Sweep as a Generic Pruning Technique Applied
to the Non-Overlapping Rectangles Constraint

Nicolas Beldiceanu and Mats Carlsson

SICS, Lagerhyddsv. 18, SE-752 37 UPPSALA, Sweden

{nicolas,matsc}@sics.se
May 28, 2001
SICS Technical Report T2001:13
ISRN: SICS-T-2001/13-SE

ISSN: 1100-3154

Abstract. We first present a generic pruning technique which aggre-
gates several constraints sharing some variables. The method is derived
from an idea called sweep which is extensively used in computational
geometry. A first benefit of this technique comes from the fact that it
can be applied on several families of global constraints. A second main
advantage is that it does not lead to any memory consumption problem
since it only requires temporary memory that can be reclaimed after each
invocation of the method.

We then specialize this technique to the non-overlapping rectangles con-
straint, describe several optimizations, and give an empirical evaluation
based on six sets of test instances of different pattern.

Keywords: Constraint Programming, Global Constraint, Sweep, Non-
Overlapping.

1 Introduction

The main contribution of this paper is to present a generic pruning technique
for finite domain constraint solving!. As a second contribution, we specialize
the technique to the non-overlapping rectangles constraints and evaluate its per-
formance. Finally, we identify and evaluate four optimizations which should be
applicable to many global constraints.

The technique is based on an idea which is widely used in computational
geometry and which is called sweep [8, pp. 10-11]. Consider e.g. Fig. 1 which
shows 5 constraints and their projections on two given variables X and Y. As-
sume that we want to find the smallest value of X so that the conjunction of
the 5 constraints is feasible for some Y. By trying X = 0,...,4, we conclude

YA domain variable is a variable that ranges over a finite set of integers;
min(X), max(X) and dom(X) denote respectively the minimum value, the maxi-
mum value, and the set of possible values for X.

that X =4 is the only feasible value. The sweep algorithm performs this search
efficiently; see Sect. 3.2 for the details on this particular example.

In dimension 2, a plane sweep algorithm solves a problem by moving a vertical
line from left to right?. The algorithm uses the two following data structures:

— a data structure called the sweep-line status, which contains some informa-
tion related to the current position A of the sweep-line,

— a data structure named the event point series, which holds the events to
process, ordered in increasing order wrt. the abscissa.

The algorithm initializes the sweep-line status for the initial value of A. Then
the sweep-line jumps from event to event; each event is handled, updating the
sweep-line status. A common application of the sweep algorithm is to solve the
segments intersection problem [8, p. 278], with a time complexity that depends
both on the number of segments and on the number of segment intersections.

In our case, the sweep-line scans the values of a domain variable X that we
want to prune, and the sweep-line status contains a set of constraints that have
to hold for X = A. The generic pruning technique, which we call value sweep
pruning, accumulates the values to be currently removed from the domain of a
variable Y which is different from X. If, for some value of A, all values of Y have
to be removed, then we will prune A from dom(X). The method is based on the
aggregation of several constraints that have two variables in common. Let:

— X and Y be two distinct domain variables,

- Ci(Vit, - s Ving)y Con(Vint, - -+, Vium,,,) be a set of m constraints such
that Vi € 1.m : {X,Y} C {Vi1,...,Vin, } (i-e. all constraints mention both
variables X and Y).

The value sweep pruning algorithm will try to adjust the minimum?® value
of X wrt. the conjunction of the previous constraints by moving a sweep-line
from the minimum value of X to its maximum value. In our case, the events
to process correspond to the starts and ends of forbidden 2-dimensional regions
wrt. constraints C1, ..., C),, and variables X and Y.

In this paper, we use the notation (F;..FJ,F;..F;) to denote an ordered
pair F of intervals and their lower and upper bounds. rand(S) denotes a random
integer in the set S.

The next section presents the notion of forbidden regions, which is a way to
represent constraints that is suited for the value sweep algorithm. Sect. 3 de-
scribes the value sweep pruning algorithm and gives its worst case complexity.
Sect. 4 presents the specialization of this algorithm to the non-overlapping rect-
angles constraint, as well as several optimizations. Sect. 5 provides an empirical
evaluation of six different variants of the algorithm according to several typical
test patterns.

2 In general, a plane sweep algorithm does not require neither the sweep-line to be
vertical nor moving it from left to right.

3 It can also be used in order to adjust the maximum value, or to prune completely
the domain of a variable.

2 Forbidden Regions

We call F' a forbidden region of the constraint C; wrt. the variables X and Y
if: Vo € Fy . Ff,y € Fy . .Ff : Ci(Vir,...,Vip,) with the assignment X = x
and Y = y has no solution. We say that X = a is feasible wrt. Cq,...,C)p, if
a € dom(X) A 3b € dom(Y) such that (a,b) is not in any forbidden region of
Ciy...,Chp wrt. X and Y.

Fig. 1 shows 5 constraints and their respective forbidden regions (shaded) wrt.
two given variables X and Y and their domains. The first constraint requires
that X,Y and R be pairwise distinct. Constraints (B,C) are usual arithmetic
constraints. Constraint (D) can be interpreted as requiring that two rectangles
of respective origins (X,Y") and (T, U) and sizes (2,4) and (3,2) do not overlap.
Finally, constraint (E) is a parity constraint of the sum of X and Y.

The value sweep pruning algorithm computes the forbidden regions on re-
quest, in a lazy evaluation fashion. The algorithm generates the forbidden regions
of each constraint C; gradually as a set of rectangles R;i, ..., R;, such that:

— R;1 U---UR;, represents all forbidden regions of constraint C; wrt. variables
X and Y.
Note that we do not request the rectangles to form a partition of the forbid-
den space. This is because it sometime allows generating fewer rectangles:
more than 3 rectangles are necessary to cover the forbidden regions of ex-
ample B of Fig. 1 if we would ask for a partition.

— Rj1,- .., R, are sorted by ascending start position on the X axis.

This will be handled by providing the following three functions* for each triple
(X,Y, C;) that we want to be used by the value sweep algorithm:

— get_first_forbidden_regions(X,Y, C;), whose value is all the forbidden regions
R¢; of C; such that:

Re,, < firsto, < Re,f
Rcl.;r > min(Y) A R, < max(Y)

where first, is the smallest value € min(X).. max(X) such that there exists
such a forbidden region R¢, of C;.

— get_next_forbidden_regions(X, Y, C;, z}), whose value is all the forbidden re-
gions R¢, of C; such that:

R, = nextc,
Rcl.;r > min(Y) A Re;,, < max(Y)

where z} is the position of the previous start event of C; and nextc, is the
smallest value > x} such that there exists such a forbidden region R¢; of C;.

* Two analogous functions get_last_forbidden region and get_prev_forbidden_ regions
are also provided for the case where the sweep-line moves from the maximum to the
minimum value.

— check.if _in_forbidden_regions(X, Y, z,y, C;), which is true iff given values z €
dom(X) and y € dom(Y") belong to a forbidden region of constraint C;.

— max.ysize_forbidden_regions(X, Y, C;), whose value is an upper bound of the
quantity max,edom(x) |Forbid(Y, x)|, where Forbid(Y,) is the set of values y
of variable Y such that the constraint C;(Vi1,..., Vin,;) with the assignment
X =z and Y = y has no solution.

If we consider constraint (E) of Fig. 1 (i.e. X +Y mod 2 = 0), and we assume
X €0..2and Y € 1..3, then a complete scan of X would produce the following
sequence of calls:

— get first_forbidden_regions(X,Y, X +Y mod 2 = 0) returns regions (0..0, 1..1)
and (0..0,3..3).

— get_next_forbidden_regions(X,Y, X+Y mod 2 = 0, 0) returns region (1..1,2..2).

— get_next_forbidden_regions(X,Y, X+Y mod 2 = 0, 1) returns regions (2..2,1..1)
and (2..2,3..3).

A call to max_ysize_forbidden_regions(X,Y, X +Y mod 2 = 0) would return 2,
as for any value of X € 0..2 we have at most two forbidden values for Y € 1..3.
We now show how to use the function max_ysize_forbidden_regions(X,Y,C;) in
order to get a condition, which tells us when the algorithm can for sure not
bring anything. This condition can be used to avoid useless work. Let:

— X and Y be two distinct domain variables,

- CiVit, s Ving)y Con(Vina, - -+, Viun,,,) be a set of m constraints such
that Vi € 1.m : {X,Y} C {Vi1,...,Vin;} (i-e. all constraints mention both
variables X and Y).

If) ;1. max.ysize forbidden_regions(X, Y, C;) < |[dom(Y')| then value sweep
pruning is not useful since all values of Y cannot be completely covered by the
different forbidden regions.

3 The Value Sweep Pruning Algorithm

3.1 Data Structures

The algorithm uses the following data structures:

The sweep-line status. Denoted Pstqtys, this contains the current possible values
for variable Y wrt. X = A. More precisely, Pgsqtus can be viewed as an array
which records for each possible value of Y the number of forbidden regions that
currently intersect the sweep-line. The basic operations required on this data
structure, and their worst-case complexity in a reasonable implementation, are
shown in Table 1. An (a,b)-tree [7] based data structure can provide the array
operations with complexity as in Table 1.

The event point series. Denoted @ eyent, this contains the start and the end+1
(41 since the end is still forbidden whereas end+1 is not), on the X axis, of
those forbidden regions of the constraints C4,...,C),, wrt. variables X and Y
that intersect the sweep line. These start events and end events are sorted in
increasing order and recorded in a queue. The basic operations required, and
their complexity e.g. in a heap, are also shown in Table 1. The existence check
can be implemented in O(1) time with a reference counter. This last operation is
the trigger which is used in order to gradually enqueue the start and end events
associated to the forbidden regions of a given constraint C; when a start event
associated to constraint C; is removed from the queue Qcyent-

3.2 Principle of the Algorithm

In order to check if X = A is feasible wrt. C4,...,C},, the sweep-line status
records all forbidden regions that intersect the sweep-line. If, for X = A, Vi €
dom(Y) : Pstatus[i] > 0, A will move to the right.

Before going more into the detail of the sweep algorithm, let us illustrate how
it works on a concrete example. Assume that we want to find out the minimum
value of variable X wrt. the conjunction of the 5 constraints that were given in
Fig. 1. Fig. 2 shows the contents of Pjquys for different values of A. The smallest
feasible value of X is 4, since this is the first point where Pgiqss contains an
element with value 0. We now present the main procedure.

3.3 The Main Procedure

The procedure FindMinimum implements the value sweep pruning algorithm for
adjusting the minimum value of a variable wrt. a set of constraints. It can readily
be transformed into an analogous procedure FindMaximum for adjusting the
maximum value. The main parts of FindMinimum correspond to:

lines 1-9: Initialize the event queue to the start and end events associated to the left-
most forbidden regions of each constraint. Note that we only insert events
that are effectively within min(X).. max(X) and min(Y").. max(Y"). If no such
events are found or if no event intersects min(X), we exit from the procedure.
lines 10-11: Initialize Pstqtus to O for the values that belong to dom(Y’) and to 1 oth-
erwise®. These last values will be forbidden forever, since no corresponding
end event was inserted in the event queue.
lines 13-18: Extract from the event queue all events associated to A and handle them.
Afterwards, check whether there exists some feasible solution for X = A
and, if so, exit from the procedure.
line 19: Fail since the sweep-line did a complete scan of the domain of variable X
without finding any solution.

Holes in the domain of variable X are handled in the same way as constraints
Ci,...,Cp : an additional constraint which, for each interval of consecutive

® P\ @ denotes the set difference between P and Q.

(A) (B) ©

Y Y Y
4
3
2
1
0 0 0
01 2 3 4 X 0 X 0 X
alldifferent ([X,Y,R]) |X-Y| > 2 X+2*Y =< S
R in 0..9 S in 1..6
(D) B
Y Y
. i o
0 X 0 X
X+2 =< T OR T+3 =< X OR Y+4 =< U OR U+2 =< Y (X+Y) mod 2 = 0

T in 0..2, U in 0..3

Fig. 1. Examples of forbidden regions. X in 0..4,Y in 0..4.

Y Y Y Y Y
R 2 2 3 3
5 |1 2 3 3 3
, |1 2 2 3 2
112 3 3 1 1
o L2 3 2 1 0
A=0 A=1 A=2 A=3 A=4

Fig. 2. Status of the sweep-line at each stage of the algorithm. Values denote the
number of forbidden regions per Y position.

Input: A set of constraints C4,...,Cs and two domain variables X and Y present in
each constraint.
Output: An indication as to whether a solution exists, and values Z, §.

Ensure: Either Z is the smallest value of X such that § € dom(Y) and (&,7) does

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

not belong to any forbidden region of Ci,...,Cy, wrt. variables X and Y, or no
solution exists.
Qcvent < an empty event queue
for all constraint C;(1 <i¢ < m) do
for all forbidden region R¢; € get_first_forbidden_regions(X, Y, C;) do
Insert max(Rc¢, , min(X)) into Qcven: as a start event
if Re,T + 1 < max(X) then
Insert Roi: + 1 into Qevent as an end event
if Q.vent is empty
or the leftmost position of any event of Qevent is greater than min(X) then
2 + min(X), § + rand(dom(Y"))
return (true, z,9)
Pitatus < an array ranging over min(Y').. max(Y’) with all zero elements
Pitatus[i] < 1 for i € min(Y").. max(Y) \ dom(Y)
while Q.yent is not empty do
A < the leftmost position of any event of Qcyent
for all event E at A of Qcyent do
HandleEvent(E)
if Pitatus[i] = 0 for some i then
< A, § + arandom i such that Psatus[i] =0
return (true, 7,)
return (false, 0, 0)

Algorithm 1: FindMinimum(Cy,...,Cp, X,Y)

removed values, generates start and end event. The next procedure, HandleEvent,
specifies how to handle start and end event points.

3.4 Handling Start and End Events

Depending on whether we have a start or an end event E, we add 1 or -1 to
Pstorus[i], ! < i < u, where | and u are respectively the start and the end on the
Y axis of the forbidden region that is associated to the event E. When E was
the last start event of a given constraint Cg, we search for the next events of
Cg and insert them in the event queue @ cyent-

3.5 Discussion

Before running again the complete algorithm, we check first whether the previ-
ously returned solution (2,) is still feasible®.

The motivation to assign a random value to § comes from the fact that, if we
use the algorithm for pruning several variables, we don’t want to get the same
feasible solution for several variables, since a single future assignment could inval-
idate this feasible solution. This would result in reevaluating again the algorithm
for several variables.

If we use the algorithm for doing a complete pruning, then each call to the
algorithm will lead to a complete sweep over the domain of the variable we
want to prune. However, if we use the algorithm for adjusting the minimum or
maximum value then we will have a complete sweep on each branch of the search
tree. This is because the sweep process will be stopped each time we find a first
feasible solution.

Let f denote the total number of forbidden regions intersecting the initial do-
main of the variables X, Y under consideration, and m the number of constraints.
For a complete sweep, Table 1 indicates the number of times each operation is
performed, and its total worst case cost, assuming a reasonable implementation.
Hence, the overall complexity of the algorithm is O(m + flog f). Note that, if
the problem is loose, m > f.

From a deductive point of view, the value sweep pruning algorithm is similar
to the work done by du Verdier [4]. However the main difference is that the set of
forbidden regions associated to each pair of variables (X,Y") was stored explicitly
in a quadtree or octtree [9] for which one needs to restore the previous state on
backtracking. With the sweep, one can reclaim the data structures @ ¢yent and
Pstotys after each invocation of the method. Value sweep pruning can also be
seen as a specific form of shaving [6], where the main difference is that value
sweep pruning does not try out each value one by one.

4 Value Sweep for Non-Overlapping Rectangles

Assume that we want to implement a constraint NonOverlapping(P,..., Pp,)
over a set of rectangles, which should hold if no two rectangles P;, P;,i # j

6 For this check, we use the check_if_in_forbidden_regions function.

Extract E from Qeyent
Let [= max(Rg, ,min(Y)),u = min(Rg; , max(Y))
if E is a start event then

Add 1 to Pstatus [l],l S { S u

xlE < Rp,

9: Insert RCE; into Qcvent as a start event

10: if Ro, T 4+ 1 < max(X) then

11: Insert RCE; 4+ 1 into Qevent as an end event
12: else

13: Add -1 to Psm{;us [l],l S 7 S u

Get the corresponding forbidden region Rg and constraint Cg

if Qcvent does not contain any start event associated to constraint C'r then

for all forbidden region R¢; € get_next_forbidden_regions(X,Y, Cg,z’;) do

Algorithm 2: HandleEvent(E)

Table 1. Maximum no. of calls and total cost per basic operation in a sweep of

FindMinimum

Operation Max. times|Total cost (O)
Initialize to empty the queue 1 1
Compute the first forbidden regions of C; m m+ f
Add an event to the queue 2x f 2x f
Extract the next event from the queue 2x f 2x flogf
Check if there exists some start event associated to C; f f
Initialize to zero a range of array elements 1 1

Add 1 or -1 to a range of array elements 2x f 2x flogf
Check if there exists an array element with value 0 2x f 2x flogf
Compute the index of a random array element with value 0 1 log f

overlap. This constraint is a special case of the diffn constraint [2], and has been
used to model a wide range of placement and scheduling problems [1]. It could
be implemented by decomposition into a conjunction of m(m — 1)/2 pairwise
non-overlapping constraints:

Xi+w; <X;VX;j+w; <X;VYi+h <Y; VY +h; <Y

where we denote by the tuple (X;,w;, Y, h;) a rectangle with origin coordinates
(X;,Y;), width w; and height h;. Each pairwise constraint could in turn be im-
plemented by cardinality or constructive disjunction [10]. This section shows how
to instead specialize the value sweep scheme to the NonOverlapping constraint,
thus avoiding decomposition.

Without loss of generality, we assume that w; and h; are fixed, and we only
discuss how to adjust min(Xj;).

4.1 The Basic Algorithm

It is straightforward to see that there can be at most one (non-empty) forbidden

region R;; = (r, .rf,r, .r;) of Cij wrt. (X;,Y;), where:

in(Xj) +w; — 1

, in(Y;) + by — 1 @)

=max(X;) —w; + 1 T

T =m
=max(Yj) — h; +1 rf=m

Ty
Hence, we get the following definitions for the functions driving the algorithm:

. . . cortrorD)Yif e <rbAr <ot
get_first_forbidden_regions(X;,Y;, C;;) = { é(rﬂ” T Ty Ty)} i)tflgérv;igg Ary STy,

get_next_forbidden_regions(X;, Y, Cjj, z}) = 0
check_if in_forbidden_regions(X;, Y, z,y,Cij) =1, <a <rf Ary <y <rpf

. . . F—r o+ 1lifr, <rfAr; <rf
max_ysize_forbidden_regions(X;,Y;, Cy;) = {gy ry + ;t:lzr‘;i;“g Ary <1y,

where 7,75, 77,7 are defined in (2).

Given these definitions, we are now in a position to define Algorithm 3 which
adjusts min(X;) for each rectangle so that a feasible origin is found for each
rectangle. We also maintain for each rectangle P; the value witness(X;) to enable
a quick check whether the origin point (min(X;), witness(X;)) is feasible. From
the complexity analysis of Sect. 3.5, we have that the worst case complexity of
Algorithm 3 is O(m? +m x flog f) where f is the average number of rectangles

that could overlap with the domain of placement of a given rectangle P;.

10

Input: A set of rectangles Pi,..., Pp,.
Output: The number of lower bounds that were adjusted, or oo if no solution ex-
ists.

Ensure: Either (min(X;), witness(X;)) is a feasible pair of coordinates for 1 < i < m,
or no solution exists.

1: ¢« 0

2: for all rectangle P;(1 <i < m) do

3: Let S={Ci; :1<j<mAi#j}

4: if 3C € S : check_if_in_forbidden_regions(Xj;, Y;, min(X;), witness(X;), C) then
5 (r, %, witness(X;)) < FindMinimum(S, X;,Y3)

6 if r = false then

T return oo

8 else if £ # min(X;) then

9 ¢+ c+1, min(X;) « &
10: return c

Algorithm 3: NonOverlapLeft(P, ..., Py)

4.2 An Algorithm with a Shared Event Queue

The worst-case cost of NonOverlapLeft is dominated by the creation of the event
queue, which is done from scratch for each successive call to FindMinimum. Hop-
ing to reducing the complexity if m > f, we shall show how to instead create a
single, shared event queue which is valid throughout the for loop.

Consider again R;j = (r, .rif,r, ..r;}) as defined by (2). We note that the
only dependency of R;; on P; is r; (r,) which depends on w; (h;). Let R_; =
(max(X;)+1..min(X;)+w; —1,max(Y;)+1..min(Y;) +h; — 1) denote a relative
forbidden region associated to P;.

We then define a modified @ ¢yent data structure consisting of two arrays of
relative forbidden regions associated to P; for 1 < j < m, ordered by ascending
max(X;) and min(X;) + w; respectively. To use the shared event queue, the
FindMinimum procedure needs to be modified as follows:

— Lines 1-6 are replaced by a search for the smallest A > min(X).

— The while loop in line 12 should terminate when A > max(X) or when
Qevent is emptY'

— The code must ignore events linked to forbidden regions that are empty.

— The event extraction operation must be modified according to the new data
structure, and relative forbidden regions must be translated to absolute ones
according to w; and h; of the current rectangle P;.

The NonOverlapLeft procedure must be modified accordingly. Before line 2,
the shared event queue must be built (takes (O(mlogm)) time) and passed in
each call to Algorithm 1. Thus compared to the worst-case complexity analysis
in Sect. 4.1, we replace an O(m?) term by an O(mlogm) term, an improvement
especially is the problem is loose (m > f).

11

4.3 A Filtering Algorithm

A simple filtering algorithm for NonOverlapping can be implemented as follows:
Repeatedly call NonOverlapLeft (and similarly for the other three bounds) until
failure or a fixpoint is reached. In the latter case, suspend if not all rectan-
gles are fixed; succeed otherwise. The filtering algorithm should typically act as
a coroutine which is resumed whenever one of the bounds is pruned by some
other constraint. An implementation along these lines has been done for SICS-
tus Prolog [3]. The implemented version provides optional extensions (variable
width and height, wrap-around in either dimension, minimal margins between
rectangles, global reasoning pruning), but these will not be discussed further.

4.4 Optimizations

Here, we will describe several optimizations which have been added to the basic
filtering algorithm described above. The impact of these optimizations are em-
pirically investigated in Sect. 5. Most of these optimizations are in fact generic
to the family of value sweep pruning algorithms, and some could even be ap-
plied to most global constraints. Let B(P;) denote the bounding bozx of P;, i.e.
the convex hull of all the feasible instances of a rectangle P; and C(P;) denote
the compulsory part [5] of P;, i.e. the intersection of all the feasible instances of
a rectangle P;:

B(P) =max(X;) +w; —1 C(P)} = min(X;) + w; — 1 3
B(Pi); = min(Y;) C(Pi); = max(Y;)
B(P); =max(V;) +hi—1 C(P;); =min(¥;) + h; — 1

Sources and targets. Two properties are attached to each rectangle P;: the target
property, which is true if P; can still be pruned or needs checking; and the source
property, which is true of P; can lead to some pruning.

The point is that substantially less work is needed for rectangles lacking one
or both properties: the for loop of Algorithm 3 only needs to iterate over the
targets; when building the event queue, only sources need to be considered.

Consider a typical placement problem, in which most of the time spent search-
ing for solutions will be spent in the lower parts of the search tree, where most
rectangles are already fixed. Thus few rectangles will have target properties, and
rectangles that can no longer interact with the non-fixed ones will lack both
properties.

Initially, all rectangles have both properties. As the search progresses, the
transitions {source, target} = {source} =) take place.”

The first transition takes place whenever a rectangle is ground and has been
checked (end of the for loop in Algorithm 3). The second type of transition is
done when a fixpoint is reached by means of the following linear algorithm:

” On backtracking, the converse transitions take place.

12

1. Compute the bounding box B of all targets.
2. For each source P;, if the bounding box of P; is disjoint from B, then remove
its source property.

Initial check of compulsory parts. A necessary condition for NonOverlapping (P, . ..

is that the compulsory parts of P; be pairwise disjoint. The following sweep al-
gorithm verifies the necessary condition in O(m logm) time, and as a side effect,
removes the target property from all ground rectangles. Thus it provides a quick
initial test and avoids doing useless work later in the filtering algorithm:

1. Form a Qcyen: With start (end) events corresponding to C(P;), (C(P:)} +1)
for 1 < ¢ < m with non-empty C(P;).

2. Let Pstqtys record for each Y value the number of compulsory parts that
currently intersect the sweep-line.

3. If after processing all events at A some element of Pgyopys is greater than 1,
the check fails.

4. When @ ¢yent is empty, remove the target property from all ground P;.

Domination. We say that rectangle P; dominates rectangle P; if the following
relation holds between P; and P; for all a € dom(X;):

if X; = a is feasible wrt. all constraints on P; (4)
then X; = qa is also feasible wrt. all constraints on P;

The point is to avoid useless work in line 4 of Algorithm 3. We have come up
with a domination check which runs in O(1) time and finds many instances of
domination. Roughly, throughout the for loop, we maintain a “most dominating
rectangle” Pyom among the P; for which the test in line 4 is found false. In line
4, we first check if Pyon dominates P;, in which case we can ignore P; in the
loop. Similarly for the other three sweep directions.

Incrementality. When the filtering algorithm is resumed, typically very few (usu-
ally one) rectangles have been pruned by some other constraint since the last
time the algorithm suspended. We would like to avoid running a complete check
of all rectangles vs. all rectangles, and instead focus on the subset of rectangles
that could be affected by the external events. This idea is captured by the fol-
lowing steps, and is valid if we still are on the same branch of the search tree as
at the previous call to the filtering algorithm.

1. Compute the bounding box B of the targets that were pruned since the last
time. This takes O(m) time.

2. In Algorithm 3 and in the initial check, ignore any rectangles that do not
intersect B, but if Algorithm 3 adjusts some bound, B must be updated to
include the newly pruned rectangle.

13

5 Performance Evaluation

Wanting to measure the speed rather than the pruning power of the sweep algo-
rithm, and the speedups of the optimizations, we generated six sets of problem
instances, each consisting of three instances of m rectangles, m € {100, 200,400};
see Table 2. The sets were selected to represent typical usages of the constraint.
E.g., Set 2 is a loose problem; Set 3 and 4 use rectangles of different sizes; in
Set 5, the rectangles are all the same; Set 6 is 95% ground: it was computed by
taking a solved instance of Set 4 and resetting the origin variables of 5% of the
rectangles to their initial domains.

Table 2. Rectangle P; for the different sets

min(X;)|{max(X;) wi| min(Y;) max(Y;) h;
Set 1 1| 10000|rand(1..20) 1 101 — hj|rand(1..20)
Set 2[rand(1..200)| 10000|rand(1..20)|rand(1..90) 101 — h; rand(1..20)
Set 3 1| 10000) 1 1.05,/ Z;nzl j2—h;]
Set 4 1| 10000 w!® 11.05y /5™ wi s hi —hi h{M
Set 5 1| 10000 1000 1 10000 1000

((m+3—1)/2,(m+141)/2), for odd i

(4) (4 _
where (w;”", h;’) = { ((m+2+14)/2,(m+2—1)/2), otherwise

Each of the 18 instances was run by setting up the constraint and fixing the
origins of each P;,1 < i < m, to its lower bound. Each instance was run six
times with different parameters controlling the algorithm (see Sect. 4.4):

s The sweep algorithm with shared event queue.
sp The sweep algorithm plus sources and targets.
sc The sweep algorithm plus the initial check.
sd The sweep algorithm plus domination.
si The sweep algorithm plus incrementality.
sx All optimizations switched on.

Fig. 3 summarizes the benchmark results. There is one graph per set, each
with six plots comparing the different settings. Each legend is ordered by de-
creasing runtime, in milliseconds. The benchmarks were run in SICStus Prolog
compiled with gcc -02 version 2.95.2 on a 248 MHz UltraSPARC-II processor,
running Solaris 7. The results tell us the following:

— Set 4 was the most difficult instance, while Set 6 was the fastest to solve by
at least an order of magnitude.

— The sources and targets was by far the most effective optimization. Incre-
mentality was also generally effective. Both can be generalized to a large
class of global constraints.

14

— Domination alone was not effective. We conjecture that it does contribute
to the performance of sx, at least on Set 5.

— The initial check optimization was not effective on any of the problem sets.
We applied it each time the filtering algorithm was resumed. If used more
judiciously, it might prove effective in some cases.

— There is a synergetic effect when several optimizations are combined.

Finally, we have compared the sweep (s*) algorithm with implementations
of the same constraint based on decomposition, cardinality and constructive
disjunction as well as with diffn [2] in CHIP V5. The results for 100 rectangles
are shown in Table 3. For cardinality, runtimes became prohibitive for larger
instances.

6 Conclusion

We have presented a value sweep pruning algorithm which performs global con-
straint propagation by aggregating several constraints that share two variables.
This method is quite general and can be applied on a wide range of constraints.
The usual way to handle finite domain constraints is to accumulate forbidden
one-dimensional regions in the domain of the variables of the problem. However,
this is inefficient for constraints that do not initially have any one-dimensional
forbidden regions since they have to be handled in a generate-and-test way (i.e.
forbidden values appear only after fixing some variables). Value sweep pruning
is an alternative which allows to accumulate forbidden regions much earlier in
time. A key point is that we do not represent explicitly all forbidden regions but
rather compute them lazily in order to perform specific pruning.

The main weak point of the algorithm is in line 2 of Algorithm 1. We would
like to efficiently filter out the constraints C; that do not generate any forbidden
regions wrt. the variables X and Y under consideration.

We have shown how the value sweep algorithm can be used in a filtering
algorithm for the non-overlapping rectangles constraint, first by simple special-
ization, and then by a modified sweep algorithm that uses a shared event queue
corresponding to relative forbidden regions. Again, the weak point is in the search
for relevant, non-empty forbidden regions in the event queue. Some combination
of interval and range trees [8] could be appropriate.

We have described four optimizations to the filtering algorithm. The algo-
rithm and the optimizations have been implemented, and a performance eval-
uation and some indication to their generality are given. The evaluation shows
an improvement by several orders of magnitude overs implementations based on
decomposition into binary constraints.

Acknowledgements

The research reported herein was supported by NUTEK (the Swedish National
Board for Industrial and Technical Development). The idea of a shared event
queue is due in part to Sven Thiel.

15

runtime (msec)

runtime (msec)

runtime (msec)

7000

6000

5000

4000 [

3000 [

2000 [

1000 -

9000
8000
7000
6000
5000
4000
3000
2000
1000

6000

5000

4000

3000

2000

1000

o

0

100 150 200 250 300 350 400

Set 1: # rectangles

450 500 550

100 150 200 250 300 350 400

Set 3: # rectangles

450 500 550

L2
100 150 200 250 300 350 400 450 500 550

Set 5: # rectangles

5500 T T

5000
4500
4000
3500
3000 |
2500 |
2000
1500
1000
500

0 .

runtime (msec)

50 100 150 200 250 300 350 400 450 500 550

16000 T

Set 2: # rectangles

14000 r

12000

10000 -
8000 [
6000 [

runtime (msec)

4000

2000 [

50 100 150 200 250 300 350 400 450 500 550

Set 4: # rectangles

600

runtime (msec)

50 100 150

Fig. 3. Benchmark results

200 250 300 350 400 450 500 550
Set 6: # rectangles

Table 3. Runtime (msec) for 100 rectangles

Set 1|Set 2| Set 3| Set 4| Set 5|Set 6
card (113830 5110(|508150|{382870|9751490| 1940
cd 5300 210| 44190| 16330| 590890 10
diffn 600| 140 690| 1030 520 10
sweep 260 170 300 350 120 10

16

References

1.

2.

10.

A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex schedul-
ing and placement problems. Mathl. Comput. Modelling, 17(7):57-73, 1993.

N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP. Mathl.
Comput. Modelling, 20(12):97-123, 1994.

M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint
solver. In H. Glaser, P. Hartel, and H. Kucken, editors, Programming Languages:
Implementations, Logics, and Programming, volume 1292 of Lecture Notes in Com-
puter Science, pages 191-206. Springer-Verlag, 1997.

F.R. du Verdier. Résolution de problémes d’aménagement spatial fondée sur la sat-
isfaction de contraintes. Validation sur ’implantation d’équipements électroniques
hyperfréquences. PhD thesis, Université Claude Bernard-Lyon I, July 1992. In
French.

A. Lahrichi. Scheduling: the notions of hump, compulsory parts and their use in
cumulative problems. C. R. Acad. Sci., Paris, 1982.

P. Martin and D.B. Shmoys. A new approach to computing optimal schedules for
the job-shop scheduling problem. In Proc. of the 5th International IPCO Confer-
ence, pages 389-403, 1996.

K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching. EATCS
Monographs. Springer-Verlag, Berlin, 1984.

F.P. Preparata and M.I. Shamos. Computational Geometry. An Introduction.
Springer-Verlag, 1985.

H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
1989.

Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. Design, implemen-
tation and evaluation of the constraint language cc(FD). In A. Podelski, editor,
Constraints: Basics and Trends, volume 910 of Lecture Notes in Computer Science.
Springer-Verlag, 1995.

17

