
Constructive Cardinality

Nicolas Beldiceanu and Mats Carlsson

S I C S , Lägerhyddsvägen 18, SE-75237 Uppsala, Sweden
{nicolas,matsc}@sics.se

August 14 2001
SICS Technical Report T2001:15

ISSN 1100-3154
ISRN: SICS-T--2001:15-SE

Abstract. We describe a set of necessary conditions that are useful for
generating propagation algorithms for the cardinality operator as well as for
over-constrained problems with preferences. Constructive disjunction as well as
the entailments rules originally proposed for the cardinality operator can be
seen as simple cases of these necessary conditions. In addition these necessary
conditions have the advantage of providing more pruning.

Keywords: Combinatorial problems, cardinality constraint, constructive
disjunction, soft constraints.

CONSTRUCTIVE CARDINALITY

Nicolas BELDICEANU and Mats CARLSSON

S I C S , Lägerhyddsvägen 18, SE-75237 Uppsala, Sweden
{nicolas,matsc}@sics.se

We describe a set of necessary conditions that are useful for generating propagation algorithms for the
cardinality operator as well as for over-constrained problems with preferences. Constructive disjunction as
well as the entailments rules originally proposed for the cardinality operator can be seen as simple cases of
these necessary conditions. In addition these necessary conditions have the advantage of providing more
pruning.

Keywords: Combinatorial problems, cardinality constraint, constructive disjunction, soft constraints

1 Introduction

For definitions from constraint programming not given here we refer to [3]. A domain
variable V is a variable that ranges over a finite set of integers; ()Vdom , ()Vmin and

()Vmax respectively denote the set of possible values, the minimum and the
maximum values of V. A constraint ()nVVCTR ,..,1 over an ordered set of variables

nVV ,..,1 is a relation over the cartesian product of the domains of nVV ,..,1 , while the

negation ()nVVCTR ,..,1¬ is the complement with respect to that cartesian product. To

any constraint or conjunction of constraints CT , we associate a 0-1 domain variable

CTB that is equal to 0 if CT does not hold, and 1 if CT holds. We note

()CTBCT max# = .

Since its introduction in 1991 within constraint programming, the cardinality
operator [2] has been recognized as a generic combinator which was progressively
integrated into several constraint systems. Its most general form is

() (){ }()
nnknnk VVCTRVVCTRC ,..,,..,,..,,ycardinalit 11111 1

 where C is a domain variable and

() (){ }
nnknnk VVCTRVVCTR ,..,,..,,.., 11111 1

 is a collection of constraints over finite domain

variables. The cardinality operator holds iff ()∑
=

#=
n

i
ikii i

VVCTRC
1

1,.., 1. Throughout this

paper we consider a more general case of the cardinality operator where we associate
to each constraint iCTR ()ni ≤≤1 a weight IN∈iW ; the weighted cardinality operator

1 As usual within constraint programming, this definition applies for the ground case when all

the variables of the constraints nCTRCTR ,..,1 are fixed.

holds iff ()()∑
=

#⋅=
n

i
ikii i

VVCTRC iW
1

1,.., . This extension is for instance useful for those

problems where the constraints have different weights and where the objective is to
maximize the sum of the weights of the constraints that hold.

From an operational point of view the cardinality operator used entailment [4] in
order to implement the corresponding propagation. However a fundamental weakness
is that it assumes each constraint to be independent. This is not the case in practice
since, very often, the same variable occurs in more than one constraint. The
contribution of this paper is to propose new necessary conditions that take advantage
of the fact that some variables occur in more than one constraint. In addition it also
discusses possible ways to use them for pruning variables.

2 Necessary Conditions for the weighted cardinality Operator

Consider any partitioning of the collection of constraints
() (){ }

nnknnk VVCTRVVCTR ,..,,..,,.., 11111 1
 of the weighted cardinality operator into

p ()np ≤≤1 conjunctions of constraints, where iC ()pi ≤≤1 denotes the set of indices

of those constraints that belong to the i th conjunction, and iC the number of

elements of iC .

Theorem 1. The weighted cardinality operator can be satisfied only if :

 () ∑
= ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟⎠

⎞
⎜⎜⎝

⎛

∈
#−⋅

∈ ⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟⎠
⎞⎜⎝

⎛−≤ ∧∑
=

p

i jjkVjVjCTR

iCj
jW

iCj

n

i
iWC

1
,..,11min

1
min . (1)

Proof. For each conjunction of constraints such that we find a contradiction, we have
that at least one constraint can’t be satisfied, so we compute the minimum weight of
the constraints of that conjunction. Since no constraint occurs in more than one
conjunction, and by adding the previous minimum weights, we get a lower bound of
the sum of the weight of constraints that do not hold. By subtracting it from the sum
of the weights of all constraints, we obtain an upper bound of the sum of the weights
of the constraints that hold. Since C should not be greater than this upper bound, a
necessary condition is as follows: the minimum value of C should be less than or
equal to this upper bound. ❏

Theorem 1 allows adjusting the maximum value of C . The conjunctions of
constraints can be obtained e.g. by using the following heuristic which tries to extend
an existing conjunction as long as contradiction is not reached: in order to reach
contradiction more rapidly the next constraint to incorporate into a conjunction should
share as many variables as possible with the variables that already occur in the
constraints of that conjunction.

As a corollary of Theorem 1 we have Theorem 2 which allows enforcing a
conjunction of constraints.

Theorem 2. The weighted cardinality constraint can be satisfied only if each
conjunction of constraints ()phh ≤≤1 , such that condition (2) is true, holds.

() () ∑
≠= ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟⎠

⎞
⎜⎜⎝

⎛

∈
#−⋅

∈ ⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟⎠
⎞⎜⎝

⎛−−> ∧
∈=

∑
p

hii jjkVjVjCTR

iCj
jW

iCj
i

Ci

n

i
i WWC

h ,1
,..,11minminmin

1
 (2)

Theorem 2 can be interpreted as follows: if C is for sure greater than the upper
bound obtained by considering all constraints except the one that corresponds to the
minimum weight in conjunction h , then each constraint of conjunction h should be
enforced.

Finally we explain how to prune the domain of a variable V which occurs in at
least one constraint of the weighted cardinality operator.

Theorem 3. The weighted cardinality operator can be satisfied only if condition
(3) or (4) holds, for every V and ()Vval dom∈ .

 valV ≠ (3)

 () ∑
= ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=∧⎟⎟⎠

⎞
⎜⎜⎝

⎛

∈
#−⋅

∈ ⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟⎠
⎞⎜⎝

⎛−≤ ∧∑
=

p

i
valV

jjkVjVjCTR

iCj
jW

iCj

n

i
iWC

1
,..,11min

1
min (4)

Proof. The right hand side of condition (4) corresponds to an upper bound of the sum
of the weights of the constraints that hold for any conjunction of constraints where

valV = . If C can’t be less than or equal to this upper bound, then the only way to
avoid violating the weighted cardinality operator is to remove value val from

()Vdom . ❏

A first possible heuristic for using Theorem 3 for pruning a variable V is as
follows: partition the constraints occurring in the weighted cardinality operator in
such a way that each constraint mentioning variable V is put in a singleton
conjunction. Let denote VmV CTRCTR ,..,1 the constraints where V occurs and let

()iCTRV⏐dom ()ni ≤≤1 denote the domain of variable V under the assumption that

constraint iCTR is enforced (it is empty if constraint iCTR leads to a contradiction).

Furthermore let d be the sum of the weights of those constraints iCTR { }()VmVi ,..,1∈ .

Thus, from Theorem 3 we derive the following rule: If

() () ()
{ }

d

VmVC
pi

jkjj
Cj

j
Cj

n

i
i

i

j

ii

VVCTRWWC −∑ ∧∑
∅=∩

∈ ∈∈= ⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
#−⋅−>

,..,1
,..1

1
1

,..,1minmin then all

values ()
{ }
�

VmVi
iCTRVval

,..,1

dom
∈

⏐∉ should be removed from ()Vdom .

Theorem 3 can also be used for adjusting the minimum value of a variable V
occurring in the cardinality operator (i.e. we assume all weights to be equal to 1). Let

()CTV⏐min denotes the minimum of variable V under the assumption that the
constraint or the conjunction of constraints CT is enforced (it is equal to () 1max +V if

CT leads to a contradiction). Furthermore, let us define the thk smallest value of a
multiset of natural numbers lXX ,..,1 ()kl ≥ as the smallest value iX ()li ≤≤1 such

that there exist at least 1−k jX ()ljij ≤≤≠ 1, that are less than or equal to iX .

Again from Theorem 3 we get the following pruning rule:
If () pnC −>min then we can adjust the minimum value of V to the

()()pnC +−min th smallest value among values ()
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⏐∧

∈
j

i

jkjj
Cj

VVCTRV ,..,min 1 ()pi ≤≤1 .

We have a similar rule for adjusting the maximum value of variable V .

Three theorems similar to Theorems 1, 2, 3 can also be obtained by considering

conjunctions of negation of constraints. The pruning rules of the cardinality operator
provided in [2] can be derived from Theorems 1 and 2 by setting the number of
constraints in a conjunction, as well as all the weights, to 1. Constructive disjunction
[1], [4] can also be obtained from Theorem 3 by associating each alternative of the
disjunction to a singleton conjunction, by setting C to 1, and by setting all the
weights to 1. For a specific constraint network, how to find out the way to partition
the constraints of the weighted cardinality operator that leads to the maximum amount
of pruning, is a natural question that arises from this paper.

Acknowledgments

Thanks to Per Kreuger, Per Mildner and Emmanuel Poder for helpful comments and
suggestions on this paper.

References

1. Würtz, J., Müller, T.: Constructive Disjunction Revisited. In 20th German Annual
Conference on Artificial Intelligence. LNAI vol. 1137, 377-386, Springer-Verlag, (1996).

2. Van Hentenryck, P., Deville, Y.: The Cardinality Operator: A New Logical Connective for
Constraint Logic Programming. In International Conference on Logic Programming. The
MIT Press, 745-759, (1991).

3. Van Hentenryck, P.: Constraint Satisfaction in Logic Programming. The MIT Press, (1989).
4. Van Hentenryck, P., Saraswat, V., Deville, Y.: Design, Implementation and Evaluation of

the Constraint Language cc(FD). In A. Podelski, ed., Constraints: Basics and Trends, vol.
910 of Lecture Notes in Computer Science, Springer-Verlag, (1995).

