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∗Institute of Computer Engineering, University of Lübeck, Germany
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Abstract—Link quality estimation is a thorny problem in
wireless sensor networks, because its accuracy affects the design
and the efficiency of networking protocols and applications.

Especially in the context of low-power wireless, estimating the
link quality poses a sort of catch-22 dilemma, whereby a large
number of packet samples are required to accurately estimate a
channel, but only a few samples should be used due to limited
energy resources. This paradox becomes even more severe in
mobile wireless sensor networks, since the high variability of the
medium imposes even stricter constraints on the timing in which
the estimation has to be carried out.

In this paper we propose the Triangle Metric, a metric that
combines geometrically the information of PRR, LQI, and SNR
into a robust estimator that guarantees a fast and reliable
assessment of the link quality. Our evaluation shows that the
triangle metric can identify the quality of links using as few
as 10 packet samples, making it an eligible solution for highly
mobile sensor networks.

I. INTRODUCTION

Wireless communication links are well-known to be error-

prone and time-varying, major reasons being path loss, shad-

owing, fading, or external interference. Observing the be-

haviour of a wireless link and using the results to derive pre-

dictions about the future link quality is fundamental to adjust

protocols and radio parameters to satisfy the communication

requirements in an energy-efficient fashion.

In general terms, the link quality estimation problem can be

succinctly described as follows: during a time window [t0, t1],

called observation window, a node collects information from

received packets in order to predict the delivery capacity of

the link over a certain time horizon [t1, t2], called prediction

window. In wireless sensor networks there is a tradeoff: larger

observation windows improve the accuracy of the prediction,

but also increase the consumption of the highly constrained

energy budget. A link estimator should be accurate, agile,

efficient, and should minimize both memory requirements and

traffic overhead.

In this work, our goal is to classify links into distinct

categories according to their quality. We focus on estimating

the link quality in mobile wireless sensor networks using

IEEE 802.15.4-compliant transceivers [1] such as the Chipcon

cc2420 [2]. This setting imposes rigid constraints on the size

of the observation window, and on the the type of samples

available as input to the prediction scheme.

The size of the observation window has to be small since it

has been shown experimentally that the interference landscape

created by static WiFi interferers changes at these timescales

when a mobile wireless sensor network moves at pedestrian

speeds [3]. Hence, longer observation windows would not

provide useful insights about the link quality.

The amount of observable quantities from an

IEEE 802.15.4-compliant transceiver is limited to the

Packet Reception Rate (PRR), the Received Signal Strength

(RSS), and the Link Quality Indicator (LQI) associated with

the received packet. Hitherto, there has been a long-standing

debate in the research community on which of these indicators

is the most appropriate for assessing the link quality properly,

but no full agreement has been reached, especially when

considering only a few packet samples [4]. This led to the

exploration of hybrid metrics that make use also of the data

coming from other layers in order to maximize the efficiency

of data collection protocols [5], and to the creation of tools

to analyze the statistical properties of link quality metrics in

large static testbeds [6].

However, since our first concern is to minimize the size

of the observation window and to obtain a fast assessment –

ideally in the order of ten packets or one second of time – we

need to deal with the following limitation: the fewer observed

packets, the noisier become the RSSI, LQI, and PRR estimates.

For this reason, in order to improve the characterization of a

link and still achieve good predictions, we need a single metric

that combines the strengths (and mitigates the weaknesses) of



all the available hardware indicators.

Resting on these ideas, we design the Triangle Metric, a

geometrical combination of hardware indicators that conveys

the strengths of the physical observables LQI, RSSI, and

PRR, into a single metric. We show how the geometrical

combination and the introduction of the window mean enables

a good assessment of the link quality also when considering

a limited amount of packet samples.

We evaluate the prediction performance of the triangle

metric in comparison with the individual indicators using

different data sets obtained from measurements in static and

mobile environments. Our evaluation shows how the triangle

metric can classify links even when only few sample packets

are available in the observation window, a common situation

in mobile wireless sensor networks.

The paper proceeds as follows. Section II provides an anal-

ysis of the limitations of the common hardware indicators. In

Section III, we discuss the design of our triangle metric, and in

Section IV we present the results of an experimental evaluation

in static and mobile settings. After reviewing the related work

in Section V, we offer our conclusions in Section VI.

II. LIMITATIONS OF HARDWARE METRICS

When using an IEEE 802.15.4-compliant transceiver [1],

there are only a limited amount of quantities that can be

directly observed and delivered to a prediction scheme: the

Packet Reception Rate (PRR), the Received Signal Strength

Indicator (RSSI), and the Link Quality Indicator (LQI) asso-

ciated with the received packet. The RSSI value is an average

of the received signal strength at the packet’s arrival time.

When sampling the RSSI value at a point in time in which

there is no ongoing transmission (for example in the gap

between data and acknowledgement packet, see e.g. [7]), one

can also measure the RSSI noise floor, which gives a direct

indication of the amount of interference, and by subtracting

it to the RSSI values, one can assess the SNR. The LQI is

implementation-dependent: in the case of the Chipcon CC2420

radio transceiver [2] it gives an indication of the chip error rate.

Based on those four basic observable quantities, the com-

munity has suggested several metrics for link estimation by

considering the mean or the variance of PRR [8], [9], [10],

LQI [11], [12], RSSI [4], [13] and to a lesser extent SNR.

In this work, we show that these approaches have three

major limitations. First, for a small number of samples, the

mean and variance are susceptible to noise, which leads to

an unclear distinction of the link quality. The PRR-based

approach requires a relatively large number of observations to

obtain usable results, and the RSSI- and LQI-based approaches

are only partially able to map accurately to PRR. Second,

each metric provides a different type of information, and

instead of leveraging on the combined knowledge, most of

existing studies analyze these metrics individually or on a pair-

wise basis. Furthermore, the PRR and the observed LQI/RSSI

statistics are often computed on the same set of packets, and

no attempt is made to predict the future PRR.
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Fig. 1. Correlation between Packet Reception Rate (PRR) and (a) the mean
SNR, (b) the standard deviation of the SNR, (c) the mean LQI (c), and (d)
the standard deviation of the LQI.

In the reminder of this section, we illustrate in greater

detail the weaknesses and strengths of each basic indicator.

Our aim is to highlight their differences, but also the mutual

complementarity, which is the main motivation of our study.

Packet Reception Rate (PRR). The main limitation of the

PRR is that it cannot differentiate between good stable links

(i.e., links that provide a PRR = 1 and that are also resilient

to external effects), and good links that might be unstable (i.e.,

links that can have a PRR = 1 but any minor environmental

change such as shadowing or interference can significantly

degrade their quality [4]). Furthermore, the smaller the dataset

on which the PRR is computed, the lower the granularity.

For example, when the PRR is computed on a set of only

10 packets, the reception of a single packet has an impact of

10% on the total result.

Signal to Noise Ratio (SNR). The signal-to-noise-ratio and

the RSSI (Received Signal Strength Indicator) have been

extensively studied in the literature [4], [11], [14]. In general,

the characteristics of the SNR complement to some extent

the limitations of the PRR: the latter cannot differentiate

between good and very good links, but it can approxi-

mately differentiate between bad (PRR < 0.35), average

(0.35 ≤ PRR ≤ 0.75) and good links (PRR > 0.75).

On the other hand, SNR can only differentiate between very

good links and the rest. As shown in Figure 1(a), a link with

a mean SNR above 20 dB can be safely considered a very

good link, but links with average SNRs between 5 dB and

10 dB are hardly distinguishable between bad, average and

good. Hence, while PRR and SNR cannot accurately classify

the entire spectrum of link qualities independently, combining

their information could improve the classification process.

Continuing with Figure 1(a), a link with PRR > 0.75 and a

relatively high SNR, say 12 dB, can be easily identified as a

good link, while the classification of a link with a mean SNR

of 7.5 dB can be improved by using the PRR information.
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Fig. 2. The higher the SNR and the LQI, the better the link quality (a). This observation motivates the geometric basis of our approach: the link quality can

be estimated by computing the distance of the point (SNR, LQI) from the origin (0,0), i.e., by calculating the length c of the hypotenuse of the triangle
abc (b).
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Fig. 3. Examples of how to apply the triangle metric to the computation of the link quality. The length c of the hypothenuse, and thus the distance from the
origin, increases as long as the link quality increases (a,b), while it decreases with lower-quality links (c,d) that cannot sustain a high packet reception rate.

Figure 1(b) shows the PRR over the standard deviation

of the SNR. This combination provides negligible estimation

information. The reason behind this is two-fold. First, the

well-known log-normal shadowing model states that the SNR

variance is constant for any mean SNR, henceforth, no links

(good or bad) have a particular variance that differentiates

them. Second, when few samples are provided, the variance is

smaller for smaller sets than larger sets. Hence, a link with two

received packets would have a misleading lower variance and

hence would appear more stable than a link with 10 packets

received.

The results shown in Figure 1 are based on data retrieved

from 10 nodes deployed in a dynamic environment (cafeteria).

Each node follows a TDMA scheme to broadcasts 10 continu-

ous packets, one every second. The TDMA scheme is used to

avoid internode interference, but other sources of interference

are considered, such as 802.11b networks. Upon reception of

a 10-packets batch, we calculate the PRR, and the mean and

standard deviation of SNR and LQI.

The Link Quality Indicator (LQI). The characteristics of

LQI are similar to those of PRR: like PRR, LQI presents a

saturation that makes it uncapable to distinguish between good

and very good links. On the other hand, LQI shows a smoother

decay that enables a better classification of bad, average, and

good links [11]. Figure 1(c) shows the relationship between

PRR and mean LQI. Despite the smoother decay of LQI, a

link with only 2 received packets can still be confused with a

link with 8 received packets, since they might have the same

LQI value. Hence, similarly to PRR and SNR, the LQI by

itself is not sufficient to assess the quality of a link.

Some authors have suggested the use of the LQI variance

for link classification [4], [12] based on two premises: (i) the

better the link, the better the LQI, and (ii) the LQI reaches

a saturation point (108 for the CC2420): hence, good links

have a lower variance. This proposal holds when considering

a moderate number of sample packets: when few samples are

sent, this approach suffers from the intrinsic limitation of the

variance explained before: for a small set of samples, fewer

receptions lead to a lower variance, and hence, bad links could

be classified as good, and vice versa. Figure 1(d) shows the

low correlation between PRR and the LQI standard deviation.

III. THE TRIANGLE METRIC

The aim of our work is to combine the link state information

of PRR, SNR, and LQI into a single metric that can accurately

estimate the goodness of the link also with small observation

windows. Given the resource limitations, we consider the mean

values of PRR, SNR, and LQI as our input parameters. We

do not consider the variance of those values because of the

limited resources available on the sensor nodes, and for the

problems occurring when considering only a small number of

samples that we illustrated in Section II.

The mean SNR and the mean LQI provide important

insights into the quality of a wireless link, as explained in

the previous section. Based on the information provided by

these two indicators, it is obvious that a good wireless link

should have both a high mean SNR and a high mean LQI



at the same time. Following this observation, and illustrating

it geometrically as depicted in Figure 2, we can introduce

the key idea of our approach: the higher the SNR and the

higher the LQI, the better the link (Figure 2(a)), hence, the

link quality can be estimated by calculating the distance of the

point (SNR, LQI) from the origin (0,0) (Figure 2(b)). The

data plotted in Figure 2(a) is retrieved from a data collection

application running on static nodes deployed in an office

environment, communicating on different radio channels. We

can see how the communication on different channels results

in different link qualities, probably due to the effect of WiFi

interference.

Figure 3 shows how the distance of the point (SNR, LQI)

from the origin (0,0) can be used to estimate the quality of

the link: different links will lead to different distances, and the

better the link, the higher the distance from the origin.

Despite that the mean SNR and the mean LQI provide

important insights about the quality of the link, they still

carry a limitation: they only consider information from the

received packets and disregard the information provided by

lost packets. For example, a short-term effect may lead to the

reception of only one packet with a high SNR and LQI on

a link, while a different link may have received 8 packets

with a mean SNR and mean LQI similar to the former. As a

consequence of under-sampling, these two links could be erro-

neously classified as nearly equivalent. Figure 4(a) illustrates

this problem: the blue circles represent PRR = 1.0, the

black circles represent PRR ∈ [0.75, 1.0), the green circles

represents PRR ∈ [0.35, 0.75), and the red circles represent

PRR ∈ (0, 0.35). The distance of the points (SNR,

LQI) from the origin (0,0) do not correlate clearly with the

packet reception rate. Hence, PRR still carries important link

information not captured by mean SNR and mean LQI.

In order to include the PRR information, instead of using

the statistical mean, we sum the SNR and LQI values of

the received packets and divide it by the total number of

transmitted packets. We call this operation the window mean.

The advantage of the window mean over the statistical mean

is that it includes the reception rate information by penalizing

links with low reception rates. Figure 4(b) depicts the same

links as in Figure 4(a), but using the window mean of SNR

and LQI. As we can observe, the combination of PRR, SNR,

and LQI leverages on the individual advantages of each metric

and provides a more accurate differentiation of the link quality.

The formal description of our triangle metric is the fol-

lowing: let us assume that n packets are used to sample the

channel and m of those packets are successfully received

(0 < m ≤ n). The LQI and SNR of each successfully

received packet i are denoted by lqii and snri. Upon reception

of the sampling packets, the receiver calculates the window

mean SNR and LQI in the following way:

SNRw =

m
∑

k=1

snrk

n

(1)
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Fig. 4. The combination of PRR, SNR, and LQI provides a more accurate
differentiation of the link quality. There is no high correlation between the

PRR and the distance of the point (SNR, LQI) from the origin (a). This
implies that PRR still carries important link information not captured by the
mean SNR and mean LQI, and including the PRR information using the
window mean provides a more finegrained assessment of the link quality (b).

LQIw =

m
∑

k=1

lqik

n

(2)

Then, the receiver calculates the distance to the origin

(length of hypotenuse):

d△ =

√

SNR
2

w + LQI
2

w
(3)

Based on this distance, the receiver estimates the quality of

the sender-receiver link according to a rule in which the larger

the distance, the higher the link quality. In this work we assign

empirical-based thresholds th to differentiate the quality of the

links as follows:

Γ =















Very Good link, thgood < d△
Good link, thavg ≥ d△ < thgood

Average link, thbad ≥ d△ < thavg

Bad link, d△ < thbad

(4)

IV. EVALUATION

We evaluate the triangle metric on static and mobile sce-

narios, and verify that in both cases it actually combines the

strengths of its input metrics, outperforming them. We carry

out the estimation using variable-sized observation windows,

and we compare the results to the future packet delivery rate.

Our goal is also to find a minimum window size that still gives

reliable link estimations.

For the purpose of this paper, we need to create categories

for link qualities, similar to the ones selected by Srinivasan

et al. [15], because as pointed out in Section II, when using

a small observation window, e.g., 10 packets, the impact of a

single reception on the overall PRR is 10%, i.e., very high.

We divide the links into four categories based on empirical

observations, and we follow the distinction made in Section II.

Therefore, we distinguish between very good, good, interme-

diate, and bad links. A very good link is intended to be a link

with PRR = 1 as in [15], while a good link is a link with

PRR > 0.75. An intermediate link has a packet reception

rate between 0.35 and 0.75, so it is characterized by some
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Fig. 5. Relationship between the link quality metrics and the future PRR
when using an observation window of 20 packets for a mobile link.

persistent packet loss rate, while a bad link is a link whose

packet reception rate is below 0.35.

For enabling a direct comparison, we also need to define

a similar classification for the individual SNR and LQI, and

for the triangle metric. We derive these thresholds from our

investigation carried out in the previous sections. In particular,

the thresholds of the triangle metric, SNR, and LQI can be

mapped to the lines c, b, and a in Figure 3, respectively. Table I

summarizes the categories and the selected thresholds.

TABLE I
CLASSIFICATION OF LINKS, AND THEIR RESPECTIVE THRESHOLDS.

`
`

`
`

`
`

`
`

`
Category

Metric
PRR SNR LQI Triangle

Very good link 1 30+ 106+ 145+

Good link 0.75 - 1 15 - 30 102 - 106 80 - 145

Intermediate link 0.35 - 0.75 5 - 15 80 - 102 30 - 80

Bad link 0 - 0.35 0 - 5 0 - 80 0 - 30

A. Experimental setup

To evaluate if the triangle metric actually combines the

strengths of the single indicators, we carry out several exper-

iments with real nodes. All nodes run the Contiki operating

system [16] on Sentilla Tmote Sky [11] and Sentilla JCreate

nodes. Both platforms are equipped with the 2.4 GHz Chipcon

CC2420 radio transceiver. We evaluate the different metrics in

a static and a mobile scenario.

In the static scenario, we run a simple data collection

between several pair of nodes at various distances and using

different transmission powers. Each receiving node collects the

information about SNR, LQI, and sequence numbers of the

received packets and logs them into a text file. We transmit

data on all the channels of the 2.4 GHz band periodically with

dedicated time-slots. All transmitters send 64 unicast packets

per second. We extract the information available in the log

files, select the size of the observation and prediction windows,

and compute the amount of received packets, the mean SNR,

and the mean LQI.

TABLE II
EVALUATION WITH STATIC LINKS

h
h

h
h

h
h

h
h

h
h

h
Assessment

Future PRR
x > 0.75 0.35 < x < 0.75 x < 0.35

Metric: Triangle

Very good link 100% - -

Good link 95% 5% -

Intermediate link 36% 57% 7%

Bad link 3% 18% 79%

Metric: Current PRR

Very good link 99% 1% -

Good link 77% 22% 1%

Intermediate link 39% 56% 6%

Bad link 4% 23% 73%

Metric: Mean SNR

Very good link 100% - -

Good link 94% 6% -

Intermediate link 66% 29% 4%

Bad link 14% 33% 54%

Metric: Mean LQI

Very good link 94% 6% -

Good link 89% 10% 1%

Intermediate link 73% 23% 4%

Bad link 6% 16% 79%

As in the static scenario, also in the mobile scenario we have

different pairs of nodes that periodically transmit packets at a

rate of 64 packets per second. While the receivers have fixed

positions, the transmitters are placed on humans moving at a

constant pedestrian walking speed of approximately 5 km/h.

The nodes move continuously in and out off the receiver’s

radio range.

B. Static scenario

Given thirty thousands transmissions from static links, we

initially select an observation window of 20 packets and a

predition window of 250 packets. Figure 5 shows that given the

limited size of the observation window, PRR, SNR, and LQI

do not have a linear relationship with the future PRR, because

they suffer from the limitations highlighted in Section II. On

the contrary, the triangle metric has a more linear relationship,

because it combines the information embedded in all the

individual metrics.

We further carry a longer evaluation with observation and

prediction windows of 10 packets, and the results are shown

in Table II. As we can see, the mean SNR gives an acceptable

estimation of good and very good links, but it fails to provide

a satisfactory estimation for bad and especially intermediate

links. A link estimated as intermediate by SNR in 69% of

the cases has a future PRR of more than 0.75. The LQI is

useful to estimate bad links but does not perform well for

other kinds of links. The PRR is good for intermediate links,

while it often misclassifies good links as intermediate. Our

experimental results show that the triangle metric is able to

merge the information in a way that leads to a more robust

estimation compared to the input metrics taken individually:

this is its main strength. The highlighted cells of Table II show

how the values returned by the triangle are actually combining

the strength of each individual metric.



TABLE III
EVALUATION WITH MOBILE LINKS

h
h

h
h

h
h

h
h

h
h

h
Assessment

Future PRR
x > 0.75 0.35 < x < 0.75 x < 0.35

Metric: Triangle

Very good link 99.5% 0.3% 0.2%

Good link 91% 9% -

Intermediate link 41% 47% 12%

Bad link 8% 38% 54%

Metric: Current PRR

Very good link 98% 2% -

Good link 86.5% 13.3% 0.2%

Intermediate link 47% 43% 10%

Bad link 8% 45% 48%

Metric: Mean SNR

Very good link 99.4% 0.4% 0.2%

Good link 93% 7% -

Intermediate link 57% 36% 7%

Bad link 16% 50% 34%

Metric: Mean LQI

Very good link 96% 3% 1%

Good link 71% 27% 2%

Intermediate link 45% 41% 14%

Bad link - 36% 64%

The quality of the estimation provided by the triangle metric

increases with the size of the observation window, since more

data is available then. Figure IV-C shows the correlation

between the size of the observation window and the future

PRR (prediction window of 250 packets). The results in the

figure show that a window size of 10 packets is a reasonable

trade-off between accuracy, cost, and estimation time.

C. Mobile scenario

In the case of mobile sensor nodes, the link estimation is

not as good as in the case of static scenarios. Nevertheless,

our results shown in Table III confirm that the triangle metric

combines the indicators so that the result is more accurate than

the one provided by the individual indicators. The triangle

metric estimates very good and good channels with compa-

rable reliability w.r.t. SNR, intermediate links w.r.t. PRR and

bad links w.r.t. LQI, as for static scenarios. This confirms that

even in highly mobile scenarios, the triangle metric leads to a

more robust assessment with respect to the input metrics taken

individually.

It is important to remark that the results presented in Tables

II and III depend on the values selected for the thresholds

(Table I). We estimated these thresholds based on empirical

observations, and hence, they may not be optimal. However,

we took care in selecting thresholds that captures the common

understanding that the community has of what represents very

good, good, intermediate and bad links [15].

V. RELATED WORK

Link estimation gained significant attention in the WSN

community after some initial works [17], [18], [19], [20]

highlighted the unreliable nature of sensornet links. These

studies showed that the transmission coverage of wireless

sensor networks consists of 3 regions: (i) connected, where

links are reliable and symmetric, (ii) disconnected, where there
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Fig. 6. Impact of the size od the observation window: larger observation
windows lead to more accurate estimations.

are no practical links for communications, and (iii) transitional,

where a large percentage of links are unreliable. Since the

extent of the transitional region can have a major impact on

the performance and energy consumption of sensor nodes [21],

[22], the research community found it necessary to investigate

link estimators to improve the overall performance of the

network.

Exploiting the metrics offered by IEEE 802.15.4-compliant

transceivers, the community has mainly focused on four met-

rics: the packet reception rate (PRR), the signal-to-noise ratio

(SNR), the received signal strength indicator (RSSI), and the

link quality indicator (LQI).

Two well-known metrics based on the PRR are ETX [8],

[9] and the requested number of transmissions [10]. However,

as presented in Section II, PRR gives a limited estimation

accuracy, since it cannot differentiate between stable and

unstable good links, and its utility decreases when shortening

the size of the observation window.

RSSI and LQI have been the core of a long dispute among

researchers. Lin et al. [13] show experimentally that there are

RSSI and LQI thresholds beyond which a link can sustain

a PRR of at least 95%. However, for values below these

thresholds, both metrics cannot be used to differentiate links

clearly. Some studies suggested that the mean LQI is generally

a better indicator because of the greater linearity with respect

to the packet reception rate [11], [23], [24]. Other studies,

instead, suggest that due to the high variance of LQI, at

least 120 packets are needed to obtain a reliable estimation

of average links when using the LQI, and that this drawback

makes RSSI a better estimator than LQI [4], [25], [26].

Our work differs from the studies described above in two

important ways. First, instead of focusing on a single metric,

we combine the positive features of all of them into a more

robust estimator. Secondly, instead of using the mean or the

variance, we use the window mean, a different estimator that

enables the reduction of the noise generated when evaluating

a limited number of samples. Our work further shows that the

requirement of using only few samples affects significantly the

accuracy of variance estimators and hence they should not be

considered.

A work closer in spirit to ours is the one presented in [14],

where the authors propose a multiplicative metric between

PRR and RSSI to estimate the link quality, but that does



not include the LQI, nor does it aim at fast estimation. Our

goal is instead to design a suitable metric for mobile wireless

sensor networks, i.e., one that returns a fast and reliable

assessment also with small observation windows. We thus

focus on fast estimation, and we do not attempt to estimate the

burstiness as in [27], but the delivery capacity. Furthermore,

differently from [5], we do not combine information from

different layers, rather we exploit the information available in

the radio transceiver, and we do not focus on ad-hoc wireless

mesh but on mobile wireless sensor networks.

VI. CONCLUSIONS

The problem of link quality estimation has received signif-

icant attention from the wireless sensor network community

due to its central role on the performance of two important

network-wide metrics: delivery rate and energy consumption.

Our aim is to obtain a suitable link estimator for mobile

wireless sensor networks, i.e., one that enables a fast assess-

ment and minimizes the traffic overhead while still providing a

reliable estimation. Towards this end, we propose the triangle

metric, a link quality metric that combines geometrically the

strengths of PRR, SNR, and LQI into a more robust estimator.

Our results show that the triangle metric provides a quick

and reliable estimation with as few as 10 packets, and that it

performs well both in static and dynamic environments.
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