SICS/R-89/8902

GAM
An Abstract Machine for GCLA
by
Martin Aronsson

SICS research report
R89002
ISSN 0283-3638

SICS/R-89/8902

GAM
An Abstract Machine for GCLA

by

Martin Aronsson
Swedish Institute of Computer Science
Box 1263, S-164 28 Kista, Sweden

Tel: +46 8 752 15 00

Abstract

GCLA is a new programming language, which increases expressiveness compared with
traditional logic programming languages and functional programming languages. The
basis for the language is a generalization of the concept inductive definitions, called
partial inductive definitions. The program defines a logic, which is used to make
inferences to prove if a query holds or not. This report first presents a short introduction
to these ideas. Then, an abstract machine, called GAM, for GCLA is presented; the
instructions as well as an introduction to the compiling schema is given together with
some examples. The main idea is to extend the Warren Abstract Machine (WAM), which
is an abstract machine for the language Prolog.

Keywords: Logic programming, Functional programming, Inductive definitions,
Abstract machine

Contents:

1. Introduction

2. GCLA the Language
2.1 Syntax

2.2 Operational Semantics
2.3 Procedural Semantics
3. An Example Deduction

4. Some Programming Examples

5. The Ideas Behind the Abstract Machine (GAM)
6. An Introductory Example of Compiled Code

7. Data Areas and Registers

8. The Clause Orders

9. Declarations

10. The Procedural Instructions
10.1 Calling Instructions

10.2 Premise Instructions

10.3 Indexing Instructions

10.4 Choicepoint Instructions

10.5 Guard Instructions

10.6 Fail Instruction

11. The Unification Instructions
11.1 Get Instructions

11.2 Put Instructions

11.3 Unify Instructions

12. Realization of the Procedural Semantics
13. Compiling Schema

14. Some Examples

15. Conclusions and Future Work
References

Appendices:
A Formats of Different Frames:

A.1 Choicepoints

A.2 Environments

A.3 Continuations

A.4 Premises

A.5 Different trail-formats

1. Introduction

-During the past years logic programming has proved to be a good framework for writing
programs with high expressive power together with the ability to execute programs
efficiently. The key to this combination is to use definite horn clauses in programs, and
to use resolution as the computation rule. Generalized horn clauses (GCLA) [3,8] is a
generalization of definite horn clauses. It is not a generalization within the traditional |
logical framework, but rather a more proof-theoretic view of horn clause programming.
The program is not looked upon as a set of true facts and implications, but as a definition
determining the possible inferences. One could say that in GCLA the program forms the
system’s mind, meaning that the inference rules are given by the program. In Prolog the
inference rule is given a priori and the program is executed within this given framework.
The inductive definitions [7] which form the basis of GCLA are in a sense more
primitive than ordinary logic. Primitive in the sense that when writing down the
definition of any kind of logic one is actually writing down an inductive definition.
Several experimental interpreters for GCLA have been implemented in Prolog, and they

" have shown some of the expressive power of GCLA. But they have also suffered from
inefficient treatment of the rules introduced by the extension of the definite hornclauses.
Therefore the development of an abstract machine was interesting, to see if a suitable
instruction set for GCLA could be found. This would mean increasing the expressive
power without losing efficiency compared to for example Prolog. The idea is to extend
the Warren Abstract Machine (WAM) [10], which is an abstract machine for Prolog.
This report does not describe a garbage collection routine, although one is needed. This
will not differ from already existing ones, and in fact, the garbage collecting routine for
the heap (which is the only area that should be garbage collected) is the same as for the
WAM (for example see [1] and [4]).

When reading this report, be aware that there is a difference between the P’s. When we

refer to P, we refer to a program, but when we refer to P~ or -P we refer to a specific
rule, and when we refer to |-,,, we refer to the logic "created" or "generated” by the
P gl g y

program P. We often omit the index P in l—p although it should actually be written out to

be correct.

This work is a part of a larger project, which also contains a programming calculus
based on partial inductive definitions [6], theoretical foundations for Generalized Horn
clauses as a programming language [8] and the definition of a new programming -
language [3].

In principle the same report is published as a technical report at SICS [2]. The difference
is that an exact definition of the machine by transitions is given as an appendix in the
technical report.

2. GCLA the Language

2.1 Syntax

The syntax for a GCLA program is extended "ordinary Prolog" syntax (i.e. DEC-10
syntax). The clauses in the program look like ordinary Prolog clauses, except that they
can have a list of unifying guards as a first element in the body, and a new primitive
operator, ->, can occur in the body of a clause. Another new primitive operator, |-, is
-introduced for the goals, which are sequents consisting of assumptions and a
conclusion, instead of just a conclusion as in Prolog.

<A difference in reading the clauses is that the operator ":-" should be read as "is defined
by" rather than "if" as in Prolog in order to grasp the intuition of inductive definitions.
The syntax is the same as the one given in [3]. :

2.1.1 Variables
- A variable is a string beginning with an uppercase letter.

2.1.2 Functors
- A functor is a string beginning with a lower case letter. Each functor has a certain arity.
A constant is a functor of arity 0.

2.1.3 Terms
- Each variable X is a term. : ;
- If t;...t, are terms and f is an n-ary functor, then f{z,...t,,) is a term.

2.1.4 Guards

If ¢ is a term, then:

- var(t) is a guard.

- nonvar(t) is a guard.
- number(t) is guard.
- atom(t) is a guard.

- atomic(t) is a guard.
- ground(t) is a guard.

The only guards that are allowed are these predefined guards.

They are not of the same kind as in the parallel logic languages (GHC and others). The
guards in GCLA are used to constrain variables in the head of clauses, and not to rule
out other possible clauses.

2.1.5 Conditions and Clauses
- Each term is a condition.
-If Cy, ... ,C,, C are conditions, then (Cy, ..., C,,) -> C is a condition.

- If C is a condition and » a number, then con(n,C) is a condition (con stands for
contraction, see 2.2.7).

-IfCj, ..., C, are conditions, g, ... , &, guards and 7 is a term, then

t-[gg - 8ml Cps o s Cp. is a clause.
We will refer to ¢ as the head of the clause and Cj, ..., C,, as the body of the clause.
We will use the word predicate for the set of all clauses in the program that have the
same principal functor in the head.

t. will be short for the clause ¢ :- [].
t:-Cj, ..., C,. will be short for the clause £ :- [], C, ..., C,.

2.1.6 Sequents

A sequent S is an expression of the form Cy, ..., C, |- C where Cy, ..., Cp Care
conditions. We call Cy, ..., C,, assumptions and C a conclusion.

"C." will be short for |- C.

We will also sometimes refer to the assumptions as the premises.

2.1.7 Programs
A program P is a finite list of clauses.

Below is a small programming example, which we will see more of later on. The
program is used to determine which of the "objects” that are grey.

elephant (clyde) .

elephant (fido) .

elephant (P) :-
albino_elephant (P) .

albino_elephant (karo) .
grey (P) -
elephant (P),

(albino_elephant (P) -> false).

and some possible questions

I- grey(P) =>P =clyde
=>P =fido
grey(P) |- false => P = karo

2.2 Formal Semantics

In the following two sections we will use the term assumption to refer to a condition to
~the left of the symbol |-, and the term consequent to refer to the condition to the right of
I-. The word premise will not be used because it could ambiguously refer to both the top
‘row of a rule and to a condition to the left of the turnstile. For the same reason the word
conclusion will not be used in these two sections. A goal is a sequent consisting of a
consequent and a possible empty list of assumptions.

There is also a difference between GCLA and partial inductive definitions in the
operational semantics. In GCLA the deductions are linear, concatenating new goals in
front of the old not yet solved ones, thereby defining an order in which the goals are
solved. In partial inductive definitions the inferences form an and-or-tree where the goals
‘are'not ordered in-any way.

We are interested in finding substitutions o such that certain sequents

C,0, ..., C,0 |- Co hold according to a program P. The sequents

C,G, ..., C,,0 |- Co should intuitively be read as "Co follows from the assumptions
C,0, ..., C,0 in the program P (according to P)". To solve these sequents we have a
number of rules, going from one state to another. The states are given as triples <L, G,
P> where L is a list of sequents, G is an answer substitution and P is a program.

The following abbreviations will be used:

- "nil" to denote the empty list,

- C to denote a condition,

- LM to denote (possibly empty) lists of conditions,

- C.M means that C is concatenated to M,

- L+M means appending L and M together, and

- M, +t + M, will indicate that the condition t occurs in a list of conditions.

L I- M is recursively defined as follows:
L |- nil = nil
LL-CM=LI-O.LI-M)
D(t).L I- C is similarily defined by recursion on D(t), i.e. D(t).L I- C =gt
{M+L |- C such that Me D(t) }.

‘We have here slightly changed the accumulation of the answer substitution compared
with the one given in [3]. This change is made because we are here working from the
bottom to the top, going backwards trying to reach the Initial List (IL). Therefore, if IL
is reached, the resulting answer substitution should be presented.

It should also be mentioned that there are some other rules which will not be mentioned
here. Among these additional rules are the ones for asserting and retracting clauses [3].
These concern the interpreter and not the abstract machine’s instruction set, and therefore
we have left them out.

2.2.1 Initial List (IL)
<nil ; 6, P>

where the answer substitution could be constructed from 6.

2.2.2 Initial sequent or axiom (I)
<Resto : 66. P>
<(L; +t+Lyl-1) . Rest; 0, P>
where Gisamguof tandr

2.2.3 Arrow right (-—)
<M+LI-C).Rest:0. P>
<(LI-M->C).Rest; 6, P>

2.2.4 Arrow left (=)
<Ly +Lol-M +(CLy +1,1-C).Rest: 0. P>
<(L;+M->C)+LyI- C).Rest; 0, P>

2.2.5 Program clauses right (+-P)
<(Lo |- Mo) + Resto : 66, P>
<(L I-t).Rest; 0,P>
where 1 :- [g1, .., 8], M. is a clause in P, 0 is a mgu of tand r and g0 ... g,0 are all
true.

2.2.6 Program clauses left (P-)
<((D(t6).M; G + M,0) |- r6) + Resto : 66, P>
<(M; +t+M,l-1).Rest; 6, P>
where © is a t-sufficient substitution computed as:
Let 1y ... T, be a permutation of the heads of the program clauses in P and
mgu(r,t) be the most general unifier of r and t if there is one, and nil

otherwise
Then define:
Oy = nil
G pq = MEU(LO T y41)
6= OiSnGi

D(tc) is a list containing all Mo such that 16 = tc where r :- [g; ... g,], M. is a clause in
the given program P and all g, ... g,0 are true.
In order for G to be correct a variable check must also be performed, namely that D(tc)

5

~+~does not introduce any new variables, i.e., that the bodies of the clauses considered do

not contain variables that do not occur in the heads of the clauses. These variables are
existentially quantified, which gives rise to problems to the left of the symbol |-

- The intuitive understanding of this rule is what an assumption should mean according to
the given definition, the program. An assumption holds if all objects that define it also
hold. If there is no clause in the program defining this assumption, the current goal-
sequent succeeds immediately.

2.2.7 Contraction
<(LI-C)+Rest:. 0. P>
<(L I- con(n,C)) . Rest; 0, P>

<(L; +1,1-C) . Rest; 0, P>
<(L; + con(0,C) + Ly |- C) . Rest; 8, P>

<(C'+ L, +con(nCHY+TL,1-C). Rest: 0, P>
<(L; + con(n+1,C") + Ly I- C) . Rest; 6, P>

2.2.8 Semantics for Guards

- var(t) is true if ¢ is currently not bound, otherwise false.

- nonvar(t) is true if ¢ is currently bound to something else than a variable, otherwise
false.

- number(t) is true if ¢ is currently bound to a number, otherwise false.

- atom(t) is true if ¢ is currently bound to an atom (i.e. a functor of arity 0), otherwise
false.

- atomic(t) is true if ¢ is currently bound to a number or an atom, otherwise false.

- ground(t) is true if 7 is currently not bound to a term containing a variable,

otherwise false.

2.3 Procedural Semantics

Here we are concerned about in what order different possible solutions should be tried.
That is, if at some point in the execution a choicepoint is reached, a choice of which of
the different possible ways that should be tried first. There are five points where a
choicepoint can arise, namely:

- the choice of arule,

- the choice of a clause when the rule is -P,
- the choice of an assumption when the rule is I,

- The choice of an assumption if the rule to be tried is P or —+

- different possible permutations of the clauses in P if the rule is P, for a certain
assumption

This list is the basis for another definition. The procedure in each inference is defined as

*first choosing among three different possibilities [3]. The possibilities are the Initial

sequent (I), some rule to the right of the turnstile, or some rule to the left of the turnstile.

These three possibilities are ordered as: first try the Initial sequent, secondly try the rules

to the right, and thirdly try the rules to the left. This choice determines the mode for the

machine, more about this later.

Depending on this choice, other choicepoints can arise:

- If rule 1 is tried, a suitable assumption must be chosen, which is a choicepoint.

- If some rule to the right of the turnstile is tried, the consequent uniquely determines the

choice of rule. If that rule is the rule -P (i.e., the consequent is something else than the
arrow), a suitable clause in the program P has to be chosen, which is a choicepoint.

- If some rule to the left of the turnstile should be tried, a suitable assumption has to be
chosen first, which is a choicepoint. This choice of assumption uniquely determines the
choice of rule in the same manner as in the case above to the right of the turnstile. If the

rule is P, a permutation of the clauses in the program P has to be chosen, which also is
a choicepoint.

So, one inference could involve zero or more choicepoints depending on the sequent
considered.

To form a search strategy among all these choices, we have to order both the program”s
clauses and the assumptions in a sequent. The clauses are ordered from top to bottom,
that is, the program is searched from top to bottom. The assumptions are ordered from
left to right, that is, the assumptions are searched from left to right.

The contraction rule is handled through something called annotation. When the primitive
con(n,C) occurs as an assumption, the assumption C is annotated with the number .
This means that together with the assumption C the number # is stored. Each time this
assumption is used by another rule than the rule I, its annotation number will be
decreased by one. The annotation value is restored either by backtracking or when the
current consequent is proved.

3. An Example Deduction
Here are two simple examples illustrating the basic behavior of GCLAs basic inference

rules. Let the program P be

b(l) :- a.
b(z) :- c.

The goal a -> b(1) is then given by the following derivation:

<nil : @ , P> (Initial sequent)
<(a |- a) . nil ;: @ , P> +P)
<(a 1= b(l)) . nil : @ , B> +-)
<{|- a ->b(l)) . nil ; @, P>

The goal b(x) - a may be solved in the following manner with answer substitution
{X/1}:

<nil ; (X/1.2/1} , P> Pr)
<(c |- a) . nil ; {X/1,7/1} , P> (Initial sequent)

<(a |='a) . (c l=-a) . nil : Ax/1,2/1y 2> (PF)
<(b(X) |- a) . nil ; @ , P>

where D(b (x/1,2/1)) =(a, c) given the stated order of the program clauses and D(c)
=nil. (D(x) is defined by the rule Pi-).

4. Some Programming Examples

The examples below are just small examples of code, to get some feeling of what a
GCLA program could look like, and what queries could be put to the system. Remember
that the program defines the system -, s0 -, differs from one program to another.

We start with a small example showing negation. As a false symbol we can choose any
symbol that does not have a definition in the program. In the program below we have
chosen the symbol £alse. This symbol corresponds to the empty set, i.e. there is no
definition of what £alse should mean in terms of the other objects in the universe
defined by the program.

First we define the object clyde as an elephant. £ido is also defined as an elephant.
Then we also define all objects that are albino elephants to also be elephants. The object
xaro is defined to be an albino elephant. Now, what constitutes a grey object? Well, in
our universe it should be an elephant that is not an albino elephant.

elephant (clyde) .

elephant (fido) .

elephant (P) :-
albino_elephant (P) .

albino_elephant (karo) .

grey (P) :—
elephant (P),
(albino_elephant (P) -> false).

Now, what possible questions could be put to this small program? The first question is
"Which objects are elephants?”, in GCLA syntax |- elephant (Object), and the
system will respond with the variable object bound to clyde, and with £ido and karo
upon backtracking. If the query |- grey (Object) is put to the program, that is, asks
which objects are grey, object will get bound to clyde, and to £ido upon

~ backtracking, but not to karo because karo is an albino elephant.

The next example is a small toy expert system. The universe here is the set of diseases,
. symptoms and temperatures. Diseases are defined in terms of temperature and
symptoms. The temperature is defined to be high, normal or low. All symptoms are
true, i.e. there are no false symptoms, which is accomplished by the circular definition
symptom(X) :- symptom(X) (these circular definitions are sometimes referred to as
opening the predicate, also see section 9). The circular definitions should be read as "if
X is a symptom, then it is a symptom”, i.e., if X is assumed to be a symptom, then the
program cannot inform us what it should mean that X is a symptom. The same is
applicable for the definition of temperatures; if we assume temp (high), the meaning of
that is that the temperature is high, nothing more. But to assume temp (red) or

- something like that is absurd, since there is no definition of what temp (red) should
mean (in this program).

disease (plague) :-
temp (high),
symptom(perspire) .
disease(cold) :-
temp (normal) ,
symptom (cough) .
disease (pneumonia) :-
temp (high),
symptom(multiple chills),
symptom (persistent cough).

symptom(X) :- symptom(X).
temp (high) :=- temp (high).
temp (normal) :- temp(normal).
temp (low) :- temp (low).

Then some of the possible questions are:

i) If the person has a normal temperature and a cough, what disease does he suffer

from? The query put to the system is:
temp(normal),symptom(cough)I—disease(KL
resulting in the answer substitution K = cold
i) 'We know that a person has a high temperature and multiple chills, and we are
interested in additional symptoms for the possible diseases. The query is
temp (high) , symptom(multiple chills),symptom(Symp) |- disease (K)
resulting in the answer substitution Symp =persistent_cough and K =
pneumonia
iii) If we assume the plague, what temperature is the patient supposed to have?
In the query this time the consequent and the assumption are reordered
disease (plague) |- temp(G), and the system comes up with the answer
‘substitution G = high.
In the real program the circular definitions of symptoms and temperatures are handled
through declarations to prevent looping programs. The different possible declarations are
given later.

As was mentioned before, GCLA integrates logic programming and functional
programming into one single framework. This is accomplished by using the assumptions
to evaluate expressions and using the Initial sequent to bind variables.

Consider the functional definition of add, to add two numbers. Two clauses are defined,
- add and s, where s is a substitution schema saying "if the argument to s can be
evaluated to a term denoting the same value, continue with that new term". In this case
this term is known to be canonical and cannot be reduced any further. The guiding
primitive saxiom is used to restrict the canonical term to be used just by the axiom rule.

add(0,N) :- N.
add(s (M) ,N) :~- s(add(M,N)).
s{Y) = ((Y -> X) -> gaxiom(s(X))).

Then some of the possible questions are:
i) “What is one plus one?
add(s(0),s(0)) |- X.
resulting in the answer substitution X = s(s(0)).
i) What should be added to one to get two?
add(X,s(0)) |- s(s(0)).
resulting in the answer substitution x = s (0).

10

5. The Ideas Behind the Abstract Machine (GAM)

One of the main ideas behind the abstract machine, called GAM, is to build upon WAM
[10]. The unifying primitives have not been changed much, nor have the indexing
instructions. The control instructions have been replaced by an extended set of
instructions, among other things to handle the creation and deletion of assumptions.

In WAM a clause is compiled into a head part and a body part. The body part consists of

a number of goals to satisfy. Every clause is looked upon as a procedure, and eachbody -
- goal as a procedure call. The current goal is the program counter pointing into a :

procedure representing this goal. In GAM there are also the assumptions which should
be executable. Together with every assumption a "program counter" is stored pointing
towards the code area where the execution should start if this assumption is chosen. This
implies that the code must be executable for both the rules P and Pt-. This implies that
the instructions must perform different things depending on the rule. Furthermore the
code must be executable for the rule axiom.

For both P and P, the unification in the head of a clause is the same. What differs is
how the body of a clause should be treated. So, each clause is compiled into one head

part and two bodies, one for the Pi- rule and one for the main body. A typical clause will
look like:

get-instructions
end_of_head(label)

create_premises-instructions call this code "code for P-"
take_next_clause
label put-instructions and call this code "main code"

call-instructions

which also could be illustrated by

head
end-of-head(label)
code for P main code

The purpose of the left code is to create assumptions, which point towards the main code
of the clause. When one of these new assumption is executed, the code in the main body
will be executed.

As we mentioned earlier the machine could be in different modes. These are rule,
right, left and axiom. In mode axiom, the rule axiom is tried on the current goal.

11

~In'mode right the current consequent is examined. In mode left an assumption is

chosen and examined. In mode rule the other modes are tried one after another; first try
the axiom mode, then try the right mode and last try the 1e £t mode.

The head of a clause is always executed in right mode or left mode, the code for P~
is always executed in mode left while the main code can be executed in axiom mode,
right mode or left mode.

Then the indexing instructions and the choicepoints” instructions are used to link the
clauses of a predicate together into one procedure.

“ There is also an area for handling the encoding of the procedural semantics, called the =

rule code or guiding code. As of the writing of this report it is not clear how the rule
code will look like, but how it should act is described in the section 12 "Realization of
the Procedural Semantics".

6. An Introductory Example of Compiled Code

- In all the examples we have used relocatable code, that is, all labels are relative to the
-first instruction. As a first example of code we give the ordinary definition for append
compiled into GAM code. The GCLA definition looks like

append([],Y,Y).
append ([F|X],Y, [F|2Z2]) :-
append (¥X,Y,2) .

and the compiled code looks like
append / 3 append(
head [[IL4], (L1071},

switch-on-term(L3, L4, L10, fail),

L3 try-me-else(L9)

14 get-nil(Al), [1,
get-value(Al, A2), YY
end-of-head(L8),)

left code take-next-clause,
main codel.8 end-of-clause,

L9 trust-me-else-fail,

head L10 allocate(3),
get-list (AO), [
unify-variable(A4], Fl
unify-variable (YO0), X},
get-variable(Y1, Al) Y,
get-list (A2), [
unify-value (A4), Fi

12

unify-variable(Y2), Z]
end-of-head (L21),) -

left code create-premise(append / 3, 1, L21), append(X,Y,Z)
take-next-clause,

main code L21 put-value (YO, AO), append(X,
put-value(Y1, Al), Y,
put-value(Y2, A2), 2
execute(append / 3).

‘In GAM there is no instruction deallocate as there is in the WAM. The environment is
deallocated, if it is possible, by the instructions execute and end-of-clause (i.e. the
environment is created after the topmost choicepoint and there is no assumption referring
to this environment).

7. Data Areas and Registers

A lot of the areas and registers in GAM are roughly the same as in WAM. The new areas

are the area holding the assumptions and the area holding the registers for an assumption

(which corresponds to the the consequent’s argument registers). Also the terms
environment, continuation and choicepoint have the same meaning as in WAM.

The different data areas in GAM are:

S The stack, contains environments and continuations. This area should take
care of the procedural information during the execution. It corresponds
roughly to the stack in PASCAL or the dump in the SECD machine
[9].

H The heap, holds global values, structures, lists, etc (The same as in
the WAM). This area must be garbage collected. All objects that should be
visible when leaving the current procedure should reside in this area , and
therefore the answer substitutions are built from the heap.

P The assumptions (also called premises) hold the defined assumptions,

which form a tree. The tree arises when the P rule is used and there is
more than one definition that is unifiable with the assumption chosen. Each
assumption has a pointer to its father. The register CA always points to the
leaf of the current list of defined assumptions.

B Backtrack, a stack containing the choicepoints.

T Trail, a stack containing things to be undone upon backtracking. The cell
should be one of the following: a reference pointer to a bound variable, a
pointer to an assumption whose annotation value should be increased, or a
pointer to an assumption whose annotation value should be decreased.

R The argument registers for the consequent, numbered Ay, ..., A, (the same
as in WAM)

13

L - The argument registers for an assumption, numbered By, ..., B
Of course there is also the code area, split into two parts; one containing the code
for predicate definitions, and one part containing the code for guiding the execution.

The argument registers are used to pass arguments between a calling procedure and the
called procedure. They are also used as temporary registers inside a procedure when a
variable does not need to be permanently stored. There are two different sets of argument
registers, one for the consequents and one for the assumptions.

An environment is a frame holding the so called permanent variables, which are such

variables that must be saved when a procedure is called. An environment also contains.. =~

the value of CA (Current-Assumption, see below) to be able to "pop off" assumptions
when they should not be defined any longer. It is used to restore the state as it was when
this procedure was entered. The environment is created by the instruction allocate in the
called procedure, if it needs an environment. All procedures that are not representing an
atomic clause need an environment. The environment is deallocated by one of the
instructions execute or end-of-clause.
A continuation contains information for continuing the execution in a procedure when a
subgoal is successfully finished. It contains such information as the mode, the value of
top of stack when the subgoal was entered, a pointer to the previous continuation, a
pointer to the list of assumptions when the subgoal was entered, the environment pointer
when the subgoal was entered and the continuation value of the program counter (see
appendix A.3).
A continuation is created:

- every time a procedure is called by the instruction call in mode right,

- by the instruction take-next-clause when there is more than one clause unifiable

with an assumption if the mode is left,

- by the instruction push-premise when the mode is left.
A choicepoint consists of enough information to restore a prevailing state. In GAM
there are 5 different choicepoints, called rule, right, axiom, leftl and left2. These store
different kinds of information. (see appendix A.1).
An unbound variable is represented by a cell containing a reference pointer to itself.
Other types of pointers are structure pointers and list pointers. There are two data types,
integers and symbols, where a symbol consists of a functor and the arity of that functor,

“for example f/1 and f/2 are different symbols. Constants are functors of arity 0.

In WAM the stack contains variables that could be popped off when a procedural call is et
‘ended, while the heap contains bindings that could not be forgotten (i.e. the bindings that

are answers/instantiations of variables in previous goals). To prevent dangling references
when an environment is popped off the stack there should not be any pointers from the
heap to the stack. The pointers in the stack should point from younger variables to older
ones. On the heap the pointers could be in either direction, but the order of the objects on -
the heap is still significant for efficient treatment of backtracking.

All the data areas are treated as stacks when a new object should be created. Therefore all

14

the areas have a pointer to the top of the area. The areas S, B and T are "true" stacks,
while P is merely treated as a stack when creating new objects and when popping off
objects during backtracking. The objects in P are then linked together forming a tree. H
is garbage collected when the upper bound of H is (almost) reached. The names of each
"top of the area" register are:

ToS
ToH
ToP
ToB
ToT

Top of stack
Top of heap
Top of premises

- Top of backtrack

Top of trail

The other registers are:

Me

CA

CAP

TA

CL

ST

PC
Sp

Um

Mode register, holding the mode. One of: rule, right, axiom, left.
For convenience two additional modes are added, fail for an execution
that fails, and £inish for an execution that is successfully executed.
Current Assumption, points to the leftmost assumption in the list of

assumptions (the last created). This assumption is one of the leaves in the i

assumption tree in the area P.
Current Assumption Pointer, a help register for pointing out a specific
assumption, used when a premise is to be chosen by the rules Initial

sequent and Pt.

Treat as Absurd, a flag which is set to true every time the rule P~ is
entered. As soon as one head in the program is unifiable with the

chosen assumption, this flag is set to false, indicating that there was at

least one head defining this assumption. The purpose of this register is to
determine when an assumption does not have a definition in the program, in

which case the current sequent trivially holds (see the rule Pi-, page 7).
Clauses Left, a register holding the clauses left to unify with under the
mode left. Actually CL points to the first address not tried in the clause
order associated with each predicate.

““Succeed To, points to the next continuation on the stack, which is where
the execution should proceed to when this clause is successfully finished.

(This register differs slightly from the CP register in the WAM in thatit =
points towards the stack where the next continuation is stored instead of -
holding the next value for the program counter.)

Program Counter.

Structure pointer, a help register for unifying structures. This register
always points towards the heap. It is the same as the S-register in the
WAM.

Unification mode, read or write. The same as mode in the WAM, and

15

affects only the unify instructions.
E Environment pointer, points to the current environment in the stack.
HB Heap Backtrack pointer, points towards the heap where the top of the heap
o was when the last choicepoint was created. (This register is actually not
necessary because the value of HB can be found in the most recent
choicepoint’s ToH-cell).
RC Right Caller, holds the functor/arity of the current consequent.

8. The Clause Orders

For the rule P a suitable permutation of the clauses in the program should be chosen,
where the resulting unifier of the ordered clauses should be unified with the current

“ assumption (see 2.2.6). This choice of permutation is a choicepoint. However, a lot of

these permutations result in the same unifier, so a lot of execution time could be saved if
just the orders of the clauses that result in different unifiers are tried (The number of
possible unifiers for a set with n terms does actually not exceed n, which is far less than
(n!), but we will not prove this in the paper). The permutations could be tested in
advance by the compiler, thus generating code for the interesting cases.

The clause orders is a list, consisting of all the possible trials that could be unifiable

- with an assumption. These orders represents two "kinds" of failure; failure in the
unification with the current chosen assumption, and failure later in some other inference
step. The latter kind of failure could be due to wrong unifier, and therefore another
clause order should be tried, so this is a choicepoint, while the first kind of failure does
not give rise to a choicepoint.

Lets illustrate this by an example. Consider the program

i: p(l,X) :- bl.
2: p(2,X) :- b2.
3: p(¥,3) :- b3.
4: p(Y,4) :- b4.

- where b1 to b4 could be arbitrary bodies. With this set of clauses the possible different
unifiers are

[1,3], [1.4], [2,3], [2.,4]
representing
p(l,3), p(l,4), p(2,3), p(2,4)

respectively.

16

“The orders are actually representing the permutations which the clauses should be tried.
For example, the order [1,3] is representing all the permutations (1,3,2,4), (1,3,4,2),

(3,1,2,4) and (3,1,4,2) in the algorithm for P, giving in section 2.2.6.

If now the assumption is unifiable with at least one of these orders (all the heads in a list
must be unifiable with the assumption), a choicepoint is created for the next possible
order. For example, in the goal

p(z,3) |- whatever

p(2,3) is unified with the order [1,3], where z is bound to 1, and if backtracking
oceurs, p (2, 3) is unified with the order [2,3] giving as result z bound to 2.

- Butif the assumption is p (2, 5) no one of the orders above is applicable, yet there is two
possibilities, namely one of the heads p (1, %) or p (2, %) . Therefore another layer is
introduced, giving

[1.31, [1.4].[2.3], [2.4]
[11, [2], [3], [4]

representing

p(l1,3), p(l,4), p(2,3), p(2,4)
p(l,2), p(2,2), p(z,3), p(2,4)

The lower layer is used if no order in the layer above is unifiable with the current
assumption. Now the assumption p (z, 5) will be replaced by the body b1, and with b2
upon backtracking. So, in the horizontal plane, a choicepoint is created upon successful
unification, and in the vertical plane the next plane is just tried if no order in the plan
above were unifiable with the current assumption.

The orders are in this paper represented as lists, so the orders above will look like

[[[1,3], [2,3], [1,4], [2,41], [[1], [2], [3]), [4]]].

9. Declarations

The declarations are used to get certain effects when the rule P is tried. As shown in the
examples before there are situations where an assumption should not be treated as not
defined, which is the same as always treating the assumption as defined, although there
is no actual definition of it. For example, in the toy expert system (see page 10)
symptoms are always true, that is, a person could not suffer from a non-existing
symptom. To get such behaviour declarations are used. The declarations do not affect

17

any rule except Pr-. They are introduced instead of writing circular clauses, to avoid
having the execution going into a loop.

If subsumption were introduced on the goals these declarations would not be necessary,
but subsumption is a very expensive method. The approach with subsumption was
tested on an earlier version of the experimental interpreters.

A definition could be declared in three ways:

- normal, which does not affect anything and is the default

- total, which means that this definition is not applicable to the rule P+-. Semantically
this means: suppose that a clause is named t, and it is declared total. This is the same
as adding the clause t :- t to the program.

- otherwise, which theoretically means add the clause t :- [gq...gy],t. tothe
program. This clause’s guards are such that the head is not unifiable with any other
“clause’s head. For example assume the clauses defining t/1 are t(1) and t(2). Then the
otherwise declaration has the same effect (theoretically) as adding t(X) :- t(X) where X
is constrained not to be unified with 1 or 2. If now an assumption is not unifiable with
t(1) or t(2), the sequent will not trivially hold (see section 2). Instead backtracking
occurs. This is sometimes referred to as "open the predicate t".

160. The Control Instructions

The control instructions can be divided into 6 groups: calling instructions, premise
instructions, indexing instructions and choicepoint instructions. The guard instructions
will also be treated here, as well as the instruction fail.

In the following, "WAM" means that the instruction is roughly the same as in the WAM
(at least in mode right), "new" means that the instruction is new and "changed” means
- that the instruction has the same name as in the WAM, but does not perform the same
actions.

10.1 The Calling Instructions

The calling instructions are call, execute, end-of-premise, end-of-head, end-of-clause
and take-next-clause. We have also treated the instruction allocate here.

call(F/A) changed

If mode equals right, a continuation is saved on the stack, the PC is set to the first
instruction of the rule code, F/A is put into the register RC and the execution continues in
mode rule.

If the mode equals axiom, call is treated like end-of-clause, that is, the next continuation
is examined.

If the mode equals left, the program database is searched for F/A. If F/A exists the PC

18

-.-is set to the first label in the clause order list. For example, if the predicate q looks like
q/1,
[[[4, 17], [10, 42111,
switch-on-term....
then PC is set to 4 (or actually PC + 4). A choicepoint for the clause order is created,
pointing at the rest of the list (in the example above pointing at [10, 42]), and the
execution continues in mode left. If F/A does not exist the next continuation is
examined, provided that F/A is not declared total or otherwise. If F/A is declared total or
-otherwise, the procedure fail is called.

execute(F/A) changed

This instruction is used to get tail recursion optimization (TRO), that is, it replaces the
last call-instruction in the code of a clause when TRO could be performed. The only
difference from call(F/A) is that a continuation is not pushed on the stack in mode
right.

end-of-premise new

This instruction is used to mark the end of the assumption list in a body goal, which is

an arrow. It is executed in mode axiomor right, and for these modes it equals the -
instruction end-of-clause (this instruction could actually be replaced by end-of-clause).

end-of-head(L) new

This instruction is used to mark the end of a head in a clause, and is used to split the
execution depending on the mode. If the mode is le £t we just continue to the next
instruction, if the mode equals right, PCis set to L.

end-of-clause new

This instruction marks the end of the code for P which does not end with an execute
instruction. It examines the next continuation (e.g., the one pointed to by the register ST)
and restores the registers according to the continuation. If the continuation is above the
last choicepoint (the top of stack field in the most recent choicepoint) the continuation is
popped off the stack.

allocate(N) WAM

~This instruction occurs in the head of ‘a clause, which has at least one body goal: Itcan
be executed in mode right or mode left. It allocates an environment containing N+1
cells on the stack, N permanent variables and the current value of CA. The variables are
initialized to unbound variables (this is necessary because it is not certain that the variable
is initialized by a put-variable instruction or a get-variable instruction. This is due to
the fact that the assumptions could be chosen in several different orders) .

19

take-next-clause new

This instruction marks the end of the code for Pi-. It examines the current clause order if
there is another clause to check, and if so the address to that clause is put into the PC
register and pushes a continuation of mode rule on the stack. If there are no more
clauses to check, the next continuation is examined (which should be a continuation of

mode rule, pushed by the machine when the P- rule was chosen, or by a take-next-
clause executed before; see the section about realization of the procedural semantics).

10.2 The Premise Instructions
Create-premise, push-premise and restore-premise belong to this group of instructions.

create-premise(L, N, F/A) new

This instruction is only executed in mode left. It creates a new assumption in the
premise area. The assumption points to the address L, has annotation value N and has

- the name F/A. N is dereferenced, and if it is not a positive integer an error is signaled.

* The register CA is set to this new assumption, which in turn has a pointer to the former
value of CA.

push-premise(F/A, N, L) new

If mode equals right, a new assumption is made in the premise area. The assumption
has a pointer to the address L, an annotation N and the name F/A. N is dereferenced, and
if it is not a positive integer an error is signaled. The register CA is set to this new
assumption and the former CA value is stored in the assumption.

If mode equals left, a continuation of type left is stored on the stack and the mode is
set to right. The reason for this is that the rule arrow-left is going to be executed, and
the arrow ’s premises should be executed in mode right (to check if they hold). If that
succeeds, the former state must be recalled when a new assumption is created for the
arrows consequent.

restore-premise new

" This instruction restores a former state where possibly not all the currently defined
assumptions were defined. The value of CA is set to the value stored in the current
environment.

10.3 The Indexing Instructions
The task of these instructions is to reduce the number of choicepoints created plus
increase the efficiency by minimizing the number of applicable clauses in a predicate.

These instructions are always executed in mode right. Switch-on-term, switch-on-

20

constant and switch-on-structure belong to this group.

switch-on-term(Var,Const,List,Struct) WAM

The value of the first argument register (A) is dereferenced and this value is examined.
If it is a reference to an unbound variable, a jump to the label Var is made. If Var is the
constant fail, backtracking occurs. An analogous action occurs if A; dereferences to a
constant, a list pointer or a structure pointer.

switch-on-constant(Table, Default) WAM .
The table consists of constant-label pairs of constants occurring as the first argument in
the clauses of a predicate, and can be hashed for maximal efficiency. The value of the
first argument register (A;) is dereferenced and this value is examined. If the constant is
- in the table, the PC is set to the corresponding label, otherwise the PC is set to Default.
If Default equals fail, backtracking occurs.

switch-on-structure(Table, Default) WAM
This instruction is analogous to the switch-on-constant instruction, but the table consist
of functor/arity-label pairs, and is used to dispatch on the structures functor.

10.4 The Choicepoint Instructions

The instructions handling the choicepoints for the rule |I-P are try, retry, trust, try-me-
else, retry-me-else and trust-me-else-fail, and they are therefore always executed in mode

right. The choicepoints for the other rules are currently handled inside the system.
(The instructions try-me-else, retry-me-else and trust-me-else-fail are in fact not
necessary, the same task can be fulfilled by the instructions try, retry and trust.)

try(Label) WAM
This instruction creates a choicepoint with the next try set to the instruction after this one.
Then the execution proceeds at Label.

retry(Label) WAM
The topmost choicepoint is updated with the next try set to the nextinstruction. Then the
execution proceeds at Label. | '

trust(Label) WAM
The topmost choicepoint is popped of and the execution proceeds at Label.

try-me-else(Label) WAM

This instruction creates a new choicepoint on top of the backtrack area. The next try in
this choicepoint is Label, and the execution proceeds to the following instruction.

21

ground(X) new

This instruction dereferences X and examines the value. If it is currently bound to an
object not containing an unbound variable the execution proceeds, otherwise
backtracking occurs. If mode is 1eft, X refers to one of the L-registers, otherwise X
refers to one of the R-registers.

10.6 The Fail Instruction

This instruction restores a former state which was a choicepoint in the execution.
Depending on the topmost choicepoint different areas and registers are updated, and the
execution proceeds from the point stored in the choicepoint. The choicepoints can be of 5
different types:

- rule, where it represents the next choice of a mode (axiom, right or left)

- axiom, where it represents the next choice of an assumption

- right, where it represents the next choice of a clause in the program

-leftl, where it represents the next choice of an order to try among the clauses in the

program

- left2, where it represents the next choice of an assumption (actually the same kind of

choice as axiom, but we must perform different tasks upon backtracking).

The procedure first restores all the different registers stored in the choicepoint, and the

trail is unwound to the address stored in the choicepoint. Now the state is restored to

what it was when the choicepoint was created. Then, depending on the type of the
choicepoint, different actions are performed in order to create the next choice:

- If the type is axiom, a new assumption is searched for with the same functor as the
current consequent, which is held by the register RC. If one is found, this is tried,
otherwise failure to the next choicepoint occurs.

- If the type is rule, the execution simply proceeds to the instruction pointed to by the
‘choicepoint (somewhere in the rule code).

- If the type equals right, the execution proceeds to the instruction pointed to by the
choicepoint. -

- If the type of the choicepoint is left1, the next possible order of the program’s clauses

- is tried, which is stored in this choicepoint. If there is no more trials in this plane to do
(see section 8), the register TA is examined. If it is false, there was at least one clause
“order that has succeeded in this plane; and the next choicepoint is examined. If TA is
true, the next plane is tried, updating the choicepoint with the next plane number and
the next order to try, which is the first one on this new plane. If there are no more
planes to search, the current goal sequent holds and the next continuation is examined.

- If the type is left2, there is much to do; another assumption should be tried. The next
assumption is searched for and examined. If the next assumption is the last one in the
list (indicated by an empty pointer in the linking field of the assumption), this
choicepoint of type left2 is popped off the stack, otherwise this choicepoint is
updated with the next assumption in the list (the value of the linking field in the chosen

23

get-variable(V,, X)) WAM
The variable Vn is bound to the dereferenced value of X;. This instruction corresponds
to a variable occurring for the first time in a clause.

get-value(V,, X;) WAM

The instruction gets the value of X; and tries to unify it with the contents of V. If it
succeeds the dereferenced value of X; is left in V,, if V|, is a temporary variable. If it fails
to unify V, and X, backtracking occurs. This instruction should occur when V/; is
initialized by another instruction before.

get-constant(C,X;) WAM
This instruction dereferences X; and the value is compared with C. If they are not

* unifiable (that is, if the value and C are not identical and the value is not an unbound

variable) backtracking occurs, otherwise X; is bound to C.

get-nil(X,;) WAM
This instruction is the same as the instruction get-constant, but the constant is the
constant nil.

get-structure(F/A, X)) WAM

This instruction marks the beginning of a structure occurring in the head of a clause. The
‘register X is dereferenced and the value examined. If it is an unbound variable, that
variable is bound to a structure pointer pointing to the top of the heap, F/A is pushed
onto the heap and the unification mode is set to write. Otherwise if the dereferenced
value is a structure pointer pointing to a cell identical to F/A, the unification mode is set
to read and the S-register is set to point to the beginning of the arguments of the
structure, otherwise backtracking occurs.

get-list(X;) WAM
__This instruction is analogous to the instruction get-structure, except that the structure is
replaced by a list and the structure pointer is replaced by a list pointer.

11.2 The Put Instructions

These instructions cannot fail in mode left or right, they simply store
data/references in the argument registers. They can be called in mode left, mode
right and mode axiom. In mode axiom they are treated as their corresponding get-
instructions in mode right (for example, in mode axiom the instruction put-value will
be executed as the instruction get-value in mode right), except for the instruction put-
variable, which is executed as get-value. The exception is due to the fact that the

25

assumptions are not guaranteed to be executed in the order the body goals are ordered.
Therefore we always have to perform the more expensive unification of two variables
which the instruction get-value does, instead of just setting one variable to the content of
the other. This is also the reason why all the permanent variables in an environment have
to be initialized to unbound variables when they are created by the instruction allocate.
The description below is just for right mode and left mode.

put-variable(Y,, X;) WAM

. This instruction corresponds to a variable occurring for the first time in the (main) body

of a clause. If the mode equals right, the variable Y, is initialized to an unbound
variable, and X, is bound to Y,,. If the mode equals left this instruction performs the
same actions as put-value. (This instruction is actually not necessary, because the
instruction allocate initializes all its variables to unbound. It could be replaced by put-
value(Y,X;).)

put-variable(X,, X)) WAM

This instruction corresponds to a variable occurring in just one atomic goal (not a goal
containing ->) of a body. If the mode equals right, both the variable X, and X are
bound to a new unbound variable on the top of the heap. If the mode equals left this
instruction performs the same actions as put-value.

put-value(V,, X;) WAM
The instruction puts the value of V into X;. It occurs when V, has been initialized by
another instruction.

put-unsafe-value(Y,, X;, N) WAM

In mode right this instruction dereferences Y, and examines the result. If the result is
4 variable in the current environment, a new global variable is created on top of the heap,
the variable in the environment is set to the new variable and X; is set to the new
variable. Otherwise the instruction performs the same actions as put-value.

In mode Le £t this instruction does the same thing as put-value, and in mode axiom
this instruction does the same thing as get-value.

put-constant(C, Xj) WAM
This instruction puts the constant Cinto X;.

put-nil(X;) WAM
This instruction is the same as put-constant, where the constant is the constant nil.

put-structure(F/A, X)) WAM

This instruction marks the beginning of a structure occurring in a body goal. F/A is
pushed onto the heap and the corresponding structure pointer is put into the register X;.
Then the unification mode is set to write.

26

put-list(X,) WAM
This instruction is analogous to put-structure, except that the structure is replaced by a
list and the structure pointer is replaced by a list pointer.

11.3 The Unify Instructions

“These instructions occur in a complex argument to a head in a clause (i.e. a structure ora

list). They can be executed in unification mode read or write, depending on what the
instructions get-list, put-list, get-structure and put-structure have set the unification mode
to.

unify-variable(V,) WAM

This instruction corresponds to a variable that is not previously initialized by another
instruction. If it is executed in right and, furthermore, if it is executed in write
unification mode, it pushes a new unbound variable onto the heap and sets V, to point to

-+ it In read mode it stores the value of what the Sp-register points to in V,, and

increments Sp.
Otherwise if it is executed in axiom mode or left mode, it shall perform the same
actions as unify-local-value.

unify-value(V,) WAM

This instruction corresponds to a variable V which has been initialized by another
instruction. If the mode equals right and if it is executed in write mode, it pushes the
value of V, onto the heap. If it is executed in read mode, it unifies V,, and what Sp
points to, leaving the dereferenced value in V if V_ is a temporary variable.
Otherwise, if it is executed in mode axiom or mode left it shall perform the same
actions as unify-local-value to prevent references from the heap into the stack.

unify-local-value(V,) WAM

This instruction does almost the same thing as unify-value. It is used where V_ is not

~ guaranteed to be bound to a global value (i.e. not an unbound variable on the stack). It
performs the same things as unify-value, except in write unification mode where the

dereferenced value of V,, is a reference to a variable on the stack. Then a new variable is.

created on top of the heap and the variable on the stack is bound to the new variable and
V, is set to point to the new variable if V, is a temporary variable.

unify-constant(C) WAM

If this instruction is executed in write unification mode the constant is simply pushed
onto the heap. If the unification mode is read, this instruction dereferences the cell
pointed to by the register Sp, and if that is unifiable with C (i.e. it is identical to C or is

27

-an unbound variable, which is bound to C) the register Sp will be incremented and the
execution proceeds, otherwise backtracking occurs.

unify-nil WAM
This instruction is the same instruction as unify-constant, except that the constant is nil.

unify-void(N) WAM

This instruction is used for variables whose values are not needed. In read unification
mode this instruction simply adds N to the register Sp. In write unification mode N
unbound variables are created on top of the heap.

12. Realization of the Procedural Semantics

To get a combination of efficiency and flexibility a new code area is introduced, called
the rule code. The idea is to specify a number of primitives, and in these primitives the
operational and procedural semantics should be expressed. With this rule code there is
the ability to remove one rule by simply removing some of the primitives, or add a new
rule, or reorder the trials in an efficient way. If this is a good idea or not is not clear at
the moment, as it has not been implemented yet. As it is now there are just the default
order and the default rules described earlier in the sections about operational semantics
and procedural semantics. We will here describe how choicepoints for the choice of an
assumption and how choicepoints for the clause order are treated and how the machine
acts before trying a rule.

The default order is to try the different modes axiom, right and last 1left. The first
thing that happens when a call-instruction or an execute instruction is executed in mode
right is that the mode is set to rule and the machine starts a "mode-cycle",
consisting of the mode-choices. First it creates a choicepoint for the next mode to try,
which is the mode right. Then it tries to find an assumption for the axiom to try. If
there is no assumption of the same functor and arity as the consequent, or if there is no
assumption at all, backtracking occurs and the most recent choicepoint is examined
(which was the one for trying the mode right). If there is at least one assumption with
the same functor and arity as the current consequent, the PC is set to the code for that
assumption, and a choicepoint for the next assumption (if there is one) is made. The
mode is then set to axiom.

“Now, suppose that the axiom fails. The rule-choicepoint is then popped off from the B-
area (backtrack), and a new choicepoint is created for the mode 1eft. Then the code for
the procedure with the name held by the register RC is searched for . If the code exists
for the current consequent, the PC is set to that code and execution proceeds in mode
right. If there is no code backtracking occurs.

Now there is no mode to try after left, which is to be tried now, so the rule-
choicepoint is popped off the stack, and an assumption is again searched for. If there are
no assumptions, backtracking occurs. If there is one assumption, this assumption is

28

~ examined by setting the mode to 1eft and loading the PC with the address hold by the
assumption. This address points towards the main code of a body of some clause in the
program. A continuation of type rule is stored and the environment pointer is set to the
value hold by the assumption, and the annotation value is decreased by one before the
execution proceeds in mode left.

If there is more than one assumption, a choicepoint for trying the next assumption is
created before the chosen assumption is examined.

Now, if the execution succeeds in mode left, the execution returns to mode rule
‘when the saved continuation is restored and then another mode-cycle takes place (now
with the new assumptions, and perhaps with some new goals on the stack to solve,

which were created by Pt-).

13. Compiling Schema

There are a lot of things that could be done, and should be done, by the compiler. A
compiler for a somewhat simplified version of this machine has been implemented. But
“there is certainly room for a lot of ideas.
To fulfill the operational semantics a variable check on the variables in the body of a
clause should be done. When the program-left rule is chosen, a clause which introduces
new variables in the body is not allowed and that try of clause order should fail. This
check should be done by the compiler, which should generate code where this has been
taken care of in the clause order. However, there are a lot of places where this check is
not necessary and, therefore, we have sofar not implemented it.
A difference with WAM is that an environment has to be generated more often. In WAM
the variables in the first body goal can be temporary, and the other ones in the rest of the
- body goals must be permanent. In GAM an environment has to be generated for every
clause that is not an atomic clause, and all variables that occur in a body goal have to be
made permanent. This is done because the program-left rule saves the environment
pointer E in the assumptions it creates, and when these assumptions are examined the
environment pointer is restored again. The axiom rule (I) has the same behaviour.
There is no instruction for handling nested structures. These have to be lifted out and

“unified separately. For example, the code for the head argument s(f(X)) occurring inside

a head is separated to s(Y), Y = f(X), which is then compiled into

...get-structure(s/1, A;),
unify-variable(A;),
get-structure(f/1, Aj),
unify-variable(Ay), ...

One of the main tasks the compiler has to perform is to generate the clause orders, so
they are built as specified in section 8.

29

*“In order to be sure that there will be no pointers from the heap to the stack, the
instructions unify-variable and unify-value have the same definition as unify-local-value
when the mode equals left or axiom. This solution is expensive and a thorough
examination should be made in order to find the occasions where there is a risk for
pointers in the wrong direction.

14. Some Examples

The first example of code generation is the example of negation introduced in section 3.
Recall that it should decide whether an object (an elephant) was grey or not. The GCLA
code for this program is:

elephant (clyde) .

elephant (£ido) .

elephant (P) :~-
albino_elephant (P) .

albino_elephant (karo) .

grey (P) :-
elephant (P),
(albino_elephant (P) -> false).

And below is the corresponding GAM-code.

elephant / 1, elephant(
[[L19, L9], [L19, L14]], [[L19]]l,
switch-on-term(L8, L3, L19, L19},
switch-on-constant([[clyde,L4], [fido, L6]], L19},
try(L9),
trust(L19),
try(L14),
trust(L.19),
try-me-else(1.13),
get-constant(clyde, Xq), clyde
end-of-head(L12),)
take-next-clause,
L12 end-of-clause,
L13 retry-me-else(L18),
get-constant(fido, Xop), fido
end-of-head(L17),)
take-next-clause,
117 end-of-clause,
L18 trust-me-else-fail,
L19 allocate(1),

b & ®b

get-variable(Yq, Xo), X
end-of-head(L24),)
create-premise(albino-elephant / 1, 1, L24), albino-elephant(X)

30

take-next-clause, .
124 put-value(Yy, Xg), albino-elephant(X)
executelalbino-elephant / 1),

albino-elephant / 1, albino-elephant(
({4,
switch-on-term(L4, L3, fail, fail),

L3 switch-on-constant([[karo, L4]], fail),

L4 get-constant(karo, Xp), karo
end-of-head(L7],)
take-next-clause,

L7 end-of-clause.

grey / 1, grey(
[wai,
switch-on-term(L3, L3, L3, L3),

L3 allocate(1),
get-variable(Yyp, Xq), X
end-of-head(L9),)-
create-premise(elephant / 1, 1, L9), elephant(X),
create-premise(-> / 2), 1, L11), (albino-elephant(X) -> false)
take-next-clause .

L9 put-value(Yy, Xg), elephant(X
call(elephant / 1),),

L11 push-premise(albino-elephant / 1, 1, L13), (albino-elephant(
goto(L16, false / 0),

L13 put-value(Yy, Xo), X
call(albino-elephant / 1},)
end-of-premise, >

L16 call{false / 0), false
restore-premises,)
end-of-clause,

" The next program is a program for intuitionistic propositional logic. This is an interesting
example because it shows how most of the different possibilities and primitives in
GCLA are compiled into GAM-code.

The program looks like:
t(not X) := (t(X) -> false).
(X => YY) :~ (£(X) -> t(Y)).
t(X & y) = t(X),t(Y).
(X 8 Y) = t(X).
t(X 8 Y¥Y) = t(Y).
t (contr (Num, Goal)) :— con{(Num,t (Goal)).

and the corresponding GAM-code looks like:
(This is perhaps the most "expanding" GCLA-program that could be written...)

31

t/1,

L7

L13

L15

L18

L21
122

129

L34

138
L39

[[IL7], [L22], [L39], [L52 ,L62], [L72], otherwise]],

switch-on-term(L6, fail, fail, L3),

switch-on-structure([[not/1, L7], [=>/2, L22]
[&/2, 139, [$/2, LA]
[contr/2, L72], fail),

try(L52),
trust(L62),

try-me-else(L21),
allocate(1),
get-structure(not/ 1, Xg),
unify-variable(Yp),
end-of-head(L13),
create-premise(-> /2, 1, L13),
take-next-clause,
push-premise(t/1, 1, L15),
goto(L 18, false/0),
put-value(Yq, Xo),

call{t/ 1),

end-of-premise,
call{false/0),
restore-premises,
end-of-clause,

retry-me-else(L38),
allocate(2),
get-structure(=>/2, Xg),
unify-variable(Yq),
unify-variable(Yy),
end-of-head(L29),
create-premise(->/2, 1,L 29),
take-next-clause,
push-premise(t/1, 1, L31),
goto(L34, t/1),
put-value(Yq, Xo),

call(t/ 1)),
end-of-premise(t/ 1),
put-value(Yy, Xo)

call(t/ 1},
restore-premises,
end-of-clause,

retry-me-else(L51),
allocate(2),
get-structure(&/2, Xg),
unify-variable(Yg),
unify-variable(Y),

32

t(

(not{
X))

tx) - faise)
X

tx)

:>(

tx) > t(Y).
tX)

tx)

147

149

L51
L52

L59

L62

169

L71

L79

end-of-head(L47),
create-premise(t/1, 1, L47),
create-premise(t/ 1, 1, L49),
take-next-clause,
put-value(Yg, Xo),

call(t/ 1},

put-value(Yy, Xg),
execute(t/1),

retry-me-else(L61),
allocate(1),
get-structure($/2, Xg),
unify-variable(Yg),
unify-void(1),
end-of-head(L59),
create-premise(t/1, 1, L59),
take-next-clause,
put-value(Yg, Xg),
execute(t/1),

retry-me-else(L71),
allocate(1),
get-structure($/2, Xo),
unify-void(1),
unify-variable(Yg),
end-of-head(L69),
create-premise(t/1, 1, L69),
take-next-clause,
put-value(Yq, Xo),
execute(t/1),

trust-me-else-fail,
allocate(2),
get-structure(contr/2, Xg),
unify-variable(Yy),
unify-variable(Yg),
end-of-head(L79),
create-premise(t/1, Yy, L79),
take-next-clause,
put-value(Yy, Xg),
execute(t/1).

g,
t(y)

ty)

tx)

t(X)‘

contr(
Nurn,
Goal)
con(Num, t{Goal))

t(Goal)

This code needs some explanation. The symbol "otherwise" is the declaration of an open
predicate. When the end of the unification order is reached, the symbol "otherwise"
prevents the execution from succeeding with an assumption that is not unifiable with any
clause in the program.
In the last clause the treatment of contraction is shown. Y; corresponds to the variable
"Num" in the original GCLA. This variable must be checked so that it is currently

“instantiated to a number. What happens (semantically) when it is not a number is not
clear. With this treatment the current goals succeed because the guard-instruction
number will fail. Perhaps the best solution is that the variable Y; should make use of

something called freeze, a primitive for "freezing" a variable and corresponding goals
until the variable has been bound [5]. However, this has not been implemented yet.

The next example is the program for the functional definition of the arithmetic function.

add. Remember the GCLA program

add(0,N) :- N.
add(s (M) ,N) :- s{add(M,N)).
s(Y) :- ((Y -> X) -> gaxiom(s(X))).

The corresponding GAM code is

add/2,
[[[L4l, [Lasjy,
switch-on-term(L3, 14, fail, L13),

L3 try-me-else(L12),

L4 allocate(1),
get-constant(0, Xop),
get-variable(Yq, X1),
end-of-head(L10},
create-premise(call/0, 1, L10),
take-next-clause,

L10 put-value(Yq, Xg)
execute(call/ 1),

L12 trust-me-else-fail,

L13 allocate(2),
get-structure(s/ 1, Xo),
unify-variable(Yq),
get-variable(Yy, Xj),
end-of-head(L20),
create-premise(s/ 1, 1, L20),
take-next-clause,

L20 put-structure(add/2, Xo),
unify-local-value(Yg),
unify-local-value(Yy),
execute(s/1)),

s/1,
(21,

L2 allocate(2),
get-variable(Yq. Xop),
end-of-head(L7),
create-premise(->/2, 1, L7),

34

add{

s
M),
N

s(add(M,N))

s(add(
M,
N)

Y)

.

(Y > X) -> &axiom(s(X))

take-next-clause,
L7 push-premise(->/2, 1, L9), Y >X)
goto(L18, s/1, 0),
19 push-premise(call/1, 1, L11), Y
goto(L.14, call/1),
L11 put-value(Yg, Xo), Y
call(call/ 1),
end-of-premise, >
L14 put-value(Yy, Xop), X
call(call/1),
restore-premises,
end-of-premises, >
L18 put-value(Yy, Xg), sX)
call{s/1),
restore-premises,
end-of-clause.

This also needs some explanation. The "predicate” call is a primitive which takes a term
as argument. If it is currently instantiated to a structure or constant (not a number) it
performs the same actions as if that structure were the goal. If it is not instantiated the

only rule that currently could be used is the axiom. It should be pointed out that thisisa - -

restriction in the current definition of GAM, and that the uninstantiated goal in the theory
could, of course, be matched against the program clauses as well.

The third argument in the goto-instruction in the code for s is the annotation value for the
guiding primitive &axiom. The axiom rule can always use an assumption whatever the
annotation value is, and therefore if the value is set to 0 initially, the only rule that could
use the assumption is the axiom rule.

- 15. Conclusions and Future Work

To be able to do some performance tests we have implemented both the GAM and WAM
in Common lisp, and made the two implementations as similar as possible. Then the

- same Prolog program was executed in the two implementations, and they are indicating
that pure Prolog programs are executed in two-third’s of the time that it takes an

“"original" WAM machine executes it. If there are assumptions in the goal GAM runs the

program up to two-third s of the time an "original" WAM, depending on the
assumptions.

In this implementation we have not made an effort to be as efficient as possible in all the
steps the machine takes. For example, if there is no assumption, the axiom will still be

tried and an assumption for the rules P and — will still be searched for before
backtracking occurs (i.e. a choicepoint for the modes axiomand left is created
although there is no assumption to examine). Here is certainly room for making the
machine more efficient. Some of the registers could perhaps also be removed if other test
conditions were used.

35

“The code size for GCLA program compiled into GAM code is something like 10 - 20%
larger as for a Prolog program compiled into WAM code. The increase is mostly due to
the new code for P-.

Also in mode Left and mode axiom the more expensive instruction unify-local-value
is used even though it is not needed in all places (or actually the instructions unify-

*# variable and unify-value have the same definition as unify-local-value in mode axiom

and mode left). Itis used to be sure that there will not be pointers from the heap to the
stack. Where unify-local-value is needed and where it is not should be clarified, perhaps
new instruction(s) should be introduced.

- Another idea is to introduce three arguments in the put and get instructions. The first two
are the same as in the WAM, while the third one should be used instead of the first one
when the mode equals right or axiom. This should increase the possibility to use
temporary registers instead of permanent registers. ,

Something that is also wanted is a delaying mechanism for variables, called delay or
freeze [5]. With an ability to delay a goal until its variables are grounded, there is
(perhaps) a possibility to implement the so-called anti-unification, or disunification, of

the rule P, and also to put constraints on the variables.

Yet another idea to get more efficient code for the rule Pi- is that the unifiers, which is
generated by the compiler of all the clauses in a predicate, could be stored together with
the predicate in one way or another (i.e. the unifier as it is or by some, perhaps new,

instructions). This should increase the efficiency of P when there are several clauses
that are unifiable with each other in a predicate. This solution should then partially
replace some of the existing instructions (for example, take-next-clause becomes
obsolete).

The next step is to systematize the code for the rules. The idea is that the user should
define the inference rules himself, and that a file containing this code, the so-called
operators, should be loaded together with a program into the rule code area. The user
should also have the possibility to change the inference mechanism under the execution
from inside the program. How this will influence the code described herein is not clear,
but the idea has some very nice properties, for example, it is clear that these operators
could also be treated as definitions, and thus the semantics for them is clear.

However, this experimental work with GAM has shown that GCLA could be ,
" implemented efficiently, and that there are a lot of promising ways to examine towardsa -~
‘more efficient and flexible implementation.

36

Acknowledgement

I am indebted to a lot of people at SICS for many valuable and helpful discussions.
Special thanks goes to Kent Boortz and Peter Olin for many valuable and fruitful
discussions, to Lars-Henrik Eriksson and Mats Carlsson for several suggested
improvements to this paper, to Vicki Carleson for language support (all language ererors
- are made by me after her careful work...), to Torbjorn Ahs at UPMAIL for comments on
both an earlier version of this paper and this paper and to the project leader, Lars |
Hallnis, for his never ceasing flow of new ideas and faith in the project.

References

~[11 K. Appleby, M. Carlsson, S. Haridi, D. Sahlin, Garbage Collection for Prolog
Based on WAM, SICS Research Report R86009B h

[2] M.Aronsson, The Instruction Set for the GCLA Abstract Machine, SICS
Technical Report T89004

[3] M. Aronsson, L. Hallnis, GCLA, Generalized Horn Clauses as a
Programming Language, SICS Research Report R88014

[4] J.Barklund, A Garbage Collection Algorithm for Tricia, UPMAIL Technical
report No. 37B

[5] M. Carlsson, An Implementation of dif and freeze in the WAM, SICS
Research Report R§6012

[6] L-H. Eriksson, L. Hallnis, A programming Calculus Based on Partial
Inductive Definitions, SICS Research Report R88013

[71 L. Hallnis, Partial Inductive Definitions, SICS Research Report R86005C

[8]. L.Hallnis, P.Schréder-Heister, A Proof-Theoretic Approach to Logic
Programming, I. Generalized Horn Clauses, SICS Research Report R 88005

[9] P. Henderson, Functional Programming, Prentice/Hall 1980

[10]. D.H.D.Warren, An Abstract Prolog Instruction Set, SRI Technical Note 309,
Menlo Park 1983

37

A.1 Choicepoints

backtrack

contHB
contST
contPC
contCP
contToH
contToS
contToT
contToP
B1

. Bm
A1

An
contE
PC'
contRC
contMe

grows

Al

grows

A.2 Environments

Stack

An

A.3 Continuations

Stack .) Stack .
conPC 4 contPC <4—
contCP ST contE ST
grows contST grows contCP
contToP contST
rule 0
v ¥ right
Stack :
<G
contRC ST
contPC
contE
A1l
grows : ; Stack ,
An : E
V |contCP prempointer |<4—
contST grows contST ST
left restored-prem

A3

A.4 Premises

Premises

F/A

anotation

grows E

code-pointer

prem-pointer

A premise

A4

A.5 Different Trail Formats

trail : trail
: C
growsl tag|ref-pointer QFOWSL |tagjprem-pointer
A variable which A premise whose
should be unbound anotation-value
should be increased
by one
trail

grows tag|ref-pointer

A premise whose
anotation-value
should be decreased
by one

