
Demo Abstract: MSPsim – an Extensible Simulator
for MSP430-equipped Sensor Boards

Joakim Eriksson, Adam Dunkels, Niclas Finne, Fredrik Österlind, Thiemo Voigt, Nicolas Tsiftes
Swedish Institute of Computer Science
{joakime,adam,nfi,fros,thiemo,nvt}@sics.se

Abstract— Software development for wireless sensor networks
is a challenging and time consuming task. The resource limited
hardware with limited I/O and debugging abilities combined
with the often cumbersome hardware debugging tools makes
debugging on the target hardware difficult. We present MSPsim,
an extensible sensor board platform and MSP430 instruction
level simulator. MSPsim is intended to be used for reducing
development and debugging time by allowing low-level and fine
grained instrumentation of various aspects of software execution.
The use of a simulator also enables development and testing
without access to the target hardware.

I. INTRODUCTION

Due to the distributed nature of sensor networks and
resource-constraints of sensor nodes, code development for
wireless sensor network is a challenging and time consuming
task. Furthermore, the application development and debugging
tools are still cumbersome.

One of the most commonly used methods for debugging
sensor nodes is using on-chip emulation via JTAG that makes
it possible to single-step and debug a running application on
the target hardware. This is useful for understanding execution
patterns, stack usage, etc, but less useful for debugging com-
munication, sensor drivers and other timing sensitive parts of
the application.

For the development of wireless sensor network applica-
tions, system simulators exist that simplify the development
of algorithms and enable researcher to study the algorithms’
behaviour and interaction in a controlled environment [1].

Cross-level simulation enables simultaneous simulation at
different levels of the sensor network and hence supports
simultaneous low-level debugging and application develop-
ment [2]. For cross-level simulation of our MSP430-based
sensor node platforms we required an extensible instruction
level simulation. Towards, this end, we designed and imple-
ment MSPsim. As Avrora [3] MSPsim is a sensor network
simulator simulating nodes at the instruction-level, but for the
MSP430. Unlike ATEMU that emulates the operations of indi-
vidual nodes and simulates communication between them [4],
MSPsim is designed for instruction-level simulation and for
integration with COOJA’s cross-level simulation environment.

The contribution of this paper is MSPsim, an extensible
instruction level simulator for the MSP430 microcontroller
that can be used as a component in a larger sensor network
simulation system supporting cross-level simulation [2]. For
this reason MSPsim is designed to run multiple instances
of the simulator in a single process unlike other MSP430

Fig. 1. MSPsim simulating Contiki’s Blinker application on a Sky mote.

simulators such as the GDB MSP430 simulator [5]. MSPsim
also contains a sensor board simulator that simulates hardware
peripherals such as sensors, communication ports, LEDs, and
sound devices such as a beeper. The design of MSPsim,
together with its implementation in Java, makes it easy to adapt
the simulator to new sensor boards.

II. THE MSPSIM SIMULATOR

The MSPsim is a Java-based instruction level simulator for
the MSP430 microcontroller that simulates unmodified target
platform firmware. MSPsim is an instruction-level simulator
which made it easy to achieve accurate timing simulation.
Further, MSPsim can load and run unmodified target platform
firmware files in IHEX and ELF format. The simulator is
easily extensible with peripheral devices making it possible
to simulate various types of MSP430 based sensor nodes. It is
also easy to add instrumentation for monitoring the execution
of the application.

In addition to simulate the MSP430 and sensor board
hardware, MSPsim can show a graphical representation of the
sensor board in an on-screen window. LEDs on the sensor
board are displayed using the correct colors. Figure 1 shows
the graphical output from MSPsim simulating a Sky mote.

The graphical output and input (buttons) of the sensor board
hardware combined with UART/Serial output allows a system
designer to visually verify that an application is executing
correctly by inspection of the LEDs and output over the serial
interfaces.

MSPsim have built-in support for setting break-points,
read/write monitoring and C-level profiling.



A. Sensor Board Simulation

At SICS we are working with the ESB [6] and the Telos
Sky [7] platforms, which both use the MSP430 microcon-
troller. Therefore, one of the design objectives of the MSPsim
simulator is to simplify the adaptation to different types of
sensor node platforms. To add support for a new sensor
node platform only implementations of peripherals such as
sensors, actuators such as beepers or LEDs, and radio and
communication peripherals are needed. The implementation of
those peripherals are typically relatively easy to make as many
of them do not need to conform to strict timing requirements.
Figure 2 shows the complete MSPsim simulation system with
an MSP430 microcontroller and connected peripherals.

MSP430
Emulator

CC2420
Radio

Leds

Sensors/Button

Serial (USB)

U
S

AR
T

I/O
 P

or
ts

Fig. 2. An MSPsim simulation with an MSP430 microcontroller and
connected peripherals.

To illustrate how a peripheral is implemented in MSPsim,
Figure 3 contains a complete MSPsim serial peripheral class.
The class constructor attaches itself as a listener to the USART
object. When the firmware running on the simulated MSP430
writes data to the USART, the dataReceived method of the
listener is invoked. In this example, the dataReceived method
simply prints out the produced character on screen.

public class SerialMonitor {
public SerialMon(USART usart) {

usart.setUSARTListener(this);
}

public void dataReceived(USART source, int data) {
System.out.print((char)data);

}
}

Fig. 3. Implementation of a serial output device class attached to a USART

USART usart = (USART) cpu.getIOUnit("USART 1");
serial = new SerialMon(usart);

Fig. 4. Creating a serial data monitor and attaching it to serial port 1 (USART
1) in MSPsim

Figure 4 shows how a sensor board simulation platform
connects the MSP430 USART 1 serial port with a the serial
monitor from Figure 3.

III. EVALUATION

To evaluate the extensibility of MSPsim we measure the
number of interfaces that must be implemented when adding

support for a new sensor board in MSPsim. The measurements
in the Table I show the amount of interfaces that the ESB
sensor board platform implements. Certain peripherals that
are present on the ESB are not yet included in the simulator:
EEPROM, real-time clock, and active IR. The table shows
that the amount of interfaces that need to be implemented for
a sensor board is small; only one or two methods need to be
implemented for each peripheral. Most peripherals only need
a single method for either reading or writing to the peripheral.
The interface for the radio is slightly more complex as it
requires two write interfaces, one for configuration and one
for the data to be transmitted.

TABLE I
NUMBER OF INTERFACES IMPLEMENTED BY THE ESB SIMULATOR.

Read Write
Peripheral value value
LED 0 1
Beeper 0 1
Digital sensor (PIR, Vibration) 1 0
Analog sensor (Mic, RSSI) 1 0
Radio 1 2
Serial (RS232) 0 1

IV. CONCLUSIONS

In this paper we have presented MSPsim, a simulator for
MSP430 based sensor nodes. MSPsim is extensible in that
adapting the simulator to new sensor boards requires not more
than the implementation of a few Java classes. If the sensors
and other chips on the new board are already implemented
even less work is involved. The source code of MSPsim is
available from sourceforge at:

http://sourceforge.net/projects/mspsim/

ACKNOWLEDGMENTS

This work was partly financed by VINNOVA, the Swedish
Agency for Innovation Systems.

REFERENCES

[1] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate and scalable
simulation of entire tinyos applications,” in Proceedings of the first
international conference on Embedded networked sensor systems, 2003,
pp. 126–137.

[2] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-level
sensor network simulation with cooja,” in Proceedings of the First IEEE
International Workshop on Practical Issues in Building Sensor Network
Applications (SenseApp 2006), Tampa, Florida, USA, Nov. 2006.

[3] B. Titzer, D. Lee, and J. Palsberg, “Avrora: scalable sensor network
simulation with precise timing,” in IPSN ’05: Proceedings of the 4th
international symposium on Information processing in sensor networks,
2005.

[4] J. Polley, D. Blazakis, J. Mcgee, D. Rusk, and J. S. Baras, “Atemu: a
fine-grained sensor network simulator,” 2004, pp. 145–152.

[5] D. Diky and C. Liechti, “The GCC toolchain for the Texas Instruments
MSP430 MCUs,” http://mspgcc.sourceforge.net/ Visited 2006-11-11.

[6] J. Schiller, H. Ritter, A. Liers, and T. Voigt, “Scatterweb - low power
nodes and energy aware routing,” in Proceedings of Hawaii International
Conference on System Sciences, Hawaii, USA, 2005.

[7] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling ultra-low power
wireless research,” in Proc. IPSN/SPOTS’05, Los Angeles, CA, USA,
Apr. 2005.


