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Abstract. We introduce a new generic filtering algorithm for handling constraint 
relaxation within constraint programming. More precisely, we first present a 
generic pruning technique which is useful for a special case of the cardinality 
operator where all the constraints have at least two variables in common. This 
method is based on a generalization of a sweep algorithm which handles a 
conjunction of constraints to the case where one just knows the minimum and 
maximum number of constraints that have to hold. The main benefit of this new 
technique comes from the fact that, even if we don’ t know which, and exactly 
how many constraints, will hold in the final solution, we can still prune the 
variables of those constraints right from the beginning according to the minimum 
and maximum number of constraints that have to hold. We then show how to 
extend the previous sweep algorithm in order to handle preferences among 
constraints.  
Finally, we specialize this technique to an extension of the non-overlapping 
rectangles constraint, where we permit controlling how many non-overlapping 
constraints should hold. This allows handling over-constrained placement 
problems and provides constraint propagation even if some non-overlapping 
constraints have to be relaxed. 

1  Introduction 

Since its introduction within constraint programming, the cardinality operator [9] has 
been recognized as a generic combinator [10], [11] which was integrated in several 
constraint systems. Its most general form is 
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1 A domain variable is a variable that ranges over a finite set of integers; ( )Vmin  and ( )Vmax  

respectively denote the minimum and maximum values of variable V, while ( )Vdom  desig-
nates the set of possible values of V. 



to 1 if constraint ( )
iinii VVCTR ,..,1  holds and 0 otherwise2. Throughout this paper we 

consider a restricted case of the cardinality operator where all the constraints 

mCTRCTR ,..,1  have at least two distinct variables X  and Y  in common. Let C  denote 

the first argument of the cardinality operator throughout the rest of this paper. 
From an operational point of view the cardinality operator used entailment [10] in 

order to implement constraint propagation. However a fundamental weakness is that it 
does not take advantage of the fact that some constraints may share some variables. The 
main contribution of this paper is to provide a stronger filtering algorithm for the case 
where all the constraints of the cardinality operator share at least two variables. This 
allows performing more constraint propagation even though some constraints may be 
relaxed. 

The filtering algorithm is based on an idea which is widely used in computational 
geometry and which is called sweep [7, pp. 10-11]. Consider the illustrative example 
given in Fig. 1 where we have five constraints and their projections on two given vari-
ables X  and Y ; assume that we want to find out the smallest value of X  so that the 
conjunction of four or five of those constraints may hold for some Y . By trying out 

0=X , 1=X  and 2=X , we conclude that 2=X  is the first value3 that may be feasi-
ble. The new sweep algorithm performs this search efficiently; See Sect. 3.2 for details 
on this particular example. 

In two dimensions, a plane sweep algorithm solves a problem by moving a vertical 
line from left to right. The algorithm uses the two following data structures: 
− a data structure called the sweep-line status, which contains some information re-

lated to the current position ∆ of the sweep-line, 
− a data structure named the event point series, which holds the events to process, 

ordered in increasing order wrt. the abscissa. 
The algorithm initializes the sweep-line status for the initial position of the 

sweep-line. Then the sweep-line jumps from event to event; each event is handled, 
updating the sweep-line status. In our context, the sweep-line scans the possible values 
of a domain variable X  that we want to prune, and the sweep-line status contains for 
each value y  of ( )Ydom  the minimum and maximum number of constraints that can be 

satisfied under the assumptions that ∆=X  and yY = . If, for some position ∆, all val-
ues of Y  have an interval which does not intersect the possible number of constraints 
that should hold (i.e. C ), then we will remove ∆ from ( )Xdom . 

The sweep filtering algorithm will try to adjust the minimum4 value of X  wrt. the 
cardinality operator as well as the minimum and maximum value of C  by moving a 
sweep-line from the minimum value of X  to its maximum value. In our case, the 
events to process correspond to the starts and the ends of forbidden and safe 

                                                           
2 As usual within constraint programming, this definition applies for the ground case when all 

the variables of the constraints mCTRCTR ,..,1  are fixed. 
3 On this example, the propagation described for the classical cardinality operator [8] would not 

deduce anything, since none of the previous five constraints is neither always true nor always 
false. 

4 It can also be used in order to adjust the maximum value, or to prune completely the domain of 
a variable. 



2-dimensional regions wrt. the constraints mCTRCTR ,..,1  of the cardinality operator and 

variables X  and Y . 

Throughout this paper, we use the notation ( )typeyyxx RRRRR ,..,.. +−+−  to denote for an 

ordered pair R  of intervals, its lower and upper bounds and its type (i.e. forbidden or 
safe). 

The next section presents the notion of forbidden and safe regions, which is a way to 
represent constraints that is suited for the sweep algorithm of this paper. Sect. 3 de-
scribes the sweep algorithm itself and analyzes its worst-case complexity, while Sect. 4 
shows how to slightly modify the previous algorithm for handling the weighted cardi-
nality operator. It is a more general case of the cardinality operator which allows speci-
fying preferences, where we associate to each constraint iCTR ( )mi ≤≤1  a weight 

IN∈iW ; the weighted cardinality operator holds iff ( )( )∑
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Sect. 5 presents its specialization to the relaxed non-overlapping rectangles constraint. 

2  Forbidden and Safe Regions 

We call R  a forbidden region of the constraint ( )miCTRi ≤≤1  wrt. the variables X  

and Y  if: +−∈∀ xx RRx .. , +−∈∀ yy RRy .. : ( )
iinii VVCTR ,..,1  with the assignment xX =  and 

yY =  has no solution, no matter which values are taken by the other variables of con-
straint ( )

iinii VVCTR ,..,1 . 

In a similar way, we name R  a safe region of the constraint ( )miCTRi ≤≤1  wrt. the 

variables X  and Y  if: +−∈∀ xx RRx .. , +−∈∀ yy RRy .. : ( )
iinii VVCTR ,..,1  with the assignment 

xX =  and yY =  always holds, no matter which values are taken by the other variables 
of constraint ( )

iinii VVCTR ,..,1 . 

 
 
 
 
 
 
 
 
 
 

Fig. 1.  Examples of forbidden       and safe      regions. X in 0..4, Y in 0..4. 

Fig. 1 shows 5 constraints and their respective forbidden (shaded) and safe (striped) 
regions wrt. two given variables X  and Y  and their domains. The statement Var in 
min..max, where min and max are two integers such that min is less than or equal to 
max, creates a domain variable Var for which the initial domain is made up from all 
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values between min and max inclusive. The first constraint requires X , Y , Y−4  and 
R  be pairwise distinct, while the last four constraints correspond to arithmetic and 
disjunctive constraints. 

The sweep algorithm computes the forbidden and safe regions on request, in a lazy 
evaluation fashion. The forbidden and safe regions of each constraint ( )miCTRi ≤≤1  

are gradually generated as a set of rectangles iki RR ,,1 �  such that: 

− iki RR ∪∪ �

1  represents all forbidden and safe regions of constraint iCTR  wrt. vari-

ables X  and Y , 
− the rectangles iki RR ,...,1  do not pairwise intersect, 

− iki RR ,...,1  are sorted by ascending start position on the X  axis. 

In practice, we use the following functions5 for gradually getting the forbidden and 
safe regions for each triple ( ) ( )miCTRYX i ≤≤1,,  that we want to be used by the sweep 

algorithm: 
− ( )iCTRYX ,,RFG EGIONSIRSTET : generates all the forbidden and safe regions 

iCTRR  of 

constraint iCTR  such that: 
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where 
iCTRfirst  is the smallest value in ( ) ( )XX max..min  such that there exists such a 

forbidden or safe region 
iCTRR  of iCTR . 

− ( )ii previousCTRYX ,,,RNG EGIONSEXTET : generates all the forbidden and safe regions 

iCTRR  of constraint iCTR  such that: 
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where iprevious  is the position of the previous start event of constraint iCTR  and 

iCTRnext  is the smallest value greater than iprevious  such that there exists such a 

forbidden or safe region 
iCTRR  of iCTR . 

If we consider constraint (C) of Fig. 1 (i.e. SYX ≤⋅+ 2 ), and we assume that 
3..0∈X , 3..0∈Y  and 6..1∈S , then a complete scan of X  would produce the following 

sequences of calls: 
− ( )SYXYX ≤⋅+ 2,,RFG EGIONSIRSTET  returns region ( )safe,0..0,1..0 , 

− ( )0,2,,RNG EGIONSEXTET SYXYX ≤⋅+  returns region ( )forbidden,3..3,3..1 , 

− ( )1,2,,RNG EGIONSEXTET SYXYX ≤⋅+  returns region ( )forbidden,2..2,3..3 . 
The complexity results of this paper assume that all the previous functions used for 

getting the forbidden and safe regions are performed in ( )nrO , where nr  is the number 
of regions returned by the function. 

                                                           
5 Two analogous functions EGIONSASTET RLG  and EGIONSREVET RPG  are also provided for 

the case where the sweep-line moves from the maximum value of X  to its minimum value. 



3  A Sweep Algorithm for the Cardinality Operator 

The purpose of this section is to describe the new sweep algorithm which can cope with 
the fact that we don’ t know exactly6 how many constraints of the cardinality operator 
will hold. We first describe the data structures used by the algorithm and illustrate its 
main ideas on a concrete example. Finally we give the algorithm and analyze its 
worst-case complexity. 

3.1  Data Structures 

As is the case for most sweep algorithms, the new sweep algorithm uses one data struc-
ture for recording the sweep-line status and another data structure for storing the event 
points. For the current position ∆ of the sweep-line, the sweep-line status contains for 
each possible value y  of Y  the following information: 

− the number [ ]ynsafe  of safe regions that currently intersect the sweep-line at the 
point of coordinates y,∆ ; the quantity [ ]ynsafe  gives, under the assumptions that 
both ∆=X  and yY = , a lower bound of the total number of constraints 

mCTRCTR ,..,1  that hold, 

− the number [ ]ynforbid  of forbidden regions that currently intersect the sweep-line at 
the point of coordinates y,∆ ; the quantity [ ]ynforbidm−  gives, under the assump-
tions that both ∆=X  and yY = , an upper bound of the total number of constraints 

mCTRCTR ,..,1  that hold, 

− [ ]yCnsafe_  is the smallest value greater than or equal to [ ]ynsafe  such that both 
[ ] ( )CyCnsafe dom_ ∈  and [ ] [ ]ynforbidmyCnsafe −≤_ ; it is equal to 1+m  is no such 

value exists, 
− [ ]yCnforbid _  is the smallest value greater than or equal to [ ]ynforbid  such that both 

[ ] ( )CyCnforbidm dom_ ∈−  and [ ] [ ]ynsafeyCnforbidm ≥− _ ; it is equal to 1+m  is no 
such value exists. 
When [ ]yCnsafe_  is equal to 1+m 7, it means that the interval [ ] [ ]ynforbidmynsafe −..  

has an empty intersection with the set of possible values of C . 
Each array [ ]ynsafe , [ ]ynforbid , [ ]yCnsafe_  and [ ]yCnforbid _  is implemented with 

an (a,b)-tree [5] which stores for the values of Y  the corresponding quantity (i.e. the 
endpoints of the intervals of consecutive values of Y  for which the array contains the 
same value). Let k  denote the number of changes of an array (i.e. the number of times 
the value stored at an entry i  is different from the value kept at entry 1+i ). Increment-
ing a set of consecutives entries by a given constant, getting the entry with minimal 
value, and setting a set of consecutives entries, which are currently set to the same 

                                                           
6 We only know that the number of constraints, that should hold, is one of the values of 

( )Cdom . 
7 [ ] [ ] 1_1_ +=⇔+= myCnforbidmyCnsafe . 



value, to a given constant are all ( )kO log  operations. A whole iteration through all the 
intervals (i.e. consecutives entries with the same value) of the array takes ( )kkO log . 

The event point series, denoted eventQ , contains the start and end+1 on the X  axis, 

of those safe and forbidden regions of the constraints mCTRCTR ,..,1  wrt. variables X  

and Y  that intersect the sweep-line. These start and end events are sorted in increasing 
order and recorded in a heap. In addition an array [ ]mregionscount ..1_  records, for each 
constraint mCTRCTR ,..,1 , how many starts of safe or forbidden regions are recorded 

within eventQ . This allows to check if eventQ  does not contain any start event associated 

to a given constraint in ( )1O  (see line 6 of Algorithm 2). 

3.2  Principle of the Algorithm 

In order to check if ∆=X  may be feasible wrt. the cardinality operator, the sweep-line 
status records the number of safe regions as well as the number of forbidden regions 
that intersect the current position of the sweep-line. If, for ∆=X , ( )Yy dom∈∀ : 

[ ] 1_ += myCnsafe  (i.e. [ ] [ ] ( ) ∅=∩− Cynforbidmynsafe dom.. ), the sweep-line will move 
to the right to the next event to handle. 

Before going more into the detail of the algorithm, let us first illustrate how it works 
on a concrete example. Assume that we want to find out the minimum value of variable 
X  such that the conjunction of four or five of those constraints that were given in 
Fig. 1 hold. In addition we want to update the minimum and maximum value of the 
number C  of constraints that hold. Table 1 shows the content of the sweep-line status 
for all positions ∆  of the sweep-line. The smallest value of X  which may be feasible 
is 2, since this is the first position where there exists a value 0=y  of Y  such that 

[ ] 15140_ +=+≠= mCnsafe . Since for each position of the sweep-line at least one con-
straint does not hold we also update the maximum value of C  to value 4. 

Table 1.  Status of the sweep-line at each stage of the algorithm. CfCsfs _,_,,  respectively 

denote [ ]nsafe , [ ]nforbid , [ ]Cnsafe_ , [ ]Cnforbid _   per Y  position. 

Y ∆=0 ∆=1 ∆=2 ∆=3 ∆=4 
4 2,3,6,6 1,2,6,6 2,2,6,6 1,3,6,6 2,3,6,6 
3 0,2,6,6 2,3,6,6 1,3,6,6 2,3,6,6 1,3,6,6 
2 1,2,6,6 1,2,6,6 2,2,6,6 1,3,6,6 2,2,6,6 
1 0,2,6,6 2,2,6,6 1,2,6,6 2,2,6,6 1,1,4,1 
0 3,2,6,6 2,2,6,6 2,1,4,1 1,1,4,1 3,1,4,1 

3.3  The Main Procedure 

The procedure INIMUMINDMF  (see Algorithm 1) implements the sweep algorithm for 
adjusting the minimum value of a variable X  wrt. a given cardinality operator as well 
as for adjusting the minimum and maximum number of constraints that hold. It can be 
easily adapted to a procedure that adjusts the maximum value of a variable. The main 
parts of INIMUMINDMF  are: 



− Lines 1-7 initialize the event queue to the start and end events associated to the left-
most safe and forbidden regions of each constraint. Note that we only insert events 
that are effectively within ( ) ( )XX max..min  and ( ) ( )YY max..min . If no such events are 
found or if no safe or forbidden region intersects ( )Xmin , we exit the procedure. 

− Line 8 initializes to 0 all the four arrays of the sweep-line status, while line 9 sets 
[ ]vnsafe , [ ]vnforbid , [ ]vCnsafe_  and [ ]vCnforbid _  to 1+m , for those values v  that do 

not belong8 to ( )Ydom . These values will not be considered any more, since no safe 
or forbidden region which contains these values will be added. 

− Lines 11-19 extract from the event queue all events associated to the current position 
∆  of the sweep-line and update the sweep-line status. Afterwards, check whether 
there may exist some feasible solution for ∆=X  and, if so, record it and eventually 
update the minimum and maximum number of constraints which hold. 

− Line 20 reports a failure since a complete sweep over the full domain of variable X  
was done without finding any solution. 

− Lines 21-23 adjust the minimum and maximum of variable C  and return a possibly 
feasible solution for X  and Y . 

Input: A cardinality operator ( ) ( ){ }( )mmnVmVmCTRnVVCTRC ,..,1,..,
11,..,111,ycardinalit  and two domain 

variables X  and Y  present in each constraint mCTRCTR ,..,1 . 

Output: An indication that no solution exists or an indication that a solution may exist and values x̂ , ŷ . 

Ensure: Either x̂  is the smallest value of X  such that ( )Yy domˆ ∈  and ( )yx ˆ,ˆ  belongs to exactly s  safe 

regions and to precisely f  forbidden regions of mCTRCTR ,..,1  wrt. variables X  and Y , such that interval 

fms −..  has a non-empty intersection with the domain variable C , or no solution exists. Also adjust the 

minimum and maximum values of C . 

 1: eventQ ←an empty event queue, feasible←0, Cmin← 1+m , Cmax← 1− . 

 2: for all  constraint iCTR ( )mi ≤≤1   do 

 3:  for all  region ( )iCTR CTRYXR
i

,,RFG EGIONSIRSTET∈   do 

 4:   Insert ( )( )XR
xCTRi

min,max −  into eventQ  as a start event. 

 5:   if  ( )XR
xCTRi

max1≤++   then  Insert 1++
xCTRi

R  into eventQ  as an end event. 

 6: if   eventQ  is empty  or  the leftmost position of any event of eventQ  is greater than ( )Xmin   then 

 7:  x̂ ← ( )Xmin , ŷ ← ( )Ymin , return  (true, x̂ , ŷ ). 

 8: nsafe, nforbid , Cnsafe_ , Cnforbid _ ←arrays ranging over ( ) ( )YY max..min  initialized to 0. 

 9: [ ]insafe , [ ]inforbid , [ ]iCnsafe_ , [ ]iCnforbid _ ← 1+m , for ( ) ( ) ( )YYYi dom\max..min∈ . 

10: while  eventQ  is not empty   and   ( 0=feasible   or  ( )CCmin min>   or  ( )CCmax max< )  do 

11:  ∆ ← the leftmost position of any event of eventQ . 

12:  for all  event E  at position ∆  of eventQ   do  ( )EVENTANDLEEH . 

13:  imin ← index such that [ ]iminCnsafe_  is minimal. 

14:  if  [ ] 1_ +≠ miminCnsafe   then 

15:   if  0=feasible   then  x̂ ← ∆ , ŷ ← imin , feasible←1. 

                                                           
8 BA \  denotes the set difference between A  and B . 



16:   smin←smallest value of [ ]Cnsafe_ . 

17:   if  Cminsmin<   then  Cmin← smin. 

18:   fmin ←smallest value of [ ]Cnforbid _ . 

19:   if  Cmaxfminm >−   then  Cmax← fminm− . 

20: if  0=feasible   then  return (false, 0, 0). 

21: if  ( )CCmin min>   then  adjust the minimum of C  to Cmin. 

22: if  ( )CCmax max<   then  adjust the maximum of C  to Cmax. 

23: return  (true, x̂ , ŷ ). 

Algorithm 1: ( )CYXCTRCTR m ,,,,..,MF 1INIMUMIND  

Holes in the domain of variable X  are handled by generating so called “contradic-
tion”  regions, which add 1+m  to [ ]vnsafe  for all values ( ) ( )YYinv max..m∈  when we 
enter such regions. The next section describes the procedure VENTANDLEEH , which 
specifies how to modify the sweep-line status according to a given start or end event. 

3.4  Handling Start and End Events 
 1: Extract E  from eventQ  and get the corresponding region ER  and constraint ECTR . 

 2: l ← ( )( )YR yE min,max − , u ← ( )( )YyER max,min + , t ← typeER . 

 3: if  E is an end event  then  inc ← 1− . 
 4: else   
 5:  inc ←1. 

 6:  if  eventQ  does not contain any start event associated to constraint ECTR   then 

 7:   Exprevious_ ← −
xER . 

 8:   for all  region ( )EECTR xpreviousCTRYXR
i

_,,RNG ,EGIONSEXTET∈   do 

 9:    Insert −
xCTRE

R  into eventQ  as a start event. 

10:    if  ( )XR
xCTRE

max1≤++   then  Insert 1++
xCTRE

R  into eventQ  as an end event. 

11: if  safe=t   then  Add inc  to [ ]insafe  for all uli ..∈   else  Add inc  to [ ]inforbid  for all uli ..∈ . 

12: for  all intervals ba..  such that 
[ ] [ ] [ ]

[ ] [ ] [ ]
[ ] [ ] [ ] [ ]
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  do 

13:  Set [ ]( )biaiCnsafe ≤≤_  to the smallest value v  such that: 

14:   [ ] ( ) [ ]anforbidmvCvansafev −≤∧∈∧≥ dom 9. 

15:  Set [ ]( )biaiCnforbid ≤≤_  to the smallest value v  such that: 

16:   [ ] ( ) [ ]ansafevmCvmanforbidv ≥−∧∈−∧≥ dom 10. 

Algorithm 2: ( )EVENTANDLEEH  

                                                           
9 [ ]( )biaiCnsafe ≤≤_  is initialized to m+1 if no such value v exists. 
10 [ ]( )biaiCnforbid ≤≤_  is initialized to m+1 if no such value v exists. 



When E  is the last start event of a given constraint 
E

CTR  and since not all events 

were initially inserted in eventQ , we search for the next events of 
E

CTR  and insert them 

in the event queue eventQ  (lines 6-10). Depending on whether we have a start or an end 

event E  that comes from a safe or a forbidden region we add 1 or −1 to [ ]insafe  or to 
[ ]inforbid  ( uil ≤≤ ), where l  and u  are respectively the start and the end on the Y  

axis of the region that is associated to the event E  (lines 1-5,11). Finally, for each 
maximum interval ba..  such that ubal ≤≤≤  and such that the pair of values 

[ ] [ ]( )inforbidinsafe ,  is constant for all bai ..∈ (line 12), we update Cnsafe_  (line 13) as 
well as Cnforbid _ (line 15). 

3.5  Worst-Case Analysis 

This section analyses the worst-case complexity of a complete sweep over the domain 
of X . Let r  denote the total number of forbidden and safe regions intersecting the 
domain of the variables X ,Y  under consideration, and m  the number of constraints. 
Furthermore assume the domain of C  to be represented as two tables [ ]dlow ..1  and 

[ ]dup ..1  such that the domain of C  consists only of those values belonging to 
[ ] [ ]jupjlow ..  ( dj ≤≤1 ). For a complete sweep, Table 2 indicates the number of times 

each operation is performed, and its total worst-case complexity. Hence, the overall 

worst-case complexity of a complete sweep is ( )drrrmO loglog 22 ++ . 

Table 2.  Maximum number of calls and worst-case complexity per basic operation in a sweep 

Operation Max. times Total 

Initialize to empty the queue Qevent O(1) O(1) 

Compute the first forbidden and safe regions of all constraints11 O(1) O(m + r) 

Add an event to the queue Qevent O(r) O(r log r) 

Extract the next event from the queue Qevent O(r) O( r) 

Check if there exists a start event associated to a constraint O(r) O(r) 

Initialize to a value nsafe[], nforbid[], nsafe_C[], nforbid_C[] O(1) O(1) 

Update a range of nsafe[], nforbid[] O(r) O(r log r) 

Update a range of nsafe_C[], nforbid_C[] O(r2) O(r2 log d + r2 log r) 

Check if there exists an element of nsafe_C with a value ≠m+1 O(r) O(r log r) 

Since the main difficulty is the update of Cnsafe_ / Cnforbid _  we give the detail of 
this part (line 8 of Table 2). First note that finding the smallest value of ( )Cdom  greater 
than or equal to [ ]insafe  (respectively [ ]inforbidm− ) can be done in dlog . In addition 

since there cannot be more than ( )rO  changes in Cnsafe_ / Cnforbid _ , and since to 

                                                           
11 This corresponds to lines 2-3 of Algorithm 1. 



each change in Cnsafe_ / Cnforbid _  corresponds a set of consecutives entries which 
are currently set to the same value, the worst-case complexity per change of 

Cnsafe_ / Cnforbid _  is ( )rdO loglog + . Finally as we have at most r2  calls to 
VENTANDLEEH  and because for each call there cannot be more than ( )rO  intervals 

ba..  (line 12 of Algorithm 2) such that both 
[ ] [ ] [ ] [ ]bnsafebnsafeansafeansafe =−==+= 11 � , [ ] [ ] ∨≠−∨= ansafeansafela 1  

[ ] [ ]anforbidanforbid ≠−1 , [ ] [ ] [ ] [ ]bnforbidbnforbidanforbidanforbid =−==+= 11 � , 
[ ] [ ] [ ] [ ]bnforbidbnforbidbnsafebnsafeub ≠+∨≠+∨= 11  the total complexity for updating 

Cnsafe_ / Cnforbid _  is ( )rrdrO loglog 22 + . 

4  A Sweep Algorithm for the Weighted Cardinality Operator 

This section explains how to slightly modify the sweep-line status of the algorithm 
presented in Sect. 3 in order to handle the weighted cardinality operator. We now re-
cord in [ ]ynsafe (respectively [ ]ynforbid ) the sum of the weights of the safe (respec-
tively forbidden) regions which contain the point of coordinates j,∆ . Finally, 

[ ]yCnsafe_  (respectively [ ]yCnforbid _ ) is set to the smallest value greater than or 
equal to [ ]ynsafe  (respectively [ ]yCnforbid _ ) such that [ ]yCnsafe_  (respectively 

[ ]yCnforbidm _− ) belongs to the domain of C . The domain variable C  is the sum of 
the weights of the constraints which hold in the constraints mCTRCTR ,..,1  of the 

weighted cardinality operator. In lines 1,10,15,20 of Algorithm 1 the quantity m  is 

replaced by ∑
=

m

i
iW

1
, while lines 11,13-16 of Algorithm 2 are modified as indicated 

below. 

11: if  safe=t   then  Add iWinc ⋅  to [ ]insafe  for all uli ..∈   else  Add iWinc ⋅  to [ ]inforbid  for all uli ..∈ . 

13:  Set [ ]( )biaiCnsafe ≤≤_  to the smallest value v  such that: 

14:   [ ] ( ) [ ]anforbidWvCvansafev
m

j
j −≤∧∈∧≥ ∑

= 1

dom 12. 

15:  Set [ ]( )biaiCnforbid ≤≤_  to the smallest value v  such that: 

16:   [ ] ( ) [ ]ansafevWCvWanforbidv
m

j
j

m

j
j ≥−∧∈−∧≥ ∑∑

== 11

dom 13. 

Algorithm 3: modifications of procedure ( )EVENTANDLEEH  

                                                           

12 [ ]( )biaiCnsafe ≤≤_  is initialized to 1
1

+∑
=

m

j
jW  if no such value v exists. 

13 [ ]( )biaiCnforbid ≤≤_  is initialized to 1
1

+∑
=

m

j
jW  if no such value v exists. 



5  A Relaxation of the Non-Overlapping Rectangles Constraint 

Assume that we want to implement a constraint 
( )mPPC ,,,ONR 1VERLAPPINGONELAXED �  over a set of rectangles, which should hold if 

exactly C 14 pairs of rectangles iP , jP , ji <  do not overlap. A rectangle iP  with origin 

coordinates ( )ii YX , , width iw  and height ih  is given as iiii hYwX ,,, , where iX  and 

iY  are domain variables and iw , ih  are non-negative integers. We have a total number 

of ( ) 22 mm −  non-overlapping constraints of the form: 

( )jjjjiiiiij hYwXhYwXoverlapnon ,,,,,,,_  ⇔ 

ijjjiiijjjii YhYYhYXwXXwX ≤+∨≤+∨≤+∨≤+  

As it was mentioned in [2], there can be a most one non-empty forbidden region 

( )forbidden,..,.. +−+−= yyxxij rrrrR  of ijoverlapnon_  wrt. ( )ii YX , , where: 

( ) ( ) ( ) ( ) .1min,1max,1min,1max −+=+−=−+=+−= +−+−
jjyijyjjxijx hYrhYrwXrwXr  

On the other hand, there can be at most 4 non-empty safe re-

gions ( )safe,..,.. ,,,,
+−+−= ykykxkxkij rrrrR  ( )41 ≤≤ k  of ijoverlapnon_  wrt. ( )ii YX , , where: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) .1max,1min,max,max

,1max,1min,min,min

,max,max,max,min

,min,min,max,min

,4,4,4,4

,3,3,3,3

,2,2,2,2

,1,1,1,1

−+=+−==+=
−+=+−=−==

=+===
−====

+−+−

+−+−

+−+−

+−+−

jjyijyixjjx

jjyijyijxix

iyjjyixix

ijyiyixix

hYrhYrXrwXr

hYrhYrwXrXr

YrhYrXrXr

hYrYrXrXr

 

To each rectangle iP ( )mi ≤≤1 , we associate a variable iC  which gives the minimum 

and maximum number of non-overlapping constraints which hold and we link all these 

variables by the constraint ∑
=

=
m

i
iCC

1
. In order to adjust the minimum of variable iX  

and to update the minimum and maximum value of variable iC , we use Algorithm 1. 

6  Discussion and Conclusion 

The relevance of our approach compared to what is currently done is as follows. Con-
straint network based frameworks used to model constraint relaxation [3] require con-
straints to be defined as a set of tuples. However, in practice, a lot of constraints can’ t 
be defined extensionally since a huge number of allowed tuples is needed to model a 
given constraint. On the other hand, even if the constraints are defined intentionally, the 

                                                           
14 C  is a domain variable. 



worst-case complexity of these consistency algorithms generally depends on the num-
ber of values present in the domains of the variables. 

More recently, in order to take advantage of the structure of some specific constraint, 
Petit et al. [6] have proposed two filtering algorithms based on flow for two relaxed 
version of the alldifferent15 constraint. Our approach can be situated between these two 
extremes: on one side we define constraints in a compact way by providing functions 
which return forbidden and safe regions. On the other side, the only point about the 
structure of the constraints that we exploit is the fact that two given variables occur in 
different constraints. It should be noted that using multi-dimensional data structures 
should allow to take advantage, without changing the filtering algorithm, of the fact 
that some constraints share more than two variables. 

In the past within practical constraints systems, conventional wisdom had it that, in 
order to get the full benefit from the power of constraint propagation, one should en-
force all constraints. As a corollary it has been generally assumed that constraint relaxa-
tion some how “kills”  constraint propagation. In this paper we have shown that, for a 
specific type of constraint relaxation, this is not true. We have come up with a generic 
filtering algorithm which can cope with the fact that we just know the minimum and 
maximum number of constraints that have to hold. This algorithm was derived from our 
value sweep algorithm [1], where in addition to the concept of forbidden region we 
came up with the notion of safe region. Finally we introduced a small modification of 
the sweep-line status in order to handle relaxation. This is yet another useful application 
of the concept of sweep to constraint propagation. Implementing the algorithm of this 
paper would be needed in order to compare it with existing techniques [3], [4], [8] and 
further assess its practical value. 
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