Compiling and Executing Disjunctions of Finite
Domain Constraints

Bjorn Carlson

Computing Science Department, Uppsala University
Box 311

751 05 Uppsala

e-mail: bjornc@csd.uu.se

Mats Carlsson
Swedish Institute of Computer Science
Box 1263, S-164 28 KISTA, Sweden

e-mail: matsc@sics.se

Abstract We present two schemes for compiling disjunctions of finite
domain constraints, where disjunction is treated as constructive. In the
first scheme each disjunction is compiled to a set of indexicals, i.e. a set
of range functions computing domain restrictions, such that the evaluation
of the indexicals maintains a weak form of consistency of the disjunction.
The second scheme is based on constraint lifting, i.e. constructive disjunc-
tion applied to the set of constraint stores given by executing a disjunction
of goals, for which we provide an algorithm for lifting finite domain con-
straints. This scheme maintains stronger consistency than the first with a
penalty in efficiency. We compare the two schemes with speculative disjunc-
tion, i.e. disjunction executed nondeterministically, and with disjunction via
cardinality. Our conclusions are that the indexical scheme implements the
most eflicient pruning for many disjunctive constraints, such as resource and
maximum /minimum constraints, and that the lifting scheme can be used for
implementing lookahead pruning.

1 Introduction

Disjunctions of finite domain constraints can be used for pruning search
[VHSD91, VHSD92, JS93]. However, instead of speculatively exploiting dis-
junctions as search directives, they should be handled as constraints proper.
The basic idea is to propagate information common to each disjunct, where
the problem is to compute what is common.

From a constraint such as (z =2Ay=1)V (z =50 Ay = 25) it follows
that 2y = z. However, in the general case such inferences are intractable
to compute. Rather, we focus on deriving domain constraints, e.g. from the
above example we would like to infer z € {2,50} and y € {1,25}.

Even with this restriction, we are still concerned with a multitude of
approaches. Consider a disjunction ¢y V ¢y executed in conjunction with a
constraint ¢ in a store o. Fither, the domain constraints generated by con-

sidering the consistency of each constraint in ¢; and ¢ in o can be combined,
or the domain constraints given by enforcing the consistency of ¢; A ¢ and
¢ A ¢ in o respectively can be combined. We say that either the disjunction
is executed locally or globally.

In this paper we present two schemes for compiling disjunctions of finite
domain constraints, one which generates code for maintaining local consis-
tency, and one which maintains global consistency.

The first scheme is based on FD [VHSD91], a constraint language of
indexicals. An indexical is a range function, indexed by the domains of
variables, which computes restrictions on a domain variable. We use an
extension of the original proposal of FD with conditional reasoning [CJH94]
as the target language for the compilation of disjunctions of finite domain
constraints. The extension is crucial for our purposes.

Hence, disjunctions of finite domain constraints are transformed into
sets of (conditional) indexicals which by computing unions of ranges main-
tain consistency locally. This does not result in maximal propagation, but
instead the indexicals can be evaluated efficiently. Another advantage of this
technique is that it is based on indexicals with no extra support for disjunc-
tion, e.g. there is no need for managing local states which is necessary to
implement global consistency.

The second scheme uses a concurrent language with deep guards, such
as AKL [Jan94, CJH94], to execute disjunctions globally. Given a disjunc-
tion of constraints, each constraint is executed in a private local store, thus
generating local domain constraints by maintaining consistency. Henceforth,
domain constraints common to each local store are computed (lifted) and
added to the embedding store. In this paper, we give an algorithm for lifting
domain constraints, and briefly describe the implementation of constraint
lifting in AKL.

The compilation schemes presented here have been implemented in the
AGENTS-system, developed at SICS [JH91, Jan94, CJH94].

Our initial performance evaluations indicate that the indexical scheme
implements suflicient pruning for many disjunctive constraints, such as re-
source and maximum/minimum constraints, extending the pruning given
by cardinality-based disjunction. For our benchmarks the overhead of the
lifting scheme for such constraints does not pay off, since it gives no more
pruning than the indexical scheme.

On the other hand, the lifting scheme can be exploited for lookahead
pruning [VH89], which decreases the number of nondeterminate steps dra-
matically for highly constrained problems such as graph-coloring and n-
queens problems. This technique is not applicable using the indexical
scheme.

The paper is structured as follows. In Section 2 we introduce indexicals
and different types of disjunction. Section 3 deals with the compilation of
arithmetical finite domain constraints to indexicals. In Section 4 the rules
for rewriting disjunctions of constraints into sets of indexicals are given, and

N == x|, whereie N | oo

T w= N|T+T|T-T|T+T|[T/T]||T/T]|T mod T
| min(R) | max(R)
R T TIRNR|RUR|RDR|—-R

| R+T|R-T|RmodT
| dom(N)

Figure 1: Syntax of FD range expressions

in Section 5 constraint lifting and lifting of domain constraints is explained.
Section 6 contains a performance evaluation of the two schemes compared
with speculative and cardinality-based disjunction.

2 Background

We now briefly explain FD, the different types of disjunction we consider,
and constraint lifting in AKL.

2.1 FD: a theory of finite domain indexicals

The constraint system FD is based on domain constraints and functional
rules called indezicals [VHSDO91]. These rules may be thought of as rules for
maintaining arc-consistency [Mac77]. We have extended FD with a condi-
tional range operator which is necessary to treat disjunctions properly.

A domain constraint is an expression & € I, where [is a set of integers.
The sets that are considered will always be finite unions of intervals. A set
o of domain constraints is called a store. The expression z, denotes the
intersection Iy N ---N I, for all constraints z € I, in 0, 1 < k < n. If o does
not contain a constraint @ € I, x, is the set Z of integers. A variable x is
determined in o if z, is a singleton set. Let o1 C o9, for stores o and o, if
for all variables z, z,, C z,,. It follows trivially that C defines a lattice.

An indexical has the form z in r, where r is a range (generated by R in
Figure 1). The value of z in r in o is ¢ € r,, where r, is the value of r in
o (see below). The value of a range v in o, 14, is a set of integers computed
as follows. The expression dom(y) evaluates to y,. The expression #;..t5
is interpreted as the set {1 € Z:1;, < i < {3,}. The operators U and N
denote union and intersection respectively. The (new) conditional range
r D 1’ equals 7/ if r, # () and () otherwise. The expressions r + ¢, r — ,
and r mod { denote the integer operators applied pointwise, where { cannot
contain max or min terms. Finally, the value of —r in o is the set Z\r,.

The value of a term t in o, {,, is an integer computed as follows. A
number is itself. A variable is evaluated to its assignment, if it is determined
in 0. The interpretation of the arithmetical operators is as usual. The

expressions min(r) and max(r) evaluate to the infimum and supremum
values of 7., possibly —oco (00).

In the following we use {.. and ..t as shorthand for {..00 and —o0..t,
min(z) and max(z)) as shorthand for min(dom(z)) and max(dom(z)).
Where nonambiguous, we use ¢ instead of ...

A linear finite domain constraint x -y, an arithmetic constraint for short,
is an equation (z = y), an inequation (- € {<,>,<,>}), or a disequation
(z # y) over linear expressions z and y, where a linear expression is either
of the form ny * 21 £ ... £ ng *x zp £ ng, where n; is a positive integer and z;
an integer variable (0 <7 < k), or of the form ¢/n, where ¢ is linear and n a
positive integer.

A constraint is thus an indexical, an arithmetic constraint a, or a dis-
junction (conjunction) thereof. The wvalue of a constraint ¢ in a store o is
defined by eval(c, o) as follows:

e eval(z in r,o)=ocU{z € r,}.

e eval(a,0) =oU{zy € I1,...,z1 € I;}, for some integer sets I,. .., I,
where z1,...,x; are the variables that occur in a. FEach I; can be
computed through a translation of @ as in Section 3.

e eval(cy Acy,0) = eval(cy, o) Ueval(cy, o).
e eval(cy Vcy,0) = eval(cy, o) Meval(cy, 0).

Furthermore, we define two fixed-point functions L and G for constraints
in disjunctive normal form (dnf) as follows. Suppose ¢ is in dnf, i.e. ¢ =
c1 V-V, for some k, where ¢; is a conjunction of arithmetic constraints
and indexicals.

o L(c;V---Veg,0) =0, where o' is the smallest store extending o such
that eval(cy,0’) M ---MNeval(cx,0') = o'

¢ G(c1V---Veg,0) =0, where ¢’ is the smallest store extending o such
that eval(¢;,0’) =o', 1 < i <k.

Obviously, for any store o and constraint ¢ it follows that L(¢,0) C G(c, o).
The intuitive understanding of L and G is that L evaluates a disjunction
without the need for local states to keep the results of propagating each dis-
junct separately, whereas this is necessary when evaluating G. Furthermore,
G suffers from the fact that ¢’ must be a fixed-point to each disjunct, which
requires G to iterate more than L.

Example 2.1. Consider the disjunction ¢ = (z = yAz = 2Ay =
HVv(@e=yAz=zAz=1)ino ={z € {1,2},y € {1,2},z € {1,2}}.
It follows that G(¢,0) = {z € {1},y € {1},z € {1}}, and L(c,0) = {z €
{1,2},y€{1,2},z € {1,2}}. O

Let o be a store, and let ¢ be a constraint. Entailment of ¢ from o is

defined as:

o entails z in r if r, is defined, and z, C r,/, for any ¢’ such that

cCo.

o entails a if for each o' such that ¢ C ¢’ and o' determines the

variables in a, a is true in o’.

o entails c¢; A ¢y if o entails ¢; and c,.

e 0 entails ¢1 V ¢y if o entails either ¢q or ¢s.

e cis consistent in o if for some o', 0 C ¢', ¢’ entails c.
e c is inconsistent in o if ¢ is not consistent in o.

e ¢ and d are equivalent if ¢ is entailed iff d is entailed.

A range r is monotone if for every pair of stores oy and oy such that
o1 C o9, 75, C 1y,. We define z in r as monotone if r is monotone.

2.2 Disjunction

We consider three types of disjunction; speculative, cardinality and construc-
tive.

2.2.1 Speculative

Speculative disjunction, i.e. nondeterminate disjunction, is what is used in
Prolog. Executing ¢; V ¢3 in o speculatively thus means to first execute ¢q
in o, and if failure later occurs, execute ¢ in o instead. The problem with
this scheme is that choices are made prematurely and that backtracking is
needed to undo the effects of choices.

2.2.2 Cardinality

Cardinality-based disjunction is disjunction defined as

c1 Ve = #(1, [61762]72)

[VHDY1], i.e. at least one of ¢; or ¢; must be true. Hence, given a store o,
neither ¢; nor ¢y is executed in ¢ until the other is inconsistent in ¢. The
cardinality-operator is not speculative, but achieves insufficient propagation
in many cases, typically for disjunctive scheduling problems.

2.2.3 Constructive

Constructive disjunction was proposed as a way to treat a disjunction of
constraints as a constraint to avoid the speculative behavior, and to utilize
the inherent propagation of disjunctions [VHSD91, VHSD92, JS93]. We only
consider propagating domain constraints from a disjunction in the following.

t inf(t) sup(t)

n n n

x min(z) max(z)

ty+ty | inf(t) + inf(t2) | sup(ty) + sup(lz)
11—tz | inf(t1) — sup(tz) | sup(ty) — inf(t2)
nxx | nxinf(z) n * sup(z)

Table 1: UPPER AND LOWER BOUNDS OF LINEAR EXPRESSIONS

We distinguish between constructive disjunction executed locally and
globally. Let ¢ be in dnf. Then, executing ¢ globally (locally) in a store o is
equivalent to evaluating G(e¢, o) (L(¢,0)).

3 Compilation of Arithmetic Constraints

In this section, we describe the compilation of linear finite domain constraints
to monotone indexicals for constraint propagation.

Let inf (sup) be a function from linear expressions to values which in-
creases (decreases) as the computation progresses. That is, inf(t) (sup(t))
is the smallest (largest) value that ¢ can ever get (see Table 1).

The lower (upper) bound of a linear expression £ is thus computed by

inf(E) (sup(E)) (see Table 1).

3.1 Compilation of constraints

We give a simple-minded compilation of arithmetic constraints into indexi-
cals, used as a basis for our compilation of disjunctions in later sections (see
Section 4). The compilation of an arithmetic constraint ¢ is based on deriving
necessary conditions for ¢ expressed as monotone indexicals. A constraint
over k variables is compiled into £ monotone indexicals over k — 1 variables,
which approximate the constraint by interval arithmetic reasoning, i.e. they
maintain partial arc-consistency. This is similar to the distinction made
between interval and domain reasoning of constraints in cc(FD) [VHSD92].
The scheme can be modified to provide full consistency by allowing arbitrary
range arithmetics such as r + 7/, where r and ' are ranges, as is done in
clp(FD) for example [DC93b, DCI93a]. The method is best explained by an
example.
Example 3.1. The constraint

20 =3y + 5

is rewritten twice to equivalent equations, each expressing a single variable
as a function of the others:

2z = 3y + 5,
3y=2x -5

[inf (Eq)/ni].. | sup(Es)/ni]
- [sup(Ey) /i)
[inf (Eq)/ni]..
sup(E; — 1) /ng]
[inf (E; + 1)/ni]..
—(Lsup(Ei)/ni] .. [inf(E:)/ni])

Table 2: TRANSLATION OF ARITHMETIC CONSTRAINTS

TV AIVIA

These equations are approximated by the indexicals:

zin [(3+min(y)+ 5)/2]..[(3* max(y)+ 5)/2],
yin [(2*min(z) — 5)/3]..[(2* max(z) — 5)/3]

O

The compilation of inequations and disequations is completely analogous

to that of equations. In general, the idea is to rewrite a constraint over the
variables 1 ...z into the equivalent constraints

where - is the relation symbol, 1 < ¢ < k, and then to translate them into a
conjunction of monotone indexicals

z; In 7;

that propagate information whenever the min or the max of a variable
changes, where 1 < i < k and r; is defined from E; and n; (see Table 2).

The translation rules (see Table 2) are obtained as follows: a necessary
condition for n x z < E is the indexical z in ..|sup(E)/n|; a necessary
condition for n* z > E is the indexical & in [inf(£)/n]..; and the following
equivalences hold:

r=y = z<yAz2>y
r<y = z<y—1
>y = z>2y+1
r#£y = z<yvVae>y
zinrmAzinry, = zinr N7y
zinmVzinr, = zinr Ury
zin .- 1)U(j+1).. = zin — (i.])

Note that the proposed translation produces indexicals such that any
pair of indexicals generated from an arithmetic constraint are equivalent,
i.e. one of the indexicals is entailed iff the other one is.

This compilation scheme has one major drawback: the code size is
quadratic in the size of the input. This property is probably unacceptable
except in toy programs or for binary constraints, and can be removed by
using conjunctions of library calls instead [DC93a].

4 Disjunctions executed locally

Let ¢ be a constraint in dnf. Furthermore, let z1, ...,z be the variables that
occur in ¢. Indezing ¢ amounts to computing a set of monotone indexicals
that evaluates Ao.L(¢,0) (see Section 2.1).

Let A denote the set of indexicals generated by compiling a (see Section
3), where a is an arithmetic constraint.

We proceed stepwise as follows:

1. Assume ¢ is equal to ¢; V ...V ¢,, where each ¢; is a conjunction of
arithmetic constraints. Let A; = [J{A:a € ¢;}.

2. Define Y; as A; where any two indexicals in r and z in r’ have been

replaced by z in r N r'. Hence, Y; = {y; in 741, ...,y in 7y}, for some
Land y1,...,y € {&1,..., 25}
3. Let V; = Azy,...,zxt\{v1,-..,u}, and thus X; = Y; U

{z in —c0..00: 2 € V;}.

Hence, X; is the result of indexing conjunct ¢; in ¢. We now turn to how
the disjunction of ¢, ..., ¢, can be removed. Again, we proceed stepwise.

1. Let X; be as above, i.e. X; = {zq in ry, ...,z In ri}, 1 <i<n. We
define s; as

s; = (dom(zq1) Nrip) D ... D (dom(zg) N 7)),

and r; as
ri=1(s1 D7) U...U(Sy D Tpi).

2. Consequently, let X, be the set {z1 in 7q,..., 2% in ri}.

It can be proven that X, is entailed if ¢ is entailed, and that the inverse is not
true. Furthermore, it follows that L(c,0) = L(zy in 71 A -+ A 2 in rg,0),
where X, = {zy in rq,..., 2 in 71 }.

When compiling arithmetic constraints, indexicals are generated which
are equivalent to each other (Section 3). This can be used for optimizing the
ranges generated by the compilation.

Let X, be as above. X, is optimized by removing redundant conditional
ranges. There are several cases to apply:

s; Foreach s;, 1 <@ < n,replace any two ranges dom(z)Nr and dom(y)N
r’, such that in r and y in 7’ are generated from the same arithmetic
constraint a, by dom(z) N r.

r; For any indexical z; in roU((dom(z)Nr) D r')Ury, 1 <@ < k, replace
(dom(z)Nr) D 7 with 7" if z; in r’ and & in r are generated from the
same arithmetic constraint a.

—00..00 A conditional range such as (dom(z)N —o00..00) D 7’ is replaced by 7/,
for any z, since dom(z)N —o0..0c0 is nonempty in any consistent store.

In the examples below, the reductions are applied beforehand to reduce the
complexity of the indexicals. There are other optimizations concerned with
using intermediate variables for storing range values used multiple times,
and for optimizing the evaluation of conditional ranges that we do not go
into here.

Let us now consider a few examples of disjunctive constraints compiled
into indexicals.

Example 4.1. Let ¢ be the constraint z +: < yV y+ 5 < z, for some
constants ¢ and j. The constraint is indexed into the two sets

{z in ..(max(y) — 7),y in (min(z) + ¢)..}, and

{z in (min(y)+ j)..,y in ..(max(z) — j)}.

These sets are conditioned and removed of redundant conditions computing
X, as

z in ..(max(y)—¢) U (min(y) + j)..

y in (min(z) 4 ¢)..U ..(max(z) — j)

Note that ¢ is a typical scheduling constraint, stating that either z preceeds y
by some constant, or y preceeds x by some constant. The intended behavior
is to exploit the disjunction constructively, which the indexicals do. The
domain of z is effectively pruned of any integer in the interval [max(y)—i—
1,min(y) 4 7 + 1], and similarly the domain of y is pruned of any integer in
the interval [max(z) — 7 — 1, min(z) + ¢ + 1]]

Example 4.2. Let ¢ be the constraint (z = 1Ay = 1) V(z = 2Ay = i3).
The constraint is indexed into

{zin 1,y in dom(¢1)} and {z in 2,y in dom(iz)},
where the indexicals for ¢y and 3 are ignored. Thus, X, =

z in ((dom(y) N dom(i;)) D 1) U ((dom(y) N dom(iz)) D 2),
y in ((dom(z)N1) D dom(%;)) U ((dom(z) N 2) DO dom(iy))

where no optimization rules are applicable.
Consider for a moment the element(z, [, y) constraint which is true iff the
zth element in [is equal to y [DSH88, CJH94]. The constraint is equivalent

to
Viz=jny=1)

J

where [= [i1,..., 1] and ¢; is assumed to be determined, 1 < j < k, of which
¢ is a particular case where k = 2. It was previously shown that element/3
can be defined in terms of cardinality disjunction [HSD92], however, under
the assumption that ¢; is determined. Thus, our approach is slightly more
general since ¢; need not be determined. a
Example 4.3. Let ¢ be the constraint z = 2V y = z. Hence, X, =

z in ((dom(y) Ndom(z)) D —oc..00) U dom(z),
y in ((dom(z) Ndom(z)) D —oc..00) U dom(z2),
z in dom(z) U dom(y)

which for example in the store {z € {1,2},y € {3,...,6},z € {6}} prop-
agates y € {6}. Conjoining X, with z < z and y < z compiled to index-
icals (see Section 3) thus gives a more powerful max/3 constraint than in

clp(FD) [DCI3a).]

5 Disjunctions executed globally

First we define constraint lifting, as implemented in AKL, and then we give
an algorithm for lifting domain constraints in FD.

5.1 Constraint lifting

Constraint lifting is constructive disjunction applied to a set of constraint
stores generated by running a disjunction of goals in separate local stores,
where constraints true in each local store are lifted and added to the em-
bedding store. The notion is generic in choice of constraint system, and
computing approximations of disjunctions generally requires domain specific
knowledge. However, for some constraint systems, such as boolean equal-
ities, where the constraint language supports disjunction, lifting becomes
trivial.

In AKL, a deep concurrent constraint language [Jan94], we have intro-
duced constraint lifting through a deep guard operator ||, explained below.
Any computation in AKL is done in a local constraint store. A hierarchy of
stores is created by running goals in guards. Each local store is associated
with all the constraints generated by the local execution, that constrain or
depend on variables in external stores. Thus, AKL supports directly the
structures that are necessary to implement constraint lifting, since a rep-
resentation is kept which gives access both to constraint stores and to the
constraints visible externally in each store.

The operator || is defined as an adaption of the guard mechanism of AKL
[Jan94]. Thus; the lifting statement in AKL

Gi || Ba

i G| By

is used for expressing constraint lifting. Its components are called (guarded)
clauses and the components of a clause guard (G;) and body (B;), where G;
and B; contain procedure calls which include constraints.

Now, in the following let a be a function such that, given the constraint
stores o01,...,0k, a(o1,...,0%) C o; holds, for any ¢ between 1 and k. For
an instance of o see Section 5.2.

Suppose a lifting statement is executed in a store o. Its guards are
executed separately and the execution of the statement proceeds as follows.

e Let 0; be the store resulting from the execution of guard G; in o.

o If o; is unsatisfiable, the guard fails, and the corresponding clause is
deleted. If all clauses are deleted, the lifting statement fails.

o If only one nonfailed clause remains, ¢ say, o is replaced with o;, and
the lifting statement is replaced with the body B;.

o If 0, is entailed by o, the lifting statement is replaced with B;.

o Otherwise, let oy, ..., 0 be all remaining local stores which are neither
unsatisfiable nor entailed by o, £ > 1. Hence, add a(oq,...,0%) to o.

¢ Finally, the lifting statement suspends until more constraints are added
to o which may affect the execution of G;, for some 2z, 1 < ¢ < k, and
thereby the statement is reexecuted (incrementally, of course).

Using the lifting statement, disjunctions of finite domain constraints can be
executed globally through a lifting function « for domain constraints (next
section), and by encoding a disjunction ¢; V ---V ¢, as ¢; || true; - -+ ¢, ||
true.

5.2 Lifting domain constraints

In the following we assume there exists a lexicographic ordering of variables.
Given the constraint stores o1,...,0k, a(oy,...,0r) equals ¢, where o’
is defined as:

1. Let o’ initially be empty.
2. Sort each o; by the ordering of variables.

3. For each z such that z,, # Z for each ¢ between 1 and k, generate
X E Ty U---Uzg,.

4. For each constraint z € I computed as in step 3, if z, C I, ignore the
constraint. Otherwise, add = € I to o’.

Since the local stores are kept sorted, generating z € z,, U---Ux,, incre-
mentally for n variables in step 3 can be done in O(k*n) time. Furthermore,
in AKL, local stores are associated with a DIRTY-bit which is set initially

and whenever a local store can no longer be guaranteed to be sorted (such as
after a garbage collection, or after the addition of new constraints). Hence,
before lifting is performed for FD constraints, each local store o; is checked
if dirty, 1 < ¢ < k. If dirty, the store is sorted and the bit is reset. This
improves the incremental behavior of lifting.

Example 5.1. Consider the disjunction y = 1V 2z = 1 conjoined with
t =y Az = zin the store 0 = {2 € {1,2},y € {1,2},z € {1,2}}. By
indexing y = 1V z = 1 the indexicals y in (dom(z)N1) D —o0..c0 U1 and
z in (dom(y) N'1) D —oco..00 U 1 are generated which will not produce any
further domain constraints in o.

However, instead running y = 1|| true; z = 1|| true will produce the
stores 0, = {z € {1},y € {1},2 € {1}} and 0, = {2 € {1},y € {1},2 €
{1}}. Hence, z € {1} is lifted and o is updated to {z € {1},y € {1},z €
{13 O

6 Performance Evaluation

We now compare our two approaches for constructive disjunction with spec-
ulative and cardinality disjunction. As benchmarks we use two problems for
scheduling and planning, the bridge-project problem [VH89] and the perfect
squares problem [VHSD92], together with the n-queens problem.

The bridge and squares problems are concerned with shared resources,
where the disjunctions are thus resource constraints. In the bridge example
the disjunction

1+ s <aaVar+sy <o

is used, where x1 and z9 are domain variables, and sy and s, are constants.
In the perfect squares example two disjunctions are used:

1+ 81 SaaVar+sa <1 Vyr+81 <y2Viyr +382 < p

where z1, z9, 91, and yo are domain variables, and sy and sy are constants,
and the disjunction

(b=1Aze{p—s+1,....,pH)V(b=0A2€{0,....p—s}U{p+1,...})

where z is a domain variable, and p and s are constants.

For the n-queens problem we consider the effect of applying lookahead
pruning [VH89] through disjunctive reasoning on the number of nondetermi-
nate steps. Lookahead is applied by adding member(z, [z1,...,,]) for each
i between 1 and n, where z; represents queen ¢ and member(, [z1, ..., z])
is interpreted as t = x1 V -+ -V i = xp.

We have run the programs in AGENTS, the implementation of AKL,
currently under development at SICS.! The timings are in milliseconds com-
puted on a SPARC-10 system. If no answer was computed within one minute,

1 . ; ; .
For more information on this system please contact agents-request@sics.se.

bridge spec card | local | global
Time (ms) 30290 | 406 | 80 3790
Non-det. steps | 51 243 | 36 34

Table 3: BRIDGE-PROJECT

perfect squares | spec | card | local | global
Time (ms) 620 | 310 | 180 | 3390
Non-det. steps 25 20 8 8

Table 4: PERFECT SQUARES 8

“?” is used in the ta-

or when the memory consumption became too large,
bles. We have used first-fail labeling throughout [VH89].

In tables 3, 4, and 5 we have included the runtime and number of non-
determinate steps for planning a bridge-project with about 30 jobs and 70
constraints, for packing a square with 8 squares, and packing a square with
17 squares, using speculative disjunction (spec), cardinality-based disjunc-
tion (card), and disjunctions executed locally (local) and globally (global).

As can be seen disjunction executed locally or globally prunes the number
of nondeterminate steps more than do speculative and cardinality disjunc-
tion, however, the local scheme outperforms the global in runtime. This is
because the global scheme does not produce sufficiently more pruning than
the local, while being more expensive in time and space.

As we see it, the most problematic aspect of executing disjunctions glob-
ally is the reactivity of the disjunction. Each disjunct may affect, or be
constrained by, many other variables. Hence, for any update of any one of
those variables in the embedding store, the disjuncts must be reconsidered,
and lifting retried. This should be controlled somehow, e.g. by only exe-
cuting disjunctions globally at certain stages in the computation, and not
necessarily at each propagation.

The reason why speculative disjunction needs fewer nondeterminate steps
than cardinality in the bridge-example is that the solution happens to be
found early in the speculative search. However, the execution of the program
using speculative disjunction is heavily burdened by expensive deep guard
propagations in AGENTS.

In Table 6 we give the timings for running the n-queens program with the
extra member/2 disjunctions added and their four different interpretations,
together with the version of n-queens with no extra disjunctions added (no).

As seen from the table, the member/2 disjunction executed globally
prunes the number of nondeterminate steps dramatically, however, at a large
performance cost. The speculative, local and cardinality disjunctions prunes
the number of nondeterminate steps somewhat, however, with no obvious
performance gain. We have also experimented with adding the redundant
constraint z; = 1V ---V a; = n, for each z;, which for this example was less

perfect squares | spec | card | local | global
Time (ms) ? 4 1170 | ?
Non-det. steps ? ? 33 ?

Table 5: PERFECT SQUARES 17

8-queens no | spec | card | local | global
Time (ms) 45 1200 | 130 | 400 | 330
Non-det. steps | 25 | 24 22 22 4

Table 6: 8-QUEENS WITH MEMBER CONSTRAINT

efficient than the member/2 constraint.

7 Conclusion

We have presented two schemes for compiling and executing disjunctions of
finite domain constraints such that various degrees of constructive disjunc-
tion is maintained.

The first scheme is solely based on conditional indexicals and implements
constructive disjunction through local reasoning which ignores the effects of
propagating each disjunct respectively.

The second scheme executes each disjunct in a private constraint store,
propagating the consequences of the constraints in each disjunct respectively,
and henceforth lifts constraints implied by the disjunction of the stores and
adds them to the embedding store. This gives stronger pruning than the
first scheme, however, a heavy implementation machinery is needed.

Furthermore, our initial performance evaluations indicate that the in-
dexical scheme in fact implements sufficient pruning for many disjunctive
constraints, such as resource and maximum/minimum constraints, extend-
ing the pruning given by cardinality-based disjunction. For our benchmarks
the overhead of the lifting scheme for such constraints does not pay off, since
it gives no more pruning than the indexical scheme.

On the other hand, the lifting scheme can be exploited for lookahead
pruning, which decreases the number of nondeterminate steps dramatically
for highly constrained problems such as graph-coloring and n-queens prob-
lems. This technique is not applicable using the indexical scheme.

Acknowledgments: This work has partly been financed by the
ESPRIT-project ACCLAIM (# 7195). As always, running the article
through the Torkel Franzén-filter has been rewarding. We also want to give
a special thanks to the reviewers whose comments were most valuable.

References

[CJH94] B. Carlson, S. Janson, and S. Haridi. AKL(FD): a concurrent

[DC93a]

[DC93b]

[DSHSS]

[HSDY2]

[Jan94]

[JH91]

[7593]

[Mac77]

[VHS9]

[VHD91]

[VHSDY1]

[VHSDY2]

language for finite domain programming. In Logic Programming:
Proceedings of the 1994 International Symposium. MIT Press,
1994.

D. Diaz and P. Codognet. Compiling constraints in clp(FD).
Research report, INRIA, 1993.

D. Diaz and P. Codognet. A Minimal Extension of the WAM for
clp(FD). In Proceedings of the International Conference on Logic
Programming. MIT Press, 1993.

M. Dincbas, H. Simonis, and P. Van Hentenryck. Solving the car
sequencing problem in constraint logic programming. In Furo-
pean Conference on Artificial Intelligence, 1988.

P. Van Hentenryck, H. Simonis, and M. Dincbas. Constraint
satisfaction using constraint logic programming. Artificial Intel-
ligence, 58:113-159, 1992.

Sverker Janson. A KL—a mulliparadigm programming language.
Uppsala theses in computing science 19, Uppsala University, June
1994.

Sverker Janson and Seif Haridi. Programming paradigms of the
Andorra Kernel Language. In Logic Programming: Proceedings
of the 1991 International Symposium. MIT Press, 1991.

J. Jourdan and T. Sola. The versatility of handling disjunc-
tions as constraints. In Proceedings of the Programming Language
Implementation and Logic Programming Conference, LNCS' 714.
Springer Verlag, 1993.

A. Mackworth. Consistency in Networks of Relations. Journal of
Artifical Intelligence, 8:99-118, 1977.

Pascal Van Hentenryck. Constraint Satisfaction in Logic Pro-
gramming. MIT Press, 1989.

Pascal Van Hentenryck and Yves Deville. The cardinality oper-
ator: a new logical connective in constraint logic programming.
In International Conference on Logic Programming. MIT Press,
1991.

Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. Con-
straint processing in cc(Fp). Unpublished manuscript, 1991.

Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. Con-
straint Logic Programming over Finite Domains: the Design,
Implementation, and Applications of cc(Fp). Technical report,
Computer Science Department, Brown University, 1992.

