KOMPIES

Kompics: A Message-Passing Component Model
for Building Distributed Systems!

SICS Technical Report T2010:04
ISSN 1100-3154

Cosmin Arad Seif Haridi
icarad@kth.se seif@sics.se
Software and Computer Systems, ICT Computer Systems Laboratory

Royal Institute of Technology (KTH) Swedish Institute of Computer Science

June 1, 2010

Abstract

The Kompics component model and programming framework was designed
to simplify the development of increasingly complex distributed systems. Sys-
tems built with Kompics leverage multi-core machines out of the box and they
can be dynamically reconfigured to support hot software upgrades. A simula-
tion framework enables deterministic debugging and reproducible performance
evaluation of unmodified Kompics distributed systems.

We describe the component model and show how to program and compose
event-based distributed systems. We present the architectural patterns and
abstractions that Kompics facilitates and we highlight a case study of a com-
plex distributed middleware that we have built with Kompics. We show how
our approach enables systematic development and evaluation of large-scale
and dynamic distributed systems.

!This work has been partially funded by the European Commission, IST Project SELFMAN
(contract 34084) and by the Swedish Research Council (contract 2009-4299).

Contents

1

2

Introduction

Component model

2.1 Concepts in Kompics
2.2 Programming constructs L
2.3 Publish-subscribe event dissemination
2.4 Component initialization and life-cycle
2.5 Fault management L Lo
2.6 Client-server component interaction
2.7 Dynamic reconfigurationo oo

Patterns and abstractions

3.1 Distributed message passing
3.2 Event interceptiono Lo
3.3 Setting and canceling timers Lo
3.4 Remote service invocation L.
3.5 Higher-level abstractions

Implementation

4.1 Java runtime engine and frameworko
4.2 Multi-core component scheduling
4.3 Deterministic simulation modeo
4.4 Programming in the largeo

Case study
5.1 Peer-to-peer systems architectureo
5.2 Peer-to-peer system experimentation

Related work

Conclusions and future work

13
13
14
15
16
16

16
16
17
17
17

18
18
22

24

26

1 Introduction

A large and increasing fraction of the world’s computer systems are distributed.
Distribution is employed to achieve scalability, fault-tolerance, or it is just an artifact
of the geographical separation between the system participants. Distributed systems
have become commonplace, operating across a wide variety of environments from
large data-centers to mobile devices, and offering an ever richer combination of
services and applications to more and more users.

All distributed systems share inherent challenges in their design and implemen-
tation. Often quoted challenges stem from concurrency, node dynamism, or asyn-
chrony. We argue that today, there is an under-acknowledged challenge that re-
strains the development of distributed systems. The increasing complexity of the
concurrent activities and reactive behaviors in a distributed system is unmanageable
by today’s programming models and abstraction mechanisms.

Any first-year computer science student can quickly and correctly implement a
sorting algorithm in a general purpose programming language. At the same time,
the implementation of a distributed consensus algorithm can be time consuming
and error prone, even for an experienced programmer who has all the required
expertise. Both sorting and distributed consensus are basic building blocks for
systems, so why do we witness this state of affairs? Because currently, programming
distributed systems is done at a too low level of abstraction. Existing programming
languages and models are well suited for programming local, sequential abstractions,
like sorting. However, they are ill-equipped with mechanisms for programming high-
level distributed abstractions, like consensus.

With Kompics we aim to raise the level of abstraction in programming dis-
tributed systems. We provide constructs, mechanisms, architectural patterns, as
well as programming, concurrency, and execution models that enable programmers
to construct and compose reusable and modular distributed abstractions. We be-
lieve this is an important contribution because it lowers the cost and accelerates the
development and evaluation of more reliable distributed systems.

Protocol composition frameworks exist [Isis, Horus, Amoeba, Transis, Totem,
Arjuna, Bast, Psync, and Appia] and they are specifically designed for building dis-
tributed systems by layering modular protocols. This approach certainly simplifies
the task of programming distributed systems, however, these frameworks are often
designed with a particular protocol domain in mind and this limits their generality.

More general programming abstractions, e.g. hierarchical components, are sup-
ported by modern component models like OpenCom [8] or Fractal [6], which also
provide dynamic system reconfiguration, an important feature for evolving or self-
adaptive systems. However, the style of component interaction, based on syn-
chronous interface invocation, precludes compositional concurrency in these models
making them unfit for present day multi-core architectures.

Message-passing concurrency has proved not only to scale well on multi-core
hardware architectures but also to provide a simple and compositional concurrent
programming model, free from the quirks and idiosyncrasies of locks and threads.

With Kompics we propose a message-passing, concurrent, and hierarchical com-
ponent model with support for dynamic reconfiguration. We also propose a me-

thodology for designing, programming, composing, deploying, and evaluating dis-
tributed systems. Our key principles in the design of Kompics are as follows. First,
we tackle the increasing complexity of modern distributed systems through hier-
archical abstraction. Second, we decouple components from each other to enable
dynamic system evolution and runtime dependency injection. Third, we decouple
component code from its executor to enable different execution environments.

This paper is organized as follows. Section 2 describes the Kompics compo-
nent model and illustrates its programming constructs. Section 3 presents the ar-
chitectural patterns and abstractions supported by Kompics. Section 4 discusses
implementation details and component scheduling in different modes of execution.
Section 5 presents a peer-to-peer middleware case study, its component design and
component architecture for deployment and simulated and interactive experimenta-
tion. We survey related work in Section 6 and discuss future work and conclude in
Section 7.

2 Component model

Kompics is a component model targeted at building distributed systems by com-
posing protocols programmed as event-driven components. Kompics components
are reactive state machines that execute concurrently and communicate by passing
data-carrying typed events through typed bidirectional ports connected by channels.

This section introduces the conceptual entities of our component model and its
programming constructs, its execution model, as well as constructs enabling dynamic
reconfiguration, component life-cycle and fault management.

2.1 Concepts in Kompics

The fundamental conceptual entities in Kompics are events, ports, components,
event handlers, subscriptions, and channels. We introduce them here and show
examples of their definitions with snippets of Java code. The Kompics component
model is programming language independent, however, we use Java to illustrate a
formal definition of its concepts.

Events Events are passive and immutable typed objects having any number of
typed attributes. The type of an attribute can be any valid type in the host pro-
gramming language. New event types can be defined by sub-classing old ones.

Code 1 shows two example event type definitions in Java. (We omit the con-
structors, getters, setters, access modifiers, and import statements for the sake of
clarity.)

In our Java implementation of Kompics, all event types are descendants of a root
event type, Event. Here you can see the definition of a Message event type having
a source and a destination attribute, both of type Address. The DataMessage event
type is a subtype of the Message event type, extending it with two more attributes:
data of some type Data and an integer sequenceNumber. We denote the fact that
DataMessage is a subtype of Message by DataMessageCMessage.

1 class Message extends Event {

2 Address source;

3 Address destination;

4 }

5 class DataMessage extends Message {
6 Data data;

7 int sequenceNumber;

8}

Code 1: Ezample event type definitions.

In diagrams, we represent an event using the @Event graphical notation, where
Event is the event’s type, e.g., Message.

Ports Ports are bidirectional event-based component interfaces. A port is a gate
through which a component communicates with other components in its environment
by sending and receiving events. A port acts as a filter for the events that pass
through it in each direction. It allows a specific set of event types to pass and
disallows all other event types. We label the two directions of a port as positive
(+) and negative (—). The type of a port specifies the set of event types that can
traverse the port in the positive direction and the set of event types that can traverse
the port in the negative direction. Concretely, a port type definition consists of two
sets of event types: a “positive” set and a “negative” set. There is no sub-typing
relationship for port types.
Code 2 shows two example port type definitions in Java?.

1 class Network extends PortType {{
2 positive (Message.class) ;
3 negative (Message.class) ;
4 }}

5 class Timer extends PortType {{

6 request (ScheduleTimeout.class) ; 5) 3
7 request (CancelTimeout.class) ; -);
8 indication (Timeout.class) ; <)/

9 }}

Code 2: Ezample port type definitions.

In this example we define a Network port type which allows events of type Message
(or a subtype thereof) to pass in both (‘+’ and ‘—’) directions. The Timer port type
allows ScheduleTimeout and CancelTimeout events to pass in the ‘—’ direction and
Timeout events to pass in the ‘+’ direction.

Conceptually, you can view a port type as a service or protocol abstraction with
an event-based interface. This protocol abstraction accepts request events and de-
livers indication or response events. By convention, we associate requests with the
‘—’ direction and responses or indications with the ‘+’ direction. In our example,

2The code block in the inner braces represents an “instance initializer”. The positive and
negative methods populate the respective sets of event types. In our implementation, a port type
is a (singleton) object (for fast dynamic event filtering).

a Timer abstraction accepts ScheduleTimeout requests and delivers Timeout indica-
tions. A Network abstraction accepts Message events at a sending node (source)
and delivers these Message events at a receiving node (destination) in a distributed
system.

A component that implements a protocol or service will provide a port of the
type that represents the implemented abstraction. Through this provided port, the
component will receive the request events and trigger the indication events specified
by the port’s type. In other words, for a provided port, the ‘=’ direction is incoming
to the component and the ‘+’ direction is outgoing from the component.

In Figure 1, the MyNetwork component provides a Network port and the MyTimer
component provides a Timer port. In diagrams, we represent a port using the *[Port]
graphical notation, where Port is the type of the port, e.g., Network. We represent

components using the notation.

FailureDetector

*etword] [imer |

MyNetwork MyTimer

ScheduleTimeout
CancelTimeout

Figure 1: The MyNetwork component has a provided Network port. MyTimer has
a provided Timer port. The FailureDetector has a required Network port and a
required Timer port. Typically, a provided port is drawn on the top border, and a
required port on the bottom border of a component.

When a component uses a lower level abstraction in its implementation, it will
require a port of the type that represents the used abstraction. Through this required
port, the component will send out the request events and receive the indication or
response events specified by the port’s type. In other words, for a required port, the
‘—7 direction is outgoing from the component and the ‘+’ direction is incoming to
the component.

In Figure 1, the FailureDetector component requires a Network port and a Timer
port. Therefore, it is possible for the FailureDetector to communicate with the
MyNetwork and MyTimer components as the directions of their ports are compati-
ble. For example, the FailureDetector could send a ScheduleTimeout request to the
MyTimer and this could later send back a Timeout indication. To enable this com-
munication, however, the provided and required ports of the two components would
have to be connected.

Channels Channels are bindings between component ports. A channel connects
two complementary ports of the same type. For example, in Figure 2, channel
connects the provided Network port of MyNetwork with the required Network port of
the FailureDetector. This allows, e.g., Message events sent by the FailureDetector to
be received by MyNetwork.

Channels forward events in both directions in FIFO order.

FailureDetector

channel;

Network

MyNetwork MyTimer

Figure 2: channel, connects the provided Network port of MyNetwork with the required
Network port of the FailureDetector. channely connects the provided Timer port of
MyTimer with the required Timer port of the FailureDetector.

channel

In diagrams, we represent a channel using the graphical notation, where
channel is the name of the channel. We omit showing the channel name when it is
not relevant.

Handlers An event handler is a first-class procedure of a component. A handler
accepts events of a particular type (and subtypes thereof) and it executes reactively
when the component receives such events. During its execution, a handler may
trigger new events, mutate the component’s local state, etc. The handlers of one
component are mutually exclusive!

Code 3 shows an example event handler definition in Java.

1 Handler<Message> handleMsg = new Handler<Message> () {
2 public void handle (Message msg) {

3 messages++; component—-local state update

4 System.out .println ("Received from " + msg.source);
5)

6 1};

Code 3: Ezample event handler definition.

In diagrams, we use the graphical notation to represent an event handler,
where h is the handler’s name and Event is the handler’s type of accepted events,
e.g., Message.

Subscriptions A subscriptions binds an event handler to one component port,
allowing the handler to handle events that arrive at the component on that port.
A subscription is legal if and only if the handler’s accepted event type is allowed to
pass by the port’s type definition. In other words, the handler’s accepted event type
must be one of (or a subtype of one of) the event types allowed by the port’s type
definition to pass in the direction of the handler.

Figure 3 illustrates the handleMsg handler from our previous example being sub-
scribed to a port. In diagrams, we represent a subscription using the — graphical
notation.

In this example, the subscription of handleMsg to the Network port is legal,
because Message is in the positive set of Network. handleMsg will handle all events
of type Message or a subtype of Message, received on this Network port.

MyComponent

handleMsg
(Message)

-

Figure 3: The handleMsg event handler is subscribed to the required Network port
of MyComponent. As a result, handleMsg will be executed whenever MyComponent
receives a Message event on this port, taking the event as an argument.

Components Components are event-driven state machines that execute concur-
rently and communicate asynchronously by message-passing. In the host program-
ming language, components are objects consisting of any number of local state vari-
ables and event handlers. Components are modules that export and import event-
based interfaces, i.e., provided and required ports, respectively. Each component
has a constructor that is executed when the component is created. Each component
is instantiated from a component definition.
Code 4 shows an example component definition in Java.

1 class MyComponent extends ComponentDefinition {

2 Positive<Network> network = requires (Network.class);
2 int messages; // < local state N required port

4 public MyComponent () { // / component c

5 System.out.println ("MyComponent created.");

6 messages = 0;

7 subscribe (handleMsg, network) ;

8 }

9 Handler<Message> handleMsg = new Handler<Message> () {
10 public void handle (Message msg) {

11 messages++; // 4 component—-local state update
12 System.out.println ("Received from " + msg.source);

13 FYi
14 }

Code 4: Ezample component definition.

In this example we see the component definition of MyComponent which was
illustrated in Figure 3. Line 2 specifies that the component has a required Network
port. The requires method returns a reference to a required port, network, which
is used in the constructor to subscribe the handleMsg handler to this port (line 7).
The type of the required port is Positive(Network) because for required ports the
positive direction is incoming into the component. Both a component’s ports and
event-handlers are first-class entities which allows for their dynamic manipulation.

Components can encapsulate subcomponents to hide details and manage system
complexity. Composite components form component hierarchies rooted at a Main
component. Main is the first component created when the runtime system starts.
Main will create other functional sub-components. Since there exist no components
outside of Main, it makes no sense for Main to have any ports.

Code 5 shows the Main component specification in Java.

Main

FailureDetector

channel,

Network

MyNetwork MyTimer

Figure 4. The Main component encapsulates a FailureDetector, a MyNetwork and a
MyTimer component. Main is the root component therefore is can have no ports.

1 class Main extends ComponentDefinition {
Component myNet, myTimer, fd; '/ 4

3 Channel channell, channel2;

4 public Main() { /,

5 myNet = create (MyNetwork.class);

V]

6 myTimer = create (MyTimer.class);

7 fd = create (FailureDetector.class) ;

8 channell = connect (myNet.provided (Network.class),
9 fd.required (Network.class)) ;
10 channel2 = connect (myTimer.provided(Timer.class),
11 fd.required (Timer.class));

12 }

13 public static void main (String[] args) {
14 Kompics.createAndStart (Main.class) ;
15}

16 }

Code 5: Example definition of a Main component.

In our Java implementation, the Main component is also a Java main-class (lines
13-15 show the main method). When executed, this will invoke the Kompics runtime
system, instructing it to bootstrap, i.e., to instantiate the root component using Main
as a component specification (line 14).

In lines 5-7, Main creates its subcomponents and saves references to them. In
lines 8-9, it connects MyNetwork’s provided Network port to the required Network
port of the FailureDetector. As a result, channel is created and saved. Unless needed
for dynamic reconfiguration (see Section 2.7), channel references need not be saved.

Components are loosely coupled in the sense that a component does not know
the type, availability or identity of any components with which it communicates.
Instead, a component only “communicates” with its ports and it is up to the com-
ponent’s environment to wire up the communication.

Explicit component dependencies (required ports) enable the dynamic recon-
figuration of the component architecture, an important feature for evolving and
self-adaptive systems.

2.2 Programming constructs

We have presented the fundamental Kompics concepts. Let us now turn to the
programming constructs that operate on these concepts. Some of these constructs
you have already met in the previous examples: subscribe, create, and connect.
These constructs have counterparts to undo their actions: unsubscribe, destroy,
and disconnect, and they have the expected semantics. In Code 6 you see the code
for the destroy and disconnect constructs using our previous example.

1 class Main extends ComponentDefinition {
2 Component myNet, myTimer, fd; "/

3 Channel channell, channel?2;
4
5

public undo () { //
disconnect (myNet .provided (Networ

6 fd.required (Network.
7 disconnect (myTimer.provided (Timer.
8 fd.required (Timer.
9 destroy (myNet) ;
) destroy (myTimer) ;
11 destroy (fd) ;

Code 6: Ezample usage of the destroy and disconnect constructs.

A very important command in Kompics is trigger which allows a component to
trigger an event on one of its ports. Here we have an example where MyComponent
handles a MyMessage event due to its initial subscription to its required Network
port. Upon handling the first message, MyComponent triggers a MyMessage reply
(reversing msg’s source and destination) on its Network port and then it unsubscribes
its myMsgH handler, handling no further messages. This is illustrated in Code 7.

1 class MyComponent extends ComponentDefinition {

2 Positive<Network> network = requires (Network.class);
3 public MyComponent () { // 4 component constructo
4 subscribe (myMsgH, network) ;
5
6 Handler<MyMessage> myMsgH = new Handler<MyMessage> () {
7 public void handle (MyMessage msg) {
8 trigger (new MyMessage (msg.destination, msg.source), network);
9 unsubscribe (myMsgH, network); // < reply only once
10 }};
11 }
Code 7: Example usage of the trigger and unsubscribe constructs.

Figure 5 illustrates MyComponent. In diagrams, we represent the fact that an

event handler may trigger an event on some port, using the -2E8Ms graphical no-

tation, where Event is the type of the event being triggered.

MyComponent + +
- -
(MyMessage)
[@MyMessage QO MyMessage = © Message

Figure 5: MyComponent handles one MyMessage event and triggers a MyMessage
reply on its required Network port.

2.3 Publish-subscribe event dissemination

Components are unaware of other components in their environment. A component
can only handle events that it receives on its ports and can trigger new events on
its ports. The ports and channels forward triggered events toward other connected
components, as long as the types of events triggered are allowed to pass by the
respective port type specification. Hence, the component interaction is dictated by
the connections between sibling components configured by their parent component.

Component interaction follows a publish-subscribe model. For example, in Fig-
ure 6, every MessageA event triggered by MyNetwork on its provided Network port
is delivered both at Componentl and Component2, by channel; and channels.

Componentl Component2
handleMsg handleMsg
(MessageA) (MessageA)

Network Network

QMessageA C 0 Message

channel;

channel,
Network

MyNetwork -

Figure 6: When MyNetwork triggers a MessageA on its provided Network port, this
event is forwarded by both channel; and channel, to the required Network ports of
Componentl and Component2, respectively.

In Figure 7, however, MessageA events triggered by MyComponent are only going
to be delivered at Componentl while MessageB events triggered by MyComponent
are only going to be delivered at Component?2.

In Figure 8, whenever MyNetwork triggers a MessageA event on its Network port,
this event is delivered to MyComponent where it is handled by handlerl. Conversely,
whenever MyNetwork triggers a MessageB event on its Network port, this event is
delivered to MyComponent where it is handled by handler2.

In Figure 9, whenever MyNetwork triggers a MessageA event on its Network port,
this event is delivered to MyComponent where it is handled sequentially by both han-
dler] and handler2, in the same order in which these two handlers were subscribed
to the Network port.

Componentl Component2 O MessageA @ Message

handleMsg handleMsg O Message c O Message
(MessageA) (MessageB) @ MessageA « @ MessageB
@ MessageB QY MessageA

| Network
R -
| Network | - *
1 =
MyNetwork 2

Figure 7: When MyNetwork triggers a MessageA event on its provided Network port,
this event s forwarded by channel; to the required Network port of Componentl,
only. MessageB cevents triggered by MyNetwork on its Network port, are forwarded
by channely to the Network port of Component2 only.

Network

channel;

MyComponent

handler1 handler2 O MessageA ¢ Y Message

(MessageA) < (MessageB)) O MessageB — @ Message
QMessageA z® MessageB

QMessageB o QMessageA

Network

channel;

Network] [[hetwork] 4 -
MyNetwork -

Figure 8: MessageA events triggered by MyNetwork on its Network port, are delivered
to the Network port of MyComponent and handled by handlerl. MessageB events
triggered by MyNetwork on its Network port, are delivered to the Network port of
MyComponent and handled by handler2.

2.4 Component initialization and life-cycle

Component constructors take no arguments, so to initialize a component with some
configuration parameters you use a special Init event which you trigger on the com-
ponent’s Control port, a special port provided by every component.

Figure 10 illustrates the Control port type and a component that declares an
Init, a Start, and a Stop handler. Typically, for each component you define a spe-
cific initialization event (as a subtype of Init) which contains component-specific
configuration parameters. Code 8 shows an example Init event handler definition.

An Init event is guaranteed to be the first event handled. When a component
subscribes an Init event handler to its Control port in its constructor, the component
will not handle any other event before a corresponding Init event.

Start and Stop events allow a component (which handles them) to take some
actions when the component is activated or passivated. A component is created
passive. In the passive state, a component can receive events but it will not execute
them. (Received events are stored in a port queue.) When activated a component
will enter the active state (executing any enqueued events). Handling life-cycle

10

MyComponent

handler1 handler2
(MessageA) (MessageA)

QMessageA c® Message

Network

channel;

 Networ] “[etwor]+ -
MyNetwork =

Figure 9: When MyNetwork triggers a MessageA event on its Network port, this event
is delivered to the Network port of MyComponent and handled by both handlerl and
handler2, sequentially (figured with yellow diamonds), in the order in which the two
handlers were subscribed to the Network port.

Start
Stop
Init

startH
(Start)

MyComponent O Mylnit ¢ QInit

Figure 10: FEvery Kompics component provides a Control port by default. To this
Control port, the component can subscribe Start, Stop, and Init handlers. In general,
we do not illustrate the control port in component diagrams.

events is optional for a component.

You activate a component by triggering a Start event on its control port, and
you passivate it by triggering a Stop event. Code 9 shows an example snippet of
code possibly executed by a parent of myComponent.

When a composite component is activated (or passivated), its subcomponents
are recursively activated (or passivated). The createAndStart construct introduced
in the Main component example, both creates and starts the Main component.

2.5 Fault management

Kompics enforces a fault-isolation and management mechanism inspired by Er-
lang [3]. An exception or software fault thrown and not caught within an event
handler is caught by the runtime system, wrapped into a Fault event and triggered
on the Control port, as shown in Figure 11.

A composite component may subscribe a Fault handler to the control port of its
subcomponents. The component can then replace the faulty subcomponent with a
new instance or take other appropriate actions. If a Fault is not handled in a parent
component it is further propagated to the parent’s parent and so on until the Main
component. If not handled anywhere, ultimately, a system fault handler is executed
which dumps the exception to standard error and halts the execution.

11

1 class MyComponent extends ComponentDefinition {

int myParameter;

public MyComponent () { // < comx
subscribe (startH, control); // < =
subscribe (initH, control);

}

Handler<MyInit> initH = new Handler<MyInit> () {
public void handle (MyInit init) {

myParameter = init.myParameter;

Ol o W N

O © 0w =N O

i
11 Handler<Start> startH = new Handler<Start> () {

12 public void handle (Start event) {
13 System.out.println ("started") ;
14 }};

Code 8: FEzample Init and Start handlers in a component definition.

1 trigger (new Start (), myComponent.control ());
2 trigger (new Stop (), myComponent.control ());
3 trigger (new MyInit (42), myComponent.control());

Code 9: Triggering Start, Stop, and Init events on the Control port of a subcomponent.

2.6 Client-server component interaction

Assume you have a server component, i.e., a component providing a service with
an interface based on requests and responses (e.g., Timer). Further assume you
have multiple instances of a client component, using the service. Given the publish-
subscribe semantics described in Section 2.3, what happens is that when one of the
clients issues a request and the server handles it and issues a response, all clients
receive the response. For this situation, Kompics provides two special types of
events: Request and Response. These should be used in any port type definition
which represents a request-response service with potentially multiple clients.

When a Request event is triggered by a client, as the event passes through dif-
ferent channels and ports in the architecture, it saves them on a stack. When the
server generates a Response event, it borrows the Request’s stack. As the Response
event passes through the architecture it pops its stack one element at a time to see
where to go next. This way, only the initiator client will get the Response event.

.
‘.
-

Handl ‘.Iféult(e) - ot
someHandler Stop
(SomeEvent)h74 1 Init

MyComponent

Figure 11: Uncaught exceptions thrown in event handlers are caught by the runtime,
wrapped in a Fault event and triggered on the control port.

12

2.7 Dynamic reconfiguration

Kompics supports dynamic reconfiguration of the component architecture without
loss of events. We highlight here the most common type of reconfiguration operation:
swapping a component instance with a new instance.

Channels support four commands to enable safe dynamic reconfiguration: hold,
resume, plug, and unplug. The hold command puts the channel on hold. The chan-
nel stops forwarding events and starts queuing them in both directions. The resume
command has the opposite effect, resuming the channel. When a channel resumes,
it first forwards all enqueued events, in both directions, and then keeps forwarding
events as ususal. The unplug command, unplugs one end of a channel from the port
where it is connected, and the plug command plugs back the unconnected end to
a (possibly different) port. To replace a component ¢l with a new component c¢2
(of the same type), one passivates ¢l and puts on hold all channels connected to
cl’s ports. These channels are then unplugged from the ports of ¢l and plugged
into the respective ports of c2. cl is instructed to dump its state into XML and c2
is initialized using the dumped state of cI. All channels now connected to c2 are
resumed, c2 is activated and cI is destroyed.

3 Patterns and abstractions

Now that you are familiar with the basics of the component model let us look at a
few of the idioms, patterns, and abstractions supported in Kompics.

3.1 Distributed message passing

You send messages between remote nodes in a distributed system using the Network
abstraction. Typically, when you implement a protocol as a component, you define
component-specific protocol messages as subtypes of the Message event.

In Figure 12 you see two processes sending Ping and Pong messages to each other
as part of a protocol implemented by MyComponent. When we designed MyCompo-
nent we knew we needed to handle Ping and Pong messages, so we defined these
message types so we could subscribe pingH and pongH for them. Being subtypes of
Message, both Ping and Pong have source and destination Address attributes. When
MyComponent in Mainl wants to send a ping to MyComponent in Main2, it creates
a Ping message using its own address as source, and Main2’s address as destina-
tion, and triggers it on its required Network port. This Ping event is handled by
MyNetwork in Mainl, which marshals it and sends it to MyNetwork in Main2, which
unmarshals it and triggers it on its Network port. The Ping event is delivered to
MyComponent in Main2 where it is handled by pingH.

The MyTimer component is configured in each process with a network address
it should listen on for incoming connections. MyNetwork automatically manages
network connections between processes. Each message type can optionally set a
transport attribute which can be UDP or TCP (default). MyNetwork will send the
message on a connection of the desired type.

13

Mainl Main2

MyComponent MyComponent @ Ping c Y Message
@ Pong c Y Message

pingH
(Ping)

" [vetwork]

| Network [— Network
MyNetwork MyNetwork + | Message
- Message

Figure 12: Two processes send Ping and Pong messages to each other over an IP
network.

3.2 Event interception

Event interception is a fundamental pattern supported in Kompics. It allows you
to extend the functionality of a system without changing it. For example, look at
the architecture in Figure 6. Assume that you start only with Componentl which
processes MessageA events. Without making any changes to Componentl you can
add Component2 to perform some non-functional task, e.g., keep statistics on how
many MessageA events were processed.

You can also interpose a component between two components connected by a
channel, to perform complex filtering of events, to delay events, or implement some
form of admission control for events. Recall the Ping-Pong example in Figure 12. In
Figure 13 we interpose a SlowNetwork between MyComponent and MyNetwork. The
SlowNetwork delays every message sent by MyComponent by some random delay. In
essence we emulate a slower network. (SlowNetwork could be configured to emulate
specific fine-grained network conditions.) This allows you to experiment with the
(unmodified) Ping-Pong protocol on a network with special properties.

Mainl Main2
MyComponent MyComponent

i::I::'l\letmrk' *INetwork

il Network | i Network
SlowNetwork SlowNetwork

:I Network I—i' Timer I—
| |
:I Network I— I—:{ Timer I— m
M

MyNetwork yTimer MyNetwork || MyTimer

Figure 13: We interposed a SlowNetwork between MyComponent and MyNetwork to
emulate network latency.

14

3.3 Setting and canceling timers

In Kompics alarms and timeouts are provided as a service abstraction through the
Timer port. If this guideline is followed, different implementations of the Timer ab-
straction can be used for different execution environments. We illustrated the Timer
port in Figure 1. It accepts two request events, ScheduleTimeout and CancelTimeout,
and it delivers a Timeout indication event.

In Figure 14 we illustrate a component that uses a Timer abstraction. Typically,
when designing a component (e.g., MyComponent), one would also design specific
timeout event, here MyTimeout, as a subtype of the Timeout event. Multiple timeout
event types can be defined for different timing purposes, so a component can have
different event handlers for different timeouts. Code 10 shows how you can schedule
a timeout.

1 class MyComponent extends ComponentDefinition {
Positive<Timer> timer = requires (Timer.class);
UUID timeoutlId; // < used for canceling
Handler<Start> startHandler = new Handler<Start> () {
public void handle (Start event) {
long delay = 5000; // milliseconds
ScheduleTimeout st = new ScheduleTimeout (delay) ;
st.setTimeoutEvent (new MyTimeout (st)) ;
timeoutId = st.getTimeoutId();
trigger (st, timer);

© 00 O kW N

=
o

Code 10: Scheduling a timeout.

MyComponent
startH timerH Y —
((Start)) ((MyTimeout) — +
‘Schedulé’ﬂ... —| ScheduleTimeout

CancelTimeout

Timeout +

©MyTimeout = Q@ Timeout

MyTimer

Figure 14: MyComponent uses the Timer abstraction provided by MyTimer.

To cancel a previously scheduled timeout, a component will issue a CancelTime-
out request on a required Timer port. The CancelTimeout event needs the unique
identifier of the scheduled timeout. Code 11 shows how you cancel a timeout.

1 CancelTimeout ct = new CancelTimeout (timeoutId) ;
2 trigger (ct, timer);

Code 11: Canceling a timeout.

15

3.4 Remote service invocation

A common idiom in many distributed systems is sending a request to a remote node
and waiting for a response up to a timeout. This entails scheduling a timeout to
be handled in case the response never arrives, e.g., if the remote node crashed, and
canceling the timeout when the response does arrive. One recommended practice
is to send the unique timeout identifier in the request message and echo it in the
response message. When the client node gets the response, it knows which timer to
cancel. Another recommended practice is to keep a set of all outstanding requests
(their timeout ids). This helps with handling either the response or the timeout
exclusively: upon handling either the response or the timeout, the request is removed
from the outstanding set. Neither the response nor the timeout is handled if the
request is not outstanding anymore.

3.5 Higher-level abstractions

In Section 3.1 we showed a point-to-point communication abstraction. In Kompics
we have designed and implemented a wide array of higher level fault-tolerant dis-
tributed systems abstractions such as: reliable broadcast, failure detectors, leader
election, consensus, atomic shared memory registers, replicated state-machines, vir-
tual synchrony, etc. [11]. We show some of these with the case study in Section 5.

4 Implementation

We have implemented Kompics in Java. In this section we discuss some of the im-
plementation details related to the runtime system, component scheduling, different
modes of execution, and component dependency management.

Kompics is publicly released as an open-source project. The source code for
the Java implementation of the Kompics runtime, component library, peer-to-peer
framework, and case studies presented here, are all available at http: //kompics.sics.se.

4.1 Java runtime engine and framework

The Kompics execution model admits an implementation with one lightweight thread
per component. Since Java has only heavyweight threads, we use a pool of worker
threads for executing components. Every component is marked as idle (has no
events), ready (has some events, waiting for worker), or busy (executing an event
now). Each worker has a dedicated queue of ready components. Workers process
one component at a time and one component cannot be processed by multiple work-
ers at the same time. Thus, we guarantee the Kompics execution model whereby
handlers of one component instance execute mutually exclusively. The Kompics
runtime system supports pluggable component schedulers and allows you to provide
your own scheduler. The next subsection highlights the default scheduler.

The MyNetwork component embeds the Apache MINA network library and im-
plements automatic connection management and message serialization and Zlib com-
pression.

16

We are currently investigating a Kompics front-end in Scala. This could imme-
diately leverage the existing Java components and runtime system. Also, it has the
potential for more expressive code and for avoiding inversion of control.

4.2 Multi-core component scheduling

Workers may run out of ready components to execute, in which case they engage in
work stealing [5]. Work stealing involves a thief, a worker with no ready components,
contacting a wictim, a worker with the highest number of ready components, and
stealing a batch of half of its ready components. Stolen components are moved from
the victim’s work queue to the thief’s work queue. From our experiments, batching
shows a considerable performance improvement over stealing small numbers of ready
components. To improve concurrency, the work queue is a lock-free queue, meaning
that the victims and thieves can concurrently consume ready components from the
queue.

4.3 Deterministic simulation mode

We provide a special scheduler for system simulation. The system code is executed
in deterministic simulation provided it does not create threads.

Next section describes this mechanism in more detail, in the context of the case
study simulation architecture.

4.4 Programming in the large

We used Apache Maven to organize the structure and manage the artifacts of the
Kompics implementation. The complete framework counts more than 100 modules.

We organize the various Kompics concepts into abstraction and component pack-
ages. An abstraction package contains a port together with the request and indica-
tion events of that port. A component package contains the implementation of one
component with some component-specific events (typically subtypes of events de-
fined in required ports). The source code for an abstraction or component package is
organized as a Maven module and the binary code is packaged into a Maven artifact,
a JAR archive annotated with meta-data about the package’s version, dependen-
cies, and pointers to web repositories from where (binary) package dependencies are
automatically fetched by Maven.

In general, abstraction packages have no dependencies and component packages
have dependencies on abstraction packages for both the required and provided ports.
This is because a component implementation will use event types defined in abstrac-
tion packages, irrespective of the fact that an abstraction is required or provided.

Maven enables true reusability of protocol abstractions and component imple-
mentations. You can start a project for a new protocol implementation and just
specify what existing abstractions your implementation depends on. They are au-
tomatically fetched and made visible in your project. This approach also enables
deploy-time composition.

17

5 Case study

In order to put into perspective the Kompics concepts, patterns, and abstractions,
we present a case study where we used Kompics to develop, deploy, stress-test, and
simulate a distributed hash-table with atomic consistency. This is a (non-trivial)
large-scale, self-organizing distributed system with dynamic node membership. Each
node in the system handles a complex mix of protocols for failure detection, topology
maintenance, routing, replication, group membership agreement, and data consis-
tency. In the next section we highlight the component based software architecture of
the system and later we show how the same system implementation designated for
deployment is executed in simulation mode for performance evaluation. We show
how to specify large-scale experiment scenarios that can be used both for simulation
and stress-test interactive execution.

5.1 Peer-to-peer systems architecture

We implemented a component framework with protocols reusable in any peer-to-
peer system. Every P2P system needs a bootstrap procedure to assist newly arrived
peers in finding a peer which is already in the system and engage in a join protocol.
For this, we have a BootstrapServer component which maintains a list of online peers
for a particular system instance. Every peer embeds a BootstrapClient component
which provides a Bootstrap service to the peer. When a peer starts, it issues a
BootstrapRequest to the client which retrieves from the server a list of alive peers
and delivers a BootstrapResponse to the peer. The peer engages in a join protocol
with one or more the returned peers and after joining it sends a BootstrapDone event
to the client, which, from now on, will send periodic keep-alives to the server letting
it know this peer is still alive. The server evicts peers who stop sending keep-alives.

We also provide a monitoring protocol where a client component on each peer
periodically inspects the status of various components of the peers and reports this
to a monitoring server. The server aggregates the status of peers, compiles a global
view of the system and presents this global view on a web page. The bootstrap and
monitoring servers are illustrated in Figure 15, within executable main components.

BootstrapServerMain MyMonitorServerMain
MyWebServer MyWebServer
_I: Web I: _I: Web I:
+| Web I

BootstrapServer

MyNetwork MyTimer MyNetwork MyTimer

Figure 15: Generic P2P bootstrap and monitoring servers erposing a user-friendly
web interface for troubleshooting.

We embed the Jetty web server library in the MyWebServer component which

18

embeds every HT'TP request into a WebRequest event and triggers it on a required
a Web port. Both servers provide the Web abstraction, accepting WebRequests and
delivering WebResponses containing HTML pages with the peer list and global view,
respectively.

In Figure 16 we show the component architecture designated for system deploy-
ment. Here we have an executable main component which embeds peer, network,
timer, web server, and application components. The peer exposes its status through
a Web abstraction. The HTML page representing the peer’s status will typically con-
tain hyperlinks to the neighbor peers and to the bootstrap and monitoring server.
This enables users/developers to browse the P2P network over the web, and in-
spect /troubleshoot the state of each remote peer. The MyApplication component
may embed a GUI or CLI user interface and issue functional requests (or accept
indications) to the MyPeer component over the MyPeerPort. (MyApplication, like
the MyNetwork or MyTimer components may depart from the model guidelines and
embed threads, however since it is never executed in simulation mode this poses no
problem.)

MyPeer MyApplication

MyPeerPort

MyWebServer

—1
MyPeer
il NetworkI il Timer I
INetwor I {Timerj|
MyNetwork MyTimer

Figure 16: Component architecture for one peer node. This architecture is desig-
nated for system deployment where every peer executes on a different machine and
communicates with other peers by sending messages over an IP network.

The MyPeer component is detailed in Figure 17. We have already discussed
the bootstrap and monitoring clients earlier. The PingFailureDetector component
implements an eventually perfect failure detector by sending Ping messages to and
expecting Pong messages from monitored neighbored peers. The Chord component
uses the FailureDetector abstraction and implements the Chord structured overlay
network (SON) providing a SON abstraction for routing and lookups. MyReplication
implements a key-based replication scheme on top of SON providing a Replication
abstraction.

This enables us to switch the replication scheme of the system by replacing the
MyReplication component with a different implementation. The MyGroupMember-
ship component implements a group membership abstraction (GM) maintaining a
consistent view of member peers in each replication group. The MyDHT component
uses the SON, Replication, and GM abstractions, to implement a distributed hash-
table (DHT) with atomic consistency, and provides the DHT abstraction accepting
put and get operations.

19

[Mvbeerbort | []

il MyPeerPort | il Web I

MyPeer T
1 Web I

MyMonitorClient J L MyWebApplication

L_{Network|{ Timer| stat | L stat | o son |- pHT |—{ M |-

st —*orr1
l Stat I l DHT I |J

MyDHT MyGroupMembership

UNet...| < Timer | < 6M |-Repl... | son Network|—{ SON |-

+| Stat I I SON Stat |—+| Replication I—
Chord MyReplication
—|Network|—|T|mer|—| FailureDetector Networkl—_l SON I—

| S t] | FailureDetector |—| Stat |—
BootstrapClient PingFailureDetector

—_@ _IITimerII _INetworkI _ITimerI

Figure 17: The architecture of the MyPeer component. We omit the channels for
clarity. In this scope, all provided ports are connected to all required ports of the
same type.

Every functional component provides a Stat port, accepting StatusRequests and
delivering StatusResponses to MyMonitorClient and MyWebApplication. MyWebAppli-
cation provides a web interface to the peer, dumping the status of the peer compo-
nents and allowing users to issue interactive commands to the DHT or SON.

We have presented the component architecture of a deployable P2P system. We
have actually deployed this system on the PlanetLab testbed and also on our local-
area cluster. Using the web interface to interact with the DHT (configured with a
replication degree of 5) on the local-area network, resulted in end-to-end latencies
of ~10-15ms for get operations and ~15-20ms for put operations. This includes the
LAN latency (two message round-trips, so 4 times), message serialization (4x), en-
cryption (4x), decryption (4x), deserialization (4x), and Kompics runtime overheads
for message dispatching and execution.

We now show how the same system code is executed in simulation mode for
stepped debugging or repeatable large-scale performance evaluations. In Figure 18
you see the component architecture for simulation mode. Here, a generic P2pSimulator
interprets an experiment scenario (described in the next subsection) and issues com-
mand events to a system-specific simulator component, MySimulator, through a My-
Experiment port. An issued commands may tell MySimulator to create and start a
new peer, to stop and destroy an existing peer, or to instruct an existing peer to
execute a system-specific operation (through its MyPeerPort).

The P2pSimulator also provides the Network and Timer abstractions and imple-
ments a generic discrete-event simulator. This whole architecture is executed in
simulation mode, i.e., using a simulation component scheduler which executes all
components that have received events and when it runs out of work it passes control
to the P2pSimulator to advance simulated time.

20

MySimulationMain

1
Web
MySimulator B |
MyPeerPort Web . lw_ebl
Sypeet MyMonitorServer
- Networkl:,-:ITimer yiVionitorserve

T' NetworkI—_| Timer |—

—| Network|—| T|mer |—| MyExperiment I—

| X web
—
—| NetworkH Tlmer H MyExperiment |— BootstrapServer
P2pSimulator L Network|— Timer |-

Figure 18: Component architecture for whole-system simulation. All peers and
servers execute within a single OS process in simulated time.

In simulation mode, the bytecode of the system is instrumented to intercept all
calls for the current time and return the simulated time. Therefore, without editing
the system code at all, the system can be executed deterministically in simulated
time. JRE code for secure random number generators is also instrumented to use the
same seed and achieve determinism. Attempts to create threads by the system code
are also intercepted and the simulation halts since it cannot guarantee deterministic
execution.

Using the same experiment scenario used in simulation, the same system code can
be executed in an interactive stress-testing execution mode. In Figure 19 you see the
respective component architecture. This is similar to the simulation architecture,
however, we use our regular component scheduler and the system executes in real-
time, albeit driven from the same experiment scenario.

MyExecutionMain
+[
Web
Ll B — MyWebServer
[Web |
— Web |
MyPeerPort Web + I_IWeb
MyPeer .
Network| |Timer MyMonitorServer
- - —_|Network|—_|Timer|—
—| Network|—| Tlmer |—| MyExperiment I— S v
|| Web
—l
—| Network|—| Tlmer |—| MyExperiment |— BootstrapServer
P2pOrchestrator —_| NetworkI—_| Timer |—

Figure 19: Component architecture for whole-system interactive stress-test execution.
All peers and servers execute within a single OS process in real time.

The P2pSimulator was replaced with a P2pOrchestrator which provides the Net-

work and Timer abstractions and drives the execution from an experiment scenario.
During development it is recommended to incrementally make small changes

21

and quickly test their effects. The interactive execution mode helps you with this
routine since it enables you to quickly run a small-scale distributed system (without
the need for deployment or manual launching of multiple processes) and interact
with it using a web browser.

All components whose name does not start with “My...” as well as, MyNetwork,
MyTimer, and MyWebServer are generic and completely reusable. All other compo-
nents in this example are system-specific. They serve as an architectural design
pattern and with slight changes they can be adapted for different systems.

5.2 Peer-to-peer system experimentation

We designed a Java domain-specific language (DSL) for expressing experiment sce-
narios for P2P systems. Such experiment scenarios are interpreted by, e.g., P2pSimulator
or P2pOrchestrator. We now give a brief description of our DSL with a simple ex-
ample scenario.

A scenario is a parallel and/or sequential composition of stochastic processes.
We call a stochastic process, a finite random sequence of events, with a specified
distribution of inter-arrival times. Code 12 shows an example stochastic process.

1 StochasticProcess boot = new StochasticProcess () {{
2 eventInterArrivalTime (exponential (2000)); // "Zs
3 raise (1000, chordJoin, uniform(16)); // 1000 joins

4t};

Code 12: Example definition of a “stochastic process”.

This will generate a sequence of 1000 chordJoin operations, with an inter-arrival
time between two consecutive operations extracted from an exponential distribution
with a mean of 2 seconds. The chordJoin operation is a system-specific operation
with 1 parameter. In this case, the parameter is the Chord identifier of the joining
peer, extracted from an uniform distribution of [0..2'%]. Code 13 shows how the
chordJoin operation is defined.

1 Operationl<Join, BigInteger> chordJoin

2 = new Operationl<Join, BigInteger> () {

3 public Join generate (BigInteger nodeKey) {

4 return new Join (new NumericRingKey (nodeKey)) ;
5 }

61};

Code 13: Example definition of a system-specific operation taking one parameter.

It takes 1 Biglnteger argument (extracted from a distribution) and generates a
Join event (triggered by the P2pSimulator on MyPeerPort). In Code 14 we define
a churn process which will generate a sequence of 1000 churn events (500 joins
randomly interleaved with 500 failures), with an exponential inter-arrival time with
a mean of 500 milliseconds.

In Code 15 we define a process to issues some Lookup events.

The chordLookup operation takes 2 Biglnteger parameters, extracted from a
(here, uniform) distribution, and generates a Lookup event that tells MySimulator

22

1 StochasticProcess churn = new StochasticProcess ()

2

3 raise (500, chordJoin, uniform(16));
4 raise (500, chordFail, uniform(16));
5

FYi

Code 14: Example definition of a churn stochastic process.

1 StochasticProcess lookups = new StochasticProcess () {{
2 eventInterArrivalTime (normal (50)) ; // ~50ms
3 raise (5000, chordLookup, uniform(16), uniform(14));

at};

Code 15: Example definition of process that issues lookup operations.

to issue a lookup for key key at the peer with identifier node. As you can see in
Code 16, a random peer in 0..2'6 will issue a lookup for a random key in 0..2'4.
5000 lookups are issued in total, with an exponential inter-arrival time with mean
50 milliseconds.

1 Operation2<Lookup, BigInteger, BigInteger> chordLookup
= new Operation2<Lookup, BigInteger, BigInteger> () {
public Lookup generate (BigInteger node,BigInteger key) {
return new Lookup (new NumericRingKey (node),
new NumericRingKey (key)) ;

N O Ot W N

Code 16: Definition of a lookup operation taking two parameters.

We defined three stochastic processes: boot, churn, and lookups. Code 17 shows
how we can compose them.

1 boot.start () ;

2 churn.startAfterTerminationOf (2000, boot);
3 lookups.startAfterStart0Of (3000, churn);

4 terminateAfterTerminationOf (1000, lookups);

Code 17: Sequential and parallel composition of stochastic processes.

The experiment scenario starts with the boot process. 2 seconds (simulated time)
after this process terminates, starts the churn process. 3 seconds after churn starts,
the lookups process starts, now working in parallel with churn. The experiment
terminates 1 second after all lookups are done.

Putting it all together, Code 18 shows how you define and execute an experiment
scenario using our Java DSL:

Note that the above code is an executable Java main-class. It creates a scenariol
object, sets an RNG seed, and calls the simulate method passing the simulation ar-
chitecture of your system as an argument (line 14). If you want to run an interactive
experiment, comment out line 14 and uncomment line 15. This will run your inter-
active execution architecture and drive it from the same scenario. You will be able

23

1 class MySimulationExperiment ({

2 // system-specific operations definitions

3 static Scenario scenariol = new Scenario () {
4 StochasticProcess boot = ... // see above
5 StochasticProcess churn =

6 StochasticProcess lookups =

7 boot.start ()

8 churn.start...

9 lookups.start. ..

10 terminate. ..

11 }

12 public static void main(String[] args) {

13 scenariol.setSeed (rngSeed) ;

14 scenariol.simulate (MySimulationMain.class) ;
15 // scenariol.execute (MyExecutionMain.class);// + ior
16 }

17 }

Code 18: Using a scenario to drive a simulation or a real-execution experiment.

to interact with and monitor the system over the web during while the experiment
is running.

We showed the component based software architecture of a non-trivial distributed
system and how the same system implementation designated for deployment can be
executed in simulation mode or interactive whole-system execution mode, driven
from the same experiment scenario.

We ran simulations of this system and we were able to simulate a system of
16384 peers in a in 64-bit JVM with a heap size of 4GB. The ratio between the real
time taken to run the simulation and the simulated time was roughly 1. For smaller
system sizes we observe a much higher simulated time compression effect, as you
can see in Table 1.

Peers | Time compression
64 475x
128 237.5x
256 118.75x
512 59.38x
1024 28.31x
2048 11.74x
4096 4.96x
8192 2.01x

Table 1: Time compression effects observed when simulating the system for 4275
seconds of simulated time.

6 Related work

Kompics is related to work in several areas, including: concurrent programming

24

models [4, 23, 25], reconfigurable component models for distributed systems [6, 8, 24],
reconfigurable software architectures [17, 20, 9, 2], and event-based frameworks for
building distributed systems [14, 15, 22, 26].

Kompics’s message-passing concurrency model is similar to the actor model [1],
of which Erlang [4], the Unix process and pipe model, Kilim [25] and Scala [23] are,
perhaps, the best known examples. Similar to the actor model, message passing
in Kompics involves buffering events before they are handled in a first-in first-out
(FIFO) order, thus, decoupling the thread that sends an event from the thread
that handles an event. In contrast to the actor model, event buffers are associated
with component ports, so each component can have more than one event queue,
and ports are connected using typed channels. Channels that carry typed messages
between processes is also found in other message-passing systems, such as Singularity
[10]. Connections between processes in the actor models are unidirectional and
based on process-ids, while channels between ports in Kompics are bi-directional and
components are oblivious to the destination of their events (ports may be connected
to potentially many other components).

Kompics’s execution model is similar to the latest version of Erlang which is
based on separate run queues per scheduler [18] (similar to Kompics’s multiple
workers with private work queues). FErlang’s schedulers load balancing algorithm
differs from Kompics, where a combination of work migration and stealing is used.
In Erlang, the system measures the total number of runnable processes four times
per second, and schedulers compare their local workload with the average global
workload then take a local decision on whether to migrate their work to a different
scheduler. Workers with no work will try and steal work. In Kompics, we adopt
a batched work stealing approach. Scala supports concurrent schedulers that take
work from a shared global work queue [12], which becomes a bottleneck in multi-core
systems. Kilim’s execution model, in contrast, is based on active actors and Kilim’s
lightweight thread model, where an actor is executed by its own lightweight thread
[25].

The main features of the Kompics component model, such as the ability to com-
pose components, support for strongly-typed interfaces, and explicit dependency
management using ports, are found in many existing component models, such as
ArchJava [2], OpenORB [8], Fractal [6] and LiveObjects [24]. However, with the
exception of LiveObjects, these component models are inherently client-server mod-
els, with RPC interfaces. In software architectures, such as ArchJava [2], ports
are used to manage explicit dependencies between components. LiveObjects has
the most similar goals to Kompics of supporting encapsulation and composition of
distributed protocols using components. Its endpoints are similar to our ports, pro-
viding bi-directional message-passing, however, endpoints in LiveObjects support
only one-to-one connections. Other differences with Kompics include: the lack of
a concurrency model beyond shared-state concurrency, the lack of reconfigurability,
and the lack of support for hierarchical components. In LiveObjects, composite
components as a special type of component.

Although there is support for dynamic reconfiguration in some actor-based sys-
tems, such as Erlang, Kompics’s reconfiguration model is based on reconfiguring
strongly typed connections between components. Component-based systems that

25

support similar runtime reconfiguration functionality use either reflective techniques
[19], such as OpenORB [8], or dynamic software architecture models, such as Frac-
tal [6], Rapide [17], and ArchStudio4/C2 [9]. Kompics’s reconfiguration model is
most similar to the dynamic software architecture approaches, but a major differ-
ence is that the software architecture in Kompics is not specified explicitly in an
architecture definition language, rather it is implicitly constructed at runtime. This
is similar to the ArchStudio4/C2 approach.

Kompics support for event-based programming to compose protocol layers is
similar to Wids [16] and Mace [14], both of which are frameworks for building P2P
systems. Appia [22] is another related protocol composition framework. These
systems support distributed messaging using events that encapsulate routing infor-
mation and this contrasts with the alternative for distributed objects that establish
sessions between network endpoints, as in CORBA [13] and WS-Session for web
services [7]. However, none of these frameworks provide general component or con-
currency models.

Other related work includes the Pi-Calculus [21] that uses names and co-names
for actions, similar to our notion of the polarity of ports. In terms of programming,
our event-based programming model results in an inversion of control programming
style, similar to programming for graphical user interface frameworks, such as Java
Swing.

7 Conclusions and future work

We are witnessing a boom in distributed services and applications. Many companies
independently develop complex distributed systems from the ground up. The current
situation is comparable to the times when companies were independently developing
different networking architectures before ISO/OSI model [27] came along. We be-
lieve that industry would benefit tremendously from the availability of a systematic
approach to building distributed systems.

We hope this work will open up the path to more systematic research on dynam-
ically evolving distributed system architectures, currently an under-explored area.

We are currently working on a more expressive programming model to enable
event-driven programming without inversion of control. Future work includes dis-
tributed component deployment and dependency management to enable autonomously
evolving distributed systems and transactional reconfiguration of the component ar-
chitecture. We plan to extend our simulation environment with a stochastic model
checker to improve the testing and debugging of Kompics-based systems. A particu-
lar implementation of a distributed abstraction is replaced with an implementation
that generates random admissible executions for the replaced abstraction. This en-
ables the stochastic verification of the overlying abstractions which are subject to
various legal behaviors.

We have successfully used the Kompics component model as a teaching tool in
two courses on distributed systems. Kompics enabled students both to compose
various distributed abstractions and to experiment with large-scale overlays and
content-distribution networks both in simulation and real execution. Students were
able both to deliver running implementations of complex distributed systems and

26

to gain insights into the dynamics of those systems. We believe that making dis-
tributed systems easier to program and experiment with, will significantly improve
the education process in this field and will lead to better equipped practitioners.

References

[1]

Gul Agha. Actors: a model of concurrent computation in distributed systems. MIT Press,
Cambridge, MA, USA, 1986.

Jonathan Aldrich, Craig Chambers, and David Notkin. Architectural reasoning in archjava.
In Furopean Conference on Object Oriented Programming ECOOP 2002, pages 185-193, 2002.

Joe Armstrong. Making reliable distributed systems in the presence of software errors. PhD
dissertation, The Royal Institute of Technology, Sweden, 2003.

Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic Book-
shelf, July 2007.

Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by
work stealing. J. ACM, 46(5):720-748, 1999.

Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-Bernard Ste-
fani. The fractal component model and its support in java: Experiences with auto-adaptive
and reconfigurable systems. Softw. Pract. Ezper., 36(11-12):1257-1284, 2006.

Wu Chou, Li Li, and Feng Liu. Web service enablement of communication services. In
ICWS °05: Proceedings of the IEEE International Conference on Web Services, pages 393—
400, Washington, DC, USA, 2005. IEEE Computer Society.

Geoff Coulson, Gordon Blair, Paul Grace, Francois Taiani, Ackbar Joolia, Kevin Lee,
Jo Ueyama, and Thirunavukkarasu Sivaharan. A generic component model for building sys-
tems software. ACM Trans. Comput. Syst., 26(1):1-42, February 2008.

Eric M. Dashofy, Hazeline U. Asuncion, Scott A. Hendrickson, Girish Suryanarayana, John C.
Georgas, and Richard N. Taylor. Archstudio 4: An architecture-based meta-modeling envi-
ronment. In ICSE Companion, pages 67-68, 2007.

Manuel Fahndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen Hunt, James R.
Larus, and Steven Levi. Language support for fast and reliable message-based communication
in singularity os. SIGOPS Oper. Syst. Rev., 40(4):177-190, 2006.

Rachid Guerraoui and Luis Rodrigues. Introduction to Reliable Distributed Programming.
Springer, 2006.

Philipp Haller and Martin Odersky. Event-based programming without inversion of control.
In JMLC, pages 4-22, 2006.

Michi Henning and Steve Vinoski. Advanced CORBA programming with C++. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

Charles E. Killian, James W. Anderson, Ryan Braud, Ranjit Jhala, and Amin M. Vahdat.
Mace: language support for building distributed systems. SIGPLAN Not., 42(6):179-188,
June 2007.

Maxwell Krohn, Eddie Kohler, and M. Frans Kaashoek. Events can make sense. In ATC’07:
2007 USENIX Annual Technical Conference on Proceedings of the USENIX Annual Technical
Conference, pages 1-14, Berkeley, CA, USA, 2007. USENIX Association.

Shiding Lin, Aimin Pan, Rui Guo, and Zheng Zhang. Simulating large-scale p2p systems with
the wids toolkit. In MASCOTS ’05: Proceedings of the 13th IEEE International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, pages
415-424, Washington, DC, USA, 2005. IEEE Computer Society.

27

17)
18]
[19]
[20]
[21]

[22]

[27]

David C. Luckham and James Vera. An event-based architecture definition language. IEEE
Trans. Softw. Eng., 21(9):717-734, 1995.

Kenneth Lundin. Invited talk: The future of erlang. In 7th ACM SIGPLAN workshop on
ERLANG, 2008.

Pattie Maes. Computational reflection. In GWAI ’87: Proceedings of the 11th German
Workshop on Artificial Intelligence, pages 251-265, London, UK, 1987. Springer-Verlag.

Nenad Medvidovic and Richard N. Taylor. A classification and comparison framework for
software architecture description languages. IEEE Trans. Softw. Eng., 26(1):70-93, 2000.

Robin Milner. Communicating and mobile systems: the m-calculus. Cambridge University
Press, New York, NY, USA, 1999.

H. Miranda, A. Pinto, and L. Rodrigues. Appia: A flexible protocol kernel supporting multiple
coordinated channels. In ICDCS ’01, pages 707-710, Washington, DC, USA, 2001. IEEE
Computer Society.

Martin Odersky and Matthias Zenger. Scalable component abstractions. In OOPSLA 05,
pages 41-57, New York, NY, USA, 2005.

Krzysztof Ostrowski, Ken Birman, Danny Dolev, and Jong Hoon Ahnn. Programming with
live distributed objects. In Furopean Conference on Object Oriented Programming ECOOP
2008, pages 463-489, 2008.

Sriram Srinivasan and Alan Mycroft. Kilim: Isolation-typed actors for java. In European
Conference on Object Oriented Programming, 2008.

Matt Welsh, David Culler, and Eric Brewer. Seda: an architecture for well-conditioned,
scalable internet services. In SOSP ’01: Proceedings of the eighteenth ACM symposium on
Operating systems principles, volume 35, pages 230-243, New York, NY, USA, December
2001. ACM Press.

Hubert Zimmermann. The iso reference model for open systems interconnection. IEEE
Transactions on Communications, 28:425-432, April 1980.

28

	1 Introduction
	2 Component model
	2.1 Concepts in Kompics
	2.2 Programming constructs
	2.3 Publish-subscribe event dissemination
	2.4 Component initialization and life-cycle
	2.5 Fault management
	2.6 Client-server component interaction
	2.7 Dynamic reconfiguration

	3 Patterns and abstractions
	3.1 Distributed message passing
	3.2 Event interception
	3.3 Setting and canceling timers
	3.4 Remote service invocation
	3.5 Higher-level abstractions

	4 Implementation
	4.1 Java runtime engine and framework
	4.2 Multi-core component scheduling
	4.3 Deterministic simulation mode
	4.4 Programming in the large

	5 Case study
	5.1 Peer-to-peer systems architecture
	5.2 Peer-to-peer system experimentation

	6 Related work
	7 Conclusions and future work

