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Abstract. The application of autonomous agents by the provisioning
and usage of computational services is an attractive research field. Vari-
ous methods and technologies in the area of artificial intelligence, statis-
tics and economics are playing together to achieve i) autonomic service
provisioning and usage of Grid services, to invent ii) competitive bid-
ding strategies for widely used market mechanisms and to iii) incentivize
consumers and providers to use such market-based systems.

The contributions of the paper are threefold. First, we present a bidding
agent framework for implementing artificial bidding agents, supporting
consumers and providers in technical and economic preference elicitation
as well as automated bid generation by the requesting and provisioning
of Grid services. Secondly, we introduce a novel consumer-side bidding
strategy, which enables a goal-oriented and strategic behavior by the
generation and submission of consumer service requests and selection of
provider offers. Thirdly, we evaluate and compare the Q-strategy, imple-
mented within the presented framework, against the Truth-Telling bid-
ding strategy in three mechanisms – a centralized CDA, a decentralized
on-line machine scheduling and a FIFO-scheduling mechanisms.

Keywords: Automated Bidding, Reinforcement learning, Service Allo-
cation, Grid Computing

1 Introduction

Distributed computing services are bundled for years to enable more efficient
calculation of huge data sources and complex simulations. Prominent examples
are projects like SETI@home, which bundled 418.6 TFLOPS [1] (1Mio PCs in
226 countries) of computing power, looking for extraterrestrial live. CERN’s At-
las project is planned to execute complex simulations within the Large Hadron
Collider, analyzing huge amounts of data in order to find novel particles and
verify and analyze existing one (www.atlas.ch). Currently, the top 10 computing
centers of the Top500-List (www.top500.org) offer more than 2PFLOPS of com-
puting power. Also the industry is already using distributed services (i.e. Grid



technologies) for years and offers them already to the public. Amazon’s Webser-
vices – Elastic Compute Cloud (EC2), Simple Storage Service (S3), SimpleDB
etc. – Sun’s Network.com, Salesforce’s force.com, Google’s Apps services and
IBM Blue Cloud are some of the prominent examples. However, studies proved
that computational services are in average utilized between 10% and 35% [2].
Current workload logs (http://monalisa.caltech.edu) confirmed these results.

Grid technologies are already in use by researchers, but also the number
of external developers and solution providers is rising quickly. Amazon’s Web
services are used by over than 160.000 developers and solution providers [3].
Studies show that businesses may reduce their total IT costs by 30%, when
using such external resources [4].

The convergence of virtualization, delivery of Web service applications is go-
ing in parallel with the development of faster and more powerful computers and
networks. Businesses need efficient business models for delivering their ITs and
systems and frameworks, which reduce the complexity, automate software and
hardware and enable an easy management of policies [5]. Market mechanisms can
allocate service providers and consumers in more efficient way and thus maximiz-
ing the overall welfare. Currently, business and pricing models are not reflecting
the current supply and demand of services e.g. Sun requires 1$ per CPU, Ama-
zon has static prices for a service configuration per time unit. Moreover, common
interfaces and tools are needed in order to enable a non-sophisticated access and
provisioning of computational services.

This paper is structured as follows. Section 2 describes components of the
Intelligent Tools and presents a framework, which enables implementing au-
tonomous bidding agents. Section 3 discusses bidding strategies for automated
bidding and proposes a novel consumer-side reinforcement learning bidding strat-
egy – the Q-Strategy. In Section 4 we evaluate this strategy against the Truth-
Telling strategy in three different market mechanisms. Section 5 discusses related
work and Section 6 concludes this paper.

2 Automated Resource Allocation

To allocate efficiently consumers’ jobs to providers’ resources is a complex task,
where decisions on resource provisioning and usage are executed on-line. More-
over, the wide heterogeneity of Grid services complicates the process of finding
an appropriate set of resources for given consumer preferences. Since demand
and supply of Grid services fluctuates in the course of time, information about
current and future resource utilization and prices are often not known a-priori to
the participants. In this case consumer and provider agents try to maximize their
utilities by generating bids based on their valuations and historic experiences [6].
This results in strategic behavior on provider and consumer side. This paper is
written in the context of the SORMA3 project, with the focus on components
and methodologies that constitutes the SORMA Intelligent Tools.

3 SORMA: Self-Organizing ICT Resource Management,www.sorma-project.org



2.1 Scenario for Automated Provisioning and Usage
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Fig. 1. Bidding Scenario

Figure 1 depicts the approach for automated provisioning and usage of Grid
services. As illustrated, consumers and providers use the bid generation and
respectively the offer generation component in order to generate and submit
bids to the Service Market, which executes the target market mechanism. When
an agreement has been made, both parties are informed of this and the job is
submitted and executed on the allocated provider machine. Finally the result of
the execution is reported back to the consumer.

2.2 Components Supporting the Automated Provisioning and

Usage Process

The aim of this section is to investigate the processes and corresponding tools
which enable automated bidding on provider and consumer sides. Figure 2 shows
the logical architecture of the components assisting consumers and providers by
the description of their technical and economic preferences as well as by the au-
tomated generation of bids and offers. In order to derive and describe his pref-
erences, a consumer uses the Demand Modeling and Economic Modeling tools.
The Demand and Supply Modeling components support consumer and provider
in the description of requested and offered services such as CPU, memory, storage
and database characteristics (see 2.4). Economic modeling allows consumers to
describe their economic preferences e.g. specifying the valuation of the required
services, the amount of time a bid is valid and the preferred bidding strategy.

Within the Business Modeling component, a provider has to describe his
desired business model, which determines what bidding strategy to use for the
generation of the offers. For example, one part of such a description is the pricing
policy that specifies if the consumer has to pay for booked time-slots or for the
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actual usage. As the example indicates, the models specified by means of this
component depend on the implemented market mechanism.

The Bid and Offer Generators are the “intelligent” components that au-
tonomously generate and place the consumer and provider bids on the market.
For this purpose it considers the specified consumer and provider preferences
and the current state of the market, such as actual prices. The bid and offer
generators are implemented through agents using common and novel bidding
strategies and learning algorithms. The bids are submitted to the Trading Man-
agement component, which implements mechanisms for technical and economic
matching. In the following sections we will focus on the components of the In-
telligent Tools.

2.3 Preference Elicitation

In order to request Grid services for its application, a consumer has to make
estimation regarding his preferences on technical service specification, QoS and
his willingness to pay. On the other side, a provider has to make price esti-
mation for its offered services. These consumer and provider preferences for a
specific application can be either static or dynamic. Static information is col-
lected once, and can be manually provided by the consumer or provider each
time a service has to be acquired or offered. The static information may also be
stored in databases enabling intelligent tools to use this information for predict-
ing requirements of applications and services with similar properties. However,
the requirements of a given application are often subject to change as technol-
ogy evolves e.g. consumers’ desired quality of streamed video might increase as
their Internet bandwidth increases. It is thus desirable to dynamically adapt
the service requirements. In [7] the authors specify a model for Job Valuation
Estimation using evolutionary techniques. The presented approach is based on
the assumption that a consumer who wants to buy a set of services does not



generally know his exact valuation for them, but has only a rough estimate of
his true valuation. Thus, he decides whether to accept the offer, or to continue
his search and look for alternative offers.

2.4 Demand and Supply Modeling Components

Both, the Demand and Supply Modeling components support consumers and
providers on editing their estimated preferences – technical requirements on ser-
vices, such as CPU, Memory and Storage, QoS and price. The component im-
plements a GUI for entering the consumer or provider preferences and generates
a XML output in form of predefined service description language such as Job
Submission and Description Language [8]. The main parts of this component are
the User Interface, which allows the input of technical service specifications on
consumer and supplier side and a Service Description Language for expressing
the service specification, traded on the market. To allow different levels of ab-
straction and granularity, the service needs to be technically specified in terms
of its grounding hardware and the required software environment. Together with
the technical specification, comes the specification of several non-functional ser-
vice properties like QoS. Further sections like economic parameters, job-specific
parameters or possible inter-job dependencies complete the service specification.

2.5 Bid and Offer Generator

In the Service Market scenario each consumer and provider is configuring and
using the intelligent tools i.e. bidding agents in order to use or provide services
with the objective to maximize its own utility.

The bid and offer generator components are implemented within a Bidding
Agent Framework, which core classes and relations are illustrated in Figure 3.
The framework defines and implements core processes, which enable “automated
bidding behavior”. The left part of the framework handles the technical descrip-
tion and QoS of the offered or requested services, received from the demand and
supply modeling component (see section 2.4). The right part, handles the bid-
ding strategy i.e. economic preferences received from the economic and business
modeling component. According to the framework, a bidding strategy imple-
ments the bidding behavior of the bidding agent, e.g. how, when and what to
bid. For this purpose it adopts learning algorithms to learn from earlier actions
and predict future rewards by selecting a particular price for a given service
description. A strategy profile can be configured with policies, which are defined
in a rule description language and executed within a rule engine. Policies in our
case are scoring and pricing functions, which are defined externally to the imple-
mentation and thus enable a flexible modification. Through the scoring function,
the participant specifies the overall objectives as a mathematical function that
is to be maximized by its bidding agent. For a job j, the pricing policy enables a
static specification of a valuation vj or price calculation function, which is used
by the bidding strategy to calculate the bid ṽj ≤ vj , which is reported to the
Service Market. And last step is to generate the final bid message containing the
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provided or requested technical service description with the economic preferences
like bid, duration and time validity.

3 Bidding Strategies

To implement a strategic behavior on the consumer side, we implemented con-
sumer agents using two rational bidding strategies, a non-adaptable
Truth-Telling, where the generated bid do not depend on past experience, and
adaptable Reinforcement Learning bidding strategy, named Q-Strategy. The re-
inforcement learning bidding strategy is implemented through the Q-Learning
algorithm with epsilon-greedy selection strategy (section 3.3).

Generally in this paper, we do not consider strategic behavior on provider
side, where provider agents adopt some bidding strategies to generate the price
for their offered services. However, we implemented a Continuous Double Action
(CDA) (see section 4), which requires strategic behavior on both sides, where
consumer and provider are continuously matched based on their bids. Therefore
we present and discuss the Zero Intelligence Plus Strategy [9] on provider side
for the evaluation of the CDA mechanism.

3.1 Truth Telling Strategy

In the model of [10], agents do not remember the outcomes of earlier market
interactions, but are somewhat “myopic” in the sense that they only consider
the current situation. As shown for the model in [10], without knowledge about
the future, at time r̃j it is a utility maximizing strategy sj for agent j ∈ J
to report its true type tj to the system and to choose the machine i which
maximizes ûj(i|s−j , t̃j , tj).

The Truth-Telling bidding strategy places a bid price, which equals the
provider’s or consumer’s valuation for a certain service. Although a simple strat-
egy, truth-telling is essential in case of strategy-proof mechanisms, where in
such mechanisms this strategy guarantees to obtain optimal payoffs, no matter
what strategies are adopted by the others. However, in budget-balanced double-
auction mechanisms, this strategy is not dominant [11].



3.2 Zero Intelligence Plus Strategy

Zero-Intelligence Plus (ZIP) agents are widely explored and become a popular
benchmark for agents trading on continuous double auctions [9].In [12], the au-
thor showed that zero intelligence agent strategy [13] is not enough, since the
bids are uniform generated between a given interval and not depend on current
market information or past bids. They introduced a new type of agent, the ZIP
agent, which relies on a reinforcement learning method to learn the price of a
particular market.

Central to the ZIP agent is the rule for updating the profit margin µ. For a
buyer agent, this is the difference between its valuation v (i.e. maximum willing-
ness to pay) and the generated bid b. The relationship between profit margin,
generated bid and the valuation is like following:

bi = (1 + µi)v (1)

The rules for raising and lowering their profit margins are based on whether the
last shout was a bid or an offer, and whether the agent is active (i.e. has service
to sell, or service to buy). In [9], experiments show that ZIP agents perform
better than (non-expert) human traders on CDA markets. Simulations show that
adopting a ZIP strategy in markets dominated by other kinds of agents, results
in an increased profit when the dominating agents are of the kind ZI, Kaplan
or Gjerstad and Dickhaut(GD)[14] agents, and a small decrease if the market
is dominated by MGD agents[15]. In most experiments in the literature[12, 15,
9], the ZIP agent receives information of all bids and offers, whether they are
accepted or not. There are, however, experiments showing that ZIP based agents
perform well also in single sided sealed bid auctions where the agents only receive
information on the winning bids, and the price, the winner has to pay [16].

In [17], genetic algorithms (GA) are used to find optimal values for the ini-
tialization parameters. This is done by using eight dimensional genotypes repre-
senting the upper bounds for the distributions from which there are drawn and
upper and lower bounds for three different uniform distributions from which a
value for each of the variables are drawn independently for each agent in the
market. The agents in these markets have come to be called ZIP8 [18] because
of length of the genotype. In a later paper [18], Cliff presents a revised version of
the same approach. Here, the genotypes have the length 60, and consequently,
the agents in these markets are referred to ZIP60 agents. The increase in length
from 8 to 60 is due to that new parameters, making it possible for the GA al-
gorithm to find different sets of distributions for buyers and sellers, and also
parameters for each of the three cases in which the profit margin is updated.

The ZIP strategy is a state-of-the-art in CDA markets, where the agents
adapt their bids based on public bid signals. It performs well by high demand
and supply and converges quickly to equilibrium price in CDA markets. This
strategy is mainly evaluated and designed for CDA markets and assumes that
all bids submitted to the market are public to the agents. In the following section
we introduce a novel bidding strategy – Q-Strategy for consumers, which does
not require public information.



3.3 The Q-Strategy

Our aim is to develop rational agents with learning capabilities, which may
strategically misreport about their true valuation based on previous experiences.
We refer to these strategies as “rational response strategies”. The Q-Strategy

Algorithm 1 Q-Strategy: Bid Generation Rule

Require: economicpreferencesofthejob
1: if ǫ < Stochastic.random(0, 1) then

2: //Explore :
3: scale ∈ (0, 1)
4: price = Stochastic.random(scale ∗ job.getV aluation(), job.getV aluation())
5: else

6: //Exploit :
7: state = State.getState(job)
8: action = qLearner.bestAction(state)
9: if action! = nil then

10: price = action.getBidPrice()
11: else

12: price = job.getV aluation()
13: end if

14: end if

consists of two algorithms (see Algorithm 1 and 2). The first algorithm describes
the case where an agent generates a bid (or offer) for a given configuration of
services it wants to buy (or sell). The second algorithm applies to the case where
an agent receives a number of offers for a given configuration of services, and
has to select one of them to buy.

Both algorithms are based on a reinforcement learning approach –
Q-Learning [19] with a ǫ-greedy selection policy [20, 21]. Using this policy, the
agent explores the environment with a probability of ǫ, by selecting an action
randomly, and exploits its obtained knowledge with probability of 1 − ǫ, by
selecting an action that has been beneficial in the past.

We use the following notation:

– Each job j has a type tj = {Sj , rj , dj , vj}, where Sj is the specification
of technical requirements for an application or a job e.g. number of CPUs,
storage units and database service, rj represents the release time of a job, dj

the requested duration and vj its valuation. Furthermore, each job type is
associated to a class of common job types tj ∈ Tj , where the class parameters
Sj , rj , dj and vj are learned for all “similar” job-types.

– S is a finite discrete set of states, where each state s is defined by a tuple
{S, d, v}, such that an agent is in state s = {Sj , dj , vj} if it is to bid for a job
with a specification of technical requirements Sj , duration dj and valuation
vj .



– A is a repertoire of possible actions, where, in the context of this paper each
action a represents the assignment of a specific bid price.

– Q(s, a) denotes the expected value of being in state s and taking action a.
– ρ is a mapping from stimuli observed, caused by an action, to the set of real

numbers. Here, we use ρ = −vjCj − πj , where Cj is the time-span between
creation and completion of job j, and πj is the price paid for it.

In other words, the objective is to learn the function Q(s, a), so that, given any
job with a specific technical requirements, duration and valuation, a price ṽ ≤ v
can be selected so that the utility is maximized. However, due to the sizes of the
state and action spaces, and the fact that the environment in which the agent
operates is continuously changing, on this stage only a rough estimate of the Q-
function is feasible. The dynamic adaptation of the learning rate will influence
the probability to be either in the “exploration phase” or “exploitation phase”
and thus the reaction of the changing conditions. Thus, the Q(s, a)-function is
learned with the time, it represents a kind of “aggregated” experience for a given
class of jobs with similar technical requirements, durations as well as valuations.
Currently, we define similar jobs-types as equal regarding technical parameter
specifications, durations or valuations and do not yet introduce fuzzy rules to
consider some deviations on these.

As stated earlier, learning is made through exploration of the environment.
After finishing a job, the Q-function, is updated with the new information ac-
cording to the Q-Learning update rule:

Q(st, at) := Q(st, at) + αt(st, at)[ρt + γ max
a

Q(st+1, a) − Q(st, at)] (2)

Here, st is the state defined by the duration and valuation of the job that the
agent bids for at time t, at is the action selected at time t, ρt is the received utility
of the job. The learning rate αt ∈ [0, 1] determines how much weight we give
to newly observed rewards. A high value of αt results in that high importance
is given to new information, while a low value leads to that the Q-function is
updated using small steps. αt = 0 means no learning at all. The discounting
factor γ defines how much expected future rewards affect current decisions. Low
(γ → 0) implies higher attention to immediate rewards. Higher (γ → 1) implies
orientation on future rewards, where agents may be willing to trade short-term
loss for long-term gain. In Algorithm 1, during exploration, the bid is randomly
generated within the interval ps ∈ [s∗vj , vj ] with s ∈ (0, 1). During exploitation,
the bid is retrieved from the Q-Table, the “best” bid that achieved the highest
average payoff in the past. In Algorithm 2, during exploration, the strategy
selects the “best” (utility maximizing) service provider offer, for which there is
no stored information in the Q-Table. During exploitation it selects the best
offer, which maximizes its utility.

The introduced Q-Strategy seems to be rational in the sense to learn the
“optimal” consumer bids for given consumer preferences. In [19], the author
show that Q-Learning converges to optimal action values, which is also assumed
for the generated bids, modeled as actions. The jobs are assigned to job-classes



Algorithm 2 Q-Strategy: Offer Selection Rule

Require: economicpreferencesofthejob; provideroffers
1: if ǫ < Stochastic.random(0, 1) then

2: //Explore :
3: offer = bestOfferForProviderNotStoredInQTable(job, offers);
4: else

5: //Exploit :
6: offer = myopicBestResponse(state, offers);
7: end if

to learn the bids and preferences for “similar” jobs and converge quicker to
“optimal” bids. The main advantage of this strategy is that the agents does not
require public information i.e. other agent bids to adapt. A common drawback
of reward-based learning is that to learn the optimal bid price needs “training
time”, thus in the worse case this strategy can perform worse at the beginning,
but with the time converge to “optimal” actions.

4 Evaluation

Auction and strategy selection are closely connected in the sense that a given
choice of strategy should affect the choice of auction, and vice versa. For example,
some bidding strategies perform well in a Continuous Double Auction (CDA),
but not in a Dutch auction. This also implies that the choice of auction to
participate in depends on the available strategies. Other factors to take into
account in auction selection are the market rules, transaction costs, and the
current and average prices in the different auctions.

In this section, we evaluate the Truth-Telling and Q-Learning strategies for
three different types of market mechanisms for allocating Grid services. The
first market mechanism is a decentralized on-line machine scheduling mecha-
nism, called Decentralized Local Greedy Mechanism (DLGM) [10]. The second
one is a centralized continuous double auction (CDA) [15]. The third mecha-
nism we implemented is FIFO (First-In-First-Out), a state-of-the-art scheduling
mechanism, representing the class of technical schedulers and serves as a baseline
mechanism for comparing the results. The market mechanisms are implemented
within the SORMA Trading Management component. The simulation is run on
a light version of this component.

As a measure we use the average utility per job received by the consumers.
In the Truth-Telling scenario, this is the same as measuring the common wealth
for this particular strategy, since all players have the same strategy. In the case
of the Q-Learning strategy, however, this is not equivalent, since the behaviors
of the players diverge as the players observe different information.

In the case of the decentralized DLGM mechanism, each time a job arrives
on the consumer side, his bidding agent generates a bid in form of a job type
tj = {Sj , rj , dj , vj} (see Section 3) and report this to all providers. Based on
this bid, each provider reports back a tentative completion time and tentative



price for each of its machines. When sufficiently many provider offers have been
collected, the consumer can decide, based on his utility function ρ = −vjCj −πj

[10], sections 2.5 and 3.3, which offer to choose. The providers in the DLGM
market do not behave strategically and do not request compensation for the use
of their services. The payments are divided only among the consumer agents for
compensating the displaced jobs.

In the centralized CDA, consumers and providers submit bids and offers con-
sisting of only a price per time unit, and are matched based on this information.
Providers act strategically, trying to achieve as much money as possible for their
services. To calculate the price of their bids, they use a ZIP (Zero Intelligence
Plus) agent [12].

In the FIFO mechanism the agents’ submit their jobs to a provider machine,
which offered the shortest completion time, where the jobs are scheduled and
executed through the FIFO principle. In the following section we describe the
evaluation settings and simulation results.

4.1 Evaluation Setting

For each market – DLGM, CDA and FIFO, and each strategy – Q-Learning
and Truth-Telling, we simulated four different scenarios described by settings 1
through 4 in Table 1. In each scenario there are 50 consumers and 50 providers
(each controlling a single machine). In each of the first three settings, the rate
of which jobs come in on the consumer side is determined by a Poisson process.
To increase the competition in the market, we successively increased the mean λ
of the Poisson process from λ=.1 (setting 1) to λ=.5 (setting 3). The amount of
jobs for these settings is a direct consequence of these values. For these settings,
the duration of each job is drawn from the normal distribution with a mean
value of 5 hours and a variance s2 of 3.

The fourth setting is based on the logs of a real workload at the LPC (Lab-
oratoire de Physique Corpusculaire) cluster which is a part of the EGEE Grid
environment, and located in Clermont-Ferrand, France [22]. The log contains
244,821 jobs that were sent to the nodes during a period of 10 months starting
from August 2004 through May 2005. We have, however, only extracted jobs
with duration between one and 24 hours. The LPC log was chosen because it
contains a large variety of jobs with different run-times, numbers of used CPUs,
and varying submit and start times.

Table 1. Simulation settings

Setting Arrival Rate Duration # Jobs # Consumers # Providers

1 Poisson(0.1) max(1, N(5, 3)) 751 50 50
2 Poisson(0.3) max(1, N(5, 3)) 1502 50 50
3 Poisson(0.5) max(1, N(5, 3)) 3004 50 50
4 As in LPC-Log As in LPC-Log 105,578 50 50



4.2 Simulation results

The results of the simulations are summarized in Table 2. Each line in the table
represents the evaluation of one strategy for one setting. The first two columns
represent the setting used (corresponding to those of Table 1) and the strategy
evaluated. The next two columns represent the average utility µ per job achieved
– here ρ = −vjCj − πj [10] – as well as the standard deviation σ of job budget
and actual payment in the DLGM market, and the last four columns represent
the results for the CDA and FIFO in the same way.

The results show that the Truth-Telling strategy achieves the highest utility
for all four settings in both DLGM and CDA markets except by the FIFO mech-
anism. FIFO achieved “slightly better” utility using Q-Strategy against Truth-
Telling, although it should be exact the same, because of the FIFO behavior and
the same on-line decisions in both strategy cases. This slight deviation can be
explained due to contorted decision time of both strategies, where by the Truth-
Telling strategy the bid corresponds the true valuation and by the Q-Strategy is
determined based on its ǫ-greedy phase (see section 3.3). The Q-Strategy repro-

Table 2. Simulation results

Setting Strategy DLGMµ DLGMσ CDAµ CDAσ FIFOµ FIFOσ

1 Truth-Telling −110, 48 272, 37 −7, 92 ∗ 104 95,33 -139,78 8,13
1 Q-Strategy −174, 74 257, 54 −10, 33 ∗ 104 93, 56 -134,82 8,13
2 Truth-Telling −212, 66 285, 16 −11, 95 ∗ 104 94,13 -276,92 8.08
2 Q-Strategy −392, 42 265, 96 −14, 63 ∗ 104 93, 30 -265,30 8.08
3 Truth-Telling −403, 58 286, 43 −7, 89 ∗ 104 86,74 -549,12 8.06
3 Q-Strategy −901, 18 265, 24 −23, 22 ∗ 104 90, 77 -524,74 8.06
4 Truth-Telling −1104 647, 27 −9, 91 ∗ 104 391,97 -4532,0 400.93
4 Q-Strategy −1172 580, 68 −11, 04 ∗ 104 313, 69 -4444.0 400.93

duces a strategic behavior by the generation of the bids. More specifically, we
assume that rational agents have an incentive to understate their true price in
relation to their valuation. Due to the fact that they understate their true price
the achieved utility is lower than by the Truth-Telling strategy. The simulation
results showed that bidding truthfully in both mechanisms can only increase
your utility. Understating the truthful valuation in lower bid results in a poorer
“job priority” pj/dj by DLGM and this job can be displaced by other jobs which
have higher priority. As listed in table 2 the DLGM mechanism outperform the
FIFO mechanism in all four settings using the Truth-Telling bidding strategy
and achieves the highest common wealth for all participating consumer agents.
Using the Q-Strategy all agents reveal their true valuation, which leads to worse
common wealth against FIFO. When the overall number of jobs is high (setting
4), agents submit and execute continuously jobs for a longer period of time i.e.
the agents have enough “training time” to “learn” the bids, in DLGM, the set-
ting with agents using the Q-Strategy has “slightly” lower utility than the setting



with agents reporting truthfully (Truth-Telling). This result is also strength by
the fact that in this setting the Q-Strategy outperforms four times the common
wealth of the FIFO mechanism.

By the CDA mechanism, the price depends on the current demand and sup-
ply, bidding a lower price instead of the truth valuation increases the risk of no
allocation by the mechanism. Like in the DLGM market mechanism, the Truth-
Telling strategy in the CDA market mechanism achieves higher average utility
than the Q-Strategy. However, by the specified CDA market mechanism, the
matching is based only on the price without considering the “priority” of a job
as with DLGM, and thus achieves very low utility compared to DLGM. The
origin of this can be searched in the CDA mechanism itself. First, each agent
– provider and consumer – receives all the bids of the other agents as public
information and based on this they adapt their bid/offer through the imple-
mented bidding strategy. The CDA-provider agents are also acting strategically
and adapting their offered price based on the received public information. Thus,
the matching is based on the price resulting from the demand and supply and
not on the “job priority” as with DLGM. Secondly, the CDA-provider machine
agents do not maintain a priority queue of the submitted job bids and by an
allocation the job is immediately submitted and executed on the provider ma-
chine. A provider submits an offer as soon as he becomes idle. Thus each time
the agents are competing by adapting their job bids based on the used strategy.

4.3 Convergence of the Q-Strategy

Furthermore we investigate the bid convergence of the Q-Strategy itself using the
real workload data of setting 4 (105.578 jobs), because of the high number of jobs.
Figure 4 shows the bid generation in both phases – exploration and exploitation
– during the simulation time of setting 4 and explicitly the corresponding bid
selection in the exploitation phase of eight different consumers for eight selected
particular classes of jobs. The selection of the consumers and their jobs is based
on statistical analysis of the output data, where we selected classes of jobs of
different consumers, which have a statistically high number of generated bids.
The minimum number of generated bids per job-class is 1, the maximal 49 and
the average 12.

Each graph shows the valuation of a particular job class – e.g. consumer
agent 8, job class of jobs with valuation of 86 cents and requested duration of 2
hours – as a horizontal line, the development of the bid over the time and the
convergence trend of the bid displays the dotted line. As displayed on the first
left graph, the generated bids are fluctuating based on the ǫ-greedy phase of the
Q-Strategy. The neighbor graph to the right side shows the extraction of the
bids, selected on the exploitation phase. An interesting result is that for some
cases of jobs with lower “job priority”–pj/dj , bids does not converge to the true
valuation and for jobs with higher priority, bids converge to the truth-valuation
of the specific job type.
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Fig. 4. Convergence of the bids using Q-Strategy

5 Related Work

Economic models for resource scheduling are widely explored in the literature
[23–27]. According to their mode of allocation, scheduling mechanisms can be
distinguished into mechanisms which execute periodically–“offline mechanisms”,
and mechanisms which execute continuously–“online mechanisms”. Market
mechanisms e.g. Vickrey, English, Dutch, and Double Auctions [28] as well as
combinatorial mechanisms [29, 30] involve a scheduling problem that is NP-hard.
The computational complexity of such mechanisms drives researchers and prac-
titioners to look at simpler allocation models which can be adapted to real-world
scenarios and requirements. Prominent examples are proportional share mecha-
nisms [31], where the users receive a share of the computer resource proportional
to their valuation’s fraction of the overall valuation across all users. A related
on-line mechanism is the so-called pay-as-bid mechanism proposed in [32]. In
pay-as-bid mechanisms, the agents submit only a single real value as bids which
at the same time make the agents’ final payments.

Preference elicitation deals with extraction of user’s preferences for different
combinations of resource configurations and prices. The aim of this methodology
is to find an “optimal” choice of configuration, without explicitly presenting all
possible choices. Two important approaches for job preference estimation are
discussed in the literature – Conjoint Analysis and Analytical Hierarchy Process
[7, 33, 34]. Conjoint analysis estimates the user’s value for a certain attribute
level by performing regression analysis on the user’s feedback to the presented
attribute profiles. In contrast to the conjoint analysis method which aims at
determining the value of a certain attribute, the analytical hierarchy process
tries to determine the relative importance of a certain attribute among a set of
attributes [35].



The field of autonomous bidding is explored by many researches. [36] gives
an overview of the various agents and their strategies taken place in the Trading
Agent Competition. The literature described trading agents in stock markets [37],
supply chain management [Pardoe and Stone 2007] and in various market mecha-
nisms [38, 39] Since agents are self-interested, they aim to implement a strategic
behavior in order to maximize their utilities. In this context the mechanism
design and auction literature investigated various bidding strategies for market-
based scheduling [40, 11, 41, 42]. Phelps elaborated co-evolution algorithms to
learn the strategy space for autonomous bidding by the allocation of resources
in market mechanisms. In his thesis he classified bidding strategies into non-
adaptive – Truth Telling, Equilibrium-Price and Zero Intelligence strategy (see
section 3.2) – and adaptive strategies – Zero-Intelligence Plus(see section 3.2),
Kaplan’s Sniping Strategy, Gjerstad-Dickhaut and Reinforcement-learning [20].
[14] GD-agents store history information about the submitted bids and use belief
function for the price estimation. FL-agents [39] use fuzzy logic to generate a bid
or offer based on a base price, which is a median of previous prices. Risk-Based
agents [38] perform prediction of expected utility loss resulting from missing out
on a transaction. Kaplan agents [43] define strategic conditions (“juicy offer”,
“small spread” and “timeout”) under which a bid is generated and submitted.
A comparison between common bidding strategy is evaluated by [9, 37].

The management of computational resource centers as well as scalable ap-
plications often needs to be automated. “Intelligent” agents can take automated
decisions based on current resource utilizations and the preferences of the partic-
ipants. Modeling such decision making behaviors is one of the central problems
in AI research. A traditional approaches in the this case are often based on
Belief-Desire-Intention[44] models, where beliefs correspond to information that
the agent has about the environment. Desires represent “options” available to
the agent to different possible actions an agent may choose. Intentions repre-
sent states that the agent has chosen and committed to use. In this case, the
agent’s reasoning involves repeatedly updating beliefs from information in the
environment, deciding what actions are available, examining these options to
determine new intentions and acting on the basis of these intentions. Based on
the preferences of the participants, the agents handle with the aim maximizing
their expected utility. This led to the adoption of numerical methods based on
dynamic programming such as reinforcement learning, in which the symbolic
concept of a goal is replaced by a numerical reward value.

The AI literature introduces three main approaches for learning – supervised,
unsupervised, and reward-based learning. These methods are distinguished by
what kind of feedback the critic provides to the learner. In supervised learning,
the critic provides the correct output. In unsupervised learning, no feedback is
provided at all. In reward-based learning, the critic provides a quality assessment
(the “reward”) of the learner’s output. A wide summary of common learning
algorithms and decision rules are presented by [45–47, 37, 15, 48, 49]



6 Conclusions and Outlook

In this paper we have described consumer and provider components support-
ing the automated bidding process. We presented a framework for automated
bidding, which offers a methodology and core concepts for implementing config-
urable bidding agents. We introduced the Q-Strategy as novel consumer bidding
strategy, which implements a rational strategic behavior by the provisioning and
requesting of Grid services, and evaluated it against the Truth-Telling bidding
strategy in three different mechanisms. We show that the Q-Strategy tends to
converge to optimal action values.

A common drawback of reinforcement learning algorithms is that they need
some time to learn the environment and start to converge to an optimal ac-
tion. To evaluate the properties of the Q-Strategy we need further research and
simulations with different simulation settings e.g. mixed scenarios and in fur-
ther mechanisms e.g. proportional-share [31, 50, 50] and pay-as-bid [51] as well
as a comparison against state-of-the art bidding strategies like ZIP (also on
consumer side), GD and Kaplan agents. Moreover, we investigated strategic be-
havior on consumer side, where truth telling is supposed to be an optimal bidding
strategy in the sense of maximizing the consumer’s utility. Next steps will con-
clude the investigation of strategic behavior on provider side by extending the
DLGM mechanism with payments for the service usage. Bidding strategies like
Q-Strategy will be also introduced on provider side. In this case the truth telling
strategy could be not optimal.
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