
Achieving Robust Self-Management for Large-Scale
Distributed Applications

Ahmad Al-Shishtawy∗†, Muhammad Asif Fayyaz∗, Konstantin Popov†, and Vladimir Vlassov∗

∗Royal Institute of Technology, Stockholm, Sweden
{ahmadas, mafayyaz, vladv}@kth.se

†Swedish Institute of Computer Science, Stockholm, Sweden
{ahmad, kost}@sics.se

SICS Technical Report T2010:02
ISSN: 1100-3154

March 4 2010
Swedish Institute of Computer Science
Box 1263, S-164 29 Kista, SWEDEN

Abstract—Autonomic managers are the main architectural
building blocks for constructing self-management capabilities
of computing systems and applications. One of the major
challenges in developing self-managing applications is robustness
of management elements which form autonomic managers. We
believe that transparent handling of the effects of resource churn
(joins/leaves/failures) on management should be an essential
feature of a platform for self-managing large-scale dynamic
distributed applications, because it facilitates the development
of robust autonomic managers and hence improves robustness
of self-managing applications. This feature can be achieved by
providing a robust management element abstraction that hides
churn from the programmer.

In this paper, we present a generic approach to achieve
robust services that is based on finite state machine replication
with dynamic reconfiguration of replica sets. We contribute a
decentralized algorithm that maintains the set of nodes hosting
service replicas in the presence of churn. We use this approach
to implement robust management elements as robust services
that can operate despite of churn. Our proposed decentralized
algorithm uses peer-to-peer replica placement schemes to au-
tomate replicated state machine migration in order to tolerate
churn. Our algorithm exploits lookup and failure detection
facilities of a structured overlay network for managing the set of
active replicas. Using the proposed approach, we can achieve
a long running and highly available service, without human
intervention, in the presence of resource churn. In order to
validate and evaluate our approach, we have implemented a
prototype that includes the proposed algorithm.

Index Terms—autonomic computing; distributed systems; self-
management; replicated state machines; service migration; peer-
to-peer.

I. INTRODUCTION

Autonomic computing [1] is an attractive paradigm
to tackle management overhead of complex applications
by making them self-managing. Self-management, namely
self-configuration, self-optimization, self-healing, and self-
protection, is achieved through autonomic managers [2]. An
autonomic manager continuously monitors hardware and/or

software resources and acts accordingly. Autonomic comput-
ing is particularly attractive for large-scale and/or dynamic
distributed systems where direct human management might
not be feasible.

In our previous work, we have developed a platform called
Niche [3], [4] that enables us to build self-managing large-
scale distributed systems. Autonomic managers play a major
rule in designing self-managing systems [5]. An autonomic
manager in Niche consists of a network of management
elements (MEs). Each ME is responsible for one or more roles
in the construction the Autonomic Manager. These roles are:
Monitor, Analyze, Plan, and Execute (the MAPE loop [2]).
In Niche, MEs are distributed and interact with each other
through events (messages) to form control loops.

Large-scale distributed systems are typically dynamic with
resources that may fail or join/leave the system at any time
(resource churn). Constructing autonomic managers in dy-
namic environments with high resource churn is challenging
because MEs need to be restored with minimal disruption to
the autonomic manager, whenever the resource where MEs
execute leaves or fails. This challenge increases if the MEs are
stateful because the state needs to be maintained consistent.

We propose a Robust Management Element (RME) abstrac-
tion that developers can use if they need their MEs to tolerate
resource churn. The RME abstraction allows simplifying the
development of robust autonomic managers that can tolerate
resource churn, and thus self-managing large-scale distributed
systems. This way developers of self-managing systems can
focus on the functionality of the management without the need
to deal with failures. A Robust Management Element should:
1) be replicated to ensure fault-tolerance; 2) survive continuous
resource failures by automatically restoring failed replicas on
other nodes; 3) maintain its state consistent among replicas; 4)
provide its service with minimal disruption in spite of resource
join/leave/fail (high availability). 5) be location transparent
(i.e. clients of the RME should be able to communicate with

it regardless of its current location). Because we are targeting
large-scale distributed environments with no central control,
such as peer-to-peer networks, all algorithms should operate
in decentralized fashion.

In this paper, we present our approach to achieving RMEs
that is based on finite state machine replication with automatic
reconfiguration of replica sets. We replicate MEs on a fixed set
of nodes using the replicated state machine [6], [7] approach.
However, replication by itself is not enough to guarantee long
running services in the presence of continuous churn. This is
because the number of failed nodes (that host ME replicas)
will increase with time. Eventually this will cause the service
to stop. Therefor, we use service migration [8] to enable the
reconfiguration the set of nodes hosting ME replicas. Using
service migration, new nodes can be introduced to replace
the failed ones. We propose a decentralized algorithm, based
on Structured Overlay Networks (SONs) [9], that will use
migration to automatically reconfigure the set of nodes where
the ME replicas are hosted. This will guarantee that the service
provided by the RME will tolerate continuous churn. The
reconfiguration take place by migrating MEs when needed
to new nodes. The major use of SONs in our approach
is as follows: first, to maintain location information of the
replicas using replica placement schemes such as symmetric
replication [10]; second, to detect the failure of replicas and to
make a decision to migrate in a decentralized manner; third,
to allow clients to locate replicas despite of churn.

The rest of this paper is organised as following: Section II
presents the necessary background required to understand the
proposed algorithm. In Section III, we describe our proposed
decentralized algorithm to automate the migration process.
Followed by applying the algorithm to the Niche platform to
achieve RMEs in Section IV. Finally, conclusions and future
work are discussed in Section V.

II. BACKGROUND

This section presents the necessary background to under-
stand the approach and algorithm presented in this paper,
namely: The Niche platform, Symmetric replication scheme,
replicated state machines, and an approach to migrate stateful
services.

A. Niche Platform

Niche [3] is a distributed component management system
that implements the autonomic computing architecture [2].
Niche includes a distributed component programming model,
APIs, and a run-time system including deployment service.
The main objective of Niche is to enable and to achieve self-
management of component-based applications deployed on a
dynamic distributed environments where resources can join,
leave, or fail. A self-managing application in Niche consists
of functional and management parts. Functional components
communicate via interface bindings, whereas management
components communicate via a publish/subscribe event no-
tification mechanism.

The Niche run-time environment is a network of distributed
containers hosting functional and management components.
Niche uses a Chord [9] like structured overlay network (SON)
as its communication layer. The SON is self-organising on
its own and provides overlay services used by Niche such
as name-based communication, distributed hash table (DHT)
and a publish/subscribe mechanism for event dissemination.
These services are used by Niche to provide higher level
communication abstractions such as name-based bindings to
support component mobility; dynamic component groups;
one-to-any and one-to-all group bindings, and event based
communication.

B. Structured Overlay Networks

We assume the following model of Structured Overlay
Networks (SONs) and their APIs. We believe, this model is
representative, and in particular it matches the Chord SON.
In the model, SON provides the operation to locate items
on the network. For example, items can be data items for
DHTs, or some compute facilities that are hosted on individual
nodes in a SON. We say that the node hosting or providing
access to an item is responsible for that item. Both items and
nodes posses unique SON identifiers that are assigned from the
same name space. The SON automatically and dynamically
divides the responsibility between nodes such that there is
always a responsible node for every SON identifier. SON
provides a ’lookup’ operation that returns the address of a
node responsible for a given SON identifier. Because of churn,
node responsibilities change over time and, thus, ’lookup’ can
return over time different nodes for the same item. In practical
SONs the ’lookup’ operation can also occasionally return
wrong (inconsistent) results. Further more, SON can notify
application software running on a node when the responsibility
range of the node changes. When responsibility changes, items
need to be moved between nodes accordingly. In Chord-like
SONs the identifier space is circular, and nodes are responsible
for items with identifiers in the range between the node’s
identifier and the identifier of the predecessor node. Finally,
a SON with a circular identifier space naturally provides for
symmetric replication of items on the SON - where replica IDs
are placed symmetrically around the identifier space circle.

Symmetric Replication [10] is a scheme used to determine
replica placement in SONs. Given an item ID i and a replica-
tion degree f , symmetric replication can be used to calculate
the IDs of the item’s replicas. The ID of the x-th (1 ≤ x ≤ f)
replica of the item i is computed according to the following
formula:

r(i, x) = (i+ (x− 1)N/f) mod N (1)

where N is the size of the identifier space.
The IDs of replicas are independent from the nodes present

in the system. A lookup is used to find the node responsible
node for hosting an ID. For the symmetry requirement to
always be true, it is required that the replication factor f
divides the size of the identifier space N .

C. Replicated State Machines

A common way to achieve high availability of a service is to
replicate it on several nodes. Replicating stateless services is
relatively simple and not considered in this paper. A common
way to replicate stateful services is to use the replicated state
machine approach [6]. In this approach several nodes (replicas)
run the same service in order for service to survive node
failures.

Using the replicated state machine approach requires the
service to be deterministic. A set of deterministic services will
have the same state change and produce the same output given
the same sequence of inputs (requests or commands) and initial
state. This means that the service should avoid sources of
nondeterminism such as using local clocks, random numbers,
and multi-threading.

Replicated state machines, given a deterministic service, can
use the Paxos [7] algorithm to ensure that all services execute
the same input in the same order. The Paxos algorithm relies
on a leader election algorithm [11] that will elect one of the
replicas as the leader. The leader ensures the order of inputs
by assigning client requests to slots. Replicas execute input
sequentially i.e. a replica can execute input from slot n + 1
only if it had already executed input from slot n.

The Paxos algorithm can tolerate replica failures and still
operate correctly as long as the number of failures is less than
half of the total number of replicas. This is because Paxos
requires that there will always be a quorum of alive replicas
in the system. The size of the quorum is (R/2)+1, where R is
the initial number of replicas in the system. In this paper, we
consider only fail-stop model (i.e., a replica will fail only by
stopping) and will not consider other models such as Byzantine
failures.

D. Migrating Stateful Services

SMART [8] is a technique for changing the set of nodes
where a replicated state machine runs, i.e. migrate the service.
The fixed set of nodes, where a replicated state machine
runs, is called a configuration. Adding and/or removing nodes
(replicas) in a configuration will result in a new configuration.

SMART is built on the migration technique outlined in [7].
The idea is to have the current configuration as part of the
service state. The migration to a new configuration happens
by executing a special request that causes the current config-
uration to change. This request is like any other request that
can modify the state when executed. The change does not
happen immediately but scheduled to take effect after α slots.
This gives the flexibility to pipeline α concurrent requests to
improve performance.

The main advantage of SMART over other migration tech-
nique is that it allows to replace non-failed nodes. This
enables SMART to rely on an automated service (that may
use imperfect failure detector) to maintain the configuration
by adding new nodes and removing suspected ones.

An important feature of SMART is the use of configuration-
specific replicas. The service migrates from conf1 to conf2
by creating a new independent set of replicas in conf2 that

run in parallel with replicas in conf1. The replicas in conf1
are kept long enough to ensure that conf2 is established. This
simplify the migration process and help SMART to overcome
problems and limitations of other techniques. This approach
can possibly result in many replicas from different configu-
rations to run on the same node. To improve performance,
SMART uses a shared execution module that holds the state
and is shared among replicas on the same node. The execution
module is responsible for modifying the state by executing
assigned requests sequentially and producing output. Other
that that each configuration runs its own instance of the Paxos
algorithm independently without any sharing. This makes it,
from the point of view of the replicated state machine instance,
look like as if the Paxos algorithm is running on a static
configuration.

Conflicts between configurations are avoided by assigning
a non-overlapping range of slots [FirstSlot, LastSlot] to each
configuration. The FirstSlot for conf1 is set to 1. When a
configuration change request appears at slot n this will result
in setting LastSlot of current configuration to n + α − 1 and
setting the FirstSlot of the next configuration to n+ α.

Before a new replica in a new configuration can start work-
ing it must acquire a state from another replica that is at least
FirstSlot-1. This can be achieved by copying the state from
a replica from the previous configuration that has executed
LastSlot or from a replica from the current configuration.
The replicas from the previous configuration are kept until
a majority of the new configuration have initialised their state.

III. AUTOMATIC RECONFIGURATION OF REPLICA SETS

In this section we present our approach and associated
algorithm to achieve robust services. Our algorithm automates
the process of selecting a replica set (configuration) and the de-
cision of migrating to a new configuration in order to tolerate
resource churn. This approach, our algorithm together with the
replicated state machine technique and migration support, will
provide a robust service that can tolerate continuous resource
churn and run for long period of time without the need of
human intervention.

Our approach was mainly designed to provide Robust
Management Elements (RMEs) abstraction that is used to
achieve robust self-management. An example is our platform
Niche [3], [4] where this technique is applied directly and
RMEs are used to build robust autonomic managers. However,
we believe that our approach is generic enough and can be
used to achieve other robust services. In particular, we believe
that our approach is suitable for structured P2P applications
that require highly available robust services.

Replicated (finite) state machines (RSM) are identified by
a constant SON ID, which we denote as RSMID in the
following. RSMIDs permanently identify RSMs regardless of
node churn that causes reconfiguration of sets of replicas
in RSMs. Clients that send requests to RSM need to know
only its RSMID and replication degree. With this information
clients can calculate identities of individual replicas according
to the symmetric replication scheme, and lookup the nodes

currently responsible for the replicas. Most of the nodes found
in this way will indeed host up-to-date RSM replicas - but not
necessarily all of them because of lookup inconsistency and
node churn.

Failure-tolerant consensus algorithms like Paxos require a
fixed set of known replicas we call configuration in the follow-
ing. Some of replicas, though, can be temporarily unreachable
or down (the crash-recovery model). The SMART protocol
extends the Paxos algorithm to enable explicit reconfiguration
of replica sets. Note that RSMIDs cannot be used for neither of
the algorithms because the lookup operation can return over
time different sets of nodes. In the algorithm we contribute
for management of replica sets, individual RSM replicas are
mutually identified by their addresses which in particular
do not change under churn. Every single replica in a RSM
configuration knows addresses of all other replicas in the RSM.

The RSM, its clients and the replica set management
algorithm work roughly as follows. First, a dedicated initiator
chooses RSMID, performs lookups of nodes responsible for
individual replicas and sends to them a request to create RSM
replicas. Note the request contains RSMID and all replica
addresses (configuration), thus newly created replicas perceive
each other as a group and can communicate with each other.
RSMID is also distributed to future RSM clients. Whenever
clients need to contact a RSM, they resolve the RSMID
similar to the initiator and multicast their requests to obtained
addresses.

Because of churn, the set of nodes responsible for individual
RSM replicas changes over time. In response, our distributed
configuration management algorithm creates new replicas on
nodes that become responsible for RSM replicas, and eventu-
ally deletes unused ones. The algorithm runs on all nodes of
the overlay and uses several sources of events and information,
including SON node failure notifications, SON notifications
about change of responsibility, and messages from clients. We
discuss the algorithm in greater detail in the following.

Our algorithm is built on top of Structured Overlay Net-
works (SONs) because of their self-organising features and
resilience under churn [12]. The algorithm exploits lookup and
failure detection facilities of SONs for managing the set of
active replicas. Replica placement schemes such as symmetric
replication [10] is used to maintain location information of
the replicas. This is used by the algorithm to select replicas in
the replica set and is used by the clients to determine replica
locations in order to use the service. Join, leave, and failure
events are used to make a decision to migrate in a decentralized
manner. Other useful operations, that can be efficiently built
on top of SONs, include multi-cast and range-cast. We use
these operations to recover from replica failures.

A. State Machine Architecture

The replicated state machine (RSM) consists of a set of
replicas, which forms a configuration. Migration techniques
can be used to change the configuration (the replica set).
The architecture of a replica (a state machine) that supports
migration is shown in Fig. 1. The architecture uses the

Execution Module

Paxos 1 Paxos 2 Paxos 3

1 2 3

Internal

State

Conf 1

Conf 2

Conf 3

Configurations

assign

requests

to slots

State

Slots

sequentially

execute requests

R1

FirstSlot

R1

LastSlot
R3

FirstSlot

R2

FirstSlot

R2

LastSlot

Input

Output Get/Set Checkpoint

Paxos,

Leader Election, and

Migration Messages

Replica

Fig. 1. State Machine Architecture: Each machine can participate in
more than one configuration. A new replica instance is assigned to each
configuration. Each configuration is responsible for assigning requests to
a none overlapping range of slot. The execution module executes requests
sequentially that can change the state and/or produce output.

shared execution module optimization presented in [8]. This
optimization is useful when the same replica participate in
multiple configurations. The execution module captures the
logic of the service. The execution module executes requests.
The execution of a request may result in state change, pro-
ducing output, or both. The execution module should be a
deterministic program. Its outputs and states must depend only
on the sequence of input and the initial state. The execution
module is also required to support checkpointing. That is
the state can be externally saved and restored. This enables
us to transfer states between replicas. The execution module
executes all requests except the ConfChange request which
is handled by the state machine.

The state of a replica consists of two parts: The first part
is internal state of the execution module which is application
specific; The second part is the configuration. A configuration
is represented by an array of size f where f is the replication
degree. The array holds direct references (IP and port) to
the nodes that form the configuration. The reason to split
the state in two parts, instead of keeping the configuration
in the execution module, is to make the development of the
execution module independent from the replication technique.
In this way legacy services, that are already developed, can
be replicated without modification given that they satisfy
execution module constraints.

The remaining parts of the SM, other than the execution
module, are responsible to run the replicated state machine
algorithms (Paxos and Leader Election) and the migration
algorithm (SMART). As described in the previous section,

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18

19

20

21

22

23

24

25

26

27

28

29

30
31

SM r1

SM r2

SM r3

SM r4

RSM ID = 10, f=4, N=32

Replica IDs = 10, 18, 26, 2

Responsible Node IDs = 14, 20, 29, 7

Configuration = Ref(14), Ref(20),

 Ref(29), Ref(7)

Fig. 2. Replica Placement Example: Replicas are selected according to the
symmetric replication scheme. A Replica is hosted (executed) by the node
responsible for its ID (shown by the arrows). A configuration is a fixed set
of direct references (IP address and port) to nodes that hosted the replicas at
the time of configuration creation. The RSM ID and Replica IDs are fixed
and do not change for the entire life time of the service. The Hosted Node
IDs and Configuration are only fixed for a single configuration. Black circles
represent physical nodes in the system.

each configuration is assigned a separate instance of the repli-
cated state machine algorithms. The migration algorithm is re-
sponsible for specifying the FirstSlot and LastSlot for
each configuration, starting new configurations when executing
ConfChange requests, and destroying old configurations
after a new configuration is established.

Algorithm 1 Helper Procedures
1: procedure GETCONF(RSMID)
2: ids[]← GETREPLICAIDS(RSMID)

. Replica Item IDs
3: for i← 1, f do
4: refs[i]← LOOKUP(ids[i])
5: end for
6: return refs[]
7: end procedure

8: procedure GETREPLICAIDS(RSMID)
9: for x← 1, f do

10: ids[x]← r(RSMID, x) . See equation 1
11: end for
12: return ids[]
13: end procedure

B. Configurations and Replica Placement Schemes

All nodes in the system are part of a structured overlay
network (SON) as shown in Fig. 2. The Replicated State
Machine that represents the service is assigned a random ID
RSMID from the identifier space N . The set of nodes that
will form a configuration are selected using the symmetric

replication technique [10]. The symmetric replication, given
the replication factor f and the RSMID, is used to calculate
the Replica IDs according to equation 1. Using the lookup()
operation, provided by the SON, we can obtain the IDs and
direct references (IP and port) of the responsible nodes. These
operations are shown in Algorithm 1.

The use of direct references, instead of using lookup oper-
ations, as the configuration is important for our approach to
work for two reasons. First reason is that we can not rely on the
lookup operation because of the lookup inconsistency problem.
The lookup operation, used to find the node responsible for an
ID, may return incorrect references. These incorrect references
will have the same effect in the replicatino algorithm as
node failures even though the nodes might be alive. Thus the
incorrect references will reduce the fault tolerance of the repli-
cation service. Second reason is that the migration algorithm
requires that both the new and the previous configurations
coexist until the new configuration is established. Relying on
lookup operation for replica_IDs may not be possible. For
example, in Fig. 2, when a node with ID = 5 joins the overlay
it becomes responsible for the replica SM_r4 with ID = 2.
A correct lookup(2) will always return 5. Because of this,
the node 7, from the previous configuration, will never be
reached using the lookup operation. This can also reduce the
fault tolerance of the service and prevent the migration in the
case of large number of joins.

Nodes in the system may join, leave, or fail at any time
(churn). According to the Paxos constraints, a configuration
can survive the failure of less than half of the nodes in the
configuration. In other words, f/2 + 1 nodes must be alive
for the algorithm to work. This must hold independently for
each configuration. After a new configuration is established,
it is safe to destroy instances of older configurations.

Due to churn, the responsible node for a certain SM may
change. For example in Fig.2 if node 20 fails then node
22 will become responsible for identifier 18 and should
host SM_r2. Our algorithm, described in the remainder of
this section, will automate migration process by triggering
ConfChange requests when churn changes responsibilities.
This will guarantee that the service provided by the RSM will
tolerate churn.

C. Replicated State Machine Maintenance

This section will describe the algorithms used to create a
replicated state machine and to automate the migration process
in order to survive resource churn.

1) State Machine Creation: A new RSM can be created
by any node in the SON by calling CreateRSM shown
in Algorithm 2. The creating node construct the configura-
tion using symmetric replication and lookup operations. The
node then sends an InitSM message to all nodes in the
configuration. Any node that receives an Init SM message
(Algorithm 5) will start a state machine (SM) regardless of
its responsibility. Note that the initial configuration, due to
lookup inconsistency, may contain some incorrect nodes. This

Algorithm 2 Replicated State Machine API
1: procedure CREATERSM(RSMID)

. Creates a new replicated state machine
2: Conf []← GETCONF(RSMID)

. Hosting Node REFs
3: for i← 1, f do
4: sendto Conf [i] : INITSM(RSMID, i, Conf)
5: end for
6: end procedure

7: procedure JOINRSM(RSMID, rank)
8: SUBMITREQ(RSMID,ConfChange(rank,MyRef))

. The new configuration will be submitted and assigned
a slot to be executed

9: end procedure

10: procedure SUBMITREQ(RSMID, req)
. Used by clients to submit requests

11: Conf []← GETCONF(RSMID)
. Conf is from the view of the requesting node

12: for i← 1, f do
13: sendto Conf [i] : SUBMIT(RSMID, i, Req)
14: end for
15: end procedure

does not cause problems for the replication algorithm. Using
migration, the configuration will eventually be corrected.

2) Client Interactions: A client can be any node in the
system that requires the service provided by the RSM. The
client need only to know the RSMID to be able to send
requests to the service. Knowing the RSMID, the client can
calculate the current configuration using equation 1 and lookup
operations (See Algorithm 1). This way we avoid the need
for an external configuration repository that points to nodes
hosting the replicas in the current configuration. The client
submits requests by calling SubmitReq as shown in Algo-
rithm 2. The method simply sends the request to all replicas
in the current configuration. Due to lookup inconsistency, that
can happen either at the client side or the RSM side, the
client’s view of the configuration and the actual configuration
may differ. We assume that the client’s view overlaps, at least
at one node, with the actual configuration for the client to be
able to submit requests. Otherwise, the request will fail and
the client need to try again later after the system heals itself.
We also assume that each request is uniquely stamped and that
duplicate requests are filtered.

In the current algorithm the client submits the request to
all nodes in the configuration for efficiency. It is possible to
optimise the number of messages by submitting the request
only to one node in the configuration that will forward it to
the current leader. The trade off is that sending to all nodes
increases the probability of the request reaching the RSM .
This reduces the negative effects of lookup inconsistencies and
churn on the availability of the service.

It may happen, due to lookup inconsistency, that the con-
figuration calculated by the client contains some incorrect
references. In this case, a incorrectly referenced node ignores
client requests (Algorithm 3 line 13) when it finds out that it
is not responsible for the target RSM.

On the other hand, it is possible that the configuration was
created with some incorrect references. In this case, the node
that discovers that it was supposed to be in the configuration
will attempt to correct the configuration by replacing the
incorrect reference with the reference to itself (Algorithm 3
line 11).

Algorithm 3 Execution
1: receipt of SUBMIT(RSMID, rank,Req) from m at n
2: SM ← SMs[RSMID][rank]
3: if SM 6= φ then
4: if SM.leader = n then
5: SM.submit(Req)
6: else
7: sendto SM.leader :

SUBMIT(RSMID, rank,Req)
. forward the request to the leader

8: end if
9: else

10: if r(RSMID, rank) ∈]n.predecessor, n] then
. I’m responsible

11: JOINRSM(RSMID, rank)
12: else
13: DONOTHING

. This is probably due to lookup inconsistency
14: end if
15: end if
16: end receipt

17: procedure EXECUTESLOT(req)
. This is called when executing the current slot

18: if req.type = ConfChange then
19: newConf ← Conf [CurrentConf]
20: newConf [req.rank]← req.id

. Replaces the previous responsible with the new one
21: SM.migrate(newConf)

. SMART will set LastSlot and start new configuration
22: else

. Execution module handles all other requests
23: ExecutionModule.Execute(req)
24: end if
25: end procedure

3) Request Execution: The execution is initiated by re-
ceiving a submit request from a client. This will result in
scheduling the request for execution by assigning it to a
slot that is agreed upon among all SMs in the configuration
(using the Paxos algorithm). Meanwhile, scheduled requests
are executed sequentially in the order of their slot numbers.
These steps are shown in Algorithm 3.

When a node receives a request from a client it will first
check if it is hosting an SM, which the request is directed
to. If this is the case, then the node will try to schedule the
request if the node believes that it is the leader. Otherwise
the node will forward the request to the leader. On the other
hand, if the node is not hosting an SM with the RSMID in
the request, it will proceed as described in section III-C2, i.e.
it ignores the request, if it is not resposible for the target SM,
otherwise, it tries to correct the configuration

At execution time, the execution module will execute all
requests sequentially except the ConfChange request that
is handled by the SM. The ConfChange request will start
the migration protocol presented in [8] and outlined in Sec-
tion II-D.

Algorithm 4 Churn Handling
1: procedure NODEJOIN

. Called by SON after the node joined the overlay
2: sendto successor : PULLSMS(]predecessor,myId])
3: end procedure

4: procedure NODELEAVE
sendto successor : NEWSMS(SMs)

. Transfer all hosted SMs to Successor
5: end procedure

6: procedure NODEFAILURE(newPred, oldPred)
. Called by SON when the predecessor fails

7: I ←
⋃f

x=2]r(newPred, x), r(oldPred, x)]
8: multicast I : PULLSMS(I)
9: end procedure

4) Handling Churn: Algorithm 4 shows how to maintain
the replicated state machine in case of node join/leave/failure.
When any of these cases happen, a new node may become
responsible for hosting a replica. In case of node join, the
new node will send a message to its successor to get any
replica that now it is responsible for. In case of leave, the
leaving node will send a message to its successor containing all
replicas that it was hosting. In the case of failure, the successor
of the failed node need to discover if the failed node was
hosting any SMs. This is done by checking all intervals (line 7)
that are symmetric to the interval that the failed node was
responsible for. One way to achieve this is by using interval-
cast that can be efficiently implemented on SONs e.g. using
bulk operations [10].

All newly discovered replicas are handled by NewSMs
(Algorithm 5). The node will request a configuration change
by joining the corresponding RSM for each new SM. Note that
the configuration size is fixed to f . A configuration change
means replacing reference at position r in the configuration
array with the reference of the node requesting the change.

IV. ROBUST MANAGEMENT ELEMENTS IN NICHE

In order to validate and evaluate the proposed approach to
achieve robust services, we have implemented our proposed

Algorithm 5 SM maintenance (handled by the container)
1: receipt of INITSM(RSMID,Rank,Conf) from m at n
2: new SM

. Creates a new replica of the state machine
3: SM.ID ← RSMID
4: SM.Rank ← Rank . 1 ≤ Rank ≤ f
5: SMs[RSMID][Rank]← SM

. SMs stores all SM that node n is hosting
6: SM.Start(Conf)

. This will start the SMART protocol
7: end receipt

8: receipt of PULLSMS(Intervals) from m at n
9: for each SM in SMs do

10: if R(SM.id, SM.rank) ∈ I then
11: newSMs.add(SM)
12: end if
13: end for
14: sendto m : NEWSMS(newSMs)

. SMs are destroyed later by migration protocol
15: end receipt

16: receipt of NEWSMS(NewSMs) from m at n
17: for each SM in NewSMs do
18: JOINRSM(SM.id, SM.rank)
19: end for
20: end receipt

algorithm together with the replicated state machine tech-
nique and migration support using the Kompics component
framework [13]. We intend to integrate the implemented
prototype with the Niche platform and use it for building
robust management elements for self-managing distributed ap-
plications. We have conducted a number of tests to validate the
algorithm. We are currently conducting simulation tests, using
Kompics simulation facilities, to evaluate the performance of
our approach.

The autonomic manager in Niche is constructed from a
set on management elements. To achieve robustness and high
availability of Autonomic Managers, in spite of churn, we
will apply the algorithm described in the previous section to
management elements. Replicating management elements and
automatically maintaining them will result in what we call
Robust Management Element (RME). An RME will:

• be replicated to ensure fault-tolerance. This is achieved by
replicating the service using the replicated state machine
algorithm.

• survive continuous resource failures by automatically
restoring failed replicas on other nodes. This is achieved
using our proposed algorithm that will automatically
migrate the RME replicas to new nods when needed.

• maintain its state consistent among replicas. This is
guaranteed by the replicated state machine algorithm and
the migration mechanism used.

• provide its service with minimal disruption in spite of
resource join/leave/fail (high availability). This is due to
replication. In case of churn, remaining replicas can still
provide the service.

• be location transparent (i.e. clients of the RME should
be able to communicate with it regardless of its current
location). The clients need only to know the RME_ID
to be able to use an RME regardless of the location of
individual replicas.

The RMEs are implemented by wrapping ordinary MEs
inside a state machine. The ME will serve as the execution
module shown in Fig. 1. However, to be able to use this
approach, the ME must follow the same constraints as the
execution module. That is the ME must be deterministic and
provide checkpointing.

Typically, in replicated state machine approach, a client
sends a request that is executed by the replicated state machine
and gets a result back. In our case, to implement feedback
loops, we have two kinds of clients from the point of view of
an RMS. A set of sending client Cs that submit requests to
the RME and a set of receiving clients Cr that receive results
from the RME. The Cs includes sensors and/or other (R)MEs
and the Cr includes actuators and/or other (R)MEs.

To simplify the creation of control loops that are formed
in Niche by connecting RMEs together, we use a pub-
lish/subscribe mechanism. The publish/subscribe system deliv-
ers requests/responses to link different stages (RMEs) together
to form a control loop.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach to achieve robust
management elements that will simplify the construction of
autonomic managers. The approach uses replicated state ma-
chines and relies on our proposed algorithm to automate repli-
cated state machine migration in order to tolerate churn. The
algorithm uses symmetric replication, which is a replication
scheme used in structured overlay networks, to decide on the
placement of replicas and to detect when to migrate. Although
in this paper we discussed the use of our approach to achieve
robust management elements, we believe that this approach
might be used to replicate other services in structured overlay
networks in general.

In order to validate and evaluate our approach, we have im-
plemented a prototype that includes the proposed algorithms.
We are currently conducting simulation tests to evaluate the
performance of our approach. In our future work, we will
integrate the implemented prototype with the Niche platform
to support robust management elements in self-managing dis-
tributed applications. We also intend to optimise the algorithm
in order to reduce the amount of messages and we will
investigate the effect of the publish/subscribe system used to
construct control loops and try to optimise it. Finally, we will
try to apply our approach to other problems in the field of
distributed computing.

REFERENCES

[1] P. Horn, “Autonomic computing: IBM’s perspective on the state of
information technology,” Oct. 15 2001.

[2] IBM, “An architectural blueprint for autonomic comput-
ing, 4th edition,” http://www-03.ibm.com/autonomic/pdfs/
AC Blueprint White Paper 4th.pdf, June 2006.

[3] A. Al-Shishtawy, J. Höglund, K. Popov, N. Parlavantzas, V. Vlassov, and
P. Brand, “Enabling self-management of component based distributed
applications,” in From Grids to Service and Pervasive Computing,
T. Priol and M. Vanneschi, Eds. Springer US, July 2008, pp. 163–
174.

[4] Niche homepage. [Online]. Available: http://niche.sics.se/
[5] A. Al-Shishtawy, V. Vlassov, P. Brand, and S. Haridi, “A design

methodology for self-management in distributed environments,” in
Computational Science and Engineering, 2009. CSE ’09. IEEE
International Conference on, vol. 1. Vancouver, BC, Canada: IEEE
Computer Society, August 2009, pp. 430–436. [Online]. Available:
http://dx.doi.org/10.1109/CSE.2009.301

[6] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: a tutorial,” ACM Comput. Surv., vol. 22, no. 4, pp.
299–319, 1990.

[7] L. Lamport, “Paxos made simple,” SIGACT News, vol. 32, no. 4, pp.
51–58, December 2001. [Online]. Available: http://dx.doi.org/10.1145/
568425.568433

[8] J. R. Lorch, A. Adya, W. J. Bolosky, R. Chaiken, J. R. Douceur, and
J. Howell, “The SMART way to migrate replicated stateful services,”
SIGOPS Oper. Syst. Rev., vol. 40, no. 4, pp. 103–115, 2006.

[9] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and
comparison of peer-to-peer overlay network schemes,” Communications
Surveys & Tutorials, IEEE, vol. 7, no. 2, pp. 72–93, Second Quarter
2005.

[10] A. Ghodsi, “Distributed k-ary system: Algorithms for distributed hash
tables,” Ph.D. dissertation, Royal Institute of Technology (KTH), 2006.

[11] D. Malkhi, F. Oprea, and L. Zhou, “Omega meets paxos: Leader
election and stability without eventual timely links,” in Proc.
of the 19th Int. Symp. on Distributed Computing (DISC’05).
Springer-Verlag, Jul. 2005, pp. 199–213. [Online]. Available: ftp:
//ftp.research.microsoft.com/pub/tr/TR-2005-93.pdf

[12] J. S. Kong, J. S. Bridgewater, and V. P. Roychowdhury, “Resilience of
structured p2p systems under churn: The reachable component method,”
Computer Communications, vol. 31, no. 10, pp. 2109–2123, June 2008.
[Online]. Available: http://dx.doi.org/10.1016/j.comcom.2008.01.051

[13] C. Arad, J. Dowling, and S. Haridi, “Building and evaluating p2p
systems using the kompics component framework,” in Peer-to-Peer
Computing, 2009. P2P ’09. IEEE Ninth International Conference on,
sept. 2009, pp. 93 –94.

