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Introduction

GCLA is a programming system developed at the Swedish Institute of Computer Science (SICS)
[Hal91, Ar090, Aro92, Kre91]. GCLA is best regarded as a logic programming language, although
it shares some features commonly found among functional languages. One of the main objective is
to provide a powerful tool which supports the development of knowledge based systems.

For an introduction of how to program the GCLA system, the reader is recommended to consult
nA Survey of GCLA: A Definitional Approach to Logic Programming” [Aro91], "GCLAII, A Defi-
nitional Approach to Control" [Kre91], and "Programming methodology and techniques in GCLA™
[Ar092].

This manual describes the system developed at SICS. The system consists of a runtime system
written in Sicstus Prolog and GCLA, and a preprocessor/compiler written in Prolog. There is
a library containing some files implementing common used default rules and strategies, and an

example library.

This manual is based where possible on the Industrial Sicstus Prolog User’s Manual by Mats

Carlsson et. al.

Notational Conventions

Defined atoms in GCLA are distinguished by their name and their arity. The notation
g y

name/arity is therefore used when it is necessary to refer to a defined atom unambiguously;

e.g. append/3 specifies the term which is named "append" and which takes 3 arguments.

When introducing a built-in defined atom, we shall present its usage with a mode spec which
has the form name(arg, ..., arg) where each arg can be one of the forms: +ArgName — this ar-
gument should be instantiated in goals for the defined atom. -ArgName - this argument should
not be instantiated in goals for the defined atom. ?ArgName — this argument may or may not be
instantiated in goals for the defined atom.

When referring to program code or keyboard characters, these are written like foo for an actual

condition, and bar for an arbitrary condition.
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1 How to Run GCLA

1.1 Getting started

To start GCLA, issue the command use_module(library(gcla)) to Sicstus’ top level. When
GCLA is initialized, it first loads a set of default inference rules, and then looks for a file “/.gclarc,
and consults it, if it exists. From this file other files can be reloaded or included, and the global
environment can be changed, but one cannot define GCLA clauses in this file. GCLA programs
must be loaded through the loading primitives (see below).

To install your own runnable gcla, run the command make_gcla(GCLAsavedfile), where
GCLAsavedfile is the name that you want to use from the unix shell. This command creates a
Prolog save file, which can be executed directly from the shell. The GCLA system has no own top

level, but uses Sicstus’ top level.

1.2 Reading in Programs

A GCLA program consists of two parts: One part is used to express the declarative content of
the program, called the definition or the object level, and the other part is used to express rules
acting on the declarative part, called the rule definition or meta level, or just the rules. For a
complete description of how GCLA works, we refer to [Kre91, Aro92]. When the system is started,
it loads the default rule definition in the file rules.rul, consisting of the basic rules. Some of the

rules are described in section 4.4. To load another set of rules, use the built in command

| ?7- reload_rules(’myrules.rul’).

which completely erases the current set of rules and loads the rules in the file myrules.rul.
The command

?- include_rules(’additional_rules.rul’).
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includes the rules in additional_rules, i.e. does not throw away all the current rules, as the
command reload_rules does. However, rules defined in the named file replaces rules in the old
definition, if they are not add_to_rule - declared (see section 3.2.1).

To load a definition, use the built-in command
7- reload_def(’mydef.def’).

which loads the definition in the file mydef .def into the system. The old definition is completely
lost.

The command

| ?- include_def(’additional_defs.def’).

includes the definition *additional_defs.def’ into the current loaded definition. Any atoms defined

in the file erases any clause for that atom already present in the current definition.

I the rule file and the definition file have the same name, say my_application, one can use the

commands

| 7- reload(my_application).

to reload both my_application.def and my_application.rul, and

7- include(my_application).

to include both my_application.def and my_application.rul.

The files may have all types of extensions, but we recommend that the rule file and the definition

file have the same name and the above extensions.
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1.3 Queries

?

There are two derivability symbols, one for the object level derivations, denoted by '\-’, and

one for the rule derivations, denoted by \\-".
A generic query looks like

| 7= rule \\- antecedent \- consequent.

If "\\-’ is omitted, the query is interpreted as

| 7- gcla \\- antecedent \- consequent.

and if there is no antecedent, the query is written

| 7- rule \\- (\- consequent) .

or

| ?- \- consequent

1.4 Undefined Terms
The feature for generating errors on undefined predicates should be turned off (i.e. all predicates

that are undefined should fail and not be treated as errors). Otherwise the GCLA interpreter will
not perform as it should. (It is turned off when the GCLA system is loaded).

1.5 Program Execution and Interruption

The execution of a GCLA program starts with a query to the interpreter. To abort the execution
the original abort facility of Sicstus should be used. If the GCLA flag gcla_interruption is set
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to yes, and the current query is executed by the debugger, the execution can be stopped by typing

control-C.

1.6 Information About the State of the Program

gcla_listing

lists all the clauses in the current definition.
gcla_listing(+N/A)

lists all clauses in the current definition with name N and arity A.
gcla_listing(+N)

lists all clauses in the current definition with name N.
gcla_listing_rules

lists all the rule- and strategy clauses currently loaded.
gcla_listing rules(+N/A)

lists all the rule- and strategy clauses with name N and arity A currently loaded.
gcla_listing_rules(+N)

lists all the rule- and strategy clauses with name N currently loaded.
gcla_flag(+Flagname, +Value)

sets the gcla flag Flagname to the value Value. Currently, the following GCLA flags

are defined:

gcla_interruption

If set to yes, the debugger can be interrupted by typing control-C.
write_asserting_text
If set to yes, various output is produced during loading of GCLA code.
load_default_rules

if set to yes, the file 1ib(’rules.rul’) is loaded when GCLA is initialized.
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2 Debugging

The debugging package of GCLA works in much as Prolog’s ordinary debugger, i.e. uses the box
model. We assume some familiarities with an ordinary Prolog debugger. The debugger is centered
around the rule code, i.e. spypoints refer to rules or strategies, the debugger creeps from one rule

call to the next etc.

2.1 Basic Debugging Predicates
The basic commands are

gcla_trace
Switches the debugger on, if it is not already. The debugger will first creep, stopping
at the first GCLA call. The possible options here are listed below (section 2.5).
gcla_notrace
Switches the debugger off. However, spypoints are kept in memory, and if the debugger
is turned on again, these spypoints will be activated.

2.2 Leashing

Leashing is used to inform the debugger when it should stop the execution and write out a
debugging message. There are four points where the debugger could stop; when the execution
enters a rule or strategy (call), when it exits a rule or strategy (exit), when backtracking occurs
and a rule or strategy is tried again (redo) and when a rule or strategy fails (fail).

gcla_leash(+Mode)

Leashing mode is set to Mode. Leashing Mode determines the points at which you are
to be prompted when you creep through your program. Mode can be a subset of the
following, specified as a list.

call Prompt on call

exit Prompt on exit

redo Prompt on redo

fail Prompt on fail

Leashing Mode is initially set to [call, exit, redo, faill.
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2.3 Spy-points

Spy-points can be set at rule names and strategy names, i.e. if a spy-point is placed at a certain
rule or strategy, the debugger will stop when that rule or strategy is to be invoked. There is no
way of spying terms in the antecedent or spying a consequent. Spy-points are set and removed by
the following built-in primitives, which are also declared as operators (i.e. gcla_spy(foo) can also
be written gcla_spy foo):

gcla_spy +Spec
Sets a spy-point on the rule or strategy given by Spec. Spec should be the main functor
of the rule or strategy where the debugger should halt.

gcla_nospy +Spec
Removes +Spec from the list of functors that are spyed.
gcla_nospyall

Removes all spypoints.

The options available when you arrive at a spy-point are described below (section 2.5)

2.4 Format of Debugging Messages
The basic format is
S 3 4 CALL Rule \\- Antecedent \- Consequent ?

o § is a spy-point indicator: It is printed as "+ if the current rule Rule is a spy-point, and as ’’
if not.

e 3 is the unique invocation identifier. It increases whether or not the actual invocations are
seen. or not. It is not reset during backtracking. It gives the number of invocations that the
system has performed since the start of the execution (of the top level query).

o 4 denotes the depth of the current invocation, i.e the number of ancestors to this goal.

o The next word specifies the current port, if it is an entry or return port (one of CALL, EXIT,
REDO, FAIL). In this case CALL.

o Rule is the current rule.

o Antecedent is the current antecedent

o Consequent is the current consequent
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2.5 Options Available During Debugging

This section describes the particular options that are available when the system prompts for

input during debugging. All options are one letter, of which some could have an optional integer.

Not all options are available at all ports.

- = remove spypoint + = add spypoint

c = creep, RET = creep

s = skip, s xxx = skip to call number xxX
a = abort h = this text

@ = directive r = retry

1 = leap r xxx = retry at call number xxx
f = fail n = notrace

p = proviso trace, only applicable at CALL ports

¢ RET Creep causes the interpreter to step to the very next port and print out the debugging
message.

1 Leap causes the interpreter to resume running the program, only stopping when a rule
that is declared as a spypoint is reached.

8 Skip is only valid for Call and Redo ports. It skips over the entire execution of this
goal, until the goal either succeeds or fails, where the appropriate debugging message
is given and control is given to the user. All spypoints are ignored.

8 XXX Skip can be supplied with an integer, in which case the debugger skips to that particular
invocation.

r Retry restarts an invocation from the beginning. The state is the same as when the
goal was tried first. When a retry is performed the invocation counter is reset to the
goal’s original number.

r XXX Retry can be supplied with an integer, in which case the debugger tries to retry that
particular invocation. If that is not possible, the debugger resumes the execution at
the nearest invocation before the supplied number. The debugger does this by failing
until the right invocation is reached.

f Fail causes the invocation to fail prematurely.

n Nodebug switches the debugger off, and the execution is finished without debugging
messages.

+ Spy this. Set a spy-point at this rule.

- Nospy this. Remove spy-point from this rule.

a Abort causes an abortion of the current execution. The interpreter returns to the top

level.
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@ Command, gives you the possibility to execute arbitrary calls to the system while
debugging. The command is read and executed as if it was given at the top level.
After the call is executed, the debugger resumes its execution.

p Proviso trace, starts the proviso trace, which is described in its own section.

h Help prints out the table of options.

2.6 Advanced Options
This section describes some advanced primitives to change the behaviour of the debugger.

trace_print_condition(Cond)
User defined Prolog predicate. If defined, the conditions (i.e. every element of the
antecedent and the conclusion of a sequent) will be printed according to this predicate.
If the predicate fails, the ordinary tracer primitives will be used.

trace_print_rule(ProofTerm)
User defined Prolog predicate. If defined, the proof term in a trace printout will
be printed through this primitive. If trace_print_rule fails, the ordinary built in
primitive will be used.

user_defined_stop(ProofTerm, Antecedent, Consequent)
User defined predicate. If defined, and the execution is in leap mode, the debugger
stops when user_defined_stop is true (or a spy point is reached, see section 2.3). This
predicate gives the possibility to define points where the debugger stops, by looking at
the sequents outlook.
WARNING! These predicates do not get through the GCLA preprocessor, and there-
fore one cannot rely on GCLA primitives. Also, one has to be very careful NOT to
instantiate anything in the predicates. If these predicates are used, we strongly recom-
mend that all unification is done explicitly through such primitives as var/1, arg/3,

atomic/1, number/1, ==, \== etc.

2.7 Proviso Debugging

The proviso debugger can be invoked from the main debugger, by typing p to the main debugger.
The format of the proviso debugger is

Proviso trace: CALL 3 Proviso 7
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where

o The word after the string Proviso trace: specifies the current port, if it is an entry or return
port (one of CALL, EXIT, REDO, FAIL). In this case CALL.

o 3is a sub index to the unique invocation identifier in the main debugger. It increases whether
the actual invocations are seen or not. It is not reset during backtracking. It gives the number
of invocations that the system has performed since the latest rule call in the main debugger.

o Proviso is the proviso call. It is not possible to see calls to some of the system defined meta
constructions, such as if-then-else constructs, index functions etc.

The options available during proviso debugging are

c = creep CR = creep

f = fail 1 = leap

h = help s = skip

g = quit proviso tracing a = abort execution

where most of the options work analogously as in the main debugger. leap is leaping in the
main debugger, since there is no possibility to set spy points on arbitrary provisos, and quit is
quiting the proviso debugger (but still be in the main debugger). abort is aborting the whole
execution and return to the top level.

lsn oy - S o N 3 AT gans AT f e - ey o N 3 41 O .
There is a shortcoming of the proviso debugger. If the user performs to many proviso debuggings
from the main debugger, the system can get slow, and in extreme cases crash.
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3 Loading Programs

Programs must be loaded through one of four primitives;
reload_def, include_def, reload_rules and include_rules. When a definition is reloaded,
the previous one is lost. Due to implementation limitations, one cannot alter the definitional
clauses from within the GCLA system, unless they are dynamic_term-declared, and one cannot
mix compiled and interpreted clauses (interpreted clauses are clauses that can be asserted and

retracted by the provisos add and rem, see section 4.3.1).

3.1 Saving and Loading Definitions
Definitions may be loaded by using the primitives reload_def and include_def:

| 7- reload_def (+File).

The current definition in the systems memory is discarded, and the file’s content is read into
the system’s memory. When a directive is read it is immediately executed. A directive is a term
preceded by the symbol ":-’ (for example, :- write(’Ready ») is a directive). A directive could

be any Prolog command, or GCLA query.

| 7- include_def (+File).

The current definition in the systems memory is kept, but if the file contains clauses that defines
atoms that are already defined in the system’s memory, the new definition replaces the old one.
When a directive is read it is immediately executed. A directive is a term preceded by the symbol
':-" (for example, :- write(’Ready ’) is a directive). A directive could be any Prolog command,

or GCLA query.
Definitions can be saved in an internal format, to be reloaded later, by the primitive

7- save_defs{(List, File) .
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where List is a list of Functor/Arity-definitions, and File is the name of the file where to store
the definitions. The stored definition can be read back again in two ways. It can be reloaded again

by the primitive

| 7- reload_compiled_def (File)

in which case all currently loaded definitions are removed, and the compiled definition from File
is stored in the working memory. The saved definitions can also be included by the primitive

| ?- include_compiled_def (Iile)

in which case the current working memory is kept, except for definitions overwritten by defini-

tions in File.

save_defs/2 and include_compiled_def/1 are useful when large databases are handled, in
which case they can be read through the GCLA preprocessor once, and then saved in the internal

format which is much faster to read into the working memory.

3.2 Loading and Compiling Rules

Rule definitions are loaded by using the primitives reload_rules and include_rules:

reload_rules (+File)
reload_rules discards the current set of rules, and reads the rules in the file File into
the system’s memory.

include_rules (+File)

include_rules does not discard the current set of rules, but adds the rules in the
named file File to the current rules in the system’s memory. If there is already a rule
with the same name in the system, that rule is overwritten with the new rule, if it is

not declared otherwise (see section 3.2.1).

File can have the following formats:
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1ib([File) where File is an atom, denotes a file File sought in the GCLA library directory.

File where File is an atom, denotes a file File sought in the current working directory.

reload_rules is intended to load the rules for a specific application into the system’s memory,
and include_rules is intended to load library files containing common rule definitions.

The current loaded control definitions (inference rules, strategies and provisos) can be compiled
by the Prolog compiler, to gain efficiency. By the primitive

[ ?- compile_all_rules.

all currently loaded control definitions are compiled and are read back into the memory. How-
ever, it is not possible to mix compiled control code and interpreted control code, i.e. once
compile_all_rules has been used, it is not possible to include other control definitions by us-
ing the primitive include_rules(File). One has to reload some control definition by the primitive

reload_rules(File) again to remove the compiled code.

3.2.1 Declarations

.- multifile(+Functor/+Arity) .

.~ multifile((+Functor/+Arity, ...,+Functorn/+Arityn)).
Multifile declaration can only be used in rule files, and only for proviso clauses. It
causes the specified predicates to be multifile, which means that if more clauses are
subsequently loaded from other files for the same proviso definition, the new clauses
will not replace the old ones, but will be added instead. The old clauses are erased
only if the proviso definition is reloaded from its “home file" (the file containing the
multifile declaration), or if it is reloaded from a different file declaring it as multifile
(in which case the user is queried first).
The declaration multifile is intended for adding clauses, which lists a certain property.
For example the proviso definition constructor/2 defined in the GCLA default rules
uses this declaration (see section 4.4).

.- dynamic_term(+Functor/+Arity) .

dynamic_term declares definitional clauses defining terms with the principal functor
functor and arity arity to be dynamic, i.e. it is possible to add and remove clauses to
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the definition. It is recommended to use dynamic_termonly together with the provisos
add and rem.

:- complete(+Functor/+Arity)
complete declares the definition of Functor/Arity to be compiled to a complete def-
inition, i.e. the extremal clause (or, if one prefers, the completion of the program) of
the definition is calculated by the A-sufficiency algorithm. Normally the system does
not calculate that clause due to efficiency reasons.

.- add_to_rule(+Functor/+Arity)
add_to_rule declares the clauses defined by the atom Functor/Arity in the file where
add_to_rule occurs to be added to the currently loaded rule, instead of replacing it.
This directive is useful for adding restrictions to general rules. The directive must
appear in a file.
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4 Writing Rules

This section describes how to define rules and strategies in GCLA. For a complete description
of how rules and strategies work, we refer to [Kre91, Aro92]. Usually it is the strategies that are
changed first. One wants to cut away some branches that either computes the same answer as
another branch, or computes an unwanted answer, or does not terminate. Often new rules are
created from old ones by restricting the terms that the rules work on.

There are some initial library files containing common rule definitions. A rule definition file
contains three kinds of clauses:

o Proviso clauses, which are common Horn clauses, and thus could be any kind of Prolog clauses.
o Inference rule definitions, which define how different inference rules should act.

o Strategies, which are used to form search strategies among the rules.

These three parts form a specific interpreter for the object level.

Tt should be noted that in the theory the object level variables in the declarative part (i.e. the
definition) are different from the meta level variables introduced in the rules (i.e. they are on
different levels). This means that variables introduced in a definition are treated as constants in a
rule. The only way to bind object level variables is in the primitives unify, clause and definiens,
described below. However, in the current implementation the two levels are implemented as the
same, and thus one has to be careful when and how variables are bound.

4.1 Rules

A definition of a rule has the following general form

Rulename(Al, ..., Am, PT1, ..., PTm#{CI ... Ck}y <=
Proviso,

(PT1 -> Seql),

(1‘3;1,’11 -> Seqn)
-> Seq) .
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where

o Ai are arbitrary arguments, commonly used for specifying which term in a sequent that this
rule operates on (typically a partially instantiated term or an index).

o Proviso is a conjunction of provisos, i.e. calls to Horn clauses defined elsewhere. The proviso
could be empty.

o Seq, Seqi are sequents, in a special syntax, described below.

e PTi are proofterms, i.e terms representing the proofs of the premises Seqi of the rule.

o Ci are constraints, i.e constraints on variables occurring in the arguments of the head of the
rule. Currently, only constraints of the form X \= Y is supported, where the interpretation is
"X is not equal to Y, where X and Y may be any term. A clause where the macro else occurs
is to be regarded as a catch-all clause, i.e. the guard is expanded so that all cases where there
does not exists another head (and guard) of some clause of the definition is catched by this
clause. There can only be one clause with an else-guard for each definition of Rulename/m+n.

Provisos are executed from left to right. New sequents (i.e. the rule’s premises) are also executed
from left to right. Sequents are on the form Antecedent \- Consequent, where Consequent is an

ordinary GCLA term. Antecedent is a list, where two operators can be used:
o The cons operator, |, which concatenates a condition to the antecedent list.
o The append operator, @, which appends two antecedent lists.
Examples of such antecedent lists are [cI,c2]@[c3| [c4]], which equals [e¢l,c2,¢3,c¢4], and

[c1]@[c2,c2] which equals [cl,c2,c3].

An example of a rule is the rule definition-right:

d_right(C, PT) <= % Head of rule
atom{C), ¥ Proviso
clause(C, B), % Proviso
(PT -> (A \- B)) % New call to rule PT (premise of rule)
-> (A \- C). % Original sequent (conclusion of rule)

Another example is the rule arrow-left:
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a_left((a -> C1), I, PT1, PT2) <= % Head of rule
(PT1 -> (I@Ar \- A)), % New call to rule PTi
(PT2 -> (I@[C1]Ar] \- C)) Y New call to rule PT2
-> (Ie[(A -> Cc1)lAr] \- C). % Original sequent

4.2 Strategies

Strategies are used to constrain search of proofs in the formal system set up by the inference

rules. A strategy definition has the following general form:

Strat#{C1, ..., Ck} <= PT1, ..., PTn.

or
Strat#{C1, ..., Ck} <=
(Provisol -> Seql),

if&évmok -> Seqk) .
Strat <= PT1, ..., PTn.

A strategy has always a clause with a vector, implemented as a comma-separated structure of
rule- or strategy-calls. This vector should be interpreted as a nondeterministic choice of the next
rule or strategy call. Provisoi can be omitted, in which case (Provisoi -> Seqi) is replaced with

Seqi.

An example of a strategy is

arl <=
axiom(_,_,.), % First try the axiom rule
right(arl), % then try the rules to the right
left(_,_,arl). % and last the rules to the left

Another example is
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left(T,I,PT) <=

(TelTI_] \- ). % First chose a condition T
left(T,I,PT) <= % then chose an appropriate rule for T

d_left(T,I,PT), % Try the d_left rule

a_left(T,I,PT). % or try the a_left rule

where a particular condition is chosen in the first clause, and the execution continues with either
d_left or a_left.

4.3 Provisos

There are a number of built in provisos, which are listed below. To define a new proviso just
define a new clause with the ’:=’ constructor. A new proviso can of course make use of built-in

provisos.

An important thing to remember is that binding object variables should only be done with the
primitives unify, definiens and clause. In the theory it is not possible to bind an object level
variable to a meta level condition/term, but the current implementation does not check the level
of a variable, so one has to be careful when and how variables are bound.

4.3.1 Built-In Provisos

functor (+Atom, ?Functor, ?Arity)
functor gets the principal functor Functor of Atom, together with its arity Arity.
arg(+Atom, +Number, -Arg)
arg relates the Numberth argument of Atom and binds Arg to that term.
term(+Term)
term is true if Term is
o a variable
e an atom
Otherwise term is false.
atom(+Atom)
atom is true if Atom is

e a number
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o a symbol

o a structure other than given by the table constructor (Functor, Arity)

Otherwise atom is false.

not (+Call)
not is true if all derivations of Call is false.

unify(+Terml, +Term2)
unify unifies TermI and Term2. If this unification succeeds, unify is true, otherwise
false.

definiens(+Atom, -Dp, ’N)
definiens calculates the definiens operation, which in principle is: for a given atom,
collect all clauses’ bodies that defines that atom. The operation is described in [HS-
H91,Kre91]. If there could be more than one substitution binding variables in +Atom,
definiens will calculate them upon backtracking. Dp is bound to the resulting bag
of that operation, each body separated by ’;’. If there is no definition of Atom, Dpis
bound to the symbol false. N is the number of clauses that defines Atom (equal to the
number of elements in Dp, and 0 if Dp equals false). The bodies in the bag are ordered
corresponding to the order in the current definition. definiens is nondeterministic,
i.e. it generates next possible Dp upon backtracking.
Since the mgu algorithm does not have an occurs check, there is a risk that this oper-
ation constructs a circular structure, which can cause the GCLA system to loop. For
example, with the definition

foo(f(X),[XIR]) <= ...
fool(Y,[YIR]) <=

definiens(foo(X,Y),Dp,N) creates the structure £ (FCECEC ..M.

inst (+X,+C)
The object level variable X is instantiated to a new variable in the condition C. Cur-
rently this proviso performs no operation in the runtime system, where relies on that
X is only used inside C and nowhere else. When inst/2 is found during loading of a
file, X is replaced with a new variable in C.

clause(+Atom, -Body)
If a clause A <= B exists in the program, and Atom and A are unified successfully, B
is returned in Body. If there are no clauses unifiable with Atom, the symbol false is
returned in Body.

add (+Clause)
add asserts the clause Clause into the system’s object level. The change is local to
the rest of the execution, and disappears when the execution either is finished or when
the system backtracks over add. Clause must be declared dynamic_term (see section
3.2.1).



Chapter 4: Writing Rules 20

rem(+Clause)
rem removes all clauses that are unifiable with Clause in the system’s current object
level. No variables are bound, and 0 or more clauses are removed. This primitive
succeeds always. The change is local to the rest of the execution, and disappears when
the execution either is finished or when the system backtracks over rem. Clause must

be declared dynamic_term (see section 3.2.1).

4.3.2 Index Functions

Index functions are a way in GCLA to generate bags of terms. The system defined index function
is a proviso call to the system defined function i/2, which as a result returns the bag. The syntax

i8

(ListOfTerms i ProvisoCallOrRuleCall) -> Bag

where ListOfTerms is a list of terms, whose instantiations are collected in Bag.
ProvisoCallOrRuleCall is the call that generates the instantiations. An example of a rule that uses

an index function is bagof_right/3

bagof_right(bagof(T,C,L),PT) <=
([T1 i PT"(PT -> (A \- C)) -> L) ->
(A \- bagof(T,C,L)).

The operator ~/2 is used to existentially bind a variable inside a condition, in the example above
is PT existentially bound inside the rule call (PT => (A \- B)), which means that il PT contains some
variables, these variables can take different values during the generation of the bag. Note that this
only applies to occurrences outside the actual call, i.g. if we write

bagof_right(bagof(T,C,L),PT) <=
([T] i PT"(PT -> (A \- C~C)) ~-> L) ->
(A \- bagof(T,C,L)).

we have to have an inference rule for ~/2 in the control definition, an example can be found in

the Example section later (sigma_right/2).
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4.4 An Example: Some of the Default Rules

This example is a file containing some default rules, corresponding to some of the rules that
are loaded when GCLA is started. The default rules actually loaded can be found in the file
sicstus/Library/gcla/rulelib/rules.rul. Other examples can be found in /gcla/examples/.
By issuing the directive

| 7- absolute_file_name(library(’gcla/exam les/’),Path).
vi'g P

the path can be found.

% Rules

;- multifile(constructor/2).
true_right <= (_ \- true).
false_left(I) <= (I@[falsel_] \- _).

axiom(T,C,I) <=
term(T),
term(C),
unify(T,C)
-> (Te[T]_]1 \- C).

d_right(C,PT) <=
atom(C),
clause(C,B),
(PT -> (P \- B))
-> (P \- C).

d_left(T,I,PT) <=
atom(T),
definiens(T,Dp,N),
(PT -> (TIe[DplY] \- C))
-> (Ie[TlY] \- C).

a_left((A -> C1),I,PT,PT1) <=
(PT -> (I@Y \- A)),
(PT1 -> (1e[Cc1lY] \- C))
-> (Ie[(A -> C1)IY] \- C).

a_right((4 -> C),PT) <=
(PT -> ([AIP] \- C))
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=> (P \- (A > C)).

o_right(1,(C1 ; C2),PT) <=
(PT -> (Ass \- C1))
-> (Ass \- (C1 ; C2)).
o_right(2,(C1 ; C2),PT) <=
(PT -> (Ass \- C2))
-> (ass \- (C1 ; C2)).

o_left((A1l ; A2),I,PT1,PT2) <=
(PT1 -> (I@[A1IR] \- C)),
(PT2 -> (Ie[A2|R] \- C))
-> (1e[ (At ; A2)IR] \- C).

v_right((C1,C2),PT1,PT2) <=
(PT1 -> (A \- C1)),
(PT2 -> (A \- C2))
-> (A \- (C1,C2)).

v_left((C1,C2),I,PT) <=
(PT -> (I@[Cc1,C21Y] \- C))
-> (1e[(c1i,c2) Y] \- C).

pi_left((pi X\ C),I,PT) <=
inst(X%,C),
(PT -> (Ie[C|R] \- C1))
-> (1e[(pi X\ C)IR] \- C1).

sigma_right ((X~C),PT) <=
inst(X,C,C1),
(PT -> (4 \- C1))
-> (4 \- (X7C)).

%%% Provisos

constructor(’;?’,2).
constructor((->),2).
constructor(true,0).
constructor(false,0).
constructor(’,’,2).
constructor(pi,1).
constructor(™,2).

% Strategies
gcla <= arl.

arl <= axiom{_,_,_.),
right(arl),
left(arl).

22
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alr <= axiom(_,_,.),
left(alr),
right(alr).

lra <= left(lra),
right(lra),
axiom{_,_,.).

no_left <= axiom(_,.,.),
right(no_left).

right(PT) <=
v_right(_,PT,PT),
a_right(_,PT),
o_right(_,_,PT),
d_right(_,PT),
true_right.

left (PT) <= false_left(_),
v_left(_,_,PT),
a_left(_,_,PT,PT),
o_left(_,.,PT,PT),
d_left(_,_,PT),
pi_left(_,_,PT).

23
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5 Examples

This chapter describes some example programs, both the definition files and the control files.
These and other examples can be found in in /gcla/examples/. By issuing the directive

| 7- absolute_file_name(library(’gcla/examples/’),Path).

the path can be found.

5.1 A Small Expert System

This is a small example of an expert system for diagnosing diseases. Of course the definition
should contain much more information.

The definition contains the rules connecting symptoms and diseases, but contains no facts. The
facts are submitted by the queries. Note the circular definition of disease, which is handled by the
rules where the loop is detected by the not-equal checks.

Definition:

symptom(high_temp) <= disease(pneumonia).
symptom(high_temp) <= disease(plague).
symptom(cough) <= disease(pneumonia).
symptom(cough) <= disease(cold).

disease(X) <= disease(X).

Rules and strategies:

:- include_rules(1lib(’rules.rul’)).

d_right(C,PT) <=
atom(C),
clause(C,B),
not{(C = B),
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(PT -> (P \- B))
-> (P \- Q).

d_left(T,X,PT) <=
atom(T),
definiens(T,Dp,N),
not(T = Dp),
(PT -> (Xe[DplY] \- C))
-> (Xe[TIY] \- C).

Queries:
1) Assuming high temperature, what possible diseases follows:

| ?- symptom(high_temp) \- disease(X) ; disease(Y).

X = pneumonia,

Y = plague 7 ;

X = plague,

Y = pneumonia 7 ;
no

| 7=

2) Try to find a disease that causes high temperature and coughing:

| 7- disease(X) \- symptom(high_temp),symptom(cough) .
X = pneumonia 7 ;

no
I 7-

5.2 Default Reasoning

This example has two main ingredients. Firstly, it implements default reasoning, and secondly
it shows how negation is accomplished. It is the famous bird-penguin example: An object can fly
if it is a bird and it is not a penguin, Tweety and polly are birds as well as all penguins, and Pengo

is a penguin.



Chapter 5: Examples

Definition:

flies(X) <=
bird(X),
(penguin(X) -> false).

bird(tweety).
bird(polly).
bird(X) <= penguin(X).

penguin(pengo) .

Rules and strategies:

:~ include_rules(1ib(’rules.rul’)).

fs <=
right(fs),
left_if_false(fs).

left_if_false(PT) <=
(_ \- false).

left_if_false(PT) <=
no_false_assump(PT),
false_left ().

no_false_assump(PT) <=
not (member(false,A)) ->
(A \- ).

no_false_assump(PT) <=
left (PT).

member (X, [X1_1).

member (X, [_IR]) :-
member (X,R) .

Queries:
1) Which birds can fly:

| 7- £5 \\- \- flies(X).

X = tweety 7 ;

[
h

Never do axiom!

26

First try standard right strategy

else if consequent is false...

Is right false?

If so perform left rules.

No false assumption
i.e. the term false is not a
member of the assumption list

Proviso definition
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X = polly 7 ;

2) Which birds cannot fly?

| 7= fs \\- flies(X) \- false.
X = pengo 7 ;

no
| 7=

5.3 A Functional Program

This example shows how a functional program can be written in GCLA. The definition defines
the function add/2, which adds its two arguments, which are in successor arithmetic. The definition
of succ/1 and the third clause of add/2 are a so called evaluation schema, i.e. it evaluates its (first)

argument.
Definition:

add(0,X) <= X.
add(s(X),Y) <= succ(add(X,Y)).
add(X,Y)#{X \= s(_), X \= 0} <=

pi Z\ ((X -> Z) -> add(Z,Y)).

succ(X) <= pi Y\ ((X -> Y) -> s(¥)).

Rules and strategies:

i~ include_rules(1lib(’rules.rul’)).

d_lefti1(T,I,PT) <=
not(canonical(T))
-> (Ie[T|_J \- ).
d_left1(T,I,PT) <= d_left(T,I,PT).
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left(PT) <= v_left(_,_,PT),
a_left(_,_,PT,PT),
o_left(_,_,PT,PT),
d_lefti(_,_,PT),
false_left(.),
pi_left(_,_,PT).

canonical (%) :~- var(X).
canonical(X) :- nonvar(X),functor(X,s,1).
canonical(X) :- X == 0.

eager <= left(eager),
a_right(_,eager),
axiom(_,_,_).

lazy <= axiom(_,_,.),
a_right(_,lazy),
left(lazy).

Queries:
1) Add 1 and 1 eagerly:

| 7- eager \\- add(s(0),s(0)) \- P.
P = s(s(0)) 7 ;

P = s(add(0,s(0))) 7 ;

P = succ(add(0,s(0))) 7 ;

P = add(s(0),s(0)) 7 ;

no
| 7=

2) Add 1 and 1 lazy:

| 7- lazy \\- add(s(0),s(0)) \- P.

u
i

add(s(0),s(0)) 7 ;

succ(add(0,s(0))) 7 ;

d
il

28



Chapter 5: Examples 29

P = 5(add(0,s(0))) 7 ;
P =1s(s(0)) 7 ;

no
?..

5.4 Mixing Relational and Functional Programming

This example shows how relational and functional programming can be mixed. gsort/1 and
append/2 are functions while split/4 is a relation. The example also shows how the underlying
Prolog system can be used to implement for example relations on numbers by the two primitives <

and >=.
Definition:

gsort([1) <= [J.
gsort([FIR]) <=
pi L \ (pi G \ (split(F,R,L,G) ->
append(gsort(L) ,cons(F,qsort(G))))).

append([],F) <= F.
append ([F|R],X) <= cons(F,append(R,X)).
append (X,)#{X \= [_1_1,X \= [1} <=

pi Z\ ((X -> Z) -> append(Z,Y)).
split(_, 01, 00,00
split(E, [FIR],[FIZ],X) <= E >= F,split(E,R,Z,X).
split(E,[FIR],Z,[FIX]) <= E < F,split(E,R,Z,X).

cons(X,Y) <= pi Z \ (pi W\ (X ->7Z), (¥ -> W) -> [ZIW])).

Rules and strategies:

:~ include_rules(1lib(’rules.rul’)).

%%% Rules

right 1 <=
X =Y =->
(L\-X <.

right_g_.e <=
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X>Y ~>
(C\-X>=7).

Y%% Restrictions of rules defined in rules.rul
g-axiom(T,I) <=
(canonical(T) ->
(Te[TI.] \- D).
q-axiom(T,I) <=
axiom(T,_,I).

q-d_left(T,I,PT) <=
(not(canonical(T)) ->
(Te[TI.] \- .)).
q_d_left(T,I,PT) <=
d_left(T,I,PT).

yYY Provisos

canonical(X) :- var(X).
canonical(X) :- X == [].
canonical(X) :- functor(X,’.’,2).
canonical(X) :- number(X).

WA Strategies

%%% Top level strategy

gs <= q_fun, % Functional execution
g_rel. % Relational execution

gsl <= d_right(_,q_rel),
a_right(_,q_fun),
v_right(_,gs1l,qs1).

g_fun <=
a_right(_,q_fun),
a_left(_,_,qsl,q_fun),
pi_left(_,_,q_fun),
q-d_left(_,_,q_fun),
g-axiom(_,_).

q.rel <=
right_g._e,
right_1,
true_right,
a_right(_,qs),
v_right(_,q_rel,q.rel),
d_right(_,q_rel).

Queries:

30
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1) Sort the list [4,2,1,3,9,7,8,6]:

| 7- gs \\- gsort([4,2,1,3,9,7,8,6]1) \- P.
P = [1,2,3,4,6,7,8,9] 7 ;

no
?_

31
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6 Statistic package

The statistic package of GCLA is a tool for gathering information about the execution of a
query/queries. It is based on the debugger, and thus are all invocation numbers and the like the
same as in the debugger. The package is loaded by posing the directive

| 7- gcla_load_statpack.

to the GCLA. top level.

The package defines a new meta level deduction symbol, //-. Whenever a query strat //-
Antecedent \- Consequent is posed to the system, the package is invoked, the counters reset and
the collecting of information is started. Backtracking and presentation of answer substitutions are
the same as usual. The statistic package cannot be combined with the debugger, i.e. one cannot
debug a query and collect statistic information about the same query at the same time.

6.1 Getting Information
There are 6 different information-retrieving directives.

get_calls

Gives the number of times each rule and strategy is called, c.f. call in the debugger.
get_exits

Gives the number of times each rule and strategy succeeds, c¢.f. exit in the debugger.
get_retries

Gives the number of times each rule and strategy is retried, c¢.f. redo in the debugger.
get_failures

Gives the number of times each rule and strategy fails, c.f. fail in the debugger.
get_not_used

Gives the rules and strategies that are called but never succeeds.
compare_paths

If several answers have been generated, compare_paths tries to find where the proofs
differ for the first time. The format of the answer is
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3 4 Rule \\- Antecedent \- Consequent
5 4 Rule’ \\- Antecedent’ \~ Consequent’

where two immediate rows are the result of comparing the two immediate proofs. The
first number (3 and 5) are the same unique invocation number as in the debugger, and
4 is the same depth number as in the debugger.

The format could also be in one of the following formats:
e When the proviso clause is nondeterministic, it is shown in the print-out like this:

3 4 Rule \\- Antecedent \- Consequent
PROVISO: clause(Atoml, Conditionl)
5 4 Rule \\- Antecedent \- Consequent
PROVISO: clause(Atom?2,Condition2)
o When the proviso definiens is nondeterministic, it is shown in the print-out like
this:
3 4 Rule \\- Antecedent \- Consequent
PROVISO: definiens(Atoml, Conditionl, Numl)
5 4 Rule \\- Antecedent \- Consequent
PROVISO: definiens(Atom2, Condition2,Num2)
o When the append operator @ is indeterministic, it is shown in the print-out like
this:
3 4 Rule \\- Antecedent \- Consequent
PROVISO: List_.AleList_B1

5 4 Rule \\- Antecedent \- Consequent
PROVISO: List_A2@List.B2

In the following, ’answer number N’ stands for the path, i.e. sequence of rule and
strategy applications, associated with the returned answer number N. Answer number
1 is the answer that the interpreter returns first. The answers generated by backtracking
are numbered increasingly by 1.

path path lists the sequence of rule- and strategy applications associated with the first
answer returned to the query.

path(N)  path(N) lists the sequence of rule- and strategy applications associated with the answer
number N.

applications(R/A)
applications(R/A) lists the goals, which are applications of the rule or strategy R
with arity A, for the first answer returned.

applications(R/A,N)

applications(R/4,N) lists the goals, which are applications of the rule or strategy R
with arity A, for the first answer returned, for answer number N.
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following_applications(R/A,N)
following_applications(R/A,N) lists the goals where the rule or strategy R with
arity A is used, followed by N other rule- and strategy applications, for returned answer
number 1.

following_applications(R/A,PN,N)
following_applications(R/A,PN,N) lists the goals where the rule or strategy R with
arity A is used, followed by N other rule/strategy applications, for returned answer

number PN.



Chapter 7: Formal Syntax 35

7 Formal Syntax

This section is based on the syntax described in [Kre91]. Some minor changes have been made,

due to the current implementation.
The operators defined by the GCLA system are:

op(900,fy,gcla_nospy)
op(900,fy,gcla_spy)
op(700,xfx, (°\="))
op(1150,xfx, (?\-?))
op(1150,£fx, (°\-"))
op(1175,xfx, (°\\-?))
op(1175,fx, (°\\-"))
op(950,yfx, (’<~"))
op(1200,xfy, (°<="))
op(900,xfy, (@))
op(900,xfy, (#))
op(1100,x£y,\)
op(1100,fy,pi)
op(850,xfy,1)
op(1175,xfx,’//-?)
op(1175,£fx,’//-")

The syntax of a definition is given as:

Definition =
"Empty Definition” | DefClause. Definition
DefClause ::=
Atom <= Condition | Atom#Guard <= Condition | Atom | Atom#Guard
Atom ::= tcif tc/0is a TermConstr |
tc(Terml, ..., Termn) if n > 0 and tc/n is a TermConstr
TermConstr ::=

"Non-capitalized alphanumeric string that is not a CondConstr" /n for some n >= 0
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Term ::= Atom | Var | List

List = 01| [Term, ..., Term] | [Term]| List]

Var 1= "Capitalized alphanumeric string” | _ | "Alphanumeric string beginning with _"
Condition ::=

Term | CCond

CCond =
pi Var \ Condition | ccif cc/0is a CondConstr |
cc(Condition1, ..., Conditionn) il n > 0 and cc/n is a CondConstr (possibly infix)
CondConstr =
. (defined in the table constructor (CondConstr, Arity), see below).
Guard ::= {Var \= Term, ..., Var \= Term} | else

Proof terms are representations of proofs (or set of proofs). They can be seen as functional
expressions that compute sequents from proofs with respect to a certain rule definition.

The syntax of a proof term is:

Prooflerm ::=
InfBody
SeqTerm ::=
(AntTerm \- CondTerm)

Antlerm =
ProofVar | [1 | [CondTerm, ..., CondTerm] | [CondTerm | AntTerm] |
AntTerm@AntTerm
ProofVar ::=
"Capitalized alphanumeric string" | _ | Aplhanumeric string beginning with _
ProofAtom ::=
pc(PAtomArgli, ..., PAtomArgn) if pc/n is a ProofConstr
PAtomArg =
AntTerm | ProofVar | ProofAtom | CondTerm
ProofConstr ::=
“Noncapitalized alphanumeric string that is not ProvConstr"/n, for some n >= 0.
CondTerm ::=

ObjTerm | CCond
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CondConstr ::=

given by the table constructor(cc,n). The default table contains , /2, ;/2,pi/1, ~/2,
true/0, false/0, ->/2, add_def /2, rem_def /2.

ObjTerm 1=
Term (see BNF for definitions)

Inference rules and search strategies are given by the BNT below.

RuleDefl =
"Empty Definition" | InfDef. RuleDef | StratDef. RuleDefl

InfDef ::= ProofAtom <= InfBody | ProofAtom#Guard <= In{Body

StratDef =
ProofAtom <= InfBody | ProofAtom#Guard <= InfBody

InfBody ::=
pi ProofVar \ InfBody | SeqTerm | (ProvOrRule -> InfBody) | (InfBody , Inf-
Body) | (InfBody ; InfBody)

ProvOrRule ::=
(InfBody -> SeqTerm) | Proviso | (ProvOrRule , ProvOrRule) | (ProvOrRule
; ProvOrRule) | not(ProvOrRule) | ((Template i ProvOrRule) -> ProofVar) |
(i(Constr, Condition, Condition, ProvOrRule) -> ProofVar)

Template 1=

[Condition] | , (Condition)

The syntax of provisos are given by the following BNE":

ProvDef ::=
"Empty proviso definition" | ProClause. ProDef
ProvClause ::=
ProvAtom :- ProvBody | ProvAtom | ProvAtom#Guard : - ProvBody |
ProvAtomdt Guard
ProvAtom ::=
pc if pc/0 is a ProvConstr | pc(ProvTermi, ..., Provlermn) if n >= 1 and pc/n is

a ProvConstr
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ProvConstr ::=
"Noncapitalized alphanumeric string" /n, for some n >= 0
Provlerm ::=
CondTerm | ProofVar
ProvBody ::=
ProvOrRule
Proviso ::=
ProvAtom | true | false | Proviso , Proviso | Proviso ; Proviso |
pi ProofVar \ Proviso

Queries are described by the following BNF:

Query ::= ProofTerm \\- Sequent. | (ProofTerm \\- Sequent) , Query

Sequent ::=

Antecedent \- Consequent
Antecedent 1=

CondTerm | CondTerm , Antecedent
Consequent ::=

CondTerm

38
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