Sweep as a Generic Pruning Technique
Applied to Constraint Relaxation

Nicolas Beldiceanu and Mats Carlsson

SICS, Lagerhyddsvégen 18, SE-75237 Uppsala, Sweden
{nicol as, mat sc} @i cs. se

Abstract. We introduce a new generic filtering algorithm for handling constraint
relaxation within constraint programming. More precisely, we first present a
generic pruning technique which is useful for a specia case of the cardinality
operator where all the constraints have at least two variables in common. This
method is based on a generdization of a sweep agorithm which handles a
conjunction of constraints to the case where one just knows the minimum and
maximum number of constraints that have to hold. The main benefit of this new
technique comes from the fact that, even if we don’t know which, and exactly
how many constraints, will hold in the final solution, we can still prune the
variables of those constraints right from the beginning according to the minimum
and maximum number of constraints that have to hold. We then show how to
extend the previous sweep algorithm in order to handle preferences among
constraints.

Finaly, we specialize this technique to an extension of the non-overlapping
rectangles constraint, where we permit controlling how many non-overlapping
constraints should hold. This alows handling over-constrained placement
problems and provides constraint propagation even if some non-overlapping
constraints have to be relaxed.

1 Introduction

Since its introduction within constraint programming, the cardinality operator [9] has
been recognized as a generic combinator [10], [11] which was integrated in several
constraint systems. Its most genera form is
cardinali(C.{CTR V11..-Vin, }-.CTRn Vg Ving, }) Where C is a domain variable® and

{CTRMi1.- Vi,) CTRVirg.- Vimg, } i @ set of constraints over domain variables. The

m
cardinality operator holds iff C = Z#CTRG/H,..,VinI) where #CTR V... Vi,) is equal
=i

1 A domain variable is a variable that ranges over afinite set of integers; min(V) and max(V)
respectively denote the minimum and maximum values of variable V, while dom(V) desig-
nates the set of possible values of V.

to 1 if constraint CTR(Vy...Vi,) holds and O otherwise?. Throughout this paper we

consider a redtricted case of the cardinality operator where all the constraints
CTR,..,CTR, have at least two distinct variables X and Y in common. Let C denote

the first argument of the cardinality operator throughout the rest of this paper.

From an operational point of view the cardinality operator used entailment [10] in
order to implement constraint propagation. However a fundamental weakness is that it
does not take advantage of the fact that some constraints may share some variables. The
main contribution of this paper is to provide a stronger filtering algorithm for the case
where al the constraints of the cardinality operator share at least two variables. This
allows performing more constraint propagation even though some constraints may be
relaxed.

The filtering algorithm is based on an idea which is widely used in computational
geometry and which is called sweep [7, pp. 10-11]. Consider the illustrative example
given in Fig. 1 where we have five constraints and their projections on two given vari-
ables X and Y ; assume that we want to find out the smallest value of X so that the
conjunction of four or five of those constraints may hold for some Y . By trying out
X =0, X=1and X =2, we conclude that X =2 isthe first value® that may be feasi-
ble. The new sweep agorithm performs this search efficiently; See Sect. 3.2 for details
on this particular example.

In two dimensions, a plane sweep algorithm solves a problem by moving a vertical
line from left to right. The algorithm uses the two following data structures:

— adata structure called the sweep-line status, which contains some information re-
lated to the current position A of the sweep-line,

— a data structure named the event point series, which holds the events to process,
ordered in increasing order wrt. the abscissa.

The agorithm initializes the sweep-line status for the initial position of the
sweep-line. Then the sweep-line jumps from event to event; each event is handled,
updating the sweep-line status. In our context, the sweep-line scans the possible values
of adomain variable X that we want to prune, and the sweep-line status contains for
each value y of dom(Y) the minimum and maximum number of constraints that can be
satisfied under the assumptionsthat X =A and Y =y. If, for some position A, al val-
ues of Y have an interval which does not intersect the possible number of constraints
that should hold (i.e. C), then we will remove A from dom(X).

The sweep filtering algorithm will try to adjust the minimum* value of X wrt. the
cardinality operator as well as the minimum and maximum value of C by moving a
sweep-line from the minimum value of X to its maximum value. In our case, the
events to process correspond to the starts and the ends of forbidden and safe

2 As usua within constraint programming, this definition applies for the ground case when all
the variables of the constraints CTR,,..,CTR,, are fixed.

3 On this example, the propagation described for the classical cardinality operator [8] would not
deduce anything, since none of the previous five constraints is neither always true nor aways
fase.

4 It can al'so be used in order to adjust the maximum value, or to prune completely the domain of
avariable.

2-dimensional regions wrt. the constraints CTR,,..,CTR,, of the cardinality operator and
variables X and Y .
Throughout this paper, we use the notation (R; RY,R) ..R;,Rype) to denote for an

ordered pair R of intervals, its lower and upper bounds and its type (i.e. forbidden or
safe).

The next section presents the notion of forbidden and safe regions, which isaway to
represent constraints that is suited for the sweep agorithm of this paper. Sect. 3 de-
scribes the sweep algorithm itself and analyzes its worst-case complexity, while Sect. 4
shows how to dlightly modify the previous algorithm for handling the weighted cardi-
nality operator. It is a more general case of the cardinality operator which allows speci-
fying preferences, where we associate to each constraint CTR (l<i<m) a weight

m
W, 0IN; the weighted cardinality operator holds iff C =y (W @CTR V...V,). Finally
i=1

Sect. 5 presents its specialization to the relaxed non-overlapping rectangles constraint.

2 Forbidden and Safe Regions

We call R aforbidden region of the constraint CTR (1<i <m) wrt. the variables X
and Y if: OxOR.RY, OyORy.Ry: CTR(V;,..Vi,) with the assignment X =x and

Y =y has no solution, no matter which values are taken by the other variables of con-
straint CTR (Viy,..Viy,).

In asimilar way, we name R asafe region of the constraint CTR (L<i < m) wrt. the
variables X and Y if: OxOR;.RY, OyORy.Ry: CTR Viy....Vi, | with the assignment

X =x and Y =y aways holds, no matter which values are taken by the other variables
of constraint CTR (Viy,..Viy,).

0 0 0 11 . 0 N 0
X 0 X 0 1 0 x” 0 X
Rino0..9 Zin 2.3 Sin1..6 Tino0..0,Uin 1..2
al ldistinct({X VY,4-Y,R) [|XY]|>Z X+2Y<S X+1<T O T+1<X O X+Y = 0 (nod 2)
Y+1<U O U+4<yY
(A) (B) © (D) (B

Fig. 1. Examples of forbidden [l and safe [regions. Xin 0..4, Yin 0..4.

Fig. 1 shows 5 constraints and their respective forbidden (shaded) and safe (striped)
regions wrt. two given variables X and Y and their domains. The statement Var in
min..max, where min and max are two integers such that min is less than or equal to
max, creates a domain variable Var for which the initial domain is made up from all

values between min and max inclusive. The first constraint requires X, Y, 4-Y and
R be pairwise distinct, while the last four constraints correspond to arithmetic and
digunctive constraints.

The sweep agorithm computes the forbidden and safe regions on request, in a lazy
evaluation fashion. The forbidden and safe regions of each constraint CTR (L<i<m)

are gradually generated as a set of rectangles R;,..., Ry such that:

- R;0---0ORy represents all forbidden and safe regions of constraint CTR wrt. vari-
ables X and Y,

- therectangles R;,...,R, do not pairwise intersect,

- Ry,...,Ry aresorted by ascending start position on the X axis.

In practice, we use the following functions® for gradually getting the forbidden and
safe regions for each triple (X,Y,CTR) (L<i < m) that we want to be used by the sweep

agorithm:
- GETFIRSTREGIONYX,Y,CTR): generates all the forbidden and safe regions Rerg Of

constraint CTR such that:

Retg | < firsterg <Rerr)
R ; = min(Y) ORcrg = maxY)’
where firsterg isthe smallest value in min(X).maxx) such that there exists such a
forbidden or safe region Rerg of CTR.

- GETNEXTREGIONYX,Y,CTR, previous): generates all the forbidden and safe regions
Rerg Of constraint CTR such that:

HRer = nextrg
ER’CTR ; 2 min(Y) ORcrg ,S maxY)’
where previous is the position of the previous start event of constraint CTR and
nextrg IS the smallest value greater than previous such that there exists such a
forbidden or safe region Rerg of CTR.
If we consider congtraint (C) of Fig. 1 (i.e. X+2[Y<S), and we assume that
X 100.3, YOO0..3 and SO1..6, then a complete scan of X would produce the following
sequences of calls:
- GETFIRSTREGIONYX,Y, X +2[Y < S) returnsregion (0..10..0,safe,
- GETNEXTREGIONYX,Y, X +2[Y < S,0) returnsregion (1..33..3, forbidden,
- GETNEXTREGIONYX,Y, X +2[Y < S1) returnsregion (3..3,2..2, forbidder) .

The complexity results of this paper assume that all the previous functions used for
getting the forbidden and safe regions are performed in o(nr), where nr isthe number

of regions returned by the function.

5 Two anaogous functions GETLASTREGIONS and GETPREVREGIONS are also provided for
the case where the sweep-line moves from the maximum value of X to its minimum value.

3 A Sweep Algorithm for the Cardinality Operator

The purpose of this section is to describe the new sweep algorithm which can cope with
the fact that we don’'t know exactly® how many constraints of the cardinality operator
will hold. We first describe the data structures used by the algorithm and illustrate its
main ideas on a concrete example. Finally we give the agorithm and analyze its
worst-case complexity.

3.1 Data Structures

Asis the case for most sweep algorithms, the new sweep algorithm uses one data struc-
ture for recording the sweep-line status and another data structure for storing the event
points. For the current position A of the sweep-line, the sweep-line status contains for
each possiblevalue y of Y the following information:

— the number nsaféy] of safe regions that currently intersect the sweep-line at the
point of coordinates A,y ; the quantity nsaf¢y| gives, under the assumptions that
both X=A and Y=y, a lower bound of the tota number of constraints
CTR,...CTR, that hold,

— the number nforbid[y] of forbidden regions that currently intersect the sweep-line at
the point of coordinates A,y ; the quantity m—nforbid[y] gives, under the assump-
tions that both X =A and Y =y, an upper bound of the total humber of constraints
CTR.,...CTR,, that hold,

- nsafe C[y| is the smallest value greater than or equal to nsaféy| such that both
nsafe_C[y]Ddon{C) and nsafe_C[y]s m—nforbid[y]; it isequal to m+1 is no such
value exists,

- nforbid_C[y] is the smallest value greater than or equal to nforbid[y] such that both
m-nforbid_C[y|O0dom(C) and m-nforbid_Cly|= nsafdy]; it is equal to m+1 isno
such value exists.

When nsafe C[y| isequal to m+17, it means that the interval nsaféy|.. m-nforbid|y]
has an empty intersection with the set of possible valuesof C.

Each array nsafdy], nforbid[y], nsafe C[y] and nforbid_C[y] is implemented with
an (a,b)-tree [5] which stores for the values of Y the corresponding quantity (i.e. the
endpoints of the intervals of consecutive values of Y for which the array contains the
same value). Let k denote the number of changes of an array (i.e. the number of times
the value stored at an entry i is different from the value kept at entry i +1). Increment-
ing a set of consecutives entries by a given constant, getting the entry with minimal
value, and setting a set of consecutives entries, which are currently set to the same

6 We only know that the number of constraints, that should hold, is one of the values of
dom(C).
7 nsafe_Cly]=m+1 « nforbid_C[y]=m+1.

value, to a given constant are all o(Iogk) operations. A whole iteration through all the
intervals (i.e. consecutives entries with the same value) of the array takes O(klogk) .

The event point series, denoted Qg en, CONtains the start and end+1 on the X axis,
of those safe and forbidden regions of the constraints CTR,...CTR,, wrt. variables X
and Y that intersect the sweep-line. These start and end events are sorted in increasing
order and recorded in a heap. In addition an array count_regiondl..m| records, for each
constraint CTR,..,CTR,,, how many starts of safe or forbidden regions are recorded
within Qgyen- This alows to check if Qgyen: dOES NOt coNntain any start event associated
to agiven congtraint in O(1) (seeline 6 of Algorithm 2).

3.2 Principleof the Algorithm

In order to check if X =A may be feasible wrt. the cardinality operator, the sweep-line
status records the number of safe regions as well as the number of forbidden regions
that intersect the current position of the sweep-line. If, for X =A, OyOdom(y):
nsafe C[y]=m+1 (i.e. nsafgy].m-nforbid[y]n dom(C)=0), the sweep-line will move
to the right to the next event to handle.

Before going more into the detail of the algorithm, let us first illustrate how it works
on a concrete example. Assume that we want to find out the minimum value of variable
X such that the conjunction of four or five of those constraints that were given in
Fig. 1 hold. In addition we want to update the minimum and maximum value of the
number C of constraints that hold. Table 1 shows the content of the sweep-line status
for al positions A of the sweep-line. The smallest value of X which may be feasible
is 2, since this is the first position where there exists a value y=0 of Y such that
nsafe_C[0]=4#m+1=5+1. Since for each position of the sweep-line at least one con-
straint does not hold we also update the maximum value of C to value 4.

Table 1. Status of the sweep-line at each stage of the algorithm. s, f,s_C, f _C respectively
denote nsafé] nforbid[] nsafe_C[] nforbid_C[] per Y position.

Y A=0 A=1 A=2 A=3 A=4

41236,6|1,2,6,6|2,2,6,6|1,3,6,6]|2,3,6,6
3/0,2,6,6|23,6,61,36,6]2,3,6,6]|1,3,6,6
21,2,6,6 |1,2,6,6 |2,2,6,6 | 1,3,6,6|2,2,6,6
1]0,26,6|226,6|1,2,66]2,26,6]| 11,41
03,266 |2,2,6,6]|2,1,41|1,1,4,13,1,4,1

3.3 TheMain Procedure

The procedure FINDMINIMUM (see Algorithm 1) implements the sweep algorithm for
adjusting the minimum value of avariable X wrt. a given cardinality operator as well
as for adjusting the minimum and maximum number of constraints that hold. It can be
easily adapted to a procedure that adjusts the maximum value of a variable. The main
parts of FINDMINIMUM are:

Lines 1-7 initialize the event queue to the start and end events associated to the left-
most safe and forbidden regions of each constraint. Note that we only insert events
that are effectively within min(X)..max(x) and min(Y)..maxY). If no such events are
found or if no safe or forbidden region intersects min(X), we exit the procedure.

Line 8 initializes to 0 al the four arrays of the sweep-line status, while line 9 sets
nsafév], nforbid[v] , nsafe_C[v] and nforbid_C[v] to m+1, for those values v that do
not belong® to dom(Y). These values will not be considered any more, since no safe
or forbidden region which contains these values will be added.

Lines 11-19 extract from the event queue all events associated to the current position
A of the sweep-line and update the sweep-line status. Afterwards, check whether
there may exist some feasible solution for X =A and, if so, record it and eventually
update the minimum and maximum number of constraints which hold.

Line 20 reports a failure since a complete sweep over the full domain of variable X
was done without finding any solution.

Lines 21-23 adjust the minimum and maximum of variable C and return a possibly
feasible solutionfor X and Y .

Input: A cardinality operator cardinaliykc,iCTle\/ll,..,Vlnl)..,CTPm(\/nﬂ,..,VmWn)j) and two domain
varigbles X and Y present in each constraint CTR,,..,CTRy,.

Output: An indication that no solution exists or an indication that a solution may exist and values X, ¥ .

Ensure: Either X isthe smallest value of X such that §Cdom(Y) and (%, §) belongsto exactly s safe
regionsand to precisely f forbiddenregionsof CTR,,..,CTRy, wrt. variables X and Y , such that interval
s.m- f has a non-empty intersection with the domain variable C , or no solution exists. Also adjust the

minimum and maximum values of C .

1
2

3:

4:

5:

6

7:
8:
9:

. Qgvent — an empty event queue, feasible—0, Cmin - m+1, Cmax — -1.
: for all constraint CTR (1si < m) do
for all region Rotg JGETFIRSTREGIONYX,Y,CTR) do

Insert max(F?CTR ;,min(x)) into Qgyent s astart event.

if RCTR; +1< max(x) then Insert RCTR; +1into Qgyent @ an end event.

1 if Qgyent isempty or the leftmost position of any event of Qg ep iS greater than min(X) then
X — min(X), Y~ min(Y),return (true, X, V).
nsafe, nforbid, nsafe C, nforbid_C - arraysranging over min(Y)..max(Y) initidized to 0.
nsafeii] , nforbid[i] , nsafe_C[i] , nforbid_C[i] — m+1, fori IZImin(Y)..max(Y)\don“(Y) .
: while Qgyent isnotempty and (feasible=0 or Cmin> min(C) or Cmax< max(C)) do
A ~ theleftmost position of any event of Qgyent-
for all event E at position A of Qgyent do HANDLEEVENT(E).
imin ~ index such that nsafe_C[imin] isminimal.
if nsafe_C[imin]¢m+1 then
if feasible=0 then X — A, ¥ — imin, feasible— 1.

8

A\ B denotes the set difference between A and B.

16: smir — smallest value of nsafe_C[] .

17: if smin<Cmin then Cmin — smir.
18: fmin smallest value of nforbid_c[] .
19: if m- fmin>Cmax then Cmax - m- fmin.

20: if feasible=0 then return (falsg, O, 0).
21: if Cmin> min(C) then adjust the minimum of C to Cmin.
22: if Cmax< max(C) then adjust the maximumof C to Cmax.
23: return (true, X, ¥).
Algorithm 1: FINDMINIMUM (CTR,,...CTRy, X,Y,C)

Holes in the domain of variable X are handled by generating so called “contradic-
tion” regions, which add m+1 to nsafdv] for al values vOmin(Y).maxY) when we
enter such regions. The next section describes the procedure HANDLEEVENT , which
specifies how to modify the sweep-line status according to a given start or end event.

3.4 Handling Start and End Events

1: Extract E from Qgyen and get the corresponding region Rg and constraint CTRg .

- . . +
2 |- max(REy,mln(Y)), U~ mln(REy,max(Y)), t — Reype:
3:if Eisanendevent then inc — -1.

4: else
5: inc 1.
6: if Qgyent does not contain any start event associated to constraint CTRz then
7: previous xg — Rgy -
8: for all region Rotg DGETNEXTREGIONS{X,Y,CTRE, previous_xE) do
o: Insert RCTRE; iNto Qgyent aSastart event.
10: if Rotr.) +1<max(X) then Insert Rorr, * +1 iNto Qgyent a5 an end event.
11: if t=safe then Add inc to nsafdi] foral i0l.u else Add inc to nforbid]i] foral iDl.u .
O<a 0O b<u
Epsaf({a = nsafe{a+1 =...= nsaﬂ{b]
12: for alintervals ab suchthat [forbid|a) = nforbid[a+1] = .. = nforbid[b] do

=1 Onsafg¢a —1| # nsafea| Onforbid|a -1 # nforbid|a
=ulnsafeb +1| # nsafgb|Onforbid|b + 1| # nforbid|b

13: Set nsafe_C[i](asi < b) to the smallest value v such that:

14: V2 nsafe{a] OvO dorr(C) Ovsm- nforbid[a] °.
15: Set nforbid_Cli](a<i<b) tothe smallest value v such that:
16: v nforbid[a] 0 m-vOdom(C) 0 m-v > nsafda] .

Algorithm 2: HANDLEEVENT(E)

® nsafe_C[i](asi < b) isinitialized to m+1 if no such value v exists.
10 nforbid_Cli|(a<i <b) isinitialized to m+1 if no such value v exists.

When E isthe last start event of a given constraint CTR. and since not all events
were initially inserted in Qgyent, We Search for the next events of CTR and insert them
in the event queue Qgyent (lines 6-10). Depending on whether we have a start or an end

event E that comes from a safe or a forbidden region we add 1 or -1 to nsaféi] or to
nforbid[i] (I<i<u), where | and u are respectively the start and the end on the Y
axis of the region that is associated to the event E (lines 1-5,11). Finally, for each
maximum interval ab such that I<a<b<u and such that the pair of values
(nsafdi],nforbid[i]) is constant for all iOa.b(line 12), we update nsafe C (line 13) as
well as nforbid_C (line 15).

3.5 Worst-Case Analysis

This section analyses the worst-case complexity of a complete sweep over the domain
of X . Let r denote the total number of forbidden and safe regions intersecting the
domain of the variables X ,Y under consideration, and m the number of constraints.
Furthermore assume the domain of C to be represented as two tables lowfl.d] and
up[l..d] such that the domain of C consists only of those values belonging to
low{j].up|j] (1<j<d). For a complete sweep, Table 2 indicates the number of times
each operation is performed, and its total worst-case complexity. Hence, the overall

worst-case complexity of a complete sweep is O(m+ r2logr +r2logd).

Table 2. Maximum number of calls and worst-case complexity per basic operation in a sweep
Operation Max. times Total
Initialize to empty the queue Qevent o(1) o(1)
Compute the first forbidden and safe regions of all constraints™ o(1) O(m+r)

Add an event to the queue Qevent o(r) O(r logr)
Extract the next event from the queue Qevent o(r) o(r)

Check if there exists a start event associated to a constraint o(r) o(r)
Initialize to avalue nsafe]], nforbid[], nsafe C[], nforbid_CJ] O(1) O(1)

Update arange of nsafe[], nforbid[] o(r) O(r logr)
Update a range of nsafe_C[], nforbid_C[] o(r?) O(r2logd+r2logr)
Check if there exists an element of nsafe_C with avalue Zm+1 o(r) O(rlogr)

Since the main difficulty is the update of nsafe C /nforbid_C we give the detail of
this part (line 8 of Table 2). First note that finding the smallest value of dom(C) greater
than or equal to nsafdi| (respectively m-nforbid]i]) can be done in logd . In addition
since there cannot be more than O(r) changes in nsafe C /nforbid_C, and since to

1 This corresponds to lines 2-3 of Algorithm 1.

each change in nsafe C /nforbid_C corresponds a set of consecutives entries which
are currently set to the same vaue, the worst-case complexity per change of
nsafe C /nforbid_C is O(logd +logr). Finaly as we have a most 2r calls to
HANDLEEVENT and because for each call there cannot be more than O(r) intervals
ab (line 12 of Algorithm 2) such that both
nsaféa] = nsaféa+1] =...= nsafeEb —1] = nsaféb] , a=10 nsaf({a—l] 7 nsafeEa] O
nforbid[a—1] # nforbid[a] , nforbid[a] = nforbid[a +1] = ... = nforbid[b - 1] = nforbid[b] ,
b =uOnsafdb+1] # nsaféb| Onforbid[b +1] # nforbid[b] the total complexity for updating
nsafe C /nforbid_C is O(rzlogd + rzlogr).

4 A Sweep Algorithm for the Weighted Cardinality Operator

This section explains how to dightly modify the sweep-line status of the algorithm
presented in Sect. 3 in order to handle the weighted cardinality operator. We now re-
cord in nsaféy| (respectively nforbid[y]) the sum of the weights of the safe (respec-
tively forbidden) regions which contain the point of coordinates A,j. Finaly,
nsafe_Cly| (respectively nforbid_C[y]) is set to the smallest value greater than or
equa to nsaféy] (respectively nforbid_C[y]) such that nsafe_C[y] (respectively
m-nforbid_C[y]) belongs to the domain of C. The domain variable C is the sum of
the weights of the constraints which hold in the constraints CTR,...CTR,, of the
weighted cardinality operator. In lines 1,10,15,20 of Algorithm 1 the quantity m is

m
replaced by 5 wi, while lines 11,13-16 of Algorithm 2 are modified as indicated
i=1

below.

11: if t=safe then Add inclW to nsafdi] forall iOl.u else Add inctW to nforbidi] forall iOl.u.
13: Set nsafe_C[i](asi < b) to the smallest value v such that:

14: v nsafda] OvOdom(C) Ov< jgle ~ nforbid[a] 2.
15: Set nforbid_C[i](asi < b) to the smallest value v such that:

m m
16: v > nforbid[a] O T W, -vOdom(C) O ¥ Wi -vz2 nsafda] 2.
j=1 j=1
Algorithm 3: modifications of procedure HANDLEEVENT(E)

m
2 nsafe_Cli](a<i<b) isinitialized to Y W, +1 if no suchvaluev exists.
j=1
m
1 nforbid_C[](a<i <b) isinitiaizedto 3 W, +1 if no such valuev exists.
=1

5 A Relaxation of the Non-Overlapping Rectangles Constraint

Assume that we want to implement a constraint
RELAXEDNONOVERLAPPING(C, R,...,P,,) Over a set of rectangles, which should hold if

exactly C' pairs of rectangles R, P;, i< do not overlap. A rectangle R with origin
coordinates (X;,Y;), width w and height h is given as (X;,w.¥;,h), where X; and
Y, are domain variables and w , i are non-negative integers. We have a total number
of (m2 - m)/ 2 non-overlapping constraints of the form:

non_overlap ((Xi,V\f,,Yi,hi>‘<Xj‘Wj‘Yj‘hi>) <

As it was mentioned in [2], there can be a most one non-empty forbidden region

R :(r;..r;,r;..r;,forbidde of non_overlag; wrt. (X;,Y;), where:

re :max(xj)—w, +1, 1y :min(x-)+w- -1, 1y :max(Yj)—hi +1, T

j j o :I'nll'](Y])“'hJ -1

y
On the other hand, there can be a most 4 non-empty safe re

gionsR; = (rlgx..rﬁx,rgy..rlzy,safe; (1<k<4) of non_overlag wrt. (X;,Y;), where:

i = min(X;), i =max(X;), My = min(Y;), 'y = min(Y]-)— h,

M2x =min(X;), Iy =max(X;), ryy =maxy;)+h;, r2+’y =max,),

r3x =min(X;), r3x = min(Xj)—w,, rgy =min{Y; J=h +1 3y =maxy;)+h; -1
F4x =Ma Xj)+wj, ray =max{X;), rgy =min(Y;]-h +1 17, =maxY; J+h; -1

To each rectangle R (1<i <m), we associate avariable C; which gives the minimum
and maximum number of non-overlapping constraints which hold and we link al these

m

variables by the constraint C=3 C; . In order to adjust the minimum of variable X;
i=1

and to update the minimum and maximum value of variable C; , we use Algorithm 1.

6 Discussion and Conclusion

The relevance of our approach compared to what is currently done is as follows. Con-
straint network based frameworks used to model constraint relaxation [3] require con-
straints to be defined as a set of tuples. However, in practice, alot of constraints can’t
be defined extensionally since a huge number of alowed tuples is needed to model a
given constraint. On the other hand, even if the constraints are defined intentionally, the

14 C isadomain variable.

worst-case complexity of these consistency algorithms generally depends on the num-
ber of values present in the domains of the variables.

More recently, in order to take advantage of the structure of some specific constraint,
Petit et a. [6] have proposed two filtering algorithms based on flow for two relaxed
version of the alldifferent’> constraint. Our approach can be situated between these two
extremes: on one side we define constraints in a compact way by providing functions
which return forbidden and safe regions. On the other side, the only point about the
structure of the constraints that we exploit is the fact that two given variables occur in
different constraints. It should be noted that using multi-dimensional data structures
should allow to take advantage, without changing the filtering agorithm, of the fact
that some constraints share more than two variables.

In the past within practical constraints systems, conventional wisdom had it that, in
order to get the full benefit from the power of constraint propagation, one should en-
force al constraints. Asacorollary it has been generally assumed that constraint relaxa-
tion some how “kills’ constraint propagation. In this paper we have shown that, for a
specific type of constraint relaxation, this is not true. We have come up with a generic
filtering agorithm which can cope with the fact that we just know the minimum and
maximum number of constraints that have to hold. This algorithm was derived from our
value sweep algorithm [1], where in addition to the concept of forbidden region we
came up with the notion of safe region. Finally we introduced a small modification of
the sweep-line status in order to handle relaxation. Thisis yet another useful application
of the concept of sweep to constraint propagation. Implementing the algorithm of this
paper would be needed in order to compare it with existing techniques [3], [4], [8] and
further assessiits practical value.

Acknowledgements

Thanks to Per Mildner as well as to anonymous referees for useful comments on an
early version of this paper.

References

1. Beldiceanu, N.: Sweep as a generic pruning technique. In TRICS: Techniques foR Implement-
ing Constraint programming, CP2000, Singapore (2000).

2. Beldiceanu, N., Carlsson, M.: Sweep as a Generic Pruning Technique Applied to the
Non-Overlapping Rectangles Constraint.. In Principles and Practice of Constraint Program-
ming — CP' 2001, 7™ International Conference, Paphos, Cyprus, (2001).

3. Bistardlli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G.: Semiring-Based
CSPs and Valued CSPs: Frameworks, Properties, and Comparison. Constraints, Vol.4, N.3,
199-240, Kluwer, (1999).

4. Freuder, E., Wallace, R.: Partial Constraint Satisfaction. Artificial Intelligence, Vol.58, 21-70,
(1992).

15 The constraint alldifferent([X1,..., X]) holdsif all variables Xy,..., X, are pairwise different.

. Mehlhorn, K.: Data Sructures and Algorithms 1: Sorting and Searching. EATCS
Monographs. Springer Verlag, Berlin (1984).

. Petit, T., Régin, J.C, Bessiere, C.: Algorithmes de Filtrage Spécifiques pour les Problémes
Sur-Contraints. In INPC’ 2001, 953-966, Toulouse, France (June 2001). in French.

. Preparata F.P., Shamos M.l.: Computational Geometry. An Introduction. Springer-Verlag,
1985.

. Schiex, T.: Arc Consistency for Soft Constraints. In Principles and Practice of Constraint
Programming — CP’2000, 6" International Conference, Singapore. Lecture Notes in Com-
puter Science, Vol. 1894, Springer, 411-424, (2000).

. Van Hentenryck, P., Deville, Y.: The Cardinality Operator: A New Logical Connective for
Constraint Logic Programming. In International Conference on Logic Programming. The
MIT Press, 745-759, (1991).

10.Van Hentenryck, P., Saraswat, V., Deville, Y.: Design, Implementation and Evaluation of the

Constraint Language cc(FD). In A. Podelski, ed., Constraints: Basics and Trends, vol. 910 of
Lecture Notes in Computer Science, Springer-Verlag, (1995).

11.Wirtz, J., Mller, T.: Constructive Digjunction Revisited. In 20th German Annual Conference

on Artificial Intelligence. LNAI vol. 1137, 377-386, Springer-Verlag, (1996).

