
Sweep as a Generic Pruning Technique
 Applied to Constraint Relaxation

Nicolas Beldiceanu and Mats Carlsson

S I C S , Lägerhyddsvägen 18, SE-75237 Uppsala, Sweden
{nicolas,matsc}@sics.se

Abstract. We introduce a new generic filtering algorithm for handling constraint
relaxation within constraint programming. More precisely, we first present a
generic pruning technique which is useful for a special case of the cardinality
operator where all the constraints have at least two variables in common. This
method is based on a generalization of a sweep algorithm which handles a
conjunction of constraints to the case where one just knows the minimum and
maximum number of constraints that have to hold. The main benefit of this new
technique comes from the fact that, even if we don’ t know which, and exactly
how many constraints, will hold in the final solution, we can still prune the
variables of those constraints right from the beginning according to the minimum
and maximum number of constraints that have to hold. We then show how to
extend the previous sweep algorithm in order to handle preferences among
constraints.
Finally, we specialize this technique to an extension of the non-overlapping
rectangles constraint, where we permit controlling how many non-overlapping
constraints should hold. This allows handling over-constrained placement
problems and provides constraint propagation even if some non-overlapping
constraints have to be relaxed.

1 Introduction

Since its introduction within constraint programming, the cardinality operator [9] has
been recognized as a generic combinator [10], [11] which was integrated in several
constraint systems. Its most general form is

() (){ }()
mmnmmn VVCTRVVCTRC ,..,,..,,..,,ycardinalit 11111 1

 where C is a domain variable1 and

() (){ }
mmnmmn VVCTRVVCTR ,..,,..,,.., 11111 1

 is a set of constraints over domain variables. The

cardinality operator holds iff ()∑
=

#=
m

i
inii i

VVCTRC
1

1,.., , where ()
iinii VVCTR ,..,1# is equal

1 A domain variable is a variable that ranges over a finite set of integers; ()Vmin and ()Vmax

respectively denote the minimum and maximum values of variable V, while ()Vdom desig-
nates the set of possible values of V.

to 1 if constraint ()
iinii VVCTR ,..,1 holds and 0 otherwise2. Throughout this paper we

consider a restricted case of the cardinality operator where all the constraints

mCTRCTR ,..,1 have at least two distinct variables X and Y in common. Let C denote

the first argument of the cardinality operator throughout the rest of this paper.
From an operational point of view the cardinality operator used entailment [10] in

order to implement constraint propagation. However a fundamental weakness is that it
does not take advantage of the fact that some constraints may share some variables. The
main contribution of this paper is to provide a stronger filtering algorithm for the case
where all the constraints of the cardinality operator share at least two variables. This
allows performing more constraint propagation even though some constraints may be
relaxed.

The filtering algorithm is based on an idea which is widely used in computational
geometry and which is called sweep [7, pp. 10-11]. Consider the illustrative example
given in Fig. 1 where we have five constraints and their projections on two given vari-
ables X and Y ; assume that we want to find out the smallest value of X so that the
conjunction of four or five of those constraints may hold for some Y . By trying out

0=X , 1=X and 2=X , we conclude that 2=X is the first value3 that may be feasi-
ble. The new sweep algorithm performs this search efficiently; See Sect. 3.2 for details
on this particular example.

In two dimensions, a plane sweep algorithm solves a problem by moving a vertical
line from left to right. The algorithm uses the two following data structures:
− a data structure called the sweep-line status, which contains some information re-

lated to the current position ∆ of the sweep-line,
− a data structure named the event point series, which holds the events to process,

ordered in increasing order wrt. the abscissa.
The algorithm initializes the sweep-line status for the initial position of the

sweep-line. Then the sweep-line jumps from event to event; each event is handled,
updating the sweep-line status. In our context, the sweep-line scans the possible values
of a domain variable X that we want to prune, and the sweep-line status contains for
each value y of ()Ydom the minimum and maximum number of constraints that can be

satisfied under the assumptions that ∆=X and yY = . If, for some position ∆, all val-
ues of Y have an interval which does not intersect the possible number of constraints
that should hold (i.e. C), then we will remove ∆ from ()Xdom .

The sweep filtering algorithm will try to adjust the minimum4 value of X wrt. the
cardinality operator as well as the minimum and maximum value of C by moving a
sweep-line from the minimum value of X to its maximum value. In our case, the
events to process correspond to the starts and the ends of forbidden and safe

2 As usual within constraint programming, this definition applies for the ground case when all

the variables of the constraints mCTRCTR ,..,1 are fixed.
3 On this example, the propagation described for the classical cardinality operator [8] would not

deduce anything, since none of the previous five constraints is neither always true nor always
false.

4 It can also be used in order to adjust the maximum value, or to prune completely the domain of
a variable.

2-dimensional regions wrt. the constraints mCTRCTR ,..,1 of the cardinality operator and

variables X and Y .

Throughout this paper, we use the notation ()typeyyxx RRRRR ,..,.. +−+− to denote for an

ordered pair R of intervals, its lower and upper bounds and its type (i.e. forbidden or
safe).

The next section presents the notion of forbidden and safe regions, which is a way to
represent constraints that is suited for the sweep algorithm of this paper. Sect. 3 de-
scribes the sweep algorithm itself and analyzes its worst-case complexity, while Sect. 4
shows how to slightly modify the previous algorithm for handling the weighted cardi-
nality operator. It is a more general case of the cardinality operator which allows speci-
fying preferences, where we associate to each constraint iCTR ()mi ≤≤1 a weight

IN∈iW ; the weighted cardinality operator holds iff ()()∑
=

#⋅=
m

i
iniii i

VVCTRWC
1

1,.., . Finally

Sect. 5 presents its specialization to the relaxed non-overlapping rectangles constraint.

2 Forbidden and Safe Regions

We call R a forbidden region of the constraint ()miCTRi ≤≤1 wrt. the variables X

and Y if: +−∈∀ xx RRx .. , +−∈∀ yy RRy .. : ()
iinii VVCTR ,..,1 with the assignment xX = and

yY = has no solution, no matter which values are taken by the other variables of con-
straint ()

iinii VVCTR ,..,1 .

In a similar way, we name R a safe region of the constraint ()miCTRi ≤≤1 wrt. the

variables X and Y if: +−∈∀ xx RRx .. , +−∈∀ yy RRy .. : ()
iinii VVCTR ,..,1 with the assignment

xX = and yY = always holds, no matter which values are taken by the other variables
of constraint ()

iinii VVCTR ,..,1 .

Fig. 1. Examples of forbidden and safe regions. X in 0..4, Y in 0..4.

Fig. 1 shows 5 constraints and their respective forbidden (shaded) and safe (striped)
regions wrt. two given variables X and Y and their domains. The statement Var in
min..max, where min and max are two integers such that min is less than or equal to
max, creates a domain variable Var for which the initial domain is made up from all

 R in 0..9

alldistinct({X,Y,4−Y,R})

0

Z in 2..3

 |X-Y|>Z

S in 1..6

X+2Y≤S

T in 0..0,U in 1..2

X+1≤T ∨ T+1≤X ∨
Y+1≤U ∨ U+4≤Y

(A) (B) (C) (D)

X+Y ≡ 0 (mod 2)

(E)

0 0 0 0
0 0 0 0 0

X X X X X

Y Y Y Y Y

values between min and max inclusive. The first constraint requires X , Y , Y−4 and
R be pairwise distinct, while the last four constraints correspond to arithmetic and
disjunctive constraints.

The sweep algorithm computes the forbidden and safe regions on request, in a lazy
evaluation fashion. The forbidden and safe regions of each constraint ()miCTRi ≤≤1

are gradually generated as a set of rectangles iki RR ,,1 � such that:

− iki RR ∪∪ �

1 represents all forbidden and safe regions of constraint iCTR wrt. vari-

ables X and Y ,
− the rectangles iki RR ,...,1 do not pairwise intersect,

− iki RR ,...,1 are sorted by ascending start position on the X axis.

In practice, we use the following functions5 for gradually getting the forbidden and
safe regions for each triple () ()miCTRYX i ≤≤1,, that we want to be used by the sweep

algorithm:
− ()iCTRYX ,,RFG EGIONSIRSTET : generates all the forbidden and safe regions

iCTRR of

constraint iCTR such that:

() ()î





≤∧≥

≤≤
−+

+−

YRYR

RfirstR

yCTRyCTR

xCTRCTRxCTR

ii

iii

maxmin
,

where
iCTRfirst is the smallest value in () ()XX max..min such that there exists such a

forbidden or safe region
iCTRR of iCTR .

− ()ii previousCTRYX ,,,RNG EGIONSEXTET : generates all the forbidden and safe regions

iCTRR of constraint iCTR such that:

() ()î





≤∧≥

=
−+

−

YRYR

nextR

yCTRyCTR

CTRxCTR

ii

ii

maxmin
,

where iprevious is the position of the previous start event of constraint iCTR and

iCTRnext is the smallest value greater than iprevious such that there exists such a

forbidden or safe region
iCTRR of iCTR .

If we consider constraint (C) of Fig. 1 (i.e. SYX ≤⋅+ 2), and we assume that
3..0∈X , 3..0∈Y and 6..1∈S , then a complete scan of X would produce the following

sequences of calls:
− ()SYXYX ≤⋅+ 2,,RFG EGIONSIRSTET returns region ()safe,0..0,1..0 ,

− ()0,2,,RNG EGIONSEXTET SYXYX ≤⋅+ returns region ()forbidden,3..3,3..1 ,

− ()1,2,,RNG EGIONSEXTET SYXYX ≤⋅+ returns region ()forbidden,2..2,3..3 .
The complexity results of this paper assume that all the previous functions used for

getting the forbidden and safe regions are performed in ()nrO , where nr is the number
of regions returned by the function.

5 Two analogous functions EGIONSASTET RLG and EGIONSREVET RPG are also provided for

the case where the sweep-line moves from the maximum value of X to its minimum value.

3 A Sweep Algorithm for the Cardinality Operator

The purpose of this section is to describe the new sweep algorithm which can cope with
the fact that we don’ t know exactly6 how many constraints of the cardinality operator
will hold. We first describe the data structures used by the algorithm and illustrate its
main ideas on a concrete example. Finally we give the algorithm and analyze its
worst-case complexity.

3.1 Data Structures

As is the case for most sweep algorithms, the new sweep algorithm uses one data struc-
ture for recording the sweep-line status and another data structure for storing the event
points. For the current position ∆ of the sweep-line, the sweep-line status contains for
each possible value y of Y the following information:

− the number []ynsafe of safe regions that currently intersect the sweep-line at the
point of coordinates y,∆ ; the quantity []ynsafe gives, under the assumptions that
both ∆=X and yY = , a lower bound of the total number of constraints

mCTRCTR ,..,1 that hold,

− the number []ynforbid of forbidden regions that currently intersect the sweep-line at
the point of coordinates y,∆ ; the quantity []ynforbidm− gives, under the assump-
tions that both ∆=X and yY = , an upper bound of the total number of constraints

mCTRCTR ,..,1 that hold,

− []yCnsafe_ is the smallest value greater than or equal to []ynsafe such that both
[] ()CyCnsafe dom_ ∈ and [] []ynforbidmyCnsafe −≤_ ; it is equal to 1+m is no such

value exists,
− []yCnforbid _ is the smallest value greater than or equal to []ynforbid such that both

[] ()CyCnforbidm dom_ ∈− and [] []ynsafeyCnforbidm ≥− _ ; it is equal to 1+m is no
such value exists.
When []yCnsafe_ is equal to 1+m 7, it means that the interval [] []ynforbidmynsafe −..

has an empty intersection with the set of possible values of C .
Each array []ynsafe , []ynforbid , []yCnsafe_ and []yCnforbid _ is implemented with

an (a,b)-tree [5] which stores for the values of Y the corresponding quantity (i.e. the
endpoints of the intervals of consecutive values of Y for which the array contains the
same value). Let k denote the number of changes of an array (i.e. the number of times
the value stored at an entry i is different from the value kept at entry 1+i). Increment-
ing a set of consecutives entries by a given constant, getting the entry with minimal
value, and setting a set of consecutives entries, which are currently set to the same

6 We only know that the number of constraints, that should hold, is one of the values of

()Cdom .
7 [] [] 1_1_ +=⇔+= myCnforbidmyCnsafe .

value, to a given constant are all ()kO log operations. A whole iteration through all the
intervals (i.e. consecutives entries with the same value) of the array takes ()kkO log .

The event point series, denoted eventQ , contains the start and end+1 on the X axis,

of those safe and forbidden regions of the constraints mCTRCTR ,..,1 wrt. variables X

and Y that intersect the sweep-line. These start and end events are sorted in increasing
order and recorded in a heap. In addition an array []mregionscount ..1_ records, for each
constraint mCTRCTR ,..,1 , how many starts of safe or forbidden regions are recorded

within eventQ . This allows to check if eventQ does not contain any start event associated

to a given constraint in ()1O (see line 6 of Algorithm 2).

3.2 Principle of the Algorithm

In order to check if ∆=X may be feasible wrt. the cardinality operator, the sweep-line
status records the number of safe regions as well as the number of forbidden regions
that intersect the current position of the sweep-line. If, for ∆=X , ()Yy dom∈∀ :

[] 1_ += myCnsafe (i.e. [] [] () ∅=∩− Cynforbidmynsafe dom..), the sweep-line will move
to the right to the next event to handle.

Before going more into the detail of the algorithm, let us first illustrate how it works
on a concrete example. Assume that we want to find out the minimum value of variable
X such that the conjunction of four or five of those constraints that were given in
Fig. 1 hold. In addition we want to update the minimum and maximum value of the
number C of constraints that hold. Table 1 shows the content of the sweep-line status
for all positions ∆ of the sweep-line. The smallest value of X which may be feasible
is 2, since this is the first position where there exists a value 0=y of Y such that

[] 15140_ +=+≠= mCnsafe . Since for each position of the sweep-line at least one con-
straint does not hold we also update the maximum value of C to value 4.

Table 1. Status of the sweep-line at each stage of the algorithm. CfCsfs _,_,, respectively

denote []nsafe , []nforbid , []Cnsafe_ , []Cnforbid _ per Y position.

Y ∆=0 ∆=1 ∆=2 ∆=3 ∆=4
4 2,3,6,6 1,2,6,6 2,2,6,6 1,3,6,6 2,3,6,6
3 0,2,6,6 2,3,6,6 1,3,6,6 2,3,6,6 1,3,6,6
2 1,2,6,6 1,2,6,6 2,2,6,6 1,3,6,6 2,2,6,6
1 0,2,6,6 2,2,6,6 1,2,6,6 2,2,6,6 1,1,4,1
0 3,2,6,6 2,2,6,6 2,1,4,1 1,1,4,1 3,1,4,1

3.3 The Main Procedure

The procedure INIMUMINDMF (see Algorithm 1) implements the sweep algorithm for
adjusting the minimum value of a variable X wrt. a given cardinality operator as well
as for adjusting the minimum and maximum number of constraints that hold. It can be
easily adapted to a procedure that adjusts the maximum value of a variable. The main
parts of INIMUMINDMF are:

− Lines 1-7 initialize the event queue to the start and end events associated to the left-
most safe and forbidden regions of each constraint. Note that we only insert events
that are effectively within () ()XX max..min and () ()YY max..min . If no such events are
found or if no safe or forbidden region intersects ()Xmin , we exit the procedure.

− Line 8 initializes to 0 all the four arrays of the sweep-line status, while line 9 sets
[]vnsafe , []vnforbid , []vCnsafe_ and []vCnforbid _ to 1+m , for those values v that do

not belong8 to ()Ydom . These values will not be considered any more, since no safe
or forbidden region which contains these values will be added.

− Lines 11-19 extract from the event queue all events associated to the current position
∆ of the sweep-line and update the sweep-line status. Afterwards, check whether
there may exist some feasible solution for ∆=X and, if so, record it and eventually
update the minimum and maximum number of constraints which hold.

− Line 20 reports a failure since a complete sweep over the full domain of variable X
was done without finding any solution.

− Lines 21-23 adjust the minimum and maximum of variable C and return a possibly
feasible solution for X and Y .

Input: A cardinality operator () (){ }()mmnVmVmCTRnVVCTRC ,..,1,..,
11,..,111,ycardinalit and two domain

variables X and Y present in each constraint mCTRCTR ,..,1 .

Output: An indication that no solution exists or an indication that a solution may exist and values x̂ , ŷ .

Ensure: Either x̂ is the smallest value of X such that ()Yy domˆ ∈ and ()yx ˆ,ˆ belongs to exactly s safe

regions and to precisely f forbidden regions of mCTRCTR ,..,1 wrt. variables X and Y , such that interval

fms −.. has a non-empty intersection with the domain variable C , or no solution exists. Also adjust the

minimum and maximum values of C .

 1: eventQ ←an empty event queue, feasible←0, Cmin← 1+m , Cmax← 1− .

 2: for all constraint iCTR ()mi ≤≤1 do

 3: for all region ()iCTR CTRYXR
i

,,RFG EGIONSIRSTET∈ do

 4: Insert ()()XR
xCTRi

min,max − into eventQ as a start event.

 5: if ()XR
xCTRi

max1≤++ then Insert 1++
xCTRi

R into eventQ as an end event.

 6: if eventQ is empty or the leftmost position of any event of eventQ is greater than ()Xmin then

 7: x̂ ← ()Xmin , ŷ ← ()Ymin , return (true, x̂ , ŷ).

 8: nsafe, nforbid , Cnsafe_ , Cnforbid _ ←arrays ranging over () ()YY max..min initialized to 0.

 9: []insafe , []inforbid , []iCnsafe_ , []iCnforbid _ ← 1+m , for () () ()YYYi dom\max..min∈ .

10: while eventQ is not empty and (0=feasible or ()CCmin min> or ()CCmax max<) do

11: ∆ ← the leftmost position of any event of eventQ .

12: for all event E at position ∆ of eventQ do ()EVENTANDLEEH .

13: imin ← index such that []iminCnsafe_ is minimal.

14: if [] 1_ +≠ miminCnsafe then

15: if 0=feasible then x̂ ← ∆ , ŷ ← imin , feasible←1.

8 BA \ denotes the set difference between A and B .

16: smin←smallest value of []Cnsafe_ .

17: if Cminsmin< then Cmin← smin.

18: fmin ←smallest value of []Cnforbid _ .

19: if Cmaxfminm >− then Cmax← fminm− .

20: if 0=feasible then return (false, 0, 0).

21: if ()CCmin min> then adjust the minimum of C to Cmin.

22: if ()CCmax max< then adjust the maximum of C to Cmax.

23: return (true, x̂ , ŷ).

Algorithm 1: ()CYXCTRCTR m ,,,,..,MF 1INIMUMIND

Holes in the domain of variable X are handled by generating so called “contradic-
tion” regions, which add 1+m to []vnsafe for all values () ()YYinv max..m∈ when we
enter such regions. The next section describes the procedure VENTANDLEEH , which
specifies how to modify the sweep-line status according to a given start or end event.

3.4 Handling Start and End Events
 1: Extract E from eventQ and get the corresponding region ER and constraint ECTR .

 2: l ← ()()YR yE min,max − , u ← ()()YyER max,min + , t ← typeER .

 3: if E is an end event then inc ← 1− .
 4: else
 5: inc ←1.

 6: if eventQ does not contain any start event associated to constraint ECTR then

 7: Exprevious_ ← −
xER .

 8: for all region ()EECTR xpreviousCTRYXR
i

_,,RNG ,EGIONSEXTET∈ do

 9: Insert −
xCTRE

R into eventQ as a start event.

10: if ()XR
xCTRE

max1≤++ then Insert 1++
xCTRE

R into eventQ as an end event.

11: if safe=t then Add inc to []insafe for all uli ..∈ else Add inc to []inforbid for all uli ..∈ .

12: for all intervals ba.. such that
[] [] []

[] [] []
[] [] [] []
[] [] [] []



î








≠+∨≠+∨=
≠−∨≠−∨=

==+=
==+=

≤∧≤

bnforbidbnforbidbnsafebnsafeub
anforbidanforbidansafeansafela

bnforbidanforbidanforbid
bnsafeansafeansafe

ubal

11
11

1
1

�

�

 do

13: Set []()biaiCnsafe ≤≤_ to the smallest value v such that:

14: [] () []anforbidmvCvansafev −≤∧∈∧≥ dom 9.

15: Set []()biaiCnforbid ≤≤_ to the smallest value v such that:

16: [] () []ansafevmCvmanforbidv ≥−∧∈−∧≥ dom 10.

Algorithm 2: ()EVENTANDLEEH

9 []()biaiCnsafe ≤≤_ is initialized to m+1 if no such value v exists.
10 []()biaiCnforbid ≤≤_ is initialized to m+1 if no such value v exists.

When E is the last start event of a given constraint
E

CTR and since not all events

were initially inserted in eventQ , we search for the next events of
E

CTR and insert them

in the event queue eventQ (lines 6-10). Depending on whether we have a start or an end

event E that comes from a safe or a forbidden region we add 1 or −1 to []insafe or to
[]inforbid (uil ≤≤), where l and u are respectively the start and the end on the Y

axis of the region that is associated to the event E (lines 1-5,11). Finally, for each
maximum interval ba.. such that ubal ≤≤≤ and such that the pair of values

[] []()inforbidinsafe , is constant for all bai ..∈ (line 12), we update Cnsafe_ (line 13) as
well as Cnforbid _ (line 15).

3.5 Worst-Case Analysis

This section analyses the worst-case complexity of a complete sweep over the domain
of X . Let r denote the total number of forbidden and safe regions intersecting the
domain of the variables X ,Y under consideration, and m the number of constraints.
Furthermore assume the domain of C to be represented as two tables []dlow ..1 and

[]dup ..1 such that the domain of C consists only of those values belonging to
[] []jupjlow .. (dj ≤≤1). For a complete sweep, Table 2 indicates the number of times

each operation is performed, and its total worst-case complexity. Hence, the overall

worst-case complexity of a complete sweep is ()drrrmO loglog 22 ++ .

Table 2. Maximum number of calls and worst-case complexity per basic operation in a sweep

Operation Max. times Total

Initialize to empty the queue Qevent O(1) O(1)

Compute the first forbidden and safe regions of all constraints11 O(1) O(m + r)

Add an event to the queue Qevent O(r) O(r log r)

Extract the next event from the queue Qevent O(r) O(r)

Check if there exists a start event associated to a constraint O(r) O(r)

Initialize to a value nsafe[], nforbid[], nsafe_C[], nforbid_C[] O(1) O(1)

Update a range of nsafe[], nforbid[] O(r) O(r log r)

Update a range of nsafe_C[], nforbid_C[] O(r2) O(r2 log d + r2 log r)

Check if there exists an element of nsafe_C with a value ≠m+1 O(r) O(r log r)

Since the main difficulty is the update of Cnsafe_ / Cnforbid _ we give the detail of
this part (line 8 of Table 2). First note that finding the smallest value of ()Cdom greater
than or equal to []insafe (respectively []inforbidm−) can be done in dlog . In addition

since there cannot be more than ()rO changes in Cnsafe_ / Cnforbid _ , and since to

11 This corresponds to lines 2-3 of Algorithm 1.

each change in Cnsafe_ / Cnforbid _ corresponds a set of consecutives entries which
are currently set to the same value, the worst-case complexity per change of

Cnsafe_ / Cnforbid _ is ()rdO loglog + . Finally as we have at most r2 calls to
VENTANDLEEH and because for each call there cannot be more than ()rO intervals

ba.. (line 12 of Algorithm 2) such that both
[] [] [] []bnsafebnsafeansafeansafe =−==+= 11 � , [] [] ∨≠−∨= ansafeansafela 1

[] []anforbidanforbid ≠−1 , [] [] [] []bnforbidbnforbidanforbidanforbid =−==+= 11 � ,
[] [] [] []bnforbidbnforbidbnsafebnsafeub ≠+∨≠+∨= 11 the total complexity for updating

Cnsafe_ / Cnforbid _ is ()rrdrO loglog 22 + .

4 A Sweep Algorithm for the Weighted Cardinality Operator

This section explains how to slightly modify the sweep-line status of the algorithm
presented in Sect. 3 in order to handle the weighted cardinality operator. We now re-
cord in []ynsafe (respectively []ynforbid) the sum of the weights of the safe (respec-
tively forbidden) regions which contain the point of coordinates j,∆ . Finally,

[]yCnsafe_ (respectively []yCnforbid _) is set to the smallest value greater than or
equal to []ynsafe (respectively []yCnforbid _) such that []yCnsafe_ (respectively

[]yCnforbidm _−) belongs to the domain of C . The domain variable C is the sum of
the weights of the constraints which hold in the constraints mCTRCTR ,..,1 of the

weighted cardinality operator. In lines 1,10,15,20 of Algorithm 1 the quantity m is

replaced by ∑
=

m

i
iW

1
, while lines 11,13-16 of Algorithm 2 are modified as indicated

below.

11: if safe=t then Add iWinc ⋅ to []insafe for all uli ..∈ else Add iWinc ⋅ to []inforbid for all uli ..∈ .

13: Set []()biaiCnsafe ≤≤_ to the smallest value v such that:

14: [] () []anforbidWvCvansafev
m

j
j −≤∧∈∧≥ ∑

= 1

dom 12.

15: Set []()biaiCnforbid ≤≤_ to the smallest value v such that:

16: [] () []ansafevWCvWanforbidv
m

j
j

m

j
j ≥−∧∈−∧≥ ∑∑

== 11

dom 13.

Algorithm 3: modifications of procedure ()EVENTANDLEEH

12 []()biaiCnsafe ≤≤_ is initialized to 1
1

+∑
=

m

j
jW if no such value v exists.

13 []()biaiCnforbid ≤≤_ is initialized to 1
1

+∑
=

m

j
jW if no such value v exists.

5 A Relaxation of the Non-Overlapping Rectangles Constraint

Assume that we want to implement a constraint
()mPPC ,,,ONR 1VERLAPPINGONELAXED � over a set of rectangles, which should hold if

exactly C 14 pairs of rectangles iP , jP , ji < do not overlap. A rectangle iP with origin

coordinates ()ii YX , , width iw and height ih is given as iiii hYwX ,,, , where iX and

iY are domain variables and iw , ih are non-negative integers. We have a total number

of () 22 mm − non-overlapping constraints of the form:

()jjjjiiiiij hYwXhYwXoverlapnon ,,,,,,,_ ⇔

ijjjiiijjjii YhYYhYXwXXwX ≤+∨≤+∨≤+∨≤+

As it was mentioned in [2], there can be a most one non-empty forbidden region

()forbidden,..,.. +−+−= yyxxij rrrrR of ijoverlapnon_ wrt. ()ii YX , , where:

() () () () .1min,1max,1min,1max −+=+−=−+=+−= +−+−
jjyijyjjxijx hYrhYrwXrwXr

On the other hand, there can be at most 4 non-empty safe re-

gions ()safe,..,.. ,,,,
+−+−= ykykxkxkij rrrrR ()41 ≤≤ k of ijoverlapnon_ wrt. ()ii YX , , where:

() () () ()
() () () ()
() () () ()
() () () () .1max,1min,max,max

,1max,1min,min,min

,max,max,max,min

,min,min,max,min

,4,4,4,4

,3,3,3,3

,2,2,2,2

,1,1,1,1

−+=+−==+=
−+=+−=−==

=+===
−====

+−+−

+−+−

+−+−

+−+−

jjyijyixjjx

jjyijyijxix

iyjjyixix

ijyiyixix

hYrhYrXrwXr

hYrhYrwXrXr

YrhYrXrXr

hYrYrXrXr

To each rectangle iP ()mi ≤≤1 , we associate a variable iC which gives the minimum

and maximum number of non-overlapping constraints which hold and we link all these

variables by the constraint ∑
=

=
m

i
iCC

1
. In order to adjust the minimum of variable iX

and to update the minimum and maximum value of variable iC , we use Algorithm 1.

6 Discussion and Conclusion

The relevance of our approach compared to what is currently done is as follows. Con-
straint network based frameworks used to model constraint relaxation [3] require con-
straints to be defined as a set of tuples. However, in practice, a lot of constraints can’ t
be defined extensionally since a huge number of allowed tuples is needed to model a
given constraint. On the other hand, even if the constraints are defined intentionally, the

14 C is a domain variable.

worst-case complexity of these consistency algorithms generally depends on the num-
ber of values present in the domains of the variables.

More recently, in order to take advantage of the structure of some specific constraint,
Petit et al. [6] have proposed two filtering algorithms based on flow for two relaxed
version of the alldifferent15 constraint. Our approach can be situated between these two
extremes: on one side we define constraints in a compact way by providing functions
which return forbidden and safe regions. On the other side, the only point about the
structure of the constraints that we exploit is the fact that two given variables occur in
different constraints. It should be noted that using multi-dimensional data structures
should allow to take advantage, without changing the filtering algorithm, of the fact
that some constraints share more than two variables.

In the past within practical constraints systems, conventional wisdom had it that, in
order to get the full benefit from the power of constraint propagation, one should en-
force all constraints. As a corollary it has been generally assumed that constraint relaxa-
tion some how “kills” constraint propagation. In this paper we have shown that, for a
specific type of constraint relaxation, this is not true. We have come up with a generic
filtering algorithm which can cope with the fact that we just know the minimum and
maximum number of constraints that have to hold. This algorithm was derived from our
value sweep algorithm [1], where in addition to the concept of forbidden region we
came up with the notion of safe region. Finally we introduced a small modification of
the sweep-line status in order to handle relaxation. This is yet another useful application
of the concept of sweep to constraint propagation. Implementing the algorithm of this
paper would be needed in order to compare it with existing techniques [3], [4], [8] and
further assess its practical value.

Acknowledgements

Thanks to Per Mildner as well as to anonymous referees for useful comments on an
early version of this paper.

References

1. Beldiceanu, N.: Sweep as a generic pruning technique. In TRICS: Techniques foR Implement-
ing Constraint programming, CP2000, Singapore (2000).

2. Beldiceanu, N., Carlsson, M.: Sweep as a Generic Pruning Technique Applied to the
Non-Overlapping Rectangles Constraint.. In Principles and Practice of Constraint Program-
ming – CP’2001, 7th International Conference, Paphos, Cyprus, (2001).

3. Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G.: Semiring-Based
CSPs and Valued CSPs: Frameworks, Properties, and Comparison. Constraints, Vol.4, N.3,
199-240, Kluwer, (1999).

4. Freuder, E., Wallace, R.: Partial Constraint Satisfaction. Artificial Intelligence, Vol.58, 21-70,
(1992).

15 The constraint []()nXX ,,1ntalldiffere � holds if all variables nXX ,,1 � are pairwise different.

5. Mehlhorn, K.: Data Structures and Algorithms 1: Sorting and Searching. EATCS
Monographs. Springer Verlag, Berlin (1984).

6. Petit, T., Régin, J.C, Bessière, C.: Algorithmes de Filtrage Spécifiques pour les Problèmes
Sur-Contraints. In JNPC’2001, 953-966, Toulouse, France (June 2001). in French.

7. Preparata F.P., Shamos M.I.: Computational Geometry. An Introduction. Springer-Verlag,
1985.

8. Schiex, T.: Arc Consistency for Soft Constraints. In Principles and Practice of Constraint
Programming – CP’2000, 6th International Conference, Singapore. Lecture Notes in Com-
puter Science, Vol. 1894, Springer, 411-424, (2000).

9. Van Hentenryck, P., Deville, Y.: The Cardinality Operator: A New Logical Connective for
Constraint Logic Programming. In International Conference on Logic Programming. The
MIT Press, 745-759, (1991).

10. Van Hentenryck, P., Saraswat, V., Deville, Y.: Design, Implementation and Evaluation of the
Constraint Language cc(FD). In A. Podelski, ed., Constraints: Basics and Trends, vol. 910 of
Lecture Notes in Computer Science, Springer-Verlag, (1995).

11. Würtz, J., Müller, T.: Constructive Disjunction Revisited. In 20th German Annual Conference
on Artificial Intelligence. LNAI vol. 1137, 377-386, Springer-Verlag, (1996).

