
1

Loupe: Verifying Publish-Subscribe Architectures
with a Magnifying Lens

Luciano Baresi, Carlo Ghezzi, and Luca Mottola

Abstract— The Publish-Subscribe (P/S) communication para-
digm fosters high decoupling among distributed components.
This facilitates the design of dynamic applications, but also
impacts negatively on their verification, making it difficult to
reason on the overall federation of components. In addition,
existing P/S infrastructures offer radically different features
to the applications, e.g., in terms of message reliability. This
further complicates the verification, as its outcome depends on
the specific guarantees provided by the underlying P/S system.
Although model checking has been proposed as a tool for the
verification of P/S architectures, existing solutions overlook many
characteristics of the underlying communication infrastructure
to avoid state explosion problems.

To overcome these limitations, the Loupe domain-specific
model checker adopts a different approach. The P/S infrastruc-
ture is not modeled on top of a general-purpose model checker.
Instead, it is embedded within the checking engine, and the
traditional P/S operations become part of the modeling language.
In this article, we describe Loupe’s design and the dedicated state
abstractions that enable accurate verification without incurring
in state explosion problems. We also illustrate our use of state-of-
the-art software verification tools to assess some key functionality
in Loupe’s current implementation. A complete case study shows
how Loupe eases the verification of P/S architectures. Finally, we
quantitatively compare Loupe’s performance against alternative
approaches. The results indicate that Loupe is effective and
efficient in enabling accurate verification of P/S architectures.

Index Terms— Publish-Subscribe, verification, model-checking.

I. INTRODUCTION

The Publish-Subscribe (P/S) communication paradigm [27] is
currently used as a foundation to build sophisticated software
systems for diverse application domains, from the business con-
text [56], [59], [61] to pervasive and embedded environments [40],
[46]. P/S provides a form of asynchronous, implicit, and multi-
point communication, which supports applications designed in
terms of loosely coupled components. Interactions among com-
ponents are not carved in stone. Rather, they may change over
time, for instance, as the context changes [19].

Problem. The ability to decouple application components is an
asset during the design and implementation phases. However,
it becomes a major hindrance to the verification of the system
behavior. Developers can easily check whether each individual
component matches its specification, but reasoning on the overall
federation of components is often difficult, as loose coupling
allows components to dynamically change their interactions with

The authors are with the Dipartimento di Elettronica e Informazione,
Politecnico di Milano, P.zza L. da Vinci, 32, 20133 Milano, Italy. E-
mail: {baresi,ghezzi}@elet.polimi.it. Luca Mottola is also with
the Swedish Insitute of Computer Science, Isafjordsgatan 22, 16440 Kista,
Stockholm Sweden. E-mail: luca@sics.se.

the others. In addition, the federation itself may change, as
components are free to join and leave the system at any time.

Moreover, although the abstractions and APIs offered by exist-
ing P/S systems are very similar, the underlying implementations
differ in features and characteristics. For instance, P/S systems for
mobile environments rarely offer reliable message delivery [13].
Conversely, this feature is almost always provided by P/S systems
for enterprise environments, possibly using different message
delivery policies [52]. The different guarantees characterizing
the operation of P/S systems deeply affect how the application
behaves. As a result, the verification is further complicated, as
its outcome depends on the guarantees offered by the underlying
P/S infrastructure.

Verification of P/S architectures has been tackled using model
checking. This approach has already been applied to real-world
cases [28], [29], providing an early assessment of the effectiveness
of these techniques. In these approaches, both the application
components and the P/S infrastructure are modeled using the
model checker’s input language. However, this is often ineffective
because of state explosion problems. In addition, current mod-
eling languages are mostly domain-agnostic, being designed as
general purpose solutions. This makes it difficult for developers
to describe the intended application behavior in terms of P/S
operations.

Loupe. The above issues require a major change of perspective.
We tackle this challenge with Loupe, a domain-specific model
checker. In Loupe, we embed the P/S paradigm within the check-
ing engine of the Bogor model checker [54], by extending BIR
(Bogor’s input language) with P/S primitives and by modeling
their semantics inside the tool. Loupe is publicly available [49].

Our approach allows the checking engine to obtain full control
of the state space generation. Domain-specific abstractions are
implemented to drastically reduce the number of states generated
during the verification. This enables accurate models at reasonable
cost, for instance, accounting for guarantees such as message
priorities and different delivery policies without incurring in state
explosion problems.

Moreover, a customized modeling language, which includes the
P/S operations as primitive constructs, eases the modeling of the
application’s behavior and also reduces the conceptual gap be-
tween modeling primitives and conventional domain abstractions.
This simplifies reasoning on the model checker’s outcome and
exploiting the insights gained from the verification.

Road-Map. In Section II, we introduce the P/S paradigm, analyze
the characteristics of existing P/S infrastructures, and provide a
taxonomy of the guarantees they offer. In Section III, we describe
the language extensions we designed to augment Bogor’s input
language with P/S operations, and illustrate how these can be
used to model the behavior of P/S applications. Modeling the
semantics of P/S operations inside the checking engine is the



2

Guarantee Choices
Dispatcher guarantees
Message Ordering Random, Pair-wise FIFO, System-wide

FIFO, Causal, Total, Priority-based,
Priority-based w/ Scrunching

Filtering Precise, Approximate
Subscription Delay Absent, Present
Replies Absent, Present
Queue Size Bounded, Unbounded
Queue Drop Policy None, Tail Drop, Priority Drop

Per-component guarantees
Publisher Reliability Absent, Present
Subscriber Reliability Absent, Present
Queue Size Bounded, Unbounded
Queue Drop Policy None, Tail Drop, Priority Drop
Unannounced Disconnections Absent, Present

TABLE I
P/S GUARANTEES.

subject of Section IV, where we describe our domain-specific
state abstractions. Loupe’s internals are described in Section V,
along with our use of state-of-the-art software verification tools to
assess the implementation of some of Loupe’s key functionality.
Section VI assesses the effectiveness of our approach in a non-
trivial case study, investigating Loupe’s ability to provide insights
into the interplay between the P/S infrastructure and application
components. Section VII reports on a quantitative study of
Loupe’s performance compared to alternative approaches, and
analyses the contribution of each domain-specific abstraction. We
conclude with a survey of related approaches in Section VIII, and
by providing brief concluding remarks in Section IX.

This article provides a comprehensive treatment of our work
on the accurate verification of P/S architectures —whose initial
results appeared in [3]–[5]— by presenting a thorough description
and evaluation of Loupe in its most mature form. The current
version of our tool features more accurate and detailed models of
P/S systems, provides a stronger foundation for the correctness
of the results obtained, and improves in the performance of
verification.

II. PUBLISH-SUBSCRIBE INFRASTRUCTURES

In P/S infrastructures, application components either subscribe
to message patterns, expressing an interest in particular data, or
publish messages by injecting data into the system. A dispatcher
mediates the communication by storing subscriptions in a data
structure called subscription table, and by filtering published mes-
sages against subscriptions. Components are notified of messages
matching their subscriptions. Being all interactions mediated
by the dispatcher, components can join and leave the system
dynamically without explicit reconfiguration.

From the application perspective, the state of the P/S infras-
tructure is only determined by the current set of subscriptions.
Published messages are transient and the data they carry are
not persistent. This is in contrast with other communication
paradigms, for example, tuple spaces [30], where data remain
in the communication infrastructure until explicitly removed. We
leverage this observation to devise most of the domain-specific
state abstractions we illustrate in Section IV.

Although most existing P/S infrastructures offer similar APIs,
they differ in the guarantees they provide, for example, in terms of
reliability or message delivery policies. To make Loupe paramet-
ric w.r.t. these aspects, we identified the features that may affect
the behavior of applications built on top of P/S infrastructures.

These features characterize either how the dispatcher coordinates
the overall federation of components, or the interactions of a
particular component with the dispatcher. Table I summarizes the
dimensions we identified. On the dispatcher side, we consider:

• Message Ordering. In current P/S infrastructures, delivery
policies for notifications can be random, pair-wise FIFO
(notifications for messages published by the same component
reach the same subscriber in the same order), or system-
wide FIFO (notifications reach the subscribers in the or-
der they are generated). Delivery policies such as causal
(notifications maintain the causality relations), and total
(subscribers receive the same subsets of notifications in the
same order) are also provided, for instance, in Gryphon [9],
[38]. Systems such as DSWare [46] offer priority-based
(concurrent notifications are delivered according to their
priorities), and priority-based with scrunching (a mechanism
to avoid starvation by increasing a message’s priority after
it is rescheduled for a number of times).

• Filtering Mechanism. The algorithm used by the dispatcher
to match published messages against subscriptions deter-
mines the notifications to deliver. When subscription tables
are expected to be large, approximate filtering [48], [53] is
preferred to an exhaustive search through all subscriptions.
These techniques analyze only a subset of subscriptions or
a summary of them, and thus may cause false negatives or
false positives, respectively.

• Subscription Delay. When the P/S dispatcher is centralized,
a filter is immediately active when a component performs
the corresponding subscribe. Several systems, however, ex-
ploit distributed dispatchers to balance the load [13]. At
the extreme, every application component may be coupled
with a dispatcher on the same host, e.g., in mobile envi-
ronments [51]. In these cases, subscriptions take time to
propagate throughout the dispatcher network, both when they
are issued and when new components —along with their
attached dispatcher— join the system and need to receive
information on the existing subscriptions.

• Replies. In some applications, components need to reply
to notifications. Typically, programmers achieve this func-
tionality at the application level by setting up temporary
subscriptions to convey replies back to the original pub-
lisher [21]. However, for the same reason discussed above,
there is no guarantee that these subscriptions are active at the
time of publishing the reply. To overcome this limitation, P/S
systems may offer an additional reply primitive [21]. This
is implemented inside the middleware layer using dedicated
mechanisms, for instance, by keeping track of the reverse
path to the original publisher.

• Queue Size. Modern P/S systems sometimes assume that the
dispatcher functionality is deployed on powerful hardware
where it is safe to assume that the dispatcher queues may
grow arbitrarily. However, systems designed for embedded
environments, for instance, DSWare [46], have severe re-
strictions w.r.t. memory occupancy, and thus drastically limit
the number of incoming messages. This may cause message
losses because of queue overflows.

• Queue Drop Policy. When the queue size is limited, mes-
sages are dropped according to different policies, such as tail
drop (a new message is immediately discarded if the queue
is full), or priority drop (messages with lower priorities are



3

discarded first). Both guarantees are available, for instance,
in DSWare [46].

The interactions between application components and dispatcher
are characterized by:

• Reliability. Existing P/S infrastructures provide different
guarantees concerning reliability of publisher-to-dispatcher
and dispatcher-to-subscriber communication:

– Systems providing publisher reliability guarantee that
all published messages eventually reach the dispatcher.
For example, Gryphon [38] supports this feature.

– Systems providing subscriber reliability guarantee that
components receive all notifications for messages that
match their subscriptions at the dispatcher. For example,
OpenJMS [52] supports this feature.

This distinction is relevant since message demultiplexing and
addressing occur at the dispatcher. Thus, if a message is
lost before reaching the dispatcher, none of the subscribers
is notified and the causality relations among messages are
not affected. The whole system, with the exception of the
publishing component, remains in the same state as if the
message was never published.

• Unannounced Disconnections. In some P/S systems, the
communication between application components and the
P/S dispatcher may be suddenly interrupted, preventing the
component to accomplish further operations on the P/S
infrastructure. Some P/S systems, for example REDS [22],
provide application components with means to probe the
connection to the dispatcher, while others simply suffer from
unannounced disconnections.

• Queue Size and Drop Policy. These are essentially the same
guarantees we described above for the dispatcher, but here
they hold on a per-component basis.

By comparing dispatcher-specific and per-component guaran-
tees, it may appear that the effect of approximate filtering and
subscription delays is similar to message losses. However, the lat-
ter are generally non-deterministic and thus happen unpredictably.
Differently, subscription delays may cause message losses only if
subscriptions are in transit when components publish messages,
and thus they are not taken into account at the dispatcher.
Approximate filtering, instead, is the result of a fully deterministic
matching algorithm.

We can characterize most available P/S systems according to
the aforementioned dimensions, as shown in Table II. The most
sophisticated guarantees are usually provided by P/S systems for
enterprise applications, for example, JMS-compliant systems. As
we move towards mobile and embedded scenarios, the guarantees
become weaker, especially in terms of reliability, for example,
supporting a best-effort policy.

III. LOUPE

Loupe is built as an extension to the Bogor model checker [54]
by adding P/S-specific constructs to its modeling language. Here
we describe Loupe’s language constructs and their use in model-
ing P/S applications. In our discussion, we use of Bogor’s basic
constructs, which should be easily understandable since they are
similar to those commonly provided by existing model checker.
The reader can refer to [5], [54] for more details.

typealias MsgPriority int (0,9);
enum DropPolicy {NO_DROP, TAIL_DROP, PRIORITY_DROP};
extension PSConnection for polimi.bogor.loupe.PubSubModule{

typedef type<’a>;
// Opening a connection
expdef PSConnection.type<’a>
register<’a>(int, DropPolicy, publisher_reliability,

subscriber_reliability, disconnection);
// Checking a connection
expdef boolean
isConnected<’a>(PSConnection.type<’a>);

// P/S operations
actiondef
subscribe<’a>(PSConnection.type<’a>, ’a -> boolean);

actiondef
unsubscribe<’a>(PSConnection.type<’a>, ’a -> boolean);

actiondef
publish<’a>(PSConnection.type<’a>,’a, MsgPriority);

actiondef
reply<’a>(PSConnection.type<’a>, ’a, MsgPriority);

// Receiving notifications
expdef boolean
waitingMessage<’a>(PSConnection.type<’a>);

actiondef
getNextMessage<’a>(PSConnection.type<’a>, lazy ’a);

}

Fig. 1. Loupe P/S preamble.

A. P/S Operations

Figure 1 illustrates the preamble that must be included in all
Bogor models using Loupe. The signatures are intuitive, as they
mimic those found in real P/S systems. The P/S infrastructure
is made available as a generic abstract data type. An instance
of this data type represents a connection between an application
component and the P/S dispatcher, and is customized based on
the type of messages exchanged.

Figure 2 shows a model of two application components inter-
acting via P/S using Loupe. Every component is mapped onto a
Bogor thread. The model includes a Publisher that generates
a message possibly received by a Subscriber. Initially, the
Subscriber opens the connection to the dispatcher using
the register operation (loc0), specifying as argument the
length of the input queue for this connection (0 is used to
denote an unbounded queue), the policy used to drop messages
in case of overflows, and three boolean values stating whether
the connection provides publisher/subscriber reliability and if the
component may be subject to unannounced disconnections. Next,
the component issues a subscription using subscribe. In our
approach, the filter is an arbitrary boolean function accepting
a message as input (in the example, isGreaterThanZero).
The value returned tells whether the message matches the filter.
This approach supports high expressive power in specifying the
matching semantics, in contrast to earlier work that severely
constrained the nature of filters [29]. Finally, the Publisher
component is started.

The Publisher opens a connection to the P/S dispatcher
using register. Next, in loc1 it creates a new message
carrying a constant value. The message is given as input to the
publish operation, which requires as additional parameters the
connection the message is being sent over (ps), and the message
priority. Concurrently, the Subscriber component moves to
loc1 where the waitingMessage expression acts as a guard
preventing a further transition to fire until there is at least one
message in the input queue. If so, the component executes the
getNextMessage operation, passing a reference to an empty



4

Guarantee OpenJMS [52]/ Gryphon [38] DSWare [46] Siena [13] REDS [22] Mires [57]
ActiveMQ [1]

Dispatcher guarantees
Message Ordering Pair-wise FIFO Total/Random Random Random Pair-wise FIFO/Causal Random
Filtering Precise Precise Precise Precise Precise/Approximate Approximate
Subscription Delay Absent Present Present Present Present Present
Replies Present Absent Absent Absent Present Absent
Queue Size Unbounded Bounded Bounded Unbounded Unbounded Bounded
Queue Drop Policy Priority Drop Tail Drop Tail Drop None None Tail Drop

Per-component guarantees
Publisher Reliability Present Present Absent Present Absent Absent
Subscriber Reliability Present Absent Absent Absent Absent Absent
Queue Size Bounded Bounded N/A Bounded Bounded N/A
Queue Drop Policy Tail Drop Tail Drop N/A Tail Drop Tail Drop N/A
Unannounced Disconnections Absent Absent Absent Present Present Absent

TABLE II
EXAMPLES OF EXISTING P/S SYSTEMS CLASSIFIED ALONG THE DIMENSIONS OF TABLE I.

// Message definition
record MyMessage { int value; }
MyMessage receivedEvent := new MyMessage;
// Filter definition
fun isGreaterThanZero(MyMessage event)
returns boolean = event.value > 0;

active thread Subscriber() {
PSConnection.type<MyMessage> ps;
loc loc0: // Connection setup and subscription
do { ps := PSConnection.

register<MyMessage>(0, NO_DROP,
true, true, false);

PSConnection.
subscribe<MyMessage>(ps, isGreaterThanZero);
start Publisher();

} goto loc1;
loc loc1: // Message receive
when PSConnection.waitingMessage<MyMessage>(ps) do {

PSConnection.
getNextMessage<MyMessage>(ps, receivedEvent);

} return;
}
thread Publisher() {
MyMessage publishedEvent;
PSConnection.type<MyMessage> ps;
loc loc0: // Connection setup
do { ps := PSConnection.

register<MyMessage>(0, NO_DROP,
true, true, false);

} goto loc1;
loc loc1: // Publishing a message
do { publishedEvent := new MyMessage;

publishedEvent.value := 1;
PSConnection.
publish<MyMessage>(ps, publishedEvent, 0);

} return;
}

Fig. 2. Modeling a publisher and a subscriber component in Loupe.

message as a parameter. Using Bogor’s lazy modifier as a “pass-
by-reference”, the empty message is filled with the information
received from the publisher.

Besides the P/S operations used in this example, Loupe
also provides an isConnected expression, as well as
unsubscribe and reply operations. The former can be
used as a guard to check whether a connection to the P/S
dispatcher is active at the time of performing an operation.
The unsubscribe operation has the opposite semantics of
subscribe, and may experience the same propagation delays
we discussed in Section II. The reply operation can be used only
when Loupe is configured to model a P/S infrastructure supporting
replies. Otherwise, our tool signals an exception and aborts the
verification.

includes "PSConnection.bir"
enum ExecGuards {QUEUE_EMPTY, CAN_PROCEED, CANNOT_PROCEED};
extension TimedPSConnection for

polimi.bogor.loupe.rate.TimedPubSubModule {
typedef type<’a>;
// Opening a timed connection
expdef TimedPSConnection.type<’a>
register<’a>(int, DropPolicy,

publisher_reliability,
subscriber_reliability,
disconnection,
int, int, int);

// Receiving notifications
expdef ExecGuards
waitingMessage<’a>(TimedPSConnection.type<’a>);

// Timing guards
expdef boolean canProceed<’a>();
actiondef suspend<’a>();

}

Fig. 3. Loupe preamble for timing — expressions and operations not included
here remain the same as in Figure 1.

B. Timing Aspects

A large body of work exists on model checking real-time
systems (e.g., see [2]). Our objective, however, is not to embed
a generic notion of time, but rather to include only the temporal
aspects relevant to P/S architectures. Our approach builds on the
work by Deng et al. [24] and extends it to account for different
P/S guarantees and message delays.

In Loupe, one can control the execution rate of components and
message delays. The former dictates the maximum frequency of a
component’s interactions with the P/S dispatcher, i.e., the number
of publish, (un)subscribe, and reply operations allowed in a time
unit. A relevant class of real systems can be modeled similarly
(e.g., [26], [32]). Message delays are modeled by mapping the
traveling time to the execution rates of the intended receivers. The
way timing constructs are modeled inside Loupe is described in
Section IV. Hereafter, we discuss how they can be used to specify
a P/S application.

To control timing aspects, designers include the preamble
of Figure 3, which essentially refines the one of Figure 1.
The register operation now takes three additional integer
parameters, specifying the execution rate for the registering
component, and the upper and lower bound of a (discrete)
random delay that messages experience when addressed to this
component. The execution rates of components are controlled
by guard canProceed, which application designers must pre-
pend to every P/S operation. The guard yields true iff the



5

component can perform a state transition without violating any
time constraint. The waitingMessage expression now returns
a value among: i) CAN PROCEED, ii) CANNOT PROCEED, and
iii) QUEUE EMPTY, meaning that i) the component can proceed
and the incoming queue is non-empty, ii) the component cannot
proceed without violating the time model, and iii) the component
can execute, yet its input queue is empty. In the last case, a
component may decide to perform a different P/S operation, or
it can suspend itself using suspend until at least one message
arrives in its queue.

The current implementation of Loupe checks for the correct
use of the timing constructs by raising exceptions if the model is
structured incorrectly, for instance, if the canProceed guard is
not used before every P/S operation.

C. Verification

As previously illustrated, the register operation specifies
the assumed per-component guarantees. Dispatcher guarantees are
specified in a separate configuration file that Loupe parses before
starting the verification. Different instances of the checking engine
are generated depending on the specified configuration. During
the verification, Loupe is triggered whenever any of the operations
in the preamble of Figure 1 (or Figure 3) is executed. This
allows our tool to control how the state space evolves depending
on the assumed P/S guarantees. For the remaining operations,
the verification exploits the standard procedures inside Bogor,
including the ones used to verify assertions and properties, and
to check for deadlocks. For instance, running Loupe with the
example of Figure 2 and the dispatcher guarantees of OpenJMS
in Table II, the model is found to be correct as it is deadlock-free
and we did not specify any property or assertion to check.

Loupe allows designers to explore the interplay between the
application model and the guarantees provided by the P/S in-
frastructure. Doing so is as simple as changing some values in
Loupe’s configuration file or modifying some of the parameters
given to the register operation. For instance, by setting the
publisher reliability parameter to false in Figure 2,
designers are able study a scenario where published messages may
not reach the dispatcher. The verification of the model in Figure 2
now fails: the transition specified in loc1 of the Subscriber
component may be never enabled if messages do not reach the
dispatcher. Therefore, the system may enter a deadlock state.
Designers may then decide to assume that the underlying P/S
system provides publisher reliability, or to account for this issue
at application level.

Loupe enables the reasoning above based on a model of the
application at hand. Once the key design choices are settled and
the application functionality is accordingly verified, Loupe models
may be input to a code generation tool to produce a running
implementation. Our tool thus provides a stepping stone for this
process. Generating running code, as well as testing the resulting
implementation, are beyond the scope of our work and can be
achieved with existing techniques [63], [64].

IV. DOMAIN-SPECIFIC ABSTRACTIONS AND HEURISTICS

Embedding the P/S infrastructure within the model checker
enables the implementation of domain-specific state abstractions
to reduce the number of states generated during the verification.
In addition, we leverage dedicated heuristics to take advantage

of the interplay between P/S guarantees and timing aspects. Both
features are described next.

A. State Abstractions

In P/S architectures, the information determining the system
state is mostly inside the application components, not in the
communication infrastructure. By modeling the P/S infrastructure
inside the model checker, we get close to this ideal picture. In
contrast, by modeling the dispatcher through the model checker’s
input language, we would expose the dispatcher’s internals as an
explicit part of the state, although these are transparent to the
application.

Here we illustrate the aspects that we deem most important to
provide the above degree of abstraction over the communication
infrastructure. Throughout the discussion, we first describe the
specific feature of the P/S paradigm that motivates the abstraction,
and then discuss how it is supported in Loupe.

Subscription Table. P/S systems are expected to deal with a
large number of subscriptions [51]. Typically, however, a compo-
nent is notified once regardless of how many of its subscriptions
match a message. The dispatcher is thus free to examine the cur-
rent subscriptions in any order, provided all of them are eventually
checked. Also, once a subscription matches, it is unnecessary to
examine the same message against other subscriptions issued by
the same component.

Abstraction in Loupe. Taking advantage of the above consid-
erations is fairly complex when the P/S infrastructure is modeled
using a model checker’s input language (e.g., [29]). Normally,
tables that store the same subscriptions, but in different orders,
correspond to different executions during the verification. Simi-
larly, notifications addressed to the same component but generated
by different subscriptions yield different executions. From the
application perspective, all such executions are equivalent. Loupe
leverages this observation by abstracting away executions that
differ only in the ordering of subscriptions, or where the same
component is notified of the same message because of different
matching subscriptions. The functionality to detect such situations
is hidden inside Loupe, and hence no explicit states are generated.

Multi-Point Communication. In contrast to traditional interac-
tion paradigms such as client-server, P/S is inherently multi-point.
A single published message may cause multiple notifications
delivered to different subscribers. Moreover, the binding between
publishers and subscribers is implicitly determined by the current
set of subscriptions, and may thus change over time.

Abstraction in Loupe. To the best of our knowledge, this
style of inter-process communication is not supported natively
by existing model checkers. The closest example in this respect
is Promela channels [36]. However, they describe point-to-point
interactions and, most importantly, it is not possible to create
channels dynamically to model subscribe operations. A way to
circumvent this problem might be to demultiplex at a fictitious,
additional process. By doing so, however, the checking engine
would generate one or more explicit states for every published
message. This operation, however, is atomic from the application
perspective. In Section VII-C, we show quantitatively how this
impacts on the number of states generated during the verifica-
tion. Alternatively, designers might over-provision the number of
channels and use them as a pool. As already observed in [50],
however, this method would unnecessarily increase the size of
the state vector. In Loupe, demultiplexing and addressing occur



6

within the checking engine, and no additional states are generated
to handle them.

Message Filtering. P/S supports content-based information
filtering. Often, a large fraction of published data is filtered out
before it reaches any subscriber [35]. Publish operations with no
matches, however, have no effect but on the publishing compo-
nent. From the perspective of the rest of the system (including the
dispatcher), it is as if the above publish operation never occurred.

Abstraction in Loupe. Modeling the P/S dispatcher alongside
the application components necessarily exposes the bookkeeping
data needed during the filtering process. For instance, the ap-
proach presented in [62], based on Promela, generates explicit
states even during the evaluation of a filter that eventually
generates no matches. This is unavoidable in Promela, as the
filtering process is too complex to be expressed in a single atomic
step. If the dispatcher determines that no notifications are to be
sent, these states are useless. In contrast, in Loupe the filtering
process is not exposed to the checking engine. Therefore, if no
subscriptions match a message, no additional states are generated
but the one for the publishing component.

Message Ordering. To enforce a specific delivery ordering, the
dispatcher must track a sizable amount of routing information.
Generally, it needs to be aware of which processes published
which messages within a given time window. For instance, with
N components in the system, totally ordered delivery requires a
N x N matrix of integers representing per-component logical
clocks [60]. If a message is published whose delivery would
violate total ordering, it is temporarily buffered at the dispatcher
and some values in the matrix are modified, changing the dis-
patcher’s internal state. Again, this operation is transparent to the
application.

Abstraction in Loupe. Modeling any specific message ordering
alongside the application, as traditional approaches do, causes
the model checker to explore multiple states that are actually
equivalent from the application perspective. For instance, mod-
eling total ordering as in [62] causes SPIN to generate a new
state for every modification of the values in the aforementioned
matrix. In addition, some ordering policies only partially constrain
the set of possible executions. Total ordering, for instance, only
dictates that messages must be received in the same order,
without specifying the exact intra-message schedule. Therefore,
different contents of the routing matrix above may lead to the
same ordering of notifications [44]. While the checking engine
would generate all permutations of message deliveries to fully
explore the state space, each combination may be reflected in the
same information stored in the dispatcher’s routing matrix. This
corresponds to further explicit states if the dispatcher’s internals
are exposed to the checking engine. In Loupe, this information
is hidden within the verification engine. No additional states
are generated due to routing information being updated at the
dispatcher. In Loupe, different delivery ordering guarantees thus
show the same overhead in terms of states generated, regardless
of their complexity.

Message Loss. As in any distributed infrastructure, in P/S
architectures messages may be lost for a number of reasons.
Published messages may be lost on the way to the dispatcher,
and notifications may be lost before getting to the subscribing
components. Notifications may also overflow in the incoming
queue of application components or of the dispatcher, if its size is
limited. In addition, subscribers may not receive their notifications

frame frame

Co
m

po
ne

nt
 2

Co
m

po
ne

nt
 2

frame

Co
m

po
ne

nt
 1

Co
m

po
ne

nt
 2

hyper-period

4

1 3 5 6

2 7

frame

frameframe frame

(a) Example of correct execution.

frame frame

Co
m

po
ne

nt
 2

Co
m

po
ne

nt
 2

frame

Co
m

po
ne

nt
 1

Co
m

po
ne

nt
 2

frame

hyper-period

4

1 3

2 5

frame

(b) Example of invalid execution.

Fig. 4. Timed executions in Loupe. The numbers in circles represent a
system-wide schedule of operations.

because of approximate filtering and/or propagation delays. Re-
gardless of the reason, the loss occurs within the communication
infrastructure. Application components should therefore not be
affected by the particular cause of a message loss. Rather, they
should only see its effect.

Abstraction in Loupe. Using standard model checking ap-
proaches, the cost of accounting for different causes of message
loss would be prohibitive since losses due to different causes
would be treated independently. This may lead to a set of
executions that the model checker perceives as different, and
yet they are equivalent from the application’s perspective. To
address this issue, in Loupe the decision whether a message is
lost is taken only once, depending on the combination of P/S
guarantees the designer selected. This is possible in our tool, as
the checking engine is aware of the complete system state. Thus,
once again, our solution does not generate multiple executions
that are equivalent from the application perspective.

B. Timing Heuristics

To model timing aspects in Loupe, we replace Bogor’s state
space exploration module with a custom one to account for
message delays and component execution rates. The latter is
the maximum rate at which components execute P/S operations.
Given a set of components Ci with execution rates Ri, time is
divided into frames of different length fi, where fi = 1/Ri. We
define an hyper-period (hp) to be the least common multiple
frame among the different fi. Our state space exploration module
abstracts time as discrete “ticks” corresponding to the passing
of time in the highest rate component (shortest frame). Based
on this, every component Ci, with hp = k · fi for some integer
k, is scheduled to perform at most k P/S operations in every
hyper-period1. Loupe explores all possible inter-leavings of P/S

1If a component does not perform any P/S operation, it is moved to the
next frame to avoid blocking the scheduler.



7

operations executed within the same hyper-period, and resets the
internal representation of time at the end of it.

Figure 4 depicts an example where two components perform a
sequence of P/S operations. In this example, R1 = 3/2 ·R2, thus
the hyper-period is equal to three frames of component 1 (or two
frames of component 2). The scheduling of operations shown in
Figure 4(a) is correct, as component 1 executes three operations
before component 2 executes its third one, that is, all operations
have been performed in a hyper-period by component 1. In
contrast, the execution of Figure 4(b) is invalid, as component 2

must not proceed to the following hyper-period before component
1 performs its third P/S operation.

Message delays are modeled by relating their traveling time
to component execution rates, thus mapping message latency to
a given multiple of the shortest frame. In case messages are
in transit at the end of an hyper-period, they are re-aligned to
the beginning of the following hyper-period. Loupe also applies
a basic form of partial-order reduction [14] to model random
message delays. The objective is to identify the minimum set of
concurrent executions that must be checked for the verification
to be complete. At the beginning of every hyper-period and after
every P/S operation, Loupe performs the following steps:

1) It identifies the set of notifications that are received within
the current hyper-period. This set is determined by the
possible delays of messages: Loupe checks every possible
(discrete) value within the bounds for message delays
specified in register, marking the values that allow the
notifications to arrive at the subscribers before the end of
the hyper-period.

2) It partitions the notifications into subsets that involve non-
overlapping subsets of subscribers. These correspond to
independent transitions in the state space. Therefore, the
verification is complete also if Loupe considers only one of
the possible interleavings.

3) Within each subset of independent transitions, it identifies
the values of message delays that generate different delivery
orderings at the target components. This is needed to avoid
exploring executions characterized by different message
delays that would not impact on the execution at the
receiving component.

4) It generates the states representing the delivery of the
first notification according to different delivery ordering
identified in the previous step, and hands these states over
to Bogor. This can now proceed with the verification,
eventually triggering Loupe again.

This way, we only generate executions that differ in the inter-
leavings among components being notified of the same messages,
or in different delivery orderings at the same component.

Our approach also lends itself to the use of heuristics exploiting
the interplay between timing aspects and the P/S guarantees
in Table I. For instance, when Loupe models a P/S system
providing causal order, it often happens that a message might
be delivered before others (e.g., because it experiences a smaller
delay), but so doing would violate the ordering because some
causally connected message is still in transit. In our experience,
the impact of this situation on the number of enabled transitions
is much greater than that imposed by the time model alone.
Therefore, whenever possible, we apply the mechanisms that
model message orderings before computing the intra-component
schedule, to reduce the number of states possibly visited.

+reliability
+msgOrdering
+repliableMsgs
+subscriptionDelay

PubSubModule
+incomingQueueSize
+persistency
+dropPolicy

PubSubConnection

+componentId
+priority
+timestamp
+causallyConnected

MessageWrapper

+filter
+componentId

SubscriptionWrapper

 
GetMessageBacktrackInfo

 
PublishBacktrackInfo

 
ReplyBacktrackInfo

 
UnsubscribeBacktrackInfo

 
SubscribeBacktrackInfo

+prevStateId
PubSubBacktrackInfo

+subscriptions
SimpleSubscriptionTable

+rateManager
TimedPubSubModule

 
Scheduler

 
DispatchingManager

*1

1

*

11

1
*

1
1

1

1

1

*

Bogor

ISubscriptionTable

Fig. 5. Loupe architecture.

Another example deals with situations where
waitingMessage returns QUEUE EMPTY. If so, the
corresponding component passed the time checks. Thus,
the checking engine lets another component proceed, and
reschedules the first component later without re-running the time
checks. This is correct because once a component passed the
time checks, there is no way for another component to create
a situation where the first component is no longer allowed to
proceed. Based on this, we can alleviate the processing overhead
generated during the verification.

V. LOUPE INTERNALS

We illustrate the architecture and implementation of Loupe
and report on how we assessed the implementation of some key
Loupe’s functionality.

A. Architecture

Loupe’s architecture is shown in Figure 5. The tool, im-
plemented in Java, is designed to decouple the modeling of
different guarantees, and yet to provide the necessary hooks
to exploit the interplay among them. The PubSubModule
class implements the model of the dispatcher guarantees, and
directly interacts with Bogor’s checking engine. Most of the
domain-specific abstractions take place within this module.
TimedPubSubModule is a refinement of PubSubModule
that implements our timing heuristics. The scheduling of P/S
operations performed by application components is handled by
an independent Scheduler module, while message delays are
modeled inside DispatchingManager.

The PubSubConnection class represents a connection to
the P/S infrastructure. It stores the set of messages in a compo-
nent’s input queue and enforces a particular message ordering.
It also implements the reliability model described in Section II.
MessageWrapper is used to piggyback additional information
on messages, for instance, to store references to causally con-
nected messages when causally ordered delivery is assumed.

Information on previous states, required to backtrack actions,
is stored in dedicated classes. The PubSubBacktrackInfo
class factors out information common to all P/S operations, while
dedicated classes are used to retain operation-specific information.



8

For instance, the PublishBacktrackInfo class stores the
message corresponding to the publish operation to backtrack.

The filtering process is decoupled from the rest of the ar-
chitecture, being modeled inside an independent class with a
specific ISubscriptionTable interface. This allows one to
experiment with different filtering mechanisms. Loupe’s current
implementation includes three such schemes: a solution based
on hash maps, an approximate filtering mechanism ported from
the REDS middleware [22], and a simplified implementation of
the scheme by Ouksel et al. [53]. Different filtering mechanisms
may be easily incorporated if necessary, or even ported form
existing systems to reflect the semantics expected in the final
implementation.

B. Assessing Loupe’s Implementation

We carried out a hybrid approach to assess Loupe’s imple-
mentation. Portions of Loupe’s code were tested using traditional
techniques, while critical parts were formally verified on a set
of significant scenarios. In this section, we focus on the latter
methodology, as it brings interesting insights into the limitations
of today’s software verification tools and how these can be
overcome.

We chose Bandera [17], a tool for the automatic verification of
Java programs. Notably, Bandera itself is based on Bogor, as it
translates Java code into Bogor models. Programmers instrument
Java code by expressing pre- and post-conditions on the values
of method parameters. The instrumented code is given as input
to Bandera, where code analysis techniques are employed to
reduce the size of the model handed over to Bogor, for instance,
by eliminating portions of code that are not relevant to check
the properties of interest. In our case, however, these techniques
were insufficient to yield tractable models. In the following, we
illustrate how we managed to overcome this limitation.

We focus on the modeling of causal and total ordering, as well
as on the generation of correct component schedules when timing
aspects are accounted for, hence also checking the time heuristics
and partial order reduction described in Section IV-B. Indeed,
these are the most subtle features of our tool.

Slicing. A brute-force approach with the whole Bogor code plus
Loupe given as input makes Bandera fail the translation. This
is essentially due to the use of Java reflection in Bogor to
dynamically load the extension classes. Bandera cannot handle
this feature, as it makes the control flow dependent on the class
being loaded. Therefore, we manually linked the implementation
of Loupe to the rest of Bogor. In addition, Bandera refuses to
process Java classes with direct bindings to the underlying virtual
machine. Therefore, we also removed all references to Java native
libraries. For instance, in the case of functionality for file I/O, we
hard-coded the clear text that Bogor would read from files in the
code itself.

Although Bandera was now able to complete the translation,
the resulting models were intractable. A closer look at Bandera’s
output revealed that large portions of the input code were pro-
cessed unnecessarily. Most often, this is due to situations where
there exists some execution path that Bandera cannot exclude
because of the lack of run-time information. In almost all cases,
however, we could safely carve out only the relevant portions
of code based on our knowledge of Loupe internals and of the
properties to verify. Thus, we manually assembled the minimal

functionality of Loupe plus a handful of Bogor classes necessary
to carry out the validation. At the end of this process, the code
input to Bandera included:
• The subset of Loupe modules strictly needed to run the

verification with a given combination of P/S guarantees. For
instance, if system-wide FIFO is not assumed, some code
can be eliminated as it will never be used.

• The minimal Bogor code to create the initial system state. In
doing so, we eliminated almost completely the BIR parser
by hard-coding most of the information that Bogor would
normally read from the input models.

• The code to generate the state space, but not the one
driving its exploration. Indeed, this is dictated by our timing
heuristics, which are already part of Loupe.

In quantitative terms, the above functionality account for 411 Java
classes, about 32,000 methods, and over 400,000 Java statements.
The models output by Bandera at this stage become tractable.

Causal Ordering. A P/S infrastructure providing causally ordered
delivery must satisfy the following condition for any two mes-
sages m and m′:

Publish(m)→ Publish(m′)⇒ Notify(m)→ Notify(m′) (1)

where → indicates the happens-before relation [45]. In Loupe,
the model of causally ordered delivery is implemented in a single
Java method that returns an ordered list of notifications addressed
to a given component. Therefore, property (1) is stated as a post-
condition to the aforementioned method by referring to sequence
numbers in messages to capture the happens-before relation.
In contrast, whenever the antecedent of condition (1) does not
hold, Loupe must generate all possible interleaving of message
deliveries. We specified this property as a post-condition of the
method implementing causal ordered delivery, using a fragment
of Java code to compute the possible message permutations given
the notifications currently being delivered.

We used a scenario where three components alternate in pub-
lishing messages, creating all possible combinations of publish
operations from different components. Only two components
cannot create a situation where causal ordering is violated without
violating pair-wise FIFO ordering as well. Since we verified the
latter policy using traditional testing, these scenarios are already
covered. On the other hand, any additional component beyond
the three we use would not generate situations that cannot be
mapped to a distributed execution with three components [43].
We checked property (1) using a setting without time constraints.

Bandera revealed a subtle bug in our implementation. Figure 6
depicts the distributed execution corresponding to one of the
counterexamples returned. The situation is rather pathological: the
receipts of n4 and n5 are not causally related. Therefore, Loupe
should generate two executions at component 2, corresponding to
the receipt of n4 before n5 and vice-versa. Because of a missing
recursive call in our code, Loupe incorrectly recognized the two
messages as being causally related, forcing either of the two
to be received before the other. Bandera failed the verification
consequently. It took us a couple of days to understand Bandera’s
output and to recreate the situation in Figure 6, as Bandera’s
counterexamples do not easily relate to the original Java code.
However, once we figured out the conditions under which the
verification failed, fixing the problem was straightforward.

Total Ordering. A system provides totally ordered delivery if the



9

n1

n2

n3

n4

n5

Time

Component 3

Component 2

Component 1

NotificationPublish 

Fig. 6. Distributed execution corresponding to the bug found by Bandera. The
receipts of n4 and n5 are not causally related, although our implementation
incorrectly recognized the opposite. (Communication to/from the dispatcher
is not shown).

Co
m

po
ne

nt
 A

Co
m

po
ne

nt
 B

frame ...

frame

waitingMessage
returns QUEUE_EMPTY

...

waitingMessage
returns CAN_PROCEED

getNextMessage 
delivers msg1

msg1 is in transit

Fig. 7. A scenario to verify component execution rates and message delays.

same subsets of notifications are received in the same order by
the same components [44]. Thus, if both message m and m′ are
delivered to both component C1 and C2, we must guarantee the
satisfaction of the following condition:

Notify(m)C1 → Notify(m′)C1 ⇔ Notify(m)C2 → Notify(m′)C2

(2)
Note that when no two components receive the same two

messages, and thus the definition above does not apply, total
ordering does not prescribe any delivery ordering. As we did for
causal ordering, we can specify this property as a post-condition
to the method in Loupe responsible for scheduling messages
according to total ordering.

As input models, we designed a scenario with three components
taking turns in publishing messages. This is needed to check the
two possible conditions of interest [44]: i) two components receiv-
ing the same two notifications published by a third component2,
and ii) no two components receiving the same two notifications.
The former serves to check that the specification of total ordering
is satisfied, whereas the latter controls that all possible inter-
leavings of message receptions are explored when definition (2)
does not apply. This time, the verification succeeded immediately.

Time Extension Validation. To check the behavior of Loupe
when timing aspects are accounted for, it is important to observe
that our time extension does not alter the individual system states.
Rather, it limits the way the state space is explored, by excluding
sequences of operations that violate the time model. Based on
this, the implementation of our time extension can be checked

2Note that a component is not notified of locally-published messages.

by ensuring that the guards controlling the component schedules
return the right values in the right order, as the guards themselves
implicitly slice the state space.

We devised a set of input models to investigate the situations
that may arise when scheduling components with different execu-
tion rates and with the possible presence of messages in transit.
These scenarios trigger different combinations of values returned
by canProceed and waitingMessage in Figure 3. To this
end, we use four scenarios with two components:

• Scenario 1. This is the case of Figure 4(a), where two
components publish messages with a non-integer ratio be-
tween their execution rates. There are no active subscriptions,
hence messages are discarded at the dispatcher. The scenario
essentially checks whether the inter-component schedules are
correct when no messages are in transit.

• Scenario 2. Figure 7 shows a situation where waiting-
Message must return QUEUE EMPTY while the message is
in transit, and switch to CAN PROCEED when the message
arrives. The execution rates are assigned in a way that
only the receiving component is allowed to proceed upon
message reception. The scenario verifies the correct behav-
ior of waitingMessage, and how the inter-component
schedule is generated when a message is traveling towards
a component that should immediately execute.

• Scenario 3. Dually w.r.t. the previous scenario, here the
execution rates are assigned in a way that forces the pub-
lishing component to execute first, even if the subscriber has
a notification waiting in its input queue.

• Scenario 4. To test the combination of scenarios 2 and 3,
component execution rates and message delays are assigned
so that both components can be scheduled when the message
arrives at the subscriber. This checks if the two possible
schedules are correctly generated.

We determined off-line the correct schedules in these scenarios.
Based on this, we could uniquely determine the values returned
by canProceed and waitingMessage based on the system
state at the end of the previous hyper-period. We specified this
as a pre-condition for the methods implementing the semantics
of canProceed and waitingMessage, and the values we
expected as post-conditions.

This time, we discovered another bug. Bandera showed a
counterexample in the third scenario where waitingMessage
returned the wrong value after backtracking from the state that
represents component A receiving the message. This was caused
by a non-initialized variable, whose default value worked for most
(but not all) combinations of the input parameters.

Summary. Bandera checked the correctness of our implementa-
tion w.r.t. the scenarios and properties we specified in reason-
able time and with moderate resource consumption. Despite the
diversity of the mechanisms being checked, the Bogor models
output by Bandera involved a comparable number of states
(about 130,000) and the process completed within half an hour
occupying at most 160 Mb of memory in the worst case, i.e., the
time extension.

Although the use of Bandera required a significant effort, its
results were beneficial. Without undertaking a similar effort, the
bugs we found would have remained uncaught. This increased our
confidence in the soundness of our domain-specific extensions and
heuristics.



10

VI. CASE STUDY

Loupe has been used for the verification of P/S architectures
ranging from control of road tunnels [5] to remote assistance to
elderly people [3]. Here we illustrate the use of Loupe in the
design of an information system for transport scenarios [23].

A. Scenario and Requirements

Consider the problem of monitoring a fleet of buses in a
metropolitan area. The scenario is a realistic one, as demonstrated
by large efforts currently under way [23], [58]. A system to
achieve this goal is composed of the following actors:
• Buses traveling along a route, equipped with sensors to

detect the number of passengers and a GPS receiver to
determine the current stop. These data are published along
with notifications of possible bus breakdowns.

• Bus stops along a route, equipped with displays that show
information about buses (e.g., on time or delayed) and alert
about incoming buses.

• In-field personnel, equipped with devices to receive break-
down notifications, move across routes to support bus
drivers.

• The fleet headquarter, where operators monitor breakdowns
within the fleet. If so, they send out replacement buses and
inform the passengers along the routes affected.

Because of the dynamic interactions in this scenario, developers
must carefully verify their design. Sample requirements to meet
are as follows:

R1: In case of a breakdown, all stops along involved routes
must eventually display an alert message that a break-
down occurred.

R2: In case of a breakdown, all stops along involved routes
must eventually display a message informing that a
replacement bus is in operation.

R3: In case of a breakdown involving a bus with more than
P passengers, members of the in-field personnel within
T stops from the mishap must be eventually notified.

R4: Position updates from the same bus must appear in the
order they are issued when displayed at a given stop,
not to confuse travelers with inconsistent information.

We describe next how we model this scenario and specify the
requirements above.

B. Model

Components. We map every actor in our scenario to a P/S
component. Table III illustrates the corresponding subscriptions.
Buses dynamically join the system at the beginning of their
route and leave once it is over. Likewise, in-field personnel enter
the system at a any point in time. Buses publish their current
route, position, number of passengers aboard, and breakdown
notifications. The headquarter subscribes to information report-
ing breakdowns. After possibly receiving such notification, the
headquarter eventually publishes information on a replacement
bus sent out. The in-field personnel are interested in breakdown
notifications when the route involved is the one they are currently
inspecting, the location of the breakdown is within T stops from
their location, and the breakdown involves a bus with more than P

passengers aboard. Bus stops receive information from the buses

Component Identifier Format
Headquarter S1 breakdown = true

In-field S2

route = this.route AND

personnel

stop = this.stop ± T AND

member

passengers > P AND
breakdown = true

S3 route = this.route AND
replacement = true

Bus Stop

S4 route = this.route AND
replacement = true

S5 route = this.route AND
stop = this.stop -1

S6 route = this.route AND
stop < this.stop -1

S7 route = this.route AND
stop = this.stop

S8 route = this.route AND
breakdown = true

TABLE III
SUBSCRIPTIONS IN THE TRANSPORT SCENARIO. THE KEYWORD THIS IS

USED TO REFER TO THE STATE OF THE SUBSCRIBING COMPONENT AT THE

TIME OF ISSUING THE SUBSCRIPTION.

Display 
Breakdown

Display 
Normal Info

notify(S8)

notify(S4)

join

notify(S6)

Display Bus 
Approaching

notify(S5)

notify(S7)

Display 
Replacement 

Bus

notify(S5)

notify(S5)

notify(S6)

Display 
Breakdown 

and Bus 
Approachingnotify(S7)

notify(S4)

notify(S6)

Fig. 8. Finite state machine modeling a bus stop. Transitions marked with
notify(Si) are enabled when subscription Si matches and the component
receives the corresponding notification.

if they are yet to pass by. They also subscribe to information
reporting breakdowns and replacement buses.

As an example3, Figure 8 shows a finite-state model describing
how a bus stop controls the information displayed at the stops.
During normal operation, notifications are used to display infor-
mation on bus positions (notify(S6)) or a “bus approaching”
message, indicating that the bus reached the previous stop along
the route (notify(S5)). The display then returns to normal
operation when the bus is at the stop (notify(S7)). In case
of a breakdown (notify(S8)), the display shows a message
to inform travelers about the problem. When the headquarter
publishes information on a replacement bus, a proper message is
displayed and the system eventually returns to operate normally
(notify(S4)).

The finite-state models for the remaining components are
similarly specified. We omit them for space reasons. The reader
can refer to [6] for a complete description.

Properties. To specify this scenario in Loupe, we map each
component to a Bogor thread. The threads are grouped into four
sets Buses , Stops , Personnel , and Headquarter , depending on
the actor they model. Because of their dynamic nature, we mark

3The finite-state model only comprises states and transitions corresponding
to the interaction with the P/S infrastructure to avoid cluttering the figures.



11

components in Buses and Personnel as susceptible to unan-
nounced disconnections. To express the properties to check, we
use LTL4 and the corresponding Bogor plug-in [10]. Requirement
R1 is expressed as:

∀b ∈ Buses, �(Breakdownb →
♦(∀s ∈ Stops|s.route = b.route,DisplayBreakdowns))

(3)
Requirement R2 is specified as:

∀b ∈ Buses, �(Breakdownb →
♦(∀s ∈ Stops|s.route = b.route,DisplayReplacementBuss))

(4)
Requirement R3 is specified by referring to the state of the in-filed
personnel as follows:

∀i ∈ Buses|i.passengers > P,

�(Breakdowni → ♦(∀p ∈ Personnel |p.route = i .route∧
p.stop = i .stop ± T,MovingToBreakdownp))

(5)
Requirement R4 is expressed by keeping track of an integer
timestamp embedded within messages. The sequential condition is
enforced by requiring the counter to be monotonically increasing
between subsequent notifications:

∀s ∈ Stops,

�(∀b ∈ Buses|p.route = b.route,

CurrentUpdates,b > LastUpdates,b)

(6)

where CurrentUpdates,i and LastUpdates,i are the timestamps
of the last and current notification at stop s relative to bus b.
Note that R4 does not mandate reliable communication: as long
as even a subset of messages are delivered in the correct order,
the system satisfies R4.

C. Verification

Hereafter we discuss how Loupe supports developers in ana-
lyzing the trade-offs of different design decisions, such as those
concerning the choice of P/S support and, in particular, the
guarantees it offers.

Reliability/Disconnections. In our scenario, a reasonable choice
at an initial design phase is to consider a P/S system for mobile
scenarios, e.g., assuming the guarantees provided by systems such
as the REDS middleware, described in Table II. The correspond-
ing guarantees already suffice to verify property R4.

However, Table II shows that P/S systems for mobile scenarios
rarely provide reliable communication or support to deal with
unannounced disconnections. Should such design choice be made,
Loupe would generate counterexamples that show that the lack
of the aforementioned guarantees hinder the verification of some
of the required properties. Consider R1: if notifications are not
guaranteed to reach the subscribers, bus stops may never be
notified of a breakdown along the route. Loupe indeed returns that
there exists at least one execution in which state DisplayBreak-
down in Figure 8 is never reached. Similarly, requirement R3
cannot be met if notifications addressed to members of the in-field
personnel are not delivered due to the corresponding component

4Loupe is independent of how properties are specified, as long as a suitable
Bogor plug-in is available. In our experience with Loupe so far we used LTL.
We indeed foresee the integration of our tool with approaches that generate
LTL formulae from user-friendly graphical formalisms [39], [62]. This will
ultimately provide an easy-to-use and efficient verification tool.

being temporarily disconnected. In this case, Loupe shows that
the execution never reaches state MovingToBreakdown.

Some of our requirements thus ask for reliable communication,
a functionality normally delegated to the P/S infrastructure. In
practice, this can be achieved using network-level solutions or
dedicated protocols [20].

Subscription Delays. In our scenario, both data consumers (e.g.,
in-field personnel) and data producers (e.g., buses) may join and
leave the system dynamically. Subscription delays may be an issue
in the former case, as pointed out in Section II. As members of
the in-field personnel move across routes, their subscriptions must
change accordingly, since they depend on the current route and
location. This is normally implemented by issuing an unsubscribe
operation immediately followed by a subscribe with a different
filter. Using Loupe, we verified that this behavior may invalidate
requirement R3 if the underlying P/S infrastructure suffers from
subscription delays. Indeed, if matching messages are published
before subscriptions are active, the personnel components miss
the corresponding notifications.

Loupe also showed that subscription delays may be an issue for
data producers as well. As discussed in Section II, subscriptions
may experience delays not only when issued, but also when they
are already present and must reach newly arrived dispatchers.
Consequently, some notifications may not be generated because
of the absence of the corresponding filters on dispatchers that just
joined. For instance, the counterexamples returned when checking
requirement R1 in presence of subscription delays show buses
publishing messages without generating notifications, since the
associated dispatchers are unaware of existing subscriptions.

The above aspect was neglected by the initial application
model, which was a manifestation of a common design flow
that ignores delays caused by the underlying dispatching infras-
tructure. Recognizing this issue provides insights into the most
appropriate architecture and routing protocols for the scenario. It
may suggest the use of a centralized dispatching architecture, if
possible, to minimize the delays when components join or leave.
If this is unfeasible, distributed reliability mechanisms to recover
lost messages may alternatively be employed [20].

Message Ordering. Property R4 mandates pair-wise FIFO de-
livery. A similar requirement can be met either by the com-
munication layer or at the application level. It is less evident,
however, that R2 also requires a specific message ordering, as
we realized by inspecting the counterexamples provided by Loupe
when checking R2. The model in Figure 8 prevents reaching state
DisplayReplacementBus —as required by the property to check—
without first going through state DisplayBreakdown. This en-
tails receiving the breakdown notification before the information
about the replacement bus. Because the corresponding messages
are published by different components —headquarter and buses
respectively— pair-wise FIFO is not sufficient.

To address this issue, the communication infrastructure should
provide system-wide FIFO or causal ordering. Both are difficult
to implement at the application level, thus developers may want
to push this requirement into the P/S infrastructure. System-wide
FIFO and causal ordering subsume pair-wise FIFO. Therefore,
any P/S system providing the former also provides the latter.

System Dimensioning and Message Delays. We carried out
several verification runs by setting different values for the size of
input queues, execution rates, and message delays. By exploring



12

the first two dimensions, we could determine bounds on the pro-
cessing speed of the various components and the size of their input
queues. In this context, issues may arise from the variable number
of buses involved. For instance, Loupe shows that the stop and
headquarter components must be dimensioned to tolerate a worst-
case load determined by situations when a simultaneous (and
disastrous) breakdown of all buses occurs. The same situation may
be an issue for the dispatcher itself, as messages may overflow
its input queue before reaching the subscribers. We also noticed
that dimensioning the in-field personnel component essentially
depends on the number of buses simultaneously present within 2T

stops along a given route, T being the parameter in subscription
S2 of Table III. This subscription indeed filters out all messages
outside the scope determined by T .

Regarding message delays, Loupe shows that ordering guaran-
tees must be assumed on the underlying P/S infrastructure only if
message delays are comparable with component execution rates.
For instance, if messages travel faster than the time it takes for
the headquarter to decide on a replacement bus, requirement
R2 is met regardless of message ordering. In this case, the
stop component is guaranteed to receive the notification of the
breakdown before the one regarding the replacement bus. We also
noticed that some message delays may be leveraged to address
some requirements without relying on specific P/S guarantees. For
instance, as long as message delays are random but the worst-case
(highest) delay at the bus component is lower than the best-case
(smallest) delay at the headquarter component, requirement R2 is
still met without imposing any message ordering. In the absence
of a fine-grained model of the P/S infrastructure, it would have
been difficult for developers to grasp similar interactions between
P/S guarantees and timing aspects.

VII. EMPIRICAL EVALUATION

This section provides an empirical assessment of Loupe. First,
we investigate Loupe’s scalability properties. Next, we compare
Loupe against a state-of-the-art solution for the verification of P/S
architectures [62]. In this solution, both application components
and the P/S infrastructure are modeled atop the SPIN model
checker. During the discussion, we also briefly compare Loupe’s
performance against an early prototype [5] to testify its evolution
over time. Finally, we run experiments by selectively deactivating
some of the abstractions described in Section IV, to study their
individual impact on the overall performance.

As performance metrics, we measure the number of states
generated and the peak memory consumption during the verifica-
tion, and the time to complete the verification. Note that absolute
performance is not indicative per se, given the prototypical nature
of our current implementation. Rather, our goal is to assess
the improvements w.r.t. state of the art solutions in real-world
scenarios [28], [29]. Specifically, we empirically investigated how
our techniques advance the current use of model checking in the
verification of P/S infrastructures.

We ran all experiments using a Linux desktop PC with a P4
3.2Ghz CPU and 2 Gb RAM, a standard Sun JVM version 1.5,
and the DJProf tool [25] to measure memory consumption.

A. Scalability

We use the application model illustrated in Section VI and the
numerical parameters in Table IV. Moreover, we set P = 20 and

Parameter Value(s)
Stops along a route [5..50] (step 5)
Bus routes [5..50] (step 5)
Max bus passengers 50
Buses concurrently on a route Stops along a route - 1
In-field personnel members Bus routes - 1

TABLE IV
PARAMETERS OF TRANSPORTATION SCENARIO.

T = 2 in subscription S2 of Table III. Figure 9(a) illustrates
the trends in Loupe’s performance when verifying requirements
R1 to R4 with a varying number of stops along a route and
50 total routes. As expected, the number of states examined
during the verification increases as the number of stops grows (top
figure). Consequently, the time taken to complete the verification
increases as well (middle figure). The peak memory consumption
during the verification, however, is always within the limit of
today’s desktop PCs (bottom figure). Note that this metric is
determined by the worst-case complexity of the model at hand,
independently of how large the model is. Based on these results,
future implementations of Loupe may want to trade memory
for verification time. The trends in Figure 9(a) are exponential.
Indeed, more stops along a route make the model more complex to
verify, as more combinations of different “local” states at different
stops need to be explored.

The trends shown in Figure 9(b) with a varying number of
routes and 50 stops along each route, however, appear to be
linear. We argue that this is due to the nature of the properties
we are verifying. Indeed, the properties at hand are essentially
specified on a per-route basis. Therefore, adding more routes does
not increase the complexity of the model in terms of possible
combinations of local states at different components. Rather, more
routes simply “extend” the state space with additional states that
are examined sequentially w.r.t. those already existing.

B. Comparison against a SPIN-based Tool

The SPIN-based tool we consider [62] is limited to a subset
of the P/S guarantees we model in Loupe. It only accounts for
subscription delays, message reliability, and message ordering,
and yet the modeling of these guarantees is coarser-grained w.r.t.
to Loupe. Subscription delays are considered only on the data
consumer side, whereas in Section VI we already discussed how
these are relevant also for data producers. Message reliability
does not distinguish between publisher and subscriber reliability,
and message ordering guarantees do not include total ordering or
scrunching policies when messages are prioritized. These features
are available in Loupe. Finally, the tool does not embody any
notion of time, does not model unannounced disconnections, nor
components dynamically joining/leaving the system or dynamic
subscribe/unsubscribe operations, as we do in Loupe.

Extending the SPIN-based tool to match the capabilities of
Loupe is outside the scope of this work. In some cases, this would
not even be possible. Indeed, some of the above limitations are
inherited from SPIN itself, e.g., because it prevents on-demand
creation of Promela processes and channels. In the following
comparison, we use scenarios and properties that can be verified
using the standard features and guarantees in the SPIN-based tool.

We use a simplified version of our case study, where we
circumvent the limitations of the SPIN-based tool by intentionally
ignoring timing aspects and unannounced disconnections, and
by submitting all subscriptions at start-up. A variable number



13

Pe
ak

m
em

or
y

R
un

ni
ng

tim
e

St
at

es
ge

ne
ra

te
d

(a) Varying stops (b) Varying routes

Fig. 9. Loupe performance in transport scenario.

of Bus and Personnel components is hard-wired in the model.
We mimic the dynamic join and leave of such components by
ignoring their operation until they are artificially “started”. This
happens based on a fictitious, system-wide logical clock that
triggers their operation. We configure SPIN-based tool to assume
reliable delivery of messages and system-wide FIFO ordering.
We also ran experiments using causal ordered delivery, obtaining
results similar to those described next. We set the scenario-specific
parameters as in Section VII-A.

In the following, we focus only on R3 and R4. Indeed, we
verified that the SPIN-based tool correctly verifies both R1 and
R2 also in presence of subscription delays. This is erroneous, and
stems from the fact that the SPIN-based tool ignores subscription
delays on the data producer side. Indeed, in our scenario buses
dynamically enter the system. Their breakdown notifications may
not reach the subscribers if the associated dispatcher is not yet
aware of the current subscriptions, and thus both R1 and R2
should fail. We believe that a comparison based on incorrect
assumptions would be pointless, and refrain from considering R1
and R2 further.

The SPIN models use atomic sections whenever possible.
Both bit-state hashing and partial order reduction are also used
when running the verification.

Table V reports the results of our experiments up to when
the SPIN-based tool fails because of memory overflows. This
happens quite early compared to the range of values we ex-
plore in Section VII-A. When the SPIN-based tool completes

the verification, the performance is orders of magnitude worse
compared to Loupe. This holds across all metrics we examine,
against both a varying number of routes and stops, and regardless
of the property to verify. Loupe’s performance in this setting
is comparable to the figures in Section VII-A. This is a result
of embedding the P/S infrastructure within the model checker:
the processing/memory overhead is largely independent of the
specific guarantees assumed on the underlying P/S infrastructure.

Using the same setting and property R1-R4, we also compared
Loupe against its earlier prototype [5]. We registered improve-
ments across all metrics: an average gain of 5% in peak memory
consumption, about 20% improvement in the number of states
generated during the verification, and a 27% gain in time to
complete the verification. These improvements come from our
continuing experience in the verification of P/S architectures with
Loupe, whereby we learned how to further abstract some features
of P/S infrastructures. For instance, we recognized that modeling
system-wide FIFO ordering may be achieved using a single state
that represents a specific delivery ordering, as opposed to per-
subscriber states as in our earlier prototype. This is possible
because the ordering is bound to be the same at all subscribers.

C. Impact of Individual Abstractions

To complete our discussion, we provide a fine-grained view on
the effectiveness of the domain-specific abstractions described in
Section IV. To achieve this, we manually “disable” some of them,



14

Property Loupe SPIN-based [62]
Memory (Mb) States Time (min) Memory (Mb) States Time (min)

R3 - 50 routes, 2 stops 98.65 4328 7.25 +498.21% +398.72% +423.98%
R3 - 50 routes, 10 stops 122.76 6782 12.23 +731.61% +672.33% +598.41%
R3 - 50 routes, 15 stops 138.76 7651 14.11 OM NC NC
R3 - 2 routes, 50 stops 62.95 3987 7.88 +549.61% +471.22% +433.34%
R3 - 10 routes, 50 stops 136.73 6001 12.19 OM NC NC
R4 - 50 routes, 2 stops 102.43 4409 8.11 +491.61% +422.17% +479.41%
R4 - 50 routes, 10 stops 127.76 6583 12.59 +607.61% +652.99% +598.91%
R4 - 50 routes, 15 stops 158.76 8243 15.21 OM NC NC
R4 - 2 routes, 50 stops 99.76 4981 10.72 +455.61% +477.70% +534.41%
R4 - 10 routes, 50 stops 186.54 7635 17.11 OM NC NC

OM = Out of Memory - NC = Not Concluded

TABLE V
LOUPE PERFORMANCE AGAINST A SPIN-BASED TOOL [62] IN THE TRANSPORT SCENARIO.

exposing as explicit states information that would normally be
hidden inside Loupe. By doing so, we can isolate the contribution
of the individual abstraction to the overall performance. In par-
ticular, we examine the impact of our abstractions modeling the
subscription table, multi-point communication, and causal order-
ing of messages. Their implementation can be clearly identified
and carved out. We use the model described in Section VI and
the same settings used in Section VII-A, with 50 routes and 50
stops each.

Table VI shows how Loupe’s figures in Figure 9 change in
the absence of some domain-specific abstractions. The values are
averages and deviations over all properties in our case study,
specifically obtained by selecting causal ordering of messages
to verify property R2. It appears that abstractions over com-
munication functionality have the greatest impact. In particular,
exposing as explicit states the information needed to model multi-
point communication yields more than twice as many states, and
the verification time suffers consequently. Instead, abstracting the
subscription table seems to contribute the least to performance.
Note that the effectiveness of this feature becomes more relevant
as the total number of subscriptions grows. In the transport
scenario, however, communication dominates over the filtering
functionality. The limited deviation around the average value
confirms that our reasoning is general and not an effect of the
specific property being verified.

VIII. RELATED WORK

Loupe is the main result of the research carried out by the
authors on the formal analysis of P/S architectures. The first
results of this activity [62] contributed the idea of modeling
the P/S infrastructure as an implicit, parametric component, and
the use of live sequence charts to express user properties. They
also demonstrated the inadequacy of traditional model checkers,
such as SPIN, to analyze realistic models of these applications.
In this case, the trade-offs between accuracy and performance
imposed a model of the P/S infrastructure with only a few of
the guarantees presented in Section II. This is why in [4] we
thought of a radically different solution and started conceiving the
approach described in this article. The ideas behind Loupe have
been further elaborated in [5], where we gave a first description of
the approach, and in [3], where we demonstrated how to embed
a notion of time in our approach. In parallel, we also investigated
probabilistic models by using a stochastic model checker to
account for the variability of the network infrastructure [34].

Other research efforts focus on issues that are related to our
work. Cadena, an Eclipse-based extensible modeling and devel-

opment framework for component-based systems, proposes an
approach to deal specifically with the CORBA Component Model
(CCM), and exploits an early version of Bogor to focus on its real-
time features [24], [33]. This work exploits directly the Bandera
Specification Language [18] to specify the properties to verify.
Holzmann and Joshi [37] propose a solution to augment Promela
models with fragments of C code. The aim is to provide means
to express complex data structures and user-defined functions to
guide the state generation algorithm. Both this approach and ours
provide means to customize the way the model-checker works,
but in the former case the definition of the code fragments is up
to the user, while in our case, they are predefined and readily
available.

As for the verification of P/S architectures, Garlan et. al. [28],
[29] use a custom language to define the behavior of application
components, and provide different variants for the middleware
infrastructure. These alternatives are far from fully capturing the
different characteristics of existing P/S systems. The approach
is extended in [11] by adding more expressive events, dynamic
delivery policies, and dynamic event-method bindings. These
features are then used in a framework that produces both specifi-
cations amenable for model checking and executable artifacts for
testing [63], [64]. The resulting approach only deals with a few
delivery policies, and does not capture finer-grained guarantees.

Beek et al. [7], [8] concentrate on augmenting an existing
groupware protocol with a P/S notification service, and report
on the improvements in user awareness of the development
status. Caporuscio et al. [12] propose a compositional reasoning
technique based on an assume-guarantee approach and apply it
to the development of a file sharing system on top of Siena [13].
The customization of the verification engine is the fundamental
difference between the aforementioned approaches and Loupe.

In the broader field of verification of software architectures,
Colangelo et al. [15] overcome state explosion problem by means
of slices and abstractions. The approach works at architectural
level, and the property of interest represents the slicing crite-
rion [42], along with the set of to-be-observed events and the
relationships among them. Abstraction rules reduce the state
machines without compromising their significance.

Proposals that exploit model checking to verify application
models, often rendered as UML state machine diagrams (or state
charts), also exist. Among the others, vUML [47], veriUML [16],
JACK [31], and HUGO [55] provide generic frameworks for the
verification of distributed systems where components are rendered
as state charts diagrams, but do not support any sophisticated com-
munication paradigm. These approaches provide general-purpose



15

Abstraction being disabled Memory States Time
Subscription table +18.12% (± 4.56%) +24.12% (± 8.98%) +17.11 (± 7.88%)%
Multi-point communication +84.75% (± 13.61%) +119.21% (± 21.01%) +41.39% (± 4.56%)
Causal ordering +29.12% (± 11.98%) +92.12% (± 17.11%) +39.88% (± 10.54%)

TABLE VI
IMPACT OF INDIVIDUAL ABSTRACTIONS IN THE TRANSPORT SCENARIO.

solutions implemented on top of existing model checkers (SPIN
is often the target verification engine). JACK and HUGO only
support broadcast communication, where the events produced by a
component are notified to all others. vUML and veriUML provide
explicitly declared channels to let different components com-
municate, but their characteristics remain hidden in the model.
They do not support dynamic creation/destruction of components,
and the communication topology must be fixed a priori. As for
properties, vUML simply uses SPIN to detect dead-locks, live-
locks, and other similar properties, while veriUML, JACK, and
HUGO allow users to exploit temporal logic, like CTL, ACTL and
LTL, to state the properties of interests. Inverardi et al. [39] and
Kaveh and Emmerich [41] exploit model checking to verify the
cooperation among distributed automata. The former uses SPIN to
verify properties expressed in LTL, Büchi automata, or property
sequence charts, an extension of UML 2.0 sequence diagrams.
The latter studies distributed applications based on remote method
invocation, and only addresses potential deadlocks.

IX. CONCLUSIONS

This article presented an in-depth description, discussion, and
evaluation of the most mature incarnation of Loupe. With our
tool, we flip the traditional approach to the verification of P/S
architectures by embedding the communication infrastructure
within the checking engine. By virtue of this, our domain-specific
abstraction techniques allow for accurate, parametric models of
P/S infrastructures while reducing state explosion problems. Our
evaluation assessed the effectiveness of Loupe in verifying non-
trivial distributed applications based on the P/S paradigm, giving
application designers a powerful tool to explore the trade-offs
involved in assuming different guarantees on the communication
infrastructure.

Acknowledgements. The authors wish to thank Luca Zanolin
for his early efforts in this research activity, Natasha Sharygina,
for the insightful discussion on how to apply partial order
reductions to model random message delays, Giorgio Gerosa,
for the implementation of the time extension of Loupe, and
the anonymous reviewers for their insightful comments on the
first versions of the manuscript. This research has been partially
funded by the European Commission, Programme IDEAS-ERC,
Project 227977-SMScom and by the MIUR Italy, FIRB Project
RBNE05C3AH- D-ASAP. It has also been partially supported
by SSF, the Swedish Foundation for Strategic Research, and by
CONET, the Cooperating Objects Network of Excellence, under
EU-FP7 contract number FP7-2007-2-224053.

REFERENCES

[1] ActiveMQ. Home Page. activemq.apache.org.
[2] R. Alur, C. Courcoubetis, and D. Dill. Model checking for real-time

systems. In Proc. of the 5th Int. Symposium on Logic in Computer
Science, 1990.

[3] L. Baresi, G. Gerosa, C. Ghezzi, and L. Mottola. Playing with time in
publish-subscribe using a domain-specific model checker. In Proc. of
the SAVCBS Workshop, 2007.

[4] L. Baresi, C. Ghezzi, and L. Mottola. Towards fine-grained automated
verification of publish-subscribe architectures. In Proc. of the 26th

Int. Conf. on Formal Methods for Networked and Distributed Systems
(FORTE), 2006.

[5] L. Baresi, C. Ghezzi, and L. Mottola. On accurate automatic verification
of publish-subscribe architectures. In Proc. of the 29th Int. Conf. on
Software Engineering (ICSE), 2007.

[6] L. Baresi, C. Ghezzi, and L. Mottola. Accurate Verification of Publish-
Subscribe Architectures. Technical report, Politecnico di Milano, Italy,
2008.

[7] M.-H. Beek, M. Massink, D. Latella, S. Gnesi, A. Forghieri, and
M. Sebastianis. Model checking publish-subscribe notification for
thinkteam. In Proc. of the 9th Int. Wrkshp. on Formal Methods for
Industrial Ciritical Systems (FMICS), 2004.

[8] M.-H. Beek, M. Massink, D. Latella, S. Gnesi, A. Forghieri, and
M. Sebastianis. A case study on the automated verification of groupware
protocols. In Proc. of the 27th Int. Conf. on Software Engineering
(ICSE), 2005.

[9] S. Bhola, R. E. Strom, S. Bagchi, Y. Zhao, and J. S. Auerbach. Exactly-
once delivery in a content-based publish-subscribe system. In Proc. of
the Int. Conf. on Dependable Systems and Networks, 2002.

[10] Bogor Project. Extensions for LTL Checking. projects.cis.ksu.
edu/projects/gudangbogor.

[11] J.-S. Bradbury and J. Dingel. Evaluating and improving the automatic
analysis of implicit invocation systems. In Proc. of the 9th European
Software Engineering Conf., 2003.

[12] M. Caporuscio, P. Inverardi, and P. Pelliccione. Compositional verifica-
tion of middleware-based software architecture descriptions. In Proc. of
the 19th Int. Conf. on Software Engineering (ICSE), 2004.

[13] A. Carzaniga, D.-S. Rosenblum, and A.-L. Wolf. Design and evaluation
of a wide-area event notification service. ACM Trans. Comput. Syst.,
19(3), 2001.

[14] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
1999.

[15] D. Colangelo, D. Compare, P. Inverardi, and P. Pelliccione. Reducing
software architecture models complexity: A slicing and abstraction
approach. In Proc. of the 26th Int. Conf. on Formal Methods for
Networked and Distributed Systems (FORTE), 2006.

[16] K. Compton, Y. Gurevich, J. Huggins, and W. Shen. An automatic
verification tool for UML. Technical Report CSE-TR-423-00, University
of Michigan, 2000.

[17] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu,
Robby, and H. Zheng. Bandera: extracting finite-state models from java
source code. In Proc. of the 22nd Int. Conf. on Software Engineering
(ICSE), 2000.

[18] J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby. A language
framework for expressing checkable properties of dynamic software. In
Proceedings of the 7th SPIN Wrkshp., 2000.

[19] P. Costa, G. Coulson, R. Gold, M. Lad, C. Mascolo, L. Mottola, G. P.
Picco, T. Sivaharan, N. Weerasinghe, and S. Zachariadis. The RUNES
middleware for networked embedded systems and its application in a
disaster management scenario. In Proc. of the 5th Int. Conf. on Pervasive
Communications (PerCom), 2007.

[20] P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola. Epidemic
algorithms for reliable content-based publish-subscribe: An evaluation.
In Proc. of the 24rd Int. Conf. on Distributed Computing Systems
(ICDCS), 2003.

[21] G. Cugola, M. Migliavacca, and A. Monguzzi. On adding replies to
publish-subscribe. In Proc. of the 1st Int. Conf. on Distributed Event-
Based Systems (DEBS), 2007.

[22] G. Cugola and G.P. Picco. REDS: A reconfigurable dispatching
system. In Proc. of the 6th Int. Workshop on Software Engineering
and Middleware (SEM), 2006.

[23] D. Dailey, M. Haselkorn, and D. Meyers. A structured approach to de-
veloping real-time distributed network applications for ITS deployment.
The ITS Journal, 3(1), 1997.

[24] X. Deng, M.-B. Dwyer, J. Hatcliff, and G. Jung. Model checking
middleware-based event-driven real-time embedded software. In Proc.



16

of the 1st Int. Symposium on Formal Methods for Components and
Objects, 2002.

[25] DJProf. Java Memory Profiler. www.mcs.vuw.ac.nz/djp/
djprof/.

[26] B. S. Doerr and D. C. Sharp. Freeing product line architectures from
execution dependencies. In Proc. of the 1st Conf. on Software Product
Lines, 2000.

[27] P.-Th. Eugster, P.-A. Felber, R. Guerraoui, and A.-M. Kermarrec. The
many faces of publish/subscribe. ACM Comput. Surv., 35(2), 2003.

[28] D. Garlan and S. Khersonsky. Model checking implicit-invocation
systems. In Proc. of the 10th Int. Workshop on Software Specification
and Design, 2000.

[29] D. Garlan, S. Khersonsky, and J. Kim. Model checking publish-subscribe
systems. In Proc. of the 10th Int. SPIN Wrkshp., 2002.

[30] D. Gelernter. Generative communication in Linda. ACM Computing
Surveys, 7(1), 1985.

[31] S. Gnesi, D. Latella, and M. Massink. Model checking UML statecharts
diagrams using JACK. In Proc. of the 4th Int. Symp. on High Assurance
Systems Enginering (HASE), 1999.

[32] T. H. Harrison, D. L. Levine, and D. C. Schmidt. The design and
performance of a real-time corba event service. In Proc. of the
12th Conf. on Object-oriented Programming, Systems, Languages, and
Applications (OOPSLA), 1997.

[33] J. Hatcliff, X. Deng, M.-B. Dwyer, G. Jung, and V. Ranganath. Cadena:
an integrated development, analysis, and verification environment for
component-based systems. In Proc. of the 25th Int. Conf. on Software
Engineering (ICSE), 2003.

[34] F. He, L. Baresi, C. Ghezzi, and P. Spoletini. Formal analysis of publish-
subscribe systems by probabilistic timed automata. In Proc. of the 27th

Int. Conf. on Formal Methods for Networked and Distributed Systems
(FORTE), 2007.

[35] D. Heimbigner. Adapting publish/subscribe middleware to achieve
Gnutella-like functionality. In Proc. of the 8th ACM Symposium on
Applied Computing, 2001.

[36] G. J. Holzmann. The model checker spin. IEEE Trans. Softw. Eng.,
23(5), 1997.

[37] G. J. Holzmann and R. Joshi. Model-driven software verification. In
Proc. of the 11th International SPIN Workshop, 2004.

[38] IBM Research. The Gryphon Middleware. www.research.ibm.
com/gryphon.

[39] P. Inverardi, H. Muccini, and P. Pelliccione. Charmy: an extensible tool
for architectural analysis. In Proceedings of the 10th European Software
Engineering Conf., pages 111–114, 2005.

[40] S. Kalasapur, K. Senthivel, and M. Kumar. Service oriented pervasive
computing for emergency response systems. In Proc. of the 4th IEEE
Workshop on Ubiquitous and Pervasive Health Care (UBICARE), 2006.

[41] N. Kaveh and W. Emmerich. Deadlock detection in distributed object
systems. In Proc. of the 8th European Software Engineering Conf.,
2001.

[42] T. Kim, Y.-T. Song, L. Chung, and D. T. Huynh. Software architecture
analysis: a dynamic slicing approach. ACIS Int. J. Comp. Inf. Sci., 1(2),
2000.

[43] A. D. Kshemkalyani. The power of logical clock abstractions. Distrib.
Comput., 17(2), 2004.

[44] A.D. Kshemkalyani and M. Singhal. Distributed Computing: Principles,
Algorithms, and Systems. Cambridge University Press, 2008.

[45] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7), 1978.

[46] S. Li, Y. Lin, S.H. Son, J.A. Stankovic, and Y. Wei. Event detection
services using data service middleware in distributed sensor networks.
Telecommunication Systems, 26(2), 2004.

[47] J. Lilius and I.P. Paltor. vUML: a tool for verifying UML models. In
Proc. 14th Int. Conf. on Automated Software Engineering (ASE), 1999.

[48] H. Liu and H.-A. Jacobsen. A-TOPSS: a publish/subscribe system
supporting approximate matching. In Proc. of the 28th Int. Conf. on
Very Large Data Bases, 2002.

[49] Loupe. Home Page. loupe.sf.net.
[50] P. Merino and J. M. Troya. Modelling and verification of the itu-t

multipoint communication service with spin. In Proc. of the 2nd Int.
Wrkshp. on SPIN Verification, 1996.

[51] G. Muhl, L. Fiege, and P. Pietzuch. Distributed Event-Based Systems.
Springer, 2006.

[52] OpenJMS. Home Page. openjms.sourceforge.net.
[53] A. Ouksel, O. Jurca, I. Podnar, and K. Aberer. Efficient probabilistic

subsumption checking for content-based publish-subscribe systems. In
Proc. of the 7th ACM/USENIX Int. Middleware Conf., 2006.

[54] Robby, M.-B. Dwyer, and J. Hatcliff. Bogor: an extensible and highly-
modular software model checking framework. In Proc. of the 9th

European Software Engineering Conf., 2003.
[55] T. Schäfer, A. Knapp, and S. Merz. Model checking UML state machines

and collaborations. Electronic Notes in Theoretical Computer Science,
55(3):13 pages, 2001.

[56] J. Schiefer, S. Rozsnyai, C. Rauscher, and G. Saurer. Event-driven rules
for sensing and responding to business situations. In Proc. of the 1st

Int. Conf. on Distributed Event-Based Systems (DEBS), 2007.
[57] E. Souto, G. Guimares, G. Vasconcelos, M. Vieira, N. Rosa, and

C. Ferraz. A message-oriented middleware for sensor networks. In
Proc. of the 2nd Wrkshp. on Middleware for Pervasive and Ad-Hoc
Computing, 2004.

[58] Sputnic Project. Strategies for Public Transport in Cities. www.
sputnicproject.eu.

[59] Sun Microsystems. JMS Specifications and Reference Implementation.
java.sun.com/products/jms/docs.html.

[60] A. Tanenbaum and M. van Steen. Distributed Systems: Principles and
Paradigms. Prentice Hall, 2006.

[61] TIBCO. TIBCO Rendezvous Home Page. www.tibco.com/
software/messaging/rendezvous/default.jsp.

[62] L. Zanolin, C. Ghezzi, and L. Baresi. An approach to model and
validate publish/subscribe architectures. In Proc. of the Int. Wrkshp. on
Specification and Validation of Component-Based Systems (SAVCBS),
2003.

[63] H. Zhang, J. S. Bradbury, J. R. Cordy, and J. Dingel. A transformational
framework for testing and model checking implicit invocation systems.
In Proc. of the Int. Wrkshp. on Distributed Event-Based Systems (DEBS),
2004.

[64] H. Zhang, J. S. Bradbury, J. R. Cordy, and J. Dingel. Implementation
and verification of implicit-invocation systems using source transforma-
tion. In Proc. of the 5th Int. Wrkshp. on Source Code Analysis and
Manipulation (SCAM), 2005.



17

Luciano Baresi is an associate professor in the
Department of Electronics and Information at Po-
litecnico di Milano. He was also visiting researcher
at University of Oregon at Eugene (USA) and
University of Paderborn (Germany). Luciano is a
member of the editorial board of Service Oriented
Computing and Applications. He was program co-
chair of ICECCS, FASE, ICWE and ICSOC. Lu-
ciano has authored some 100 papers in international
journals and conferences on various aspects of soft-
ware engineering. His present research interests are

in dynamic software systems, service-oriented applications, and software
architectures. Luciano has a PhD in computer science from Politecnico di
Milano.

Carlo Ghezzi is a Professor and Chair of Software
Engineering in the Department of Electronics and
Information at Politecnico di Milano. He is the
Rector’s delegate for research, past member of the
Academic Senate and of the Board of Governors,
and past Department Chair. He is an ACM Fellow, an
IEEE Fellow, and a member of the Italian Academy
of Sciences (Istituto Lombardo) He received the
SIGSOFT Distinguished Service Award. He is a
member-at-large of the ACM Council. He is a mem-
ber of the editorial board of the IEEE Trans. on

Software Engineering, Communications of the ACM, Science of Computer
Programming, Service Oriented Computing and Applications, and Software
Process Improvement and Practice. He was program chair of ESEC, program
co-chair of ICSE and general chair of ICSE and ICSOC. He has been a keynote
at ESEC, ICSE, ETAPS, and ICSOC. He is a member of the IFIP WG 2.9 on
Requirements Engineering. He has authored over 150 papers in international
journals and conferences on various aspects of programming languages and
software engineering, and 3 books. His present research interests are in
rigorous approaches to the design and evolution of software for pervasive
distributed systems.

Luca Mottola is a post-doctoral researcher at the
Swedish Institute of Computer Science (SICS). Pre-
viously, he has been a post-doctoral researcher at the
University of Trento (Italy), and a research scholar at
the University of Southern California (USC, USA).
He completed his Ph.D. at Politecnico di Milano
(Italy) in 2008 with a thesis on programming ab-
stractions for wireless sensor networks (WSNs). His
Ph.D. work, which was extensively published at
major WSN and closely related conferences, was
awarded the 2009 EWSN/CONET Best Ph.D. Thesis

Award. Luca Mottola’s software systems are used in real-world deployments,
e.g., as described in a paper appeared in 2009 at IPSN/SPOTS, for which
he received the Best Paper Award. His expertise in building WSN software
is also demonstrated by the Best Demonstration Award received at ACM
SenSys in 2007. His research interests include programming abstractions
and distributed computing on sensor networks, and automatic verification of
distributed software architectures. More information are available at www.
sics.se/˜luca.


