
GODS: Global Observatory for Distributed Systems

Cosmin Arad, Ozair Kafray, Ali Ghodsi and Seif Haridi
cosmin, ozair, ali, seif @ sics.se

SICS Technical Report T2007:10
ISSN 1100-3154

ISRN:SICS-T–2007/10-SE
Revision: 1.00, 2007-08-30

keywords : distributed systems, evaluation framework, deployment test-bed,
distributed algorithms debugging, performance tuning, regression testing,

bandwidth accounting, automated experiments, benchmark

Abstract

We propose GODS, an ecosystem for the evaluation and study of world-

wide distributed and dynamic systems under a realistic emulated network

environment. GODS allows the evaluation of a system’s actual implemen-

tation in reproducible experiments, collecting global knowledge about the

system state.

Furthermore, GODS addresses the problems of debugging distributed al-

gorithms, performance tuning, measuring bandwidth consumption, regres-

sion testing, and benchmarking similar systems, thus offering a complete

evaluation environment for distributed applications.

Our framework uses ModelNet for the network emulation and enhances

that by (1) adding dynamism by varying link properties, partitioning the

network and emulating churn, (2) offering global knowledge about the ob-

served system by gathering statistics and events and (3) enabling the user to

easily deploy, manage and monitor complex, large-scale distributed systems.

1

Contents

List of Acronyms iv

1 Introduction 2
1.1 Motivation . 2
1.2 ModelNet Overview . 3

2 Functional Features 5
2.1 Deployment and Management . 5
2.2 Monitoring and Control . 5
2.3 Tracing and Debugging . 6
2.4 Bandwidth Accounting . 7
2.5 Automated Experiments . 7
2.6 Performance Tuning . 7
2.7 Regression Testing . 8
2.8 Benchmarking . 8
2.9 Byzantine Behaviour Observation 8

3 Architecture 9
3.1 Topology Module . 10
3.2 Churn Module . 11
3.3 Network Partitioning Module . 12
3.4 Statistics Monitoring, Aggregation and Caching Module 12
3.5 Operations Module . 13
3.6 Automation Module . 14
3.7 Bandwidth Accounting Module . 14

4 Statistics and Notifications 16
4.1 Statistics . 16
4.2 Notifications . 18

5 Use Cases 19
5.1 Interactive Control and Monitoring 19
5.2 Automated Experiments . 21

6 Implementation Details 22
6.1 Core Concepts . 22

6.1.1 Event . 22

i

6.1.2 Module . 22
6.1.3 Event Handler . 23
6.1.4 Subscriptions Registry . 23
6.1.5 Task . 24

6.2 Event Handling . 24
6.3 Software Architecture . 24

6.3.1 Overview . 24
6.3.2 Control Center . 25
6.3.3 Agent . 26
6.3.4 Application Interface . 27

6.4 Extension Mechanisms . 28
6.5 Technologies Used . 29

7 Contributions 31
7.1 Controllability and Reproducibility 31
7.2 Emulating Churn . 31
7.3 Emulating Network Partitioning . 31
7.4 Bandwidth Accounting . 31
7.5 Emulating User Behaviour . 32

8 Related Work 33
8.1 Application Control and Monitoring Environment (ACME) 33
8.2 Distributed Automatic Regression Testing (DART) 33
8.3 WiDS . 34
8.4 Liblog . 35
8.5 Ganglia . 36

9 Users Guide 38
9.1 Preliminaries . 38

9.1.1 Enable Password Less Login 38
9.1.2 Setup a Webserver . 38

9.2 Configuring GODS . 38
9.2.1 GODS config file . 38
9.2.2 Deploying Agents . 38
9.2.3 Configuring Agents . 39
9.2.4 Deploying Application . 40

9.3 Running GODS . 40
9.3.1 Environment Setup File . 40

ii

9.3.2 Running Visualizer . 41
9.4 Experiments . 41

9.4.1 Generating an Experiment 41
9.4.2 Running an Experiment . 44

References 46

iii

List of Acronyms

ACM Agent Churn Module, 10
AM Automation Module, 13, 14
AOM Agent Operations Module, 13
ASM Agent StatsMon Module, 12, 15–17
ATM Agent Topology Module, 10, 16

BAA Bandwidth Accounting Agent, 14
BCEL Byte Code Engineering Library, 27

CCCM Control Center Churn Module, 10, 11, 14
CCOM Control Center Operations Module, 10, 11, 13, 14,

20
CCPM Control Center Partitioning Module, 10–12
CCSM Control Center StatsMon Module, 12, 15–17
CCTM Control Center Topology Module, 10, 11, 13

DSUT Distributed System Under Test, 8–20, 23–27

JDBC Java Database Connectivity, 28
JMX Java Management Extensions, 5, 16, 17, 26
JUNG Java Universal Network/Graph, 28
JVM Java Virtual Machine, 16, 23, 26
JVMTI Java Virtual Machine Tool Interface, 5, 16, 17, 26, 27

NPA Network Partitioning Agent, 11

RMI Remote Method Invocation, 27

SHA-1 Secure Hash Algorithm, 18

XML Extensible Markup Language, 16, 17, 28

iv

1 Introduction

GODS is an ecosystem for controlling the deployment, monitoring and evalu-
ation of large scale distributed applications in an emulated wide-area network
environment to which it can apply churn models and network partitioning mod-
els, in the context of reproducible experiments.

At the heart of GODS sits ModelNet [25, 21, 34, 4, 36], a large-scale network
emulator that allows users to evaluate distributed networked systems in realistic
Internet-like environments.

While ModelNet provides the network emulation, GODS enables effortless
handling of the complexity of managing and monitoring thousands of distributed
application nodes. It provides global knowledge of select system state in the form
of aggregated statistics and a global view of the system topology. GODS allows
users to trace the execution of distributed algorithms, to trigger various oper-
ations, to collect statistics for user-defined experiments and to fully automate
and replay experiments. Automated experiments can be used for collecting eval-
uation data, performance tuning, regression testing, and benchmarking similar
systems.

Next, we give the motivation for building GODS and in the following sec-
tion we describe the functional features of GODS. Then, in Section 3, we present
the GODS architecture. In Section 4 we describe the experiments and collected
statistics. In Section 5 we present some use cases. In Section 6 we give some im-
plementation details and in Section 7 we discuss our contributions in conjunction
with the Section 8 detailing related work. Finally, Section 9 is the GODS user’s
guide.

1.1 Motivation

There are essentially three ways to validate research on distributed systems and
algorithms. One is to to analytically verify the correctness and efficiency of a sys-
tem. Another approach is to verify the results by means of simulation, whereby
a model of the system is built and used for simulation. Finally, one can deploy
the system itself and do black-box observations on its behaviour. The first two
methods have the disadvantage that they draw conclusions about a model, rather
than the real system. Hence, they may fail to spot real bottlenecks or consider
practical issues. The last method, as it is applied currently, is too coarse and does
not give specific insight into every component.

2

We would like to verify and analyse the actual distributed system, rather than
a model of it. Consequently, the real system with all its intricacies and shortcom-
ings would be studied, enabling us to make changes and fix bugs in only one
version of the system. In addition, we would like to use real-world scenarios and
input data, when running the deployed system, to be able to exactly pin-point hot
spots, resource consumption causes, bandwidth usage of each component, and
to catch defects. Moreover, we would like to run automated batch experiments
that allow fine tuning of system parameters by running experiments multiple
times for a wide range of parameter values.

Currently, the largest public real-world network test-bed, PlanetLab [29], pro-
vides around 600 nodes distributed around the world. We need larger-scale test-
beds that retain the property of real-world latencies and bandwidths between
the nodes. Furthermore, we need to study distributed systems behaviour under
various churn models and network partitioning models, in completely controlled
and reproducible experiments. To our knowledge, to date, this is only achieved
through simulation.

ModelNet [25, 21] is a large-scale network emulator that allows the deploy-
ment of thousands of application nodes on a set of cluster machines. ModelNet
provides a realistic network environment to the deployed application. This has
the advantage of offering a real-world large-scale test-bed in a controlled envi-
ronment. But the large scale comes with great complexity in management and
evaluation of the deployed system, so we need a tool that enables us to con-
trol that complexity. Apart from that, ModelNet provides only a static network
model. We need to add dynamism to that model in the form of dynamically
partitioning the network, controlling nodes’ presence in the network, and also by
varying the properties of the network links.

We have identified the need for real-world, large-scale test-beds, for easily
manageable, controlled and reproducible experiments, that provide detailed in-
sight into the operation of the observed systems. To address this need, we have
decided to design and develop GODS, to benefit the community of distributed
systems researchers and developers.

1.2 ModelNet Overview

ModelNet is a wide-area network emulator that can be deployed on a local-
area cluster. Using ModelNet, one can deploy a large-scale distributed system
on a local-area network, providing a realistic Internet-like environment to the

3

deployed system.
Nodes of the distributed application, which we shall call virtual nodes, run on

some physical machines in the cluster, called edge nodes, and all traffic generated
by the virtual nodes is routed through a ModelNet core, consisting of one or
more physical machines. This core emulates a wide-area network by subjecting
each packet to the delay, bandwidth, and loss specified for each link in a virtual
topology.

The target topology can be anything from a hand-crafted full-mesh, popu-
lated with real-world latencies taken from DIMES [8, 30] or King datasets [18, 15],
to a complete transit-stub topology, created by available topology generators such
as GT-ITM [14], Inet [16] or BRITE [2, 3]. Each link in the virtual topology is
modelled by a packet queue and packets traversing the network are emulated
hop-by-hop, thus capturing the effects of cross traffic and congestion within the
network.

ModelNet maps virtual nodes to edge nodes, binding each virtual node in
the topology to an appropriate IP address in the 10.0.0.0/8 range. For relatively
low CPU, low bandwidth applications, it is possible to run 10’s or even 100’s of
instances of an application on one edge node. In the case when the virtual nodes
running on one edge node begin to contend for resources like CPU or bandwidth,
additional edge nodes can be added to allow the network size to scale.

All packets generated by virtual nodes are routed to the core even if both
the source and the destination virtual nodes live on the same physical machine.
ModelNet builds a shortest path global ”routing table” that contains the set of
pipes to traverse for each source-destination path. The core applies the charac-
teristics of all pipes along a path to packets that should travel on that path and
then routes the packets to the destination virtual node.

When the amount of traffic generated by the virtual nodes becomes unbear-
able for the ModelNet core, additional machines can be added as core nodes.
The emulation load is balanced across all core nodes, each core node being re-
sponsible for a part of the virtual topology, thus emulating a subset of the pipes.
Packets need to be handed over to a different core node when they have to hop
through a pipe that is handled by that respective core node.

4

2 Functional Features

GODS is a companion tool that assists the development and maintenance of
large-scale distributed applications throughout their life-cycle. GODS facilitates
the deployment and management, monitoring and control, tracing and debugging, per-
formance tuning, bandwidth accounting, regression testing, and benchmarking of dis-
tributed applications, in reproducible automated experiments emulating real-world
networking environments. Moreover, GODS allows its user to observe the in-
fluence of nodes with Byzantine behaviour on the distributed application. Let us
discuss now each of these features in turn.

2.1 Deployment and Management

GODS enables its users to automatically deploy thousands of instances of a dis-
tributed application onto an Internet-like wide-area network, emulated on a local
cluster. GODS manages the lifetime of these application instances. They can be
launched, shut down, and killed, thus emulating nodes joining, leaving, and
failing in the distributed system.

The join, leave, and fail events can be modelled as Poisson processes. Given
these specifications, GODS generates a churn event script, that can be executed
and reproduced in multiple experiments. GODS keeps track of each application
instance’s status and distinguishes between controlled and uncontrolled failures,
thus accurately emulating node failure.

GODS can dynamically change the deployment network environment by vary-
ing the latency and bandwidth of links, or emulating network partitions. GODS
can emulate non transitive network connectivity that sometimes occurs in the
Internet due to firewalls or routing policies. Network variation events can be
reproduced using a script similar to the churn event script.

2.2 Monitoring and Control

GODS enables the user to monitor the application instances by watching select
state variables and notifying updates to these variables. Select application meth-
ods can also be watched, all calls to these methods being notified. Before start-
ing an experiment, the user specifies the variables and methods to be watched.
Then, during experiment execution, GODS collects and logs all state update and
method call notifications.

5

Debugging mechanisms are used to watch state updates and method calls.
For distributed applications written in the Java programming language, these
mechanisms are provided by the Java Virtual Machine Tool Interface (JVMTI)
and the Java Management Extensions (JMX), making it unnecessary to change
the application’s source code.

Given that GODS collects global knowledge about the system state, global
statistics can be compiled across all the application instances.

GODS allows the user to control the distributed application’s behaviour by is-
suing application specific operations on certain application instances. Operation
invocations can be specified as Poisson processes, from which GODS generates
an operation invocation script that can be executed and reproduced in multiple
experiments. Operation invocations effectively emulate users of the distributed
system.

2.3 Tracing and Debugging

GODS collects all notifications about state updates and method calls into a cen-
tralised log. The centralised log is an interleaving of notifications occurring at
different machines in the cluster. GODS synchronises the clocks of the cluster
machines before starting an experiment. All notifications are timestamped with
the local clock of the machine where they occur, and the centralised log is sorted
by notification timestamp and machine id.

The user can tag some application methods as events representing the sending
or receipt of a message whereby the message id is one of the method’s parame-
ters. Thus, some method call notifications are tagged as send or receive events,
providing causal order among notifications. GODS verifies whether the times-
tamp total order of the notifications log satisfies causal order and warns the user
if that is not the case. Causal order should always be satisfied if the minimum
message propagation delay is larger than the maximum difference in machines’
local clocks.

The notifications log can be used to replay the logged view of the experiment
execution. The user can step forward or backward or jump to any time in the no-
tifications log. She can trace the execution of distributed algorithms by watching
select state updates and message passing between application instances.

6

2.4 Bandwidth Accounting

GODS timestamps and logs all the traffic generated by the distributed applica-
tion. Through the timestamps of traffic packets and the timestamps of events
in the application, GODS correlates traffic to certain operations and modules of
the application. Hence, GODS provides bandwidth accounting for the observed
distributed application, and allows the user to observe how various changes to
the application influence bandwidth consumption.

2.5 Automated Experiments

The user can define experiments that are executed automatically multiple times.
The definition of an automated experiment contains the ModelNet topology of
the network that is emulated while running the experiment. Next, the experi-
ment definition contains a churn event script, that drives virtual nodes to join
and leave the system or fail, a network variation script, that drives network par-
titionings and link failures, and an operation invocation script, that drives the
operations executed by the virtual nodes, emulating their users.

The output of the experiment is also specified. Besides the execution replay
log, that can be used for tracing, the data collected in an experiment run contains
the results and timings of the invoked operations, the bandwidth consumption
log, and various other system measurements.

Automated experiments can be driven by existing automation systems. GODS
provides bindings to popular scripting and programming languages, so that ex-
ternal GODS clients can be implemented. Notification email is sent upon exper-
iment completion or failure.

2.6 Performance Tuning

Automated experiments are leveraged to fine tune parameters of the observed
distributed system. The user specifies ranges of values for a set of parameters
taken as input by the observed system. Also an experiment description is given,
specifying the performance metrics to be collected.

GODS executes the experiment multiple times, varying the values of the pa-
rameters. Each parameter is varied while keeping the other ones constant. This
allows the user to observe the influence of each parameter on the various perfor-
mance metrics. Hence, the user is enabled to spot different trade-off points.

7

2.7 Regression Testing

Some bugs in distributed systems manifest only in some certain “unfortunate”
timing conditions. Thus, reproducing the network conditions and operations
timing is crucial in reproducing these bugs. To cover certain code paths in the
observed distributed application, tests supplying specific timing conditions need
to be crafted. A suite of such tests may need to be run to asses the functionality
of the application. Tests for uncovering regression bugs are usually added to the
test suite.

Automated experiments are again leveraged to run regression test suites. Ef-
fectively, each test in the suite is run as an automated experiment, with specific
network conditions, churn and operations timing. Tests using the same virtual
network topology are grouped together to avoid unnecessary ModelNet network
deployments.

2.8 Benchmarking

GODS serves as the foundation for benchmarking large-scale distributed systems
with qualitatively comparable functionality. Identical automated experiments
can be executed for different distributed systems. Hence, two or more systems
can be run under the same network conditions, subjected to the same churn
scenarios and the same service requests or operations. Measurements for various
performance or resiliency metrics are collected in the experiments and used to
compare the evaluated systems.

2.9 Byzantine Behaviour Observation

Groups of nodes with different characteristics can be defined in a GODS exper-
iment. Such a group may be comprised of nodes running a modified version
of the application that behaves maliciously. Having a group of malicious nodes
around, and being able to control them, enables the user to observe how the rest
of the nodes cope with the malicious behaviour. Furthermore, using automated
experiments, the user can observe the limit on the number of malicious nodes
where the functionality of the application becomes disrupted.

8

3 Architecture

The GODS architecture is depicted in Figure 1. On each machine in the cluster
there are n slots created by ModelNet. In each slot, one of the Distributed System
Under Test (DSUT) nodes can be run. We say that a slot is unused if no DSUT
node is currently running on that slot, that is, no process has bound the IP alias
provided by the slot. Otherwise, we call the DSUT node running on the slot, a
virtual node.

On each machine runs an agent which is in charge of managing all the slots
and virtual nodes on that machine. The agent is able to start, gracefully shut-
down or kill the local virtual nodes, thus offering mechanism to simulate join,
leave and failure of DSUT nodes. The agent functionality is provided by a hand-
ful of modules (Topology, Churn, Operations, StatsMon) driven by their counter-
parts in the control center. Their role is described later on.

Topology module

ChurnOperations Partitioning

Automation moduleStatistics
Monitor
& Cache

Control Center

Visualizer (GUI)Topology

Operations
Churn

Stats Mon

Agent

VN1

Machine

VN2

slot

…

VNn

Topology

Operations
Churn

Stats Mon

Agent

VN1

Machine

VN2

slot

…

VNn

Partitioning Agent
ModelNet
Emulator

Database

application traffic
GODS control trafficBandwidth Agent

…

Figure 1: GODS Architecture

ModelNet core nodes, or emulators, are special machines running the FreeBSD
4.x operating system. The ModelNet emulator is implemented as a 4.x FreeBSD1

kernel module and relies on the IP forwarding kernel module for routing traffic

1A Linux implementation of the ModelNet emulator is under development

9

between virtual nodes and subjecting the traffic to the delay, bandwidth, and
loss specified by the target topology. When a single emulator machine becomes
a bottleneck for the traffic generated by the virtual nodes, more emulators can
be added to share the load. On each emulator machine runs a partitioning agent
able to manage IP forwarding rules on the emulator, thus offering mechanism to
simulate network partitions and link failures, and a bandwidth agent responsible
of tracing DSUT bandwidth usage.

On a separate dedicated machine runs the control center, a daemon in charge
of orchestrating the activity of all virtual nodes in the DSUT, aggregating statis-
tics and providing global knowledge about the DSUT. It is comprised of the
Topology, Churn, Operations and StatsMon modules that control their counterparts
in the agents, a Partitioning module that controls its counterparts in the emula-
tors, and an Automation module that allows carrying out repeated experiments.
The control center exports its services to an external Visualiser and to external
automation tools, and relies on a database to store the data collected in the auto-
mated experiments.

In the following subsections we describe the requirements for each module.

3.1 Topology Module

The Agent Topology Module (ATM) is responsible of slots accounting, i.e., keep-
ing track of used and unused slots. Slots are static in the sense that no new slots
appear or disappear after the module is started, but their status may change, that
is, new virtual nodes may be launched or virtual nodes may fail as a result of
software defects or misconfiguration. The ATM has to actively make sure that
started virtual nodes are still alive. In order to be able to correctly enforce churn
models, we need to be in control of VN failure, that is, VNs that we think are
alive, should be alive.

If the ATM finds uncontrolled VN failure it reports it to the Control Center
Topology Module (CCTM) and the running experiment is deemed failed. The
ATM checks with the Agent Churn Module (ACM) the presupposed legitimate
status of VNs before triggering an experiment failure.

The ATMs aggregate information about the status of all local slots and push
it to the CCTM, so topology information flows from the ATMs to the CCTM.
At ATM startup all local slots are accounted and the local view is pushed to
the CCTM. As DSUT nodes are launched, slot status updates are incrementally
pushed to the CCTM.

10

The CCTM receives slots statuses from all ATMs and compiles a global view
of available resources (slots) and virtual nodes. This view constitutes input to the
Control Center Churn Module (CCCM), the Control Center Partitioning Module
(CCPM), and the Control Center Operations Module (CCOM). Each slot has a
numeric identifier and the global slots view is a mapping from slot IDs to slot
information structures containing: slot IP, machine IP, slot status, DSUT node ID,
VN PID, slot status history, etc.

The CCTM is also in possession of the all-pairs latency and bandwidth maps
that are part of the deployed ModelNet target topology. The CCTM reads these
from the ModelNet model files upon initialisation.

3.2 Churn Module

At the churn layer information flows from the control center to agents. The ACM
is controlled by the CCCM and is responsible of enforcing churn models.

The ACM implements functionality for launching DSUT nodes, shutting them
down gracefully or killing them. While launch and kill operations are external
to the DSUT nodes, graceful shutdown may require interfacing with the DSUT
application (in cases when the DSUT application does not handle a specific sig-
nal for graceful shutdown). We discuss the DSUT application interface in Sec-
tion 6.3.4.

The CCCM provides functionality for globally executing a churn event script
in the context of an automated experiment, and issuing a single join/leave/fail
command for the purpose of monitoring/visualising the execution of the respec-
tive join/leave/fail algorithms in the DSUT application.

How to define and implement a churn model is an open issue. One possibil-
ity is to take as input a node lifetime distribution. Another is to take as input
absolute join/leave/fail rates (#/s) or join/leave/fail rates relative to other DSUT
application operations. This would relate to an operations model applied by the
CCOM. Given these models and the cluster and emulators traffic handling ca-
pacity, absolute churn rates can be devised. Starting from the churn model, a
churn event script is generated.

The churn event script execution relies on the global slots view, provided by
the CCTM, to decide which slots to launch/shutdown/kill.

11

3.3 Network Partitioning Module

The CCPM is responsible of executing a network variation script in the context
of an automated experiment and issuing a single network partitioning or link
failure for the purpose of visualising the DSUT application behaviour in effect of
the partitioning or failure.

How to define a network partitioning and link failure model is still an open
issue. One possibility is to split the network and re-merge it repeatedly. Another
is to have multi-level splits and recombined merges. For instance:

N1234 → N12 ∧ N34 → N1 ∧ N2 ∧ N3 ∧ N4 → N13 ∧ N24 → N1234

Non-transitivity scenarios, whereby host A can connect to host B and host B
can connect to host C but host A cannot connect to host C, and firewall scenarios,
whereby host A can connect to host B but host B cannot connect to host A, should
also be described in the model.

The CCPM relies on the global slots view, provided by the CCTM, to decide
how to cut the network. Starting from the network variation model, a network
variation script is generated. While executing the network variation script, the
CCTM sends commands to the Network Partitioning Agents (NPA) running on
the emulator nodes.

The NPAs are responsible of enforcing the split, merge, and link failure com-
mands received from the CCPM, by installing traffic filtering rules in the operat-
ing system kernel. Therefore, in order to minimise the number of filtering rules,
the easiest way to split the network is by IP address space.

Currently we deployed ModelNet with a full-mesh target topology. However,
in the case of deploying a complete transit-stub topology, for the sake of realism,
it would make sense to cut the network on a transit-transit link. This would be
accomplished by setting the packet drop rate on one or more transit-transit links
to 100%.

3.4 Statistics Monitoring, Aggregation and Caching Module

The Agent StatsMon Module (ASM) is in charge of collecting, aggregating and
caching statistics from all virtual nodes running on the same machine. How
statistics are defined and the aggregation policies are discussed in Section 4.1.
Suffice to say here is that we have three types of information: pushed state,
pulled state and notifications. Hence, at the StatsMon layer, information flows

12

both ways between the agents and the control center.
The ASM exports an interface to the DSUT nodes, allowing them to publish

pushed state and install state update and method call notification handlers, upon
being launched. The ASM builds a state aggregation structure and also pushes it
to the Control Center StatsMon Module (CCSM). The CCSM collects this struc-
ture from all ASMs and builds a global state aggregation structure which it makes
available to the Visualiser.

Pushed state is immediately updated in the ASM, as soon as their value
changes in the DSUT nodes. The ASM aggregates the recently received stat up-
dates with the state it keeps in its aggregation cache. Then, the ASM pushes the
cache updates forward to the CCSM. The CCSM aggregates the received updates
with the state it keeps in its aggregation cache, keeping a consistent global view
of the observed DSUT state. As both the ASM and the CCSM cache pushed data,
only the differences need to be communicated.

Pulled state is not updated in the ASM when it changes. Instead, the DSUT
nodes register getters that can be called by the ASM to retrieve the state. Pulled
state retrieval is triggered by the Visualiser or by an external GODS client. It asks
the CCSM for the state which in turn asks the ASMs which in turn call the DSUT
getters. Pulled state is not cached but it can be aggregated.

Method call notifications are sent from the DSUT nodes to the ASM, and the
ASM forwards them to the CCSM which logs them in the database and reports
them to the Visualiser or to an external GODS client. Notifications are used
for the DSUT nodes to report internal events like the receipt of a message or
failure detection, and allow the visualisation of distributed algorithms execution.
Notifications are not cached and are not aggregated.

3.5 Operations Module

The operations layer provides functionality for invoking DSUT application oper-
ations. The Agent Operations Module (AOM) exports an interface to the DSUT
nodes, allowing them to publish callable operations. The AOM collects all the
DSUT callable operations and reports them to the CCOM. The CCOM provides
a view of all DSUT callable operations to the Visualiser or to an external GODS
client, which can then trigger operation calls through the CCOM and the AOMs.

The CCOM provides functionality for implementing operation invocation
models. An operation invocation model can be specified either declaratively, in
terms of operation types and operation rates, or through an operations scripting

13

language. The operation invocation model implementation relies on the global
DSUT nodes view, provided by the CCTM, to decide which DSUT nodes to issue
operations on. Starting from an operation invocation model, an operation invoca-
tion script is generated. This script is executed by sending operations commands
to the AOMs.

The AOM is responsible of invoking operations as commanded by the CCOM,
timing each invoked operation and reporting the registered times to the CCOM.
The CCOM collects the timings and reports them to the Visualiser or to an exter-
nal GODS client, for single operation calls, or stores them in a database, when the
operations are invoked from an operation invocation script, part of an automated
experiment.

3.6 Automation Module

The Automation Module (AM) provides functionality for devising complex ex-
periments with specific churn models, network partitioning models and oper-
ation invocation models. It allows for running the same experiment multiple
times for a statistic evaluation, composing experiments and parameterising ex-
periments.

It is still an open issue to design a language for expressing churn models,
network partitioning models and operation invocation models, for composing
basic experiments into more complex ones, for parameterising experiments, for
specifying data collected in the experiment and so on.

The AM is responsible for batch scheduling of automated experiments carried
out as part of performance tuning experiments, executing regression test suites,
or benchmarking experiments.

3.7 Bandwidth Accounting Module

The Bandwidth Accounting Agent (BAA) runs on the emulator node and is in
charge with measuring bandwidth consumption by the DSUT. Because DSUT
traffic is routed to the emulator machines and GODS control traffic is routed to
the Control Center machine, by placing the BAAs on the emulator machines,
DSUT bandwidth consumption can be measured accurately.

The BAAs measure DSUT bandwidth usage by installing traffic filtering rules
in the operating system kernel, for logging the size of every forwarded packet
having source and destination IPs in the 10.0.0.0/8 address space.

14

In the case of multiple emulator machines, there is a BAA running on each
emulator. To avoid duplicate measurement, packet size is only recorded when it
exits the core, that is, when routed to an edge machine.

The BAA can continuously report bandwidth usage, or it can be turned on
and off by the CCCM or the CCOM, to measure bandwidth used by join/leave/fail
protocols and operations respectively. To some extent, bandwidth consumed by
DSUT operations and bandwidth consumed by DSUT correction algorithms trig-
gered by churn can be distingueshed using the timestamps of the operations and
the timestamps of the churn events, respectively.

15

4 Statistics and Notifications

The purpose of GODS is to put the DSUT evaluator in the front row. She should
be able to easily observe DSUT internal events or internal state, be it a DSUT
node’s routing table or state variables of a specific algorithm.

We have briefly sketched the nature of statistics and notifications in Section
3.4. Collected statistics offer global knowledge about the DSUT internal state.
Notifications offer global knowledge about DSUT internal events. Let us enter
the details of statistics and notifications collection, now.

4.1 Statistics

In order to capture DSUT internal state we need statistics of a few basic data
types: integer, long, double, string and probably two composite data types:
set and structure, for unstructured and structured collections, respectively.

In order to cope with the large scale of DSUT applications, which can run on
thousands of virtual nodes, and to offer a compact view of the DSUTat the same
time, we need to aggregate statistics. Stats aggregation is done on two levels: at
the agent level and again at the control center level.

Each stat has a name, a type and a value. Statistics of the same name and
type are aggregated across local virtual nodes at the agent level and across all
agents at the control center level.

We envision two aggregation techniques. For the integer, long and string

stats, the aggregated view could be the number of occurrences of a distinct value
across all the virtual nodes. For instance, if 10 local VNs present values: 2, 3, 2,
1, 4, 4, 5, 2, 3, 2 to the ASM, the ASM aggregates them as {(1, 1), (2, 4), (3, 2),
(4, 2), (5, 1)}. On the next level, if two ASMs present {(1, 1), (2, 4), (3, 2), (4, 2),
(5, 1)} and {(1, 3), (2, 3), (3, 1), (5, 2), (6, 4)} to the CCSM, the CCSM aggregates
them as {(1, 4), (2, 7), (3, 3), (4, 2), (5, 3), (6, 4)}.

For the integer, long and double stats, the aggregated view could be the
number of values occurring in a range. For instance, if the 10 local VNs present
values: 1.3, 1.4, 0.5, 3.7, 4.2, 2.5, 2.3, 2.4, 3.2, 3.5 to the ASM, the ASM aggregates
them as {(0.0-1.0, 1), (1.0-2.0, 2), (2.0-3.0, 3), (3.0-4.0, 3), (4.0-5.0, 1)}. CCSM
aggregation follows similarly.

It is still an open issue whether set and structure stats would need some
form of aggregation. Not all DSUT state is suitable to aggregation, for instance,
DSUT routing tables. Instead, it may be suitable to caching. DSUT nodes’ rout-

16

ing tables can be cached at both the ASM and CCSM levels. Thus, the CCSM
offers a global view of the DSUT topology, and because only changes need to be
communicated, DSUT nodes’ routing table updates can quickly be reflected in
the global view.

As we mentioned before, stats can be either pushed or pulled. Either way, we
need to get up to date stats, that is, the DSUT internal state should not be far
ahead of the reported view. Therefore, both DSUT internal code and the ASM
should access the same data or memory locations.

One possibility is to have all DSUT observed state as instances of an Observed-
Variable class. This class contains the name, type, value and push/pull flags for
one stat. The value is accessed through getters and setters both by the DSUT
code and by the ASM. Pulled stats are retrieved by the ASM through getters.
For pushed stats, the setter checks whether the new value is different from the
old value. If that is the case, an update is sent to the ASM. The ASM updates its
cached state and sends a cache update forward to the CCSM. The CCSM updates
its cached state and triggers the Visualiser to update its view.

Using ObservedVariables requires changes to be made to the DSUT source code
which is prone to introducing subtle bugs. Another possibility is to implement
the ObservedVariable functionality using the debugging mechnisms offered by
JVMTI and accessing them through JMX. No changes need to be made to the
source code. The observed DSUT state, as fully qualified member names (pack-
age.class.member), together with push/pull flags, are specified in an Extensi-
ble Markup Language (XML) stats descriptor file. This XML file is read by the
ATM upon initialisation and the corresponding watches are installed into the
Java virtual machines at DSUT node launch time. This process is described in
Section 6.3.4.

One may think about heisenbugs, the kind of bugs that do not reproduce under
the debugger, often synchronisation errors, and wonder whether instrumenting
the Java Virtual Machine (JVM) may lead to similar situations. Instrumenting the
JVM is the least instrusive and lightest way of instrumenting a Java application.
Even if heisenbugs are instroduced this way, that is out of the scope of GODS.

Both using ObservedVariables and bytecode injection are suitable for DSUT
applications written in the Java programming language. For DSUT applications
written in other languages, source code modifications are needed and a special
application interface to the ASM.

Because the DSUT traffic is subject to the ModelNet target topology latencies,
and hence a bit delayed, and the GODS traffic is not, it is likely that DSUT state

17

updates, made while executing distributed algorithms, are observed in real time
in the Control Center.

4.2 Notifications

Notifications are a means of live reporting of DSUT internal events to the Con-
trol Center, allowing the user to monitor the execution of DSUT distributed al-
gorithms. In particular they can be used to report the receipt of select messages,
but in principle they could be used to report any kind of event, not necessarily
related to receiving a message. For instance, actions that the DSUT node decided
to take as a result of running a local periodic algorithm, failure detection events,
select method calls, or events that may or may not be triggered by a message re-
ceipt, that is, events that are not definitively implied by a message receipt, could
all be reported.

Notifications should be described in an XML notifications descriptor file. This
XML file is read both by the ASM and the CCSM upon initialisation. Each noti-
fication type has a unique identifier allowing it to be distinguished in the CCSM
and properly shown in the Visualiser, maybe using colour coding.

If we merely want to report message receipts or method calls, we can easily
use the JVMTI to watch and a method call and trigger the notification. The re-
spective fully qualified method names and message handlers should be specified
in the XML notifications descriptor file, for the ASM to know how to install the
watch. If we want to report intra-method events other that state updates, chang-
ing the DSUT source code is required. Probably the safest choice is to refactor
the code so that the respective events are extracted in their own methods.

The communication between the DSUT nodes and the ASM for both pushed
stats and notifications, is done through the JMX protocol. Once again, for DSUT
applications written in programming languages other than Java, source code
refactoring and a special application interface to the ASM is needed.

18

5 Use Cases

We envision two major usage scenarios for GODS, namely interactive control and
monitoring a DSUT and running batch automated experiments. The user would first
experience using GODS interactively, driving it from the Visualiser, and after
getting used to its features she would start setting up automated experiments,
thereafter driving GODS from external automation tools.

First, let us review the basic mechanisms offered by GODS and then we look
at how they can be leveraged into complex evaluation experiments. GODS pro-
vides:

• a global view of slots topology including all pairs latencies and bandwidths;

• controlled launch, shutdown and kill of DSUT nodes;

• partitioning the emulated network and changing network links properties;

• global knowledge about published DSUT parameters, DSUT internal state,
DSUT topology and DSUT exchanged messages;

• timed DSUT operations invocation;

• DSUT traffic bandwidth measurement;

We strive to keep GODS independent of DSUT as much as possible. However,
for the simplicity of presentation, the following use cases refer to evaluating a
specific DSUT, DKS[9], a large-scale distributed hash table.

5.1 Interactive Control and Monitoring

In interactive control and monitoring, the user is presented with the slots topol-
ogy. She can select slots on which to launch DKS nodes. She can manually assign
DKS IDs to slots or use the Secure Hash Algorithm (SHA-1) hashes of the slots’
IPs. She can also check which slot’s IP hashes closer to a given identifier.

The Visualiser should draw the DKS ring topology. DKS nodes should be
selectable. When a DKS node is selected, its neighbours are highlighted and
its fingers are drawn. On the selected DKS node, the user can issue lookup
operations. Using notifications for lookup messages, the user can visually inspect
a lookup path. The time it took for the lookup to return is reported to the user, as
well as the latency between the lookup initiator node and the lookup destination
node.

19

The user can activate bandwidth accounting and issue another lookup. Be-
sides the lookup time and the latency between the end nodes, the user is also
presented with the number of messages and the bandwidth consumed by the
lookup.

The user can launch a new DKS node and using notifications for the messages
exchanged in the local atomic join protocol, the user can visualise the execution
of the local atomic join. Pushed stats for the state variables in the atomic join
protocol, can also be used. The Visualiser should allow colour coding for mes-
sage notifications and different state changes. The drawn DKS nodes should
change colour according to the received notification so the user can easily visu-
ally inspect the execution of the algorithm. Finally, the user is presented with the
number of messages and bandwidth consumed by the local atomic join protocol.

The user can kill a DKS node and watch how its neighbours detect the failure
and initiate a topology maintenance protocol. Inspecting how the DKS nodes
change colour, the user is able to see all the nodes affected by the maintenance
protocol. The user can also see how their routing tables are updated. Again, the
user is presented with the total number of messages and bandwidth consumed
by the topology maintenance protocol.

A DKS plug-in to the Control Center, should report at all times, the number
of stale fingers in the system. This is possible because the plug-in has global
knowledge about the topology, and can check whether all the fingers point where
they should. This is possible even when using Proximity Neighbour Selection as
global knowledge about all pairs latencies is available. If the PNS scheme relies
upon Vivaldi [6, 7], this would also reveal the accuracy of the latency prediction
given by the synthetic coordinates.

The user can issue a network partitioning and observe how DKS reacts to
that. The Visualiser should be able to draw two or more rings if new DKS rings
are formed as an effect of the partitioning. A storm of topology maintenance
messages is expected after a network partitioning. The user should be presented
with the total number of these messages and the total bandwidth consumed. The
user can merge the network partitions and again observe the DKS behaviour.

The user should be able to record her actions, replay them and combine them
into automated experiments.

20

5.2 Automated Experiments

Besides combining recorded actions, the user should be able to specify an opera-
tion invocation model, a churn event model and a network variation model for an
automated experiment. The user can also define groups of nodes with different
models. Groups of nodes running a modified version of the application can be
defined, to observe how the application copes with Byzantine behaviour. Start-
ing from these models, experiment scripts are generated, so that an experiment
can be later reproduced.

The user also specifies the measurements collected in an automated experi-
ment. For some experiments meant to be executed as part of a regression test
suite, for performance tuning or benchmarking, some input parameters with
ranges of possible values need to be specified. The Automation Module will
then, schedule this experiment one time for each different input parameter value.
When an automated experiment is started, collected measurements are automat-
ically stored in a database. Notification email should be sent upon completion of
an automated experiment or in the case of an experiment failure.

The Visualiser should be able to hook into a running automated experiment
and allow its user to monitor the DSUT activity. This is particularly useful for
inspecting the status of an experiment running for a couple of hours or even
days.

One drawback of using a real-world setup with real-world latencies and ac-
tual DSUT code running, is that it leads to lengthy experiments. For instance,
let’s suppose we run 2000 DSUT nodes and we want to measure the DSUT stretch
by issuing all pairs lookups and pings. We need to execute about 4 million
lookups and 4 million pings. If we issue one lookup and one ping every second
we need around 46 days. So we need to issue around 50 lookups and 50 pings
per second to finish in one day. Should the ModelNet emulator traffic capacity
become a bottleneck, we could scale it up by adding more emulators. In this
scenario, the CCOM needs to balance the issued operations evenly across the
emulator machines.

21

6 Implementation Details

In this section we explain the implementation details of GODS. First, we explain
the core concepts of GODS, then we explain its software architecture, followed
by extension mechanisms. Finally, we explain the technologies used for each part
and the motivation for our choices.

The control center and agents are collectively referred to as components of GODS
in this section, while, the individual modules of each of these as described in the
previous Section are still referred as modules.

6.1 Core Concepts

GODS has been developed entirely as an event-driven system. It functions as a
set of modules interacting through events. The modules subscribe for and publish
the events. In the following sections we explain the core concepts of GODS, before
we delve into the implementation details. Then, we would explain the extension
mechanisms of GODS.

6.1.1 Event

An event in GODS besides representing the events in traditional approaches also
represents asynchronous requests and replies for interaction among modules as
well as the control center, agents and visualiser. Events are the only way for coop-
eration among internal modules of the components. The components of GODS how-
ever, can interact by alternative means which are explained later in this chapter.

The events are subscribed and triggered by modules. An event can be sub-
scribed by multiple modules specifying their respective event handlers and can
also be triggered by multiple modules.

The events are prioritised, and can be grouped with similar events into event
topics. The grouping of events into event topics is to facilitate subscription of event
groups as a whole. This feature is currently however not being used.

6.1.2 Module

A module in GODS represents an object encapsulating state, to be modified only
by a set of events to which the module subscribes. Each module has its own thread
and a blocking priority based queue of event handlers. A module is thus a unit
of execution in GODS and can ideally be loaded or unloaded independently of

22

other modules. A module subscribes to events of interest just before starting its
thread.

As described earlier a module subscribes to the events along with a specific
event handler. When an event is triggered the corresponding event handler is en-
queued by the events broker in the module’s queue of event handlers. An event
handler is only associated with a single module, that is it can only modify the data
in a single module.

This mechanism serialises the access to a module’s data structures and since
modules cannot be accessed by any other means there is no need for explicit
synchronisation of a module’s data structures. This approach however has the
disadvantage of some threads being unutilised or underutilised, in case of a
module having less or no workload.

6.1.3 Event Handler

An event handler as opposed to its name is not a method, but an object encapsu-
lating the event to be handled, an instance of the module responsible for executing
the event handler and a method handle which actually handles the event. Event
handlers are prioritised based on the priorities of the event they handle.

The motivation for modelling the event handler as an object rather than meth-
ods of modules would be explained later in this chapter.

6.1.4 Subscriptions Registry

The subscription registry simply keeps a list of all subscriptions for an event type
in a hash map. It provides a simple interface to its clients through the methods
addSubscription and getSubscriptions. The addSubscription method adds a subscrip-
tion to the list of previous subscriptions against an event type, and the getSub-
scriptions method returns the list of all subscriptions for an event type.

A subscription is a 3-tuple, containing the event type, a reference to the module
instance that is interested in the particular event type and the event handler type to
handle the event.

The subscription registry is not an event broker itself, but only a utility for
GODS components which act as event brokers for their internal modules.

23

6.1.5 Task

A task represents an execution request from control center to an agent that is to be
executed synchronously. This is in contrast to an event which is enqueued and
then scheduled for a module subscribing to it. This is however not being used
currently.

6.2 Event Handling

The control center and agents also act as event brokers for their respective modules.
All modules register their interest in events as soon as they are started, with the
component to which they belong. The component stores these subscriptions in a
subscription registry.

When an event is triggered by a module or rather by an event handler, it is
enqueued in the events queue of the component to which the module belongs. The
component consumes these events from the head of a priority queue. For every
event, it searches in its subscription registry and for the list of subscriptions for the
event type. For each subscription in the list it instantiates the corresponding event
handler, initialises it and enqueues it in the subscribing module.

Event handling between components that is the control center and agents is ex-
plained in detail later in this chapter.

6.3 Software Architecture

In this section we explain the internals of each of the GODS component and the
interfaces they expose to each other.

6.3.1 Overview

The control center and the agent are modelled as singletons [11] that is there exist
only one instance of them in a JVM.

The applications either update their state to the local agent or the agent pulls
the data from application nodes running on the same physical node as the agent.
Similarly, an agent can either update the control center or the control center can
request for an update from any of the agents. The components thus have to
provide interfaces for both type of scenarios.

24

6.3.2 Control Center

The Control Center orchestrates the execution of experiments. It can be con-
trolled manually from the visualiser for interactive experiments but it also needs
to be controlled by external GODS clients for automated experiments. Hence, we
need to provide interoperability with various automation tools.

The Control Center is implemented as a set of cooperating modules, as de-
scribed in Chapter 3 which interact amongst themselves through events. Since,
the control center also acts as an event broker between its modules, it also has to
provide an interface for the modules to subscribe and trigger events. This func-
tionality is exposed by the ControlCenterInterface with the subscribe and enqueue
methods.

The functionality that is required by the agents or for control and monitor-
ing of the DSUT is provided through the ControlCenterRemoteInterface and is im-
plemented by the ControlCenterRemote object. Although, ControlCenterRemote is
modelled as a separate entity for reducing responsibility on the control center
however, it is encapsulated by the control center. When, the ControlCenterRemote
receives an event from an agent, it is simply enqueued in the control center, as that
is also to be dealt by one of the modules.

When, GODS is started first of all the configuration properties are loaded and
all the modules are started. A BootEvent which contains the command line argu-
ments is then enqueued in the control center and it is then started. The BootEvent is
processed by the control center’s DeploymentModule which is explained in section
6.3.2.

Next, we discuss the control center’s internal modules.

DeploymentModule The control center’s DeploymentModule currently handles
the process from booting up of GODS to the state when GODS is ready for an
experiment. As described earlier in the section that the event handler for the
BootEvent is enqueued in the DeploymentModule at startup. The handler deploys
agents code on the physical machines, starts the agents and changes GODS state
to JOINING.

The DeploymentModule then waits for a JoinedEvent from each of its agents.
This is a synchronisation point or barrier. After receiving JoinedEvent from all
agents, the control center determines the requirement for the number of slots (vir-
tual nodes) required for the experiment as specified in its configuration. It then
equally distributes the number of nodes on each machine and sends the range of

25

slot ids to each agent in the PrepareEvent. It then waits for a response from each of
the agents.

As the agents are ready for the experiment, they start sending in ReadyEvent
to the control center. After receiving a ReadyEvent from each of the agents, the
control center sorts all the slots received from each agent and sends an update to
the visualiser. The physical location of slots is thus transparent to the user.

ChurnModule The ChurnModule of the control center currently handles the launch,
stop and kill application events for the control centerİn order to launch an appli-
cation the ChurnModule handles a LaunchApplicationEvent from the control center.
It first determines the physical location of the slots on which the DSUT is to be
launched. In case slots lie on different machines, the ChurnModule’s event han-
dler for LaunchApplicationEvent breaks the LaunchApplicationEvent into separate
LaunchApplicationEvents one for each machine. The control center receives Applica-
tionLaunchedEvent from each of the agents to which the slots belonged. The control
center then updates the visualiser.

A similar procedure is followed for the KillApplicationEvent and StopApplica-
tionEvent.

TopologyModule The TopologyModule is to handle the events related to changes
in topology. The topology is however static currently, and so it is not handling
any events. It however, keeps the global information on all slots, and references
to all agents.

6.3.3 Agent

An agent is responsible for executing the control center requests and updating sta-
tus of all application nodes on a single machine, as discussed in Section 3. It
needs to provide an interface to the control centeras well as the DSUT. Addition-
ally, it needs to provide an interface for its internal modules for events handling.

The interface for agents internal modules is exposed by the AgentInterface. The
interface exposes the methods subscribe and enqueue for subscription and trigger-
ing of events respectively.

The interface for the agent’s interaction with control center and DSUT is ex-
posed through AgentRemoteInterface. This interface exposes two methods for in-
teraction with DSUT that is notifyDSUTEvent and updateDSUTState for push and
pull updates respectively. Interactions with the control center is carried out with

26

notifyEvent and executeTask methods. While, the former serves the purpose of
asynchronous communication, the latter is used for synchronous execution of a
task from the control center. The executeTask method is not in use currently.

Agents are started by the control center on each of the physical machines as part
of processing the BootEvent. An agent loads its configuration properties, starts its
own modules and then enqueues the AgentBootEvent in its queue. This starts the
deployment process as explained in section.

AgentDeploymentModule The AgentBootEvent is the first event handled by the
AgentDeploymentModule. In response to this event it only sends JoinedEvent to the
control center.

As an agent receives PrepareEvent from the control center, it executes the Prepa-
reEvent handler, which gathers the information of all slots on the machine as that
of the agent, assigns them slot ids within the range specified by the control center in
the PrepareEvent and sends this information to the control center in a ReadyEvent.

AgentChurnModule The AgentChurnModule handles the churn events from the
control center. As it receives a LaunchApplicationEvent from the control center it
launches the application each time taking a different set of arguments if provided,
collects their process ids against their slot ids and sends this information to the
control center in ApplicationLaunchedEvent. The control center then updates its data
and sends an update event to the visualiser as well.

The KillApplicationEvent and StopApplicationEvent are handled similarly, and
if successful an ApplicationKilledEvent and ApplicationStoppedEvent is sent to the
control center respectively.

If any launching, killing or stopping operation is unsuccessful in a churn
event, the experiment is completely aborted.

AgentTopologyModule The AgentTopologyModule does not handle any events
currently, due to static topology, however it keeps information of all slots on the
same physical machine.

6.3.4 Application Interface

GODS needs to interact with the DSUT application bi-directionally for issuing
operations and receiving state update and method call notifications respectively.
Cooperation from the application is needed for triggering certain events and

27

also for executing the operations issued by GODS. Therefore an application’s
behaviour needs to be changed in order to offer this kind of cooperation.

Changing the application’s source code, to make it GODS aware, is one solu-
tion but we believe that this is prone to introducing bugs in the code, on the one
hand, and it would make the adoption of GODS less attractive, on the other hand.
Therefore, we prefer to leave the application’s source code intact and to change
the application’s behaviour by instrumenting its executing virtual machine. Of
course this is possible only for applications written in the Java programming lan-
guage. For applications written in other programming languages, the application
source code needs to be changed to implement the GODS application interface.

We use a JVMTI [33] agent to watch and trigger write accesses to certain fields
in the application and to notify entry and exit points of certain methods. These
notifications are sent to an MBean [23] server local to the JVM. This MBean server
will forward the notifications to the GODS agent through the JMX [24] protocol.
Hence, the GODS agents are JMX compliant clients. The GODS agents can also
send operation invocation commands to the JVMTI agent, again through the JMX
protocol.

At initialisation time, the GODS agent reads the pushed state and method call
notifications descriptor files, and commands the JVMTI agents in all application
instances to install the necessary watches. The same watches are installed in
every virtual machine of a newly launched application instance.

Using JVMTI permits dynamic installation and removal of watches, allowing
the user to watch new fields and methods, specified at experiment run-time.
Hence, GODS behaves as a true debugger for distributed applications.

6.4 Extension Mechanisms

There can be greatly varying requirements for testing of different DSUTs. Taking
this into consideration, there are various interfaces are provided in GODS. This
section discusses in detail the various requirements that might arise and how
they can be accomplished.

Events can be added through either the Event interface or the AbstractEvent
class in order to observe behaviour specific to a DSUT. Moreover, for any added
event, an EventHandler should be written and the pair should be added to a
module’s subscription list.

It might however be a case where an eventonly needs to be handled differ-
ently. For this case the abstract EventHandler class should be extended. Two

28

different cases can be considered here, one where an eventneeds to be handled
in a completely different way than it is being currently handled, or adding some
functionality to the current EventHandler. For the former case an EventHandler
should be extended directly from the EventHandler class, while for the latter a
new EventHandler can be extended from the specific event handler.

Moreover, different DSUTs require different arguments at command line. In
case a single DSUT is to be launched that can be easily achieved in the interactive
control and monitoring mode from the visualiser. However, for launching multi-
ple nodes, arguments to an application can be generated. For this purpose the
ArgumentGenerator interface has been provided. The ArgumentGenerator can be
provided an optional configuration file, to generate different types of arguments.
For example, in case a ring based DHT is being tested, we might like the applica-
tion nodes to be either uniformly distributed over the ring, randomly distributed
or in a sequence.

6.5 Technologies Used

The GODS infrastructure is written in the Java programming language. Java was
our foremost choice considering the requirement of portability. For the cooper-
ation between agents and the Control Center we make use of Remote Method
Invocation (RMI) [32]. RMI was chosen because on top of its inherent extensi-
bility from Java, it provides great ease in extending the protocols for interaction
amongst remote components.

For instrumenting the DSUT application we make use of the JVMTI [33]. The
other alternative was developing our own instrumentation component using Byte
Code Engineering Library (BCEL) [1] or the high level instrumentation API Javas-
sist [17]. The motivation for using JVMTI has already been explained in Section
6.3.4. Java reflection [13] classes are used to aid an evaluator to see which of the
available state variables would she like to observe in a distributed system.

As a generic testing and debugging platform for distributed systems, GODS
requires configurations and scripts for testing specific distributed software. The
configuration files are in XML due to its extensibility and the availability of tools
available for reading and validating these. Scripts are currently written for the
bash 2 environment.

The Visualiser is built around the Java Universal Network/Graph (JUNG) [10]

2Bash is an sh-compatible shell, or command language interpreter. http://www.gnu.org/
software/bash/

29

http://www.gnu.org/software/bash/
http://www.gnu.org/software/bash/

framework, for extensible topology visualisation. We use a MySQL database
through Java Database Connectivity (JDBC), for storing execution statistics and
event logs.

We plan to add bindings to popular programming and scripting languages (C,
C++, Python, Perl, Tcl, Ruby), to allow the scheduling and automatic execution
of various experiments.

30

7 Contributions

In this section we briefly describe the contributions of this work, that are con-
trollability and reproducibility of experiments, emulating network partitioning,
bandwidth accounting of application nodes on Modelnet, emulating churn and
the behaviour of users of large-scale distributed systems (load injection).

7.1 Controllability and Reproducibility

Modelnet provides a good foundation for testing of large-scale distributed sys-
tems on a realistic wide-area network, this however, comes with great complexity
in management and evaluation of the deployed system. GODS enhances Mod-
elnet by providing a mechanism for having full control over the experiments
and being able to reproduce them. It provides global knowledge of select system
state in the form of aggregated statistics and a global view of the system topology
emulated by Modelnet.

7.2 Emulating Churn

GODS sits over Modelnet to orchestrate churn in a large-scale distributed system.
This is useful to observe the behaviour of the distributed system under test when
individual nodes are joining, leaving and failing. For example, DHTs based on
ring based overlay networks are said to be highly resilient to churn [31], various
DHTs can be tested under churn to evaluate their performance.

7.3 Emulating Network Partitioning

We enhance the Modelnet emulated network to provide network partitioning. Our
tool adds dynamism to the emulated environment in the form of dynamically
partitioning the network, besides modifying network link characteristics. This is
useful for example to observe the behaviour of a large-scale overlay network in
case of a network partition.

7.4 Bandwidth Accounting

GODS correlates traffic to certain operations and modules of the application to
account for the bandwidth usage by a distributed application. This helps to ob-

31

serve the bandwidth consumed by different algorithms or their implementations
by a distributed application.

7.5 Emulating User Behaviour

Besides, emulating churn and network performance anomalies we also provide
emulation of user-behaviour by controlling the application through probing into
the application. This can be useful in evaluating a distributed application with
models of user-behaviour for example to observe what happens as a user sends
a query in a distributed application.

32

8 Related Work

We do not know of any other tool that provides the complete functionality offered
by GODS, however we are aware of some related work that overlaps parts of our
goals.

8.1 Application Control and Monitoring Environment (ACME)

Application Control and Monitoring Environment (ACME) is a scalable, flexi-
ble infrastructure that can perform the tasks of benchmarking, testing, system
management, scalability and robustness of large-scale distributed systems [28].
ACME extends the scope of emulation environments such as Emulab [35] and
Modelnet [25] by adding a framework to automatically apply workloads, and
under faults and failures to measure complete distributed services, based on a
user’s specification [27].

ACME is built over the metaphors of sensors and actuators. The sensor
metaphor is used to describe the mechanism for monitoring distributed systems
and actuator metaphor is used to describe the mechanism for controlling dis-
tributed systems being evaluated. It has two principal parts, a distributed query
processor (ISING) that queries Internet data streams and then aggregates the re-
sults as they travel back through a tree-based overlay network. The second part
is an event triggering engine ENTRIE, that invokes the actuators according to
user-defined criteria, such as killing processes, during a robustness benchmark
[28].

ACME has been used to monitor and control two structured peer-to-peer
overlay networks, Tapestry[37] and Chord[26] on Emulab[35].

8.2 Distributed Automatic Regression Testing (DART)

DART [5] is a framework for distributed automated regression testing of large-
scale network applications. It provides distributed application developers with
a set of primitives for writing distributed tests and a runtime that executes dis-
tributed test in a fast and efficient manner over a network of nodes. Besides, the
programming environment and test script execution DART also provides execu-
tion of multi-node commands, fault injection and performance anomaly injection.

DART supports automated execution of a suite of distributed tests, where
each test involves (1) setting up or reusing a network of nodes to test the ap-
plication on, (2) setting up the test by distributing code and data to all nodes,

33

(3) executing and controlling the distributed test, and finally (4) collecting the
results of the test from all nodes and evaluating them.

To automate, the aforementioned tasks, DART relies on its components which
are network topology, remote execution and file transfer, scripting and programming en-
vironment, preprocessing, execution and postprocessing, fault injection and performance
anomaly injection.

ACME [28] and DART [5] though related to GODS do not have any mecha-
nisms for probing into the application under test itself e.g., invoking particular
operations or observing selected variables. This limits their evaluation of the
application only to the application environment and not user-behaviour.

Moreover, these platforms are targeted towards PlanetLab [29] or Emulab [35]
which also limits the controllability and reproducibility of the experiments.

The following works are also related to GODS in their vision, and have their
own contributions for solving the problem. We, thus explain them briefly and
discuss our differences with them.

8.3 WiDS

WiDS [20, 19] is an ecosystem of technologies for optimising the development
and testing process for distributed systems, currently developed at Microsoft
Research Asia. GODS shares part of the WiDS vision, but there are some differ-
ences between the two. WiDS allows developers to test their distributed systems
by either simulation or emulation. WiDS also allows debugging of distributed
systems, by running all the protocol instances in a single process address space.

WiDS puts more weight on assisting the user throughout the development
process, by enabling distributed algorithms modelling and code generation. In
contrast, GODS focuses on the evaluation of readily available implementations.

The vision that a single code base should be used for development and eval-
uation, by either simulation or emulation, is shared, but while one could use
GODS for evaluation of an existing implementation without changing it, in or-
der to use WiDS, the developer needs to write a WiDS driver and adjust her
implementation to be driven by that driver. The distributed application code has
to be encapsulated in WiDS objects, which represent protocol instances.

The WiDS objects can be run either in simulation mode, in emulation mode or
in debugging mode. Simulation is either local and all WiDS objects are run part
of the same address space, or distributed across a set of cluster machines. In em-
ulation mode each WiDS object is run in its own process and these are distributed

34

across the cluster machines. The traffic generated in emulation mode is routed
to a network emulator, just like in GODS. In debugging mode, WiDS objects are
run locally within a single process space, under the control of a debugger.

WiDS users work with the same code base across different development stages
and link it to appropriate libraries accordingly. WiDS provides multiple runtime
environments for simulation, emulation and debugging respectively. The price
to pay for this versatility is that source code has to be WiDS targeted.

In describing their experience with WiDS [20], the authors agree that protocol
bugs that are more difficult to find, only surface in emulation mode. Because
event handling can take arbitrarily long in network execution mode, as opposed
to one (simulated) clock tick in simulation, the sequence of events can differ in
unexpected ways, making it difficult to discover those bugs in the simulation
environment. For this reason, they enhanced WiDS with a module for logging
execution in emulation mode. The logs are then used to drive the execution in
debugging mode within a single process. We believe that GODS logging and
deterministic step-by-step replay achieves the same functionality.

Finally, WiDS is a proprietary tool while GODS is open source.

8.4 Liblog

Liblog [12] is a tool that enables replay debugging for distributed C/C++ applica-
tions. When running the distributed application, the Liblog library is preloaded
and all activity, including exchanged messages, thread scheduling and signal
handling is logged.

Each process logs its own activity locally. Post-mortem, all logs are fetched to
a central machine where an interesting subset of processes are replayed in step-
by-step debugging mode. Liblog integrates GDB into the replay mechanism for
simultaneous source-level debugging of multiple processes. Liblog uses Lamport
timestamps in exchanged messages to ensure that replay is consistent with the
causal order of events.

There are a number of challenges that Liblog overcomes. Because, no change
to the debugged application is made, Liblog transparently adds timestamps to
messages and removes them before delivering the messages to the application.
As the replay is done on a different machine, in the case where processes access
the file system, Liblog has to recreate the same file system view for the replayed
processes.

We believe there are some limits to the scalability of Liblog given the fact

35

that all exchanged messages have to be logged, and all the processes have to be
replayed on a single machine.

Liblog strives on deterministic replaying of the execution, by logging and
reproducing thread scheduling, signal handling and exchanged messages, there-
fore reproducing race conditions and non-deterministic failures. GODS offers
both replay of the execution (with no deterministic guarantees) and exact re-
play of the view of the execution, still guaranteeing that the execution view is
causally consistent with the real execution. Liblog allows replay debugging of
one uncontrolled execution at a time. In contrast, GODS allows for controlling
the execution and thus enabling the preparation of corner tests for the applica-
tion and subjecting the application to a suite of stress test executions for maximal
coverage.

Next, we describe a tool that only provides monitoring of distributed systems,
it is however worth mentioning here because of the similarity of the challenges
they share with the problem we have targeted.

8.5 Ganglia

Ganglia [22] is a scalable distributed monitoring system for high performance
computing systems such as clusters and Grids. It has been built to address the
challenges in modern distributed systems such as reliability, scalability, hetero-
geneity, manageability and system evolution over time. Ganglia serves the pur-
pose of monitoring distributed systems to detect software and hardware failures
for quick repair. It also provides means for evaluation of interactions between
different components of a distributed system by recording such interactions and
gives a global view of the system.

Ganglia is based on a hierarchical design focusing on federation of clusters.
It relies on a multi-cast based listen-announce protocol to monitor state within
clusters and uses a tree of point-to-point connections amongst representative
cluster nodes to federate clusters and aggregate their state. It incurs low overhead
on the system being monitored, is robust, and has already been ported to very
diverse types of distributed systems.

Ganglia has interesting properties and positive results for monitoring of dis-
tributed systems. It is however different from GODS that it is monitoring de-
ployed systems rather than providing a test-bed for distributed systems. GODS
vision besides monitoring is to be able to control distributed system over a fully
manageable emulated network, hence providing means to evaluate system prop-

36

erties and aid in debugging of distributed systems software.

37

9 Users Guide

In this section we firstly discuss in detail about how to configure and run GODS.
Later we discuss generating and running experiments through GODS.

9.1 Preliminaries

9.1.1 Enable Password Less Login

The machine running the GODS Control Center should have password less access
to the remote cluster machines which will be running the application under test.

Generating RSA key pair for the Control Center machine, and adding its
public key to authorized keys on each machine that hosts a virtual node.

9.1.2 Setup a Webserver

The GODS Control Center and Agents communicate using Java RMI. This re-
quires class files to be available on web. Hence a webserver is required with class
files shared on it.

9.2 Configuring GODS

9.2.1 GODS config file

The main config file for GODS is specified as a command line argument. Cur-
rently the gods.config.file in config folder is being used. The parameters required
in the config file are described below:

1. gods.slots is the number of slots in the network model

2. gods.net.model.dir is the path to the network model directory. GODS will
read the machines file from this directory to get the hosts and emulator
machines.

9.2.2 Deploying Agents

The agents are deployed automatically using the deploy-agent.sh script when GODS
is started. However, the following parameters are to be changed in the script.

1. SOURCE PATH is the path to GODS class files.

38

2. DESTINATION PATH is the path where GODS is to be deployed. It will be
deployed on each physical machine that is a host in the Modelnet network.

3. REMOTE USER is the user name assumed to be same for each host ma-
chine.

9.2.3 Configuring Agents

An Agent is started on each machine hosting the Modelnet virtual nodes by
GODS automatically, using the run-agent.sh script in scripts folder. This script
is passed a file agent-setup-snusmumrik.sh in the scripts folder for example which
sets up the environment. The variables in the script are described below:

1. AGENT HOME is the folder where agent has been deployed. All paths
accessed from the Agent are relative to this path.

2. JAVA PATH is the path to jre on remote machines.

3. CLASSPATH is the path to GODS class files on these machines.

4. CODEBASE is a web url to GODS class files. This is required by Java RMI.

5. JAVA POLICY is the java policy file. The file java.policy4 in the javapolicies
folder can be used to start with. java.policy4 does not have any security
related restrictions.

6.

7. CCHOSTNAME is the hostname of the machine on which Control Center
is running.

8. REMOTE USER is the remote user being used to run GODS experiments.

9. AGENT CONFIG is the config file describing parameters required by the
Agent at runtime. Currently, gods.agent.config.xml in the agent.config folder
is being used for this purpose. This does not require any changes.

10. AGENT LOG is the config file for the logger being used by GODS. A sam-
ple logger configuration file is agent.log4j.config in the agent.config folder.

39

9.2.4 Deploying Application

The application under test is also deployed automatically by GODS using the de-
ploy script for an application provided by evaluators. For the dummy application
this is deploydummy.sh script in dummy app folder provided in utilities. However,
the following parameters are to be changed in the script.

1. SOURCE PATH is the path to the application.

2. DESTINATION PATH is the path where the application is to be deployed.
It will be deployed on each physical machine that is a host in the Modelnet
network.

3. REMOTE USER is the user name assumed to be same for each host ma-
chine.

9.3 Running GODS

The run-gods.sh and test-gods.sh scripts in the scripts folder can be used to run
GODS.

1. test-gods.sh can be used to run gods in test mode. It starts GODS through
gods.tests.GodsTestSuite which performs any tests to be conducted on GODS
itself. It will start GODS and then wait for any key input before it starts the
tests.

2. run-gods.sh is used to run GODS in the normal mode, where visualizer can
join in between and send commands to the Control Center.

Both of these scripts can have two parameters as arguments at command
line. However at least one parameter is compulsory which is the file specifying
environment variables. Details about this file are mentioned in this section.

The second argument is a boolean which takes in the value of true or TRUE
and is false in all other cases. The default value is also true. If false the GODS boot
up mechanism will not start Agents automatically. This option is for debugging
initial startup or deployment problems.

9.3.1 Environment Setup File

gods-setup-snusmumrik or gods-setup-korsakov in folder scripts can be considered as
sample setup files. Following describes each of the parameters in the file.

40

1. GODS HOME is the full path of the folder which contains all files related
to GODS. Besides being used inside the script GODS considers other paths
relative to this path.

2. CLASSPATH is the path to GODS class files.

3. HOSTNAME is the hostname of the machine on which Control Center is
to be started.

4. CODEBASE is a web url to the class files. This is required by Java RMI.

5. POLICY is the java policy file. The file java.policy4 in the javapolicies folder
can be used to start with. java.policy4 does not have any security related
restrictions.

6. LOG CONFIG is the config file for the logger being used by GODS. A
sample logger configuration file is log4j.config in the config folder.

7. CONFIG FILE is the config file for GODS. It contains all the runtime pa-
rameters required by GODS. gods.config.file in config folder can be used as
a sample config file. The details of this configuration file are described in
detail in Configuration section.

9.3.2 Running Visualizer

The run-visualizer script in scripts folder can be used to run the Visualizer. This
script requires the same enviornment setup file as required by the scripts for
running GODS that is gods-setup-snusmumrik.sh can be used as one.

Currently, the Visualizer can join in a running Control Center. Some minor
fixes are required so that it starts up GODS if it is launched before GODS itself.

9.4 Experiments

Conducting an experiment involves the following steps:

9.4.1 Generating an Experiment

To generate an experiment the script generateExperiment.sh in the scripts folder
can be used. The following parameters in the script should be modified

41

1. GODS HOME This is the path to the folder where GODS is deployed.
Paths for the following variables are relative to this folder. In most cases
changing only this variable will suffice.

2. CLASSPATH This includes the path to GODS class files as well as the log4j
library.

3. LOG CONFIG The logger configuration file. The log4j.config file in config
folder can be used for this purpose.

4. ARG GENS FILE This is the file listing all classes that implement the
gods.churn.ArgumentGenerator interface against their Display Name. This is
by passed if a link to such a file is provided in command line arguments.
More details about Argument Generators and their need is described in the
Experiment Generation Parameters section.

The script takes in at most two arguments at command line. First is the
Experiment Generation parameters file and an optional second argument is the
file that lists all classes implementing gods.churn.ArgumentGenerator interface.

Experiment Generation Parameters GODS provides automatic experiment gen-
eration through gods.experiment.ExperimentGenerator class. It takes the experiment
generation parameters as a file in the command line arguments. Two such files
dummy.exp.xml and dks.exp.xml in the expgens.config folder can be viewed as ex-
amples of such files. The parameters in these files are described in detail in the
following lines:

1. experiment.name All files related to this experiment will be stored in a
folder with this name appended to the experiments.dir.path.

2. experiment.dir.path Path to the directory where a folder with experiment.name
will be created.

3. experiment.gen.class Fully qualified Java Class name of the ChurnEvent-
Generator. There are currently two types of churn event generators in
gods.experiment.generators package. One is a DummyEventGenerator which
generates join, leave and fail events on virtual nodes chosen randomly with
a random time interval between events. The other generator is the Join-
EventGenreator which only generates application join events after with ran-
dom time intervals between joins.

42

4. totaltime.int Total time for which the events for experiment are to be gen-
rated in seconds

5. seed.int Seed The seed that will be used for all pseudo-random number
generation.

6. slots.int Total number of virtual nodes in the deployed network model.

7. network.model.path Full path to the network model folder.

8. app.home.path Path to the home folder of the application that is to be
evaluated.

9. app.remote.home Path of the folder on which this application should be
deployed on the host machines (machines hosting the virtual nodes).

10. app.deploy.script Script to be used to deploy the application. This path is
relative to the variable app.home.path

11. app.init.script Script that is to be run just before beginning an experiment
to clean up all previous instance(s) of the application and clearing its logs.

12. app.launch.script Script to launch an application on encountering a join
event. The path to this script must be relative to app.remote.home. The
app.deploy.script should thus also deploy it on the host machnies.

13. app.remote.log Path to the file on which these application would log. The
path is relative to app.remote.home.

Currently all instances of an application on a single machine are assumed to
log their joining, leaving and failing into a single log file. This is so because
after each experiment GODS collects the logs from machines and compares
it with an experiment valdation file, if all events happened within a certain
threshold of actual time.

14. app.arggen.displayname Argument Generator display name for this Appli-
cation. Argument generators are required if each instance of an application
requires a different argument or set of arguments. For example in the case
of a ring based DHT each instance of an application might require a unique
id. In a case where all instances of an application require same set of ar-
guments, then these can be provided through the launch script, and an
argument generator is not required.

43

Argument generators in GODS are recognized by their display names in-
stead of Java class names. Argument generators are registered with GODS
against their display names through a config file currently chosen to be
gods.churn.arggens.xml in the arggens.config folder. The value for this prop-
erty must be an argument generators display name not class name. In a
case where argument generator is not required void should be specified as
the value for this attribute.

An argument generator must implement the ArgumentGenerator interface.
Argument generators already implemented in the gods.churn.arggens pack-
age can taken as examples to start with. These argument generators are
specifically for generating arguments required by an implementation of
Distributed K-ary System (DKS).

15. app.arggen.config.file An argument generator might need some configu-
ration parameters for generation of arguments. Consider the case where
each application instance is a node on a DHT ring, the ids to be generated
for them must be within a range. GODS provides a mechanism to specify
such configuration parmeters in files with which an argument generator is
initialized. There is no restriction for the format of such files or how they
are interpreted by an argument generator.

The value of this parameter should be a config file valid for the argument
generator specified in app.arggen.class. This parameter is not ignored if
app.arggen.class is void.

The configuration files for already implemented argument generators are
in the arggens.config folder.

16. app.kill.signal.int Integer signal number to be sent to the application be-
fore killing it. GODS, currently kills the application with KILL signal that
has the value of 9. So, this value is currently ignored.

17. app.stop.signal.int Integer signal number to be sent to the application for
it to leave the system gracefully. This feature has not been implemented
completely.

9.4.2 Running an Experiment

An experiment can be conducted by selecting to run an experiment through the
Visualizer. For running the Visualizer refer to Running Visualizer section.

44

GODS deploys the network required for the experiment automatically, how-
ever a network deployed after startup is not updated, so the network will have
to be deployed manually for an experiment and the network model and number
of slots in it should be mentioned in CONFIG FILE specified in GODS startup
parameters.

45

References

[1] Apache Software Foundation . Bcel, 2002–2006. http://jakarta.apache.

org/bcel/.

[2] BRITE. http://www.cs.bu.edu/brite, 2000-2001.

[3] BRITE. http://www.cs.bu.edu/faculty/matta/Research/BRITE, 2001.

[4] Jay Chen, Diwaker Gupta, Kashi Venkatesh Vishwanath, Alex C. Snoeren,
and Amin Vahdat. Routing in an internet-scale network emulator. In Doug
DeGroot, Peter G. Harrison, Harry A. G. Wijshoff, and Zary Segall, editors,
MASCOTS, pages 275–283. IEEE Computer Society, 2004.

[5] Chun. DART: Distributed automated regression testing for large-scale net-
work applications. In International Conference on Principles of Distributed Sys-
tems (OPODIS), LNCS, volume 8, 2004.

[6] Russ Cox, Frank Dabek, Frans Kaashoek, Jinyang Li, and Robert Mor-
ris. Practical, distributed network coordinates. In Proceedings of the Second
Workshop on Hot Topics in Networks (HotNets-II), Cambridge, Massachusetts,
November 2003. ACM SIGCOMM.

[7] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: A de-
centralized network coordinate system. In Proceedings of the ACM SIGCOMM
’04 Conference, Portland, Oregon, August 2004.

[8] DIMES. http://www.netdimes.org, 2004-2006.

[9] Distributed K-ary System. http://dks.sics.se, 2003-2006.

[10] Java Universal Network/Graph Framework. http://jung.sourceforge.

net/, 2003-2006.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object Oriented Software. Addison Wesley Professional Computing
Series. Addison Wesley, 1995. http://www.aw.com.

[12] Dennis Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. Replay debug-
ging for distributed applications. In Proceedings of USENIX Annual Technical
Conference, pages 289–300, 2006.

46

http://jakarta.apache.org/bcel/
http://jakarta.apache.org/bcel/
http://www.cs.bu.edu/brite
http://www.cs.bu.edu/faculty/matta/Research/BRITE
http://www.netdimes.org
http://dks.sics.se
http://jung.sourceforge.net/
http://jung.sourceforge.net/

[13] Glen McCluskey. Using Java Reflection, Jan 1998. http://java.sun.com/

developer/technicalArticles/ALT/Reflection/.

[14] GT-ITM. http://www-static.cc.gatech.edu/projects/gtitm, 2000.

[15] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble. King: estimating
latency between arbitrary internet end hosts. In IMW ’02: Proceedings of
the 2nd ACM SIGCOMM Workshop on Internet measurment, pages 5–18, New
York, NY, USA, 2002. ACM Press.

[16] Inet. http://topology.eecs.umich.edu/inet, 2002.

[17] Javassist. http://www.jboss.org/products/javassist, 1999-2004.

[18] King. http://www.mpi-sws.mpg.de/∼gummadi/king, 2002.

[19] Shiding Lin, Aimin Pan, Rui Guo, and Zheng Zhang. Simulating large-
scale p2p systems with the wids toolkit. In MASCOTS ’05: Proceedings of
the 13th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, pages 415–424, Washington, DC,
USA, 2005. IEEE Computer Society.

[20] Shiding Lin, Aimin Pan, Zheng Zhang, Rui Guo, and Zhenyu Guo. Wids:
An integrated toolkit for distributed system development. In Proceedings of
the 10th USENIX Workshop on Hot Topics in Operation Systems, Santa Fe, NM,
USA, June 2005.

[21] Priya Mahadevan, Ken Yocum, and Amin Vahdat. Mobicom poster: emu-
lating large-scale wireless networks using modelnet. Mobile Computing and
Communications Review, 7(1):62–64, 2003.

[22] Matthew L Massie, Brent N Chun, and David E Culler. The ganglia dis-
tributed monitoring system: design, implementation, and experience. Par-
allel Computing, 30(7):817–840, July 2004.

[23] Sun Microsystems. Introducing MBeans, 1995–2007. http://java.sun.com/
docs/books/tutorial/jmx/mbeans/index.html.

[24] Sun Microsystems. Overview of the JMX Technology, 1995–2007. http:

//java.sun.com/docs/books/tutorial/jmx/overview/index.html.

[25] ModelNet. http://modelnet.ucsd.edu, 2002-2006.

47

http://java.sun.com/developer/technicalArticles/ALT/Reflection/
http://java.sun.com/developer/technicalArticles/ALT/Reflection/
http://www-static.cc.gatech.edu/projects/gtitm
http://topology.eecs.umich.edu/inet
http://www.jboss.org/products/javassist
http://www.mpi-sws.mpg.de/~gummadi/king
http://java.sun.com/docs/books/tutorial/jmx/mbeans/index.html
http://java.sun.com/docs/books/tutorial/jmx/mbeans/index.html
http://java.sun.com/docs/books/tutorial/jmx/overview/index.html
http://java.sun.com/docs/books/tutorial/jmx/overview/index.html
http://modelnet.ucsd.edu

[26] Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan.
Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications.
In ACM SIGCOMM 2001, San Diego, CA, September 2001.

[27] David Oppenheimer, Vitaliy Vatkovskiy, and David A. Patterson. To-
wards a framework for automated robustness evaluation of distributed sys-
tems. In FuDiCo II: S.O.S. Survivability: Obstacles and Solutions, 2nd Berti-
noro Workshop on Future Directions in Distributed Computing, Jun 2004.
www.cs.utexas.edu/users/lorenzo/sos/SOS/oppenheimer-fudico.pdf.

[28] David L. Oppenheimer, Vitaliy Vatkovskiy, Hakim Weatherspoon, Jason Lee,
David A. Patterson, and John Kubiatowicz. Monitoring, analyzing, and
controlling internet-scale systems with ACME. CoRR, cs.DC/0408035, 2004.

[29] PlanetLab. http://www.planet-lab.org, 2002-2006.

[30] Yuval Shavitt and Eran Shir. Dimes: let the internet measure itself. SIG-
COMM Comput. Commun. Rev., 35(5):71–74, 2005.

[31] Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-to-peer
networks. In Jussara M. Almeida, Virgı́lio A. F. Almeida, and Paul Barford,
editors, Proceedings of the 6th ACM SIGCOMM Conference on Internet Measure-
ment 2006, Rio de Janeriro, Brazil, pages 189–202. ACM, 2006.

[32] Sun Microsystems. Java Remote Method Invocation - Distributed Comput-
ing for Java, 1994-2007. http://java.sun.com/javase/technologies/core/
basic/rmi/whitepaper/index.jsp.

[33] Sun Microsystems. JVM Tool Interface, 2004. http://java.sun.com/j2se/

1.5.0/docs/guide/jvmti/jvmti.html.

[34] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan Kostic,
Jeff Chase, and David Becker. Scalability and accuracy in a large-scale net-
work emulator. In OSDI ’02: Proceedings of the 5th symposium on Operating
systems design and implementation, pages 271–284, New York, NY, USA, 2002.
ACM Press.

[35] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad,
Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An inte-
grated experimental environment for distributed systems and networks. In
OSDI02, pages 255–270. USENIXASSOC, dec 2002.

48

www.cs.utexas.edu/users/lorenzo/sos/SOS/oppenheimer-fudico.pdf
http://www.planet-lab.org
http://java.sun.com/javase/technologies/core/basic/rmi/whitepaper/index.jsp
http://java.sun.com/javase/technologies/core/basic/rmi/whitepaper/index.jsp
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/jvmti.html
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/jvmti.html

[36] Ken Yocum, Ethan Eade, Julius Degesys, David Becker, Jeffrey S. Chase, and
Amin Vahdat. Toward scaling network emulation using topology partition-
ing. In MASCOTS, pages 242–245. IEEE Computer Society, 2003.

[37] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infras-
tructure for fault-tolerant wide-area location and routing. Technical Report
UCB/CSD-01-1141, UC Berkeley, April 2001.

49

	List of Acronyms
	Introduction
	Motivation
	ModelNet Overview

	Functional Features
	Deployment and Management
	Monitoring and Control
	Tracing and Debugging
	Bandwidth Accounting
	Automated Experiments
	Performance Tuning
	Regression Testing
	Benchmarking
	Byzantine Behaviour Observation

	Architecture
	Topology Module
	Churn Module
	Network Partitioning Module
	Statistics Monitoring, Aggregation and Caching Module
	Operations Module
	Automation Module
	Bandwidth Accounting Module

	Statistics and Notifications
	Statistics
	Notifications

	Use Cases
	Interactive Control and Monitoring
	Automated Experiments

	Implementation Details
	Core Concepts
	Event
	Module
	Event Handler
	Subscriptions Registry
	Task

	Event Handling
	Software Architecture
	Overview
	Control Center
	Agent
	Application Interface

	Extension Mechanisms
	Technologies Used

	Contributions
	Controllability and Reproducibility
	Emulating Churn
	Emulating Network Partitioning
	Bandwidth Accounting
	Emulating User Behaviour

	Related Work
	Application Control and Monitoring Environment (ACME)
	Distributed Automatic Regression Testing (DART)
	WiDS
	Liblog
	Ganglia

	Users Guide
	Preliminaries
	Enable Password Less Login
	Setup a Webserver

	Configuring GODS
	GODS config file
	Deploying Agents
	Configuring Agents
	Deploying Application

	Running GODS
	Environment Setup File
	Running Visualizer

	Experiments
	Generating an Experiment
	Running an Experiment

	References

