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Abstract. This report presents a generic filtering scheme, based on the graph de-
scription of global constraints. This description is defined by a network of binary
constraints and a list of elementary graph properties: each solution of the global
constraint corresponds to a subgraph of the initial network, retaining only the sat-
isfied binary constraints, and which fulfills all the graph properties. The graph-
based filtering identifies the arcs of the network that belong or not to the solution
subgraphs. The objective is to build, besides a catalog of global constraints, also
a list of systematic filtering rules based on a limited set of graph properties. We
illustrate this principle on some common graph properties and provide computa-
tional experiments of the effective filtering on the group constraint.
Keywords: Constraint Programming, Global Constraints, Filtering Algorithms,
Graph Properties.

1 Introduction

The global constraint catalog [2] provides the description of hundreds of global con-
straints in terms of graph properties: The solutions of a global constraint are identified
to the subgraphs of one initial digraph sharing several graph properties. Existing graph
properties use a small set of graph parameters such as the number of vertices, or arcs, or
the number of connected components.The most common graph parameters were con-
sidered in [6]. It showed how to estimate, from the initial digraph, the lower and upper
values of a parameter in the possible solution subgraphs. Those bounds supply neces-
sary conditions of feasibility for almost any global constraint.

This report goes one step further by introducing systematic filtering rules for those
global constraints. The initial digraph describing a global constraint is indeed a network
of constraints on pairs of variables. To each complete instantiation of the variables cor-
responds a final subgraph obtained by removing from the initial digraph all the arcs (i.e.,
the binary constraints) that are not satisfied. Since solution(s) of the global constraint
correspond to final subgraphs fulfilling a given set of graph properties, filtering consists



in identifying and dropping elements of the initial digraph that do not belong to such
subgraphs, or to force those elements that belong to any solution subgraphs.

A first way to achieve this identification might be to use shaving [12]. That is, fix
the status of an arc or a vertex, and check if it leads to a contradiction. Since this is very
costly in practice, we present in this report another way to proceed. The filtering rules
proposed thereafter apply whenever a graph parameter is set to one of its bounds.

Last, the global constraints can be partitioned wrt. the class that their associated final
digraphs belongs to. Taking into account a given graph class leads to a better estimation
of the graph parameter bounds and then a more effective filtering.

The report is organized as follows: Section 2 recalls the graph-based description
of global constraints and introduces a corresponding reformulation. Section 3 sets up
a list of notations in order to formalize the systematic graph-based filtering. Section 4
presents the filtering rules related to the bounds of some graph parameters. Section 5
shows how the graph-based filtering relates to existing ad-hoc filtering for some global
constraints. Section 6 illustrates how refining the filtering according to a given graph
class and provides computational results on the group constraint, which belongs to the
path with loops graph class.

2 Graph-based Description of Global Constraints

2.1 Graph-based Description

Let C(V1, . . . , Vp, x1, . . . , xn) be a global constraint with domain variables3 V1, . . . , Vp,
and domain or set variables4 x1, . . . , xn. When it exists, a graph-based description of
C is given by one (or several) network(s) GR = (X, ER) of binary constraints over
X = {x1, . . . , xn} in association with a set GPR = {Pl opl Vl | l = 1, . . . , p} of
graph properties and, optionally, a graph class cR, where:

– The constraints defining the digraph GR = (X, ER) share the same semantic (typ-
ically it is an equality, an inequality or a disequality). Let xjRxk denote the so-
called arc constraint between the ordered pair of variables (xj , xk) ∈ ER (or the
unary constraint if j = k).

– Pl opl Vl expresses a graph property comparing the value of a graph parameter
Pl to the value of variable Vl. The comparison operator op l is either ≥, ≤, =, or
6=. Among the most usual graph parameters Pl, let NARC denote the number
of arcs of a graph, NVERTEX the number of vertices, NCC the number of
connected components, MIN NCC and MAX NCC the numbers of vertices
of the smallest and the largest connected components respectively.

– cR corresponds to recurring graph classes that show up for different global con-
straints. For example, we consider graphs in the classes acyclic, symmetric,
bipartite.

3 A domain variable D is a variable ranging over a finite set of integers dom(D). min(D) and
max(D) respectively denote the minimum and maximum values in dom(D).

4 A set variable S is a variable that will be assigned to a finite set of integer values. Its domain
is specified by its lower bound S, and its upper bound S, and contains all sets that contain S

and are contained in S.



GR is called the initial digraph. When all variables x are instantiated, the subgraph
of GR, obtained by removing all arcs corresponding to unsatisfied constraints xjRxk

as well as all vertices becoming isolated, is called a final digraph (associated to the
instantiation) and is denoted by Gf = (Xf , Ef ).

The relation between C and its graph-based description is stated as follows:

Definition 1. A complete assignment of variables V1, . . . , Vp, x1, . . . , xn is a solution
of C iff the final digraph associated to the assignment of x1, . . . , xn, satisfies all graph
properties Pl opl Vl in GPR and belongs to the graph class cR.

Example 1. Consider the proper forest(NTREE, VER) constraint introduced in [5]. It receives
a domain variable NTREE and a digraph G described by a collection of n vertices VER: each vertex
is labelled by an integer between 1 and n and is represented by a set variable whose lower and
upper bounds are the sets of the labels of respectively its mandatory neighbors and its mandatory
or potential neighbors in G. This constraint partitions the vertices of G into a set of vertex-disjoint
proper trees (i.e., trees with at least two vertices each).

Part (A) of Figure 1 illustrates such a digraph G, where solid arrows depict mandatory arcs
and dashed arrows depict potential arcs. Part (B) of the figure shows a possible solution on this
digraph with three proper trees. In the graph-based description of proper forest, the initial di-

i dom(VER[i]) (A) dom(VER[i]) (B) i dom(VER[i]) (A) dom(VER[i]) (B)
1 {2, 3} {2} 6 {5, 7, 8} {5, 7}
2 {1, 3, 4} {1} 7 {5, 6, 9} {6, 9}
3 {1, 2, 4, 5} {4} 8 {6, 9} {9}
4 {2, 3} {3} 9 {7, 8} {7, 8}
5 {3, 6, 7} {6}

Table 1. Domains of the variables for the proper forest constraint corresponding to parts (A)
and (B) of Figure 1.

graph corresponds exactly to G and has no loop. Any final digraph Gf contains all the mandatory
arcs of G and belongs to the symmetric graph class.5 Moreover Gf has to fulfill the following
graph properties: NVERTEX = n (since it is a vertex partitioning problem, Gf contains all
the vertices of G), NARC = 2 · (n − NTREE) (2 since Gf is symmetric, and n− NTREE since
we have NTREE acyclic connected digraphs) and NCC = NTREE.
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Fig. 1. (A) A digraph and (B) a solution with three proper trees for the proper forest constraint

5 A digraph is symmetric iff, if there is an arc from u to v, there is also an arc from v to u.



2.2 Graph-based Reformulation

According to Definition 1, any global constraint C(V1, . . . , Vp, x1, . . . , xn) holding a
graph-based description can be reformulated as follows:

Proposition 1. Define additional variables attached to each constraint network GR =
(X, ER): to each vertex xj and to each arc ejk of GR correspond 0-1 variables respec-
tively denoted vertex j and arcjk . Vertex and Arc denote these sets of variables. Last,
let Gf denote the subgraph of GR, whose vertices and arcs correspond to the variables
vertex j and arcjk set to 1. Then constraint C holds iff the following constraints hold:

arcjk = 1 ⇔ xjRxk , ∀ejk ∈ ER (1)
vertex j = min(1,

∑

{k | ejk∈ER} arcjk +
∑

{k | ekj∈ER} arckj), ∀xj ∈ X (2)
ctrPl

(Vertex ,Arc, Pl), ∀(Pl opl Vl) ∈ GPR (3)
This constraint is satisfied when Pl is equal to the value of the corresponding parameter Pl in Gf .

Pl op Vl, ∀(Pl opl Vl) ∈ GPR (4)
ctr cR(Vertex ,Arc) (5)

This graph-class constraint is satisfied if Gf belongs to the graph class cR.

Proof. Proposition 1 is a simple rephrasing of Definition 1: given any complete assignment of
the variables of this reformulation, the final digraph associated to the assignment of x1, . . . , xn is
the digraph Gf defined above iff constraints (1) and (2) hold. Pl is the value of the parameter Pl

in Gf iff constraint (3) holds. Definition 1 states that V1, . . . , Vp, x1, . . . , xn is a solution of C

iff constraint (4) holds for each graph property. Last, Gf belongs to the graph class cR according
to constraint (5). ut

Example 2. Consider again the proper forest constraint previously introduced. Since its final
digraph is symmetric and does not contain isolated vertices, the graph-class constraint (5) is
the conjunction of the following constraints: arcjk = arckj for each arc ejk and vertex j =

min(1, 2 ·P{k | ejk∈ER}arcjk) for each vertex xj in GR.

Filtering domains of variables V and x according to C can be achieved by enforcing
alternatively, and for each constraint network GR, the five sets of constraints of this re-
formulation. Enforcing constraints (1), (2), (4) and (5) is mostly trivial since these con-
straints are elementary arithmetic constraints. The generic graph-based filtering mainly
lies then on maintaining consistency according to constraints (3), from the arc and
vertex variables to the bounds of the graph parameter variables Pl, and conversely.
In [6] it was presented, for some usual graph parameters, how to estimate their minimal
(Pl) and maximal (Pl) values in the final digraphs Gf , given the current state of the arcs
and vertices of GR. Section 4 shows how in turn, the status of some arcs and vertices
can be determined according to a graph parameter variable when it is set to one of its
extreme values (i.e. dom(Pl) = {Pl} or dom(Pl) = {Pl}).

Hence, the approach relies on identifying the possible final digraphs in GR that
minimize or maximize a given graph parameter. Any final digraph contains (resp. does
not contain) the arcs and vertices corresponding to arc and vertex variables fixed to
1 (resp. to 0). Since it has no isolated vertices, we assume that the normalization con-
straints (2) are enforced before estimating a graph parameter. Section 6 shows how



refining this estimation when the final digraphs must belong to a given graph class, by
also first enforcing constraints (5).

3 Notations for a Systematic Filtering

As for the graph-based description of any global constraint, we aim at providing a cat-
alog of generic filtering rules related to the bounds of graph parameters. In order to
formalize this, we first need to introduce a number of notations.

Let GR an initial digraph associated to the graph-based description of a global con-
straint. The current domains of variables arc and vertex of the reformulation corre-
spond to a unique partitioning of the arc and vertex sets of GR, denoted as follows:

Notation 1 A vertex xj or an arc ejk of GR is either true (T ), false (F ), or undeter-
mined (U ) whether the corresponding variable vertex j or arcjk is fixed to 1, fixed to 0
or yet unfixed (with domain {0, 1}). This leads to the partitioning of the vertex set of GR

into XT ∪̇XF ∪̇XU and to the partitioning of the edge set of GR into ET ∪̇EF ∪̇EU .
For two distinct elements Q and R in {T, U, F}, let XQR denote the vertex subset
XQ ∪̇XR, and EQR denote the arc subset EQ ∪̇ ER.

Once the normalization constraints are enforced, subgraph (XT , ET ) is well defined
and is included in any final digraph. (XTU , ETU ) is also a subgraph of GR, called the
intermediate digraph, and any final digraph is derived from this by turning each U -arc
and U -vertex into T or F .6 We aim at identifying the final digraphs in which a graph
parameter P reaches its lower value P or its upper value P . An estimated bound is
said to be sharp if for any intermediate digraph, there exists at least one final digraph
where the parameter takes this value. To estimate these bounds, we deal with different
digraphs derived from the intermediate digraph:

Notation 2 For any words Q, R and S on the alphabet {T, U, F}, XQ and XS are
vertex subsets and ER is an arc subset of the initial digraph, and:

– XQ,R (resp. XQ,¬R) denotes the set of vertices in XQ that are extremities of at
least one arc (resp. no arc) in ER:
XQ,R = {x ∈ XQ | ∃e ∈ ER ∧ x ∈ e} and XQ = XQ,R ∪̇XQ,¬R.

– XQ,R,S (resp. XQ,R,¬S) denotes the set of vertices in XQ,R that are linked to at
least one vertex (resp. to no vertex) in XS by an arc in ER:
XQ,R,S = {x ∈ XQ,R | ∃y ∈ XS ∧ ((x, y) ∈ ER ∨ (y, x) ∈ ER)} and XQ,R =
XQ,R,S ∪̇XQ,R,¬S .

– XQ,¬R,S (resp. XQ,¬R,¬S) denotes the set of vertices in XQ,¬R that are linked to
at least one vertex (resp. to no vertex) in XS by an arc in ETU :
XQ,¬R,S = {x ∈ XQ,¬R | ∃y ∈ XS ∧ ((x, y) ∈ ETU ∨ (y, x) ∈ ETU )} and
XQ,¬R = XQ,¬R,S ∪̇XQ,¬R,¬S.

6 In the context of CP(Graph) [10], these two digraphs respectively correspond to the lower and
upper bounds of a graph variable. Note that, as a consequence, our approach can easily be
adapted to providing a generic filtering for CP(Graph).



– ER,Q is the set of arcs in ER that are incident on at least one vertex in XQ:
ER,Q = {e ∈ ER | ∃x ∈ XQ ∧ x ∈ e}.

– ER,Q,S is the set of arcs in ER that are incident on one vertex in XQ and on one
vertex in XS:
ER,Q,S = {e ∈ ER | ∃x ∈ XQ ∧ ∃y ∈ XS ∧ (e = (x, y) ∨ e = (y, x))}.

Notation 3 Given a digraph G and subsets X of vertices and E of arcs:

– −→G(X , E) denotes the induced subgraph of G containing all vertices in X and all
arcs of E having their two extremities in X .

– ←→G (X , E) denotes the corresponding undirected graph: to one edge (u, v) corre-
sponds at least one arc (or loop) (u, v) or (v, u) in−→G(X , E). Note that E still refers
to the set of arcs of digraph−→G (X , E) and not to the derived sets of edges.

– vertex (G) denotes the set of vertices of G.
– cc(G) denotes the set of connected components of G and cc [cond](G) denotes the

subset of connected components that satisfy a given condition cond .

Note that−→G(XTU , ETU ) is the intermediate digraph, and that several notations may
represent the same subset of arcs or vertices. For example, according to the normaliza-
tion constraints (2), XU,T and ET,U,T are always the empty set and XU,¬T is always
equal to XU .

Example 3. We illustrate some sets of vertices and arcs previously introduced and some graphs
on the intermediate digraph depicted by Part (A) of Figure 1:

– XT = {1, 2, . . . , 9}, ET = {(5, 6), (6, 5), (6, 7), (7, 6)}.
– XU = ∅, EU = { (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3),

(3, 5), (5, 3), (5, 7), (7, 5), (6, 8), (8, 6), (7, 9), (9, 7), (8, 9), (9, 8)}.
– XT,T = {5, 6, 7} and XT,¬T = {1, 2, 3, 4, 8, 9} forms a partition of the set of T -vertices

depending on whether or not a vertex is the extremity of a T -arc.
– −→G(XT,T , EU ) = ({5, 6, 7}, {(5, 7), (7, 5)}) denotes the digraph defined by the set XT,T

of vertices (possibly isolated) and the arcs of EU that have their two extremities in XT,T .

Example 4. cc [|ET |≥1](
−→
G (XTU , ETU )) denotes the set of connected components of the inter-

mediate digraph containing at least one T -arc.

Notation 4 ←→G rem denotes the (undirected) induced subgraph of ←→G (XTU , EU ) ob-
tained by removing all vertices present in cc[|ET |≥1](

−→
G (XT , ET )) and then by remov-

ing all vertices becoming isolated in the remaining undirected graph.

Last, we recall some graph theoretic terms(other standard graph term definitions
used throughout this report can be found for instance in [7]):

Definition 2. – Given a digraph G, a sequence (a1, a2, . . . , ak) of arcs of G such
that, for each arc ai (1 ≤ i < k) the end of ai is equal to the start of the arc
ai+1, is called a path. A path where all vertices are distinct is called an elementary
path. Each equivalence class of the relation “ai is equal to aj or there exists a path
between ai and aj” is a strongly connected component of G. The reduced digraph



of G is defined as follows: to each strongly connected component of G corresponds
a vertex of the reduced digraph, and to each arc of G connecting different strongly
connected components corresponds an arc in the reduced digraph (multiple arcs
between the same pair of vertices are merged).

– Given an undirected graph G, a sequence (e1, e2, . . . , ek) of edges of G such that
each edge has a common vertex with the previous edge, and the other vertex com-
mon to the next edge is called a chain. A chain where all vertices are distinct is
called an elementary chain. An articulation point (resp. a bridge) of an undirected
graph G is a vertex (resp. an edge) whose removal increases the number of con-
nected components. Similarly a strong articulation point of a digraph G is a vertex
whose removal increases the number of strongly connected components.

– A matching of an undirected graph G is a subset of edges, excluding loops, such
that no two edges have a vertex in common. A maximum matching is a matching of
maximum cardinality. µ(G) denotes the cardinality of a maximum matching of G.
If loops are allowed in the matching then it is called a l-matching and the maximum
cardinality of an l-matching in G is denoted by µl(G).

– Given a bipartite graph G((Y, Z), E), a hitting set of G((Y, Z), E) is a subset Z ′

of Z such that for any vertex y ∈ Y there exists an edge in E connecting y to a
vertex in Z ′. h(G) denotes the cardinality of a minimum hitting set of G.

4 Filtering from Bounds of Graph Parameters

This section illustrates on the examples of NARC, NVERTEX and NCC, how to
filter according to a graph-parameter constraint ctrPl

(Vertex ,Arc, Pl) (Constraint (3)
introduced in Proposition 1. Table 2 first recalls the generic formula to estimate the
bounds of these three parameters according to the current instantiation of Vertex and
Arc. These results were previously given in [6]. Note that all these bounds are sharp.
Then we present a reverse filtering when dom(P ) = {P} or dom(P ) = {P}. The next
rules allow to determine the status of U -vertices and U -arcs of the intermediate digraph
whenever any final digraph must contain exactly the minimal or the maximal number
of arcs, of vertices or of connected components. Before stating each theorem, we give
an intuition of the corresponding formula.

4.1 Filtering from NARC

Theorem 1 corresponds to the case where NARC is equal to the lower bound NARC

of Table 2. It is based on the fact that NARC is equal to the current number of T -arcs,
|ET |, plus the minimum number of additional U -arcs that should be turned into T -arcs
to derive from −→G(XTU , ETU ) a final digraph where no T -vertex is isolated. This esti-
mation is based on the computation of the cardinality of a minimum edge cover. There-
fore, U -arcs (resp. U -vertices) that do not belong to any minimum edge cover can be
turned into F -arcs (resp. F -vertices). Conversely, relatively to minimum edge covers,
some U -arcs are required in any final digraph stemming from −→G(XTU , ETU ).

Theorem 1. If dom(NARC) = {NARC} then:



Graph parameters Bound

NARC |ET |+ |XT,¬T | − µ(
←→
G (XT,¬T , EU ))

NARC |ETU |

NVERTEX |XT | + h(
←→
G ((XT,¬T,¬T , XU,¬T,T ), EU,T ))

NVERTEX |XTU |

NCC |cc[|XT |≥1](
−→
G (XTU , ETU ))|

NCC |cc[|ET |≥1](
−→
G (XT , ET ))|+ µl(

←→
G rem)

Table 2. Bounds of the different graph parameters.

1. Any U -arc connecting two connected components, not necessarily distinct, in
cc[|ET |≥1](

−→
G(XT , ET )) is turned into an F -arc.

2. Any U -arc in EU,U,U is turned into an F -arc.
3. Any U -vertex in XU,¬T,¬T (i.e., not linked to any T -vertex) is turned into an

F -vertex.
4. For any edge e = (u, v), u 6= v, of←→G (XT,¬T , EU ) such that u, v ∈ XT,¬T and e

does not belong to any maximum matching of←→G (XT,¬T , EU ), the corresponding
arcs (u, v) and (v, u) of −→G(XT,¬T , EU ) are turned into F -arcs.

5. For any edge e = (u, v), u 6= v, of ←→G (XT,¬T , EU ) such that u, v ∈ XT,¬T and
e belongs to all maximum matchings of←→G (XT,¬T , EU ), if a unique arc (u, v) or
(v, u) in −→G (XT,¬T , EU ) corresponds to e then this arc is turned into a T -arc.

6. Any U -arc e = (u, v) such that u ∈ XT,¬T is saturated in all maximum matchings
of←→G (XT,¬T , EU ) and v ∈ XU is turned into an F -arc.

7. Any U -loop e = (u, u) such that u ∈ XT,¬T is saturated in all maximum matchings
of←→G (XT,¬T , EU ) is turned into an F -arc.

Proof. [Theorem 1.] The quantity |ET | + |XT,¬T | − µ(
←→
G (XT,¬T , EU )) is equal to

the current number of T -arcs, plus the minimum number of arcs required to connect
all currently isolated T -vertices: for a given maximum matching, we count one arc per
edge of this maximum matching (covering two T -vertices), plus one arc per remaining
T -vertex. Setting a U -arc connecting two T -arcs increases by 1 the number of T -arcs
without covering any additional T -vertex (Item 1). With respect to←→G (XT,¬T , EU ), no
edge that does not belong to a minimum edge cover can correspond to an arc that be-
longs to the final digraph Gf , and also no vertex that is not the extremity of at least
one edge of one such minimum edge cover can belong to Gf (Items 2, 3 and 4).



Moreover, some edges are present in all minimal edge covers of ←→G (XT,¬T , EU ).
Let e = (u, v) be such an edge. This edge e belongs to any maximum matching of
←→
G (XT,¬T , EU ) because its two extremities are T -vertices. If no arc corresponding to
e belongs to Gf then this digraph would have a number of arcs strictly greater than
|ET |+ |XT,¬T |−µ(

←→
G (XT,¬T , EU )). Therefore at least one arc between u and v must

be a T -arc in Gf (Item 5). As a consequence, no additional U -arc joining u or v to a
U -vertex can belong to Gf (Item 6). Moreover, the loops (u, u) and (v, v) can also not
belong to Gf (Item 7).

Example 5. Part (A) of Figure 2 corresponds to an intermediate digraph −→G (XTU , ETU ) chosen
for illustrating the different items of Theorem 1 under the assumption that NARC = 6. On this
intermediate digraph we have that |ET | = 0, |XT,¬T | = 11 and µ(

←→
G (XT,¬T , EU )) = 5 and

as a consequence the precondition of Theorem 1 holds. Part (B) is the corresponding undirected
graph←→G (XTU , ETU ) introduced in the lower bound of NARC: thick edges depict an instance
of maximum matching of ←→G (XT,¬T , EU ), while gray vertices represent T -vertices belonging
to all maximum matchings of←→G (XT,¬T , EU ).

Within all figures of the report T:i (resp. F:i) depicts U -arcs or U -vertices that should
be turned into T -arcs (resp. F -arcs) or T -vertices (resp. F -vertices) according to Item i. For
instance, within Part (A) of Figure 2, the arc from 9 to 13 is labeled by F:1 since, according to
Item 1 of Theorem 1 it should be turned into an F -arc.

4.2 Filtering from NARC

Theorem 2 corresponds to the case where NARC is equal to the upper bound NARC

of Table 2. In this case, if one U -arc is turned into an F -arc then NARC = ETU

cannot hold.

Theorem 2. If dom(NARC) = {NARC} then any U -arc of−→G(XTU , ETU ) is turned
into a T -arc.

Proof. [Theorem 2.] Suppose that one arc e ∈ EU will not belong to a final digraph
Gf . The number of arcs of Gf will be at most equal to |ETU |−1, which is contradictory
with NARC = |ETU |.

Example 6. Part (C) of Figure 2 illustrates Theorem 2 according to the hypothesis that the final
digraph should contain at least 3 arcs. The two U -arcs (3, 1) and (3, 4) are turned into T -arcs.

4.3 Filtering from NVERTEX

NVERTEX is equal to the current number of T -vertices, |XT |, plus the minimum
number of U -vertices that should be turned into T -vertices to avoid isolated T -vertices.
This estimation is based on the computation of the cardinality of a minimum hitting set.
Therefore, to reach this bound, U -vertices that do not belong to any minimum hitting
set can be turned into F -vertices. Conversely, some U -vertices and U -arcs are required
in any final digraph stemming from −→G(XTU , ETU ).
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Fig. 2. Filtering according to NARC: Illustration of Theorems 1 and 2.

Theorem 3. If dom(NVERTEX) = {NVERTEX} then

1. Any U -vertex in XU,¬T,¬T is turned into an F -vertex.
2. Any U -vertex in XU,¬T,T that do not belong to any minimum hitting set of ←→G

((XT,¬T,¬T , XU,¬T,T ), EU,T ) is turned into an F -vertex (notably if it is not linked
to any vertex in XT,¬T,¬T ).

3. Any U -vertex in XU,¬T,T that belong to all minimum hitting sets of←→G ((XT,¬T,¬T ,

XU,¬T,T ), EU,T ) is turned into a T -vertex.
4. For all edges e = (u, v) such that u ∈ XT,¬T,¬T and v ∈ XU,¬T,T , if all minimum

hitting sets are such that v is the only vertex that can be associated with u, and if a
unique arc corresponds to e in −→G((XT,¬T,¬T , XU,¬T,T ), EU,T ), then this arc can
be turned into a T -arc.

Proof. [Theorem 3.] h(
←→
G ((XT,¬T,¬T , XU,¬T,T ), EU,T )) is the minimum number

of U -vertices that should be turned into T -vertices to make all isolated T -vertices
in −→G(XT , ET ) linked by at least one arc in the final digraph Gf . If NVERTEX

= |XT | + h(
←→
G ((XT,¬T,¬T , XU,¬T,T ), EU,T )) then the final digraph will con-

tain all current T -vertices plus h(
←→
G ((XT,¬T,¬T , XU,¬T,T ), EU,T )) vertices from

XU,¬T,T . Note that any of these U -vertices belong to at least one arc such that
the other extremity is a T -vertex. As a consequence, the filtering stated in Item 1
holds. Moreover if one U -vertex that does not belong to a minimum hitting set of
←→
G ((XT,¬T,¬T , XU,¬T,T ), EU,T )) is turned into a T -vertex in Gf then this digraph
will contain strictly more than |XT | + h(

←→
G ((XT,¬T,¬T , XU,¬T,T ), EU,T )) ver-

tices (a contradiction). Therefore the filtering stated in Item 2 holds. If one U -vertex
belongs to all minimum hitting sets then it must be taken, to prevent there from
being too many vertices in Gf (Item 3). Finally, as a consequence of Item 3, if
some U -arcs a required to connect such required U -vertices to current T -vertices in
←→
G ((XT,¬T,¬T , XU,¬T,T ), EU,T )) then they should be turned into T -arcs (Item 4).

Example 7. Part (A) of Figure 3 illustrates Theorem 3 according to the hypothesis that the final
digraph should not contain more than 7 vertices7:

7 As in Figure 1, solid arrows/circles depict T -arcs/vertices and dashed arrows/circles depict
U -arcs/vertices in the intermediate digraph.



– The U -vertices 1 and 10 are turned into F -vertices according to Item 1.
– Since they do not belong to any minimum hitting set, the U -vertices 4, 5 and 12 are turned

into F -vertices according to Item 2.
– Since the U -vertex 9 belongs to all minimum hitting sets, it is turned into a T -vertex accord-

ing to Item 3.
– Last, the U -arc (8, 9) is turned into a T -arc according to Item 4.

Part (B) depicts the corresponding bipartite graph ←→G ((XT,¬T,¬T , XU,¬T,T ), EU,T ) used for
computing the cardinality of a minimum hitting set. Thick lines correspond to a minimum hitting
set.
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Fig. 3. Filtering according to NVERTEX: Illustration of Theorems 3 (A, B) and 4 (C).

Since Theorem 3 involves computing the cardinality of a minimum hitting set, which is
exponential, we provide a weaker form of Theorem 3.

Corollary 1. If dom(NVERTEX) = {|XT |} then all U -vertices can be turned into
F -vertices.

4.4 Filtering from NVERTEX

NVERTEX corresponds to final digraphs derived ←→G (XTU , ETU ) by turning all
U -vertices into T .

Theorem 4. If dom(NVERTEX) = {NVERTEX} then any U -vertex of
←→
G (XTU , ETU ) is turned into a T -vertex.

Proof. [Theorem 4.] If one vertex v ∈ XU does not belong to the final digraph then
the number of vertices of that final digraph is at most equal to |XTU | − 1, which is
contradictory with NVERTEX = |XTU |.

Example 8. Part (C) of Figure 3 illustrates Theorem 4 according to the hypothesis that the final
digraph should contain at least 5 vertices. Theorem 4 turns all U -vertices into T -vertices.



4.5 Filtering from NCC

The minimal number of connected components in any final digraph is equal to the
number of connected components in the intermediate digraph that contain at least one
T -vertex.
Theorem 5. If dom(NCC) = {NCC} then

1. Any U -arc or U -vertex of any connected component in |cc[|XT |=0](
−→
G(XTU , ETU ))|

is turned into an F -arc or an F -vertex.
2. Any U -vertex that is an articulation point of←→G (XTU , ETU ) such that its removal

disconnects two T -vertices8 is turned into a T -vertex.
3. For any edge e of←→G (XTU , ETU ) that is a bridge such that its removal disconnects

two T -vertices, if a unique U -arc in −→G(XTU , ETU ) corresponds to e then this
U -arc is turned into a T -arc.

Proof. [Theorem 5.] Since all T -vertices appear in any final digraph Gf , a subpart of
each connected component in cc[|XT |≥1](

−→
G(XTU , ETU )) will necessarily belong to a

distinct connected component of Gf . By definition, no additional connected compo-
nent of −→G(XTU , ETU )) can belong to Gf . As a consequence, Item 1 holds. Moreover,
existing connected components containing a T -arc should not be split. Therefore some
U -vertices and U -arcs should necessarily belong to Gf . Items 2 and 3 hold.

1 2 3 4

5 6 7 8 9

F:1

T:3

T:3 F:1

F:1

F:1

T:2 T:2

4

7 8 965

1 2 3
NCC=1

(A) (B)

Fig. 4. Filtering according to NCC: Illustration of Theorem 5.

Example 9. Part (A) of Figure 4 illustrates Theorem 5 according to the hypothesis that the
final digraph should contain no more than one connected component. Part (B) represents the
undirected graph←→G (XTU , ETU ), where grey vertices correspond to articulation points and thick
lines correspond to bridges. Since −→G(XTU , ETU ) contains one single connected component
involving T -vertices, the precondition of Theorem 5 holds and we get the following filtering:

– Since the connected component of −→G(XTU , ETU ) with vertices {4, 9} belongs to
cc[|XT |=0](

−→
G(XTU , ETU )), then, from Item 1, U -vertices 4 and 9 as well as U -arcs (4, 4)

and (9, 4) are respectively turned into F -vertices and F -arcs.
– From Item 2, the two U -vertices 7 and 8, which are articulation points of ←→G (XTU , ETU )

belonging to an elementary chain between two T -vertices (3 and 6), are turned into
T -vertices.

– From Item 3, among the 3 bridges of←→G (XTU , ETU ) belonging to an elementary chain be-
tween two T -vertices (3 and 6), (3, 8) and (7, 6) are turned into T -arcs since their respective
counterparts (8, 3) and (6, 7) do not belong to −→G (XTU , ETU ).

8 The two T -vertices do not belong any more to the same connected component.



4.6 Filtering from NCC

NCC is equal to the current number of connected components of −→G(XT , ET ) contain-
ing at least one T -arc (that is, |cc[|ET |≥1](

−→
G(XT , ET ))|) plus the cardinality of a max-

imum matching µl(
←→
G rem), which is the maximum possible number of new connected

components that could be present in a final digraph stemming from −→G(XTU , ETU ),
in addition to |cc[|ET |≥1](

−→
G (XT , ET ))|. Then all U -arcs (and U -vertices) that may re-

duce the number of connected components if they would belong to the final digraph
have to be turned into F -arcs (and F -vertices). For instance, a U -arc joining two con-
nected components with T -arcs. Moreover, some U -vertices are present in any max-
imum matching µl(

←→
G rem). They should be turned into T -vertices since they will be

required in any final digraph.

Theorem 6. If dom(NCC) = {NCC} then

1. Any U -arc of −→G(XT , ETU ) joining two T -vertices belonging to two distinct con-
nected components in cc[|ET |≥1](

−→
G(XT , ET )) is turned into an F -arc.

2. For any edge in←→G rem that does not belong to any maximum l-matching of←→G rem ,
the corresponding U -arc(s) are turned into F -arcs.

3. Any U -arc e = (u, v) such that u belongs to a connected component in
cc[|ET |≥1](

−→
G(XT , ET )) and v is saturated in every maximum l-matchings of

←→
G rem is turned into an F -arc.

4. Any U -vertex of←→G rem belonging to all maximum l-matchings of←→G rem is turned
into a T -vertex.

5. For all edges e belonging to all maximum l-matchings of←→G rem , if a unique U -arc
in −→G (XTU , EU ) corresponds to e then this arc is turned into a T -arc.

6. Any U -vertex of←→G rem that does not belong to any maximum l-matching of←→G rem

is turned into an F -vertex.

Proof. [Theorem 6.] If one additional arc joins two connected components in
cc[|ET |≥1](

−→
G(XT , ET )) then the number of connected components of the final di-

graph will be strictly less than |cc[|ET |≥1](
−→
G(XT , ET ))|+ µl(

←→
G rem), a contradiction.

Therefore Item 1 holds.
Similarly U -arcs corresponding to edges in ←→G rem that do not belong to at least one
maximum l-matching of←→G rem cannot belong to the final digraph because their pres-
ence would decrease the number of new connected components. Therefore Item 2 holds.
Furthermore, no U -arc that joins a connected component in cc[|ET |≥1](

−→
G (XT , ET ))

with a vertex saturated in all maximum matchings of←→G rem can be turned into a T -arc.
Therefore Item 3 holds.
On the contrary, U -vertices saturated in all maximum matchings of←→G rem and U -arcs
belonging to all such maximum matchings should necessarily belong to Gf . Items 4
and 5 hold.
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Fig. 5. Filtering according to NCC: Illustration of Theorem 6.

Example 10. Part (A) of Figure 5 illustrates Theorem 6 according to the hypothesis that the fi-
nal digraph should contain at least 6 connected components. cc[|ET |≥1](

−→
G (XT , ET )) consists of

the following two connected components, respectively corresponding to the sets of vertices {2, 3}
and {4, 5, 6}. Part (B) illustrates the corresponding undirected graph ←→G rem , where thick lines
correspond to a maximum l-matching of cardinality 4, and grey vertices are vertices that are satu-
rated in all maximum l-matchings. Since the precondition NCC = |cc[|ET |≥1](

−→
G (XT , ET ))|+

µl(
←→
G rem) = 6 of Theorem 6 holds, Items 1, 2 and 3 respectively turn the U -arcs of {(4, 3)}, of

{(9, 7), (9, 10), (10, 9)} and of {(4, 8), (7, 5)} into F -arcs. Item 4 turns the U -vertices {8, 13}
into T -vertices. Finally, Item 5 turns the U -arcs {(7, 8), (9, 9)} into T -arcs.

4.7 Complexity Results

Table 3 provides complexity results for the triggering conditions as well as for each
item of the theorems that were previously introduced. Most of these items correspond
directly to an existing graph problem that we mention in the third column of the table.
We only describe how to adapt depth first search in order to handle Item 2 of Theo-
rem 5. The complexity stated for each item of a theorem assumes that the correspond-
ing triggering condition was already computed: for instance, assuming that a maximum
cardinality matching was already computed, identifying vertices that are saturated in
every maximum cardinality matching is linear in the number of edges of the graph [5].

Implementing Item 2 of Theorem 5. We need to identify all U -vertices that are ar-
ticulation points of the intermediate digraph such that there removal disconnect two
T -vertices. For this purpose, we adapt the depth first search algorithm used for com-
puting the articulation points of a connected graph. This algorithm characterizes the
articulation points by one of the following conditions:

1. A vertex v, different from the root of the depth first search tree, is not an articulation
point if every child c in the depth first search tree has some vertex lower in the tree
connected to a vertex higher in the tree than v.

2. The root v of the search tree is an articulation point if it has two or more children.

In order to find out whether an articulation point disconnects two T -vertices or not, we
have to associate to each vertex w the following information:

– The number, Tbefore[w], of T -vertices on the path from the root of the depth first
search tree to w.



Theorem Parts Complexity Graph Related Problems
Theorem 1
• Triggering O(m

√
n) maximum cardinality matching [13]

• Items 1,2 O(m) iterating through the arcs
• Item 3 O(n) iterating through the vertices
• Items 4,5 O(m · n) identifying edges that do not belong to any maximum cardinality matching [15]
• Items 6,7 O(m) identifying vertices that are saturated in every maximum cardinality matching [5]

Theorem 2
• Triggering O(m) iterating through the arcs
• Item 1 O(m) iterating through the arcs

Theorem 3
• Triggering NP cardinality of a minimum hitting set [11]
• Item 1 O(m) iterating through the arcs
• Items 2,4 NP identifying vertices that do not belong to any minimum hitting set
• Item 3 NP identifying vertices that belong to every minimum hitting set

Corollary 1
• Triggering O(n) iterating through the vertices
• Item 1 O(n) iterating through the vertices

Theorem 4
• Triggering O(n) iterating through the vertices
• Item 1 O(n) iterating through the vertices

Theorem 5
• Triggering O(n) iterating through the vertices
• Item 1 O(m) iterating through the arcs
• Items 2,3 O(m) depth first search

Theorem 6
• Triggering O(m

√
n) maximum cardinality matching [13]

• Item 1 O(m) computing the connected components
• Items 2,5,6 O(m · n) identifying edges that do not belong to any maximum cardinality matching [15]
• Items 3,4 O(m) identifying vertices that are saturated in every maximum cardinality matching [5]

Table 3. Complexity of each theorem. m and n respectively denote the number of arcs and the
number of vertices in the intermediate digraph.



– The number, Tafter [w], of T -vertices in the descendants of w9 in the depth first
search tree.

With this information, each time we finish exploring all the descendants of a children
c of a U -vertex v, we check condition (1.) and test if Tbefore [v] ≥ 1 and Tafter [c] ≥ 1
both hold. If this is the case, we have identified an articulation point whose removal
disconnects two T -vertices. Finally, if a U -vertex v is an articulation point with at least
two children c1 and c2 that cannot both be connected to a vertex higher in the tree than v

and such that Tafter [c1] ≥ 1 and Tafter [c2] ≥ 1 both hold, then v is also an articulation
point whose removal disconnects two T -vertices.10

5 Relating to Ad-Hoc Filtering

At this point one may wonder whether our generic graph-based filtering is not too the-
oretical in order to have any practical interest. We show that we can obtain rational re-
constructions of several ad-hoc algorithms that were constructed for specific global con-
straints. For this purpose, we first consider the proper forest constraint, which was
introduced in Example 1 and for which a specialized filtering algorithm was recently
proposed in [5].After recalling the different steps of this algorithm, we “deconstruct”
this algorithm and reinterpret its parts in terms of our generic graph-based filtering. We
finally also consider the among constraint, which was introduced in [4] and for which a
specialized filtering algorithm was proposed by Bessière et al. in [8].

5.1 Retrieving the filtering algorithm of proper forest

The specialized filtering algorithm of the proper forest constraint is made up from
the following steps:

1. Renormalize−→G (XTU , ETU ) according to the fact that the final digraph has to be symmetric.
2. Check the feasibility of the proper forest constraint:

(a) The intermediate digraph has no isolated vertex.
(b) There is no cycle made up from T -arcs.
(c) NTREE has at least one value in [MINTREE, MAXTREE] where MINTREE is the number

of connected components of the intermediate digraph and MAXTREE is the number of
connected components of −→G(XT , ET ) plus the cardinality of a maximum cardinality
matching in the subgraph induced by the vertices that are not linked to any T -vertices.

3. Every U -arc that would create a cycle of T -vertices, is turned into an F -arc.
4. The minimum and maximum values of NTREE are respectively adjusted to MINTREE and

MAXTREE.
5. When NTREE is fixed to MINTREE all U -arcs corresponding to bridges of −→G (XTU , ETU ) are

turned into T -arcs.
6. When NTREE is fixed to MAXTREE each U -arc (u, v) satisfying one of the following condi-

tions is turned into an F -arc:
9 w is considered as a descendant of itself.

10 Remember that, when we build a depth first search tree on an undirected graph, we cannot
have any edge between two subtrees of a given vertex.



(a) Both u and v belong to two distinct connected components of −→G(XT , ET ) involving
more than one vertex.

(b) (u, v) does not belong to any maximum matching in the subgraph induced by the ver-
tices that are not extremities of any T -arc.

(c) u is the extremity of a T -arc and v is saturated in every maximum matching in the
subgraph induced by the vertices that are not linked to any T -vertices.

7. Every U -arc involving a source or a sink is turned into a T -arc.

By considering the generic graph-based reformulation of Proposition 1 on the graph
property NTREE = NCC we retrieve almost all the steps of the previous algorithm
(except steps 2(b) and 3, which come from the invariant NARC = 2 · (n −NCC)
linking the two graph parameters NARC and NCC):

– Item 1 corresponds to posting the graph-class constraints (5) (in the context of
proper forest, the final digraph has to be symmetric).

– Item 2(a) corresponds to posting the normalization constraints (2).
– Item 2(c) corresponds to checking the graph property constraint NCC = NTREE (4).
MINTREE and MAXTREE respectively correspond to the general lower and upper
bounds of NCC given in Table 2 and deduced from constraint (3).

– Item 4 is the propagation induced by the graph property constraint (4).
– Item 5 and Item 6 correspond to the propagation of constraint (3) on the graph

parameter NCC: Item 5 is the specialization of Theorem 5, namely its third item
(since the first two items of Theorem 5 are irrelevant because −→G(XTU , ETU ) does
not contain any U -vertex). Item 6 corresponds to Theorem 6.

– Finally, Item 7 corresponds to the propagation obtained by the graph-class con-
straint (5), which avoids the creation of any isolated vertex in the symmetric graph
(see Example 2).

5.2 Retrieving the filtering algorithm of among

Consider the among(NVAR, VARIABLES, VALUES) constraint, introduced in [4], which
receives a domain variable NVAR, a collection of domain variables VARIABLES and a col-
lection of distinct integer values VALUES. The among(NVAR, VARIABLES, VALUES) con-
straint enforces NVAR to be equal to the number of variables of the collection VARIABLES
assigned to a value of VALUES. We now show that we can retrieve the filtering algorithm
for among recently introduced by Bessière et al. in [8]. The specialized filtering algo-
rithm of the among constraint is made up from the following steps:

1. Set low to the number of variables var of VARIABLES such that dom(var) ⊆ VALUES.
2. Set up to the total number of variables of VARIABLES minus the number of variables var of

VARIABLES such that dom(var ) ∩ VALUES = ∅.
3. Update the minimum value of NVAR to low .
4. Update the maximum value of NVAR to up.
5. If NVAR is fixed to low then, for all variables var of VARIABLES such that dom(var ) 6⊆

VALUES, enforce dom(var) = dom(var) \ VALUES.
6. If NVAR is fixed to up then, for all variables var of VARIABLES such that dom(var ) ∩

VALUES 6= ∅, enforce dom(var ) = dom(var ) ∩ VALUES.



We now give the graph-based representation of the among constraint. To each vari-
able var of VARIABLES corresponds a vertex of the initial digraph of the among con-
straint. In addition each vertex var has a loop corresponding to the unary arc-constraint
var ∈ VALUES. By considering the generic graph-based reformulation of Proposition 1
on the graph property NVAR = NARC we retrieve all the steps of the previous algo-
rithm:

– The lower bound of NVAR corresponds to a simplified form of the lower bound of
NARC depicted by Table 2, namely |ET |+ |XT,¬T |−µ(

←→
G (XT,¬T , EU )). Since

the initial digraph of the among constraint contains only loops, XT,¬T is empty and
we retrieve the lower bound |ET |.

– The upper bound of NVAR corresponds to the upper bound of NARC depicted by
Table 2, namely |ETU |.

– Item 5 is the specialization of Theorem 1, namely its second and third items.
– Item 6 corresponds to Theorem 2.

6 Specializing the Filtering According to Graph Classes

Quite often the final digraph of a global constraint has a regular structure inherited from
the initial digraph or stemming from some property of the arc constraint. This translates
as extra elementary constraints, the graph-class constraints (5), in the graph-based re-
formulation of the global constraint. Enforcing these constraints before evaluating the
graph parameter bounds in the intermediate digraph allows to refine the bound formula
of Table 2 and the bound-based filtering (Section 4), both in terms of sharpness and of
algorithmic complexity.

This section illustrates this principle on the path with loops graph class for the
four graph parameters NVERTEX, NCC, MIN NCC, and MAX NCC. The fil-
tering is then experimentally evaluated on the example of the group constraint, which
belongs to the path with loops graph class and which involves these four parame-
ters in its graph-based description.

6.1 The path with loops Graph Class

The path with loops graph class groups together global constraints with the fol-
lowing graph-based description:

– The initial digraph uses the PATH and the LOOP arc generators. It consists of
a sequence of vertices X = {x1, . . . , xn} with one arc (xj , xj+1) ∈ ER, j ∈
{1, . . . , n− 1}, for each pair of consecutive vertices, and one loop (xj , xj) ∈ ER,
j ∈ {1, . . . , n}, on each vertex (see Part (A) of Figure 6).

– In any final digraphs, each remaining vertex has its loop and two consecutive ver-
tices remain linked by an arc (see Part (B) of Figure 6). These conditions correspond
to the following graph-class constraints in the reformulation of Proposition 1:

vertex j = arcj,j (6)
min(vertex j , vertex j+1) = arcj,j+1 (7)



Among the global constraints belonging to the path with loops graph class, the
catalog mentions for example group [9] and stretch [14]. Such constraints enforce
sequences of variables to satisfy given patterns.

Example 11. Consider the group (NGROUP, MIN SIZE, MAX SIZE, MIN DIST, MAX DIST, NVAL,
VARIABLES, VALUES) constraint, where the first six parameters are domain variables, while
VARIABLES is a sequence of n domain variables and VALUES a finite set of integers.

Let xi, xi+1, . . . , xj (1 ≤ i ≤ j ≤ n) be consecutive variables of the sequence VARIABLES

such that all the following conditions simultaneously apply: (1) all variables xi, . . . , xj take their
value in the set of values VALUES, (2) either i = 1, or xi−1 does not take a value in VALUES,
(3) either j = n, or xj+1 does not take a value in VALUES. We call such a set of variables a group.
The constraint group is fulfilled if all the following conditions hold:

– there are exactly NGROUP groups of variables,
– MIN SIZE and MAX SIZE are the number of variables of the smallest and largest groups,
– MIN DIST and MAX DIST are the minimum and maximum number of variables between two

consecutive groups or between one border and one group,
– NVAL is the number of variables taking their value in the set VALUES.

For instance, group(2, 2, 4, 1, 2, 6, 〈0, 0, 1, 3, 0, 2, 2, 2, 3〉, {1, 2, 3}) holds since the se-
quence 〈0, 0, 1, 3, 0, 2, 2, 2, 3〉 contains 2 groups 〈1, 3〉 and 〈2, 2, 2, 3〉 of nonzero values of
size 2 and 4, 2 groups 〈0, 0〉 and 〈0〉 of zeros, and 6 nonzero values. The graph-based de-
scription of the group constraint uses two graph constraints which respectively mention the
graph properties NCC = NGROUP, MIN NCC = MIN SIZE, MAX NCC = MAX SIZE,
NVERTEX = NVAL and MIN NCC = MIN DIST, MAX NCC = MAX DIST. Figure 6
depicts the initial digraph of well as the two final digraphs associated to the two graph constraints
of the example given for the group constraint.

1 3 2 2 2 3

(A)

(B)

(C)

00 1 3 0 2 2 2 3

0 0 0

Fig. 6. Initial (A) and final digraphs (B,C) of group.

6.2 Bounds and Filtering for the path with loops Graph Class

The path with loops properties highlight well the interest of specializing the pa-
rameter bound formula and the filtering rules. Firstly, in this context, the path structure
of the considered digraphs naturally makes the different algorithms polynomial. The
status of vertices and arcs can be determined and fixed during filtering in linear time by
just following the path from vertex x1 to vertex xn.

Secondly, some general bounds are not sharp anymore in this context because of
the additional graph-class constraints. Refining those bounds then leads to a more ac-
curate filtering. This is the case for NVERTEX, NCC, MIN NCC, MIN NCC,
MAX NCC, and MAX NCC. Lastly, the graph-class constraints allow to simplify
some bounds that are sharp both in the general and the path with loops contexts.
This is the case for NVERTEX and NCC.



Graph parameters Bound

NVERTEX |XT |

NVERTEX |XTU | −
P

i∈cc(
−→
G(XU ,EF ))

b li
2
c

NCC |cc[|XT |≥1](
−→
G (XTU , ETU ))|

NCC |cc(−→G (XT , ET ))|+
P

i∈cc[|XU,U,T |=0](
−→
G(XU ,EUF ))

d li
2
e+

P

i∈cc[|XU,U,T |=1](
−→
G(XU ,EUF ))

b li
2
c+

P

i∈cc[|XU,U,T |=2](
−→
G(XU ,EUF ))

(d li
2
e − 1)

MIN NCC

if |XT | = 0 0
if |XT | ≥ 1 ∧ |XU,U,¬T | ≥ 1 1
if |XT | ≥ 1 ∧ |XU,U,¬T | = 0 min

i∈cc(
−→
G(XT ,ET ))

li

MIN NCC

if |XT | ≥ 1 min
i∈cc[|XT |≥1](

−→
G(XTU ,ET U ))

li − ε

if |XT | = 0 max
i∈cc(

−→
G(XTU ,ETU ))

li

MAX NCC max
i∈cc(

−→
G(XT ,ET ))

li

MAX NCC max
i∈cc(

−→
G(XTU ,ETU ))

li

Table 4. Bounds of the different graph parameters in the context of the path with loops
graph class.



Notation 5 Let −→G(X , E) be a subgraph of the initial digraph −→G(X, ER) and i ∈
cc(G), then the vertices of i form a subsequence of X = {x1, . . . , xn}, pairwise linked
by arcs in E . The length of this subsequence is denoted by li ∈ {1, . . . , n} and the
first index is denoted by ji ∈ {1, . . . , n − li + 1}. To ease notations, we assume that
x0 and xn+1 denote two dummy F -vertices (with two F -arcs (x0, x1) and (xn, xn+1))
representing respectively the source and the sink of the initial graph path.

Table 411 summarizes the bounds of these graph parameters in the
path with loops graph class. Note that all these bounds can be evaluated in
O(n) time by iterating once through the n vertices of the initial digraph. Furthermore
all the bounds are sharp when considering the graph-class constraints. As in the general
case, they are derived by considering those final digraphs that minimize or maximize
the corresponding graph parameter. Again identifying U -arcs and U -vertices belonging
or not to these digraphs yields filtering rules that apply to the intermediate digraph
when a given bound has to be reached.

We give thereafter, for each of the eight considered bounds, the proofs of the for-
mula as well as the filtering rules applying when the bound has to be reached in any
final digraph. Note that, similarly to the bounds, all the following filtering theorems can
be implemented in O(n) time.

Filtering from NVERTEX

Corollary 2. NVERTEX = |XT | and this bound is sharp.

Proof. This bound is equal to the one of the general case NVERTEX = |XT | +

h(
←→
G ((XT,¬T,¬T , XU,¬T,T ), EU,T )). Indeed, because of Constraint (6), each T -vertex

is linked to itself, then XT,¬T,¬T = ∅ and the second term of the formula becomes 0.
Furthermore, this bound remains sharp because subgraph (XT , ET ) is a possible final
digraph (i.e. (i) any arc in ET has its two extremities in XT , (ii) this graph contains all
T -elements and (iii) it satisfies Constraints (2), (6) and (7)).

Because bound NVERTEX is identical to the general case, the corresponding filter-
ing is a simplified reformulation of Theorem 3:

Corollary 3. If dom(NVERTEX) = {NVERTEX} then any U -vertex of
−→
G(XTU , ETU ) is turned into an F -vertex.

Filtering from NVERTEX

Theorem 7. NVERTEX = |XTU |−
∑

i∈cc(
−→
G(XU ,EF ))

b li
2 c and this bound is sharp.

11 By convention in these formulas, a maximum value over the empty set is zero. In the formula
for MIN NCC, ε = 1 if there exist two adjacent (linked by an F -arc) connected components
of minimum size in cc[|XT |≥1](

−→
G(XTU , ETU )), ε = 0 otherwise.



Proof. Because of the graph-class constraints, the general bound NVERTEX =
|XTU | is not sharp in this context: Constraints (7) imply that two consecutive U -vertices
linked by an F -arc cannot both be turned into T -vertices, while any other U -vertex can
be turned into a T -vertex or an F -vertex independently of its neighbors. By defini-
tion, graph −→G(XU , EF ) is the subgraph (XU , EF,U,U ) of the initial digraph. When
turning all U -vertices into T -vertices except every other vertex in each element of
cc(
−→
G(XU , EF )) and then by turning all U -arcs incident on two T -vertices into T -arcs,

we obtain a possible final digraph. In order to maximize NVERTEX, each connected
component i ∈ cc(

−→
G(XU , EF )) with an odd number of vertices is processed by turning

vertices xji
, xji+2, . . . , xji+li−1 into T -vertices, and vertices xji+1, xji+3, . . . , xji+li−2

into F -vertices. In such a graph, NVERTEX is equal to NVERTEX, so the bound
is sharp.

Theorem 8. If dom(NVERTEX) = {NVERTEX} then consider each con-
nected component i ∈ cc(

−→
G(XU , EF )). If li is odd then each vertex xji+2·k with

(k ∈ [0, b lj
2 c]) is turned into a T -vertex and each vertex xji+2·k−1 with (k ∈ [1, b lj

2 c])
into an F -vertex.

NVERTEX=8

(A)

(B) 1 3 52 7 8 9 10 11 12

1 3 4 5 62 7 8 9 10 11 12

Fig. 7. Initial (A) and final digraphs (B) after applying Theorem 8 when NVERTEX = 8.

Example 12. Figure 7 illustrates Theorem 8 according to the hypothesis that the final digraph
should contain 8 vertices. The connected components of −→G(XU , EF ) respectively correspond
to the vertex sets {1}, {2}, {3, 4, 5, 6, 7}, {8} and {9, 10, 11, 12}. The bound NVERTEX is
then equal to 12−b 1

2
c−b 1

2
c−b 5

2
c−b 1

2
c−b 4

2
c = 8 and the precondition of Theorem 8 holds.

Since the last connected component contains an even number of vertices, nothing can be deduced
about their status. On the other hand, the first connected component contains an odd number
of vertices, so vertices 1, 2, 3, 5, 7, 8 are turned into T -vertices and vertices 4, 6 are turned into
F -vertices.

Filtering from NCC

Corollary 4. NCC = |cc[|XT |≥1](
−→
G(XTU , ETU ))| and this bound is sharp.

Proof. Bound NCC is identical to the general case presented in Table 2. It remains
sharp since it is reached in a possible final digraph: consider for instance, the subgraph
(XT , ET ) of the intermediate digraph obtained after turning into a T -vertex each vertex
in any connected component of −→G(XU , EU ) that is linked to two T -vertices, and then
after enforcing Contraints (2), (6) and (7).



Theorem 5 applies in the same way as in the general case. Nevertheless, the articulation
points disconnecting T -vertices (see Item 2 of Theorem 5) are more easily identified in
the context of the path with loops graph class. There is also no need here to check
the status of the bridges (see Item 3) since, according to the graph-class constraints 6
and 7, these arcs are turned into T -arcs once the corresponding articulation points are
turned into T -vertices. This leads to the following corollary of Theorem 5:

Corollary 5. If dom(NCC) = {NCC}:

1. Any U -vertex of any connected component in cc[|XT |=0](
−→
G(XTU , ETU )) is turned

into an F -vertex.
2. In any connected component of−→G (XU , EU ) that is linked to two distinct T -vertices,

any U -vertex is turned into a T -vertex.

Filtering from NCC

Theorem 9. NCC = |cc(
−→
G(XT , ET ))|+

∑

i∈cc[|XU,U,T |=0](
−→
G(XU ,EUF ))

d li
2 e+

∑

i∈cc[|XU,U,T |=1](
−→
G(XU ,EUF ))

b li
2 c+

∑

i∈cc[|XU,U,T |=2](
−→
G(XU ,EUF ))

(d li
2 e − 1) and this bound is sharp.

Proof. Because of Constraints (6), each U -vertex and its loop forms a potential con-
nected component in the final digraphs deriving from the intermediate digraph at its
current state. But due to Constraints (7), two consecutive vertices in a final digraph must
belong to the same connected component. As a consequence, maximizing the number of
connected components involves to turn at least one out of two consecutive U -arcs into
an F -arc and to consider at least one T -vertex for each connected component obtained
thereafter.

Hence, consider each connected component i ∈ cc(
−→
G(XU , EUF )) together with

the status (T or F ) of its neighbor vertices xji−1 and xji+li . Turn one out of two
consecutive vertices in i into a T -vertex and the other one into an F -vertex so that xji

is turned into a T -vertex (resp. an F -vertex) if xji−1 is an F -vertex (resp. a T -vertex).
Then turn each loop (xj , xj) in i into a T -arc (resp. an F -arc) if xj is a T -vertex
(resp. an F -vertex) and turn all arcs (xj , xj+1) in i into F -arcs. If (xji−1, xji

) is a
U -arc, then turn it into an F -arc (note that otherwise, it is already an F -arc). Last, if
xji+li−1 and xji+li are both T -vertices, then turn (xji+li−1, xji+li) into a T -arc (it
is necessarily a U -arc), otherwise if (xji+li−1, xji+li) is a U -arc, then turn it into an
F -arc. By construction, all elements of the intermediate digraph are now either T or F

and the subgraph (XT , ET ) satisfies Contraints (2), (6) and (7). This subgraph is then
a final digraph, and its number of connected components is equal to NCC: the sum
terms in the formula correspond respectively to the cases where xji−1 and xji+li are
both F -vertices, where one is a T -vertex and the other one is an F -vertex, where both
are T -vertices.

As in Theorem 8, the second graph-class constraints (7) allows a strong filtering from
property dom(NCC) = {NCC} since no two consecutive T -vertices are linked by



an F -arc. Depending on the parity of C and on the status of its direct neighbor vertices
(either in XT or XF ), we can fix the final status of each vertex in C (vertices are
alternatively set to T and F : case 1 of Theorem 10) or, at least, we can remove half the
arcs of C (every other arc is turned into an F -arc: case 2 of Theorem 10).

Theorem 10. If dom(NCC) = {NCC} then consider each connected component i

of −→G(XU , EU ).

1. If li is odd and xji−1 and xji+li have the same status (i.e. both in XT or both in
XF ), or if li is even and xji−1 and xji+li have different status (i.e. one in XT and
the other in XF ), then:

– each vertex xji−1+λ+2k is turned into an F -vertex, with λ = 1 if xji−1 ∈ XT ,
λ = 0 otherwise, and (k ∈ [1− λ, b li−λ

2 c])
– all other vertices in i are turned into T -vertices.

2. Otherwise, each arc (xji−1+λ+2k, xji+λ+2k) is turned into an F -arc, with λ = 1
if xji−1 ∈ XT , λ = 0 otherwise, and (k ∈ [1− λ, b li−λ−1

2 c])

CASE 1 CASE 2

1 2 3 4 5

1 3 5(B)

(A)

p=5, NCC=3

(B)

(A) 1 2

2

3 4

4

p=4, NCC=3

1 2 3 4 5

2 4(B)

(A)

p=5, NCC=4

(B)

(A) 1

1

2

2

3

3

4

4

p=4, NCC=2

1 2 3 4 5

1 2 3 4 5(B)

(A)

p=5, NCC=3

(B)

(A) 1 2

2

3

3

4

41

p=4, NCC=3

Fig. 8. Initial (A) and final digraphs (B) after applying Theorem 10 for various configurations
(thick circles denote F -vertices).

Filtering from MIN NCC

Theorem 11.

MIN NCC =











0 if|XT | = 0

1 if|XT | ≥ 1 ∧ |XU,U,¬T | ≥ 1

min
i∈cc(

−→
G(XT ,ET ))

li if|XT | ≥ 1 ∧ |XU,U,¬T | = 0

and this bound is sharp.



Proof. If the intermediate digraph does not contain any T -vertex we can set all U -vertices
to F and we get a lower bound of 0. Otherwise, if we have at least one U -vertex that is
not linked to any T -vertex, then we can turn it into T , and turn into F any neighboring
U -vertex. As a consequence we get a lower bound of 1. Finally, if every U -vertex is
linked to at least one T -vertex, and since consecutive T -vertices can not disappear from
any final digraph, a lower bound corresponds to the smallest connected components of
−→
G(XT , ET ). In this context this lower bound can be achieved by turning all U -vertices
into F .

Theorem 12 presents the filtering when MIN NCC is set at its lower bound. The
principle consists in finding potential candidates for a minimal connected component
of size MIN NCC. Depending on the number of candidates and on their respective
positions, it assumes that at least one of the candidate components will not be extended
to the neighbor vertices in any final digraph.

Definition 3. The candidate minimal components of the intermediate digraph
−→
G(XTU , ETU ) are:

– any (minimal) connected components of −→G(XT , ET ) of size MIN NCC,
– and any component, of size 1, made of one single vertex of XU,U,¬T and its loop.

Observe from Table 2 that XU,U,¬T is the empty set when MIN NCC > 1. Fur-
thermore, candidates are only constituted of one T -vertex or U -vertex (without neigh-
bor in XT ) together with its loop when MIN NCC = 1.

In the following theorem, i and i′ denote respectively the first and the last candidate
minimal components in the path formed by the intermediate digraph (ji + li ≤ ji′ ).
Items 3(a), 4 and 5 assume the existence of two adjacent candidates. By definition of
XU,U,¬T and according to graph-class constraints (7), this implies that these candi-
dates are singleton components of XU,U,¬T and that, consequently, MIN NCC = 1
(all candidates are of size 1). For the same reasons, the condition of Item 3(b) (i and i′

separated by at most one vertex xji+li ) holds only if xji+li is an F -vertex or if it is a U -
vertex and i or i′ belongs to cc(

−→
G(XT , ET )). The condition of Item 3(c) (i and i′ sep-

arated by at most two vertices xji+li and xji+li+1) holds only if xji+li or xji+li+1 are
F -vertices or if they both are U -vertices and i and i′ both belong to cc(

−→
G (XT , ET )).

Theorem 12. If dom(MIN NCC) = {MIN NCC} then at most one of these con-
ditions holds:

1. If |XT | = 0, then all U -vertices are turned into F -vertices.
2. If there exists exactly one candidate minimal component i, then:

(a) Any U -vertices of i are turned into T -vertices.
(b) The U -vertices linked to i are turned into F -vertices.

3. If there exist exactly two candidate minimal components (i and i′) then:
(a) If i and i′ are adjacent (i.e. MIN NCC = 1 and ji + 1 = ji′ ), then U -arcs

(xji−1, xji
), (xji

, xji+1), (xji+1, xji+2) are all turned into F -arcs.
(b) If i and i′ are linked by one U -vertex (i.e. ji′ = ji + li + 1 and xji+li ∈ XU ),

then this vertex xji+li is turned into an F -vertex.



(c) If i and i′ are linked by two adjacent U -vertices (i.e. ji′ = ji + li + 2 and
xji+li , xji+li+1 ∈ XU ), then the U -arc (xji+li , xji+li+1) linking these two
vertices is turned into an F -arc.

4. If there exist exactly three candidate minimal components (i and i′ the first and the
last one respectively) and if they are adjacent (i.e. MIN NCC = 1 and ji + 2 =
ji′ ) then (xji

, xji+1) and (xji+1, xji+2) are turned into F -arcs.
5. If there exist exactly three or four candidate minimal components (i and i′ the first

and the last one respectively) and if ji + 3 = ji′ then (xji+1, xji+2) is turned into
an F -arc.

Filtering from MIN NCC

Theorem 13.

MIN NCC =

{

min
i∈cc[|XT |≥1](

−→
G(XT U ,ETU ))

li − ε if |XT | ≥ 1

max
i∈cc(

−→
G(XT U ,ETU ))

li if |XT | = 0

with ε = 1 if there exist two adjacent (linked by an F -arc) connected components of
minimum size in cc[|XT |≥1](

−→
G(XTU , ETU )), and ε = 0 otherwise, and this bound is

sharp.

Proof. First assume that |XT | = 0. Since two vertices belonging to two distinct con-
nected components of the intermediate digraph −→G(XTU , ETU ) cannot belong to the
same connected component of any final digraph, the quantity max

i∈cc(
−→
G(XT U ,ETU ))

li

is an upper bound on the size of the largest connected components of any final digraph.
As a consequence it is also an upper bound of the size of the smallest connected com-
ponents of any final digraph.
This upper bound is sharp since it can effectively be reached by selecting a connected
component cmax of −→G(XTU , ETU ) containing max

i∈cc(
−→
G(XT U ,ETU ))

li vertices and
by first setting all U -arcs between two vertices of cmax to T -arcs and then by setting all
remaining U -arcs of −→G(XTU , ETU ) to F -arcs. Since, by the hypothesis |XT | = 0, the
final digraph consists of one single connected component corresponding to cmax.
Now assume that |XT | > 0. Since all T -arcs will be part of any final digraph and
since each connected component of −→G(XTU , ETU ) involving only U -vertices can dis-
appear, the largest possible size for the smallest connected components cannot exceed
the size of the smallest connected components of−→G(XTU , ETU ) containing at least one
T -vertex. Moreover, because of the graph-class normalization constraints, which pre-
vent any two vertices connected by an F -arc from both belonging to any final digraph,
we have to subtract 1 if two minimum-size connected components of −→G(XTU , ETU )
are linked by an F -arc.

Theorem 14 presents the filtering when MIN NCC is set at its upper bound. Each
connected component of size lower than MIN NCC in the intermediate graph can be
eliminated from the intermediate digraph (Item 1(a) and 2(a)). Furthermore, each con-
nected component i′ of −→G(XT , ET ) belongs to a connected component of size greater



than MIN NCC in any final digraph. Then the compulsory part, i.e. the vertices that
belong to all the possible final components of size MIN NCC including i′, can be
turned into T -vertices (Item 1(b)). Last, if the graph contains no T -vertex and only one
maximum connected component, then the only possible final subgraph is exactly this
component alone (Item 2(b)).

Theorem 14. If dom(MIN NCC) = {MIN NCC}:

1. If |XT | ≥ 1 then:
(a) Any U -vertex of a connected component in cc[|XT U |<MIN NCC∧|XT |=0]

(
−→
G (XTU , ETU )) is turned into an F -vertex.

(b) Consider each connected component i in cc[|XT |≥1] (
−→
G (XTU , ETU )), then

consider each connected component i′ in cc (
−→
G(XT , ET )) included in i,

then any U -vertex xj with j ∈ [min(ji + li −MIN NCC, ji′), max(ji +
MIN NCC− 1, ji′ + li′ − 1)] is turned into a T -vertex.

2. If |XT | = 0 then:
(a) All vertices of any connected component in cc[|XU |<MIN NCC] (

−→
G(XU , EU ))

are turned into F -vertices.
(b) If |cc[|XU |=MIN NCC](

−→
G (XU , EU ))| = 1 then all vertices of this single con-

nected component are turned into T -vertices.

Filtering from MAX NCC

Theorem 15. MAX NCC = max
i∈cc(

−→
G(XT ,ET ))

li and this bound is sharp.

Proof. Since every connected component of −→G (XT , ET ) will be part of a connected
component of any final digraph, the quantity max

i∈cc(
−→
G(XT ,ET ))

li is a lower bound on
the size of the largest connected components of any final digraph.

This lower bound is sharp since it can effectively be reached by setting all U -arcs
of −→G(XTU , ETU ) to F -arcs.

Theorem 16. If dom(MAX NCC) = {MAX NCC}:

1. Any U -vertex linked to a connected component in cc[|XT |=MAX NCC] (
−→
G (XT , ET ))

is turned into an F -vertex.
2. Any U -arc between two distinct U -vertices, such that one of its extremities is linked

to a connected component of−→G (XT , ET ) of size s such that s+2 > MAX NCC,
is turned into an F -arc.

3. Any U -vertex linked to two connected components of−→G(XT , ET ) of respective size
s1 and s2 such that s1 + s2 ≥MAX NCC is turned into an F -vertex.

4. Any U -arc between two distinct U -vertices linked to two connected components of
−→
G(XT , ET ) of respective size s1 and s2 such that s1 + s2 + 2 > MAX NCC is
turned into an F -arc.

5. If MAX NCC = 1 then any U -arc linking two distinct U -vertices is turned into
an F -arc.

6. If MAX NCC = 0 then any U -vertex is turned into an F -vertex.



Filtering from MAX NCC

Theorem 17. MAX NCC = max
i∈cc(

−→
G(XT U ,ETU ))

li and this bound is sharp.

Proof. Since two vertices belonging to two distinct connected components of the in-
termediate digraph−→G (XTU , ETU ) cannot belong to the same connected component of
any final digraph, the quantity max

i∈cc(
−→
G(XT U ,ETU ))

li is an upper bound on the size
of the largest connected components of any final digraph.

This upper bound is sharp since it can effectively be reached by selecting a con-
nected component imax of−→G(XTU , ETU ) containing max

i∈cc(
−→
G(XT U ,ETU ))

li vertices
and by first setting all U -arcs between two vertices of imax to T -arcs and then by setting
all remaining U -arcs of −→G(XTU , ETU ) to F -arcs.

Theorem 18. If dom(MAX NCC) = {MAX NCC} then if |cc[|XT U |=MAX NCC]

(
−→
G(XTU , ETU ))| = 1, any U -vertex of this single connected component is turned into

a T -vertex.

6.3 Performance

In order to evaluate the effectiveness of graph-based filtering, we performed two experi-
ments, generating random instances of the group constraint. VARIABLESwas chosen
as a sequence of n domain variables ranging over [0, 1], and VALUES as the singleton
set {1}. A constraint instance was generated by setting the initial domain of each do-
main variable to a randomly chosen interval. Furthermore, with 10% probability, each
variable in VARIABLES was randomly fixed.

The experiments compare the effect of graph-based filtering with the approach
of constructing an automaton for each graph characteristic and by reformulating that
automaton as a conjunction of constraints as described in [1]. We call this approach
automata-based filtering. For both methods, graph invariants, providing auxiliary con-
straints [3], were also posted.

In the first experiment, we computed the number of labeling choices made during
search for all solutions for n = 10. In the second experiment, we computed the num-
ber of labeling choices made during search for the first solution for n = 20. We chose
to count labeling choices as opposed to measuring runtime, as a fair runtime compar-
ison would require a more polished implementation of graph-based filtering than we
currently have. Note however that all filtering rules run in O(n) time.

The results are presented in two scatter plots in Figure 10. Each point represents
a random instance, its X (resp. Y) coordinate corresponding to automata-based (resp.
graph-based) filtering. Feasible and infeasible instances are distinguished in the plots.

From these experiments, we observe that most of the time, but not always, the graph-
based method dominates the automata-based one. One would expect domination, as the
graph method reasons about arc variables in addition to vertex variables. The graph
method is currently limited by our approach to only apply the filtering when a graph
parameter reaches one of its bounds. We observe no significant difference between the
patterns for feasible vs. infeasible instances.
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Fig. 9. Automata for computing the lower and upper bounds of NVERTEX, NCC,
MIN NCC and MAX NCC given by Table 4. V, U, F, T and $ respectively correspond
to a U -vertex entered via an F -arc, a U -vertex not entered via an F -arc, an F -vertex, a T -vertex
and the end of string.
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Fig. 10. Scatter plots of random instances. Left: comparing labeling choices for finding all solu-
tions. Right: comparing labeling choices for finding the first solution.



7 Conclusion

This report provided a first generic filtering scheme stemming from lower and upper
bounds for common graph parameters used in the graph-based reformulation of global
constraints. Moreover, it shows how we could retrieve existing specialized filtering al-
gorithms solely from the graph-based description. Our experiments on the example of
the path with loops graph class point to an enhancement of the approach: filtering
before a graph parameter reaches one of its bounds.
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