Lodi, M. Milano, and P. Toth, editors,International Conference
on Integration of AI and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems (CPAIOR’10), volume 6140 ofLNCS, pages
25–39, Bologna, Italy, 2010. Springer-Verlag.1143

[44] N. Beldiceanu, I. Katriel, and X. Lorca. Undirected Forest Constraints. In
J. C. Beck and B. Smith, editors,International Conference on Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems (CPAIOR’06), volume 3990 ofLNCS, pages 29–43, Cork, Ireland,
May/June 2006. Springer-Verlag.1604, 1605

[45] N. Beldiceanu, I. Katriel, and S. Thiel. Filtering Algorithms for thesameand
usedbyConstraints. Technical Report 2004/1/001, MPI, 2004.1625, 1635, 1919

[46] N. Beldiceanu, I. Katriel, and S. Thiel. Filtering Algorithms for thesameCon-
straint. In J.-C. Ŕegin and M. Rueher, editors,Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimisation Problems
(CP-AI-OR’04), volume 3011 ofLNCS, pages 65–79. Springer-Verlag, 2004.5,
1623, 1625, 1635

[47] N. Beldiceanu, I. Katriel, and S. Thiel. Filtering Algorithms for thesameand
usedbyConstraints.Archives of Control Sciences, Special Issue on constraint
programming for decision and control, 2005. To appear.1625, 1919

[48] N. Beldiceanu, I. Katriel, and S. Thiel. GCC-like Restrictions on thesameCon-
straint. In B. Faltings, A. Petcu, F. Fages, and F. Rossi, editors,Recent Advances
in Constraints, Joint ERCIM/CoLogNet International Workshop on Constraint
Solving and Constraint Logic Programming, CSCLP 2004; Lausanne, Switzer-
land, June 23-25, 2004, Revised Selected and Invited Papers, volume 3419 of
LNCS, pages 1–11. Springer-Verlag, 2005.1631, 1635

[49] N. Beldiceanu and T. Petit. Cost Evaluation of Soft Global Constraints. In J.-C.
Régin and M. Rueher, editors,Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems, volume 3011
of LNCS, pages 80–95. Springer-Verlag, 2004.5

http://www.it.uu.se/research/publications/reports/2006-020

2990 BIBLIOGRAPHY

[50] N. Beldiceanu, T. Petit, and G. Rochart. Bounds of parameters for global con-
straints.RAIRO Operations Research, 40(4):327–353, 2006.744

[51] N. Beldiceanu and E. Poder. Cumulated Profiles of Minimum and Maximum
Resource Utilisation. InNinth Int. Conf. on Project Management and Schedul-
ing, Nancy, France, April 2004.100

[52] N. Beldiceanu and E. Poder. Theperiod Constraint. In B. Demoen, editor,
Int. Conf. on Logic Programming (ICLP’2004), LNCS. Springer-Verlag, 2004.
1583, 1585

[53] C. Berge.Graphes. Dunod, 1970. In French.5, 57, 436

[54] C. Berge. Hypergraphes, Combinatoire des ensembles finis. Gauthier-Villars,
1987. In French.52, 175

[55] C. Bessìere. Constraint Propagation. In F. Rossi, P. van Beek, and T.Walsh,
editors,Handbook of Constraint Programming, chapter 3. Elsevier, 2006.154,
181

[56] C. Bessìere, R. Coletta, and T. Petit. Acquiring Parameters of Implied Global
Constraints. In P. van Beek, editor,Principles and Practice of Constraint Pro-
gramming (CP’2005), volume 3709 ofLNCS, pages 747–751. Springer-Verlag,
2005.5

[57] C. Bessìere, E. Hebrard, B. Hnich, Z. Kızıltan, and T. Walsh.Among, common
and disjoint Constraints. In M. Carlsson, F. Fages, B. Hnich, and F. Rossi,
editors,Joint ERCIM/CoLogNET International Workshop on Constraint Solving
and Constraint Logic Programming (CSCLP 2005), pages 223–235, June 2005.
479

[58] C. Bessìere, E. Hebrard, B. Hnich, Z. Kızıltan, and T. Walsh. Filtering Al-
gorithms for thenvalue Constraint. In R. Bart́ak and M. Milano, editors,
International Conference on Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems (CP-AI-OR’05),
volume 3524 ofLNCS, pages 79–93, Prague, Czech Republic, May 2005.
Springer-Verlag.376, 538, 552, 1468

[59] C. Bessìere, E. Hebrard, B. Hnich, Z. Kızıltan, and T. Walsh. Therangeand
rootsConstraints: Specifying Counting and Occurrence Problems. In 19th Int.
Joint Conf. on Artificial Intelligence (IJCAI-05), pages 60–65, 2005.100, 1618,
1936

[60] C. Bessìere, E. Hebrard, B. Hnich, Z. Kızıltan, and T. Walsh.Among, com-
mon and disjoint Constraints. In B. Hnich, M. Carlsson, F. Fages, and
F. Rossi, editors,Recent Advances in Constraints, Joint ERCIM/Colognet Inter-
national Workshop on Constraint Solving and Constraint Logic Programming,
CSCLP05; Uppsala, Sweden, June 2005; Revised Selected and Invited Papers,
volume 3978 ofLNAI, pages 28–43. Springer-Verlag, 2006.479

BIBLIOGRAPHY 2991

[61] C. Bessìere, E. Hebrard, B. Hnich, Z. Kızıltan, and T. Walsh. The Range Con-
straint: Algorithms and Implementation. In J. C. Beck and B.Smith, editors,
International Conference on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CPAIOR’06), volume
3990 ofLNCS, pages 59–73, Cork, Ireland, May/June 2006. Springer-Verlag.
100

[62] C. Bessìere, E. Hebrard, B. Hnich, Z. Kızıltan, and T. Walsh. The Roots Con-
straint. In F. Benhamou, editor,Principles and Practice of Constraint Program-
ming (CP’2006), volume 4204 ofLNCS, pages 75–90, Nantes, France, 2006.
Springer-Verlag.1618

[63] C. Bessìere, E. Hebrard, B. Hnich, Z. Kızıltan, and T. Walsh. Range and Roots:
Two Common Patterns for Specifying and Propagating Counting and Occur-
rence Constraints.Artificial Intelligence, 173(11):1054–1078, 2009.1618

[64] C. Bessìere, E. Hebrard, B. Hnich, and T. Walsh.Disjoint, partition andinter-
sectionConstraints for Set and Multiset Variables. In M. G. Wallace, editor,
Principles and Practice of Constraint Programming (CP’2004), volume 3258
of LNCS, pages 138–152. Springer-Verlag, 2004.551

[65] C. Bessìere, E. Hebrard, B. Hnich, and T. Walsh. The Complexity of Global
Constraints. In D. L. McGuinness and G. Ferguson, editors,19th National Con-
ference on Artificial Intelligence (AAAI’04), pages 112–117. AAAI Press, 2004.
552, 1467

[66] C. Bessìere, E. Hebrard, B. Hnich, and T. Walsh. The Tractability of Global
Constraints. In M. G. Wallace, editor,Principles and Practice of Constraint Pro-
gramming (CP’2004), volume 3258 ofLNCS, pages 716–720. Springer-Verlag,
2004.705, 1035

[67] C. Bessìere, G. Katsirelos, N. Narodytska, C.-G. Quimper, and T. Walsh. De-
compositions ofall different, global cardinalityand related constraints. In21th
Int. Joint Conf. on Artificial Intelligence (IJCAI-09), 2009.437, 1041

[68] C. Bessìere, G. Katsirelos, N. Narodytska, C.-G. Quimper, and T. Walsh. De-
composition of thenvalueConstraint. In D. Cohen, editor,Principles and Prac-
tice of Constraint Programming (CP’2010), volume 6308 ofLNCS, pages 114–
128, St Andrews, Scotland, 2010. Springer-Verlag.1468

[69] C. Bessìere, G. Katsirelos, N. Narodytska, C.-G. Quimper, and T. Walsh. Propa-
gating Conjunctions ofalldifferentConstraints. In25th National Conference on
Artificial Intelligence (AAAI’10), pages 1–6. AAAI Press, July 2010.181, 1213

[70] C. Bessìere, G. Katsirelos, N. Narodytska, and T. Walsh. Circuit Complexity
and Decompositions of Global Constraints. In21th Int. Joint Conf. on Artificial
Intelligence (IJCAI-09), pages 412–418, 2009.437

2992 BIBLIOGRAPHY

[71] C. Bessìere, N. Narodytska, C.-G. Quimper, and T. Walsh. ThealldifferentCon-
straint with Precedences. In T. Achterberg and J. C. Beck, editors, International
Conference on Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems (CPAIOR’11), volume 6697 ofLNCS,
pages 36–52, Berlin, Germany, 2011. Springer-Verlag.435

[72] O. R. Bininda-Emonds, J. L. Gittleman, and M. A. Steel. The (super)tree of life:
Procedures, problems, and prospects.Annual Reviews of Ecological Systems,
33:265–289, 2002.1787

[73] M. Biró. Object-oriented interaction in resource constrained scheduling. Infor-
mation Processing Letters, 36(2):65–67, 1990.875

[74] N. Bleuzen-Guernalec and A. Colmerauer. Narrowing a Block of Sortings in
Quadratic Time. In G. Smolka, editor,Principles and Practice of Constraint
Programming (CP’97), volume 1330 ofLNCS, pages 2–16. Springer-Verlag,
1997.436, 1773

[75] M. Bodirsky and M. Kutz. Determining the Consistency ofPartial Tree Descrip-
tions. Artificial Intelligence, 171(2–3):185–196, 2007.1788

[76] M. Bohlin. Design and Implementation of a Graph-Based Constraint Model for
Local Search. Licentiate Thesis 27, Mälardalen University, 2004.4

[77] L. Bordeaux andÉ. Monfroy. Extraction de programmes̀a partir de
sṕecifications en logique existentielle du second ordre par compilation de con-
naissances. InProgrammation en logique avec contraintes, JFPLC 2003, Revue
des sciences et technologies de l’information, pages 189–202. Lavoisier, June
2003. In French.5

[78] S. Bourdais, P. Galinier, and G. Pesant. HIBISCUS: A Constraint Programming
Application to Staff Scheduling in Health Care. In F. Rossi,editor,Principles
and Practice of Constraint Programming (CP’2003), volume 2833 ofLNCS,
pages 153–167. Springer-Verlag, 2003.78, 1035, 1121, 1574

[79] É. Bourreau.Traitement de contraintes sur les graphes en programmationpar
contraintes. PhD thesis, Paris 13 University, France, March 1999. In French.
181, 828, 835, 843

[80] C. J. Bouwkamp and A. J. W. Duijvestijn. Catalogue of Simple Perfect Squared
Squares of orders 21 through 25. Technical Report EUT Report92-WSK-03,
Eindhoven University of Technology, Faculty of Mathematics and Computing
Science, The Netherlands, November 1992.317, 874

[81] S. Brand. The Sum-of-Increments Constraint in the Consecutive-Ones Matrix
Decomposition Problem. In S. Y. Shin and S. Ossowski, editors, Proceedings
of the 2009 ACM Symposium on Applied Computing (SAC), pages 1417–1418,
Honolulu, Hawaii, USA, 2009.1842, 1843

BIBLIOGRAPHY 2993

[82] S. Brand, N. Narodytska, C.-G. Quimper, P. J. Stuckey, and T. Walsh. Encodings
of the sequenceConstraint. In C. Bessière, editor,Principles and Practice of
Constraint Programming (CP’2007), volume 4741 ofLNCS, pages 210–224.
Springer-Verlag, 2007.503

[83] C. Bron and J. Kerbosch. Finding All Cliques of an Undirected Graph.Com-
munications of the ACM, 16(9):575–577, September 1973.257, 430, 435, 684,
913

[84] H. Cambazard and B. O’Sullivan. Propagating the Bin Packing Constraint Using
Linear Programming. In D. Cohen, editor,Principles and Practice of Constraint
Programming (CP’2010), volume 6308 ofLNCS, pages 129–136, St Andrews,
Scotland, 2010. Springer-Verlag.595

[85] A. Caprara, A. Lodi, S. Martello, and M. Monaci. Packinginto the smallest
square: Worst-case analysis of lower bounds.Discrete Optimization, 3:317–
326, 2006.310

[86] J. Carlier. One machine problem.European Journal of Operational Research,
11:42–47, 1982.912

[87] J. Carlier and E. Pinson. Une méthode arborescente pour optimiser la durée
d’un job-shop. Technical Report ISSN/0294-2755, Institutde Math́ematiques
Appliquées, UCO, Angers, 1988. Les Cahiers de L’I.M.A., In French.913

[88] J. Carlier and E. Pinson. A Practical Use of Jackson’s Preemptive Schedule for
Solving the job-shop Problem.Annals of Operations Research, 26:269–287,
1990.913

[89] M. Carlsson. Filtering for thecaseconstraint. Talk given at Advanced School
on Global Constraints. Samos, Greece, 2006.100

[90] M. Carlsson and N. Beldiceanu. Arc-Consistency for achain of lexicographic
ordering Constraints. Technical Report T2002-18, Swedish Institute of Com-
puter Science, 2002.1272, 1273, 1276, 1277, 1280, 1281

[91] M. Carlsson and N. Beldiceanu. Revisiting thelexicographic orderingCon-
straint. Technical Report T2002-17, Swedish Institute of Computer Science,
2002.1292, 1299, 1304, 1311

[92] M. Carlsson and N. Beldiceanu. Dispensation Order Generation for Pyrose-
quencing. In Yi-Ping Phoebe Chen, editor,Proceedings of Proceedings of the
Second Asia Pacific Bioinformatics Conference (APBC2004), volume 29, pages
327–332, Dunedin, New Zealand, January 2004. Australian Computer Society.
1424

[93] M. Carlsson, N. Beldiceanu, and J. Martin. A Geometric Constraint overk-
Dimensional Objects and Shapes Subject to Business Rules. In P. J. Stuckey,
editor,Principles and Practice of Constraint Programming (CP’2008), volume
5202 ofLNCS, pages 220–234. Springer-Verlag, 2008.ii , 2, 182, 252, 326, 404

2994 BIBLIOGRAPHY

[94] M. Carlsson et al. SICStus Prolog User’s Manual. Swedish Insti-
tute of Computer Science, 3.10 edition, January 2003. Available at
http://www.sics.se/sicstus/ . 100, 762, 873, 959

[95] M. Carlsson, G. Ottosson, and B. Carlson. An Open-EndedFinite Domain Con-
straint Solver. In H. Glaser, P. Hartel, and H. Kuchen, editors, Programming
Languages: Implementations, Logics, and Programming (PLILP’97), volume
1292 ofLNCS, pages 191–206, Southampton, 1997. Springer-Verlag.99, 103

[96] J. M. V. Carvalho. Exact solution of bin-packing problems using column genera-
tion and branch-and-bound.Annals of Operations Research, 86:629–659, 1999.
595

[97] J. M. V. Carvalho. LP models for bin packing and cutting stock problems.Eu-
ropean Journal of Operational Research, 141(2):253–273, 2002.595

[98] Y. Caseau and F. Laburthe. Cumulative Scheduling with Task Intervals. InJoint
International Conference and Symposium on Logic Programming (JICSLP’96).
MIT Press, 1996.788

[99] Y. Caseau and F. Laburthe. Solving Small TSPs with Constraints. In Lee Naish,
editor,Fourteenth International Conference on Logic Programming(ICLP’97),
pages 316–330. MIT Press, 1997.100

[100] A. Cayley. A theorem on trees.Quart. J. Math., 23:376–378, 1889.1604

[101] G. Chabert and N. Beldiceanu. Sweeping with ContinousDomains. In D. Cohen,
editor,Principles and Practice of Constraint Programming (CP’2010), volume
6308 ofLNCS, pages 137–151, St Andrews, Scotland, 2010. Springer-Verlag.
325

[102] G. Chabert, L. Jaulin, and X. Lorca. A Constraint on theNumber of Distinct
Vectors with Application to Localization. In I. P. Gent, editor, Principles and
Practice of Constraint Programming (CP’2009), volume 5732 ofLNCS, pages
196–210. Springer-Verlag, 2009.306, 1485

[103] G. Chabert and X. Lorca. On the Clique Partition of Rectangle Graphs. Techni-
cal Report 09-03-INFO,́Ecole des Mines de Nantes, 2009.1485

[104] W. Chang. A Remark on the Definition of Costas Arrays.Proceedings of the
IEEE, 75(4):522–523, April 1987.202

[105] P. Charman.Gestion des contraintes géoḿetriques pour l’aidèa l’aménagement
spatial. PhD thesis,́Ecole Nationale des Ponts et Chaussées, France, November
1995. In French.224

[106] A. M. Cheadle, W. Harvey, A. J. Sadler, J. Schimpf, K. Shen, and M. G. Wallace.
ECLiPSe: An Introduction. Technical Report 03-1, IC-Parc,Imperial College
London, 2003.99

http://www.sics.se/sicstus/

BIBLIOGRAPHY 2995

[107] K. C. K. Cheng and R. H. C. Yap. Ad-hoc Global Constraints for Life. In P. van
Beek, editor,Principles and Practice of Constraint Programming (CP’2005),
volume 3709 ofLNCS, pages 182–195. Springer-Verlag, 2005.100

[108] K. C. K. Cheng and R. H. C. Yap. Applying Ad-hoc Global Constraints with the
caseConstraint to Still-Life.Constraints, 11(2–3):91–114, 2006.100

[109] G. Chu, M. J. Garćıa de la Banda, and P. J. Stuckey. Automatically Exploit-
ing Subproblem Equivalence in Constraint Programming. In A. Lodi, M. Mi-
lano, and P. Toth, editors,International Conference on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Prob-
lems (CPAIOR’10), volume 6140 ofLNCS, pages 71–86, Bologna, Italy, 2010.
Springer-Verlag.5

[110] V. Chv́atal. Tough graphs and hamiltonian circuits.Discrete Mathematics,
5:215–228, 1973.663

[111] F. Clautiaux, J. Carlier, and A. Moukrim. A New Exact Method for the Orthogo-
nal Packing Problem.European Journal of Operational Research, 183(3):1196–
1211, 2007.332

[112] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms
for bin packing - an updated survey. In G. Ausiello, M. Lucertini, and P. Ser-
afini, editors,Algorithms Design for Computer System Design, pages 49–106.
Springer-Verlag, New York, 1984.595

[113] D. Cohen, P. Jeavons, C. Jefferson, K. E. Petrie, and B.Smith. Symmetry Defini-
tions for Constraint Satisfaction Problems.Constraints, 11(2-3):115–137, 2006.
18, 146

[114] Mozart Consortium. The Mozart Programming System, version 1.3.2, 2006.
Available athttp://www.mozart-oz.org . 99, 936

[115] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to algorithms.
MIT Press, fifteenth edition, 1990.782, 784

[116] M.-C. Costa. Persistency in maximum cardinality bipartite matchings.Opera-
tion Research Letters, 15:143–149, 1994.436

[117] COSYTEC.CHIP Reference Manual, release 5.1 edition, 1997.100, 1735

[118] M.-C. Cot́e, B. Gendron, and L.-M. Rousseau. Modeling the Regular Constraint
with Integer Programming. In P. Van Hentenryck and L. Wolsey, editors,In-
ternational Conference on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CPAIOR’07), volume
4150 ofLNCS, pages 29–43, Brussels, Belgium, May 2007. Springer-Verlag. ii ,
100, 250

[119] X. Cousin. Application of Constraint Logic Programming on Timetable Prob-
lem. PhD thesis, Rennes I University, France, June 1993. In French. 1178

http://www.mozart-oz.org

2996 BIBLIOGRAPHY

[120] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points. InProceedings of Symposium on Principles of Programming Languages
(POPL’77), pages 238–252. ACM Press, 1977.147

[121] H. T. Croft, K. J. Falconer, and R. K. Guy.Unsolved Problems in Geometry.
Springer-Verlag, New York, Berlin, 1991.315

[122] R. Dechter and J. Pearl. Network-Based Heuristics forConstraint-Satisfaction
Problems.Artificial Intelligence, 34(1):1–38, 1987.39

[123] R. Dechter and J. Pearl. Network-Based Heuristics forConstraint-Satisfaction
Problems.Artificial Intelligence, 34:1–38, 1988.239

[124] R. Dechter and J. Pearl. Tree Clustering for Constraint Networks. Artificial
Intelligence, 38(3):353–366, 1989.152

[125] S. Demassey, G. Pesant, and L.-M. Rousseau. Acost-regularbased hybrid col-
umn generation approach.Constraints, 11(4), 2006. Special issue following
CPAIOR’05. 100

[126] T. Denmat, A. Gotlieb, and M. Ducassé. An Abstract Interpretation Model
Based Combinator for Modelling While Loops in Constraint Programming.
In C. Bessìere, editor,Principles and Practice of Constraint Programming
(CP’2007), volume 4741 ofLNCS, pages 241–255. Springer-Verlag, 2007.
1016, 1598

[127] N. Deo. Note on Hopcroft and Tarjan’s Planarity Algorithm. Journal of the
Association for Computing Machinery, 23(1):74–75, January 1976.663

[128] F. Diedrich, K. Jansen, U. M. Schwarz, and D. Trystram.A Survey on Approx-
imation Algorithms for Scheduling with Machine Unavailability. In J. Lerner,
D. Wagner, and K. A. Zweig, editors,Algorithmics, volume 5515 ofLNCS,
pages 50–64. Springer-Verlag, 2009.305

[129] M. Dincbas and H. Simonis. APACHE - A Constraint Based,Automated Stand
Allocation System. InAdvanced Software Technology in Air Transport (AS-
TAIR’91), pages 267–282, London, UK, 1991. Royal Aeronautical Society. 1209

[130] M. Dincbas, P. Van Hentenryck, H. Simonis, T. Graf A. Aggoun, and F. Berthier.
The Constraint Logic Programming Language CHIP. InInt. Conf. on Fifth Gen-
eration Computer Systems (FGCS’88), pages 693–702, Tokyo, Japan, 1988.99

[131] G. Dooms.The CP(Graph) Computation Domain in Constraint Programming.
PhD thesis, University Catholic of Louvain, Belgium, September 2006.7, 9, 99,
606, 746, 856, 1824, 1852

[132] G. Dooms and I. Katriel. Theminimum spanning treeConstraint. In F. Ben-
hamou, editor,Principles and Practice of Constraint Programming (CP’2006),
volume 4204 ofLNCS, pages 152–166, Nantes, France, 2006. Springer-Verlag.
100, 1885

BIBLIOGRAPHY 2997

[133] K. A. Dowsland. The three-dimensional pallet chart: An analysis of the fac-
tors affecting the set of feasible layouts for a class of two-dimensional packing
problems.Journal of the Operational Research Society, 35:895–905, 1984.277

[134] K. A. Dowsland. Determining an upper bound for a class of rectangular packing
problems.Computers & operations research, 12(22):201–205, 1985.277

[135] H. E. Dudeney.The Canterbury Puzzles. Thomas Nelson & Sons, New York,
1919.5

[136] A. J. W. Duijvestijn. Simple Perfect Squared Square ofLowest Order.Journal
of Combinatorial Theory, Series B 25:555–558, 1978.315

[137] B. O’Sullivan E. Hebrard, D. Marx and I. Razgon. Constraints of Difference
and Equality: A Complete Taxonomic Characterisation. In I.P. Gent, editor,
Principles and Practice of Constraint Programming (CP’2009), volume 5732
of LNCS, pages 424–438. Springer-Verlag, 2009.1714, 1716, 1720, 1726, 1730

[138] K. M. Elbassioni, M. Kutz I. Katriel, and M. Mahajan. OnSystems ofalldiffer-
entConstraints. Unpublished, Max-Planck-Institut für Informatik, 2005.1208,
1222, 1223, 1239

[139] K. M. Elbassioni, I. Katriel, M. Kutz, and M. Mahajan. Simultaneous Match-
ings. In Xiaotie Deng and Ding-Zhu Du, editors,Algorithms and Computation,
16th International Symposium, (ISAAC 2005), volume 3827 ofLNCS, pages
106–115. Springer-Verlag, 2005.1212

[140] D. Eppstein and D. Strash. Listing All Maximal Cliquesin Large Sparse Real-
World Graphs. In P. M. Pardalos and S. Rebennack, editors,10th International
Symposium on Experimental Algorithms (SEA 2011), volume 6630 ofLNCS,
pages 364–375, Kolimpari, Chania, Crete, Greece, 2011. Springer-Verlag.435

[141] J. Erschler and P. Lopez. Energy-Based Approach for Task Scheduling under
Time and Resources Constraints. In2nd International Workshop on Project
Management and Scheduling, pages 115–121, Compiégne, France, June 1990.
788

[142] L. Euler. Solution d’une question curieuse qui ne parait soumiseà aucune anal-
yse.Mém. Acad. Sci. Berlin, 15:310–337, 1759.5

[143] F. Fages and A. Lal. A Global Constraint for Cutset Problems. In5th Int. Work-
shop on Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (CPAIOR’03), Montréal, Canada, 2003.
824

[144] J.-G. Fages and X. Lorca. Revisiting thetreeConstraint. In J. H.M. Lee, editor,
Principles and Practice of Constraint Programming (CP’2011), volume 6876 of
LNCS, pages 271–285, Perugia, Italy, 2011. Springer-Verlag.1885

2998 BIBLIOGRAPHY

[145] R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes.
JACM, 30:514–550, July 1983.152

[146] T. Fahle. Cost Based Filtering vs. Upper Bounds for Maximum Clique. In
4th Int. Workshop on Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems (CPAIOR’02), Le Croisic,
France, 2002.684

[147] B.-J. Falkowski and L. Schmitz. A note on the queens’ problem. Information
Processing Letters, 23(1):39–46, 1986.269

[148] B. Faltings and S. Macho-Gonzalez. Open Constraint Satisfaction. In
P. Van Hentenryck, editor,Principles and Practice of Constraint Programming
(CP’2002), volume 2470 ofLNCS, pages 356–370. Springer-Verlag, 2002.273

[149] B. Faltings and S. Macho-Gonzalez. Open Constraint Programming.Artificial
Intelligence, 161(1–2):181–208, 2005.273

[150] O. Favaron, M. Mah́eo, and J.-F. Saclé. On the residue of a graph.J. Graph
Theory, 15:39–64, 1991.376

[151] S. P. Fekete, J. Schepers, and J. van der Veen. An Exact Algorithm for Higher-
Dimensional Orthogonal Packing.Operations Research, 55(3):569–587, 2007.
297

[152] P. Festa, P. M. Pardalos, and M. G. C. Resende. Feedbackset problems. In
DingZhu Du and Panos M. Pardalos, editors,Handbook of Combinatorial Op-
timization, Supplement Vol. A, pages 209–258. Kluwer Academic Publishers,
1999.262

[153] A. Fink and S. Voss. Applications of modern heuristic search methods to pattern
sequencing problems.Computers and Operations Research, 26:17–34, 1999.
278, 795

[154] C. Flamm, I. L. Hofacker, and P. F. Stadler. RNA in silico: The computational
biology of RNA secondary structures.Adv. Complex Syst., 2:5–90, 1999.1660

[155] P. Flener, A. M. Frisch, B. Hnich, Z. Kızıltan, I. Miguel, J. Pearson, and
T. Walsh. Breaking Row and Column Symmetries in Matrix Models. In
P. Van Hentenryck, editor,Principles and Practice of Constraint Programming
(CP’2002), volume 2470 ofLNCS, pages 462–476. Springer-Verlag, 2002.474,
1266, 1316, 1814

[156] P. Flener, J. Pearson, M. Sellmann, P. Van Hentenryck,and M.Ågren. Dynamic
structural symmetry breaking for constraint satisfactionproblems.Constraints,
14(4):506–538, 2009.18, 146

[157] F. Focacci. Solving Combinatorial Optimization Problems in Constraint Pro-
gramming. PhD thesis, Ferrara University, Italy, 2001.890

BIBLIOGRAPHY 2999

[158] F. Focacci, A. Lodi, and M. Milano. Cost-Based Domain Filtering. InPrinciples
and Practice of Constraint Programming (CP’99), volume 1713 ofLNCS, pages
189–203. Springer-Verlag, 1999.1394

[159] E. C. Freuder. A Sufficient Condition for Backtrack-Free Search.J. ACM,
29(1):24–32, 1982.239

[160] A. M. Frisch, B. Hnich, Z. Kızıltan, I. Miguel, and T. Walsh. Global Con-
straints for Lexicographic Orderings. In P. Van Hentenryck, editor,Principles
and Practice of Constraint Programming (CP’2002), volume 2470 ofLNCS,
pages 93–108. Springer-Verlag, 2002.78, 1292, 1299, 1304, 1311

[161] A. M. Frisch, B. Hnich, Z. Kızıltan, I. Miguel, and T. Walsh. Multiset Ordering
Constraints. In18th Int. Joint Conf. on Artificial Intelligence (IJCAI-2003),
2003.1292, 1298, 1304, 1310

[162] T. Fr̈uhwirth. Theory and Practice of Constraint Handling Rules,Special Issue
on Constraint Logic Programming.Journal of Logic Programming, 37(1–3):95–
138, October 1998.1292, 1299, 1304, 1311

[163] T. Fr̈uhwirth. Complete Propagation Rules for Lexicographic Order Con-
straints over Arbitrary Domains. In B. Hnich, M. Carlsson, F. Fages, and
F. Rossi, editors,Recent Advances in Constraints, Joint ERCIM/Colognet Inter-
national Workshop on Constraint Solving and Constraint Logic Programming,
CSCLP05; Uppsala, Sweden, June 2005; Revised Selected and Invited Papers,
volume 3978 ofLNAI, pages 14–28. Springer-Verlag, 2006.1292, 1299, 1304,
1311

[164] A. G. Frutos, Q. Liu, A. J. Thiel, A. M. W. Sanner, A. E. Condon, L. M. Smith,
and R. M. Corn. Demonstration of a word design strategy for DNA computing
on surfaces.Nucleic Acids Research, 25:4748–4757, 1997.422, 868

[165] D. Gale. A theorem on flows in networks.Pacific J. Math., 7:1073–1082, 1957.
1623

[166] I. Gambini. A Method for Cutting Squares into DistinctSquares. Discrete
Applied Mathematics, 98(1–2):65–80, 1999.874

[167] I. Gambini.Quant aux carŕes carreĺes. PhD thesis, Aix-Marseille II University,
France, December 1999. In French.874

[168] E. R. Gansner and S. C. North. An open graph visualization system and its
applications to software engineering.Softw., Pract. Exper., 30(11):1203–1233,
2000.104, 405

[169] M. R. Garey and D. S. Johnson.Computers and Intractability. A Guide to the
Theory of NP-Completeness. W.H.Freeman and co., San Francisco, 1979.936

[170] M. R. Garey and D. S. Johnson. Crossing number is NP-complete.SIAM Journal
on Algebraic Discrete Methods, 4:312–316, 1983.1899

3000 BIBLIOGRAPHY

[171] M. R. Garey, D. S. Johnson, B. B. Simons, and R. E. Tarjan. Scheduling
unit-time tasks with arbitrary release times and deadlines. SIAM Journal on
Computing, 10(2):256–269, 1981.431

[172] H. Gehring, K. Menschner, and M. Meyer. A computer-based heuristic for pack-
ing pooled shipment containers.European Journal of Operational Research,
44:277–288, 1990.875

[173] I. P. Gent, C. Jefferson, and I. Miguel. Minion: A Fast Scalable Constraint
Solver. InECAI 2006, 17th European Conference on Artificial Intelligence,
August 29 - September 1, 2006, Riva del Garda, Italy, Including Prestigious
Applications of Intelligent Systems (PAIS 2006), Proceedings, pages 98–102.
IOS Press, 2006.99

[174] I. P. Gent, I. Miguel, and P. Nightingale. Generalisedarc consistency
for the Alldifferent constraint: An empirical survey.Artificial Intelligence,
172(18):1973–2000, 2008.436

[175] I. P. Gent and P. Nightingale. A new encoding of thealldifferent constraint
into SAT. In A. Frisch and I. Miguel, editors,CP’2004 Third International
Workshop on Modelling and Reformulating Constraint Satisfaction Problems,
pages 95–110, Toronto, Canada, September 2004.296

[176] I. P. Gent, P. Prosser, B. M. Smith, and W. Wei. Supertree Construction
with Constraint Programming. In F. Rossi, editor,Principles and Practice of
Constraint Programming (CP’2003), volume 2833 ofLNCS, pages 837–841.
Springer-Verlag, 2003.1788

[177] L. Georgiadis.Linear-Time Algorithms for Dominators and Related Problems.
PhD thesis, Princeton University, USA, 2005.936

[178] M. L. Ginsberg and W. D. Harvey. Limited Discrepancy Search. In C. S. Mel-
lish, editor,14th Int. Joint Conf. on Artificial Intelligence (IJCAI-95), volume 1,
pages 607–615. Morgan Kaufmann, 1995.250, 890

[179] F. Glover. Maximum matchings in convex bipartite graphs. Naval Res. Logist.
Quart., 14:313–316, 1967.179, 436

[180] S. W. Golomb.Polyominoes. Scribners, New York, 1965.1594

[181] S. W. Golomb. How to Number a Graph. In R. C. Read, editor, Graph Theory
and Computing, pages 23–37. Academic Press, New York, 1972.1062, 1594

[182] M. Gondran and M. Minoux.Graphs and Algorithms. Wiley, New York, 2nd
revised edition, 1984.57

[183] S. Grandcolas and C. Pinto. A SAT Encoding for Multi-dimensional Packing
Problems. In A. Lodi, M. Milano, and P. Toth, editors,International Conference
on Integration of AI and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems (CPAIOR’10), volume 6140 ofLNCS, pages
141–146, Bologna, Italy, 2010. Springer-Verlag.297

BIBLIOGRAPHY 3001

[184] E. Ya. Grinberg. Plane homogeneous graphs of degree three without hamiltonian
circuits. Latv. Mat. Ezhegodnik, 4:51–58, 1968. In Russian.663

[185] P. Hansen. Degrés et nombre de stabilité d’un graphe. Cahiers du Centre
d’Études de Recherche Opérationnelle, 17:213–220, 1975.376

[186] F. Harary and A. J. Schwenk. A new crossing number for bipartite graphs.
Utilitas Math., 1:203–209, 1972.1898, 1900

[187] G. H. Hardy and E. M. Wright.Theory of numbers. Oxford Univ. Press, Oxford,
1975.947

[188] W. Harvey and J. Schimpf. Bounds Consistency Techniques for Long Linear
Constraints. InCP’02 Workshop on Techniques foR Implementing Constraint
programming Systems (TRICS), pages 39–46, 2002.1659

[189] E. Hebrard, B. Hnich, B. O’Sullivan, and T. Walsh. Finding diverse and similar
solutions in constraint programming. In M. Veloso and S. Kambhampati, editors,
20th National Conference on Artificial Intelligence (AAAI’05), pages 372–377.
AAAI Press, July 2005.213

[190] E. Hebrard, B. O’Sullivan, and I. Razgon. A Soft Constraint of Equality: Com-
plexity and Approximability. In P. J. Stuckey, editor,Principles and Practice
of Constraint Programming (CP’2008), volume 5202 ofLNCS, pages 358–371.
Springer-Verlag, 2008.1716

[191] L. Hellsten. Consistency propagation forstretchconstraints. Master’s thesis,
Waterloo University, 2004.633, 1709, 1799, 1804

[192] L. Hellsten, G. Pesant, and P. van Beek. A Domain Consistency Algorithm
for the stretchConstraint. In M. G. Wallace, editor,Principles and Practice
of Constraint Programming (CP’2004), volume 3258 ofLNCS, pages 290–304.
Springer-Verlag, 2004.1799, 1804

[193] J. G. Henriksen, J. L. Jensen, M. E. Jørgensen, N. Klarlund, R. Paige, T. Rauhe,
and A. Sandholm. Mona: Monadic Second-Order Logic in Practice. In
E. Brinksma, R. Cleaveland, K. G. Larsen, T. Margaria, and B.Steffen, editors,
Tools and Algorithms for Construction and Analysis of Systems, First Interna-
tional Workshop, TACAS’95, Aarhus, Denmark, volume 1019 ofLNCS, pages
89–110. Springer-Verlag, May 1995.5

[194] M. Henz, T. M̈uller, and S. Thiel. Global Constraints for Round Robin Tour-
nament Scheduling.European Journal of Operations Research, 153(1):92–101,
Feb 2004.1855

[195] B. M. Herńandez. The Systematic Generation of Channelled Models in Con-
straint Satisfaction. PhD thesis, University of York, York, YO10 5DD, UK,
Department of Computer Science, 2007.184

3002 BIBLIOGRAPHY

[196] S. Hoda, W.-J. van Hoeve, and J. N. Hooker. A SystematicApproach to MDD-
Based Constraint Programming. In D. Cohen, editor,Principles and Practice of
Constraint Programming (CP’2010), volume 6308 ofLNCS, pages 266–280, St
Andrews, Scotland, 2010. Springer-Verlag.5

[197] J. N. Hooker. Good and Bad Futures for Constraint Programming (and Oper-
ations Research).Constraint Programming Letters, 1:21–32, November 2007.
i

[198] J. N. Hooker.Integrated Methods for Optimization. Springer Science + Business
Media, LLC, New York, 2007.250, 435, 662, 913, 1041

[199] J. N. Hooker and H. Yan. A Relaxation for thecumulativeConstraint. In
P. Van Hentenryck, editor,Principles and Practice of Constraint Program-
ming (CP’2002), volume 2470 ofLNCS, pages 686–690. Springer-Verlag, 2002.
Available athttp://ba.gsia.cmu.edu/jnh/papers.html . 4, 788

[200] J. Hopcroft and R. E. Tarjan. Efficient Planarity Testing. Journal of the Associ-
ation for Computing Machinery, 21(4):549–568, October 1974.663

[201] E. Hopper. Two-dimensional packing utilising evolutionary algorithms and
other meta-heuristic methods. PhD thesis, Cardiff University, UK, 2000.320

[202] F. Le Húed́e, M. Grabisch, C. Labreuche, and P. Savéant. Integration and prop-
agation of a multi-criteria decision making model in constraint programming.
Journal of Heuristics, 12(4–5):329–346, September 2006.100, 344

[203] M. Hujter. On the dynamic storage allocation problem.Technical report,
Manuscript, Computer and Automation Institute, HungarianAcad. Sci., 1990.
875

[204] H. Isermann. Obere Schranken für die Lösung des zweidimensionalen Pack-
problems auf der Basis struktureller Identitäten. In Fandel and Gehring, editors,
Operations Research – Beiträge zur quantitativen Wirtschaftforschung, pages
341–348. Springer-Verlag, 1991.276

[205] G. F. Italiano, L. Laura, and F. Santaroni. Finding Strong Bridges and Strong
Articulation Points in Linear Time. In W. Wu and O. Daescu, editors, Combi-
natorial Optimization and Applications - 4th International Conference, COCOA
2010, Proceedings, Part I, volume 6508 ofLNCS, pages 157–169, Kailua-Kona,
Hawaii, USA, 2010. Springer-Verlag.321, 322, 1885

[206] J. Jackson. Rational Amusements for Winter Evenings. Longman, London,
1821.1528

[207] J. R. Jackson. Scheduling a Production Line to Minimize Maximum Tardiness.
Technical Report 43, University of California, Los Angeles, 1955. Management
Science Research Project.913

http://ba.gsia.cmu.edu/jnh/papers.html

BIBLIOGRAPHY 3003

[208] L. Jaulin. Localization of an Underwater Robot using Interval Constraint Pro-
gramming. In F. Benhamou, editor,Principles and Practice of Constraint Pro-
gramming (CP’2006), volume 4204 ofLNCS, pages 244–255, Nantes, France,
2006. Springer-Verlag.306

[209] L. R. Ford Jr. and D. R. Fulkerson.Flows in Networks. Princeton University
Press, 1962.689

[210] N. Jussien and V. Barichard. The PALM system: explanation-based constraint
programming. InCP’00 Workshop on Techniques foR Implementing Constraint
programming Systems (TRICS), pages 118–133, 2000.436

[211] L. V. Kalè. An Almost Perfect Heuristic for the N-queens Problem.Information
Processing Letters, 34(4):173–178, April 1990.269

[212] R. Kameugne, L. P. Fotso, J. Scott, and Y. Ngo-Kateu. A Quadratic Edge-
Finding Filtering Algorithm for Cumulative Resource Constraints. In J. H.M.
Lee, editor,Principles and Practice of Constraint Programming (CP’2011), vol-
ume 6876 ofLNCS, pages 478–492, Perugia, Italy, 2011. Springer-Verlag.788

[213] I. Katriel. Constraints and Changes. PhD thesis, Saarlandes University, Ger-
many, 2005.1036, 1625, 1919

[214] I. Katriel. Expected-Case Analysis for Delayed Filtering. In J. C. Beck and
B. Smith, editors,International Conference on Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization Problems
(CPAIOR’06), volume 3990 ofLNCS, pages 119–125, Cork, Ireland, May/June
2006. Springer-Verlag.210

[215] I. Katriel and S. Thiel. Fast Bound Consistency for theglobal cardinalityCon-
straint. In F. Rossi, editor,Principles and Practice of Constraint Programming
(CP’2003), volume 2833 ofLNCS, pages 437–451. Springer-Verlag, 2003.5,
1036

[216] I. Katriel and S. Thiel. Complete Bound Consistency for the Global Cardinality
Constraint.Constraints, 10(3), 2005.1036

[217] I. Katriel and P. Van Hentenryck. Randomized Filtering Algorithms. Technical
Report CS-06-09, Department of Computer Science, Brown University, 2006.
210

[218] L. G. Kaya and J. N. Hooker. A Filter for thecircuit Constraint. In F. Benhamou,
editor,Principles and Practice of Constraint Programming (CP’2006), volume
4204 ofLNCS, pages 706–710, Nantes, France, 2006. Springer-Verlag.663

[219] R. Keber. Stauraumprobleme bei Stückguttransporten. Technical Report Heft
17, Wissenschaftliche Berichte des Institutes für Fördertechnik der Universität
Karlsruhe, 1985.276

3004 BIBLIOGRAPHY

[220] T. P. Kirkman. On a Problem in Combinatorics.Cambridge and Dublin Math.
J., 2:191–204, 1847.5

[221] Z. Kızıltan. Symmetry Breaking Ordering Constraints. PhD thesis, Uppsala
University, Sweden, March 2004.1292, 1299, 1304, 1311

[222] Z. Kızıltan and T. Walsh. Constraint Programming withMultisets. In Sec-
ond International Workshop on Symmetry on Constraint Satisfaction Problems
(SymCon-02), 2002. held along CP-2002.1624

[223] W. Kocjan and P. Kreuger. Filtering Methods forsymmetric cardinalityCon-
straint. In J.-C. Ŕegin and M. Rueher, editors,Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimisation Problems
(CP-AI-OR’04), volume 3011 ofLNCS, pages 200–208. Springer-Verlag, 2004.
1861, 1865

[224] R. E. Korf. Optimal Rectangle Packing: New Results. InProceedings of the
14th International Conference on Automated Planning and Scheduling (ICAPS-
2004), pages 142–149, 2004.310

[225] H. W. Kuhn. The Hungarian Method for the Assignment Problem. Naval Re-
search Logistics Quaterly, 2(1–2):83–97, March–June 1955.243, 1395

[226] M. Labb́e, G. Laporte, and I. Rodrı́guez-Mart́ın. Path, tree and cycle location. In
Fleet Management and Logistics, pages 187–204. Kluwer Academic Publishers,
1998.838, 839, 1869

[227] F. Laburthe. Choco: Implementing a CP Kernel. InCP’00 Workshop on Tech-
niques foR Implementing Constraint programming Systems (TRICS), 2000. 99,
103

[228] M. Z. Lagerkvist and G. Pesant. Modeling Irregular Shape Placement Problems
with Regular Constraints. InFirst Workshop on Bin Packing and Placement
Constraints BPPC’08, associated to CPAIOR08, 2008.279

[229] M. Z. Lagerkvist and C. Schulte. Propagator Groups. InI. P. Gent, editor,
Principles and Practice of Constraint Programming (CP’2009), volume 5732
of LNCS, pages 524–538. Springer-Verlag, 2009.176

[230] A. Lahrichi. Ordonnancements: la notion de partie obligatoire et son appli-
cation aux probl̀emes cumulatifs. PhD thesis, Paris 6 University, France, May
1979. In French.185

[231] A. Lahrichi. Ordonnancements: la notion de partie obligatoire et son application
aux probl̀emes cumulatifs.RAIRO-Recherche Opérationnelle, 16(3):241–262,
1982. In French.185

[232] A. Lahrichi. Scheduling: the Notions of Hump, Compulsory Parts and their Use
in Cumulative Problems.C.R. Acad. Sci., Paris, 294:209–211, February 1982.
185, 788, 797, 809, 913

BIBLIOGRAPHY 3005

[233] A. Lahrichi and M. Gondran. Th́eorie des parties obligatoires et découpes̀a deux
dimensions. Technical Report HI/4762-02,Électricit́e de France (EDF), January
1984. In French.185

[234] G. Laporte, A. Asef-Vaziri, and C. Sriskandarajah. Some Applications of the
Generalized Travelling Salesman Problem.J. of the Operational Research Soci-
ety, 47:1461–1467, 1996.666, 667

[235] F. Lardeux, E. Monfroy, and F. Saubion. Interleavedalldifferent Constraints:
CSP vs. SAT Approaches. In D. Dochev, M. Pistore, and P. Traverso, edi-
tors, Artificial Intelligence: Methodology, Systems, and Applications, 13th In-
ternational Conference, AIMSA 2008, volume 5253 ofLNCS, pages 380–384.
Springer-Verlag, 2008.1213

[236] J. Larrosa and G. Valiente. Constraint satisfaction algorithms for graph pattern
matching. Mathematical Structures in Computer Science, 12(4):403–422, Au-
gust 2002.1827

[237] J.-L. Laurìere. Un langage et un programme pourénoncer et ŕesoudre des
problèmes combinatoires. Thèse de doctorat d’état, Paris 6 University, France,
May 1976. In French.435

[238] J.-L. Laurìere. A Language and a Program for Stating and Solving Combinato-
rial Problems.Artificial Intelligence, 10(1):29–127, 1978.i, 98, 434, 435, 662,
829

[239] Y. C. Law.Using Constraints to Break Value Symmetries in Constraint Satisfac-
tion Problems. PhD thesis, The Chinese University of Hong Kong, September
2005.245, 1666

[240] Y. C. Law and J. H.M. Lee. Global Constraints for Integer and Set Value Prece-
dence. In M. G. Wallace, editor,Principles and Practice of Constraint Program-
ming (CP’2004), volume 3258 ofLNCS, pages 362–376. Springer-Verlag, 2004.
1168, 1172, 1666, 1667

[241] M. Leconte. A Bounds-Based Reduction Scheme for Constraints of Differ-
ence. InCP’96, Second International Workshop on Constraint-basedReason-
ing, pages 19–28, Key West, FL, USA, 1996.436

[242] H. Levy and D. W. Low. A contraction algorithm for finding small cycle cutsets.
J. of Algorithms, 9:470–493, 1988.824

[243] K. Li and K.-H. Cheng. On Three-Dimensional Packing.SIAM Journal on
Computing, 19(5):847–867, 1990.875

[244] A. Linhares and H. H. Yanasse. Connections between cutting-pattern sequenc-
ing, VLSI design and flexible machines.Computers and Operations Research,
29:1759–1772, 2002.795

3006 BIBLIOGRAPHY

[245] E. L. Lloyd, M. L. Soffa, and C. C. Wang. On locating minimum feedback
vertex sets.J. of Computer and System Science, 37:292–311, 1988.824

[246] H. C. R. Lock. An Implementation of thecumulativesConstraint. Technical
report, University of Karlsruhe, 1996. Working paper.788

[247] A. Lopez-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek. A Fast and Sim-
ple Algorithm for Bounds Consistency of thealldifferent Constraint. InPro-
ceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI’2003), pages 245–250, 2003.436

[248] A. Lubiw. Doubly Lexical Orderings of Matrices. InProceedings of the 17th
Annual Association for Computing Machinery Symposium on Theory of Com-
puting (STOC-85), pages 396–404. ACM Press, 1985.1266

[249] A. Lubiw. Doubly Lexical Orderings of Matrices.SIAM Journal on Computing,
16(5):854–879, October 1987.1266

[250] E. Lucas.Récŕeations math́ematiques, volume 1-2. Gauthier-Villars, 1882.5

[251] R. Maculet. Repŕesentation des connaissances spatiales (algèbre de Manhat-
tan et raisonnement spatial avec contraintes. PhD thesis, Paris VI University,
France, 1991. In French.224, 226

[252] M. J. Maher. Analysis of aglobal contiguityConstraint. InWorkshop on Rule-
Based Constraint Reasoning and Programming, 2002. held along CP-2002.78,
1058

[253] M. J. Maher. Open Contractible Global Constraints. In21th Int. Joint Conf. on
Artificial Intelligence (IJCAI-09), pages 578–583, 2009.195, 273

[254] M. J. Maher, N. Narodytska, C.-G. Quimper, and T. Walsh. Flow-Based Propa-
gators for thesequenceand Related Global Constraints. In P. J. Stuckey, editor,
Principles and Practice of Constraint Programming (CP’2008), volume 5202 of
LNCS, pages 159–174. Springer-Verlag, 2008.503, 1691

[255] M. Marte. A Global Constraint for Parallelizing the Execution of Task Sets in
Non-Preemptive Scheduling. InCP’2001 Doctoral Programme, 2001.1878

[256] S. Martello and P. Toth.Knapsack problems. Algorithms and Computer Im-
plementations. Interscience Series in Discrete Mathematics and Optimization.
Wiley, 1990.595

[257] P. Martin and D. B. Shmoys. A New Approach to Computing Optimal Sched-
ules for the Job-Shop Scheduling Problem. In W. H. Cunningham, S. T. Mc-
Cormick, and M. Queyranne, editors,Integer Programming and Combinatorial
Optimization, 5th International IPCO Conference, Vancouver, British Columbia,
Canada, June 3-5, 1996, Proceedings, volume 1084 ofLNCS, pages 389–403.
Springer-Verlag, 1996.1209

BIBLIOGRAPHY 3007

[258] J. J. McGregor. Relational consistency algorithms and their application in find-
ing subgraph and graph isomorphism.Inf. Sci., 19(3):229–250, 1979.1072,
1826

[259] B. Medjdoub. Méthodes de conception fonctionnelle en architecture: une ap-
proche CAO baśee sur des contraintes: ARCHiPLAN. PhD thesis,́Ecole Cen-
trale de Paris, France, May 1996. In French.224

[260] B. Medjdoub and B. Yannou. Separating topology and geometry in space plan-
ning. Computer-aided design, 32(1):39–61, 2000.225

[261] K. Mehlhorn. Constraint Programming and Graph Algorithms. In U. Monta-
nari, J. D. P. Rolim, and E. Welzl, editors,27th International Colloquium on
Automata, Languages and Programming (ICALP’2000), volume 1853 ofLNCS,
pages 571–575. Springer-Verlag, 2000.5

[262] K. Mehlhorn and S. Thiel. Faster Algorithms for Bound-Consistency of
the sortednessand thealldifferent Constraint. InPrinciples and Practice of
Constraint Programming (CP’2000), volume 1894 ofLNCS, pages 306–319.
Springer-Verlag, 2000.5, 436, 1773

[263] J. Menana and S. Demassey. Sequencing and Counting with the multicost-
regular Constraint. In W.-J. van Hoeve and J. N. Hooker, editors,International
Conference on Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems (CPAIOR’09), volume 5547 ofLNCS,
pages 178–192, Pittsburgh, PA, USA, 2009. Springer-Verlag. 100

[264] L. Mercier and P. Van Hentenryck. Edge finding for cumulative scheduling.
Informs Journal of Computing, 20:143–153, 2008.788

[265] J.-P. Ḿetivier. Relaxation de contraintes globales : Mise en oeuvre et Applica-
tion. PhD thesis, Caen University, France, 2010. In French.100

[266] S. Mittal and B. Falkenhainer. Dynamic Constraint Satisfaction Problems. In8th
National Conference on Artificial Intelligence (AAAI-90), pages 25–32. AAAI
Press, 1990.1678

[267] J.-N. Monette, Y. Deville, and P. Dupont. A Position-Based Propagator for the
Open-Shop Problem. In P. Van Hentenryck and L. Wolsey, editors,International
Conference on Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems (CPAIOR’07), volume 4150 ofLNCS,
pages 186–199, Brussels, Belgium, May 2007. Springer-Verlag. 894

[268] M. Müller-Hannemann, W. Stille, and K. Weihe. Evaluating the Bin-Packing
Constraint, Part i: Overview of the Algorithmic Approach. Technical report, TU
Darmstadt, 2003.595

[269] M. Müller-Hannemann, W. Stille, and K. Weihe. Evaluating the Bin-Packing
Constraint, Part ii: An Adaptive Rounding Problem. Technical report, TU Darm-
stadt, 2003.595

3008 BIBLIOGRAPHY

[270] M. Müller-Hannemann, W. Stille, and K. Weihe. Evaluating the Bin-Packing
Constraint, Part iii: Joint Evaluation with Concave Constraints. Technical report,
TU Darmstadt, 2003.595

[271] M. Müller-Hannemann, W. Stille, and K. Weihe. Patterns of Usagefor Global
Constraints: A Case Study Based on the Bin-Packing Constraint. Technical
report, TU Darmstadt, 2003.595

[272] J. Nelissen.Neue Ans̈atze zur L̈osung des Palettenbeladungsproblems. PhD
thesis, RWTH Aachen, Germany, 1994. In German.276, 874

[273] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J.Duck, and G. Tack.
MiniZinc: Towards a Standard CP Modelling Language. In C. Bessìere, editor,
Principles and Practice of Constraint Programming (CP’2007), volume 4741 of
LNCS, pages 529–543. Springer-Verlag, 2007.404

[274] M. P. Ng and N. C. Wormald. Reconstruction of rooted trees from subtrees.
Discrete Applied Mathematics, 69:19–31, 1996.1787, 1788

[275] R. Nieuwenhuis. SAT Modulo Theories: Getting the Bestof SAT and Global
Constraint Filtering. In D. Cohen, editor,Principles and Practice of Constraint
Programming (CP’2010), volume 6308 ofLNCS, pages 1–2, St Andrews, Scot-
land, 2010. Springer-Verlag.5

[276] Organizing Committee of the Third International Competition of CSP Solvers.
XML representation of constraint networks format XCSP 2.1.Available at
http://www.cril.univ-artois.fr/CPAI08/XCSP2_1.pdf , 2008.404

[277] W. J. Older, G. M. Swinkels, and M. H. van Emden. Gettingto the Real Problem:
Experience with BNR Prolog in OR. In3rd Int. Conf. on the Practical Applica-
tion of Prolog (PAP’95), pages 465–478. Alinmead Software Ltd., 1995.1624,
1772

[278] A. Oplobedu, J. Marcovitch, and Y. Tourbier. CHARME: Un langage industriel
de programmation par contraintes, illustré par une application chez Renault. In
Proceedings of the Ninth International Workshop on Expert Systems and their
Applications: General Conference, volume 1, pages 55–70, 1989.99, 1034

[279] P. Österg̊ard and W. Weakley. Values of domination numbers of the queen’s
graph.The Electronic Journal of Combinatorics, 8(1), 2001.216

[280] G. Ottosson and E. S. Thorsteinsson. Linear Relaxations and Reduced-cost
Based Propagation of Continuous Variable Subscripts. InSecond International
Workshop on Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, March 2000.974

[281] G. Ottosson, E. S. Thorsteinsson, and J. N. Hooker. Mixed Global Constraints
and Inference in Hybrid IP-CLP Solvers. InCP’99 Post-Conference Work-
shop on Large-Scale Combinatorial Optimization and Constraints, pages 57–78,
1999.962, 966

http://www.cril.univ-artois.fr/CPAI08/XCSP2_1.pdf

BIBLIOGRAPHY 3009

[282] P. Ouellet and C.-G. Quimper. The Multi-Inter-Distance Constraint. In22th Int.
Joint Conf. on Artificial Intelligence (IJCAI-11), 2011.1400, 1401

[283] F. Pachet and P. Roy. Automatic Generation of Music Programs. InPrinciples
and Practice of Constraint Programming (CP’99), volume 1713 ofLNCS, pages
331–345. Springer-Verlag, 1999.633, 1466, 1467

[284] L. Péridy and D. Rivreau. AnO(n log n) Stable Algorithm for Immediate Selec-
tions Adjustments. In G. Kendall, E. K. Burke, S. Petrovic, and M. Gendreau,
editors,Multidisciplinary Scheduling: Theory and Applications, 1st Interna-
tional Conference Selected Papers, pages 205–222. Springer-Verlag, 2005.913

[285] G. Pesant. A Filtering Algorithm for thestretchConstraint. In T. Walsh, editor,
Principles and Practice of Constraint Programming (CP’2001), volume 2239
of LNCS, pages 183–195. Springer-Verlag, 2001.633, 1143, 1709, 1798, 1799,
1802, 1803, 1804

[286] G. Pesant. A Regular Language Membership Constraint for Finite Sequences of
Variables. In M. G. Wallace, editor,Principles and Practice of Constraint Pro-
gramming (CP’2004), volume 3258 ofLNCS, pages 482–495. Springer-Verlag,
2004. ii , 100, 172, 636, 1575, 1712

[287] G. Pesant and J.-C. Régin. SPREAD: A Balancing Constraint Based on Statis-
tics. In P. van Beek, editor,Principles and Practice of Constraint Programming
(CP’2005), volume 3709 ofLNCS, pages 460–474. Springer-Verlag, 2005.100,
174

[288] G. Pesant and P. Soriano. An Optimal Strategy for the Constrained Cycle Cover
Problem. CRT Pub. 98-45, CRT, Montréal, December 1998.1854

[289] J. Petersen. Die Theorie der Regularen Graphs.Acta Mathematica, 15:193–220,
1891.436

[290] T. Petit, N. Beldiceanu, and X. Lorca. A Generalized Arc-Consistency Algo-
rithm for a Class of Counting Constraints. In22th Int. Joint Conf. on Artificial
Intelligence (IJCAI-11), 2011.633, 1143, 1709

[291] T. Petit and E. Poder. The Soft Cumulative Constraint.CoRR, abs/0907.0939,
2009.1735

[292] T. Petit and J.-C. Ŕegin. The Ordered Global Cardinality Constraint. Technical
Report 09-07-INFO,́Ecole des Mines de Nantes, 2009.1540, 1541

[293] T. Petit, J.-C. Ŕegin, and N. Beldiceanu. Aθ(n) Bound-Consistency Algorithm
for theincreasing sumConstraint. In J. H.M. Lee, editor,Principles and Practice
of Constraint Programming (CP’2011), volume 6876 ofLNCS, pages 721–728,
Perugia, Italy, 2011. Springer-Verlag.1154, 1155

3010 BIBLIOGRAPHY

[294] T. Petit, J.-C. Ŕegin, and C. Bessière. Specific Filtering Algorithms for
Over-Constrained Problems. In T. Walsh, editor,Principles and Practice of
Constraint Programming (CP’2001), volume 2239 ofLNCS, pages 451–463.
Springer-Verlag, 2001.5, 1726, 1727, 1730, 1731

[295] C. E. Pfefferkorn. A Heuristic Problem Solving DesignSystem for Equipment
or Furniture Layouts.Communications of the ACM, 18(5):286–297, May 1975.
224

[296] J. Pitrat. MALICE, notre coll̀egue. InColloque Ḿetaconnaissance de Berder,
pages 4–19, September 2001. In French.iii , 1036

[297] J. Pitrat. A Step toward an Artificial Artificial Intelligence Scientist. Technical
report, Paris VI University, France, 2008.iii , 144, 252, 1036

[298] J. Pitrat.Artificial Beings. Wiley InterScience, April 2009.iii

[299] E. Poder. Programmation par contraintes et ordonnancement de tâches avec
consommation variable de ressource. PhD thesis, Blaise-Pascal - Clermont II
University, France, October 2002. In French.186

[300] E. Poder, N. Beldiceanu, and E. Sanlaville. Computinga Lower Approximation
of the Compulsory Part of a Task with Varying Duration and Varying Resource
Consumption.European Journal of Operational Research, 153:239–254, 2004.
100, 186

[301] C. Pralet and G. Verfaillie. Slice Encoding for Constraint-based Planning. In I. P.
Gent, editor,Principles and Practice of Constraint Programming (CP’2009),
volume 5732 ofLNCS, pages 669–683. Springer-Verlag, 2009.305

[302] F. P. Preparata and M. I. Shamos.Computational Geometry. An Introduction.
Springer-Verlag, New York, Berlin, 1985. Corrected and Expanded Second
Printing. 324

[303] J.-F. Puget. A C++ Implementation of CLP. InSecond Singapore Interna-
tional Conference on Intelligent Systems (SPICIS), pages 256–261, Singapore,
November 1994.99

[304] J.-F. Puget. A Fast Algorithm for the Bound Consistency of alldiff Constraints.
In 15th National Conference on Artificial Intelligence (AAAI-98), pages 359–
366. AAAI Press, 1998.436

[305] J.-F. Puget. Using Constraint Programming to ComputeSymmetries. In
Third International Workshop on Symmetry in Constraint Satisfaction Problems
(SymCon-03), 2003. held along CP-2003.1827

[306] J.-F. Puget. Automatic Detection of Variable and Value Symmetries. In P. van
Beek, editor,Principles and Practice of Constraint Programming (CP’2005),
volume 3709 ofLNCS, pages 477–489. Springer-Verlag, 2005.1827

BIBLIOGRAPHY 3011

[307] J.-F. Puget. Symmetry Breaking Revisited.Constraints, 10(1):23–46, 2005.
1827

[308] L. O. Quesada.Solving Constrained Graph Problems using Reachability Con-
straints based on Transitive Closure and Dominators. PhD thesis, University
catholic of Louvain, Belgium, November 2006.936

[309] L. O. Quesada, P. Van Roy, and Y. Deville. Reachability: a constrained path
propagator implemented as a multi-agent system. InCLEI2005, 2005.936

[310] L. O. Quesada, P. Van Roy, Y. Deville, and R. Collet. Using Dominators for
Solving Constrained Path Problems. In P. Van Hentenryck, editor, Practical
Aspects of Declarative Languages, 8th International Symposium, volume 3819
of LNCS, pages 73–87, Charleston, SC, USA, January 2006. Springer-Verlag.
934

[311] C. Quimper. Enforcing domain consistency on the extended global cardinality
constraint is NP-hard. Technical Report TR CS-2003-39, School of Computer
Science, University of Waterloo, 2003.1035

[312] C.-G. Quimper, A. Ĺopez-Ortiz, and G. Pesant. A Quadratic Propagator for the
Inter-Distance Constraint. In21th National Conference on Artificial Intelligence
(AAAI’06). AAAI Press, 2006.431

[313] C.-G. Quimper, A. Ĺopez-Ortiz, P. van Beek, and A. Golynski. Improved Algo-
rithms for theglobal cardinalityConstraint. In M. G. Wallace, editor,Principles
and Practice of Constraint Programming (CP’2004), volume 3258 ofLNCS,
pages 542–556. Springer-Verlag, 2004.5, 1036

[314] C.-G. Quimper, P. van Beek, A. López-Ortiz, A. Golynski, and S. B. Sadjad. An
Efficient Bounds Consistency Algorithm for theglobal cardinalityConstraint. In
F. Rossi, editor,Principles and Practice of Constraint Programming (CP’2003),
volume 2833 ofLNCS, pages 600–614. Springer-Verlag, 2003.1036

[315] C.-G. Quimper and T. Walsh. Beyond Finite Domains: TheAll Different and
Global Cardinality Constraints. In P. van Beek, editor,Principles and Practice
of Constraint Programming (CP’2005), volume 3709 ofLNCS, pages 812–816.
Springer-Verlag, 2005.100, 442, 1269

[316] C.-G. Quimper and T. Walsh. Beyond Finite Domains: theAll Different and
Global Cardinality Constraints. In F. Azevedo, C. Gervet, and E. Pontelli, edi-
tors,Constraint Programming Beyond Finite Integer Domains (CP’2005), pages
5–17, October 2005.100, 442, 1269

[317] C.-G. Quimper and T. Walsh. The All Different and Global Cardinality Con-
straints on Set, Multiset and Tuple Variables. In B. Hnich, M. Carlsson, F. Fages,
and F. Rossi, editors,Recent Advances in Constraints, Joint ERCIM/Colognet
International Workshop on Constraint Solving and Constraint Logic Program-
ming, CSCLP05; Uppsala, Sweden, June 2005; Revised Selected and Invited
Papers, volume 3978 ofLNAI, pages 1–13. Springer-Verlag, 2006.442, 1269

3012 BIBLIOGRAPHY

[318] D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic based on regions and
connection. In B. Nebel, C. Rich, and W. R. Swartout, editors, Proc. of 2nd
International Conference on Principles of Knowledge Representation and Rea-
soning (KR’92), pages 165–176. Morgan Kaufmann, 1992.288, 754, 756, 770,
771, 776, 777, 902, 903, 1006, 1008, 1164, 1166, 1354, 1355, 1562, 1564

[319] P. Refalo. Linear Formulation of Constraint Programming Models and Hybrid
Solvers. InPrinciples and Practice of Constraint Programming (CP’2000), vol-
ume 1894 ofLNCS. Springer-Verlag, 2000.940

[320] J.-C. Ŕegin. A Filtering Algorithm for Constraints of Difference in CSP. In12th
National Conference on Artificial Intelligence (AAAI-94), pages 362–367, 1994.
5, 78, 436

[321] J.-C. Ŕegin. Développement d’outils algorithmiques pour l’Intelligence Artifi-
cielle. PhD thesis, Montpellier II University, France, 1995. In French. 538,
1467, 1827

[322] J.-C. Ŕegin. Generalized Arc Consistency forglobal cardinalityConstraint. In
14th National Conference on Artificial Intelligence (AAAI-96), pages 209–215,
1996.5, 621, 625, 1035, 1036, 1041, 1045, 1049, 1498, 1511, 1515

[323] J.-C. Ŕegin. The Globalminimum distanceConstraint. Technical report, ILOG,
1997.430

[324] J.-C. Ŕegin. Arc Consistency for Global Cardinality Constraints with Costs. In
J. Jaffar, editor,Principles and Practice of Constraint Programming (CP’99),
volume 1713 ofLNCS, pages 390–404. Springer-Verlag, 1999.1052, 1054

[325] J.-C. Ŕegin. The Symmetricalldiff Constraint. In16th Int. Joint Conf. on Arti-
ficial Intelligence (IJCAI-99), pages 420–425, 1999.5, 1854, 1855

[326] J.-C. Ŕegin. Cost-Based Arc Consistency for Global Cardinality Constraints.
Constraints, 7(3–4):387–405, 2002.1054

[327] J.-C. Ŕegin. Solving the Maximum Clique Problem with Constraint Program-
ming. InFifth International Workshop on Integration of AI and OR Techniques
in Constraint Programming for Combinatorial OptimizationProblems (CP-AI-
OR’03), pages 166–179, Montréal, Canada, May 2003.684

[328] J.-C. Ŕegin. Using Constraint Programming to Solve the Maximum Clique
Problem. In F. Rossi, editor,Principles and Practice of Constraint Program-
ming (CP’2003), volume 2833 ofLNCS, pages 634–648. Springer-Verlag, 2003.
684

[329] J.-C. Ŕegin. Simpler and Incremental Consistency Checking and ArcConsis-
tency Filtering Algorithms for theweighted spanning treeConstraint. In L. Per-
ron and M. A. Trick, editors,International Conference on Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems (CPAIOR’08), volume 5015 ofLNCS, pages 233–247, Paris, France,
2008. Springer-Verlag.100, 1885

BIBLIOGRAPHY 3013

[330] J.-C. Ŕegin and C. Gomes. Thecardinality matrixConstraint. In M. G. Wallace,
editor,Principles and Practice of Constraint Programming (CP’2004), volume
3258 ofLNCS, pages 572–587. Springer-Verlag, 2004.689, 1035

[331] J.-C. Ŕegin and J.-F. Puget. A Filtering Algorithm for Global Sequencing Con-
straints. In G. Smolka, editor,Principles and Practice of Constraint Program-
ming (CP’97), volume 1330 ofLNCS, pages 32–46. Springer-Verlag, 1997.
1686

[332] J.-C. Ŕegin, L.-M. Rousseau, M. Rueher, and W.-J. van Hoeve. The Weighted
Spanning Tree Constraint Revisited. In A. Lodi, M. Milano, and P. Toth, editors,
International Conference on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CPAIOR’10), volume
6140 ofLNCS, pages 287–291, Bologna, Italy, 2010. Springer-Verlag.1885

[333] J.-C. Ŕegin and M. Rueher. A Global Constraint Combining asumConstraint
and Binary Inequalities. InIJCAI-99 Workshop on Non Binary Constraints,
1999.5

[334] J.-C. Ŕegin and M. Rueher. A Global Constraint Combining a Sum Constraint
and Difference Constraints. In R. Dechter, editor,Principles and Practice of
Constraint Programming (CP’2000), volume 1894 ofLNCS, pages 384–395.
Springer-Verlag, 2000.100

[335] J.-C. Ŕegin and M. Rueher.inequality-sum: A Global Constraint Capturing the
Objective Function.RAIRO Operations Research, 39(2):123–139, 2005.100

[336] C. Ribeiro and M. A. Carravilla. A Global Constraint for Nesting Problems.
In J.-C. Ŕegin and M. Rueher, editors,Integration of AI and OR Techniques
in Constraint Programming for Combinatorial OptimisationProblems (CP-AI-
OR’04), volume 3011 ofLNCS, pages 256–270. Springer-Verlag, 2004.874

[337] Y. Richter, A. Freund, and Y. Naveh. Generalizingalldifferent: thesomedifferent
Constraint. In F. Benhamou, editor,Principles and Practice of Constraint Pro-
gramming (CP’2006), volume 4204 ofLNCS, pages 468–483, Nantes, France,
2006. Springer-Verlag.1212

[338] J. A. Roach. The Rectangle Placement Language. Technical Report 08903,
Laboratory for Computer Science Research, Hill Center for the Mathematical
Sciences, Busch Campus, Rutgers University, New Brunswick, New Jersey,
September 1985.1902

[339] G. Rochart.Explications et programmation par contraintes avancée. PhD thesis,
Nantes University, France, 2005. In French.436

[340] G. Rochart and N. Jussien. Explanations for global constraints: instrument-
ing thestretchconstraint. Technical Report 03-01-INFO,École des Mines de
Nantes, 2003.4, 1799

3014 BIBLIOGRAPHY

[341] F. Rochon du Verdier.Résolution de probl̀emes d’aḿenagement spatial fondée
sur la satisfaction de contraintes. Validation sur l’implantation d’́equipements
électroniques hyperfréquences. PhD thesis, Lyon I University, France, July
1992. In French.874

[342] L. Roditty. A faster and simpler fully dynamic transitive closure algorithm.
In SODA’03: Proceedings of the fourteenth anuual ACM-SIAM symposium on
Discrete algorithms, pages 404–412. Springer-Verlag, 2003.936

[343] B. Roy. Regard historique sur la place de la recherche opérationnelle et de l’aide
à la d́ecision en France.Mathématiques et sciences humaines, 175:25–40, 2006.
In French, available athttp://msh.revues.org/3570 . 435

[344] A. J. Sadler and C. Gervet. Global reasoning on sets. InCP’00 Workshop on
Modelling and Problem Formulation (FORMUL’01), 2001.550, 551

[345] H. R. D. Saidy and M. T. Taghavi-Fard. Study of Scheduling Problems with
Machine Availability Constraint.Journal of Industrial and Systems Engineer-
ing, 1(4):360–383, 2008.304

[346] H. Samet.The design and analysis of spatial data structures. Addison-Wesley,
1989.809, 874

[347] P. Schaus, Y. Deville, and P. Dupont. Bound-Consistent Deviation. Slides pre-
sented at the Principles and Practice of Constraint Programming (CP’2007) Con-
ference, 2007.173

[348] P. Schaus, Y. Deville, and P. Dupont. Bound-Consistent Deviation Constraint.
In C. Bessìere, editor,Principles and Practice of Constraint Programming
(CP’2007), volume 4741 ofLNCS, pages 620–634. Springer-Verlag, 2007.100,
173

[349] P. Schaus, Y. Deville, P. Dupont, and J.-C. Régin. Simplification and extension
of spread. In 3th Workshop on Constraint Propagation and Implementation,
2006.100, 174

[350] P. Schaus, Y. Deville, P. Dupont, and J.-C. Régin. ThedeviationConstraint. In
P. Van Hentenryck and L. Wolsey, editors,International Conference on Integra-
tion of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CPAIOR’07), volume 4150 ofLNCS, pages 260–274,
Brussels, Belgium, May 2007. Springer-Verlag.100, 173

[351] P. Schaus, P. Van Hentenryck, and A. Zanarini. Revisiting the Soft Global Car-
dinality Constraint. In A. Lodi, M. Milano, and P. Toth, editors, International
Conference on Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems (CPAIOR’10), volume 6140 ofLNCS,
pages 307–312, Bologna, Italy, 2010. Springer-Verlag.100

[352] G. Scheithauer and J. Terno. The G4-Heuristic for the Pallet Loading Problem.
European Journal of Operational Research, 46:511–522, 1996.276

http://msh.revues.org/3570

BIBLIOGRAPHY 3015

[353] C. Schulte, M. Lagerkvist, and G. Tack. Gecode, 2006. Available at
http://www.gecode.org . 99, 103, 895, 936

[354] A. Schutt and A. Wolf. A NewO(n2 log n) Not-First/Not-Last Pruning Algo-
rithm for Cumulative Resource Constraints. In D. Cohen, editor, Principles and
Practice of Constraint Programming (CP’2010), volume 6308 ofLNCS, pages
445–459, St Andrews, Scotland, 2010. Springer-Verlag.788

[355] R. Sedgewick and O. Flajolet.An introduction to the analysis of algorithms.
Addison-Wesley, 1996.1328

[356] M. Sellmann. An arc consistency algorithm for theminimum weight all dif-
ferent constraint. In P. Van Hentenryck, editor,Principles and Practice of
Constraint Programming (CP’2002), volume 2470 ofLNCS, pages 744–749.
Springer-Verlag, 2002.1395

[357] M. Sellmann and S. Kadioglu. Dichotomic Search Protocols for Constrained
Optimization. In P. J. Stuckey, editor,Principles and Practice of Constraint Pro-
gramming (CP’2008), volume 5202 ofLNCS, pages 251–265. Springer-Verlag,
2008.239

[358] P. Shaw. A Constraint for Bin Packing. In M. G. Wallace,editor,Principles and
Practice of Constraint Programming (CP’2004), volume 3258 ofLNCS, pages
648–662. Springer-Verlag, 2004.595

[359] J. B. Shearer. Golomb rulers. Available at
http://www.research.ibm.com/people/s/shearer/grule. html . 1062

[360] J. A. Shufet and H. J. Berliner. Generating hamiltonian circuits without back-
tracking from errors.Theoretical Computer Science, 132:347–375, 1994.663

[361] H. Simonis. Channel Routing Seen as a Constraint Problem. Technical Report
TR-LP-51, ECRC, 1990.744

[362] H. Simonis. Building Industrial Application with Constraint Programming.
In H. Common, C. March́e, and R. Treinen, editors,Constraints in Computa-
tional Logics - Theory and Applications, International Summer School, CCL’99
Gif sur Yvette September 5-8, 1999, France, Revised Lectures, pages 271–309.
Springer-Verlag, 2001.1209

[363] H. Simonis. Sudoku as a Constraint Problem. In B. Hnich, P. Prosser, and
B. Smith, editors,Modelling and Reformulating Constraint Satisfaction Prob-
lems, Fourth International Workshop, Sitges (Barcelona),Spain, pages 13–27,
2005.1209

[364] H. Simonis, A. Aggoun, N. Beldiceanu, and́E. Bourreau. Complex
Constraint Abstraction: Global Constraint Visualization. In P. Deransart,
M. V. Hermenegildo, and J. Małuszyński, editors,Analysis and Vizualisation
Tools for Constraint Programming, volume 1870 ofLNCS, pages 299–317.
Springer-Verlag, 2000.4

http://www.gecode.org
http://www.research.ibm.com/people/s/shearer/grule.html

3016 BIBLIOGRAPHY

[365] H. Simonis,É. Bourreau, and N. Beldiceanu. A Note on Perfect Square Place-
ment. Technical report, Cosytec, 1999.317

[366] H. Simonis and T. Cornelissens. Modelling Producer/Consumer Constraints.
In U. Montanari and F. Rossi, editors,Principles and Practice of Constraint
Programming (CP’95), volume 976 ofLNCS, pages 449–462. Springer-Verlag,
1995.284

[367] H. Simonis, P. Davern, J. Feldman, D. Mehta, L. Quesada, and M. Carlsson.
A Generic Visualization Platform for CP. In D. Cohen, editor, Principles and
Practice of Constraint Programming (CP’2010), volume 6308 ofLNCS, pages
460–474, St Andrews, Scotland, 2010. Springer-Verlag.4

[368] H. Simonis and B. O’Sullivan. Search Strategies for Rectangle Packing. In P. J.
Stuckey, editor,Principles and Practice of Constraint Programming (CP’2008),
volume 5202 ofLNCS, pages 52–66. Springer-Verlag, 2008.243, 310

[369] S. Skiena.Implementing Discrete Mathematics. Combinatoric and Graph The-
ory with Mathematica. Addison-Wesley, 1990.52

[370] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. Published
electronically athttp://oeis.org , 2010.435, 829, 1885

[371] B. M. Smith, K. Stergiou, and T. Walsh. Modelling the Golomb Ruler Problem.
In IJCAI-99 Workshop on Non Binary Constraints, 1999.1063

[372] G. Smolka. Constraints in Oz.ACM Computing Surveys, 28(4), 1996.99

[373] S. Sorlin and C. Solnon. A Parametric Filtering Algorithm for the Graph Iso-
morphism Problem.Constraints, 13(4), December 2008.1073

[374] M. Steel. The complexity of reconstructing trees fromqualitative characters and
subtrees.Journal of Classification, 9:91–116, 1992.1787, 1788

[375] P. J. Stuckey, M. J. Garcı́a de la Banda, M. J. Maher, K. Marriott, J. K. Slaney,
Z. Somogyi, M. G. Wallace, and T. Walsh. The G12 Project: Mapping Solver
Independent Models to Efficient Solutions. In P. van Beek, editor, Principles and
Practice of Constraint Programming (CP’2005), volume 3709 ofLNCS, pages
13–16. Springer-Verlag, 2005.404

[376] S. Subbarayan. Integrating CSP Decomposition Techniques and BDDs for
Compiling Configuration Problems. In R. Barták and M. Milano, editors,In-
ternational Conference on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CPAIOR’05), vol-
ume 3524 ofLNCS, pages 351–365, Prague, Czech Republic, May/June 2005.
Springer-Verlag.186

[377] T. Szczygiel. CLP Approaches to 2D Angle Placements. In Proceedings of
the 6th Annual Workshop of the ERCIM Working Group on Constraints, Prague,
Czech Republic, June 2001. Available athttp://arxiv.org/html/cs/0110012 .
873

http://oeis.org
http://arxiv.org/html/cs/0110012

BIBLIOGRAPHY 3017

[378] R. Szymanek. Constraint-Driven Design Space Exploration for Memory-
Dominated Embedded Systems. PhD thesis, Lund University, Sweden, June
2004.873

[379] R. Szymanek and K. Kuchcinski. A Constructive Algorithm for Memory-Aware
Task Assignment and Scheduling. InProceedings of the Ninth International
Symposium on Hardware/Software Codesign, Copenhagen, 2001.873

[380] PLATON team.Eclair. Thales R & T, Orsay, France, v8.0 edition, 2003. Tech-
nical report 61 364.99, 633

[381] S. Thiel. Efficient Algorithms for Constraint Propagation and for Processing
Tree Descriptions. PhD thesis, Saarlandes University, Germany, 2004.874,
1958, 1959

[382] C. Tong. Toward and engineering science of knowledge-based design.Artificial
Intelligence in Engineering, 2(3):133–166, July 1987.224

[383] M. A. Trick. A Dynamic Programming Approach for Consistency and Propaga-
tion for Knapsack Constraints.Annals of Operations Research, 118(1–4):73–84,
2003.218, 595

[384] M. A. Trick. Integer and Constraint Programming Approaches for Round Robin
Tournament Scheduling. In E. K. Burke and P. De Causmaecker,editors,Prac-
tice and Theory of Automated Timetabling IV, 4th International Conference,
PATAT 2002, Gent, Belgium, August 21-23, 2002, Selected Revised Papers, vol-
ume 2740 ofLNCS, pages 63–77. Springer-Verlag, 2003.1855

[385] P. Tuŕan. On an Extremal Problem in Graph Theory.Mat. Fiz. Lapok, 48:436–
452, 1941. In Hungarian.376

[386] N. Ueda and T. Nagao. NP-completeness Results for NONOGRAM via Parsi-
monious Reductions. Technical Report TR96-0008, Department of Computer
Science, Tokyo Institute of Technology, May 1996.253

[387] J. R. Ullmann. An algorithm for subgraph isomorphism.J. ACM, 23(1):31–42,
January 1976.1827

[388] L. G. Valiant. The complexity of computing the permanent. Theoretical Com-
puter Science, 8:189–201, 1979.435

[389] M. R. C. van Dongen, C. Lecoutre, and O. Roussel. Results of the Second
CSP Solver Competition. In M. R. C. van Dongen, C. Lecoutre, and O. Roussel,
editors,Proceedings of the Second International CSP Solver Competition, pages
1–10, 2008.404

[390] P. Van Hentenryck.Constraint Satisfaction in Logic Programming. MIT Press,
1989.1035

3018 BIBLIOGRAPHY

[391] P. Van Hentenryck. Scheduling and Packing in the Constraint Language cc(FD).
In M. Zweben and M. Fox, editors,Intelligent Scheduling. Morgan Kaufmann
Publishers, 1994.317

[392] P. Van Hentenryck.The OPL Optimization Programming Language. MIT Press,
1999.404

[393] P. Van Hentenryck and J.-P. Carillon. Generality vs. Specificity: an Experience
with AI and OR Techniques. InNational Conference on Artificial Intelligence
(AAAI-88), 1988.78, 958

[394] P. Van Hentenryck and Y. Deville. Thecardinality Operator: a New Logical
Connective in Constraint Logic Programming. InInt. Conf. on Logic Program-
ming (ICLP’91). MIT Press, 1991.326

[395] P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, Implementation
and Evaluation of the Constraint Language cc(FD). In A. Podelski, edi-
tor, Constraints: Basics and Trends, volume 910 ofLNCS, pages 293–316.
Springer-Verlag, 1995.189

[396] W.-J. van Hoeve. Thealldifferent Constraint: A Survey. InProceedings of
the 6th Annual Workshop of the ERCIM Working Group on Constraints, Prague,
Czech Republic, June 2001. Available athttp://arxiv.org/html/cs/0110012 .
435

[397] W.-J. van Hoeve. A Hyper-Arc Consistency Algorithm for thesoft alldifferent
Constraint. In M. G. Wallace, editor,Principles and Practice of Constraint Pro-
gramming (CP’2004), volume 3258 ofLNCS, pages 679–689. Springer-Verlag,
2004.5, 1727

[398] W.-J. van Hoeve.Operations Research Techniques in Constraint Programming.
PhD thesis, Amsterdam University, CWI, Netherlands, 2005.890, 1625, 1750,
1751

[399] W.-J. van Hoeve, G. Pesant, and L.-M. Rousseau. On Global Warming (Soft-
ening Global Constraints). InWorkshop on Soft Constraints, Toronto, Canada,
September 2004.5, 100, 1036

[400] W.-J. van Hoeve, G. Pesant, and L.-M. Rousseau. On global warming: Flow-
based soft global constraints.Journal of Heuristics, 12(4–5):347–373, 2006.
100

[401] W.-J. van Hoeve, G. Pesant, L.-M. Rousseau, and A. Sabharwal. Revisiting
the sequenceConstraint. In F. Benhamou, editor,Principles and Practice of
Constraint Programming (CP’2006), volume 4204 ofLNCS, pages 620–634,
Nantes, France, 2006. Springer-Verlag.503

[402] W.-J. van Hoeve and J.-C. Régin. Open Constraints in a Closed World. In
J. C. Beck and B. Smith, editors,International Conference on Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization

http://arxiv.org/html/cs/0110012

BIBLIOGRAPHY 3019

Problems (CPAIOR’06), volume 3990 ofLNCS, pages 244–257, Cork, Ireland,
May/June 2006. Springer-Verlag.273, 1498, 1510, 1511, 1514, 1515

[403] W.-J. van Hoeve and A. Sabharwal. Two Set-Constraintsfor Modeling and
Efficiency. InSixth International Workshop on Constraint Modelling and Refor-
mulation (ModRef’07), Providence, USA, 2007.550, 551, 1840

[404] J. H. van Lint and R. M. Wilson.A Course in Combinatorics. Cambridge
University Press, 1992.315

[405] A. Vellino. Costas Arrays. Technical Report 90079, Computing Research Lab-
oratory, Bell-Northern Research, 1990.202

[406] N. R. Vempaty. Solving Constraint Satisfaction Problems using Finite State
Automata. InNational Conference on Artificial Intelligence (AAAI-92), pages
453–458. AAAI Press, 1992.ii

[407] P. Viĺım. O(n log n) Filtering Algorithms for Unary Resource Constraint. In J.-
C. Régin and M. Rueher, editors,Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimisation Problems (CP-AI-OR’04),
volume 3011 ofLNCS, pages 335–347. Springer-Verlag, 2004.280, 913

[408] P. Viĺım. Global Constraints in Scheduling. PhD thesis, Charles University,
Prague, Department of Theoretical Computer Science and Mathematical Logic,
Czech Republic, 2007.280

[409] P. Viĺım. Edge Finding Filtering Algorithm for Discrete Cumulative Resources
in O(kn log n). In I. P. Gent, editor,Principles and Practice of Constraint Pro-
gramming (CP’2009), volume 5732 ofLNCS, pages 802–816. Springer-Verlag,
2009.280, 788

[410] P. Viĺım. Max energy filtering algorithm for discrete cumulative resources. In
W.-J. van Hoeve and J. N. Hooker, editors,International Conference on Inte-
gration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CPAIOR’09), volume 5547 ofLNCS, pages 294–308,
Pittsburgh, PA, USA, 2009. Springer-Verlag.280, 281, 788

[411] H. Voß. PSTricks - Grafik f̈ur TeX und LaTeX. Lehmanns Media, Berlin, 2007.
Vierte Auflage.104

[412] R. J. Wallace and N. Wilson. Conditional Lexicographic Orders in Constraint
Satisfaction Problems. In J. C. Beck and B. Smith, editors,International Con-
ference on Integration of AI and OR Techniques in ConstraintProgramming for
Combinatorial Optimization Problems (CP-AI-OR’06), volume 3990 ofLNCS,
pages 258–272, Cork, Ireland, May 2006. Springer-Verlag.722, 723, 726, 730,
734, 738

[413] T. Walsh. Symmetry Breaking using Value Precedence. In ECAI 2006, 17th
European Conference on Artificial Intelligence, August 29 -September 1, 2006,
Riva del Garda, Italy, Including Prestigious Applicationsof Intelligent Systems
(PAIS 2006), Proceedings, pages 168–172. IOS Press, 2006.1173

3020 BIBLIOGRAPHY

[414] T. Walsh. Breaking Value Symmetry. In C. Bessière, editor,Principles and
Practice of Constraint Programming (CP’2007), volume 4741 ofLNCS, pages
880–888. Springer-Verlag, 2007.1173

[415] H. P. Williams and H. Yan. Representations of thealldifferentPredicate of Con-
straint Satisfaction in Integer Programming.INFORMS Journal on Computing,
13(2):96–103, 2001.435

[416] A. Wolf. Better Propagation for Non-preemptive Single-Resource Constraint
Problems. In B. Faltings, A. Petcu, F. Fages, and F. Rossi, editors, Recent Ad-
vances in Constraints, Joint ERCIM/CoLogNet International Workshop on Con-
straint Solving and Constraint Logic Programming, CSCLP 2004; Lausanne,
Switzerland, June 23-25, 2004, Revised Selected and Invited Papers, volume
3419 ofLNCS, pages 201–215. Springer-Verlag, 2005.913

[417] J. Würtz and T. M̈uller. Constructive Disjunction Revisited. In G. Görz
and S. Ḧolldobler, editors,20th German Annual Conference on Artificial In-
telligence, volume 1137 ofLNAI, pages 377–386, Dresden, Germany, 1996.
Springer-Verlag.189

[418] Tallys H. Yunes. On thesumConstraint: Relaxation and Applications. In
P. Van Hentenryck, editor,Principles and Practice of Constraint Programming
(CP’2002), volume 2470 ofLNCS, pages 80–92. Springer-Verlag, 2002.1830,
1831

[419] S. Zampelli, Y. Deville, C. Solnon, S. Sorlin, and P. Dupont. Filtering for
Subgraph Isomorphism. In C. Bessière, editor,Principles and Practice of
Constraint Programming (CP’2007), volume 4741 ofLNCS, pages 728–742.
Springer-Verlag, 2007.1827

[420] A. Zanarini, M. Milano, and G. Pesant. Improved Algorithm for the Soft Global
Cardinality Constraint. In J. C. Beck and B. Smith, editors,International Con-
ference on Integration of AI and OR Techniques in ConstraintProgramming for
Combinatorial Optimization Problems (CP-AI-OR’06), volume 3990 ofLNCS,
pages 288–299, Cork, Ireland, May 2006. Springer-Verlag.100

[421] A. Zanarini and G. Pesant. Solution Counting Algorithms for Constraint-
Centered Search Heuristics. In C. Bessière, editor,Principles and Practice of
Constraint Programming (CP’2007), volume 4741 ofLNCS, pages 743–757.
Springer-Verlag, 2007.435

[422] A. Zanarini and G. Pesant. More Robust Counting-BasedHeuristics with Alld-
ifferent Constraints. In A. Lodi, M. Milano, and P. Toth, editors, International
Conference on Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems (CPAIOR’10), volume 6140 ofLNCS,
pages 354–368, Bologna, Italy, 2010. Springer-Verlag.435

[423] J. Zhou. A Permutation-Based Approach for Solving theJob-Shop Problem.
Constraints, 2(2):185–213, 1997.1773, 1778, 1779

BIBLIOGRAPHY 3021

[424] N.-F. Zhou. Channel Routing with Constraint Logic Programming and Delay.
In 9th Int. Conf. on Industrial Applications of AI, pages 217–231. Gordon and
Breach Science Publishers, 1996.744

[425] W. Zimmermann and S. Cunningham. Editors’ introduction: What is mathemat-
ical visualization? InVisualization in teaching and learning mathematics, pages
1–8. Mathematical Association of America, 1991.4

3022 BIBLIOGRAPHY

Index

3023

3024 INDEX

1...

Ågren M.,iii , 1018, 1276, 1280
Österg̊ard P.,216
3-SAT,147, 553, 705, 1037, 1468, 1937
3-dimensional-matching,147, 1223, 1717

A

abs, 420
abs value, 112, 153, 155, 177, 199, 233, 283, 286, 420, 1000, 1030
absolute value, 420
abstract interpretation,147, 1016, 1598
accessibility, 1955
ACYCLIC, 69, 432, 464, 476, 496, 508, 519, 528, 532, 591, 597, 622, 626, 630, 634, 642, 652,

658, 695, 701, 706, 710, 714, 719, 760, 768, 784, 790, 799, 805, 815, 821, 826, 850,
854, 859, 1290, 1938

acyclic,148, 431, 463, 475, 495, 507, 518, 527, 531, 596, 621, 625, 629, 633, 641, 651, 657,
705, 709, 713, 718, 759, 767, 783, 825, 849, 853, 858, 1289, 1937

Aggoun A.,iii , 4, 99, 186, 242, 317, 594, 786
aggregate,148
Aho A. V., 1784
air traffic management,150, 431, 1213, 1401
ALICE, i, 98, 435, 829
alignment,150, 1529
all different,151, 439, 442, 444, 447, 451, 454, 458, 463, 467, 1063, 1213, 1499, 1588, 1675,

1679, 1727, 1731, 1855, 1960
all differ from at least k pos, 18, 115, 177, 191, 209, 215, 221, 265, 328, 329, 336, 422,

868
all equal, 88, 108, 191, 333, 426, 752, 858, 1000, 1132, 1450, 1468, 1714, 1716, 1722
all incomparable, 191, 209, 265, 328, 329, 336, 428, 1130
all incomparables, 428
all min dist, 29, 38, 86, 113, 150, 180, 191, 209, 233, 257, 301, 314, 333, 430, 439, 454, 877,

913, 914, 920, 1401
all null intersect, 442
all perm, 474
all permutations, 474
ALL VERTICES, 75, 669
alldiff, 434
alldiff between sets, 442
alldiff cst, 446
alldiff except 0, 450
alldiff interval, 454
alldiff modulo, 458
alldiff on intersection, 462
alldiff on sets, 442
alldiff on tuples, 1268

INDEX 3025

alldiff partition, 466
alldiff same value, 470
alldifferent, 9, 17, 19, 21, 27, 53, 71, 78–81, 84–89, 100, 107, 108, 144, 151, 153, 168, 170,

171, 178–181, 191, 195, 198–202, 210, 211, 215, 219, 220, 227, 228, 237–239, 250,
254, 255, 257, 266–269, 271, 275, 279, 296, 314, 323, 329, 333, 337, 338, 342, 344,
401, 403, 431, 434, 437, 442, 444, 446, 447, 450, 452, 454, 456, 458, 459, 462, 463,
466–468, 470, 471, 662, 663, 667, 669, 758, 797, 799, 829, 830, 866, 874, 877, 898,
899, 914, 990–992, 1021, 1036, 1037, 1042, 1053, 1063, 1116, 1189, 1208–1213,
1269, 1395, 1410, 1450, 1467, 1468, 1499, 1588, 1624, 1625, 1631, 1674–1676,
1678–1680, 1726, 1727, 1730, 1731, 1770, 1773, 1778, 1780, 1816, 1820, 1855,
1959, 1960

alldifferent between sets, 108, 151, 178, 188, 191, 215, 271, 344, 439, 442, 442, 1004,
1318

alldifferent consecutive values, 108, 151, 215, 279, 314, 333, 437, 439, 444, 752, 1588
alldifferent cst, 110, 144, 151, 153, 178, 179, 191, 198, 215, 266, 268, 269, 271, 314, 333,

439, 446
alldifferent except 0, 89, 108, 151, 153, 168, 171, 191, 246, 271, 293, 314, 333, 435, 439,

450, 534, 1960
alldifferent interval, 113, 151, 153, 168, 171, 191, 245, 271, 314, 333, 431, 439, 454
alldifferent modulo, 113, 151, 153, 168, 171, 191, 262, 271, 314, 333, 439, 458
alldifferent on intersection, 106, 119, 148, 151, 168, 171, 178, 187–189, 191, 265, 333,

439, 462, 705, 899, 1473, 1641
alldifferent on multisets, 100
alldifferent on sets, 442
alldifferent on tuples, 1268
alldifferent partition, 120, 151, 153, 191, 245, 271, 277, 314, 333, 439, 466, 1124
alldifferent same value, 56, 63, 127, 168, 171, 233, 285, 314, 439, 470
alldistinct, 434
alldistinct between sets, 442
alldistinct cst, 446
alldistinct except 0, 450
alldistinct interval, 454
alldistinct modulo, 458
alldistinct on intersection, 462
alldistinct on sets, 442
alldistinct on tuples, 1268
alldistinct partition, 466
alldistinct same value, 470
allperm, 109, 148, 178, 191, 249, 256, 274, 314, 328, 329, 336, 474, 1267, 1281, 1311, 1316,

1815
alpha-acyclic constraint network(2),151, 479, 486, 491, 495, 499, 535, 547, 763, 767, 868,

1013, 1079, 1090, 1683
alpha-acyclic constraint network(3),152, 1079, 1090, 1206
Althaus E.,iii , 662, 1216, 1570, 1824, 1874
Alvarez-Valdes R.,277
Amazon,seen-Amazon
Amilhastre J.,ii
among, 15, 30, 55, 78–80, 127, 148, 149, 151, 153, 168, 171, 174, 175, 191, 196, 203, 233, 269,

286, 296, 329, 333, 478, 479, 486, 490, 491, 495, 498, 499, 503, 506, 507, 514, 527,
535, 546, 621, 625, 705, 762, 763, 767, 890, 1012, 1035, 1036, 1106, 1338, 1339,

3026 INDEX

1368, 1369, 1468, 1502, 1503, 1619, 1683
among diff 0, 113, 148, 151, 153, 168, 171, 191, 203, 233, 246, 286, 333, 479, 486, 534, 1468
among interval, 132, 148, 151, 153, 169, 171, 191, 203, 233, 245, 286, 333, 479, 490
among low up, 17, 85, 133, 148, 151, 153, 169, 171, 178, 191, 203, 219, 265, 329, 333, 479,

494, 503, 504, 835, 836, 1180, 1181, 1185, 1683, 1684
among modulo, 132, 148, 151, 153, 169, 171, 191, 203, 233, 262, 286, 333, 479, 498
among seq, 135, 153, 191, 195, 209, 218, 227, 244, 250, 297, 308, 329, 479, 495, 502, 1683,

1687
among var, 127, 148, 178, 191, 203, 233, 265, 286, 479, 506, 705, 1334, 1364, 1365
and, 87, 113, 148, 153, 169, 172, 174, 180, 221, 223, 233, 286, 290, 510, 539, 676, 1010, 1104,

1379, 1402, 1446, 1524, 1962
apartition,152, 641
application area,138, 423, 431, 527, 531, 561, 571, 575, 579, 595, 601, 621, 625, 820, 825,

877, 975, 1021, 1037, 1042, 1055, 1137, 1157, 1180, 1185, 1213, 1277, 1339, 1369,
1375, 1395, 1401, 1486, 1511, 1515, 1542, 1631, 1636, 1660, 1788, 1845, 1855,
1859, 1861, 1865, 1960

Apt K. R., 99, 406
arc-consistency,153, 420, 439, 447, 451, 455, 458, 467, 480, 486, 491, 495, 499, 503, 511, 515,

518, 535, 539, 547, 621, 625, 629, 677, 681, 723, 727, 731, 735, 739, 749, 763, 767,
858, 866, 891, 930, 941, 950, 955, 959, 963, 967, 971, 979, 983, 987, 997, 1000,
1002, 1010, 1013, 1030, 1032, 1042, 1058, 1098, 1104, 1107, 1111, 1116, 1118,
1121, 1125, 1132, 1137, 1143, 1169, 1175, 1189, 1195, 1262, 1264, 1269, 1273,
1277, 1281, 1285, 1289, 1293, 1300, 1305, 1312, 1326, 1349, 1379, 1403, 1410,
1412, 1447, 1451, 1454, 1522, 1525, 1542, 1575, 1600, 1625, 1636, 1656, 1672,
1714, 1722, 1793, 1800, 1804, 1812, 1816, 1820, 1855, 1886, 1903, 1911, 1919,
1944, 1962

arith, 123, 153, 169, 172, 174, 191, 209, 216, 290, 333, 479, 514, 518, 523, 524, 763
arith or, 131, 148, 153, 169, 172, 174, 178, 191, 209, 216, 265, 290, 333, 514, 518
arith sliding, 72, 123, 155, 169, 171, 191, 209, 244, 297, 308, 514, 522, 1835
arithmetic constraint,155, 420, 523, 920, 930, 932, 1000, 1002, 1016, 1030, 1032, 1098, 1155,

1262, 1264, 1326, 1410, 1412, 1522, 1598, 1602, 1608, 1616, 1656, 1659, 1672,
1835, 1838, 1848, 1850

array, 946, 958
array constraint,155, 950, 955, 959, 963, 967, 971, 974, 975, 979, 993
Artiouchine K.,430, 912
Asaf S.,1208
Asef-Vaziri A., 666
Asratian A. S.,434
assign and counts, 131, 148, 159, 160, 169, 171, 178, 185, 191, 214, 221, 265, 344, 526,

530, 763, 767
assign and nvalues, 124, 148, 159, 160, 178, 191, 221, 265, 270, 344, 530, 1468, 1476, 1477,

1481, 1619
assigning and scheduling tasks that run in parallel,156, 877, 1022, 1029
assignment,159, 527, 531, 561, 571, 575, 579, 595, 601, 621, 625, 1036, 1037, 1041, 1042,

1055, 1137, 1157, 1180, 1185, 1213, 1339, 1369, 1375, 1395, 1511, 1515, 1542,
1631, 1636, 1845, 1861, 1865, 1960

assignment, 1188, 1189
assignment dimension,160, 495, 527, 531, 596, 601, 619, 700, 763, 767, 789, 820, 877, 1022,

1029, 1180, 1185, 1835
assignment dimension added,84

INDEX 3027

assignment dimension removed,84
assignment to the same set of values,163, 596, 601, 820, 877, 950, 959, 1022, 1029
at least,168, 535, 621, 1506
at most,168, 547, 625, 629, 1401, 1508
atleast, 14, 15, 31, 86, 125, 151, 153, 168, 169, 171, 221–223, 333, 450, 479, 486, 527, 534,

546, 1012, 1168, 1206, 1383, 1480, 1506, 1584, 1619, 1683, 1959
atleast nvalue, 113, 153, 178, 203, 220, 221, 270, 322, 334, 510, 538, 552, 553, 1402, 1446,

1450, 1468, 1524, 1675, 1679
atleast nvector, 115, 203, 217, 220, 221, 270, 322, 334, 336, 542, 557, 1288, 1485, 1532,

1533, 1870, 1886
atmost, 32, 86, 125, 151, 153, 168, 169, 171, 191, 333, 479, 527, 534, 535, 546, 789, 835,

1012, 1508, 1619
atmost1, 110, 180, 188, 191, 283, 550
atmost nvalue, 113, 147, 180, 191, 203, 220, 270, 322, 334, 538, 539, 552, 1468, 1714, 1716,

1722, 1727, 1731
atmost nvector, 115, 191, 203, 217, 220, 270, 322, 334, 336, 543, 556, 1288, 1485, 1536,

1537
atmost sliding, 1400
atour, 662, 1874
attached to cost variant,85
automaton,168, 439, 451, 454, 458, 463, 471, 479, 486, 491, 495, 499, 510, 515, 518, 523, 527,

535, 547, 561, 571, 575, 590, 595, 621, 625, 633, 641, 651, 661, 672, 677, 681, 723,
727, 731, 735, 739, 749, 763, 767, 789, 849, 853, 858, 863, 868, 899, 927, 941, 950,
955, 959, 963, 967, 971, 979, 983, 1010, 1013, 1037, 1058, 1079, 1090, 1101, 1104,
1107, 1110, 1125, 1132, 1137, 1143, 1161, 1169, 1173, 1180, 1185, 1189, 1206,
1255, 1259, 1273, 1285, 1289, 1293, 1299, 1305, 1312, 1323, 1339, 1349, 1365,
1369, 1379, 1383, 1387, 1403, 1418, 1433, 1437, 1447, 1451, 1454, 1468, 1518,
1520, 1525, 1575, 1579, 1625, 1660, 1683, 1709, 1793, 1804, 1812, 1816, 1820,
1903, 1911, 1919, 1941, 1962

automaton with array of counters,171, 439, 451, 454, 458, 463, 471, 527, 561, 571, 575, 595,
621, 625, 789, 899, 1037, 1180, 1185, 1189, 1339, 1365, 1369, 1468, 1625, 1919

automaton with counters,171, 479, 486, 491, 495, 499, 523, 535, 547, 633, 641, 651, 661, 672,
763, 767, 849, 853, 863, 868, 927, 1013, 1079, 1090, 1101, 1161, 1206, 1255, 1259,
1323, 1579, 1683, 1709, 1941

automaton without counters,172, 510, 515, 518, 590, 677, 681, 723, 749, 858, 941, 950, 955,
959, 963, 967, 971, 979, 983, 1010, 1058, 1104, 1107, 1110, 1125, 1132, 1137,
1143, 1169, 1173, 1273, 1285, 1289, 1293, 1299, 1305, 1312, 1349, 1379, 1383,
1387, 1403, 1418, 1433, 1437, 1447, 1451, 1454, 1518, 1520, 1525, 1575, 1660,
1793, 1804, 1812, 1816, 1820, 1903, 1911, 1962

autoref,173, 1037

B

Bacchus F.,297, 478
balance, 65, 88, 113, 159, 169, 171, 173, 220, 233, 286, 333, 560, 566, 570, 574, 578, 579,

582, 586, 587, 1468, 1890
balance cycle, 116, 184, 187, 208, 210, 233, 237, 238, 271, 279, 322, 561, 566, 830

3028 INDEX

balance interval, 125, 159, 169, 171, 173, 220, 233, 245, 286, 333, 560, 570
balance modulo, 125, 159, 169, 171, 173, 220, 233, 262, 286, 333, 560, 574
balance partition, 127, 159, 173, 220, 233, 277, 286, 333, 560, 578, 1124
balance path, 116, 187, 210, 233, 237, 238, 271, 277, 332, 561, 582, 1567
balance tree, 116, 187, 233, 237, 238, 271, 332, 561, 586, 1886
balanced assignment,173, 561, 571, 575, 579, 1349
balanced tree,174, 1890
Baptiste P.,430, 786, 912
Barichard V.,434
Barnes F. W.,276
Barnier N.,1208
Bartak R.,273
Baues G.,iii
Becket R.,404
Beeri C.,175
Beldiceanu N.,i–iii , 2, 4, 5, 78, 100, 172, 181, 182, 186, 203, 242, 252, 279, 292, 305, 310, 317,

324, 326, 344, 404, 478, 494, 502, 526, 530, 552, 560, 594, 610, 632, 656, 704, 742,
786, 818, 828, 866, 872, 898, 922, 1018, 1024, 1066, 1136, 1142, 1154, 1156, 1160,
1172, 1206, 1268, 1272, 1276, 1280, 1292, 1298, 1304, 1310, 1332, 1334, 1344,
1348, 1360, 1364, 1368, 1374, 1378, 1386, 1406, 1414, 1418, 1424, 1428, 1462,
1466, 1544, 1558, 1582, 1584, 1590, 1604, 1612, 1622, 1630, 1634, 1668, 1674,
1682, 1690, 1694, 1708, 1734, 1784, 1844, 1854, 1868, 1884, 1918, 1946

Berge C.,5, 52, 57, 434
Berge-acyclic constraint network,174, 479, 511, 515, 518, 633, 661, 677, 681, 723, 727, 731,

735, 739, 749, 983, 1010, 1058, 1104, 1111, 1137, 1143, 1169, 1173, 1273, 1285,
1289, 1293, 1299, 1305, 1312, 1403, 1447, 1525, 1575, 1709, 1804, 1812, 1903,
1911, 1962

Berliner H. J.,662
Berthier F.,99
Bessìere C.,iii , 5, 100, 154, 181, 376, 434, 478, 538, 552, 704, 1040, 1208, 1466, 1618, 1726,

1730, 1936
between, 478, 1272
between min max, 113, 169, 172, 182, 221, 290, 590, 797, 799, 1107
bin packing, 19, 116, 144, 148, 159, 160, 163, 164, 166, 167, 169, 171, 178, 191, 265, 295,

344, 594, 600, 601, 789, 809, 1157, 1835
bin packing capa, 121, 159, 160, 163, 192, 283, 295, 595, 600, 1157
bin packing load, 601
binary constraint,177, 420, 930, 932, 963, 967, 979, 1000, 1002, 1004, 1030, 1032, 1098, 1116,

1125, 1262, 1264, 1326, 1410, 1412, 1522, 1616, 1656, 1672, 1793, 1848
binary tree, 116, 187, 233, 237, 238, 271, 332, 602, 1566–1568, 1886
Bininda-Emonds O. R.,1784
bioinformatics,177, 423, 1660, 1788
BIPARTITE, 69, 464, 476, 496, 508, 519, 528, 532, 591, 597, 608, 622, 626, 630, 634, 642, 652,

658, 695, 701, 706, 710, 714, 719, 760, 768, 790, 799, 805, 815, 821, 850, 854, 859,
1204, 1290, 1912, 1938

bipartite,178, 463, 475, 495, 507, 518, 527, 531, 596, 607, 621, 625, 629, 633, 641, 651, 657,
705, 709, 713, 718, 759, 767, 849, 853, 858, 1203, 1289, 1911, 1937

bipartite, 110, 178, 188, 210, 237, 328, 606, 1128, 1874
bipartite matching,178, 439, 442, 447, 539, 899, 1269
bipartite matching in convex bipartite graphs,179, 439, 447

INDEX 3029

Bleuzen-Guernalec N.,434, 1772
Bockmayr A.,662, 1570, 1824, 1874
Bohlin M., 4
Boolean channel,179, 941
Boolean constraint,180, 510, 511, 676, 677, 680, 681, 1010, 1104, 1402, 1403, 1446, 1447,

1524, 1525, 1962
Bordeaux L.,5
border,180, 1583
bound(D) consistency,181
bound(Z) consistency,181
bound-consistency,180, 431, 439, 551, 553, 1037, 1042, 1155, 1213, 1401, 1468, 1625, 1636,

1691, 1714, 1717, 1773, 1840, 1843, 1919
bound alldiff, 434
bound alldifferent, 434
bound distinct, 434
Bourdais S.,78, 1034, 1120, 1574
BourreauÉ., iii , 4, 181, 310, 317, 828, 834, 842
Bouwkamp C. J.,317
Brand S.,iii , 404, 502, 1842
Brisset P.,iii , 1208
Bron C.,257, 430, 434, 684, 912
business rules,181, 830, 877, 1021

C

calendar, 144, 160, 184, 192, 263, 283, 301–303, 330, 610, 789, 820, 877, 914, 1021
Cambazard H.,iii , 594, 1848
Caprara A.,310
card matrix, 688
card set, 50
card var gcc, 1034, 1035
cardinality atleast, 127, 148, 153, 159, 168, 169, 171, 178, 233, 265, 286, 333, 620, 1037
cardinality atmost, 127, 148, 153, 159, 168, 169, 171, 178, 233, 265, 286, 333, 479, 624,

1037, 1401
cardinality atmost partition, 127, 148, 153, 168, 178, 233, 265, 277, 286, 333, 628,

1037, 1106
cardinality matrix, 688, 689
cardinality on attributes values, 1466
Carillon J.-P.,78, 958
Carlier J.,332, 912
Carlson B.,99, 103
Carlsson M.,i, ii , 2, 4, 5, 78, 99, 100, 103, 172, 182, 203, 242, 252, 279, 292, 305, 317, 324,

326, 404, 502, 656, 786, 818, 872, 898, 1018, 1024, 1268, 1272, 1276, 1280, 1292,
1298, 1304, 1310, 1406, 1414, 1424, 1428, 1466, 1612, 1690, 1844

Carravilla M. A.,872
case, 100, 189, 216, 233, 305, 315, 612, 959, 1120
Caseau Y.,100, 786

3030 INDEX

Cayley A.,1604
CC, 75, 1670, 1684
centered cyclic(1) constraint network(1),182, 590, 941, 1107, 1349, 1379, 1383, 1454, 1518,

1520
centered cyclic(2) constraint network(1),182, 950, 959, 963, 967, 979, 1125, 1387, 1793
centered cyclic(3) constraint network(1),183, 971, 1418
Chabert G.,iii , 306, 1484
CHAIN , 53, 1091
Chan P.,iii , 310
change, 10, 51, 103, 107, 123, 148, 169, 171, 174, 175, 178, 192, 218, 233, 266, 269, 270, 286,

307, 331, 346, 632, 650–652, 656, 657, 660, 661, 672, 848, 849, 853, 926, 927, 1322,
1574, 1708, 1709

change continuity, 51, 102, 137, 148, 152, 169, 171, 178, 187, 233, 265, 271, 279, 296, 297,
307, 331, 344, 347, 638, 1079, 1090, 1804

change pair, 131, 148, 169, 171, 178, 233, 265, 270, 275, 286, 308, 331, 346, 633, 650, 661
change partition, 127, 148, 178, 233, 266, 270, 277, 286, 331, 633, 656, 1124
change vectors, 124, 169, 171, 174, 233, 270, 286, 336, 633, 651, 660
channel, 1188, 1189, 1194, 1195
channel routing,183, 744
channelling constraint,184, 619, 941, 1190, 1195, 1199, 1203, 1318, 1319, 1625
characteristic of a constraint,138, 423, 428, 431, 439, 442, 444, 447, 451, 454, 458, 463, 467,

471, 475, 479, 486, 491, 495, 499, 503, 510, 515, 518, 523, 527, 535, 543, 547, 557,
561, 571, 575, 579, 590, 595, 621, 625, 629, 633, 641, 651, 657, 661, 672, 677, 681,
694, 700, 713, 718, 723, 727, 731, 735, 739, 744, 749, 752, 759, 763, 767, 789, 798,
804, 809, 814, 820, 830, 835, 843, 849, 853, 858, 863, 866, 868, 877, 899, 914, 927,
941, 950, 955, 959, 963, 967, 971, 979, 983, 993, 997, 1004, 1010, 1013, 1037, 1058,
1063, 1079, 1090, 1101, 1104, 1107, 1110, 1116, 1121, 1125, 1130, 1132, 1137,
1143, 1155, 1161, 1169, 1173, 1180, 1185, 1189, 1206, 1213, 1219, 1223, 1227,
1231, 1236, 1239, 1243, 1247, 1251, 1255, 1259, 1269, 1273, 1277, 1281, 1285,
1289, 1293, 1299, 1305, 1312, 1317, 1319, 1323, 1332, 1335, 1339, 1345, 1349,
1352, 1361, 1365, 1369, 1375, 1379, 1383, 1387, 1392, 1395, 1403, 1407, 1412,
1418, 1425, 1433, 1437, 1447, 1451, 1454, 1459, 1463, 1468, 1481, 1486, 1491,
1499, 1518, 1520, 1525, 1529, 1533, 1537, 1545, 1575, 1579, 1585, 1587, 1588,
1602, 1605, 1608, 1613, 1619, 1625, 1645, 1649, 1653, 1659, 1660, 1675, 1679,
1683, 1687, 1691, 1699, 1703, 1709, 1727, 1731, 1743, 1748, 1759, 1763, 1770,
1773, 1780, 1793, 1800, 1804, 1812, 1816, 1820, 1831, 1835, 1838, 1843, 1848,
1850, 1855, 1859, 1874, 1880, 1893, 1896, 1899, 1903, 1911, 1919, 1925, 1929,
1933, 1941, 1944, 1960, 1962

Charlier P.,iii
Charman P.,224
CHARME, 99, 1034
Cheadle A. M.,99
Cheng K. C.K.,100
Cheng K.-H.,872
CHIP,99, 202, 446, 479, 534, 546, 632, 662, 787, 829, 834, 835, 842, 843, 882, 886, 958, 970,

978, 1076, 1078, 1188, 1189, 1292, 1298, 1304, 1310, 1348, 1378, 1450, 1612, 1690,
1735, 1869

Choco,2, 99, 99, 103, 144, 959, 1792
choquet, 100, 344
Chu G.,5

INDEX 3031

Chvátal V.,662
CIRCUIT , 53, 673, 1801
circuit, 184, 567, 663, 825, 831, 1855
circuit, 39, 60, 62, 87, 110, 184, 210, 237–239, 250, 271, 279, 282, 321, 439, 662, 667, 829,

830, 1567, 1824, 1874
circuit cluster, 117, 185, 237, 271, 279, 322, 437, 439, 663, 666, 830, 1476, 1477
circular sliding cyclic(1) constraint network(2),184, 672
circular change, 53, 123, 169, 171, 184, 208, 233, 270, 286, 331, 633, 672
clause, 676, 680, 1402, 1446
clause and, 127, 153, 169, 172, 174, 180, 221, 290, 510, 676, 680
clause or, 127, 153, 169, 172, 174, 180, 216, 221, 290, 676, 680, 1524
Clautiaux F.,iii , 332
CLIQUE , 53, 440, 443, 448, 452, 456, 459, 468, 540, 544, 554, 558, 563, 568, 572, 576, 580,

584, 588, 604, 608, 664, 669, 747, 826, 832, 836, 840, 844, 857, 867, 1064, 1144,
1191, 1196, 1214, 1217, 1330, 1333, 1336, 1340, 1346, 1350, 1353, 1362, 1366,
1370, 1376, 1380, 1384, 1393, 1396, 1408, 1416, 1430, 1452, 1460, 1464, 1470,
1478, 1482, 1488, 1492, 1500, 1568, 1572, 1589, 1592, 1670, 1696, 1705, 1715,
1724, 1732, 1789, 1825, 1853, 1871, 1887, 1891, 1894

CLIQUE (<), 432, 476, 784, 884, 889, 915, 917, 919, 1069, 1220, 1270, 1531, 1662, 1728,
1771, 1900

CLIQUE (6=), 424, 429, 686, 879, 896, 924, 1560, 1596, 1606, 1718, 1856, 1875
clique, 116, 188, 233, 237, 257, 328, 344, 684, 1128, 1318
CLIQUE (Comparison), 54
cluster,185, 667
Coffman E. G.,594
Cohn A. G.,288, 754, 770, 776, 902, 1006, 1164, 1354, 1562
Coletta R.,5
collection generator,41, 42, 42, 52
Collet R.,934
Colmerauer A.,434, 1772
colored cumulative, 692
colored cumulatives, 698
colored matrix, 88, 90, 136, 233, 256, 283, 286, 329, 331, 688, 1037, 1212, 1213, 1625
coloured,185, 527, 694, 700, 835, 1180
coloured cumulative, 83, 117, 185, 192, 270, 295, 301, 330, 342, 344, 692, 700, 789, 909,

1467, 1468, 1476, 1477, 1880
coloured cumulatives, 121, 160, 162, 163, 185, 192, 270, 295, 301, 330, 342, 344, 694, 698,

789, 820, 1467, 1468, 1477
coloured matrix, 688
combinatorial object,139, 439, 444, 503, 523, 567, 583, 641, 663, 667, 759, 830, 835, 863, 866,

877, 936, 993, 1021, 1058, 1079, 1090, 1101, 1121, 1161, 1189, 1213, 1223, 1227,
1231, 1236, 1239, 1255, 1259, 1398, 1433, 1437, 1494, 1496, 1567, 1571, 1579,
1583, 1585, 1587, 1588, 1595, 1613, 1625, 1631, 1636, 1645, 1649, 1653, 1660,
1675, 1679, 1683, 1687, 1691, 1773, 1780, 1804, 1812, 1855, 1861, 1865, 1870,
1919, 1941

common, 20, 32, 33, 133, 147, 148, 178, 188, 189, 233, 266, 286, 287, 462, 463, 479, 507, 704,
708, 709, 712, 713, 716, 718, 899, 1472, 1473, 1619, 1640, 1641, 1937

common keyword,86
common interval, 135, 148, 178, 188, 233, 245, 266, 286, 705, 708
common modulo, 135, 148, 178, 188, 233, 262, 266, 286, 705, 712

3032 INDEX

common partition, 135, 148, 178, 188, 234, 266, 277, 286, 705, 716, 1124
compare and count, 192, 221, 283, 720, 763
comparison swapped,86
complexity,139, 553, 705, 789, 820, 877, 895, 914, 1037, 1213, 1223, 1468, 1486, 1717, 1937,

1960
compulsory part,185, 694, 700, 789, 798, 804, 809, 820, 877, 914
cond lex cost, 36, 127, 153, 169, 172, 174, 202, 249, 274, 284, 290, 336, 722, 727, 731, 735,

739, 959, 1121
cond lex greater, 129, 153, 169, 174, 249, 274, 284, 336, 723, 726, 731, 735, 739, 1121,

1293
cond lex greatereq, 129, 153, 169, 174, 249, 274, 284, 336, 723, 727, 730, 735, 739, 1121,

1299
cond lex less, 129, 153, 169, 174, 249, 274, 284, 336, 723, 727, 731, 734, 739, 1121, 1305
cond lex lesseq, 129, 153, 169, 174, 249, 274, 284, 336, 723, 727, 731, 735, 738, 1121, 1311
conditional constraint,186, 1675, 1679
Condon A. E.,422, 868
configuration,186, 273
configuration problem,186, 975
connect points, 54, 135, 183, 234, 236, 246, 322, 328, 742
connected, 110, 187, 188, 237, 328, 746, 1128, 1824, 1852
connected component,187, 463, 567, 583, 587, 603, 641, 746, 831, 835, 843, 1058, 1079, 1216,

1329, 1473, 1567, 1605, 1870, 1886, 1890, 1893
Connors D. P.,1208
consecutive loops are connected,187, 1079, 1804, 1812
consecutive values,187, 1344, 1345, 1374, 1375, 1462, 1463
consecutive groups of ones, 22, 106, 119, 144, 153, 169, 172, 174, 252, 253, 290, 748,

1079
CONSECUTIVE LOOPS ARE CONNECTED, 69
consecutive values, 108, 283, 314, 333, 426, 444, 752, 1058, 1468
constant sum, 1834
constraint arguments,140, 420, 442, 463, 479, 486, 491, 499, 507, 510, 551, 561, 571, 575, 579,

607, 621, 625, 629, 633, 651, 657, 661, 672, 685, 690, 705, 709, 713, 718, 746, 759,
783, 830, 849, 853, 856, 877, 891, 895, 920, 923, 927, 930, 932, 936, 950, 959, 963,
967, 971, 975, 979, 987, 1000, 1002, 1004, 1010, 1013, 1016, 1021, 1030, 1032,
1037, 1049, 1055, 1067, 1073, 1098, 1104, 1107, 1110, 1116, 1118, 1125, 1128,
1189, 1195, 1199, 1216, 1262, 1264, 1319, 1323, 1326, 1329, 1335, 1339, 1345,
1349, 1352, 1365, 1369, 1375, 1379, 1383, 1392, 1403, 1407, 1410, 1412, 1415,
1429, 1447, 1454, 1459, 1463, 1468, 1473, 1486, 1494, 1496, 1499, 1503, 1506,
1508, 1511, 1515, 1522, 1525, 1529, 1549, 1571, 1583, 1585, 1587, 1598, 1605,
1616, 1619, 1625, 1631, 1636, 1641, 1645, 1649, 1653, 1656, 1667, 1672, 1675,
1679, 1709, 1739, 1743, 1748, 1751, 1755, 1759, 1763, 1767, 1773, 1780, 1793,
1824, 1827, 1840, 1845, 1848, 1852, 1861, 1865, 1874, 1899, 1919, 1925, 1929,
1933, 1937, 1962

constraint between three collections of variables,188, 759, 1780
constraint between two collections of variables,188, 463, 705, 709, 713, 718, 1625, 1631, 1636,

1641, 1645, 1649, 1653, 1739, 1743, 1748, 1751, 1755, 1759, 1763, 1767, 1773,
1919, 1925, 1929, 1933, 1937

constraint involving set variables,188, 442, 551, 607, 685, 746, 856, 895, 936, 1004, 1073,
1128, 1199, 1216, 1318, 1319, 1499, 1503, 1506, 1508, 1511, 1515, 1570, 1571,
1605, 1619, 1667, 1824, 1827, 1840, 1848, 1852, 1861, 1865, 1874

INDEX 3033

constraint network structure,139, 479, 486, 491, 495, 499, 511, 515, 518, 535, 547, 590, 633,
641, 651, 661, 672, 677, 681, 723, 727, 731, 735, 739, 749, 763, 767, 849, 853, 858,
863, 868, 927, 941, 950, 959, 963, 967, 971, 979, 983, 1010, 1013, 1058, 1079, 1090,
1101, 1104, 1107, 1111, 1125, 1132, 1137, 1143, 1161, 1169, 1173, 1206, 1255,
1259, 1273, 1285, 1289, 1293, 1299, 1305, 1312, 1323, 1349, 1379, 1383, 1387,
1403, 1418, 1433, 1437, 1447, 1451, 1454, 1518, 1520, 1525, 1575, 1579, 1683,
1709, 1793, 1804, 1812, 1816, 1820, 1903, 1911, 1941, 1962

constraint on the intersection,189, 463, 705, 1473, 1641
constraint type,140, 420, 423, 426, 428, 431, 439, 444, 447, 451, 454, 458, 463, 467, 471,

475, 480, 486, 491, 495, 499, 503, 507, 511, 515, 518, 523, 535, 539, 543, 547, 551,
553, 557, 561, 567, 571, 575, 579, 583, 587, 596, 601, 603, 607, 619, 621, 625, 629,
633, 641, 651, 657, 663, 667, 672, 677, 681, 685, 690, 694, 700, 705, 720, 723, 727,
731, 735, 739, 746, 752, 756, 763, 767, 772, 778, 789, 798, 804, 809, 814, 820, 825,
831, 835, 839, 843, 849, 853, 856, 858, 866, 868, 877, 883, 888, 891, 895, 899, 904,
909, 914, 916, 918, 920, 923, 927, 930, 932, 936, 939, 941, 950, 955, 959, 963, 967,
971, 975, 979, 983, 987, 993, 997, 1000, 1002, 1004, 1008, 1010, 1013, 1016, 1021,
1027, 1030, 1032, 1037, 1042, 1045, 1049, 1067, 1073, 1079, 1090, 1098, 1104,
1107, 1111, 1116, 1118, 1121, 1125, 1128, 1130, 1132, 1137, 1143, 1149, 1155,
1166, 1169, 1173, 1180, 1185, 1189, 1195, 1203, 1206, 1213, 1216, 1219, 1223,
1227, 1231, 1236, 1239, 1243, 1247, 1251, 1255, 1259, 1262, 1264, 1267, 1269,
1273, 1277, 1281, 1293, 1300, 1305, 1312, 1317, 1319, 1323, 1326, 1329, 1332,
1335, 1339, 1345, 1349, 1352, 1356, 1361, 1365, 1369, 1375, 1379, 1383, 1387,
1392, 1398, 1401, 1403, 1407, 1410, 1412, 1415, 1418, 1425, 1429, 1442, 1447,
1451, 1454, 1459, 1463, 1468, 1473, 1477, 1481, 1486, 1491, 1499, 1503, 1506,
1508, 1511, 1515, 1518, 1520, 1522, 1525, 1533, 1537, 1542, 1545, 1549, 1555,
1564, 1567, 1571, 1575, 1583, 1585, 1587, 1588, 1591, 1598, 1600, 1602, 1605,
1608, 1613, 1616, 1619, 1631, 1636, 1641, 1656, 1659, 1660, 1667, 1669, 1672,
1675, 1679, 1683, 1687, 1691, 1695, 1699, 1703, 1709, 1714, 1717, 1722, 1727,
1731, 1736, 1739, 1743, 1748, 1751, 1755, 1759, 1763, 1767, 1770, 1788, 1793,
1800, 1804, 1812, 1815, 1816, 1820, 1824, 1827, 1831, 1835, 1838, 1840, 1843,
1845, 1848, 1850, 1852, 1855, 1859, 1861, 1865, 1870, 1874, 1880, 1886, 1890,
1893, 1896, 1903, 1907, 1911, 1915, 1944, 1955, 1960, 1962

constructive disjunction,189, 877, 914, 1911
contact,190, 1559, 1903
container,161, 162, 1027
contains, 754
contains sboxes, 192, 236, 252, 288, 754, 771, 777, 903, 1008, 1166, 1356, 1441, 1564
Contejean E.,iii , 78, 478, 494, 502, 828, 866, 872, 1854, 1868
contiguity, 1058
contractibility,273
contractible,191
convex,197, 798, 1058
convex bipartite graph,198, 439, 447, 1468
convex hull relaxation,198, 1831
Conway packing problem,199, 878, 1022
core,199, 439, 789, 830, 877, 914, 959, 1037, 1395, 1468, 1773
Cormen T. H.,782
Corn R. M.,422, 868
Cornelissens T.,284
correspondence, 129, 148, 178, 188, 214, 266, 279, 437, 758, 1625, 1780

3034 INDEX

cost filtering constraint,202, 723, 1055, 1395, 1845, 1960
cost matrix,202, 1055, 1395
cost variant,86
cost gcc, 1052
cost ordered global cardinality, 1541
cost regular, 100
Costa M.-C.,434
Costas arrays,202, 439
Cot́e M.-C.,ii , 100, 250
count, 107, 131, 148, 151, 153, 169, 171, 192, 203, 221, 333, 478, 479, 514, 527, 534, 546,

720, 762, 766, 767, 1012, 1034, 1036, 1338, 1339, 1368, 1369, 1468, 1476, 1490,
1618, 1619

counting constraint,203, 479, 480, 486, 491, 495, 499, 507, 539, 543, 553, 557, 720, 763, 767,
890, 891, 1013, 1036, 1037, 1041, 1042, 1143, 1149, 1255, 1259, 1339, 1369, 1407,
1415, 1429, 1459, 1468, 1473, 1477, 1481, 1486, 1491, 1503, 1511, 1515, 1533,
1537, 1545, 1619, 1683

counts, 131, 148, 151, 153, 169, 171, 178, 192, 203, 221, 266, 333, 479, 527, 528, 763, 766
Cousin X.,1178
Cousot P.,147
Cousot R.,147
coveredby, 770
coveredby sboxes, 236, 252, 288, 756, 770, 777, 903, 1008, 1166, 1356, 1441, 1564
covers, 776
covers sboxes, 192, 236, 252, 288, 756, 771, 776, 903, 1008, 1166, 1356, 1441, 1564
Croft H. T.,315
crossable unavailability period,301
crossing, 23, 50, 117, 148, 234, 236, 252, 266, 286, 782, 1066, 1067, 1899
Cui Z., 288, 754, 770, 776, 902, 1006, 1164, 1354, 1562
cumulative, 9, 12, 13, 16, 38, 39, 51, 74–77, 84, 107, 117, 155, 169, 171, 185, 186, 192, 195,

199, 202, 203, 218, 242, 243, 250, 280, 284, 285, 295, 299, 301, 315, 330, 342, 344,
546, 594, 595, 619, 692–695, 700, 786, 789, 794, 795, 797, 802, 803, 808, 809, 814,
820, 873, 875–877, 909, 914, 1184, 1277, 1281, 1401, 1542, 1734, 1735, 1835

cumulative longest hole problems,203, 789
cumulative convex, 48, 117, 185, 192, 197, 278, 295, 301, 330, 437, 590, 789, 794, 1835
cumulative max, 786
cumulative product, 117, 185, 192, 285, 295, 301, 330, 342, 789, 802, 1602
cumulative trapeze, 100, 186
cumulative two d, 117, 185, 192, 214, 236, 283, 287, 344, 595, 789, 808, 809, 877
cumulative with level of priority, 121, 192, 214, 295, 301, 330, 342, 789, 812, 1835
cumulatives, 11, 39, 47, 84, 124, 144, 160, 162–164, 167, 185, 192, 210, 214, 284, 295, 299,

301, 324, 330, 331, 337, 342, 344, 619, 698, 700, 789, 818, 877, 1835
Cunningham S.,4
cutset, 65, 117, 148, 184, 209, 215, 237, 262, 266, 285, 344, 824, 1128
CYCLE , 54
cycle,208, 567, 831, 1855
cycle, 11, 64, 86, 100, 116, 181, 184, 187, 199–201, 208, 210, 220, 234, 237, 238, 271, 279,

282, 321, 322, 404, 439, 566, 662, 663, 667, 828, 835, 839, 843, 844, 866, 959, 1067,
1189, 1329, 1379, 1468, 1855, 1869, 1874, 1874, 1886

cycle card on path, 136, 185, 187, 237, 238, 271, 279, 297, 308, 495, 830, 834
cycle or accessibility, 126, 224, 234, 236, 237, 322, 830, 838, 1481

INDEX 3035

cycle resource, 122, 187, 214, 237, 238, 295, 322, 345, 830, 842
cyclic, 208, 672, 849, 853, 1800
cyclic change, 131, 148, 169, 171, 178, 208, 234, 266, 270, 286, 307, 331, 633, 848, 852, 853
cyclic change joker, 131, 148, 169, 171, 178, 208, 234, 246, 266, 270, 286, 307, 331, 633,

849, 852
Cymer R.,iii

D

dag, 9, 110, 188, 237, 856, 1128
data constraint,208, 950, 955, 959, 963, 967, 971, 975, 979, 983, 987, 993, 997, 1121, 1206,

1418, 1425, 1793, 1831
Davern P.,4
deadlock breaking,209, 825
Debruyne R.,iii
Deces F.,iii
Dechter R.,39, 152, 239
decomposition,209, 423, 428, 431, 503, 515, 518, 523, 858, 877, 883, 888, 895, 914, 916,

918, 941, 1021, 1027, 1132, 1213, 1219, 1223, 1227, 1231, 1236, 1239, 1243, 1247,
1251, 1269, 1277, 1281, 1319, 1549, 1600, 1619, 1660, 1687, 1691, 1816, 1820,
1861, 1865, 1955

decomposition-based violation measure,210, 426, 439, 1717, 1727
decreasing, 108, 148, 153, 169, 172, 178, 192, 209, 266, 274, 290, 306, 426, 858, 1132, 1433,

1437, 1816, 1820
deepest valley, 113, 169, 171, 257, 297, 307, 862, 1101, 1941
degree of diversity of a set of solutions,211, 1277, 1727
demand profile,210, 820, 1631, 1636
Demassey S.,iii , iv, 100, 786
Denley T. M. J.,434
Denmat T.,1016, 1598
Deo N.,662
derangement, 110, 153, 237, 271, 279, 314, 439, 830, 866
derived collection,42, 42–45, 52, 74, 75, 77, 214, 214, 402, 527, 759, 809, 814, 820, 843, 941,

959, 971, 979, 997, 1063, 1107, 1110, 1121, 1125, 1293, 1299, 1305, 1312, 1319,
1387, 1418, 1425, 1454, 1699, 1780, 1880, 1893, 1899

deviation, 100, 173, 320
Deville Y., 100, 173, 174, 189, 326, 894, 934, 1826
DFS-bottleneck,210, 439, 567, 583, 607, 663, 831, 1037, 1042, 1567, 1625, 1919
Di Battista G.,1898
Diedrich F.,305
diff, 1284
diff2, 872, 873
differ from at least k pos, 55, 127, 151, 169, 171, 221, 329, 333, 336, 423, 424, 868
difference,214, 1063, 1843
difference between pairs of variables,214, 1269
different, 1284
diffn, 9, 14, 52, 90, 107, 109, 144, 156, 160–164, 181, 185, 186, 189, 192, 199, 202, 209, 216,

3036 INDEX

224, 225, 236, 241, 246, 263, 269, 275–277, 279, 282, 287, 293, 294, 296–302, 309,
310, 312, 315, 320, 324, 326, 331, 332, 402, 431, 439, 619, 788, 789, 808, 809, 820,
872, 877, 882, 883, 886, 888, 914, 1018, 1021, 1024, 1027, 1213, 1269, 1277, 1281,
1441, 1498, 1511, 1515, 1548, 1559, 1590, 1591, 1907, 1910, 1911, 1915, 1946,
1955

diffn column, 115, 192, 209, 236, 238, 275, 282, 877, 882, 888, 1906, 1907
diffn include, 115, 192, 209, 236, 275, 282, 877, 883, 886, 1914, 1915
diffst, 1954, 1955
Dincbas M.,iii , 99, 1208
directed acyclic graph,215, 825
discrepancy, 116, 148, 153, 203, 234, 239, 250, 286, 333, 479, 720, 890, 1128
disequality,215, 423, 439, 442, 444, 447, 899, 993, 1063, 1213, 1219, 1285, 1412, 1451, 1454,

1499, 1588, 1619, 1675, 1679, 1727, 1731, 1855
disequality, 437
disj, 110, 188, 209, 295, 299, 301, 894, 914, 1128
disjoint, 62, 106, 119, 169, 171, 178, 192, 215, 218, 329, 333, 463, 872, 898, 902, 908, 909,

1218–1220, 1284
disjoint1, 872, 873
disjoint2, 243, 872, 873
disjoint sboxes, 192, 236, 252, 288, 756, 771, 777, 902, 1008, 1166, 1356, 1441, 1564
disjoint tasks, 122, 192, 269, 301, 330, 346, 694, 899, 908
disjunction,216, 518, 681, 877, 914, 916, 918, 950, 959, 1022, 1029, 1525
disjunctive, 110, 185, 189, 192, 199, 202, 209, 216, 250, 257, 280, 295, 298, 299, 301, 314,

342, 431, 439, 619, 788, 789, 877, 895, 912, 916, 918, 1600
disjunctive or same end, 110, 192, 209, 216, 295, 301, 342, 914, 916, 918
disjunctive or same start, 110, 192, 209, 216, 295, 301, 342, 914, 916, 918
DISTANCE, 69, 924, 928
distance, 123, 155, 234, 283, 286, 330, 431, 920, 922, 926, 1264, 1709
distance between, 70, 131, 234, 285, 286, 922, 927
distance change, 131, 169, 171, 234, 285, 286, 308, 633, 923, 926
distinct, 11, 434
distribute, 1034
distribution, 1034, 1035
div, 930
div or, 932
divisible, 112, 153, 155, 177, 283, 930, 932, 1656
divisible or, 112, 155, 177, 283, 930, 932
dom, 938, 1106, 1106, 1110, 1128
dom reachability, iii , 134, 188, 237, 283, 934, 1567, 1570
dom reified, 1114
domain, 125, 192, 216, 245, 283, 333, 938, 940, 1107, 1110, 1890
domain channel,216, 941
domain consistency,154
domain definition,216, 515, 939, 1107, 1110, 1111, 1118, 1454
domain constraint, 45, 116, 153, 169, 172, 179, 182, 184, 209, 214, 216, 250, 290, 940,

1318, 1618, 1619, 1862, 1866
dominating queens,216, 1469
domination,217, 543, 557, 1469, 1477, 1486, 1491, 1845
Dooms G.,iii , 7, 9, 99, 100, 606, 746, 856, 1852, 1884
double counting,1036

INDEX 3037

double lex, 1266
Dowsland K. A.,277
dual model,217, 1190, 1195, 1199, 1203
Ducasśe M.,1016, 1598
Duck G. J.,404
Dudeney H. E.,5
Duijvestijn A. J. W.,315, 317
duplicated variables,218, 1037, 1213, 1293, 1300, 1305, 1312, 1659, 1800
Dupont P.,100, 173, 174, 894, 1826
dynamic graph constraint

assign and counts, 528
assign and nvalues, 532
bin packing, 597
circuit cluster, 669
coloured cumulative, 695
coloured cumulatives, 701
cumulative, 790
cumulative convex, 799
cumulative product, 805
cumulative with level of priority, 815
cumulatives, 821
cycle card on path, 836
cycle or accessibility, 840
indexed sum, 1158
interval and count, 1181
interval and sum, 1186
minimum greater than, 1388
next element, 1419
next greater element, 1426
shift, 1670
sliding card skip0, 1684
sliding time window, 1696
sliding time window sum, 1705
track, 1881

dynamic programming,218, 633, 789, 1709, 1800, 1804
dynamic wavelength routing,249

E

Eades P.,1898
ECLAIR, 99
ECLiPSe,99, 404, 406
egcc, 1034, 1035
Elbassioni K. M.,1208, 1222, 1238
elem, 121, 153, 155, 163, 169, 172, 182, 199, 200, 208, 216, 234, 246, 286, 289, 290, 298, 329,

330, 335, 337, 946, 954, 955, 958, 959, 962, 963, 966, 967, 971, 974, 979, 987, 992,
997, 1793

3038 INDEX

elem from to, 121, 153, 155, 169, 172, 208, 290, 330, 335, 950, 954, 959
elem matrix, 970
element, 6, 42, 43, 45, 78, 103, 125, 144, 153, 155, 163–167, 169, 172, 182, 199, 200, 208,

214, 216, 221, 223, 234, 246–248, 286, 289, 291, 298, 299, 305, 315, 329, 330, 335,
337–341, 345, 435, 723, 830, 946, 946, 950, 951, 955, 958, 963, 964, 967, 968, 971,
972, 974, 974, 978, 978, 979, 982, 983, 986, 987, 991, 992, 997, 1027, 1054, 1055,
1121, 1779, 1780, 1792, 1793, 1795, 1831, 1869, 1889, 1890, 1893, 1896

element from to, 954
element greatereq, 121, 153, 155, 169, 172, 177, 182, 208, 250, 291, 330, 335, 950, 959,

962, 967, 974
element lesseq, 121, 153, 155, 169, 172, 177, 182, 208, 250, 291, 330, 335, 950, 959, 963,

966, 974, 1027
element matrix, 12, 136, 153, 155, 169, 172, 183, 208, 214, 256, 291, 330, 950, 959, 970
element product, 132, 155, 186, 208, 221, 234, 286, 330, 335, 950, 959, 963, 967, 974
element sparse, 128, 153, 155, 169, 172, 177, 182, 208, 214, 291, 315, 329, 330, 335, 950,

959, 978, 996, 997
element var, 958
elementn, 127, 153, 169, 172, 174, 208, 221, 291, 308, 330, 959, 982
elements, 121, 153, 208, 234, 286, 287, 305, 329, 330, 950, 959, 986, 990, 992
elements alldiff, 990
elements alldifferent, 121, 155, 208, 215, 234, 279, 330, 439, 950, 959, 987, 990
elements alldistinct, 990
elements sparse, 128, 153, 208, 214, 305, 315, 329, 330, 950, 959, 979, 996
Elf M., 662, 1570, 1824, 1874
empty intersection,218, 899, 1219
entailment,219, 439, 495, 1042, 1349, 1379, 1454
Eppstein D.,434
eq, 112, 153, 155, 177, 234, 283, 286, 420, 426, 1000, 1002, 1004, 1010, 1030, 1098, 1262,

1288, 1326, 1410, 1656
eq cst, 19, 123, 153, 155, 177, 234, 283, 286, 1000, 1002, 1032, 1264, 1412
eq set, 118, 177, 188, 219, 283, 442, 443, 1000, 1004
equal, 1006, 1288
equal sboxes, 192, 236, 252, 288, 756, 771, 777, 903, 1006, 1166, 1356, 1442, 1564
equality,219, 1004
equality between multisets,220, 1223, 1625, 1631, 1636
equation, 1658
EQUIVALENCE, 69, 540, 544, 554, 558, 563, 572, 576, 580, 1144, 1470, 1478, 1488, 1492
equivalence,220, 539, 543, 553, 557, 561, 571, 575, 579, 1143, 1339, 1369, 1407, 1415, 1429,

1451, 1459, 1469, 1477, 1486, 1491, 1731
equivalent, 113, 153, 169, 172, 174, 180, 234, 286, 291, 510, 1010, 1104, 1402, 1446, 1524,

1962
Eran H.,1208
Erschler J.,786
Euler knight,220, 439, 831
Euler L.,5
exactly, 125, 148, 151, 153, 169–171, 203, 234, 286, 333, 479, 535, 546, 1012
excluded,221, 1454
extended global cardinality, 1034
extended sortedness, 1778
Extensible,221

INDEX 3039

extension,224, 1121
extension, 1120
extensional, 1120
extensional support, 1120
extensional supportmdd, 1120
extensional supportstr, 1120
extensional supportva, 1120

F

FaCile,99
facilities location problem,224, 839, 1845
Fages F.,iii , 824
Fages J.-G.,iii , 1884
Fagin R.,152, 175
Fahle T.,684
Falconer K. J.,315
Falkenhainer B.,1678
Falkowski B.-J.,269
Faltings B.,273
Favaron O.,376
feastupleac, 1120
Fekete S. P.,297
Feldman J.,4
Festa P.,262
filtering, 140, 420, 431, 439, 442, 447, 451, 455, 458, 467, 480, 486, 491, 495, 499, 503, 511,

515, 518, 535, 539, 547, 551, 553, 567, 583, 607, 621, 625, 629, 633, 663, 677, 681,
694, 700, 723, 727, 731, 735, 739, 749, 763, 767, 789, 798, 804, 809, 820, 831, 858,
866, 877, 891, 899, 914, 930, 941, 950, 955, 959, 963, 967, 971, 979, 983, 987, 997,
1000, 1002, 1010, 1013, 1016, 1021, 1029, 1030, 1032, 1037, 1042, 1045, 1049,
1055, 1058, 1098, 1104, 1107, 1111, 1116, 1118, 1121, 1125, 1132, 1137, 1143,
1155, 1169, 1175, 1189, 1195, 1213, 1216, 1262, 1264, 1269, 1273, 1277, 1281,
1285, 1289, 1293, 1300, 1305, 1312, 1319, 1326, 1349, 1379, 1395, 1401, 1403,
1410, 1412, 1447, 1451, 1454, 1468, 1499, 1511, 1515, 1522, 1525, 1542, 1567,
1571, 1575, 1583, 1598, 1600, 1605, 1619, 1625, 1631, 1636, 1656, 1659, 1672,
1691, 1709, 1714, 1717, 1722, 1727, 1751, 1773, 1793, 1800, 1804, 1812, 1816,
1820, 1824, 1831, 1840, 1843, 1845, 1855, 1861, 1865, 1874, 1886, 1903, 1911,
1919, 1944, 1955, 1960, 1962

final graph structure,141, 423, 428, 431, 439, 442, 447, 451, 455, 458, 463, 467, 475, 495, 507,
518, 527, 531, 539, 543, 553, 557, 561, 567, 571, 575, 579, 583, 587, 596, 603, 607,
621, 625, 629, 633, 641, 651, 657, 663, 667, 685, 705, 709, 713, 718, 744, 746, 759,
767, 783, 825, 831, 835, 839, 843, 849, 853, 858, 866, 1058, 1079, 1090, 1143, 1203,
1216, 1289, 1329, 1339, 1369, 1395, 1407, 1415, 1429, 1451, 1459, 1463, 1469,
1473, 1477, 1481, 1486, 1491, 1567, 1588, 1595, 1605, 1731, 1788, 1804, 1812,
1824, 1852, 1855, 1870, 1886, 1890, 1893, 1911, 1937

Fink A., 278, 794
Flajolet O.,1328

3040 INDEX

Flamm C.,1660
Flener P.,iii , iv, 292, 474, 982, 1266, 1316, 1784, 1814, 1884
floor planning problem,224, 877, 1021, 1277
flow, 227, 439, 503, 1037, 1042, 1045, 1049, 1499, 1511, 1515, 1625, 1631, 1636, 1691, 1861,

1865, 1919
Focacci F.,890, 1394
forced shift stretch, 1803, 1804
Ford Jr. L. R.,688
Fotso L. P.,786
frequency allocation problem,233, 431
Freuder E. C.,239
Freund A.,1208
Friedman E.,276, 309, 312
Frisch A. M.,78, 474, 1266, 1292, 1298, 1304, 1310, 1316, 1814
Frutos A. G.,422, 868
Frühwirth T.,1292, 1298, 1304, 1310
Fulkerson D. R.,688
functional dependency,233, 420, 471, 480, 486, 491, 499, 507, 511, 561, 567, 571, 575, 579,

583, 587, 603, 621, 625, 629, 633, 641, 651, 657, 661, 672, 685, 690, 705, 709, 713,
718, 744, 783, 831, 839, 849, 853, 891, 920, 923, 927, 950, 959, 975, 987, 993, 1000,
1002, 1010, 1013, 1016, 1037, 1049, 1055, 1067, 1079, 1090, 1104, 1143, 1190,
1195, 1323, 1329, 1332, 1335, 1339, 1345, 1349, 1352, 1361, 1365, 1369, 1375,
1379, 1383, 1392, 1395, 1403, 1407, 1415, 1429, 1447, 1459, 1463, 1469, 1473,
1486, 1494, 1496, 1503, 1525, 1529, 1545, 1549, 1567, 1583, 1585, 1587, 1598,
1605, 1616, 1672, 1675, 1679, 1709, 1773, 1780, 1793, 1831, 1845, 1870, 1886,
1890, 1899, 1960, 1962

G

Galinier P.,78, 1034, 1120, 1574
Gambini I.,872
Gandibleux X.,iii
Gansner E. R.,104, 405
Garćıa de la Banda M. J.,5, 404
Garey M. R.,430, 594, 934, 1898
gcc, 201, 1034, 1040
gcc low up, 228, 1040
gcc low up no loop, 228, 1044
gcc no loop, 1048
gccc, 1052
gcd, 123, 147, 155, 234, 283, 286, 330, 1016, 1598
Gecode,iii , 2, 99, 99, 103, 404, 676, 680, 895, 936, 938, 950, 958, 1106, 1110, 1128, 1189,

1194, 1195, 1659
Gehring H.,872
Gendron B.,ii , 100, 250
generalisation,86
generalized arc-consistency,154

INDEX 3041

Gent I. P.,99, 296, 434, 1784
geometrical constraint,236, 744, 756, 771, 772, 777, 778, 783, 810, 839, 877, 883, 888, 903,

904, 1008, 1021, 1027, 1029, 1067, 1166, 1356, 1441, 1442, 1529, 1552, 1555, 1559,
1564, 1591, 1595, 1660, 1899, 1903, 1907, 1911, 1915, 1955

geometry,141, 744, 756, 772, 778, 783, 810, 839, 877, 883, 888, 904, 909, 1008, 1021, 1029,
1067, 1166, 1356, 1442, 1529, 1549, 1552, 1555, 1559, 1564, 1591, 1595, 1660,
1899, 1903, 1907, 1911, 1915, 1955

Georget Y.,iii
Georgiadis L.,934
geost, iv, 128, 144, 156–158, 160–164, 181, 182, 189, 190, 199, 209, 216, 224, 225, 236, 241,

252, 263, 269, 276–279, 283, 293–295, 300–303, 309, 310, 312, 315, 320, 324, 326,
328, 331, 332, 619, 877, 1018, 1027, 1213, 1269, 1277, 1281, 1442, 1955

geost time, 134, 156, 160, 162, 163, 209, 216, 236, 252, 269, 283, 324, 331, 877, 1021, 1024,
1442, 1955

geq, 112, 153, 155, 177, 283, 420, 1000, 1030, 1032, 1098, 1262, 1298, 1326, 1410, 1672
geq cst, 123, 153, 155, 177, 283, 1002, 1030, 1032, 1264
Gervet C.,550
Ginsberg M. L.,250, 890
Gittleman J. L.,1784
global cardinality, 70, 74, 89, 90, 120, 144, 147, 159, 169, 171, 173, 180, 192, 199–201,

203, 210, 218, 227, 234, 238, 255, 286, 329, 333, 345, 439, 479, 527, 620, 621,
624, 625, 628, 629, 688, 690, 763, 1034, 1036, 1037, 1041, 1048, 1049, 1054–1056,
1338, 1339, 1368, 1369, 1468, 1498, 1511, 1512, 1515, 1542, 1619, 1624, 1625,
1630, 1631, 1683, 1860, 1861, 1864, 1865, 1889, 1890, 1893

global cardinality closed, 1036
global cardinality low up, 100, 120, 153, 159, 180, 192, 203, 210, 219, 227–230, 240,

241, 250, 329, 333, 439, 1035–1037, 1040, 1042, 1044, 1045, 1136, 1137, 1139,
1511, 1515, 1516, 1542, 1634, 1635, 1687, 1688

global cardinality low up closed, 1041
global cardinality low up no loop, 133, 227–230, 333, 1042, 1044, 1049, 1635, 1886
global cardinality no loop, 89, 127, 227, 234, 286, 333, 1036, 1045, 1048, 1886
global cardinality with costs, 49, 69, 134, 159, 199, 202, 234, 254, 255, 286, 289, 290,

297, 337, 1036, 1052, 1395, 1845, 1960
global contiguity, 54, 72, 73, 78–80, 104, 108, 153, 169, 170, 172, 174, 187, 192, 197, 291,

292, 297, 752, 1058, 1079, 1161, 1398, 1437, 1619
Glover F.,179, 434
golomb, 47, 108, 151, 192, 214, 215, 237, 439, 1062, 1820
Golomb ruler,237, 439, 1063
Golomb S. W.,310, 872, 1062, 1594
Golynski A.,5, 1034
Gomes C.,688
Gondran M.,57, 185
Gotlieb A.,1016, 1598
Grabisch M.,100, 344
Graf T.,99
Grandcolas S.,297
graph colouring,237, 439, 1175, 1213
graph constraint,237, 567, 583, 587, 603, 607, 663, 667, 685, 746, 825, 830, 831, 835, 839, 843,

856, 866, 936, 1067, 1073, 1189, 1195, 1203, 1216, 1329, 1567, 1571, 1605, 1788,
1824, 1827, 1852, 1855, 1870, 1874, 1886, 1890, 1893

3042 INDEX

Graph invariants:
MAX NCC, 354
MAX NSCC, 354
MIN NCC, 354
MIN NSCC, 354
NARC, 354
NCC, 355
NSCC, 355
NSINK, 355
NSOURCE, 355
NVERTEX, 355
MAX NCC, MAX NSCC, 356
MAX NCC, MIN NCC, 356
MAX NCC1, MIN NCC1, 386
MAX NCC2, MIN NCC2, 386
MAX NCC, NARC, 356
MAX NCC1, NCC2, 386
MAX NCC2, NCC1, 386
MAX NCC, NSINK, 357
MAX NCC, NSOURCE, 357
MAX NCC, NVERTEX, 357
MAX NSCC, MIN NSCC, 357
MAX NSCC, NARC, 358
MAX NSCC, NVERTEX, 358
MIN NCC, MIN NSCC, 358
MIN NCC, NARC, 359
MIN NCC, NCC, 359
MIN NCC1, NCC2, 387
MIN NCC2, NCC1, 387
MIN NCC, NVERTEX, 359
MIN NSCC, NARC, 360
MIN NSCC, NVERTEX, 360
NARC1, NARC2, 387
NARC, NCC, 360
NARC, NSCC, 360
NARC, NSINK, 361
NARC, NSOURCE, 361
NARC, NVERTEX, 361
NCC1, NCC2, 387
NCC, NSCC, 362
NCC, NVERTEX, 362
NSCC, NSINK, 363
NSCC, NSOURCE, 363
NSCC, NVERTEX, 363
NSINK, NVERTEX, 364
NSOURCE, NVERTEX, 364
NVERTEX1, NVERTEX2, 387
MAX NCC1, MIN NCC1, MIN NCC2, 388
MAX NCC2, MIN NCC2, MIN NCC1, 389
MAX NCC, MIN NCC, NARC, 365

INDEX 3043

MAX NCC, MIN NCC, NCC, 365
MAX NCC, MIN NCC, NVERTEX, 365
MAX NCC1, MIN NCC1, NVERTEX2, 389
MAX NCC2, MIN NCC2, NVERTEX1, 389
MAX NCC, NARC, NCC, 366
MAX NCC, NARC, NVERTEX, 367
MAX NCC, NCC, NSINK, 368
MAX NCC, NCC, NSOURCE, 368
MAX NCC, NCC, NVERTEX, 368
MAX NSCC, MIN NSCC, NARC, 369
MAX NSCC, MIN NSCC, NSCC, 369
MAX NSCC, MIN NSCC, NVERTEX, 369
MAX NSCC, NCC, NVERTEX, 370
MAX NSCC, NSCC, NVERTEX, 370
MIN NCC1, NARC2, NCC1, 390
MIN NCC, NARC, NVERTEX, 370
MIN NCC, NCC, NVERTEX, 372
MIN NSCC, NARC, NVERTEX, 372
MIN NSCC, NCC, NVERTEX, 372
MIN NSCC, NSCC, NVERTEX, 372
NARC, NCC, NVERTEX, 373
NARC, NSCC, NVERTEX, 374
NARC, NSINK, NVERTEX, 376
NARC, NSOURCE, NVERTEX, 377
NSCC, NSINK, NSOURCE, 377
NSINK, NSOURCE, NVERTEX, 378
MAX NCC1, MIN NCC1, MIN NCC2, NCC1, 391
MAX NCC2, MIN NCC2, MIN NCC1, NCC2, 391
MAX NCC1, MIN NCC1, MIN NCC2, NVERTEX2, 392
MAX NCC2, MIN NCC2, MIN NCC1, NVERTEX1, 392
MAX NCC, MIN NCC, NARC, NCC, 379
MAX NCC, MIN NCC, NCC, NVERTEX, 380
MAX NCC, NARC, NSOURCE, NVERTEX, 380
MAX NSCC, MIN NSCC, NARC, NSCC, 380
MAX NSCC, MIN NSCC, NSCC, NVERTEX, 381
MIN NCC, NARC, NCC, NVERTEX, 381
NARC, NCC, NSCC, NVERTEX, 382
NARC, NSINK, NSOURCE, NVERTEX, 384
MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1, 393
MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC2, 396
MAX NCC, MIN NCC, NARC, NCC, NVERTEX, 385
MIN NCC, NARC, NCC, NSCC, NVERTEX, 385
MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1, NCC2, 398

graph partitioning constraint,238, 567, 583, 587, 603, 663, 830, 831, 835, 843, 1067, 1329,
1567, 1855, 1870, 1874, 1886, 1890, 1893

graph crossing, 117, 234, 236–238, 252, 286, 783, 830, 1066, 1329, 1886, 1899
graph isomorphism, iii , 129, 188, 237, 283, 1072, 1073, 1827
Graphviz,104
greater, 1292
greatereq, 1298

3044 INDEX

Gresh D. L.,1208
GRID , 54
GRID([SIZE1, SIZE2, SIZE3]), 745
Grinberg E. Ya.,662
group, 62, 137, 151, 152, 169, 171, 187, 234, 271, 297, 331, 336, 347, 350, 641, 748, 749,

1058, 1076, 1088, 1090, 1106, 1398, 1454, 1575, 1800, 1804
group skip isolated item, 53, 136, 151, 152, 169, 171, 234, 271, 297, 322, 331, 641, 1079,

1088, 1106, 1804
groups of values,seeassignment to the same set of values
gt, 112, 153, 155, 177, 283, 1000, 1030, 1098, 1262, 1292, 1326, 1410
guillotine cut,238, 883, 1907
Guo Q.,186, 872
Guy R. K.,315

H

Häggkvist R.,434
Hall interval,238, 439, 1037
Hamiltonian,239, 663, 1874
Hamming distance,213
Han Hoogeveen J. A.,iii
Hańak D.,iii
Hansen P.,376
Harary F.,1898
hard version,86
Hardy G. H.,946
Harvey W.,99, 1292, 1298, 1304, 1310, 1658
Harvey W. D.,250, 890
Hebrard E.,iii , 100, 144, 213, 376, 478, 538, 552, 704, 1466, 1618, 1714, 1716, 1720, 1726,

1730, 1936
Hellsten L.,632, 1708, 1798, 1802
Henriksen J. G.,5
Henz M.,1854
Hermenier F.,iii , 144, 1142
Herńandez B. M.,184
heuristics,142, 239, 877, 891, 950, 959, 1022, 1055, 1189, 1195, 1203, 1277, 1281, 1293, 1300,

1305, 1312, 1835
heuristics and Berge-acyclic constraint network,239
heuristics and lexicographical ordering,241, 1277, 1281, 1293, 1300, 1305, 1312
heuristics for two-dimensional rectangle placement problems,241, 877, 1022
highest peak, 113, 169, 171, 297, 307, 863, 1100, 1579
Hnich B.,78, 100, 213, 376, 474, 478, 538, 552, 704, 1266, 1292, 1298, 1304, 1310, 1316, 1466,

1618, 1814, 1936
Hoda S.,5
Hofacker I. L.,1660
Hooker J. N.,i, 4, 5, 434, 662, 786, 962, 966
Hopcroft J.,662

INDEX 3045

Hopper E.,320
Hungarian method for the assignment problem,243, 1395
hybrid-consistency,243, 1605, 1619
hyper arc-consistency,154
hypergraph,244, 503, 523, 1529, 1613, 1675, 1679, 1687, 1691

I

IF/PROLOG,99
ifthen, 1104
Ilog, 442
Ilog CP Optimizer,787, 912
Ilog Solver,99, 1869
implied by,87
implies,87
implies (if swap arguments),87
implies (items to collection),87
imply, 113, 153, 169, 172, 174, 180, 234, 286, 291, 510, 1010, 1104, 1402, 1446, 1524, 1962
in, 55, 113, 153, 164, 169, 172, 182, 214, 216, 221, 244, 291, 333, 479, 481, 590, 629, 630,

939, 1079, 1080, 1090, 1091, 1106, 1110, 1110, 1118, 1124, 1126, 1128, 1349, 1379,
1454, 1504

in attr, 10
in interval, 123, 153, 169, 172, 174, 214, 216, 245, 291, 292, 333, 405, 939, 1107, 1110,

1114, 1116, 1118, 1128
in interval reified, 131, 153, 177, 283, 292, 333, 437, 439, 1110, 1114
in intervals, 116, 153, 216, 221, 245, 283, 333, 1110, 1118
in list, 10
in reified, 1114
in relation, 36, 45, 120, 153, 208, 214, 221, 224, 293, 332, 722, 723, 726, 730, 734, 738,

959, 1120, 1944
in same partition, 126, 153, 169, 172, 177, 182, 214, 221, 277, 291, 334, 467, 468, 579,

580, 657, 658, 718, 719, 1106, 1107, 1124, 1407, 1408, 1653, 1654, 1749, 1764,
1933, 1934

in set, 112, 188, 244, 283, 334, 607, 608, 685, 686, 746, 747, 826, 856, 857, 890, 892, 895,
896, 1106, 1107, 1110, 1128, 1199, 1200, 1216, 1217, 1320, 1499, 1500, 1503,
1504, 1506–1509, 1511, 1512, 1515, 1516, 1518, 1520, 1570, 1572, 1606, 1620,
1825, 1831, 1832, 1849, 1852, 1853, 1861, 1862, 1865, 1866, 1874, 1875

included,244, 1107, 1128
inclusion,244, 1239, 1243, 1247, 1919, 1925, 1929, 1933, 1937
incomparable, 106, 119, 283, 329, 336, 428, 429, 1130
incomparables, 1130
incompatible pairs of values,245, 467
incr sum, 1842
increasing, 108, 153, 169, 172, 192, 209, 274, 291, 306, 426, 858, 1132, 1136, 1137, 1139,

1142, 1143, 1145, 1154, 1155, 1433, 1437, 1600, 1780, 1816, 1820
increasing gcc, 1136
increasing gcc low up, 1136

3046 INDEX

increasing global cardinality, 120, 153, 159, 169, 172, 174, 256, 274, 291, 328, 334,
1042, 1132, 1136, 1542

increasing global cardinality low up, 1136
increasing nvalue, 113, 153, 169, 172, 174, 203, 220, 234, 270, 274, 291, 322, 328, 334,

1132, 1142, 1143, 1148, 1149, 1468, 1545
increasing nvalue chain, 116, 203, 270, 274, 1143, 1148, 1468, 1545
increasing seq, 11
increasing sum, 113, 155, 180, 274, 283, 324, 328, 1132, 1154, 1835
increasing sum ctr, 1154
increasing sum eq, 1154
increments sum, 1842
indexed sum, 121, 159, 335, 595, 601, 1156, 1835
indexing an array by a decision variable,seearray constraint
indistinguishable values,245, 1169, 1175, 1667
inequality sum, 100
inflexion, 78–80, 113, 169, 171, 297, 307, 1058, 1160, 1578, 1579, 1940, 1941
inside, 1164
inside sboxes, 192, 236, 252, 288, 756, 771, 777, 903, 1008, 1164, 1356, 1442, 1564
int value precede, 125, 148, 153, 169, 172, 174, 192, 245, 274, 291, 328, 335, 534, 1168,

1173, 1667
int value precede chain, 106, 119, 148, 153, 169, 172, 174, 192, 237, 245, 274, 291, 328,

335, 1168, 1172, 1820, 1919
inter distance, 430
intersection graph,175, 176, 240
interval,245, 455, 491, 571, 709, 939, 1111, 1118, 1180, 1185, 1227, 1243, 1429, 1645, 1739,

1755, 1925
interval and count, 85, 133, 159, 160, 162, 169, 171, 185, 192, 245, 295, 330, 331, 344,

495, 1178, 1185
interval and sum, 126, 159, 160, 162, 169, 171, 192, 245, 295, 330, 331, 344, 1180, 1184,

1835
inverse, 101, 110, 144, 153, 169, 171, 184, 217, 234, 237, 239, 266, 267, 269, 279, 280, 286,

337, 339–341, 830, 1188, 1195, 1198, 1199, 1202, 1203, 1855
inverse channeling, 1188
inverse in range, 1202
inverse offset, 126, 153, 184, 217, 234, 237, 239, 1189, 1194
inverse range, 1202
inverse set, 16, 121, 184, 188, 217, 299, 1128, 1189, 1198, 1203
inverse within range, 55, 106, 119, 178, 184, 217, 237, 239, 266, 328, 1189, 1199, 1202
inverseoffset, 286
Isermann H.,276
Italiano G. F.,iii , 321, 322, 1884
ith pos different from 0, 125, 152, 169, 171, 208, 221, 246, 330, 534, 1206

J

Jünger M.,662, 1570, 1824, 1874
Jackson J.,1528

INDEX 3047

Jackson J. R.,912
JaCoP,iii , 2, 99, 99, 103, 762, 873, 1121, 1189, 1348, 1378, 1467, 1659, 1834
Jansen K.,305
Jaulin L.,306, 1484
Jefferson C.,99
Jensen J. L.,5
Johnson D. S.,430, 594, 934, 1898
joker value,246, 451, 486, 744, 853, 1206, 1383, 1481, 1585, 1859, 1960
Jouglet A.,iii
Jussien N.,iii , 4, 434, 1798
Jørgensen M. E.,5

K

k alldiff, 1208
k alldifferent, 109, 150, 151, 159, 180, 181, 192, 209, 215, 218, 237, 249, 250, 275, 279,

300, 323, 329, 334, 435, 439, 690, 874, 877, 1021, 1208, 1468, 1631
k alldistinct, 1208
k cut, 116, 187, 188, 237, 250, 1128, 1216, 1318
k diff, 538, 1467
k disjoint, 34–36, 109, 192, 209, 215, 218, 329, 334, 899, 1218
k same, 21, 109, 147, 193, 209, 220, 265, 279, 314, 329, 1222, 1226, 1227, 1230, 1231, 1234,

1235, 1239, 1625
k same interval, 115, 193, 209, 245, 279, 314, 329, 1223, 1226, 1243, 1645
k same modulo, 115, 193, 209, 262, 279, 314, 329, 1223, 1230, 1247, 1649
k same partition, 120, 193, 209, 277, 279, 314, 329, 1223, 1234, 1251, 1653
k used by, 12, 109, 193, 209, 244, 265, 314, 329, 1223, 1238, 1242, 1243, 1246, 1247, 1250,

1251, 1919
k used by interval, 115, 193, 209, 244, 245, 314, 329, 1227, 1239, 1242, 1925
k used by modulo, 115, 193, 209, 244, 262, 314, 329, 1231, 1239, 1246, 1929
k used by partition, 120, 193, 209, 277, 314, 329, 1235, 1239, 1250, 1933
Kadioglu S.,239
Kalè L. V., 269
Kameugne R.,786
Kasper T.,662, 1570, 1824, 1874
Katriel I., iii , 5, 100, 210, 1034, 1208, 1222, 1238, 1604, 1622, 1630, 1634, 1884, 1918
Katsirelos G.,181, 434, 1040, 1208, 1466
Kaya L. G.,662
Keber R.,276
Kerbosch J.,257, 430, 434, 684, 912
Kirkman T. P.,5
Klarlund N.,5
Klee measure problem,246, 877
Klee V.,872
knight,220, 266
Koalog,99
Kocjan W.,iii , 1860, 1864

3048 INDEX

Korf R. E.,310
Kreuger P.,iii , 1860, 1864
Kuchcinski K.,iii , 872
Kuhn H. W.,243, 1394
Kutz M., 1208, 1222, 1238
Kızıltan Z.,78, 100, 376, 474, 478, 538, 552, 1266, 1292, 1298, 1304, 1310, 1316, 1466, 1618,

1622, 1814, 1936

L

López-Ortiz A.,5, 430, 434, 1034
Labb́e M.,838, 1868
labelling by increasing cost,246, 950, 959
Labreuche C.,100, 344
Laburthe F.,99, 100, 103, 786
Lagerkvist M. Z.,iii , 279, 934
Lahrichi A., 185, 786, 794, 808
Lal A., 824
Laporte G.,666, 838, 1868
Lardeux F.,1208
Larrosa J.,1826
Latin square,249, 1213
Laura L.,321, 322, 1884
Laurière J.-L.,i, 98, 434, 662, 828
Law Y. C.,245, 1168, 1172, 1666
Le Pape C.,786, 912
Leconte M.,iii , 434
Lecoutre C.,iii , 404
Lee J. H. M.,1168, 1172, 1666
Leiserson C. E.,782
length first sequence, 113, 169, 171, 203, 307, 334, 1254, 1259
length last sequence, 113, 169, 171, 203, 307, 334, 1255, 1258
leq, 33, 34, 112, 153, 155, 177, 283, 302, 1000, 1030, 1098, 1262, 1264, 1310, 1326, 1410
leq cst, 123, 144, 153, 155, 177, 258, 283, 920, 1002, 1032, 1262, 1264
less, 1304
lesseq, 1310
Levy H.,824
lex, 1292, 1304
lex2, 109, 249, 256, 274, 283, 328, 329, 474, 1266, 1281, 1311, 1815
lex alldiff, 1268
lex alldifferent, 87, 109, 153, 178, 193, 209, 214, 221, 329, 336, 439, 447, 663, 866, 877,

1021, 1189, 1268, 1277, 1284, 1855
lex alldistinct, 1268
lex between, 129, 153, 169, 172, 174, 193, 249, 274, 291, 328, 329, 336, 1272, 1277, 1281,

1293, 1299, 1305, 1311
lex chain, 1276, 1280, 1292, 1298, 1304, 1310
lex chain less, 109, 144, 153, 193, 209, 211, 221, 223–225, 241, 249, 256, 274, 328, 329,

INDEX 3049

336, 789, 877, 1021, 1269, 1273, 1276, 1281, 1293, 1299, 1305, 1311, 1814, 1815
lex chain lesseq, 109, 153, 193, 197, 209, 241, 249, 256, 274, 328, 329, 336, 474, 789, 877,

1021, 1137, 1267, 1273, 1277, 1280, 1293, 1299, 1305, 1311, 1532, 1533, 1536,
1537, 1545

lex different, 106, 119, 154, 169, 172, 174, 215, 221, 287, 291, 329, 336, 899, 1269, 1270,
1284, 1288, 1293, 1299, 1305, 1311, 1779

lex equal, 106, 119, 148, 154, 169, 172, 174, 178, 193, 266, 291, 336, 543, 544, 557, 558,
1284, 1288, 1299, 1311, 1485, 1488, 1492, 1625, 1944

lex geq, 1298
lex greater, 106, 119, 154, 169, 172, 174, 214, 218, 221, 223, 241, 249, 256, 265, 274, 291,

328, 336, 727, 1273, 1277, 1281, 1284, 1292, 1299, 1305, 1311
lex greatereq, 87, 106, 119, 154, 169, 172, 174, 193, 197, 214, 218, 241, 249, 256, 265, 274,

291, 328, 336, 731, 1273, 1277, 1281, 1284, 1288, 1293, 1298, 1305, 1311, 1773
lex leq, 1310
lex less, 106, 119, 154, 169, 172, 174, 214, 218, 221, 241, 249, 256, 265, 274, 291, 328, 329,

336, 735, 1273, 1277, 1278, 1281, 1284, 1293, 1299, 1304, 1311, 1533, 1534, 1537,
1538, 1545, 1546

lex lesseq, 45, 46, 56, 67, 78–80, 87, 106, 119, 154, 169, 172, 174, 193, 214, 218, 241, 249,
256, 265, 274, 291, 328, 329, 336, 474, 739, 1143, 1267, 1272, 1273, 1277, 1281,
1282, 1284, 1288, 1293, 1299, 1305, 1310, 1316, 1533, 1534, 1537, 1538, 1545,
1546, 1815

lex lesseq allperm, 106, 119, 193, 249, 256, 274, 283, 328, 329, 336, 474, 476, 1311, 1316
lexeq, 1298, 1310
lexicographic order,249, 474, 475, 723, 727, 731, 735, 739, 1267, 1273, 1277, 1281, 1293,

1299, 1300, 1305, 1311, 1312, 1316, 1317, 1815
leximin, 1316
Le Huéd́e F.,100, 344
Li K., 872
limited discrepancy search,250, 891
line-segments intersection,252, 783, 1067, 1899
linear, 1658, 1659, 1834
linear programming,250, 503, 663, 789, 941, 963, 967, 1216, 1319, 1571, 1691, 1824, 1831,

1874
Linhares A.,794
link set to booleans, 118, 184, 188, 209, 214, 250, 299, 334, 442, 685, 941, 1128, 1216,

1318, 1570, 1618, 1619, 1824, 1861, 1862, 1865, 1866, 1874
Liu Q., 422, 868
Lloyd E. L., 824
Lock H. C. R.,786
Lodi A., 310, 1394
logic, 252, 756, 771, 772, 777, 778, 903, 904, 1008, 1021, 1166, 1356, 1442, 1555, 1564, 1591,

1903, 1907, 1911, 1915
logigraphe,252, 749
longest change, 61, 123, 169, 171, 234, 271, 286, 307, 331, 633, 1322
LOOP , 54, 1059, 1080, 1684, 1801, 1805
Lopez P.,786
Lorca X.,iii , 306, 1142, 1484, 1604, 1784, 1884
Low D. W., 824
lt, 112, 154, 155, 177, 283, 1000, 1030, 1098, 1262, 1326, 1410
Lubiw A., 1266

3050 INDEX

Lucas E.,5

M

Müller T., 1854
Müller-Hannemann M.,594
Métivier J.-P.,100
Macho-Gonzalez S.,273
Maculet R.,224, 226
magic hexagon,254, 439, 1055
magic series,255, 1037
magic square,255, 439, 1055
Mahéo M.,376
Mahajan M.,1208, 1222, 1238
Maher M. J.,iii , 78, 195, 273, 404, 502, 1058, 1690
Maier D.,175
MALICE, 1036
map, 126, 187, 234, 237, 238, 286, 830, 1067, 1328, 1886
Marcovitch J.,99, 1034
Marriott K., 404
Marte M.,iii , 1878
Martello S.,310, 594
Martin J.,ii , iii , 2, 182, 252, 404
Martin M., 326
Martin P.,1208
Marx D., 1714, 1716, 1720, 1726, 1730
matching,255, 1855
matrix,256, 475, 690, 971, 1267, 1815
matrix, 970
matrix model,256, 475, 690, 1267, 1815
matrix symmetry,256, 474, 475, 1137, 1267, 1277, 1281, 1293, 1300, 1305, 1311, 1312, 1316,

1317, 1815
max, 1348
MAX DRG, 60
MAX ID, 60, 584, 604, 622, 626, 630, 664, 1568, 1789, 1871, 1875, 1961
max index, 116, 257, 274, 1332, 1361
max n, 125, 234, 257, 274, 286, 288, 1334, 1349, 1365
MAX NCC, 61, 464, 642, 1080, 1324, 1801, 1805
MAX NSCC, 61, 440, 443, 448, 452, 456, 459, 468, 472, 584, 588, 604, 826, 857, 1064,

1091, 1214, 1340, 1346, 1500, 1568, 1589, 1715, 1724, 1789, 1887, 1891, 1894
max nvalue, 113, 159, 169, 171, 203, 220, 234, 257, 286, 334, 479, 763, 1036, 1338, 1369,

1468
MAX OD, 61, 1875
max size set of consecutive var, 113, 187, 234, 257, 286, 334, 1344, 1462
maximum,257, 1332, 1335, 1339, 1345, 1349, 1352, 1518
maximum, 113, 148–150, 154, 169, 172, 173, 182, 219, 234, 257, 274, 286, 291, 590, 795, 1107,

1335, 1339, 1348, 1352, 1379, 1386, 1424, 1518, 1524, 1889, 1890

INDEX 3051

maximum clique,257, 431, 439, 685, 914
maximum number of occurrences,257, 1339
maximum modulo, 125, 234, 257, 262, 274, 286, 1349, 1352, 1392
maxint,257, 863, 1365, 1379, 1392
maxval, 15
McGregor J. J.,1072, 1826
Mcinnis M. J.,1208
Medjdoub B.,224, 225
meet, 1354
meet sboxes, 2, 193, 236, 252, 283, 288, 404, 756, 771, 777, 903, 1008, 1166, 1354, 1442,

1564
Mehlhorn K.,5, 434, 662, 1570, 1772, 1824, 1874
Mehta D.,4
member, 1106, 1106, 1128
Menana J.,iii , 100
Menschner K.,872
Mercier L.,786
metro,258, 1264
metro map,258
Meyer M.,872
Miguel I., 78, 99, 474, 1266, 1292, 1298, 1304, 1310, 1316, 1814
Milano M., 100, 1394
Mildner P.,iii
min, 1378
MIN DRG, 61
MIN ID, 61, 1875
min index, 116, 260, 274, 1332, 1360
min n, 125, 169, 171, 234, 257, 260, 274, 286, 288, 507, 1335, 1364, 1369, 1379, 1468
MIN NCC, 62, 642, 1080, 1801, 1805
MIN NSCC, 62, 664, 1091, 1370, 1376, 1825, 1875
min nvalue, 113, 159, 169, 171, 203, 220, 234, 260, 262, 286, 334, 479, 763, 1036, 1339, 1368,

1468
MIN OD, 62, 1875
min size set of consecutive var, 113, 159, 187, 235, 260, 286, 334, 1374, 1462
min weight alldiff, 1394
min weight alldifferent, 1394
min weight alldistinct, 1394
minimum,260, 1361, 1365, 1369, 1375, 1379, 1383, 1387, 1392, 1418, 1425, 1520
minimum, 29, 52, 66, 78, 87, 107, 113, 148, 154, 169, 172, 182, 219, 235, 257, 260, 272, 274,

286, 291, 510, 590, 795, 830, 1107, 1349, 1350, 1365, 1369, 1378, 1382, 1383, 1386,
1388, 1392, 1393, 1419, 1425, 1426, 1520

minimum cost flow,261, 1727, 1751
minimum feedback vertex set,262, 825
minimum hitting set cardinality,262, 1468
minimum number of occurrences,262, 1369
minimum distance, 430
minimum except 0, 125, 170, 172, 182, 235, 246, 260, 274, 286, 291, 534, 1379, 1382
minimum greater than, 125, 148, 170, 172, 182, 214, 260, 274, 291, 1379, 1386, 1418, 1424,

1425
minimum modulo, 125, 235, 257, 260, 262, 274, 286, 1352, 1379, 1392

3052 INDEX

minimum spanning tree, 100
minimum weight alldiff, 1394
minimum weight alldifferent, 85, 128, 159, 199, 202, 235, 243, 271, 337, 439, 1055, 1394,

1845, 1960

minimum weight alldistinct, 1394
Minion, 99
MiniZinc, 2, 99, 103, 601, 762, 788, 873, 899, 1036, 1041, 1106, 1121, 1831

Minoux M., 57
minval, 14
miscellaneous,142, 641, 1079, 1090, 1323, 1683, 1899
Mittal S., 1678

mod, 1616
modelling,142, 420, 455, 467, 471, 475, 480, 486, 491, 499, 507, 511, 515, 518, 527, 531, 535,

539, 543, 547, 553, 557, 561, 567, 571, 575, 579, 583, 587, 596, 601, 603, 619, 621,
625, 629, 633, 641, 651, 657, 661, 667, 672, 681, 685, 690, 694, 700, 705, 709, 713,
718, 723, 727, 731, 735, 739, 744, 783, 789, 804, 814, 820, 831, 839, 849, 853, 877,
891, 899, 914, 916, 918, 920, 923, 927, 939, 941, 950, 955, 959, 963, 967, 971, 975,
979, 983, 987, 993, 997, 1000, 1002, 1010, 1013, 1016, 1022, 1029, 1037, 1049,
1055, 1067, 1079, 1090, 1104, 1107, 1111, 1118, 1128, 1143, 1149, 1157, 1180,
1185, 1190, 1195, 1199, 1203, 1206, 1219, 1223, 1227, 1239, 1243, 1247, 1267,
1269, 1277, 1319, 1323, 1329, 1332, 1335, 1339, 1345, 1349, 1352, 1361, 1365,
1369, 1375, 1379, 1383, 1392, 1395, 1401, 1403, 1407, 1415, 1418, 1425, 1429,
1447, 1454, 1459, 1463, 1469, 1473, 1477, 1481, 1486, 1491, 1494, 1496, 1503,
1506, 1508, 1525, 1529, 1545, 1549, 1567, 1583, 1585, 1587, 1598, 1605, 1616,
1625, 1631, 1636, 1645, 1672, 1675, 1679, 1709, 1727, 1739, 1755, 1773, 1780,
1793, 1815, 1831, 1845, 1855, 1870, 1886, 1890, 1899, 1919, 1925, 1929, 1933,
1937, 1960, 1962

modelling exercises,144, 439, 447, 596, 601, 619, 749, 820, 877, 914, 950, 959, 1022, 1029,
1037, 1190, 1264, 1277, 1709, 1727, 1870

modulo,262, 458, 499, 575, 713, 1231, 1247, 1352, 1392, 1649, 1743, 1759, 1929
modulo, 1616
Monaci M.,310
Monette J.-N.,894
Monfroy É., 5, 1208

Moukrim A., 332
Mozart,99, 936

multi-site employee scheduling with calendar constraints,619, 877, 1021, 1022
multi all min dist, 1400
multi all min distance, 1400
multi contiguity, 1398
multi global contiguity, 108, 193, 283, 297, 1058, 1079, 1398
multi inter distance, 125, 150, 168, 180, 193, 283, 301, 334, 431, 625, 789, 1400
multicost regular, 100

multiset,265, 1223, 1239, 1625, 1631, 1636, 1919
multiset ordering,265, 1293, 1300, 1305, 1312
Museux N.,iii

INDEX 3053

Müller T., 189

N

n-Amazon,266, 439, 447, 1190, 1709
n-queen,269, 439, 447, 1190
Nagao T.,253
nand, 113, 148, 154, 170, 172, 174, 180, 193, 221, 235, 286, 291, 510, 539, 1010, 1104, 1402,

1446, 1524, 1962
NARC, 62, 424, 427, 429, 432, 476, 481, 487, 492, 496, 500, 504, 516, 519, 524, 536, 548,

591, 634, 642, 652, 658, 673, 686, 695, 701, 760, 764, 768, 784, 790, 799, 805, 815,
821, 850, 854, 857, 859, 869, 879, 884, 889, 892, 896, 900, 910, 915, 917, 919, 942,
951, 960, 964, 968, 972, 976, 980, 988, 1014, 1046, 1050, 1069, 1108, 1112, 1122,
1133, 1150, 1191, 1196, 1200, 1220, 1224, 1228, 1232, 1237, 1240, 1244, 1248,
1252, 1270, 1278, 1282, 1286, 1290, 1320, 1388, 1419, 1426, 1455, 1504, 1507,
1509, 1531, 1534, 1538, 1546, 1550, 1553, 1557, 1560, 1592, 1601, 1606, 1614,
1620, 1662, 1670, 1676, 1680, 1688, 1692, 1705, 1710, 1718, 1728, 1771, 1774,
1781, 1795, 1817, 1821, 1856, 1862, 1866, 1875, 1881, 1900, 1904, 1908, 1912,
1916, 1945

NARC NO LOOP, 63, 472
Narodytska N.,181, 434, 502, 1040, 1208, 1466, 1690
Naveh Y.,1208
nbchanges, 632
NCC, 63, 604, 642, 747, 832, 836, 840, 844, 1059, 1080, 1217, 1330, 1474, 1534, 1538, 1546,

1560, 1568, 1596, 1606, 1789, 1871, 1887, 1891, 1894
nclass, 127, 203, 220, 221, 235, 270, 277, 286, 322, 334, 1124, 1406, 1415, 1429, 1459, 1468
ncross, 1066
negation,88
Nelissen J.,276, 872
neq, 18, 88, 112, 154, 155, 177, 283, 329, 439, 1000, 1030, 1098, 1262, 1326, 1410, 1412, 1450
neq cst, 123, 154, 155, 177, 215, 283, 1002, 1410, 1412
nequivalence, 125, 193, 203, 220, 222, 235, 270, 286, 322, 334, 1407, 1414, 1429, 1459, 1468
Nethercote N.,404
next element, 132, 170, 172, 183, 208, 214, 260, 291, 330, 1379, 1386, 1418, 1425
next greater element, 125, 208, 214, 260, 274, 330, 1379, 1386, 1388, 1418, 1424
Ng M. P.,1784
Ngo-Kateu Y.,786
Nieuwenhuis R.,5
Nightingale P.,296, 434
ninterval, 17, 125, 193, 203, 220, 235, 245, 270, 286, 322, 334, 1407, 1415, 1428, 1459, 1468
no cycle,265, 1605
no loop,265, 423, 428, 463, 495, 507, 518, 527, 531, 596, 621, 625, 629, 633, 641, 651, 657,

705, 709, 713, 718, 759, 767, 783, 825, 849, 853, 858, 1203, 1289, 1911, 1937
no cycle, 100
NO LOOP, 70, 424, 429, 432, 464, 476, 496, 508, 519, 528, 532, 591, 597, 622, 626, 630, 634,

642, 652, 658, 695, 701, 706, 710, 714, 719, 760, 768, 784, 790, 799, 805, 815, 821,
826, 850, 854, 859, 1204, 1290, 1912, 1938

3054 INDEX

no peak, 108, 170, 172, 193, 291, 297, 306, 858, 1132, 1432, 1437, 1579, 1941
no valley, 108, 170, 172, 193, 291, 297, 306, 858, 1058, 1132, 1433, 1436, 1579, 1941
non-crossable unavailability period,301
non-deterministic automaton,269, 479, 633, 1709
non-overlapping,269, 877, 909, 1021, 1027, 1029, 1441, 1442, 1555, 1559, 1591, 1903, 1911
non-resumable task,301
non increasing size, 12
non overlap, 1440
non overlap or same end, 916
non overlap or same start, 918
non overlap sboxes, 193, 236, 252, 756, 771, 777, 877, 903, 1008, 1021, 1027, 1166, 1356,

1440, 1564, 1955
non overlapping, 1440
nonogram,seelogigraphe
nor, 113, 148, 154, 170, 172, 174, 180, 193, 222, 235, 286, 291, 510, 539, 1010, 1104, 1402,

1446, 1524, 1962
North S. C.,104, 405
not all equal, 87, 88, 108, 154, 170, 172, 215, 220, 222, 291, 306, 334, 426, 439, 539, 1410,

1450, 1467, 1468
not alldiff, 1770
not alldifferent, 1770
not alldistinct, 1770
not distinct, 1770
not in, 113, 154, 170, 172, 182, 193, 214–216, 219, 221, 291, 333, 334, 1079, 1080, 1107,

1454, 1801, 1805
npair, 19, 36, 116, 193, 203, 220, 235, 270, 275, 286, 322, 334, 1407, 1415, 1429, 1458, 1468
npoint, 1484
npoints, 1484, 1490
NSCC, 63, 540, 544, 554, 558, 669, 745, 1091, 1144, 1408, 1416, 1430, 1452, 1460, 1464,

1470, 1478, 1482, 1488, 1492, 1732
nset of consecutive values, 113, 187, 235, 286, 322, 334, 1344, 1374, 1462
NSINK, 63, 706, 710, 714, 719, 1126, 1626, 1632, 1637, 1642, 1646, 1650, 1654, 1774, 1920,

1926, 1930, 1934, 1938
NSINK NSOURCE, 64, 1740, 1744, 1749, 1752, 1756, 1760, 1764, 1768
NSOURCE, 64, 508, 706, 710, 714, 719, 998, 1126, 1626, 1632, 1637, 1642, 1646, 1650,

1654, 1774, 1846, 1920, 1926, 1930, 1934
nth, 946, 958
NTREE, 64, 568, 669, 832, 836, 840, 844, 867, 1330, 1396
number of changes,270, 633, 651, 657, 661, 672, 849, 853, 1709
number of distinct equivalence classes,270, 539, 543, 553, 557, 1143, 1407, 1415, 1429, 1459,

1469, 1477, 1486, 1491
number of distinct values,270, 531, 539, 553, 694, 700, 1143, 1149, 1468, 1469, 1473, 1477,

1481
nurse scheduling,240
nval, 15
nvalue, 28, 40–42, 63, 72, 73, 84, 86, 114, 147, 170, 171, 180, 181, 193, 198–201, 203, 216,

217, 220, 235, 236, 262, 270, 286, 287, 322, 334, 426, 439, 479, 486, 531, 538, 539,
552, 553, 561, 693, 694, 699, 700, 752, 763, 830, 1036, 1142, 1143, 1145, 1149,
1212, 1213, 1334, 1338, 1339, 1364, 1365, 1369, 1406, 1407, 1414, 1415, 1428,

INDEX 3055

1429, 1450, 1458, 1459, 1466, 1472, 1473, 1476, 1477, 1480, 1481, 1484, 1485,
1731, 1845, 1879–1881

nvalue on intersection, 127, 187, 189, 193, 203, 235, 270, 286, 463, 705, 1468, 1472, 1641
nvalues, 123, 193, 203, 220, 222, 270, 322, 334, 530–532, 667, 669, 692, 694, 695, 698, 700,

701, 1468, 1476, 1480, 1481
nvalues except 0, 123, 193, 203, 222, 246, 270, 322, 334, 531, 534, 839, 840, 1468, 1477,

1480
nvector, 22, 36, 37, 115, 193, 203, 217, 220, 235, 270, 286, 289, 306, 322, 334, 336, 542, 543,

556, 557, 1288, 1468, 1484, 1490, 1491, 1533, 1537, 1544, 1545
nvectors, 36, 124, 193, 203, 217, 220, 222, 270, 322, 334, 336, 1288, 1484, 1485, 1490
NVERTEX, 65, 686, 826, 840, 844, 994, 1038, 1043, 1046, 1050, 1056, 1080, 1091, 1138,

1512, 1516, 1543, 1560, 1596, 1606, 1632, 1637, 1871, 1894
nvisible, 1494, 1496
nvisible from end, 114, 235, 286, 297, 1494, 1496
nvisible from left, 1496
nvisible from right, 1494
nvisible from start, 114, 235, 286, 297, 1494, 1496

O

O’Sullivan B.,213, 243, 310, 594, 1714, 1716, 1720, 1726, 1730
obscure,271, 641, 1079, 1090, 1323, 1683, 1899
occurencemax, 762
occurencemin, 762
occurrence, 762
ogcc, 1510
Older W. J.,1622, 1772
one succ,271
one factor, 1854
one machine, 912
ONE SUCC, 70, 440, 443, 448, 456, 459, 468, 568, 584, 604, 664, 669, 832, 836, 844, 867, 1500,

1568, 1589
onesucc,439, 442, 447, 451, 455, 458, 467, 567, 583, 587, 603, 663, 667, 830, 831, 835, 866,

1395, 1567, 1588, 1886
open automaton constraint,272, 1518, 1520
open constraint,273, 439, 479, 535, 546, 1349, 1379, 1499, 1503, 1506, 1508, 1511, 1515,

1518, 1520, 1679
open alldiff, 1498
open alldifferent, 15, 118, 151, 188, 193, 215, 227–229, 273, 314, 334, 439, 1128, 1498,

1511, 1515, 1675, 1679
open alldistinct, 1498
open among, 133, 188, 193, 203, 235, 273, 334, 479, 1106, 1128, 1502, 1506, 1508, 1511
open atleast, 132, 168, 188, 222, 273, 334, 535, 1128, 1503, 1506, 1508, 1511
open atmost, 132, 168, 188, 193, 273, 334, 546, 1128, 1503, 1506, 1508, 1511
open distinct, 1498
open gcc, 1510
open global cardinality, 129, 159, 189, 203, 227, 273, 334, 1037, 1041, 1128, 1499, 1502,

3056 INDEX

1503, 1506, 1508, 1510, 1515

open global cardinality low up, 129, 159, 189, 203, 227, 273, 334, 1036, 1042, 1128,
1499, 1511, 1514

open maximum, 116, 170, 172, 182, 260, 272–274, 291, 1349, 1518, 1520

open minimum, 90, 116, 170, 172, 182, 260, 272–274, 291, 1379, 1518, 1520, 1889, 1890

Oplobedu A.,99, 1034

opposite sign, 112, 154, 155, 177, 283, 1522, 1656

or, 114, 148, 154, 170, 172, 174, 180, 194, 216, 222, 235, 286, 291, 510, 539, 680, 1010, 1104,
1349, 1402, 1446, 1524, 1962

orchard, 54, 117, 150, 235, 236, 244, 286, 1528
ORDER, 65, 1333, 1336, 1350, 1353, 1362, 1366, 1380, 1384, 1393

order constraint,274, 475, 723, 727, 731, 735, 739, 858, 1132, 1137, 1143, 1149, 1155, 1169,
1173, 1267, 1273, 1277, 1281, 1293, 1300, 1305, 1312, 1317, 1332, 1335, 1349,
1352, 1361, 1365, 1379, 1383, 1386, 1387, 1392, 1425, 1518, 1520, 1533, 1537,
1542, 1545, 1600, 1667, 1815, 1816, 1820

ordered atleast npoint, 1532
ordered atleast npoints, 1532
ordered atleast nvector, 115, 203, 274, 328, 336, 543, 1281, 1305, 1311, 1485, 1532,

1533, 1537, 1545

ordered atleast nvectors, 1532
ordered atmost npoint, 1536
ordered atmost npoints, 1536
ordered atmost nvector, 115, 194, 203, 274, 328, 336, 557, 1281, 1305, 1311, 1485, 1533,

1536, 1537, 1545

ordered atmost nvectors, 1536
ordered gcc, 1540
ordered global cardinality, 116, 154, 159, 194, 274, 334, 789, 1036, 1042, 1137, 1540
ordered npoint, 1544
ordered npoints, 1544
ordered nvector, 115, 194, 203, 235, 274, 328, 336, 1143, 1149, 1281, 1305, 1311, 1485,

1533, 1537, 1544, 1545

ordered nvectors, 1544
ordgcc, 1540
Ortega J.,1208

orth link ori siz end, 110, 194, 209, 235, 275, 286, 877, 879, 1548, 1552, 1554, 1559,
1560, 1902, 1906, 1910, 1914

orth on the ground, 117, 236, 275, 1548, 1552, 1591, 1592

orth on top of orth, 128, 236, 252, 269, 275, 1548, 1554, 1591, 1592

orthotope,275, 431, 439, 820, 877, 883, 888, 914, 1549, 1552, 1555, 1559, 1591, 1903, 1907,
1911, 1915

orths are connected, 109, 190, 236, 269, 275, 331, 877, 1548, 1558, 1902, 1903

Ottosson G.,99, 103, 962, 966, 974

Ouellet P.,1400

overlap, 1562
overlap sboxes, 194, 236, 252, 288, 756, 771, 777, 903, 1008, 1166, 1356, 1442, 1562

INDEX 3057

overlapping alldifferent,275, 1213

P

Péridy L., 912
Pachet F.,632, 1466
packing almost squares,276, 877, 1022
Paige R.,5
pair,275, 651, 1459, 1896
pair atmost1, 550
pallet loading,276, 877, 1022
Pardalos P. M.,262
Parreno F.,277
part of system of constraints,88
partition,277, 467, 579, 629, 657, 718, 1124, 1125, 1236, 1251, 1407, 1653, 1748, 1763, 1812,

1933
Partridge,277, 877, 1022
PATH , 54, 427, 504, 634, 642, 652, 658, 850, 854, 859, 928, 1059, 1080, 1133, 1150, 1224,

1228, 1232, 1237, 1240, 1244, 1248, 1252, 1278, 1282, 1324, 1426, 1534, 1538,
1546, 1601, 1614, 1684, 1688, 1692, 1710, 1774, 1781, 1795, 1805, 1817, 1821

path,277, 583, 936, 1567, 1570, 1571, 1870
path, 89, 116, 187, 210, 235, 237, 238, 271, 277, 332, 582, 603, 663, 936, 1566, 1570, 1570,

1869, 1870, 1886
PATH 1 , 55, 524, 1680
PATH FROM TO, 66, 1294, 1301, 1306, 1313, 1572, 1789
path from to, 126, 189, 237, 250, 277, 936, 1128, 1318, 1567, 1570, 1870
PATH LENGTH, 75
PATH LENGTH(PATH LEN), 836
PATH N , 55, 1676
pattern, 36, 78, 120, 154, 170, 172, 174, 194, 291, 308, 331, 403, 633, 1079, 1574, 1687,

1800, 1804, 1812
pattern sequencing,278, 798
peak, 114, 170, 171, 194, 297, 307, 1100, 1101, 1161, 1432, 1433, 1437, 1578, 1941
Pearl J.,39, 239
Pearson J.,iii , iv, 292, 474, 1266, 1268, 1316, 1660, 1814
pentomino,279, 877, 1021, 1022, 1595
period, 123, 180, 194, 235, 279, 283, 286, 297, 301, 331, 1582, 1584–1587
period except 0, 123, 194, 235, 246, 279, 283, 287, 297, 301, 331, 534, 1583, 1584
period vectors, 124, 194, 235, 279, 283, 287, 297, 336, 1583, 1586
periodic,279, 1583, 1585, 1587
permutation,279, 439, 444, 567, 641, 663, 667, 759, 830, 866, 993, 1189, 1213, 1223, 1227,

1231, 1236, 1588, 1625, 1631, 1636, 1645, 1649, 1653, 1773, 1780, 1855
permutation, 108, 151, 215, 271, 314, 334, 444, 1588
permutation channel,280, 1190
Pesant G.,ii , iii , 5, 78, 100, 172, 174, 279, 430, 434, 502, 632, 1034, 1120, 1142, 1574, 1708,

1798, 1802, 1854
Petersen J.,434

3058 INDEX

Petit T.,ii , iii , 5, 78, 172, 305, 1142, 1154, 1540, 1726, 1730, 1734
Pfefferkorn C. E.,224
Phi-tree,280, 789, 914
phylogeny,282, 1788
pick-up delivery,282, 831
Pinson E.,912
Pinto C.,297
Pitrat J.,iii , 144, 252, 1034, 1036
place in pyramid, 101, 115, 236, 252, 269, 275, 877, 1548, 1552, 1554, 1555, 1590
placement problem,iv, 104, 160, 161, 185, 186, 241, 294, 326
placement space,224, 225, 242, 275, 276, 289, 326, 332
planarity test,282, 663
planning,273, 305
Poder E.,iii , 100, 186, 203, 242, 279, 317, 326, 786, 1018, 1024, 1268, 1582, 1584, 1734
polygon,282, 877
polyomino, 111, 236, 279, 322, 1594
positioning constraint,282, 883, 888, 1907, 1915
power, 123, 147, 155, 235, 283, 287, 330, 1016, 1598
precede, 1168, 1172
precedence, 110, 154, 209, 274, 914, 1132, 1168, 1172, 1600
PRED, 75, 840
predefined constraint,283, 420, 551, 601, 619, 690, 720, 752, 809, 920, 930, 932, 936, 939,

1000, 1002, 1004, 1016, 1021, 1027, 1030, 1032, 1073, 1098, 1116, 1118, 1128,
1130, 1155, 1262, 1264, 1267, 1317, 1326, 1398, 1401, 1410, 1412, 1522, 1583,
1585, 1587, 1598, 1616, 1656, 1659, 1672, 1736, 1815, 1827, 1838, 1840, 1843,
1850, 1859, 1896, 1955

pref alldifferent ctr, 100
pref alldifferent var, 100
pref global cardinality low up ctr, 100
pref global cardinality low up var, 100
preferences,284, 723, 727, 731, 735, 739
Preparata F. P.,324
problems,145, 431, 439, 543, 557, 663, 685, 744, 789, 798, 820, 825, 831, 839, 877, 914, 1022,

1055, 1175, 1213, 1395, 1469, 1477, 1486, 1491, 1631, 1636, 1840, 1845, 1874,
1960

PROD, 67, 1603
prod, 15
producer-consumer,284, 789, 820
PRODUCT , 55, 464, 496, 508, 528, 532, 591, 597, 622, 626, 630, 695, 701, 706, 710, 714,

719, 760, 768, 790, 799, 805, 815, 821, 900, 910, 942, 951, 960, 964, 968, 972, 976,
980, 988, 994, 998, 1056, 1108, 1112, 1122, 1126, 1158, 1181, 1186, 1200, 1320,
1388, 1419, 1426, 1455, 1474, 1620, 1626, 1632, 1637, 1642, 1646, 1650, 1654,
1700, 1740, 1744, 1749, 1752, 1756, 1760, 1764, 1768, 1774, 1781, 1795, 1832,
1846, 1862, 1866, 1881, 1920, 1926, 1930, 1934, 1938, 1961

PRODUCT (=), 519, 869, 1286, 1290, 1557, 1904, 1908, 1916, 1945
PRODUCT (CLIQUE ,LOOP ,=), 472
PRODUCT (PATH ,VOID), 1294, 1301, 1306, 1313
product,285, 804, 1602
PRODUCT (Comparison), 55
product ctr, 67, 123, 148, 155, 194, 285, 803, 805, 1602, 1608, 1835

INDEX 3059

program verification,285, 825
propagator group,176
proper forest, 116, 187, 189, 235, 237, 243, 265, 328, 332, 333, 1128, 1604, 1886
Prosser P.,1784
proximity constraint,285, 471, 923, 927
Prud’homme C.,iii
PSTricks,104
Puget J.-F.,99, 434, 1686, 1826
pure functional dependency,286, 420, 479, 486, 491, 499, 507, 510, 561, 571, 575, 579, 621,

625, 629, 633, 651, 657, 661, 672, 690, 705, 709, 713, 718, 783, 849, 853, 891,
920, 923, 927, 950, 959, 975, 987, 1000, 1002, 1010, 1013, 1016, 1037, 1049, 1055,
1067, 1104, 1189, 1195, 1323, 1329, 1335, 1339, 1345, 1349, 1352, 1365, 1369,
1375, 1379, 1383, 1392, 1403, 1407, 1415, 1429, 1447, 1459, 1463, 1468, 1473,
1486, 1494, 1496, 1525, 1529, 1549, 1583, 1585, 1587, 1598, 1616, 1672, 1675,
1679, 1709, 1773, 1793, 1845, 1899, 1962

puzzles,145, 439, 447, 749, 789, 831, 877, 950, 959, 1022, 1037, 1055, 1063, 1190, 1213, 1469,
1595, 1709

Q

quadtree,287, 809, 877
queen,seen-queen
Quesada L.,4
Quesada L. O.,iii , 934
Quimper C.-G.,5, 100, 181, 430, 434, 442, 502, 1034, 1040, 1208, 1268, 1400, 1466, 1690

R

Régin J.-C.,iii , 5, 78, 100, 173, 174, 273, 430, 434, 538, 620, 624, 684, 688, 1034, 1040, 1052,
1154, 1466, 1498, 1510, 1514, 1540, 1686, 1726, 1730, 1826, 1854, 1884

Rampon J.-X.,i
Randell D. A.,288, 754, 770, 776, 902, 1006, 1164, 1354, 1562
randomized filtering algorithm,210
RANGE, 67, 445, 1610
range,288, 1608
range, 14
range, 100, 1618
range consistency,154
range ctr, 68, 123, 155, 194, 222, 288, 1602, 1608, 1669, 1670, 1835
RANGE DRG, 65, 1891
RANGE NCC, 65, 568, 584, 588
RANGE NSCC, 65, 563, 572, 576, 580
rank,288, 1335, 1365
Rauhe T.,5
Razgon I.,1714, 1716, 1720, 1726, 1730

3060 INDEX

rcc8,288, 756, 771, 772, 777, 778, 903, 904, 1008, 1166, 1356, 1564
rectangle clique partition,289, 1486
Refalo P.,940
regret based heuristics,289, 950, 959, 1055, 1835
regret based heuristics in matrix problems,290, 1055, 1835
regular, 100, 250, 279, 636, 1712
reified automaton constraint,290, 510, 515, 518, 590, 677, 681, 723, 749, 858, 941, 950, 955,

959, 963, 967, 971, 979, 983, 1010, 1058, 1104, 1107, 1110, 1125, 1132, 1137,
1143, 1169, 1173, 1273, 1285, 1289, 1293, 1299, 1305, 1312, 1349, 1379, 1383,
1387, 1403, 1418, 1433, 1437, 1447, 1451, 1454, 1518, 1520, 1525, 1575, 1660,
1793, 1804, 1812, 1816, 1820, 1903, 1911, 1962

reified constraint,292, 1116
rel, 426, 434, 510, 514, 1030, 1098, 1104, 1262, 1292, 1298, 1304, 1310, 1326, 1410, 1524,

1962
related,88
related to a common problem,88
relation,293, 1121, 1861, 1865
relaxation,293, 451, 877, 1021, 1613, 1714, 1717, 1722, 1727, 1731, 1736, 1739, 1743, 1748,

1751, 1755, 1759, 1763, 1767, 1845, 1960
relaxation dimension,294, 877, 1022
relaxed sliding sum, 17, 136, 244, 293, 297, 308, 314, 1612, 1691, 1835
remainder, 123, 155, 177, 235, 283, 287, 1616
require at least, 13
required, 12
Resende M. G. C.,262
resetting the domain of a variable,305
resource constraint,295, 596, 601, 694, 700, 789, 797, 798, 803, 804, 814, 820, 843, 895, 914,

916, 918, 1180, 1185, 1736, 1880, 1893
resumable task,301
rgcc, 1035
Ribeiro C.,872
Richoux F.,iii
Richter Y.,1208
Rivest R. L.,782
Rivreau D.,310, 912
Roach J. A.,1902
Rochart G.,iii , 4, 434, 1798
Rochon du Verdier F.,872
Roditty L., 934
Rodŕıguez-Mart́ın I., 838, 1868
root concept,89
roots, 128, 189, 203, 209, 215, 243, 334, 479, 531, 535, 546, 705, 763, 941, 1036, 1058, 1128,

1318, 1618, 1619, 1855, 1937
Rousseau L.-M.,ii , 5, 100, 250, 502, 1034, 1884
Roussel O.,404
row and column lex, 1266
Roy B.,434
Roy P.,632, 1466
Rueher M.,5, 100, 1884

INDEX 3061

run of a permutation,296, 641

S

Sabharwal A.,502, 550
Sacĺe J.-F.,376
Sadek R.,279, 317, 326, 1018, 1024, 1268
Sadjad S. B.,1034
Sadler A. J.,99, 550
Sagiv Y.,1784
Saidy H. R. D.,304
same, 55, 63, 64, 71, 88, 106, 107, 119, 148–150, 154, 170, 171, 180, 184, 188, 210, 220, 227,

230, 231, 265, 279, 314, 329, 690, 759, 1036, 1223, 1224, 1288, 1622, 1625, 1630,
1631, 1634, 1635, 1640, 1641, 1644, 1645, 1648, 1649, 1652, 1653, 1751, 1773,
1919

same and gcc, 1630
same and global cardinality, 130, 159, 188, 194, 210, 220, 227, 265, 280, 334, 1036,

1212, 1213, 1624, 1625, 1630, 1635
same and global cardinality low up, 130, 154, 159, 180, 188, 194, 210, 220, 227, 232,

265, 280, 334, 1042, 1045, 1625, 1631, 1634
same end or disjunctive, 916
same end or non overlap, 916
same gcc, 1630
same intersection, 106, 119, 188, 189, 463, 705, 1473, 1625, 1640
same interval, 127, 148, 188, 245, 280, 314, 329, 1226–1228, 1625, 1644, 1738, 1739, 1925
same modulo, 127, 148, 188, 262, 280, 314, 329, 1230–1232, 1625, 1648, 1742, 1743, 1929
same partition, 129, 148, 188, 277, 280, 314, 329, 1124, 1234, 1235, 1237, 1625, 1652,

1746, 1747, 1933
same sign, 112, 154, 155, 177, 283, 930, 1000, 1522, 1656
same size, 13
same start or disjunctive, 918
same start or non overlap, 918
same with cardinalities, 1630
Samet H.,808, 872
Sandholm A.,5
Sanlaville E.,100, 186
Sanner A. M. W.,422, 868
Santaroni F.,321, 322, 1884
Saraswat V.,189
SAT, 296, 439, 480, 877
Saubion F.,1208
Sav́eant P.,100, 344
Savalle X.,iii
Sbihi M., 1018, 1276, 1280
scalar product,297, 1055
scalar product, 23, 124, 148, 155, 194, 218, 222, 283, 324, 1157, 1185, 1658, 1834, 1835
Schaus P.,iii , 100, 173, 174, 1778

3062 INDEX

scheduling,160, 182, 185, 186, 203, 273, 301
scheduling constraint,263, 301, 431, 619, 694, 700, 789, 798, 804, 814, 820, 895, 909, 914,

916, 918, 1401, 1583, 1585, 1669, 1736
scheduling with machine choice, calendars and preemption,619, 820, 877, 1021, 1022
Scheithauer G.,276
Schepers J.,297
Schiex T.,iii
Schimpf J.,99, 1658
Schmitz L.,269
Schulte C.,iii , 934
Schur number,306, 1840
Schutt A.,786
Schwarz U. M.,305
Schwenk A. J.,1898
Scott J.,786
Sedgewick R.,1328
SELF , 55, 445, 481, 487, 492, 500, 516, 536, 548, 695, 701, 764, 790, 799, 805, 815, 821, 857,

879, 892, 910, 1014, 1038, 1043, 1046, 1050, 1056, 1138, 1504, 1507, 1509, 1512,
1516, 1543, 1550, 1553, 1560, 1603, 1610, 1632, 1637, 1662, 1670, 1705, 1836,
1849, 1881

Sellmann M.,239, 1394
semantic links,84
seq bin, 633, 1143, 1709
sequence,297, 503, 523, 641, 835, 863, 1058, 1079, 1090, 1101, 1161, 1255, 1259, 1398, 1433,

1437, 1494, 1496, 1579, 1583, 1585, 1587, 1613, 1660, 1675, 1679, 1683, 1687,
1691, 1804, 1812, 1941

sequence, 502, 1690
sequence dependent set-up,298, 877, 914, 950, 959, 1870
sequence folding, 110, 170, 172, 177, 209, 236, 291, 297, 1660
sequencing with release times and deadlines,299, 789, 820, 877, 895, 914
set channel,299, 1199, 1319
set packing,300, 1213
set value precede, 125, 189, 194, 245, 274, 283, 328, 335, 1168, 1666
sgcc, 1630, 1864
Shamos M. I.,324
shared table,305, 987, 997
Shaw P.,594
Shearer J. B.,1062
Shen K.,99
shift, 126, 301, 330, 331, 1608, 1668, 1695
shift of concept,89
Shikaku,300, 877, 1022
Shmoys D. B.,1208
shortest path,258
Shufet J. A.,662
SICStus,2, 99, 99, 103, 243, 403, 873, 1121, 1189, 1779
sign, 50
sign, 1672
sign of, 112, 154, 155, 177, 235, 283, 287, 1030, 1672
signature

INDEX 3063

AUTOMATON

and, 510
change vectors, 660
clause and, 676
clause or, 680
cond lex cost, 722
cond lex greater, 726
cond lex greatereq, 730
cond lex less, 734
cond lex lesseq, 738
consecutive groups of ones, 748
deepest valley, 862
elem from to, 954
elementn, 982
equivalent, 1010
highest peak, 1100
imply, 1104
inflexion, 1160
int value precede, 1168
int value precede chain, 1172
ith pos different from 0, 1206
length first sequence, 1254
length last sequence, 1258
lex between, 1272
nand, 1402
no peak, 1432
no valley, 1436
nor, 1446
nvisible from end, 1494
nvisible from start, 1496
open maximum, 1518
open minimum, 1520
or, 1524
pattern, 1574
peak, 1578
stretch path partition, 1810
valley, 1940
xor, 1962

CC(NSINK,NSOURCE),PRODUCT

same intersection, 1640
CLIQUE

bipartite, 606
symmetric, 1852

CLIQUE , SUCC
sliding time window, 1694

DISTANCE,CLIQUE(6=)
distance between, 922

DISTANCE,PATH ; AUTOMATON
distance change, 926

LOGIC

3064 INDEX

contains sboxes, 754
coveredby sboxes, 770
covers sboxes, 776
disjoint sboxes, 902
equal sboxes, 1006
inside sboxes, 1164
meet sboxes, 1354
non overlap sboxes, 1440
overlap sboxes, 1562

MAX ID,MAX NSCC,NCC,CLIQUE

binary tree, 602
path, 1566

MAX ID,MAX NSCC,NCC,PATH FROM TO,CLIQUE

stable compatibility, 1784
MAX ID,MAX NSCC,RANGE NCC,CLIQUE

balance path, 582
MAX ID,MIN NSCC,CLIQUE

circuit, 662
MAX ID,NCC,NVERTEX,CLIQUE

temporal path, 1868
MAX ID,PRODUCT

cardinality atleast, 620
cardinality atmost, 624
cardinality atmost partition, 628

MAX ID,SUM,PRODUCT

weighted partial alldiff, 1958
MAX NCC,CIRCUIT ,LOOP , ∀

stretch circuit, 1798
MAX NCC,MIN NCC,NARC,NCC,PATH ; AUTOMATON

change continuity, 638
MAX NCC,MIN NCC,NCC,NVERTEX,PATH ,LOOP ;MAX NCC,MIN NCC,PATH ,LOOP ; AUTOMATON

group, 1076
MAX NCC,PATH ; AUTOMATON

longest change, 1322
MAX NCC,PATH ,LOOP , ∀; AUTOMATON

stretch path, 1802
MAX NCC,PRODUCT

alldifferent on intersection, 462
MAX NSCC,CLIQUE

soft all equal min var, 1720
MAX NSCC,CLIQUE

alldifferent, 434
alldifferent between sets, 442
alldifferent cst, 446
alldifferent except 0, 450
alldifferent interval, 454
alldifferent modulo, 458
alldifferent partition, 466
golomb, 1062
open alldifferent, 1498

INDEX 3065

permutation, 1588
soft all equal max var, 1714

MAX NSCC,CLIQUE

max nvalue, 1338
max size set of consecutive var, 1344

MAX NSCC,CLIQUE , ∀
k alldifferent, 1208

MAX NSCC,MIN NSCC,NSCC,NVERTEX,CHAIN ; AUTOMATON
group skip isolated item, 1088

MAX NSCC,NARC NO LOOP,PRODUCT (CLIQUE ,LOOP ,=)
alldifferent same value, 470

MAX NSCC,NCC,CLIQUE

tree, 1884
MAX NSCC,NCC,NVERTEX,CLIQUE ;NVERTEX,CLIQUE , ∀

tree resource, 1892
MAX NSCC,NCC,RANGE DRG,CLIQUE

tree range, 1888
MAX NSCC,NVERTEX,CLIQUE

cutset, 824
MAX NSCC,RANGE NCC,CLIQUE

balance tree, 586
MIN NSCC,CLIQUE

min nvalue, 1368
min size set of consecutive var, 1374
strongly connected, 1824

NARC,CIRCUIT ; AUTOMATON
circular change, 672

NARC,CLIQUE(<)
all min dist, 430
diffn column, 882
diffn include, 886
disjunctive, 912
disjunctive or same end, 916
disjunctive or same start, 918
k disjoint, 1218
lex alldifferent, 1268
some equal, 1770

NARC,CLIQUE(6=)
all differ from at least k pos, 422
all incomparable, 428
disj, 894
soft all equal min ctr, 1716

NARC,CLIQUE(<)
soft alldifferent ctr, 1726

NARC,CLIQUE

inverse, 1188
inverse offset, 1194
place in pyramid, 1590

NARC,CLIQUE(<)
allperm, 474

3066 INDEX

crossing, 782
graph crossing, 1066
orchard, 1528
two layer edge crossing, 1898

NARC,CLIQUE(6=)
symmetric alldifferent, 1854

NARC,CLIQUE(6=);MAX ID,MAX OD,MIN ID,MIN NSCC,MIN OD,CLIQUE (6=
)

tour, 1874
NARC,NVERTEX,CLIQUE(6=)

clique, 684
NARC,PATH

all equal, 426
among seq, 502
k same, 1222
k same interval, 1226
k same modulo, 1230
k same partition, 1234
k used by, 1238
k used by interval, 1242
k used by modulo, 1246
k used by partition, 1250
lex chain less, 1276
lex chain lesseq, 1280
precedence, 1600
sliding distribution, 1686
sliding sum, 1690

NARC,PATH
change partition, 656
relaxed sliding sum, 1612

NARC,PATH 1

size max starting seq alldifferent, 1678
NARC,PATH 1 ; AUTOMATON

arith sliding, 522
NARC,PATH N

size max seq alldifferent, 1674
NARC,PATH ; AUTOMATON

decreasing, 858
increasing, 1132
strictly decreasing, 1816
strictly increasing, 1820

NARC,PATH ; AUTOMATON
change, 632
change pair, 650
cyclic change, 848
cyclic change joker, 852
smooth, 1708

NARC,PATH ;NARC,PATH
increasing nvalue chain, 1148

NARC,PATH ;NARC,PRODUCT ; AUTOMATON

INDEX 3067

stage element, 1792
NARC,PATH ;NARC,PRODUCT , SUCC

next greater element, 1424
NARC,PATH ;NCC,PATH

ordered atleast nvector, 1532
NARC,PATH ;NCC,PATH

ordered atmost nvector, 1536
NARC,PATH ;NCC,PATH

ordered nvector, 1544
NARC,PRODUCT

in relation, 1120
NARC,PRODUCT

disjoint, 898
NARC,PRODUCT

correspondence, 758
element product, 974
elements, 986
inverse set, 1198
link set to booleans, 1318
roots, 1618
symmetric cardinality, 1860
symmetric gcc, 1864

NARC,PRODUCT (=)
orth on top of orth, 1554
two orth column, 1906
two orth include, 1914
vec eq tuple, 1944

NARC,PRODUCT (=); AUTOMATON
differ from at least k pos, 868
lex different, 1284

NARC,PRODUCT ; AUTOMATON
between min max, 590
element sparse, 978

NARC,PRODUCT ; AUTOMATON
not in, 1454

NARC,PRODUCT (=); AUTOMATON
arith or, 518
lex equal, 1288
two orth are in contact, 1902

NARC,PRODUCT ; AUTOMATON
among low up, 494
counts, 766
domain constraint, 940
elem, 946
element, 958
element greatereq, 962
element lesseq, 966
element matrix, 970
in, 1106
in interval, 1110

3068 INDEX

NARC,PRODUCT ;NARC,PATH
sort permutation, 1778

NARC,PRODUCT , SUCC; AUTOMATON
minimum greater than, 1386
next element, 1418

NARC,SELF
open atleast, 1506
orth link ori siz end, 1548

NARC,SELF
open atmost, 1508

NARC,SELF
discrepancy, 890
open among, 1502
orth on the ground, 1552

NARC,SELF ; AUTOMATON
arith, 514
atleast, 534

NARC,SELF ; AUTOMATON
atmost, 546

NARC,SELF ; AUTOMATON
among, 478
among diff 0, 486
among interval, 490
among modulo, 498
count, 762
exactly, 1012

NARC,SELF ;CLIQUE ,CC
shift, 1668

NARC,SELF ;CLIQUE , SUCC
sliding time window sum, 1702

NARC,SELF ;MAX NSCC,CLIQUE

dag, 856
NARC,SELF ;NARC,CLIQUE(6=)

diffn, 872
NARC,SELF ;NARC,CLIQUE(<); AUTOMATON

sequence folding, 1660
NARC,SELF ;NARC,PRODUCT

disjoint tasks, 908
NARC,SELF ;NCC,NVERTEX,CLIQUE(6=)

orths are connected, 1558
NARC,SELF ;PRODUCT , ∀, SUCC

coloured cumulatives, 698
cumulative with level of priority, 812
cumulatives, 818

NARC,SELF ;PRODUCT , SUCC
coloured cumulative, 692
cumulative, 786
cumulative convex, 794
cumulative product, 802
track, 1878

INDEX 3069

NARC,SYMMETRIC PRODUCT (=); AUTOMATON
two orth do not overlap, 1910

NCC,CLIQUE

k cut, 1216
NCC,CLIQUE

connected, 746
NCC,NTREE,CLIQUE

cycle, 828
NCC,NTREE,CLIQUE

map, 1328
NCC,NTREE,CLIQUE ;NVERTEX,CLIQUE ,PRED

cycle or accessibility, 838
NCC,NTREE,CLIQUE ,PATH LENGTH

cycle card on path, 834
NCC,NTREE,NVERTEX,CLIQUE ;NVERTEX,CLIQUE , ∀

cycle resource, 842
NCC,NVERTEX,CLIQUE(6=)

polyomino, 1594
proper forest, 1604

NCC,PATH ,LOOP ; AUTOMATON
global contiguity, 1058

NCC,PRODUCT

nvalue on intersection, 1472
NSCC,CLIQUE

atleast nvalue, 538
atleast nvector, 542
soft alldifferent var, 1730

NSCC,CLIQUE

atmost nvalue, 552
atmost nvector, 556

NSCC,CLIQUE

nclass, 1406
nequivalence, 1414
ninterval, 1428
npair, 1458
nset of consecutive values, 1462
nvalue, 1466
nvalues, 1476
nvalues except 0, 1480
nvector, 1484
nvectors, 1490

NSCC,CLIQUE ; AUTOMATON
not all equal, 1450

NSCC,CLIQUE ; AUTOMATON
increasing nvalue, 1142

NSCC,GRID([SIZE1, SIZE2, SIZE3])
connect points, 742

NSCC,NTREE,CLIQUE ,ALL VERTICES

circuit cluster, 666
NSINK NSOURCE,PRODUCT

3070 INDEX

soft same interval var, 1738
soft same modulo var, 1742
soft same partition var, 1746
soft same var, 1750
soft used by interval var, 1754
soft used by modulo var, 1758
soft used by partition var, 1762
soft used by var, 1766

NSINK,CC(NSINK,NSOURCE),PRODUCT

used by, 1918
used by interval, 1924
used by modulo, 1928
used by partition, 1932

NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT

same, 1622
same interval, 1644
same modulo, 1648
same partition, 1652

NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT ;NARC,PATH
sort, 1772

NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT ;NVERTEX,SELF , ∀
same and global cardinality, 1630
same and global cardinality low up, 1634

NSINK,NSOURCE,PRODUCT

common, 704
common interval, 708
common modulo, 712
common partition, 716

NSINK,NSOURCE,PRODUCT ; AUTOMATON
in same partition, 1124

NSINK,PRODUCT

uses, 1936
NSOURCE,PRODUCT

among var, 506
elements sparse, 996

NSOURCE,SUM,PRODUCT

sum of weights of distinct values, 1844
NTREE,CLIQUE

derangement, 866
NTREE,RANGE NCC,CLIQUE

balance cycle, 566
NTREE,SUM WEIGHT ARC,CLIQUE

minimum weight alldifferent, 1394
NVERTEX,PRODUCT

elements alldifferent, 990
NVERTEX,SELF , ∀

ordered global cardinality, 1540
NVERTEX,SELF , ∀

global cardinality, 1034
global cardinality low up, 1040

INDEX 3071

open global cardinality, 1510
open global cardinality low up, 1514

NVERTEX,SELF , ∀; AUTOMATON
increasing global cardinality, 1136

NVERTEX,SELF , ∀;NARC,SELF
global cardinality low up no loop, 1044
global cardinality no loop, 1048

NVERTEX,SELF , ∀;SUM WEIGHT ARC,PRODUCT

global cardinality with costs, 1052
ORDER,CLIQUE

max index, 1332
max n, 1334
maximum modulo, 1352
min index, 1360
min n, 1364
minimum modulo, 1392

ORDER,CLIQUE ; AUTOMATON
maximum, 1348
minimum, 1378
minimum except 0, 1382

PATH FROM TO,CLIQUE

path from to, 1570
PATH FROM TO,PRODUCT (PATH ,VOID); AUTOMATON

lex greater, 1292
lex greatereq, 1298
lex less, 1304
lex lesseq, 1310

PATH ,LOOP ,CC; AUTOMATON
sliding card skip0, 1682

PREDEFINED

abs value, 420
atmost1, 550
bin packing capa, 600
calendar, 610
colored matrix, 688
compare and count, 720
consecutive values, 752
cumulative two d, 808
distance, 920
divisible, 930
divisible or, 932
dom reachability, 934
domain, 938
eq, 1000
eq cst, 1002
eq set, 1004
gcd, 1016
geost, 1018
geost time, 1024
geq, 1030

3072 INDEX

geq cst, 1032
graph isomorphism, 1072
gt, 1098
in interval reified, 1114
in intervals, 1118
in set, 1128
incomparable, 1130
increasing sum, 1154
leq, 1262
leq cst, 1264
lex2, 1266
lex lesseq allperm, 1316
lt, 1326
multi global contiguity, 1398
multi inter distance, 1400
neq, 1410
neq cst, 1412
opposite sign, 1522
period, 1582
period except 0, 1584
period vectors, 1586
power, 1598
remainder, 1616
same sign, 1656
scalar product, 1658
set value precede, 1666
sign of, 1672
soft cumulative, 1734
strict lex2, 1814
subgraph isomorphism, 1826
sum cubes ctr, 1838
sum free, 1840
sum of increments, 1842
sum squares ctr, 1850
symmetric alldifferent except 0, 1858
twin, 1896
visible, 1946

PROD,SELF
product ctr, 1602

PRODUCT , ∀, SUCC
indexed sum, 1156

PRODUCT , SUCC
assign and counts, 526
assign and nvalues, 530
bin packing, 594
interval and count, 1178
interval and sum, 1184

RANGE NSCC,CLIQUE

balance, 560
balance interval, 570

INDEX 3073

balance modulo, 574
balance partition, 578

RANGE,SELF
alldifferent consecutive values, 444
range ctr, 1608

SUM WEIGHT ARC,PRODUCT

sliding time window from start, 1698
SUM,PRODUCT

sum, 1830
SUM,SELF

sum ctr, 1834
sum set, 1848

SYMMETRIC PRODUCT

inverse within range, 1202
similarity, 632
Simonis H.,iii , iv, 4, 99, 144, 243, 258, 276, 284, 309, 310, 317, 742, 812, 1208, 1264
Simons B. B.,430
size max seq alldifferent, 55, 72, 114, 151, 186, 215, 235, 244, 287, 297, 308, 344, 437,

439, 539, 1499, 1674, 1678, 1679
size max starting seq alldifferent, 55, 114, 151, 186, 215, 235, 244, 273, 287, 297,

308, 344, 437, 439, 539, 1499, 1675, 1678
size maximal sequence alldiff, 1674
size maximal sequence alldifferent, 1674
size maximal sequence alldistinct, 1674
size maximal starting sequence alldiff, 1678
size maximal starting sequence alldifferent, 1678
size maximal starting sequence alldistinct, 1678
ski assignment problem,435
Skiena S.,52
SLAM problem,306, 1486
Slaney J. K.,404
slice encoding,305
sliding cyclic(1) constraint network(1),306, 858, 1132, 1433, 1437, 1451, 1816, 1820
sliding cyclic(1) constraint network(2),307, 633, 641, 849, 853, 863, 1101, 1161, 1255, 1259,

1579, 1709, 1941
sliding cyclic(1) constraint network(3),307, 633, 641, 1323
sliding cyclic(2) constraint network(2),308, 651, 927
sliding sequence constraint,308, 503, 523, 835, 983, 1575, 1613, 1675, 1679, 1683, 1687, 1691,

1695, 1699, 1703, 1800, 1804, 1812
sliding atmost, 1400
sliding card skip0, 133, 151, 170, 171, 271, 297, 308, 331, 479, 495, 534, 1036, 1682
sliding distribution, 128, 194, 209, 244, 297, 308, 329, 503, 1040–1042, 1575, 1686,

1691, 1800, 1804
sliding sum, 54, 132, 180, 194, 209, 227, 244, 250, 297, 308, 324, 329, 1613, 1687, 1690,

1835
sliding time window, 126, 194, 308, 330, 1669, 1694, 1698, 1699, 1702, 1703
sliding time window from start, 132, 194, 214, 308, 330, 1695, 1696, 1698
sliding time window sum, 126, 194, 308, 324, 330, 331, 1695, 1702, 1835
Sloane N. J. A.,434, 828, 1884
smallest rectangle area,310, 878, 1022

3074 INDEX

smallest square for packing consecutive dominoes,309, 877, 1022
smallest square for packing rectangles with distinct sizes,312, 878, 1022
Smith B. M.,1062, 1784
Smith L. M.,422, 868
Smolka G.,99
smooth, 125, 144, 170, 171, 174, 175, 194, 235, 266–270, 287, 307, 331, 633, 920, 1708
Soffa M. L.,824
soft constraint,314, 1499, 1613, 1714, 1716, 1717, 1721, 1722, 1727, 1731, 1736, 1739, 1743,

1748, 1751, 1755, 1759, 1763, 1767, 1960
soft cumulative,1540
soft variant,89
soft all equal max ctr, 1726
soft all equal max var, 114, 154, 180, 293, 314, 334, 335, 426, 553, 1714, 1716, 1721,

1727, 1731
soft all equal min ctr, 114, 147, 180, 210, 293, 314, 334, 426, 553, 1714, 1716, 1721,

1727, 1731
soft all equal min var, 114, 154, 293, 314, 324, 334, 335, 426, 553, 1714, 1716, 1720,

1727, 1731
soft alldiff ctr, 1726
soft alldiff max ctr, 1716
soft alldiff max var, 552
soft alldiff min ctr, 1726
soft alldiff min var, 1730
soft alldiff var, 1730
soft alldifferent, 86
soft alldifferent ctr, 114, 144, 151, 210, 211, 215, 261, 293, 314, 334, 435, 439, 553,

1714, 1716, 1721, 1726, 1731
soft alldifferent max ctr, 1716
soft alldifferent max var, 552
soft alldifferent min ctr, 1726
soft alldifferent min var, 1730
soft alldifferent var, 89, 114, 151, 215, 220, 293, 314, 322, 334, 335, 435, 439, 553,

1468, 1714, 1716, 1721, 1727, 1730, 1960
soft alldistinct ctr, 1726
soft alldistinct max ctr, 1716
soft alldistinct max var, 552
soft alldistinct min ctr, 1726
soft alldistinct min var, 1730
soft alldistinct var, 1730
soft cumulative, 132, 283, 293, 295, 301, 314, 330, 789, 1734
soft gcc val, 100
soft gcc var, 100
soft regular, 100
soft same, 1750
soft same interval, 1738
soft same interval var, 133, 188, 245, 293, 314, 335, 1645, 1738, 1755
soft same modulo, 1742
soft same modulo var, 133, 188, 262, 293, 314, 335, 1649, 1742, 1759
soft same partition, 1746
soft same partition var, 134, 188, 277, 293, 314, 335, 1124, 1653, 1746, 1763

INDEX 3075

soft same var, 64, 127, 188, 261, 293, 314, 335, 1625, 1739, 1743, 1747, 1750, 1767
soft used by, 1766
soft used by interval, 1754
soft used by interval var, 133, 188, 245, 293, 314, 335, 1739, 1754, 1925
soft used by modulo, 1758
soft used by modulo var, 133, 188, 262, 293, 314, 335, 1743, 1758, 1929
soft used by partition, 1762
soft used by partition var, 134, 188, 277, 293, 314, 335, 1124, 1747, 1762, 1933
soft used by var, 127, 188, 293, 314, 335, 1751, 1766, 1919
Solnon C.,1072, 1826
some different, 435, 1208
some eq, 1770
some equal, 108, 222, 314, 334, 439, 1770
Somogyi Z.,404
Soriano P.,1854
Sorlin S.,1072, 1826
sort,314, 1773, 1780
sort, 70, 106, 107, 119, 180, 188, 199, 235, 280, 287, 314, 315, 344, 437, 439, 560, 1299, 1316,

1624, 1625, 1772, 1773, 1778, 1780
sort based reformulation,431, 439, 444, 447, 451, 454, 458, 467, 471, 475, 752, 866, 914, 1223,

1227, 1231, 1236, 1239, 1243, 1247, 1251, 1588, 1625, 1645, 1649, 1653, 1770,
1919, 1925, 1929, 1933

sort based reformulation ,314
sort permutation, 17, 129, 188, 214, 235, 280, 314, 437, 439, 758, 759, 959, 1132, 1284,

1773, 1778
sorted, 1772, 1778
sortedness, 1772, 1778
sorting, 1772, 1778
span,748, 1798, 1798, 1799, 1802, 1802, 1803, 1811, 1811
sparse functional dependency,315, 979, 997
sparse table,315, 979, 997
specialisation,89
sport timetabling,315, 1855, 1859
spread, 100, 173, 174, 320, 324
squared squares,315, 789, 877, 1022
Sriskandarajah C.,666
stable compatibility, 67, 111, 177, 237, 282, 332, 1784, 1886
Stadler P. F.,1660
stage elem, 1792
stage element, 121, 154, 170, 172, 177, 182, 208, 222, 235, 287, 291, 330, 950, 959, 1792
stage elt, 1792
statistics,320
Steel M.,1784
Steel M. A.,1784
Stergiou K.,1062
Stille W., 594
Stirling number of first kind,829
Strash D.,434
stretch, 345, 633, 1709, 1798, 1802, 1810

3076 INDEX

stretch circuit, 120, 154, 208, 218, 308, 331, 401, 1079, 1575, 1687, 1798, 1800, 1803,
1804

stretch path, 120, 154, 170, 172, 174, 187, 218, 291, 297, 308, 331, 401, 641, 1079, 1090,
1254, 1258, 1575, 1687, 1799, 1800, 1802, 1810, 1812

stretch path partition, 120, 154, 170, 172, 174, 187, 277, 291, 297, 309, 331, 1575, 1804,
1810

strict lex2, 109, 249, 256, 274, 283, 328, 329, 474, 1267, 1277, 1311, 1814
strictly decreasing, 108, 154, 170, 172, 194, 209, 274, 291, 306, 439, 858, 1132, 1816,

1820
strictly increasing, 108, 154, 170, 172, 194, 209, 274, 291, 306, 437, 439, 858, 1062,

1063, 1132, 1172, 1773, 1816, 1820
strip packing,320, 877, 1022
strong articulation point,321, 1886
strong bridge,321, 663, 831
strongly connected component,322, 539, 543, 553, 557, 567, 667, 744, 831, 839, 843, 1090,

1143, 1407, 1415, 1429, 1459, 1463, 1469, 1477, 1481, 1486, 1491, 1595, 1731,
1824

strongly connected, 110, 189, 237, 250, 322, 663, 746, 1128, 1318, 1824
Stuckey P. J.,5, 404, 502
Subbarayan S.,186
subgraph isomorphism, iii , 129, 189, 237, 283, 328, 1073, 1826
subset sum,323, 1960
SUCC, 75, 528, 532, 597, 695, 701, 790, 799, 805, 815, 821, 1158, 1181, 1186, 1388, 1419,

1426, 1696, 1705, 1881
Sudoku,323, 439, 1213
Sulanke T.,1172
SUM, 68, 1832, 1836, 1846, 1849, 1961
sum,324, 1155, 1659, 1691, 1703, 1831, 1835, 1838, 1843, 1848, 1850
sum, 14
sum, 133, 198, 208, 235, 250, 324, 959, 1128, 1830, 1834, 1835, 1848
sum ctr, 50, 68, 76, 77, 123, 144, 148, 155, 194, 222, 289, 290, 299, 324, 329, 523, 595, 597,

789, 790, 797, 799, 814, 815, 820, 821, 1054, 1154, 1155, 1157, 1158, 1179, 1180,
1185, 1186, 1254, 1258, 1602, 1608, 1613, 1614, 1659, 1691, 1692, 1703, 1705,
1831, 1834, 1838, 1848, 1850

sum cubes, 1838
sum cubes ctr, 123, 148, 155, 194, 195, 222, 283, 324, 1835, 1838, 1850
sum free, 108, 180, 189, 283, 306, 333, 1840
sum incr, 1842
sum increments, 1842
sum of cubes, 1838
sum of cubes ctr, 1838
sum of increments, 114, 180, 195, 214, 283, 324, 1842
sum of squares, 1850
sum of squares ctr, 1850
sum of weights of distinct values, 86, 127, 159, 202, 217, 224, 235, 287, 293, 337, 1055,

1395, 1468, 1844, 1960
sum pred, 1830, 1831
sum set, 131, 155, 177, 189, 324, 1128, 1831, 1835, 1848
sum squares, 1850
sum squares ctr, 123, 148, 155, 195, 222, 283, 324, 1835, 1838, 1850

INDEX 3077

sum weight, 1658, 1659
SUM WEIGHT ARC, 69, 1056, 1396, 1700
swc, 1630
swdv, 1844
sweep,324, 820, 877, 1021, 1027, 1029, 1722, 1955
Swinkels G. M.,1622, 1772
symm alldiff, 1854
symm alldiff except 0, 1858
symm alldifferent, 1854
symm alldifferent except 0, 1858
symm alldistinct, 1854
symm alldistinct except 0, 1858
SYMMETRIC, 70, 424, 429, 608, 686, 745, 747, 1204, 1606, 1853
symmetric,328, 423, 428, 607, 685, 744, 746, 1203, 1605, 1852
symmetric, 110, 189, 237, 328, 746, 1128, 1852
symmetric alldiff, 1854
symmetric alldiff except 0, 1858
symmetric alldifferent, 110, 151, 154, 184, 208, 215, 237, 238, 255, 280, 315, 331, 401,

439, 830, 1189, 1619, 1854, 1858, 1859
symmetric alldifferent except 0, 110, 246, 283, 315, 331, 1855, 1858
symmetric alldistinct, 1854
symmetric alldistinct except 0, 1858
symmetric cardinality, 122, 159, 189, 209, 227, 293, 331, 1036, 1128, 1318, 1860, 1865
symmetric gcc, 50, 122, 159, 189, 209, 227, 293, 331, 346, 1036, 1128, 1318, 1861, 1864
SYMMETRIC PRODUCT , 55, 1204
SYMMETRIC PRODUCT (=), 1912
SYMMETRIC PRODUCT (Comparison), 55
symmetry,146, 328, 475, 723, 727, 731, 735, 739, 1021, 1022, 1137, 1143, 1155, 1169, 1175,

1267, 1273, 1277, 1281, 1293, 1300, 1305, 1312, 1317, 1533, 1537, 1545, 1667,
1815, 1827

system of constraints,89, 329, 423, 428, 439, 475, 503, 690, 987, 997, 1037, 1213, 1219, 1223,
1227, 1231, 1235, 1236, 1239, 1243, 1247, 1251, 1267, 1269, 1273, 1277, 1281,
1687, 1691, 1815

Szczygiel T.,872
Szeredi P.,iii
Szymanek R.,iii , 872
Szymanski T.,1784

T

table,330, 950, 955, 959, 963, 967, 975, 979, 983, 987, 993, 997, 1206, 1418, 1425, 1793
table, 1120
Tack G.,iii , 404, 934
Taghavi-Fard M. T.,304
Tallys H. Yunes,1830
Tamarit J. M.,277
Tamassia R.,1898

3078 INDEX

Tarjan R. E.,430, 662
temporal constraint,330, 619, 694, 700, 789, 798, 804, 814, 820, 909, 1180, 1185, 1669, 1695,

1699, 1703, 1736, 1880
temporal path, 117, 144, 187, 235, 237, 238, 277, 298, 299, 1567, 1570, 1868
ternary constraint,330, 920, 971, 1016, 1598
Terno J.,276
Thiel A. J.,422, 868
Thiel S.,iii , 5, 186, 434, 872, 898, 1034, 1406, 1414, 1428, 1466, 1622, 1630, 1634, 1772, 1844,

1854, 1918, 1958
Thorsteinsson E. S.,962, 966, 974
time window,331, 1703
timetabling constraint,331, 633, 641, 651, 657, 672, 690, 820, 849, 853, 877, 1021, 1027, 1079,

1090, 1180, 1185, 1323, 1575, 1583, 1585, 1669, 1683, 1709, 1800, 1804, 1812,
1855, 1859, 1861, 1865, 1880

Tollis I. G., 1898
Tong C.,224
topological constraint,225
topological relation,288
topological sort,176, 375
Toth P.,594
touch,331, 1559, 1903
tour, 61, 62, 110, 189, 237, 239, 250, 333, 663, 830, 1128, 1318, 1874
Tourbier Y.,99, 1034
track, 117, 214, 295, 330, 331, 694, 1468, 1878
transitive closure,935, 936
tree,332, 583, 587, 603, 1567, 1605, 1788, 1886, 1890, 1893
tree, 61, 63, 83, 84, 86, 89, 116, 154, 187, 235–238, 271, 321, 332, 403, 586, 587, 602–

604, 830, 1044, 1045, 1048, 1049, 1067, 1329, 1330, 1567, 1604, 1605, 1788, 1884,
1888–1890, 1892, 1893

tree precedence, 1210–1212
tree range, 65, 88, 90, 126, 174, 187, 235, 237, 238, 332, 561, 939, 959, 1037, 1349, 1520,

1886, 1888
tree resource, 89, 121, 187, 214, 237, 238, 295, 332, 345, 959, 1037, 1886, 1892
Trick M. A., 218, 1854
Truchet C.,iii , 279, 317, 326, 1018, 1024, 1268, 1276, 1280
TRUE, 50
Trystram D.,305
tuple,332, 1121, 1944
Turán P.,376
twin, 110, 195, 275, 283, 959, 1896
two-dimensional orthogonal packing,332, 877, 1022
two cycle, 1854
two layer edge crossing, 134, 214, 235, 236, 252, 271, 287, 783, 1067, 1898
two orth are in contact, 122, 154, 170, 172, 174, 190, 236, 252, 269, 275, 291, 331, 1548,

1559, 1560, 1902, 1911
two orth column, 128, 236, 238, 252, 275, 282, 877, 883, 884, 888, 1548, 1906, 1915
two orth do not overlap, 52, 56, 90, 122, 154, 170, 172, 174, 178, 189, 236, 252, 266, 269,

275, 291, 877, 879, 1548, 1903, 1910

INDEX 3079

two orth include, 128, 236, 252, 275, 282, 877, 889, 1548, 1907, 1914

U

Ueda N.,253
Ullman J. D.,1784
Ullmann J. R.,1826
unary constraint,333, 1107, 1110, 1118, 1454, 1840
unavailability period,301
undirected graph,333, 1605, 1874
used in graph description,90
used in reformulation,90
used by, 106, 119, 148, 154, 170, 171, 180, 188, 195, 210, 222, 227, 230, 231, 244, 265, 314,

329, 1172, 1238–1240, 1623, 1625, 1766, 1767, 1918, 1924, 1925, 1928, 1929, 1932,
1933, 1937

used by interval, 127, 148, 188, 195, 222, 244, 245, 314, 329, 1242–1244, 1645, 1754, 1755,
1919, 1924

used by modulo, 127, 148, 188, 195, 222, 244, 262, 314, 329, 1246–1248, 1649, 1758, 1759,
1919, 1928

used by partition, 129, 148, 188, 195, 222, 244, 277, 314, 329, 1124, 1250–1252, 1653,
1762, 1763, 1919, 1932

uses, 106, 119, 147, 148, 178, 188, 195, 222, 244, 266, 705, 1619, 1919, 1936
uses in its reformulation,90

V

Valiant L. G.,434
Valiente G.,1826
valley, 114, 170, 171, 195, 298, 307, 862, 863, 1161, 1433, 1436, 1437, 1579, 1940
value constraint,333, 426, 431, 439, 444, 447, 451, 454, 458, 463, 467, 479, 480, 486, 491, 495,

499, 514, 515, 518, 535, 546, 547, 561, 571, 575, 579, 621, 625, 629, 752, 763, 767,
868, 891, 899, 939, 1013, 1036, 1037, 1042, 1045, 1049, 1107, 1111, 1116, 1118,
1124, 1125, 1128, 1137, 1213, 1219, 1255, 1259, 1319, 1339, 1345, 1369, 1375,
1401, 1451, 1454, 1463, 1499, 1503, 1506, 1508, 1511, 1515, 1542, 1588, 1619,
1631, 1636, 1714, 1717, 1722, 1727, 1731, 1770, 1944

value partitioning constraint,334, 539, 543, 553, 557, 1143, 1407, 1415, 1429, 1459, 1468,
1477, 1481, 1486, 1491

value precedence,335, 1169, 1175, 1667
value symmetry,seeindistinguishable values
value precede, 1168
value precede chain, 1172
values, 1466, 1467
van Beek P.,5, 434, 1034, 1798, 1802
van der Veen J.,297
van Dongen M. R. C.,404

3080 INDEX

van Emden M. H.,1622, 1772
Van Hentenryck P.,78, 99, 100, 189, 210, 317, 326, 404, 786, 958, 1034
van Hoeve W.-J.,iii , 5, 100, 273, 434, 502, 550, 890, 1034, 1498, 1510, 1514, 1622, 1726, 1750,

1884
van Lint J. H.,315
Van Roy P.,934
variable indexing,335, 950, 955, 959, 963, 967, 979, 1157
variable subscript,335, 950, 955, 959, 963, 967, 975, 1157
variable-based violation measure,335, 426, 439, 1625, 1645, 1649, 1653, 1714, 1722, 1731,

1739, 1743, 1748, 1751, 1755, 1759, 1763, 1767, 1919, 1925, 1929, 1933
vec eq tuple, 106, 119, 154, 195, 332, 334, 1121, 1122, 1288, 1944
vector,336, 423, 428, 475, 543, 557, 633, 661, 723, 727, 731, 735, 739, 868, 1130, 1269, 1273,

1277, 1281, 1284, 1285, 1288, 1289, 1293, 1299, 1305, 1311, 1312, 1317, 1468,
1485, 1486, 1491, 1533, 1537, 1545, 1583, 1587

Vellino A., 202, 434
Vempaty N. R.,ii
Vil ı́m P.,280, 281, 786, 912
visible, iv, 135, 209, 236, 283, 324, 877, 1021, 1027, 1442, 1946
Voß H.,104
VOID , 56
Voss S.,278, 794
vpartition,336, 1079

W

Wainwright R.,278
Wallace M. G.,99, 404, 406
Wallace R. J.,iii , 722, 726, 730, 734, 738
Walsh T.,iii , 78, 100, 181, 213, 376, 404, 434, 442, 474, 478, 502, 538, 552, 704, 1040, 1062,

1172, 1208, 1266, 1268, 1292, 1298, 1304, 1310, 1316, 1466, 1618, 1622, 1690,
1814, 1936

Wang C. C.,824
Weakley W.,216
Wei W., 1784
weighted assignment,337, 1055, 1395, 1845, 1960
weighted partial alldiff, 133, 151, 159, 202, 236, 246, 293, 314, 323, 337, 435, 439, 450,

534, 1055, 1395, 1731, 1845, 1958
weighted partial alldifferent, 1958
weighted partial alldistinct, 1958
weightedSum, 1658
Weihe K.,594
Williams H. P.,434
Wilson N.,722, 726, 730, 734, 738
Wilson R. M.,315
Wolf A., 786
workload covering,337, 820
Wormald N. C.,1784

INDEX 3081

wpa, 1958
Wright E. M.,946
Würtz J.,189

X

xeqy, 1000
xexpyeqz, 1598
xgteqy, 1030
xgty, 1098
xlteqy, 1262
xlty, 1326
XML schema,404
xor, 114, 154, 170, 172, 174, 180, 236, 287, 291, 510, 1010, 1104, 1402, 1446, 1524, 1962

Y

Yan H.,4, 434, 786
Yanasse H. H.,794
Yannakakis M.,175
Yannou B.,225
Yap R. H.C.,100

Z

Zampelli S.,iii , 1018, 1276, 1280, 1826
Zanarini A.,100, 434
zebra puzzle,337, 439, 950, 959, 1190
zero-duration task,342, 694, 700, 789, 804, 814, 820, 914, 916, 918
Zhou J.,1772, 1778
Zhou N.-F.,742
Zimmermann W.,4

	Preface
	Getting started
	Describing Global Constraints
	Describing the arguments of a global constraint
	Basic data types
	Compound data types
	Restrictions
	Declaring a global constraint
	Describing symmetries between arguments

	Describing global constraints in terms of graph properties
	Basic ideas and illustrative example
	Ingredients used for describing global constraints
	Graph constraint

	Describing global constraints in terms of automata
	Selecting an appropriate description
	Defining an automaton

	Reformulating global constraints as a conjunction
	Semantic links between global constraints
	Assignment dimension added
	Assignment dimension removed
	Attached to cost variant
	Common keyword
	Comparison swapped
	Cost variant
	Generalisation
	Hard version
	Implied by
	Implies
	Implies (if swap arguments)
	Implies (items to collection)
	Negation
	Part of system of constraints
	Related
	Related to a common problem
	Root concept
	Shift of concept
	Soft variant
	Specialisation
	System of constraints
	Used in graph description
	Used in reformulation
	Uses in its reformulation

	Description of the Catalogue
	Which global constraints are included?
	Which global constraints are missing?
	Searching in the catalogue
	How to see if a global constraint is in the catalogue?
	How to search for all global constraints sharing the same structure
	Searching all places where a global constraint is referenced
	Searching the mapping with a constraint of a concrete system

	Figures of the catalogue
	Constraints argument patterns
	Constraints with 1 argument
	Constraints with 2 arguments
	Constraints with 3 arguments
	Constraints with 4 arguments
	Constraints with 5 arguments
	Constraints with 6 arguments
	Constraints with 8 arguments
	Constraints with 10 arguments

	Meta-keywords attached to the keywords
	Application area
	Characteristic of a constraint
	Combinatorial object
	Complexity
	Constraint network structure
	Constraint type
	Constraint arguments
	Filtering
	Final graph structure
	Geometry
	Heuristics
	Miscellaneous
	Modelling
	Modelling exercises
	Problems
	Puzzles
	Symmetry

	Keywords attached to the global constraints
	3-dimensional-matching
	3-SAT
	Abstract interpretation
	Acyclic
	Aggregate
	Air traffic management
	Alignment
	All different
	Alpha-acyclic constraint network(2)
	Alpha-acyclic constraint network(3)
	Apartition
	Arc-consistency
	Arithmetic constraint
	Array constraint
	Assigning and scheduling tasks that run in parallel
	Assignment
	Assignment dimension
	Assignment to the same set of values
	At least
	At most
	Automaton
	Automaton with array of counters
	Automaton with counters
	Automaton without counters
	Autoref
	Balanced assignment
	Balanced tree
	Berge-acyclic constraint network
	Binary constraint
	Bioinformatics
	Bipartite
	Bipartite matching
	Bipartite matching in convex bipartite graphs
	Boolean channel
	Boolean constraint
	Border
	Bound-consistency
	Business rules
	Centered cyclic(1) constraint network(1)
	Centered cyclic(2) constraint network(1)
	Centered cyclic(3) constraint network(1)
	Channel routing
	Channelling constraint
	Circuit
	Circular sliding cyclic(1) constraint network(2)
	Cluster
	Coloured
	Compulsory part
	Conditional constraint
	Configuration problem
	Connected component
	Consecutive loops are connected
	Consecutive values
	Constraint between two collections of variables
	Constraint between three collections of variables
	Constraint involving set variables
	Constraint on the intersection
	Constructive disjunction
	Contact
	Contractible
	Convex
	Convex bipartite graph
	Convex hull relaxation
	Conway packing problem
	Core
	Costas arrays
	Cost filtering constraint
	Cost matrix
	Counting constraint
	Cumulative longest hole problems
	Cycle
	Cyclic
	Data constraint
	Deadlock breaking
	Decomposition
	Decomposition-based violation measure
	DFS-bottleneck
	Demand profile
	Degree of diversity of a set of solutions
	Derived collection
	Difference
	Difference between pairs of variables
	Directed acyclic graph
	Disequality
	Disjunction
	Domain channel
	Domain definition
	Dominating queens
	Domination
	Dual model
	Duplicated variables
	Dynamic programming
	Empty intersection
	Entailment
	Equality
	Equality between multisets
	Equivalence
	Euler knight
	Excluded
	Extensible
	Extension
	Facilities location problem
	Floor planning problem
	Flow
	Frequency allocation problem
	Functional dependency
	Geometrical constraint
	Golomb ruler
	Graph colouring
	Graph constraint
	Graph partitioning constraint
	Guillotine cut
	Hall interval
	Hamiltonian
	Heuristics
	Heuristics and Berge-acyclic constraint network
	Heuristics and lexicographical ordering
	Heuristics for two-dimensional rectangle placement problems
	Hungarian method for the assignment problem
	Hybrid-consistency
	Hypergraph
	Included
	Inclusion
	Incompatible pairs of values
	Indistinguishable values
	Interval
	Joker value
	Klee's measure problem
	Labelling by increasing cost
	Latin square
	Lexicographic order
	Limited discrepancy search
	Linear programming
	Line-segments intersection
	Logic
	Logigraphe
	Magic hexagon
	Magic series
	Magic square
	Matching
	Matrix
	Matrix model
	Matrix symmetry
	Maximum
	Maximum clique
	Maximum number of occurrences
	maxint
	Metro
	Minimum
	Minimum cost flow
	Minimum feedback vertex set
	Minimum hitting set cardinality
	Minimum number of occurrences
	Modulo
	Multi-site employee scheduling with calendar constraints
	Multiset
	Multiset ordering
	No cycle
	No loop
	n-Amazon
	n-queen
	Non-deterministic automaton
	Non-overlapping
	Number of changes
	Number of distinct equivalence classes
	Number of distinct values
	Obscure
	One succ
	Open automaton constraint
	Open constraint
	Order constraint
	Orthotope
	Overlapping alldifferent
	Pair
	Packing almost squares
	Pallet loading
	Partition
	Path
	Partridge
	Pattern sequencing
	Pentomino
	Periodic
	Permutation
	Permutation channel
	Phi-tree
	Phylogeny
	Pick-up delivery
	Planarity test
	Polygon
	Positioning constraint
	Predefined constraint
	Preferences
	Producer-consumer
	Product
	Program verification
	Proximity constraint
	Pure functional dependency
	Quadtree
	Range
	Rank
	RCC8
	Rectangle clique partition
	Regret based heuristics
	Regret based heuristics in matrix problems
	Reified automaton constraint
	Reified constraint
	Relation
	Relaxation
	Relaxation dimension
	Resource constraint
	Run of a permutation
	SAT
	Scalar product
	Sequence
	Sequence dependent set-up
	Sequencing with release times and deadlines
	Set channel
	Set packing
	Shikaku
	Scheduling constraint
	Scheduling with machine choice, calendars and preemption
	Shared table
	Schur number
	SLAM problem
	Sliding cyclic(1) constraint network(1)
	Sliding cyclic(1) constraint network(2)
	Sliding cyclic(1) constraint network(3)
	Sliding cyclic(2) constraint network(2)
	Sliding sequence constraint
	Smallest square for packing consecutive dominoes
	Smallest rectangle area
	Smallest square for packing rectangles with distinct sizes
	Soft constraint
	Sort
	Sort based reformulation
	Sparse functional dependency
	Sparse table
	Sport timetabling
	Squared squares
	Statistics
	Strip packing
	Strong articulation point
	Strong bridge
	Strongly connected component
	Subset sum
	Sudoku
	Sum
	Sweep
	Symmetric
	Symmetry
	System of constraints
	Table
	Temporal constraint
	Ternary constraint
	Timetabling constraint
	Time window
	Touch
	Tree
	Tuple
	Two-dimensional orthogonal packing
	Unary constraint
	Undirected graph
	Value constraint
	Value partitioning constraint
	Value precedence
	Variable-based violation measure
	Variable indexing
	Variable subscript
	Vector
	Vpartition
	Weighted assignment
	Workload covering
	Zebra puzzle
	Zero-duration task

	Further Topics
	Differences from the 2000 report
	Differences from the 2005 report
	Graph invariants
	Graph classes
	Format of an invariant
	Using the database of invariants
	The database of graph invariants

	The electronic version of the catalogue
	Prolog facts describing a constraint
	XML schema associated with a global constraint

	Global Constraint Catalogue
	abs_value
	all_differ_from_at_least_k_pos
	all_equal
	all_incomparable
	all_min_dist
	alldifferent
	alldifferent_between_sets
	alldifferent_consecutive_values
	alldifferent_cst
	alldifferent_except_0
	alldifferent_interval
	alldifferent_modulo
	alldifferent_on_intersection
	alldifferent_partition
	alldifferent_same_value
	allperm
	among
	among_diff_0
	among_interval
	among_low_up
	among_modulo
	among_seq
	among_var
	and
	arith
	arith_or
	arith_sliding
	assign_and_counts
	assign_and_nvalues
	atleast
	atleast_nvalue
	atleast_nvector
	atmost
	atmost1
	atmost_nvalue
	atmost_nvector
	balance
	balance_cycle
	balance_interval
	balance_modulo
	balance_partition
	balance_path
	balance_tree
	between_min_max
	bin_packing
	bin_packing_capa
	binary_tree
	bipartite
	calendar
	cardinality_atleast
	cardinality_atmost
	cardinality_atmost_partition
	change
	change_continuity
	change_pair
	change_partition
	change_vectors
	circuit
	circuit_cluster
	circular_change
	clause_and
	clause_or
	clique
	colored_matrix
	coloured_cumulative
	coloured_cumulatives
	common
	common_interval
	common_modulo
	common_partition
	compare_and_count
	cond_lex_cost
	cond_lex_greater
	cond_lex_greatereq
	cond_lex_less
	cond_lex_lesseq
	connect_points
	connected
	consecutive_groups_of_ones
	consecutive_values
	contains_sboxes
	correspondence
	count
	counts
	coveredby_sboxes
	covers_sboxes
	crossing
	cumulative
	cumulative_convex
	cumulative_product
	cumulative_two_d
	cumulative_with_level_of_priority
	cumulatives
	cutset
	cycle
	cycle_card_on_path
	cycle_or_accessibility
	cycle_resource
	cyclic_change
	cyclic_change_joker
	dag
	decreasing
	deepest_valley
	derangement
	differ_from_at_least_k_pos
	diffn
	diffn_column
	diffn_include
	discrepancy
	disj
	disjoint
	disjoint_sboxes
	disjoint_tasks
	disjunctive
	disjunctive_or_same_end
	disjunctive_or_same_start
	distance
	distance_between
	distance_change
	divisible
	divisible_or
	dom_reachability
	domain
	domain_constraint
	elem
	elem_from_to
	element
	element_greatereq
	element_lesseq
	element_matrix
	element_product
	element_sparse
	elementn
	elements
	elements_alldifferent
	elements_sparse
	eq
	eq_cst
	eq_set
	equal_sboxes
	equivalent
	exactly
	gcd
	geost
	geost_time
	geq
	geq_cst
	global_cardinality
	global_cardinality_low_up
	global_cardinality_low_up_no_loop
	global_cardinality_no_loop
	global_cardinality_with_costs
	global_contiguity
	golomb
	graph_crossing
	graph_isomorphism
	group
	group_skip_isolated_item
	gt
	highest_peak
	imply
	in
	in_interval
	in_interval_reified
	in_intervals
	in_relation
	in_same_partition
	in_set
	incomparable
	increasing
	increasing_global_cardinality
	increasing_nvalue
	increasing_nvalue_chain
	increasing_sum
	indexed_sum
	inflexion
	inside_sboxes
	int_value_precede
	int_value_precede_chain
	interval_and_count
	interval_and_sum
	inverse
	inverse_offset
	inverse_set
	inverse_within_range
	ith_pos_different_from_0
	k_alldifferent
	k_cut
	k_disjoint
	k_same
	k_same_interval
	k_same_modulo
	k_same_partition
	k_used_by
	k_used_by_interval
	k_used_by_modulo
	k_used_by_partition
	length_first_sequence
	length_last_sequence
	leq
	leq_cst
	lex2
	lex_alldifferent
	lex_between
	lex_chain_less
	lex_chain_lesseq
	lex_different
	lex_equal
	lex_greater
	lex_greatereq
	lex_less
	lex_lesseq
	lex_lesseq_allperm
	link_set_to_booleans
	longest_change
	lt
	map
	max_index
	max_n
	max_nvalue
	max_size_set_of_consecutive_var
	maximum
	maximum_modulo
	meet_sboxes
	min_index
	min_n
	min_nvalue
	min_size_set_of_consecutive_var
	minimum
	minimum_except_0
	minimum_greater_than
	minimum_modulo
	minimum_weight_alldifferent
	multi_global_contiguity
	multi_inter_distance
	nand
	nclass
	neq
	neq_cst
	nequivalence
	next_element
	next_greater_element
	ninterval
	no_peak
	no_valley
	non_overlap_sboxes
	nor
	not_all_equal
	not_in
	npair
	nset_of_consecutive_values
	nvalue
	nvalue_on_intersection
	nvalues
	nvalues_except_0
	nvector
	nvectors
	nvisible_from_end
	nvisible_from_start
	open_alldifferent
	open_among
	open_atleast
	open_atmost
	open_global_cardinality
	open_global_cardinality_low_up
	open_maximum
	open_minimum
	opposite_sign
	or
	orchard
	ordered_atleast_nvector
	ordered_atmost_nvector
	ordered_global_cardinality
	ordered_nvector
	orth_link_ori_siz_end
	orth_on_the_ground
	orth_on_top_of_orth
	orths_are_connected
	overlap_sboxes
	path
	path_from_to
	pattern
	peak
	period
	period_except_0
	period_vectors
	permutation
	place_in_pyramid
	polyomino
	power
	precedence
	product_ctr
	proper_forest
	range_ctr
	relaxed_sliding_sum
	remainder
	roots
	same
	same_and_global_cardinality
	same_and_global_cardinality_low_up
	same_intersection
	same_interval
	same_modulo
	same_partition
	same_sign
	scalar_product
	sequence_folding
	set_value_precede
	shift
	sign_of
	size_max_seq_alldifferent
	size_max_starting_seq_alldifferent
	sliding_card_skip0
	sliding_distribution
	sliding_sum
	sliding_time_window
	sliding_time_window_from_start
	sliding_time_window_sum
	smooth
	soft_all_equal_max_var
	soft_all_equal_min_ctr
	soft_all_equal_min_var
	soft_alldifferent_ctr
	soft_alldifferent_var
	soft_cumulative
	soft_same_interval_var
	soft_same_modulo_var
	soft_same_partition_var
	soft_same_var
	soft_used_by_interval_var
	soft_used_by_modulo_var
	soft_used_by_partition_var
	soft_used_by_var
	some_equal
	sort
	sort_permutation
	stable_compatibility
	stage_element
	stretch_circuit
	stretch_path
	stretch_path_partition
	strict_lex2
	strictly_decreasing
	strictly_increasing
	strongly_connected
	subgraph_isomorphism
	sum
	sum_ctr
	sum_cubes_ctr
	sum_free
	sum_of_increments
	sum_of_weights_of_distinct_values
	sum_set
	sum_squares_ctr
	symmetric
	symmetric_alldifferent
	symmetric_alldifferent_except_0
	symmetric_cardinality
	symmetric_gcc
	temporal_path
	tour
	track
	tree
	tree_range
	tree_resource
	twin
	two_layer_edge_crossing
	two_orth_are_in_contact
	two_orth_column
	two_orth_do_not_overlap
	two_orth_include
	used_by
	used_by_interval
	used_by_modulo
	used_by_partition
	uses
	valley
	vec_eq_tuple
	visible
	weighted_partial_alldiff
	xor

	Legend for the Description
	Electronic Constraint Catalogue
	abs_value
	all_differ_from_at_least_k_pos
	all_equal
	all_incomparable
	all_min_dist
	alldifferent
	alldifferent_between_sets
	alldifferent_consecutive_values
	alldifferent_cst
	alldifferent_except_0
	alldifferent_interval
	alldifferent_modulo
	alldifferent_on_intersection
	alldifferent_partition
	alldifferent_same_value
	allperm
	among
	among_diff_0
	among_interval
	among_low_up
	among_modulo
	among_seq
	among_var
	and
	arith
	arith_or
	arith_sliding
	assign_and_counts
	assign_and_nvalues
	atleast
	atleast_nvalue
	atleast_nvector
	atmost
	atmost1
	atmost_nvalue
	atmost_nvector
	balance
	balance_cycle
	balance_interval
	balance_modulo
	balance_partition
	balance_path
	balance_tree
	between_min_max
	bin_packing
	bin_packing_capa
	binary_tree
	bipartite
	calendar
	cardinality_atleast
	cardinality_atmost
	cardinality_atmost_partition
	change
	change_continuity
	change_pair
	change_partition
	change_vectors
	circuit
	circuit_cluster
	circular_change
	clause_and
	clause_or
	clique
	colored_matrix
	coloured_cumulative
	coloured_cumulatives
	common
	common_interval
	common_modulo
	common_partition
	compare_and_count
	cond_lex_cost
	cond_lex_greater
	cond_lex_greatereq
	cond_lex_less
	cond_lex_lesseq
	connect_points
	connected
	consecutive_groups_of_ones
	consecutive_values
	contains_sboxes
	correspondence
	count
	counts
	coveredby_sboxes
	covers_sboxes
	crossing
	cumulative
	cumulative_convex
	cumulative_product
	cumulative_two_d
	cumulative_with_level_of_priority
	cumulatives
	cutset
	cycle
	cycle_card_on_path
	cycle_or_accessibility
	cycle_resource
	cyclic_change
	cyclic_change_joker
	dag
	decreasing
	deepest_valley
	derangement
	differ_from_at_least_k_pos
	diffn
	diffn_column
	diffn_include
	discrepancy
	disj
	disjoint
	disjoint_sboxes
	disjoint_tasks
	disjunctive
	disjunctive_or_same_end
	disjunctive_or_same_start
	distance
	distance_between
	distance_change
	divisible
	divisible_or
	dom_reachability
	domain
	domain_constraint
	elem
	elem_from_to
	element
	element_greatereq
	element_lesseq
	element_matrix
	element_product
	element_sparse
	elementn
	elements
	elements_alldifferent
	elements_sparse
	eq
	eq_cst
	eq_set
	equal_sboxes
	equivalent
	exactly
	gcd
	geost
	geost_time
	geq
	geq_cst
	global_cardinality
	global_cardinality_low_up
	global_cardinality_low_up_no_loop
	global_cardinality_no_loop
	global_cardinality_with_costs
	global_contiguity
	golomb
	graph_crossing
	graph_isomorphism
	group
	group_skip_isolated_item
	gt
	highest_peak
	imply
	in
	in_interval
	in_interval_reified
	in_intervals
	in_relation
	in_same_partition
	in_set
	incomparable
	increasing
	increasing_global_cardinality
	increasing_nvalue
	increasing_nvalue_chain
	increasing_sum
	indexed_sum
	inflexion
	inside_sboxes
	int_value_precede
	int_value_precede_chain
	interval_and_count
	interval_and_sum
	inverse
	inverse_offset
	inverse_set
	inverse_within_range
	ith_pos_different_from_0
	k_alldifferent
	k_cut
	k_disjoint
	k_same
	k_same_interval
	k_same_modulo
	k_same_partition
	k_used_by
	k_used_by_interval
	k_used_by_modulo
	k_used_by_partition
	length_first_sequence
	length_last_sequence
	leq
	leq_cst
	lex2
	lex_alldifferent
	lex_between
	lex_chain_less
	lex_chain_lesseq
	lex_different
	lex_equal
	lex_greater
	lex_greatereq
	lex_less
	lex_lesseq
	lex_lesseq_allperm
	link_set_to_booleans
	longest_change
	lt
	map
	max_index
	max_n
	max_nvalue
	max_size_set_of_consecutive_var
	maximum
	maximum_modulo
	meet_sboxes
	min_index
	min_n
	min_nvalue
	min_size_set_of_consecutive_var
	minimum
	minimum_except_0
	minimum_greater_than
	minimum_modulo
	minimum_weight_alldifferent
	multi_global_contiguity
	multi_inter_distance
	nand
	nclass
	neq
	neq_cst
	nequivalence
	next_element
	next_greater_element
	ninterval
	no_peak
	no_valley
	non_overlap_sboxes
	nor
	not_all_equal
	not_in
	npair
	nset_of_consecutive_values
	nvalue
	nvalue_on_intersection
	nvalues
	nvalues_except_0
	nvector
	nvectors
	nvisible_from_end
	nvisible_from_start
	open_alldifferent
	open_among
	open_atleast
	open_atmost
	open_global_cardinality
	open_global_cardinality_low_up
	open_maximum
	open_minimum
	opposite_sign
	or
	orchard
	ordered_atleast_nvector
	ordered_atmost_nvector
	ordered_global_cardinality
	ordered_nvector
	orth_link_ori_siz_end
	orth_on_the_ground
	orth_on_top_of_orth
	orths_are_connected
	overlap_sboxes
	path
	path_from_to
	pattern
	peak
	period
	period_except_0
	period_vectors
	permutation
	place_in_pyramid
	polyomino
	power
	precedence
	product_ctr
	proper_forest
	range_ctr
	relaxed_sliding_sum
	remainder
	roots
	same
	same_and_global_cardinality
	same_and_global_cardinality_low_up
	same_intersection
	same_interval
	same_modulo
	same_partition
	same_sign
	scalar_product
	sequence_folding
	set_value_precede
	shift
	sign_of
	size_max_seq_alldifferent
	size_max_starting_seq_alldifferent
	sliding_card_skip0
	sliding_distribution
	sliding_sum
	sliding_time_window
	sliding_time_window_from_start
	sliding_time_window_sum
	smooth
	soft_all_equal_max_var
	soft_all_equal_min_ctr
	soft_all_equal_min_var
	soft_alldifferent_ctr
	soft_alldifferent_var
	soft_cumulative
	soft_same_interval_var
	soft_same_modulo_var
	soft_same_partition_var
	soft_same_var
	soft_used_by_interval_var
	soft_used_by_modulo_var
	soft_used_by_partition_var
	soft_used_by_var
	some_equal
	sort
	sort_permutation
	stable_compatibility
	stage_element
	stretch_circuit
	stretch_path
	stretch_path_partition
	strict_lex2
	strictly_decreasing
	strictly_increasing
	strongly_connected
	subgraph_isomorphism
	sum
	sum_ctr
	sum_cubes_ctr
	sum_free
	sum_of_increments
	sum_of_weights_of_distinct_values
	sum_set
	sum_squares_ctr
	symmetric
	symmetric_alldifferent
	symmetric_alldifferent_except_0
	symmetric_cardinality
	symmetric_gcc
	temporal_path
	tour
	track
	tree
	tree_range
	tree_resource
	twin
	two_layer_edge_crossing
	two_orth_are_in_contact
	two_orth_column
	two_orth_do_not_overlap
	two_orth_include
	used_by
	used_by_interval
	used_by_modulo
	used_by_partition
	uses
	valley
	vec_eq_tuple
	visible
	weighted_partial_alldiff
	xor
	Utilities

	Systems Correspondence Tables
	From the Catalog to Choco
	From the Catalog to Gecode
	From the Catalog to JaCoP
	From the Catalog to MiniZinc
	From the Catalog to SICStus
	From Choco to the Catalog
	From Gecode to the Catalog
	From JaCoP to the Catalog
	From MiniZinc to the Catalog
	From SICStus to the Catalog

	Bibliography
	Index
	1...
	A-B
	C-D
	E-F
	G-H
	I-J
	K-L
	M-N
	O-P
	Q-R
	S-T
	U-V
	W-X
	Y-Z

