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Abstract. This article introduces the sum of weights of distinct values 
constraint, which can be seen as a generalization of the number of distinct 
values as well as of the alldifferent, and the relaxed alldifferent constraints. 
This constraint holds if a cost variable is equal to the sum of the weights 
associated to the distinct values taken by a given set of variables. For the first 
aspect, which is related to domination, we present four filtering algorithms. 
Two of them lead to perfect pruning when each domain variable consists of one 
set of consecutive values, while the two others take advantage of holes in the 
domains. For the second aspect, which is connected to maximum matching in a 
bipartite graph, we provide a complete filtering algorithm for the general case. 
Finally we introduce several generic deduction rules, which link both aspects of 
the constraint. These rules can be applied to other optimization constraints such 
as the minimum weight alldifferent constraint or the global cardinality 
constraint with costs. They also allow taking into account external constraints 
for getting enhanced bounds for the cost variable.  In practice, the sum of 
weights of distinct values constraint occurs in assignment problems where using 
a resource once or several times costs the same. It also captures domination 
problems where one has to select a set of vertices in order to control every 
vertex of a graph. 

Keywords: Constraint Programming, Global Constraint, Cost-Filtering, 
Assignment, Domination, Bipartite Matching. 
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Abstract. This article introduces the sum of weights of distinct values 
constraint, which can be seen as a generalization of the number of distinct 
values as well as of the alldifferent, and the relaxed alldifferent constraints. 
This constraint holds if a cost variable is equal to the sum of the weights 
associated to the distinct values taken by a given set of variables. For the first 
aspect, which is related to domination, we present four filtering algorithms. 
Two of them lead to perfect pruning when each domain variable consists of one 
set of consecutive values, while the two others take advantage of holes in the 
domains. For the second aspect, which is connected to maximum matching in a 
bipartite graph, we provide a complete filtering algorithm for the general case. 
Finally we introduce several generic deduction rules, which link both aspects of 
the constraint. These rules can be applied to other optimization constraints such 
as the minimum weight alldifferent constraint or the global cardinality 
constraint with costs. They also allow taking into account external constraints 
for getting enhanced bounds for the cost variable.  In practice, the sum of 
weights of distinct values constraint occurs in assignment problems where using 
a resource once or several times costs the same. It also captures domination 
problems where one has to select a set of vertices in order to control every 
vertex of a graph. 

1  Introduction 

It has been quoted in [7] that an essential weakness of constraint programming is 
related to optimization problems. This first means that very often the lower bound of 
the cost to minimize is quite poor and in addition there is usually no back-propagation 
from the maximum allowed cost to the decision variables of the problem. This was 
especially true when the total cost results from the addition of different elementary 
costs. For these reasons, several authors have started to reuse methods from 
operations research for tackling this problem. This was for instance done within 
scheduling in [1] as well as for assignment problems in [3] and for the maximum 
clique problem in [6]. 

The purpose of this article is to contribute to this line of research by considering a 
new kind of cost-function which arises in quite a lot of practical assignment and 
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covering problems but for which neither a direct model1 nor a filtering algorithm was 
available. A second contribution of this article is to come up with new generic 
deduction rules, which can also be applied for improving the deductions performed by 
existing constraints using cost filtering techniques. In particular, this holds for a 
generalization of the global cardinality constraint with costs [13] and for a 
generalization of the assignment constraint with costs [7], [14]. In addition these rules 
allow taking into account external constraints for getting better bounds for the cost 
variable (e.g. better bound for the cost of the minimum weight all different constraint 
with a restriction on the maximum number of cycles [4]). 

The constraint introduced in this article has the form 
( )CostValuessAssignment ,,uesstinct_valghts_of_disum_of_wei , where: 

− sAssignment  is a collection of n  items where each item has a var  attribute; var  is 
a domain variable2 which may be negative, positive or zero. 

− Values  is a collection of m  items where each item has a val  as well as a weight  
attribute; val  is an integer which may be negative, positive or zero, while weight  
is a non-negative integer. In addition, all the val  attributes should be pairwise 
distinct. ������  denotes the set of values taken by the val  attributes. 

− Cost  is a domain variable which takes a non-negative value. 
The items of a given collection are bracketed together; for each item we give its 

attributes as a pair valuename −  where name  and value  respectively designate the 
name of the attribute and its associated value. 

The uesstinct_valghts_of_disum_of_wei  constraint holds if all the variables of 
sAssignment  take a value in ������ and if Cost  is the sum of the weight  attributes 

associated to the distinct values taken by the variables of sAssignment . For instance, 

the following constraint 
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holds since the cost 12 is the sum of the weights 5 and 7 respectively associated to the 
two distinct values 1 and 6 occurring in { }1,6,1 −−− varvarvar . Observe that the 

uesstinct_valghts_of_disum_of_wei  constraint is different from the minimum weight all 
different constraint [14] and from the global cardinality constraint with costs [13] 
since these two constraints compute the overall cost from a cost matrix, which for 
each variable-value pair gives its corresponding contribution in the cost. 

Since we don’t presume any specific use of the uesstinct_valghts_of_disum_of_wei  
constraint, this article assumes that the domain of the Cost  can be restricted in any 
way. Concretely, this means that we want to be able to prune the assignment variables 
according to the minimum and maximum values of the Cost  variable, as well as 
according to any holes. In contrast to most previous work [3], [7] where algorithms 

                                                           
1 A model for which, beside the cost and the assignments variables, no extra variables have to 

be introduced. 
2 A domain variable is a variable that ranges over a finite set of integers. 
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from operation research could be adapted, we had to come up with new algorithms for 
performing these tasks. 

Sect. 2 generalizes the filtering algorithm presented in [2] for handling the number 
of distinct values constraint to a complete3 algorithm for the case where each domain 
of an assignment variable consists of one single interval of consecutive values and 
where all the weight are equal to one. It also provides several deduction rules, which 
take partially into account holes in the domains. Sect. 3 introduces a lower bound for 
the sum of the weights of the distinct values as well as an algorithm for evaluating 
this lower bound. Sect. 4 defines the notion of lower regret associated to a given 
value and provides the corresponding filtering algorithm, which propagates from the 
maximum allowed cost to the assignment variables. Sect. 5 presents a tight upper 
bound of the sum of the weights of the distinct values, while Sect. 6 introduces the 
notion of upper regret as well as an algorithm which propagates from the minimum 
allowed cost to the assignment variables. Sect. 7 presents several generic deduction 
rules which combine the lower or the upper regret as well as the domain of the cost 
variable or some additional constraints on the assignment variables. Finally, Sect. 8 
situates the uesstinct_valghts_of_disum_of_wei  constraint among existing constraints 
and shows how domination problems as well as some assignment problems, like the 
warehouse location problem [15] fit into this constraint. 

Before starting, let us first introduce the notations used throughout this article. 

Notations and Conventions 
− For a domain variable V , let ( )Vdom , ( )Vmin  and ( )Vmax  respectively denote the 

set of possible values of V , the smallest possible value of V and finally the largest 
feasible value of V . The statement max..min::V , where min  and max  are two 
integers such that min  is less than or equal to max , creates a domain variable V  
for which the initial domain is made up from all values between min  and max  
inclusive. Similarly, the statement lvvvV ,,,:: 21 � , where lvvv ,,, 21 �  are distinct 
integers, creates a domain variable V  for which the initial domain is made up from 
all values lvvv ,,, 21 � . We call range of a domain variable V  the interval of 
consecutive values ( ) ( )[ ]VV max,min . A domain variable for which the possible 
values consists of one single interval of consecutive values is called an interval 
variable. 

− For each possible value v  of the val  attribute of an item of the Values  collection, 
let ( )vweight  denotes the weight  attribute associated to the same item. 

− We say that a set of values ���  covers a set of variables ���  if the domain of every 
variable of ���  intersects ��� . 

                                                           
3 A complete filtering algorithm for a given constraint is a filtering algorithm that removes all 

values that do not occur in at least one solution of the constraint. 
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2  Pruning According to the Maximum Number of Distinct Values 

This section considers an important case of the uesstinct_valghts_of_disum_of_wei  
constraint where all the weights are equal to 1 and where one restricts the maximum 
number of distinct values taken by a set of variables, that is the maximum value of the 
Cost  variable. This covers the domination problem explained in Sect. 8. A filtering 
algorithm for this case was already provided in [2, page 216]. The first part of this 
section extends this algorithm in order to systematically remove all infeasible values 
when each assignment variable is an interval variable. This first algorithm is valid, but 
incomplete, when there are holes in some domain of the assignment variables.  
Therefore, the second part of this section provides some deduction rules, which allow 
taking partially into account holes in the domains of the assignment variables. Some 
of these rules also use the first algorithm, which we now introduce. 

2.1  A Complete Filtering Algorithm for Interval Variables 

The basic idea of the algorithm for finding a lower bound is to construct a subset of 
the assignment variables such that no two variables of that subset have a common 
value in their respective domains. The algorithm is organized in four main steps as 
follows: 
− The first step computes a sharp lower bound of the number of distinct values when 

all the domains of the assignment variables are intervals, 
− The last three steps are only used when the lower bound is equal to the maximum 

number of distinct values. Their aim is to find all values that, if they were taken by 
an assignment variable, would lead to use more than ( )Costmax  distinct values. 

We now explain the details of the four steps: 
− Let us denote by nVVV ,,, 21 �  the assignment variables sorted in increasing order of 

their minimum value. Lines 2-14 of Alg. 1 partition nVVV ,,, 21 �  into 
lower_bound4 groups of consecutive variables by scanning the variables in order 
of increasing minimum value and by starting a new group each time reinit is set 
to TRUE (see line 7, when low is greater than up). The different groups of variables 
can be characterized as follows: The first variable of the first group is 1V , while the 
first variable of the i-th (i>1) group is the variable next to the last variable of the 
i−1-th group; the last variable of the last group is nV , while the last variable of the 
i-th (i>1) group, starting at variable fV , is the variable lV , such that l )( nlf ≤≤  is 

the largest integer satisfying the following condition: 
( ) ( ) ( )( ) ( ) ( ) ( )( ) .0min,,min,minmaximummax,,max,maxminimum 11 ≥− ++ lfflff VVVVVV ��

We first justify the fact that lower_bound is a lower bound of the number of 
distinct values: If for each group we consider the variable with the smallest 
maximum value and the smallest index in case of tie, then we have a total of 

                                                           
4 lower_bound is the value of the lower_bound variable present in Algorithm 1 after finishing 

the execution of Alg. 1. 
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lower_bound pairwise5 non-intersecting variables. We now explain why the 
lower bound is sharp when the domain of each assignment variable consists of one 
interval. For each group �, consider the smallest maximum value minus one of the 
variables of �; we have that each interval variable of � can take this value and 
therefore we can build an assignment which only uses lower_bound distinct 
values. 

− Lines 15-26 of Alg. 1 partition the set of assignment variables nVV ,,1 �  by 
scanning the variables in order of decreasing minimum value and by starting a new 
group each time reinit is set to TRUE. For each group of consecutive variables it 
records in [ ]jrdlow_backwa  )..1( dlower_boun∈j  the largest minimum value of 
the variables of the group. 

− Lines 27-34 of Alg. 1 compute the intervals [ ] [ ]jj ksupkinf ,,�  
)..1( dlower_boun∈j  of consecutive values that are feasible for the assignment 

variables. These intervals are calculated as follows: 
• [ ]jkinf  is the largest minimum value of the variables of the j-th 

)1..1( −∈ dlower_bounj  group of variables constructed during the first step for 
which the largest value is strictly less than [ ]1+jrdlow_backwa . For 

dlower_boun=j , [ ]jkinf  contains the largest minimum value of the variables 
of the lower_bound-th group of variables. 

• [ ]jksup  is the smallest maximum value of the variables of the j-th group of 
variables constructed during the first step. 

− Lines 35-39 of Alg. 1 remove from the assignment variables those values that do 
not belong to the intervals computed at the previous step. 

We now show the correctness of the pruning. On one side, taking any value of one 
of the feasible intervals allows to construct one complete assignment for variables 

nVV ,,1 �  such that we use lower_bound distinct values. On the other side, consider a 
value v  that does not belong to one of the intervals. We show that fixing any variable 

nVV ,,1 �  to v  leads to using at least 1+dlower_boun  distinct values. This comes 
from the following observations. First note that, for covering all variables that have a 
maximum value less than or equal to [ ]jksup )..1( dlower_boun∈j , we need at least 
j  distinct values. Second observe that, for covering all variables that have a 

minimum value greater than or equal to [ ]jkinf )..1( dlower_boun∈j , we need at 
least 1+− jdlower_boun  distinct values. Since the two sets of variables do not 
intersect, it follows that, if we take a value v  such that [ ] [ ]1+<< jvj kinfksup  

)1..1( −∈ dlower_bounj , we will need at least 1+dlower_boun  distinct values for 
covering all the assignment variables. 

Note that, besides the initial sorting phase and the final pruning, all the other parts 
of Alg. 1 are in ( )nO . Thus the overall complexity of Alg. 1 is ( )pnnnO ⋅+⋅ log , 

                                                           
5 Two domain variables are called non-intersecting variables when they don’t have any value 

in common. 
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where p  is the number of values to remove. We will now illustrate the different steps 
of Alg. 1 on the following example. 
1. V1::2..4  V2::2..5  V3::4..5  V4::4..7  V5::5..8  V6::6..9  Cost::0..2 
2. sum_of_weights_of_distinct_values({var-V1,var-V2,var-V3,var-V4,var-V5,var-V6}, 
3.                            {val-1 weight-1, val-2 weight-1, val-3 weight-1, 
4.                             val-4 weight-1, val-5 weight-1, val-6 weight-1, 
5.                             val-7 weight-1, val-8 weight-1, val-9 weight-1},Cost) 

Example 1.  Instance used for illustrating the different steps of Alg. 1. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Illustration of the different steps of Alg. 1 on Example 1 

In the four pictures of Fig. 1, each assignment variable 6,,,,, 54321 VVVVVV  corresponds to a 

given column and each value to a row. Values that do not belong to the domain of a variable 
are put in black. We now explain each step: 
• Step 1 computes a lower bound of the number of distinct values by scanning the variables 

654321 ,,,,, VVVVVV . It builds two groups of adjacent variables 4321 ,,, VVVV  and 65 ,VV . The 

intervals [ ]uplow,  (see lines 5-6 of Alg.1) computed as we scan the variables are dashed. For 
instance after considering variable 3V  we get the interval [ ]4,4 . 

• Step 2 scans 654321 ,,,,, VVVVVV  from right to left in order to initialize the low_backward 

array. After finishing the first group of variables 456 ,, VVV  it set [ ]2rdlow_backwa  to 

( ) ( ) ( )( ) 6maximum 4min,5min,6min =VVV . Finally, after finishing the last group of variables, 

123 ,, VVV  it set [ ]1rdlow_backwa  to ( ) ( ) ( )( ) 4maximum 1min,2min,3min =VVV . Like in the 

previous step, the intervals [ ]uplow,  computed as we scan the variables are dashed. 
• Step 3 scans 6,,,,, 54321 VVVVVV  from left to right and computes the intervals of values to 

keep in order to not exceed two distinct values. The lower bound [ ]1kinf  of the first interval is 
obtained by first selecting within the variables of the first group (i.e. 4321 ,,, VVVV ) those 

variables for which the maximum value is strictly less than [ ] 62 =rdlow_backwa . Then we 

take the maximum of the smallest value of the variables we just select (i.e. 321 ,, VVV ), which 

is 4. The upper bound [ ]1ksup  of the first interval is the minimum value of the largest value of 
the variables of the first group, namely 4. In a similar way we obtain that [ ] 62kinf =  and 

[ ] 82ksup = . On the corresponding picture, the intervals of values to keep are dashed. 

STEP 1: partitioning 
from left to right. 
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STEP 3: computing 
the intervals to keep. 
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• Step 4 removes all values that are not located within one of the intervals of values to keep. 
These values to remove are marked with a cross. 

 PARTITION THE VARIABLES OF V[1..n] IN GROUPS OF CONSECUTIVES VARIABLES 
 1 Sort V[1..n] in increasing minimum value; 
 2 reinit:=TRUE; i:=1; lower_bound:=1; start_prev_group:=1; 

 3 WHILE (reinit AND i≤n) OR ((NOT reinit) AND i<n) DO 
 4   IF NOT reinit THEN i:=i+1; 

 5   IF reinit OR low<min(V[i])6 THEN low:=min(V[i]); 
 6   IF reinit OR up >max(V[i]) THEN up :=max(V[i]); 
 7   reinit:=(low>up); 
 8   IF reinit OR i=n THEN 
 9     IF reinit THEN end_prev_group:=i-1 ELSE end_prev_group:=i; 
10     start_group[lower_bound]:=start_prev_group; 
11       end_group[lower_bound]:=  end_prev_group; 
12     start_prev_group:=i; 
13   IF reinit THEN lower_bound:=lower_bound+1; 

14 adjust minimum value of Cost to lower_bound; 

15 IF lower_bound=max(Cost) THEN 

   BUILD THE "RIGHTMOST" GROUPS OF VARIABLES 
16   reinit:=TRUE; i:=n; j:=lower_bound; 

17   WHILE (reinit AND i≥1) OR ((NOT reinit) AND i>1) DO 
18     low_before:=low; 
19     IF (NOT reinit) THEN i:=i-1;  
20     IF reinit OR low<min(V[i]) THEN low:=min(V[i]); 
21     IF reinit OR up >max(V[i]) THEN up :=max(V[i]); 
22     reinit:=(low>up); 
23     IF reinit OR i=1 THEN 
24       IF NOT reinit THEN low_before:=low; 
25       low_backward[j]:=low_before; 
26       IF reinit THEN j:=j-1; 

   COMPUTE INTERVALS OF CONSECUTIVE VALUES TO KEEP 
27   FOR j:=1 TO lower_bound DO 
28     first_kinf:=TRUE; first_ksup:=TRUE; 
29     FOR i=start_group[j] TO end_group[j] DO 
30       IF  (j=lower_bound OR max(V[i])<low_backward[j+1]) 
31       AND (first_kinf OR min(V[i])>kinf[j]) THEN 
32         kinf[j]:=min(V[i]); first_kinf:=FALSE; 
33       IF first_ksup OR max(V[i])<ksup[j] THEN 
34         ksup[j]:=max(V[i]); first_ksup:=FALSE; 

   REMOVE ALL VALUES WHICH ARE NOT SITUATED WITHIN kinf[j]..ksup[j] 
35   FOR i:=1 TO n DO 
36     adjust minimum and maximum of V[i] to kinf[1] and ksup[lower_bound]; 
37   FOR j:=1 TO lower_bound-1 DO 
38     IF ksup[j]+1≤kinf[j+1]-1 THEN 
39       FOR i:=1 TO n DO remove ksup[j]+1.. kinf[j+1]-1 from V[i]; 

Algorithm 1:  A complete filtering algorithm when the weights are 1 and each domain is an interval 

2.2  Taking Holes into Account 

This section provides deduction rules, which take advantage of the fact that some 
assignments variables are not interval variables. Within Sect. 2.2, lower_bound refers 
to the lower bound computed by step 1 of Alg. 1. 

Unification of Assignment Variables. When the lower bound computed by Alg. 1 is 
equal to maximum number of possible distinct values (see line 14 of Alg. 1), we have 
                                                           
6 Throughout the algorithms of this article, the evaluation of boolean expressions is performed 

from left to right in a lazy way. This explains why low does not need to be initialized. 
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that the assignment variables should take exactly one value within each interval 
[kinf[j],ksup[j]] (1≤j≤lower_bound). Consequently, if the domain of an assignment 
variable Var  is contained within one of the intervals, all values of the interval that do 
not belong to the domain of Var  should be removed from the domain of all the 
assignment variables. As a special case of the previous deduction rule, we have that 
two variables for which the domain is included within the same interval 
[kinf[j],ksup[j]] (1≤j≤lower_bound) should be unified. Using unification in this case 
has the following advantages. First, we can forget about one of the variables. Second, 
we don’t need to maintain the consistency between the domains of the variables, 
which were unified. 

Consider the assignment variables of Example 1 after pruning (see step 4 of Fig. 1). Since, both 
5V  and 6V  can only take values within interval [kinf[2],ksup[2]]=[6,8], we have that 

65 VV = . Now, assume that value 7 does not belong to dom( 5V ). Then it should also be 

removed from the domain of 6V . 

Pruning According to the Value Profile. This paragraph provides a lower bound for 
the minimum number of distinct values, which takes into account holes in the 
domains of the assignment variables. It then shows how to prune the domains of the 
assignment variables according to this bound. The method is based on a profile of 
number of occurrences of values. 

The profile of number of occurrences of values gives, for each potential value v  of 
an assignment variable, the number of assignment variables for which the domain 
contains v . The profile sequence ),,,( 21 ������ooo �  with 1+≥ ii oo  corresponds to the 

different number of assignment variables taking a specific value sorted in decreasing 
order. We are now in position to define a new lower bound. Throughout this 
paragraph we use the following example for illustrating the different deduction rules. 
1. V1::1,2,4  V2::3,5  V3::4,6  V4::1,3,5  V5::3,6  Cost::0..2 
2. sum_of_weights_of_distinct_values({var-V1,var-V2,var-V3,var-V4,var-V5}, 
3.                            {val-1 weight-1, val-2 weight-1, val-3 weight-1, 
4.                             val-4 weight-1, val-5 weight-1, val-6 weight-1},Cost) 

Example 2.  Instance used for illustrating the pruning according to the profile of number of 
occurrences of values. 

Proposition 1 
If the n  assignment variables of the uesstinct_valghts_of_disum_of_wei  constraint have 
the profile sequence ),,,( 21 ������ooo �  with 1+≥ ii oo , then the minimum number of 

distinct values is greater than or equal to { }noook k ≥+++ )(:min 21 � . 

We now give two rules that prune the assignment variables according to the value 
profile. The first rule enforces, under certain conditions, to use the value that occurs in 
most variables, while the second rule removes those values that do not occur in too 
many variables. 
Rule 1: Consider a set of assignment variables of the uesstinct_valghts_of_disum_of_wei  
constraint with the profile sequence ),,,( 21 ������ooo �  with 1+≥ ii oo . Let 1v  denotes the 

value associated to the number of occurrence 1o . 
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If 
( )

no
Costi
i =�

≤≤ max1
 and if 21 oo >  then all assignment variables Var  such that 

( )Varv dom1 ∈  should be fixed to value 1v . 
 

Rule 2: Consider a set of assignment variables of the uesstinct_valghts_of_disum_of_wei  
constraint with the profile sequence ),,,( 21 ������ooo �  with 1+≥ ii oo  and let k  be the 

smallest integer such that nooo k ≥+++ )( 21 � . Let )1( ������≤≤ ivi  denote the value 

associated to the number of occurrences io . We can remove a value )( ������≤< jkv j  

from all the assignment variables if 
( )

( ) nooo jk
Costi
i <−−�

≤≤ max1
. 

 
 
 
 
 
 
 
 

Fig. 2.  Profile of number of occurrences of values 

Let us illustrate the computation of the lower bound as well as the use of the deduction rules on 
Example 2. In Fig. 2, each assignment variable 54321 ,,,, VVVVV  corresponds to a given column 
and each value to a row. Values that do not belong to the domain of a variable are put in black. 
For each possible value the corresponding rightmost integer gives the number of assignment 
variables that can effectively take this value. The associated profile sequence 

),,,,,( 654321 oooooo  is equal to )1,2,2,2,2,3(  and the corresponding values 654321 ,,,,, vvvvvv  

are respectively equal to 2,6,5,4,1,3 . Since the smallest value k  such that 
5)( 21 =≥+++ nooo k�  is equal to 2, we need at least two distinct values for covering all 

assignment variables 54321 ,,,, VVVVV .  Let us now consider Rule 1: Since 

both
( )

nioo
iCosti

i ==+=�=�
≤≤≤≤

523
21max1

 and 21 oo >  hold, we apply Rule 1 and therefore fix 2V , 

4V  and 5V  to value 31 =v . Finally, consider Rule 2: Since 

( )
( ) ( ) ( ) 512562

21
6

max1
=<−−=−−�=−−�

≤≤≤≤
noooooio

i
ik

Costi
, we remove value 26 =v  from 1V . 

3  Lower Bound for the Sum of the Weights of the Distinct Values 

This section presents an ( )mnnO +⋅ log  algorithm for computing a lower bound for 
the sum of the weights of the distinct values. When the domain of each assignment 
variable is an interval this lower bound is tight. 
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Principle of the Algorithm 
The algorithm for computing a lower bound consists of the following steps: 
− We first select (see steps A, B, C) from the assignment variables nVarVarVar ,,, 21 �  

of the uesstinct_valghts_of_disum_of_wei  constraint a subset of variables ���  for 
which the following property holds: If the domain of every assignment variable is 
an interval, then any set of values covering all variables of ���  allows also to cover 
all variables of nVarVarVar ,,, 21 � . The construction of ���  is based on the 
following two observations. Firstly, if ( )iVardom )1( ni ≤≤  is included in or equal to 

( )jVardom  )1( nji,j ≤≤≠  then the sum of the weights of the distinct values does 

not change if jVar  is not considered. Secondly, we try to obtain a set ���  with a 

specific property7 for which we have a polynomial algorithm which finds a tight 
lower bound. 

− We then compute (see step D) a lower bound for covering all variables of ��� . This 
lower bound will be tight when the domain of each variable of ���  is an interval. 

Throughout sections 3 and 4, we illustrate the different phases of the algorithm on 
the instance given in the following example. Lines 1 and 2 of Example 3 declare the 
minimum and maximum value for each assignment variable as well as for the cost 
variable. Lines 3 to 9 state a uesstinct_valghts_of_disum_of_wei  constraint where we 
have 14 assignment variables (see lines 3-4) and their 17 potential values (see lines 
5-9). 
1. V1::0..6 V2::1..7  V3:: 1..11 V4:: 2..10 V5:: 2.. 7 V6:: 3.. 8 V7::5..11 V8::5..8 
2. V9::6..9 Va::6..12 Vb::11..12 Vc::11..13 Vd::13..15 Ve::14..16 Cost::0..18 
3. sum_of_weights_of_distinct_values({var-V1,var-V2,var-V3,var-V4,var-V5,var-V6,var-V7, 
4.                                   var-V8,var-V9,var-Va,var-Vb,var-Vc,var-Vd,var-Ve}, 
5. {val-0  weight-7 , val-1  weight-12, val-2  weight-3, val-3  weight-10, 
6.  val-4  weight-6 , val-5  weight-6 , val-6  weight-9, val-7  weight-5 , 
7.  val-8  weight-10, val-9  weight-1 , val-10 weight-7, val-11 weight-1 , 
8.  val-12 weight-5 , val-13 weight-8 , val-14 weight-9, val-15 weight-10, 
9.  val-16 weight-4},Cost) 

Example 3.  Instance used for illustrating Alg. 2 and Alg. 3. 

Fig. 3 will be used at each step of the algorithm to depict specific information. On 
that figure, each assignment variable eVVV ,,, 21 �  of Example 3 corresponds to a given 
column and each value to a row. Values that do not belong to the domain of a variable 
are put in black. Further explanations about Fig. 3 will come as we develop the 
different steps of Alg. 2 and 3. 
A. Sorting the Assignment Variables. We first sort the assignment variables 

nVarVarVar ,,, 21 �  in increasing order of their minimum value (see line 2 of Alg. 2), 
which takes ( )nnO log⋅ . These sorted variables will be denoted by nVVV ,,, 21 �  
throughout the rest of this section and of the next section. 

                                                           
7 The property is given by Condition (1) of Proposition 2. 
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B. Making a First Selection of Variables to Cover. Let us first introduce the notion 
of stair, which is needed at this stage. A stair is a set of consecutive variables 

jii VVV ,,, 1 �+  )( ji ≤  of nVVV ,,, 21 �  such that all the following conditions hold: 

   ( ) ( )ji VV minmin ==� ,   1=i  or ( ) ( )ii VV minmin 1 ≠− ,   nj =  or ( ) ( )jj VV minmin 1 ≠+ . 
Part (B) of Fig. 3 indicates the stairs of eVVV ,,, 21 � . We have the following nine stairs 

{ }1V , { }32 ,VV , { }54 ,VV , { }6V , { }87 ,VV , { }aVV ,9 , { }cb VV , , { }dV  and { }eV  which respectively 
correspond to the variables which have value 0, 1, 2, 3, 5, 6, 11, 13 and 14 as a minimum value. 

Lines 3-7 of Alg. 2 select for each stair the leftmost variable with the smallest 
maximum value. The selected variable is called the representative of the stair. We 
scan the variables once and therefore this phase takes ( )nO . 

 If the domains of all the variables of a stair contain the domain of its 
representative, then covering the representative allows also to cover all variables of 
that stair. 
Part (C) of Fig. 3 indicates for each stair its representative. For instance the representatives of 
the first six stairs { }1V , { }32 ,VV , { }54 ,VV , { }6V , { }87 ,VV  and { }aVV ,9  are respectively 1V , 2V , 

5V , 6V , 8V  and 9V . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Computing the overall lower bound and the lower regret of each value 

C. Restricting Further the Set of Variables to Cover. The goal of this step is to 
further restrict the set of representatives ivesepresentat	  computed at the previous step 
to a subset scending
  so that both of the following properties hold: 

(A)  variables 
(B)  stairs 
(C)  stairs representatives 
(D)  series of ascending variables 
(E)  values 
(F)  weight of a value 
(G)  lower regret of a value 
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V1 V2 V3 V4 V5 V6 V7 V8 V9 Va Vb Vc Vd Ve 
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− The range of a newly eliminated variable (i.e. a variable belonging to 
scendingivesepresentat 
	 − ) contains the range of at least one variable of 

scending
 . 
− There does not exist two distinct variables ba VV ,  of scending
  for which both 

( ) ( )ab VV minmin ≤  and ( ) ( )ba VV maxmax ≤  hold. 
Under the assumption that each domain consists of one single interval, the first 

property guarantees that covering all variables of scending
  allows also covering all 
eliminated variables of scendingivesepresentat 
	 −  without using any extra value, 
therefore without any extra cost. The second property comes from the fact that, as we 
will explain in the next paragraph, we know how to compute a tight lower bound for 
such a configuration of variables whose domains are all intervals. 

Selecting a series of ascending variables scending
  is achieved as follows. We 
scan back from right to left the variables of ivesepresentat	  (see lines 8-10 of Alg. 2). 
During this scan, we mark a variable (see instruction “stair[s]:=-1” at line 10 of 
Alg. 2) of ivesepresentat	  if its maximum value is greater than or equal to the smallest 
maximum value encountered so far, where the initial maximum value is set to a value 
strictly greater than the maximum value of the representative of the last stair (see line 
8 of Alg. 2). Finally, we compress all unmarked variables so that their indices are put 
in adjacent entries of the stair array. Since these phases require scanning the 
variables twice, their complexity is ( )nO . 

Part (D) of Fig. 3 shows the series of ascending variables scending
  extracted from 
ivesepresentat	 . It is obtained as follows: From the representatives 1V , 2V , 5V , 6V , 8V , 9V , 

bV , dV , eV  of the stairs, we first eliminate 6V  since its maximum value is greater than or 

equal to the maximum value of 8V . We also eliminate 2V  since its maximum value is greater 

than or equal to the maximum value of 5V . We finally get the series of ascending variables 1V , 

5V , 8V , 9V , bV , dV , eV  which have the following strictly increasing minimum and 

maximum values: 0,2,5,6,11,13,14 and 6,7,8,9,12,15,16. On Fig. 3, a dashed arrow depicts 
those variables that belong to the series of ascending variables. 

D. Computing a Lower Bound for a Series of Ascending Variables. We now come 
to the point were we explain how to compute a lower bound for the series of 
ascending variables scending
 . Since we assume that the domain of each variable is 
an interval, the goal is to find out a subset of distinct values kvvv ,,, 21 �  intersecting 

( ) ( )[ ]VV max,min  for each variable scendingV 
∈ . In addition, we want to minimize 

the quantity ( )�
=

k

i
iv

1
weight . For this purpose, we use the following proposition. 

Proposition 2 
Assume that, for each possible value v  of a domain variable pV , we know a tight 

lower bound v
ptlb ,,2,1 �  for covering all variables pVVV ,,, 21 �  according to the 

hypothesis that we use value v  (0 is a tight lower bound for the empty set). 
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Furthermore, let 1+pV  be a domain variable such that 

       ( ) ( )( ) ( ) ∅=∩−
−

=
+ �

1

1
1 domdomdom

p

i
ipp VVV ,   (1) 

(i.e. all possible values of 1+pV  that do not belong to ( )pVdom  do also not belong to 

the domains of 121 ,,, −pVVV � ). For each possible value w  of ( )1dom +pV  the following 

formulas compute a tight lower bound w
ptlb 1,,2,1 +�  for covering 121 ,,, +pVVV �  under 

the hypothesis that we use value w : 

− If ( )pVw dom∈  then w
p

w
p tlbtlb ,,2,11,,2,1 �� =+ .    (2) 

− If ( )pVw dom∉  then ( )( ) ( )wtlbtlb v
p

Vv

w
p

p

weightmin ,,2,1
dom

1,,2,1 +=
∈

+ �� .  (3) 

Proof of Proposition 2 
 (2) arises from the fact that, if ( )pVw dom∈ , we don’t need any extra value for 

covering the new variable 1+pV . Finally, (3) originates from the fact that, using a 

value w , which for sure does not belong to the domains of pVVV ,,, 21 � , will not 

allow covering any variables of pVVV ,,, 21 � . Therefore, we can add to the weight of 

w  the smallest tight lower bound for covering pVVV ,,, 21 �  associated to the different 

possible values v  of the domain of pV .            � 

Lines 12 to 20 of Alg. 2 use Proposition 2 in order to compute a lower bound for 
the sum of the weights of the distinct values. Line 13 iterates through the variables of 

scending
 . Moreover, in order to satisfy Condition (1), the variables are considered 
in increasing order of their minimum value and we relax the fact that they may not 
consist of one single interval. This relaxation is achieved by lowering the quantity 

( )( )v
p

Vv
tlb

p
,,2,1

dom
min �

∈
 of (3) to ( ) ( )( )v

p
VvV

tlb
pp

,,2,1
maxmin

min �
≤≤

. This last quantity will be 

denoted by ptlb ,,2,1 � . In order to keep the overall complexity of lines 12 to 20 to 

( )mO , we use a sliding window for computing the quantity ( ) ( )( )v
p

VvV
tlb

pp
,,2,1

maxmin
min �

≤≤
 

without rescanning the values between ( )pVmin  and ( )pVmax . Those values that 

belong to the range of the current variable pV  are kept in this sliding window for 

which we now describe the contents. 
For a series of strictly increasing values lastfirstfirst vvv ,,, 1 �+  ( mlastfirst ≤≤≤1 ), 

let ( )lastvweight  be the ∆-th smallest distinct value8 among the values of 

{ ( ) ( ) ( )lastfirstfirst vvv weight,,weight,weight 1 �+ }. The sliding window records the 

following information: 
− [ ]ilow +key )0( ∆<≤ i  contains the th)1( −+i  smallest distinct value within 

{ ( ),weight firstv  ( ) ( )lastfirst vv weight,,weight 1 �+ }, 

                                                           
8 For instance, the second smallest distinct value of values 9,4,1,3,1,4 is equal to 3. 
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− [ ]ilow +pos )0( ∆<≤ i  holds the largest value )( lastkfirstvk ≤≤  such that 
( ) [ ]ilowvk += keyweight . 

Consider the possible values 0,1,2,3,4,5,6 of the first variable 1V  as well as their corresponding 
weights 7,12,3,10,6,6,9. Since 9 is the third smallest distinct value of the strictly increasing 
sequence 3,6,9 extracted from the weights, the first three entries of the key and pos arrays of 
the sliding window associated to values 0,1,2,3,4,5,6 are initialized as follows: key[1]=3, 
pos[1]=3, key[2]=6, pos[2]=6, key[3]=9, pos[3]=7. 

PURPOSE  Compute a lower bound for the sum of the weight of the distinct values taken 
         by Var[1],Var[2],..,Var[n] and update the minimum value of the Cost variable. 
INPUT 
• n           : Total number of variables. 
• m           : Total number of values. 
• Var   [1..n]: The variables. 
• Value [1..m]: Contains the values of the val attributes of the second argument 
                of the sum_of_weights_of_distinct_values constraint sorted in 
                increasing order. 
• Weight[1..m]: Weight associated to the different values. 
• Cost        : The cost variable. 
 

 INITIALIZATION 
 1 nstair:=0; FOR i:=1 TO n DO V[i]:=Var[i]; 
 2 Sort V[1..n] in increasing order of minimum value of V[1..n]; 
 

 SELECT A FIRST SUBSET OF VARIABLES 
 3 FOR i:=1 TO n DO 
 4   new_stair:=(nstair=0 OR level_stair<min(V[i])); 
 5   IF new_stair THEN nstair:=nstair+1; level_stair:=min(V[i]); 
 6   IF new_stair OR smallest_max_stair>max(V[i]) THEN 
 7     stair[nstair]:=i; smallest_max_stair:=max(V[i]); 
 

 RESTRICT FURTHER THE FIRST SUBSET OF VARIABLES 
 8 cut:=max(V[stair[nstair]])+1; 
 9 FOR s:=nstair TO 1 (STEP –1) DO 

10   IF max(V[stair[s]])≥cut THEN stair[s]:=-1 ELSE cut:=max(V[stair[s]]); 
11 r:=0; FOR s:=1 TO nstair DO   IF stair[s]≠-1 THEN r:=r+1; stair[r]:=stair[s]; 
 

 COMPUTE LOWER BOUND FOR COVERING THE SELECTED SUBSET OF VARIABLES 
12 low:=1; up:=0; lower_bound:=0; 
13 FOR s:=1 TO r DO 
14   minv:=min(V[stair[s]]); maxv:=max(V[stair[s]]); 

15   WHILE low≤up AND pos[low]<minv DO low:=low+1; 
16   IF s>1 AND minv<max(V[stair[s-1]])+1 THEN minv:=max(V[stair[s-1]])+1; 
17   FOR v:=minv TO maxv DO 
18     WHILE low≤up AND key[up]≥Weight[v-Value[1]+1]+lower_bound DO up:=up-1; 
19     up:=up+1; pos[up]:=v; key[up]:=Weight[v-Value[1]+1]+lower_bound; 
20   lower_bound:=key[low]; 
 

 ADJUST LOWER BOUND OF COST 
21 adjust minimum of Cost to lower_bound; 

Algorithm 2:  Lower bound for the sum of the weights of the distinct values 

This sliding window moves at each step of the iteration when we process the next 
variable 1+kV . Those values that are smaller than the minimum value of 1+kV  leave 
the sliding window (see line 15 of Alg. 2), while those values that belong to 

( ) ( )( ) ( ) ( )( ) ( )111 max,..,1min,1maxmax,min,1maxmax +++ +++ kkkkk VVVVV  enter the sliding 
window (see lines 18-19 of Alg. 2). Accessing the leftmost position of the key array 
of the sliding window retrieves the minimum weight without any scanning (see line 
20 of Alg. 2). Each move of the sliding window (i.e. removing or adding a value) is 
achieved by shrinking the leftmost or the rightmost parts of the sliding window and 
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by possibly extending the sliding window by one position to the right. The key point 
is that each value is inserted and removed at most once from the sliding window and 
that each scan over a value removes this value. Since we have no more than m  
elements, the overall complexity for updating the sliding window is ( )mO . 

We now give the detail of the first steps of the computation of the lower bound on the series of 
ascending variables 1V , 5V , 8V , 9V , bV , dV , eV . 

  • At the first iteration we compute ( ) 70weight0
1 ==tlb , ( ) 121weight1

1 ==tlb , 

( ) 32weight2
1 ==tlb , ( ) 103weight3

1 ==tlb , ( ) 64weight4
1 ==tlb , ( ) 65weight5

1 ==tlb , 

( ) 96weight6
1 ==tlb . The lower bound 1tlb  for covering 1V  is equal to 

36
1,5

1,4
1,3

1,2
1,1

1,0
1min =�

�
��

�
� tlbtlbtlbtlbtlbtlbtlb . 

  • At the second iteration we have that ii tlbtlb 12,1 = ( 62 ≤≤ i ) and we compute 

( ) 8537weight1
7

2,1 =+=+= tlbtlb . The lower bound 2tlb  for covering 1V , 5V  is equal to 

37
2,1,6

2,1,5
2,1,4

2,1,3
2,1,2

2,1min =�
�
��

�
� tlbtlbtlbtlbtlbtlb . 

  • At the third iteration we have that ii tlbtlb 2,13,2,1 = ( 75 ≤≤ i ) and we compute 

( ) 131038weight2
8

3,2,1 =+=+= tlbtlb . The lower bound 3tlb  for covering 1V , 5V , 8V  is equal 

to 68
3,2,1,7

3,2,1,6
3,2,1,5

3,2,1min =�
�
��

�
� tlbtlbtlbtlb . 

Finally after iterating through the remaining variables 9V , bV , dV , eV  we get an overall lower 
bound of 17. 

Taking into account the complexity of all the intermediate steps described above 
leads to an overall complexity of ( )mnnO +⋅ log  for computing a lower bound for the 
sum of the weights of the distinct values. 

4 Pruning According to the Lower Regret 

This section first introduces the notion of lower regret, denoted ( )vVar,regret , 

associated to a pair vVar,  where Var  is an assignment variable and v  a value. Then it 
extends the algorithm of the previous section in order to prune the assignment 
variables according to this lower regret and to the maximum possible value of the 
Cost  variable. Finally it indicates how to derive a potentially better lower bound for 
the sum of the weights of the distinct values from the lower regret as well as from the 
potential holes in the assignment variables. 

Lower Regret of a Value. The lower regret associated to a pair vVar, , where Var  is 
an assignment variable and v  a value, is the minimum increase of the lower bound of 
the sum of the weights of the distinct values under the hypothesis that Var  is assigned 
to value v . 
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When we compute the lower bound, we want to minimize the sum of the weights 
associated to the values used by at least one variable. So, as soon as a variable takes a 
given value v , all variables that can take that value, should be assigned to v  since 
this does not imply any additional cost. It follows that for such variables 

( ) ( )vVarvVar ji ,regret,regret =  ( nji ≤≤ ,1 ). Having this remark in mind, we now show 

how to compute the lower regret associated to a value v  (denoted ( )vregret ), no 

matter which variable takes this value. 

Proposition 3 
The lower bound on the sum of the weights of the distinct values under the hypothesis 
that a variable is assigned to value v  is equal to 
   ( ) nllf tlbvtlb ,,1,,,2,1 weight �� +++  ,   (4) 

where f  is largest index of the variables of scending
  such that ( ) vV f <max  9, and l  

is the smallest index of the variables of scending
  such that ( ) vVl >min  7 . The lower 
regret of value v  is equal to 

 ( ) nnllf tlbtlbvtlb ,,2,1,,1,,,2,1 weight ��� −++ + .   (5) 

Proof of Proposition 3 
Since we have to use value v  we cover with value v  all variables iV  ( ni ≤≤1 ) such 
that ( ) ( )ii VvV maxmin ≤≤  with a cost of ( )vweight . In addition, we have also to cover 
all variables for which the maximum value is strictly less than v  as well as all 
variables for which the minimum value is strictly greater than v . For evaluating the 
two costs, we use Proposition 2 and the fact that both the minimum and the maximum 
values of the series of ascending variables are strictly increasing. This leads to (4). 
The lower regret is obtained by subtracting from (4) the lower bound computed in the 
previous section.               � 

Extending Alg. 2 for Computing the Lower Regret. Alg. 3 shows how to extend 
Alg. 2 in order to compute the lower regret of each value. It also explains how to 
prune the assignment variables according to the lower regret and to the maximum 
allowed cost. Let r  denote the number of elements of scending
 , namely the number 
of selected variables to cover. An array lower_regret[1..m] records the lower regret 
of each value which is computed as described below: 
− Line 20 of Alg. 2 computes the quantity ftlb ,,2,1 �  ( rf ≤≤1 ) present in (5). Since 

we need this quantity for evaluating the lower regret, we record it at entry f  of the 
array sbefore[0..r] (sbefore[0] is initialized to 0 and corresponds to ∅tlb ). 

− Since we also need to compute quantity nlltlb ,,1, �+  ( rl ≤≤1 ) we reuse a similar 

algorithm as in lines 12-20 of Alg. 2 where we now scan the variables by 
decreasing indices. We record this quantity at entry 1+− fn  of the array 
safter[0..r] (safter[0] is initialized to 0 and corresponds to ∅tlb ). 

− For each value v  we need to compute the largest index of the non-covered 
variables of scending
  (see index f  in (4)). This is done with a complexity of 

                                                           
9 If no such value exists, ∅tlb  is equal to 0. 
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( )mO  by scanning all the values at lines 31-34 of Alg. 3 and by storing this 
information at entry [ ] 11 +− Valuev  of the array first[1..m]. 

− For each value v  we also need to compute the smallest index of the non-covered 
variables of scending
  (see index l  in (4)). This is also done with a complexity of 

( )mO  by scanning all the values at lines 35-39 of Alg. 3 and by storing this 
information at entry [ ] 11 +− Valuev  of the array last[1..m]. 

− Finally, in a last phase (see lines 39-42 of Alg. 3), we compute the lower regret of 
each value (see line 40) and remove (see line 42) from all assignment variables 
those values for which the sum of the lower bound and the corresponding lower 
regret exceeds (see line 41) the maximum allowed cost. 

 At the end of line 12 of Alg. 2 we add the following instruction: 
12 wbefore[0]:=0; 
 

 At the end of line 20 of Alg. 2 we add the following instruction: 
20 wbefore[s]:=lower_bound; 
 

 After line 21 of Alg. 2 we add the following lines: 
 COMPUTE LOWER BOUND FOR COVERING THE SELECTED SUBSET OF VARIABLES 
22 low:=1; up:=0; lower_bound:=0; wafter[0]:=0; 
23 FOR s:=r TO 1 (STEP -1) DO 
24   maxv:=max(V[stair[s]]); minv:=min(V[stair[s]]); 
25   WHILE low≤up AND pos[low]>maxv DO low:=low+1; 
26   IF s<r AND maxv>min(V[stair[s+1]])-1 THEN maxv:=min(V[stair[s+1]])-1; 
27   FOR v:=maxv TO minv (STEP -1) DO 
28     WHILE low≤up AND key[up]≥Weight[v-Value[1]+1]+lower_bound DO up:=up-1; 
29     up:=up+1; pos[up]:=v; key[up]:=Weight[v-Value[1]+1]+lower_bound; 
30   lower_bound:=key[low]; wafter[r-s+1]:=lower_bound; 
 

 COMPUTE FIRST NON-COVERED SELECTED VARIABLES BEFORE EACH VALUE 
31 FOR v:=Value[1] TO max(V[stair[1]]) DO first[v-Value[1]+1]:=0; 
32 FOR s:=1 TO r-1 DO 
33   FOR v:=max(V[stair[s]])+1 TO max(V[stair[s+1]]) DO first[v-Value[1]+1]:=s; 
34 FOR v:=max(V[stair[r]])+1 TO Value[m] DO first[v-Value[1]+1]:=r; 
 

 COMPUTE FIRST NON-COVERED SELECTED VARIABLE AFTER EACH VALUE 
35 FOR v:=Value[m] TO min(V[stair[r]]) (STEP -1) DO last[v-Value[1]+1]:=0; 
36 FOR s:=r TO 2 (STEP -1) DO 
37   FOR v:=min(V[stair[s]])-1 TO min(V[stair[s-1]]) (STEP -1) DO last[v-Value[1]+1]:=r-s+1; 
38 FOR v:=min(V[stair[1]])-1 TO Value[1] (STEP –1) DO last[v-Value[1]+1]:=r; 
 

 PRUNE ACCORDING TO LOWER REGRET AND MAXIMUM COST 
39 FOR ival:=1 TO m DO 
40   lower_regret[ival]:=wbefore[first[ival]]+Weight[ival]+wafter[last[ival]]-lower_bound; 
41   IF lower_bound+lower_regret[ival]>max(Cost) THEN 
42     FOR i:=1 TO n DO remove value Value[ival] from V[i]; 

Algorithm 3:  Extending Alg. 2 for computing the lower regret and pruning according to it 

Computing the lower regret of all values has a complexity of ( )mO , while pruning 
according to the lower regret is done in ( )nqmO ⋅+ 10 where q  is the number of values 
for which the condition [ ] ( )Costivalboundlower maxetlower_regr_ >+  holds. This leads 
to an overall complexity of ( )nqmnnO ⋅++⋅ log  for one invocation of the filtering 
algorithm. In order to improve in practice the running time, we store for each value 
the fact whether or not it was removed from the different assignment variables. Thus 
for a value that was already removed from the assignment variables we save the 
iteration through the assignment variables. 
                                                           
10 We assume that removing a value from a domain variable is done in O(1). 
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We now give the detail of the computation of the lower regret for the first 9 values 
0,1,2,3,4,5,6,7 and 8. We first start by giving the content of the four arrays sbefore, safter, 
first and last initialized by Alg. 3. 
 

  sbefore 0  3  3  6  7  8 16 17   first 0 0 0 0 0 0 0 1 2  3  4  4  4  5  5  5  6 
  safter  0  4  9 10 11 15 15 17   last  6 6 5 5 5 4 3 3 3  3  3  2  2  1  0  0  0 
          0  1  2  3  4  5  6  7         1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
 

By using line 40 of Alg. 3 and the content of the four arrays we compute the lower regret of 
0,1,2,3,4,5,6,7,8 as follows (when we compute the lower regret of a value v, the index used in 
the different arrays corresponds to the entry of the Value table such that Value[ival] is equal 
to v). 
• ( )0regret  =    ∅tlb  [ ]1Weight+  7,6,5,4,3,2tlb+  7,6,5,4,3,2,1tlb−   

 =  [ ][ ] [ ] [ ][ ] [ ]7111 sbeforelastsafterWeightfirstsbefore −++  171570 −++=  5= , 
• ( )1regret  =    ∅tlb  [ ]2Weight+  7,6,5,4,3,2tlb+  7,6,5,4,3,2,1tlb−   

 = [ ][ ] [ ] [ ][ ] [ ]7222 sbeforelastsafterWeightfirstsbefore −++  1715120 −++=  10= , 
• ( )2regret  =    ∅tlb  [ ]3Weight+  7,6,5,4,3tlb+  7,6,5,4,3,2,1tlb−   

 = [ ][ ] [ ] [ ][ ] [ ]7333 sbeforelastsafterWeightfirstsbefore −++  171530 −++=  1= , 
• ( )3regret  =    ∅tlb  [ ]4Weight+  7,6,5,4,3tlb+  7,6,5,4,3,2,1tlb−   

 = [ ][ ] [ ] [ ][ ] [ ]7444 sbeforelastsafterWeightfirstsbefore −++  1715100 −++=  8= , 
• ( )4regret  =    ∅tlb  [ ]5Weight+  7,6,5,4,3tlb+  7,6,5,4,3,2,1tlb−   

 = [ ][ ] [ ] [ ][ ] [ ]7555 sbeforelastsafterWeightfirstsbefore −++  171560 −++=  4= , 
• ( )5regret  =    ∅tlb  [ ]6Weight+  7,6,5,4tlb+  7,6,5,4,3,2,1tlb−   

 = [ ][ ] [ ] [ ][ ] [ ]7666 sbeforelastsafterWeightfirstsbefore −++  171160 −++=  0= , 
• ( )6regret  =    ∅tlb  [ ]7Weight+  7,6,5tlb+  7,6,5,4,3,2,1tlb−   

 = [ ][ ] [ ] [ ][ ] [ ]7777 sbeforelastsafterWeightfirstsbefore −++  171090 −++=  2= , 
• ( )7regret  =    1tlb  [ ]8Weight+  7,6,5tlb+  7,6,5,4,3,2,1tlb−   

 = [ ][ ] [ ] [ ][ ] [ ]7888 sbeforelastsafterWeightfirstsbefore −++  171053 −++=  1= , 
• ( )8regret  =    2,1tlb  [ ]9Weight+  7,6,5tlb+  7,6,5,4,3,2,1tlb−   

 = [ ][ ] [ ] [ ][ ] [ ]7999 sbeforelastsafterWeightfirstsbefore −++  1710103 −++=  6= . 
Now that we know the lower regret of each value (for values 9 to 16 see column G of Fig. 3), 
we can use it for pruning the assignment variables according to the maximum value of the 
Cost  variable, which is equal to 18 in Example 3. We remove all values v  for which the lower 
regret is strictly greater than 1 (e.g. the difference between the maximum cost 18 and the lower 
bound 17 we just compute in the previous section). Therefore we remove values 0, 1, 3, 4, 6, 8, 
10, 12, 13 and 16 from variables eVVV ,,, 21 � . 

Deriving a Better Lower Bound. We now show how to take advantage of the holes 
in the domains of the assignment variables and of the lower regret computed in this 
section to derive a sharper bound for the sum of the weights of the distinct values. The 
intuition behind this bound is as follows. For every assignment variable iVar  
( ni ≤≤1 ) there exists at least one value v  in its range for which the lower regret is 
equal to 0. However, if v  does not belong to the domain of iVar , then we may be 
forced to assign a value with a non-zero lower regret to iVar , which would cause an 
increase of the lower bound. From the previous observation we get the following 
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, where boundlower _  is 

the lower bound computed in Sect. 3. 
 

5  A Tight Upper Bound for the Sum of the Weights of the Distinct 
Values 

The purpose of this section is to show how to compute a tight upper bound for the 
sum of the weights of the distinct values. We give an incremental algorithm which 
can start from an arbitrary, possibly non-empty, matching between the assignment 
variables and the values. Throughout Sections 5 and 6, we illustrate the different 
phases of the corresponding algorithms on the instance given in the following 
example. Lines 1, 2 and 3 of Example 4 declare the set of potential values for each 
assignment variable as well as for the cost variable. Lines 4 to 11 state a 

uesstinct_valghts_of_disum_of_wei  constraint where we have 16 assignment variables 
(see lines 4-5) that can take 21 potential values (see lines 6-11). 
 1. V1,V2,V3::4, 8    V4::1, 4, 8,18    V5::1,11,18 V6:: 1, 5,11      V7::5,11 
 2. V8      ::2, 5,10 V9::2,10          Va::2, 3,15 Vb:: 5, 6,7,13,19 Vc::6,7,13,19 
 3. Vd      ::0,16,20 Ve::0, 9,16,17,19 Vf::9,14,17 Vg::12,20         Cost::138..200 
 4. sum_of_weights_of_distinct_values({var-V1,var-V2,var-V3,var-V4,var-V5, 
 5.  var-V6,var-V7,var-V8,var-V9,var-Va,var-Vb,var-Vc,var-Vd,var-Ve,var-Vf,var-Vg}, 
 6. {val-0  weight-13, val-1  weight-7 , val-2  weight-10, val-3  weight-3 , 
 7.  val-4  weight-10, val-5  weight-6 , val-6  weight-11, val-7  weight-11, 
 8.  val-8  weight-15, val-9  weight-7 , val-10 weight-12, val-11 weight-4 , 
 9.  val-12 weight-5 , val-13 weight-14, val-14 weight-2 , val-15 weight-9 , 
10.  val-16 weight-3 , val-17 weight-8 , val-18 weight-5 , val-19 weight-5 , 
11.  val-20 weight-10},Cost) 

Example 4.  Instance used for illustrating Alg. 4, 5 and 6. 

5.1 A Connection to Matching Theory 

We first introduce the notion of variable-value graph G  associated to an instance of 
the uesstinct_valghts_of_disum_of_wei  constraint: 
− For each assignment variable and each value that can be taken by at least one 

assignment variable we have exactly one vertex in G . So we can identify variables 
and values with the corresponding vertices in G . We will denote variable vertices 
by Var  and value vertices by val . 

− There is an edge { }valVar,  in G  iff val  is in the domain of Var . 
A set M  of edges is called a matching iff no two distinct edges Mfe ∈,  have a 

common vertex. Consider a vertex v . If there is an edge e  in M  that is incident to 
v , v  is called matched, otherwise it is free. We assign a weight to every vertex of G  
as follows. Every variable vertex has weight zero, and every value vertex gets the 
weight that is assigned to the value in the constraint. The weight of M  is defined as 
the sum of the weights of all matched vertices. Note that this differs from standard 
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matching theory where one usually assigns weights to edges. M  is called a maximum 
weight matching iff for all matchings M ′  in G  we have ( ) ( )MM weightweight ≤′ .  
Note that a maximum weight matching does not have to be of maximum cardinality. 

Now we are ready to make the connection between the solutions of the constraint 
and maximum weight matchings in G . We assume that all variables nVarVarVar ,,, 21 �  
are pairwise independent. This means, if we assign a value ( )iVarval dom∈  to iVar , we 
can assign to jVar )( ij ≠  any value in ( )jVardom . 

Proposition 4 
The weight of a maximum weight matching in G  is a tight upper bound on the 
maximum weight of a solution of the constraint, if all variables are pairwise 
independent. 

Proof of Proposition 4 
Let a  denote an assignment of the variables and let kvalvalval ,,, 21 �  be the values 
used by a . For ki ,,2,1 �=  select a variable iVar  such that ( ) ii valVara = . Then 
{ } { } { }{ }kk valVarvalVarvalVar ,,,,,, 2211 �  is a matching in G  which has the same weight 

as the assignment. And hence, a maximum weight matching gives an upper bound on 
the weight of a solution. 

What remains to show is that this bound is tight. Let M  denote a maximum weight 
matching in G . Now we construct an assignment a . Let Var  be a variable. If Var  is 
matched with some value val , we set ( ) valVara = . Otherwise Var  is free and we set 

( )Vara  to some arbitrary value in ( )Vardom . Since all values have non-negative 
weights, the weight of this assignment is at least ( )Mweight . As ( )Mweight  is an 
upper bound, we conclude that the weight of a  equals the weight of M .        � 

We want to point out that this proposition does not hold anymore if negative 
weights are allowed or if the independence assumptions of the variables is violated. A 
maximum weight matching would still be an upper bound, but not necessarily a tight 
one. 

So our task will be to develop an algorithm which computes a maximum weight 
matching in G  efficiently. There are algorithms which can solve the problem by at 
most n  shortest path computations. They can solve a more general problem where 
every edge of the graph has a weight, but the vertices have no weights. We want to 
take advantage of the special properties of our weights in order to come up with 
something more efficient. We will design an incremental algorithm with running time 

( )nedgesnO ⋅  in the worst case, where nedges  is the number of edges of G . But in the 
best case the running time can go down to ( )nedgesO . Furthermore, we do not want to 
construct G  explicitly, this point will be discussed later in detail after we have 
developed the algorithm. 



 22 

5.2 Computing a Tight Upper Bound Incrementally 

Some Results from Matching Theory. Before we describe our algorithm in the next 
section, we will summarize some important results from matching theory now. Let 
M  denote an arbitrary matching in G . Consider a path p  in G  from a vertex x  to a 
vertex y  which uses the edges keee ,,, 21 �  in that order. We call p  alternating with 
respect to M  if the following holds: 
− The edges of p  are alternately in M  and not in M . 
− If yx = , then k  is even ( k  may be 0). 
− If yx ≠ , then either Me ∈1  or x  is free, and either Mek ∈  or y  is free. 

If p  is an alternating path with yx = , we call it an alternating cycle. In Fig. 4 we 
show examples of alternating paths and cycles. 

 
 
 
 
 

Fig. 4.  Alternating paths: The edges of a matching M are shown in bold. On the left-hand side 
the paths p1=[u,a,v,b,w] and p2=[a,v,b,w] are alternating, c=[a,v,b,w,a] is an alternating cycle. 
But p3=[u,a,v,b] is not alternating because it does not use the matching edge incident to b. The 
right-hand side shows the matching M⊕p1. 

For two sets 1S  and 2S  we define the following exclusive-or operation 
)()( 122121 SSSSSS −∪−=⊕ . Then we can express two well-known results in 

matching theory: 

− If p  is an alternating path with respect to a matching M , then pM ⊕  is a 
matching again (cf. Fig. 4). 

− If M  and M ′ are both matchings in G , then MM ′⊕  is a collection of 
vertex-disjoint alternating paths and cycles. 

Consider an alternating path p  with respect to a matching M  which connects two 
vertices x  and y . We compare the weights of M  and pM ⊕  by distinguishing four 
cases (see Fig. 5): 

1. yx = : 

Then M  and pM ⊕  match exactly the same vertices, and hence they have the 
same weight. 

2. yx ≠  and both x  and y  are variable vertices: 

Then M  and pM ⊕  match exactly the same value vertices, and hence they 
have the same weight. 

3. yx ≠  and both x  and y  are value vertices: 

a b 

u v w x 

a b 

u v w x 
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Then one of the two vertices is free and the other one is matched in M . We 
assume that x  is matched in M  and y  is free. Then ( ) =⊕ pMweight  

( ) ( ) ( )yxM weightweightweight +− . 

4. yx ≠ , one vertex is a variable vertex and one is a value vertex: 

We may assume that x  is a variable vertex and y  a value vertex. Either both 
vertices are free in M  and ( ) ( ) ( )yMpM weightweightweight +=⊕ , because 

( ) 0weight =x . Or both vertices are matched and then ( ) =⊕ pMweight  
( ) ( )yM weightweight − . 

We call p  augmenting if ( ) ( )MpM weightweight >⊕ . This can only be the case if 
one endpoint of p  (let us say y ) is a free value vertex and the other endpoint (let us 
say x ) is a free variable vertex or a matched value vertex with ( ) ( )yx weightweight < . 
When we state in an algorithm that we augment a matching M  with an augmenting 
path p  this means that we replace M  by pM ⊕ . 

 
 
 
 
 
 
 
 
 

Fig. 5.  The different cases for the relation of the matchings M and M⊕p 

Suppose we have two matchings M  and M ′  with ( ) ( )MM ′< weightweight . From 
the discussion above it is clear that MM ′⊕  must contain at least one augmenting 
path with respect to M . 

Algorithm. Now we can develop our algorithm for computing a maximum weight 
matching in G  (see Alg. 4). We start with an arbitrary matching initM , which may be 
empty. The basic idea is to repeatedly look for augmenting paths and to augment the 
current matching M  until it has maximum weight. 

The search for an augmenting path works as follows. In the first phase we look for 
paths that start in a free variable vertex. We pick such a free vertex Var  and grow a 
tree of alternating paths with Var  as its root. We use breadth-first-search, which 
guarantees that every vertex in the tree is reached via a shortest alternating path. 
While we grow the tree we maintain a variable max_val  which stores a free value 
vertex that has maximum weight among all free value vertices in the tree. If the tree 
contains no free vertex with positive weight, then nonemax_val = . The search marks 
all vertices in the tree as reached. 

Case 1 

x=y x=y 

x 

y 

Case 4 

x 

y 

x y 

Case 2 

x y 

x y 

Case 3 

x y 
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When the tree is completed and we have found an augmenting path (i.e. 
nonemax_val ≠ ), we augment the current matching M  accordingly, and we abandon 

the tree by marking all vertices in it as unreached again. If the search terminates 
without finding an augmenting path, we know that all vertices in the tree cannot reach 
a free value vertex with positive weight. So when a later call to BFS hits such a 
vertex, it does not have to explore it again. And hence, we do not reset the marks of 
the vertices. 

In the second phase of the search we process paths that start in a matched value 
vertex. It will turn out that start points for augmenting paths can only be those value 
vertices kvalvalval ,,, 21 �  which have already been matched in initM . We observe that 

ival  is matched in M  when it is considered, but it may have a different mate than in 

initM . This is because during the first phase every matched vertex stays matched and 
during the second phase only the vertices that are considered before ival  can have 
changed their status from matched to free. 

We process the vertices in increasing weight order, i.e. 
( ) ( ) ( )kvalvalval weightweightweight 21 ≤≤≤ � . Thus the weights of the roots of the 

BFS-trees can only increase as the search goes on. This has the following 
consequence. When we grow a tree with root ival  without discovering an augmenting 
path, we know that all vertices in the tree can only reach free value vertices with 
weight at most ( )ivalweight . And hence, they do not have to be taken into account by 
later calls to BFS. So we can leave them marked reached. 

We want to say a few words how we trace an augmenting path from max_val  back 
to the root of its tree. While the BFS procedure grows a tree, it stores the father of 
every value vertex val  in [ ]valfather . The father of a variable vertex does not have to 
be stored because the father of a variable vertex is always the matching mate. With 
this information we can easily find the path from max_val  to the root of its tree. We 
detect that we have reached the root when we either hit a free variable vertex 
(phase 1) or a value vertex val  with [ ] nonevalfather =  (phase 2). 

We finish this section with a discussion of a possible optimization for Alg. 4. In 
some cases we can keep the tree although we have augmented the matching. Consider 
a call ),(BFS wVar  and the tree T  which is constructed by it. Suppose T  contains 
before the augmentation only one value vertex val  with weight greater than w . Then 
we do not have to destroy the tree, i.e. the marks of all value vertices in the tree can 
remain reached. 

The optimization is valid because the following still holds: 

Proposition 5 
Consider a call ),(BFS wVar  in phase one or two. Let M  denote the matching after 
the call. If val  is a value vertex with [ ] reachedvalmark = , then there is no alternating 
path wrt. M  from val  to a free value vertex lva ′  with ( ) wlva >′weight . 

Proof of Proposition 5 
First we prove by induction on the number of calls to BFS that the following invariant 
holds: 
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(I) If lav~  is a reached value vertex that is matched with raV~ , then all value vertices 
adjacent to raV~  are marked reached. 

The claim clearly holds before the first call. What remains to show is that it holds 
after a call if it holds before. So let M  denote the matching after the call, and let T  
be the tree constructed during the call. If lav~  has been reached before, then Tlav ∉~ . 
And hence its mate raV~  in M  has been its mate before the call. Thus all adjacent 
value vertices have been reached before. So none of them belongs to T , and they are 
still marked reached. 

In case lav~  has been marked by this call, we have that lav~  and its mate raV~  
belong to T  and the marks of the vertices in T  have not been reset. Thus it is clear 
that all neighbors of raV~  are marked reached. 

Now we can prove the statement of the proposition. Suppose the statement is false, 
i.e. there is a path p  wrt. M  from a reached value vertex val  to a free value vertex 

lva ′  with ( ) wlva >′weight . Since every suffix of p  that starts in value vertex val  is 
also an alternating path, we may assume that val  is the only vertex on p  which is 
marked reached. If p  is not empty, it starts with the matching edge { }Varval,  and 
then uses a non-matching edge { }lvaVar ′′, . By the invariant (I), [ ] reachedlvamark =′′ , 
but this is a contradiction to the choice of p . 

So p  is empty, i.e. lvaval ′=  and hence [ ] reachedlvamark =′ . Let M ′  denote the 
matching before the call. We distinguish two cases depending on whether lva ′  was 
matched in M ′ . Suppose first it was matched in M ′ . As it is free in M , this means 
that we are in the second phase and lva ′  is the root of T . But then ( ) wlva =′weight , a 
contradiction. So lva ′  must be free in M ′ , which implies that it is marked reached by 
the last BFS call. We can also conclude that the optimization has been applied in this 
call, otherwise the mark of lva ′  would have been reset, Thus lva ′  is the only free 
vertex with weight greater than w  in T , and hence we have lvamax_val ′=  for this 
BFS call. But then lva ′  would be matched in M  (after the augmentation), a 
contradiction.               � 

Correctness. In this section we prove the correctness of the algorithm. For this 
purpose, we will introduce some more terminology. Our algorithm starts with an 
initial matching initM . Let �  denote the set of value vertices that are matched in 

initM . These vertices remain matched in the current matching M  during phase 1. The 

matching 1M  that our algorithm has computed at the end of the first phase is in 
general not a maximum weight matching of G , otherwise we would not need the 
second phase. However, it will turn out that 1M  has maximum weight among all 
matchings of G  where all the vertices in �  are matched. 

Thus we introduce the following notion. Let �  denote a set of vertices and M  a 
matching in a bipartite graph G . Then M  is called a � -matching iff all vertices in 
�  are matched in M . Let p  be an alternating path with respect to M  from a vertex 
x  to a vertex y . Then p  is said to be � -alternating iff yx =  or both x  and y  are 
not in � . And if M  is a weighted � -matching, p  is called � -augmenting iff it is 
� -alternating and augmenting with respect to M . Note that for ∅=�  the terms 



 26 

� -matching and � -alternating are identical to matching and alternating respectively. 
Some important properties carry over: 
− If M  is a � -matching and p  is a � -alternating path, then pM ⊕  is a 

� -matching. 
− If M  and M ′  are � -matchings then MM ′⊕  is a collection of � -alternating 

paths and cycles. 
− Let M  and M ′  be weighted � -matchings with ( ) ( )MM ′< weightweight . Then 

MM ′⊕  contains at least one � -augmenting path wrt. M . 
Our first milestone on the way to the correctness proof is the following 

proposition: 

Proposition 6 
Let initM  be an arbitrary matching in the variable-value graph G , and denote by �  
the set of matched value vertices. Then the first phase of Alg. 4 computes a maximum 
weight � -matching in G . 

Proof of Proposition 6 
Let kVarVarVar ,,, 21 �  be the variable vertices in the order as they are considered by 
Alg. 4 in line 3 during the first phase. Let 0G  be the subgraph of G  that is induced by 
all the value vertices and the variable vertices that are matched in initMM =:0 . For 

ki ,,2,1 �=  we define iG  to be the subgraph of G  induced by the vertices of 1−iG  and 
the vertex iVar . Denote by iM  the matching that is computed in the i-th iteration in 
phase 1. We will show by induction that iM  is a maximum weight � -matching in 

iG , which proves the claim because GGk = . 
We begin with the base case 0=i . Since the number of variable vertices in 0G  

equals the cardinality of � , 0M  is the only � -matching in 0G . Note that 0M  is in 
general no maximum weight matching in 0G . 

Now we come to the induction step. We assume that 1−iM  is a maximum weight 
� -matching of 1−iG . We want to show that iM  is a maximum weight � -matching in 

iG . First we prove that iM  is a � -matching and ( ) ( )1−≥ ii MweightMweight . So 
assume that line 25 of Alg. 4 is executed in the i-th iteration, otherwise there is 
nothing to show. Clearly, the algorithm computes an alternating path p  from iVar  to 
a free value vertex val  with positive weight. Since �  contains only value vertices 
and all of them are matched in 1−iM , we can conclude that p  is � -augmenting. 

What remains to prove is that iM  has maximum weight in iG  among all 
� -matchings. Let M ′  denote a maximum weight � -matching in iG . Then 

MM i ′⊕−1  is a collection of vertex-disjoint � -alternating paths and cycles. If none of 
these paths is augmenting, we are done. So let p  denote a � -augmenting path wrt. 

1−iM  in MM i ′⊕−1 . Since 1−iM  is a maximum weight � -matching in 1−iG , the path 
p  cannot be a path in 1−iG , i.e. it visits iVar . As iVar  is free in 1−iM , the vertex iVar  

is an endpoint of p . Thus the other endpoint is a value vertex val  with positive 
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weight. As pM ⊕′  is a � -matching in 1−iG , we have ( ) ( )1weightweight −≤⊕′ iMpM  
and we obtain: 

   ( )M ′weight ( ) ( ) ( ) ( )valMvalpM i weightweightweightweight 1 +≤+⊕′= −  
                     ( ) ( )MpM i ′≤⊕= − weightweight 1  . 
Thus ( ) ( )MpM i ′=⊕− weightweight 1  and we may assume pMM i ⊕=′ −1 . Since the 

algorithm explores in its i-th iteration all alternating paths that start in iVar , it cannot 
miss p . And hence, iM  is a maximum weight � -matching in iG .         � 

Based upon Proposition 6 we can prove the correctness of our algorithm: 

Proposition 7 
Algorithm 4 computes a maximum weight matching in G . 

Proof of Proposition 7 
Let kvalvalval ,,, 21 �  be the value vertices in the order as they are considered by the 
algorithm in line 6 of Alg. 4 during the second phase. Let 0M  be the matching at the 
beginning of the second phase and denote by iM  the matching computed in the i-th 
iteration. For ki ,,1,0 �=  define i�  to be the set { }kii valvalval ,,, 21 �++ . We intend to 
prove by induction that iM  is a maximum weight i� -matching in G  for all i . This 
implies the claim because k�  is empty. 

The case 0=i  follows immediately from the previous proposition, for 0�  contains 
exactly those value vertices that are matched in initM . 

Now we come to the induction step. Let us assume that 1−iM  is a maximum weight 

1−i� -matching in G . We have to show that iM  is a maximum weight i� -matching in 
G . First we convince ourselves of the fact that iM  is a i� -matching with 

( ) ( )1weightweight −≥ ii MM . Since 1−⊂ ii �� , we have that 1−iM  is also a i� -matching. 
If the algorithm augments 1−iM  in the i-th iteration it does so by an alternating path 
from ival  to a free value vertex val  such that ( ) ( )valvali weightweight < . Observe that 
both ival  and val  are not in i� . Thus the path is i� -augmenting. 

Now we show that iM  has maximum weight among all i� -matchings. Similar as 
in the previous proof, we consider a maximum weight i� -matching M ′ . We see that 
if 1−iM  is not a maximum weight i� -matching, then there must be a i� -augmenting 
path p  in MM i ′⊕−1 . Furthermore ival  must be an endpoint of p , otherwise p  
would also be 1−i� -augmenting. Since ival  is matched in 1−iM , the other endpoint of 
p  is a free value vertex val  with ( ) ( )ivalval weightweight > . A similar argument as in 

the previous proof shows that we can assume pMM i ⊕=′ −1 . Since the algorithm 
cannot miss p , we conclude that iM  is a maximum weight i� -matching in G .        � 

Running Time and Implementation. Now let us analyze the running time. Let n  
denote the number of variable vertices and nedges  the number of edges of G . Thus 
nedges  is the sum of the sizes of all variable domains. We assume that we have list 

initL  that contains all the values matched in initM  sorted in increasing weight order. It 
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is clear that this list can be constructed in time ( ) ( )( )( )initinit McardMcardO log⋅ . Later 
we will discuss how initL  can be maintained in an incremental setting. 

Since no vertex marks are reset between two consecutive augmentations, we can 
conclude that the time between two augmentations is ( )nedgesO , no matter how many 
unsuccessful attempts we make in between. The time for an augmentation is clearly 
also ( )nedgesO . So the total running time is ( )( )nedgesaO ⋅+1 , where a  is the number 
of augmentations. We show that this number is bounded by the cardinality c  of the 
final matching. Let 1a , 2a  denote the number of augmentations in the first and the 
second phase of the algorithm respectively. We see that every augmentation in the 
first phase increases the cardinality of the matching by one and in the second phase 
the cardinality remains constant. So we have ( ) aaaMac init =+≥+= 211 card , for the 
number of augmentations in the second phase is bounded the cardinality of the initial 
matching. Therefore ( )nedgesnO ⋅  is an upper bound for the running time. 

We can make some interesting observations. The matching 1M , which the 
algorithm has computed at the end of phase one, does not have to be of maximum 
cardinality. This is because we ignore values of weight zero. Let +G  denote the graph 
which is obtained by removing all value vertices of weight zero from G . So all value 

vertices in +G  have strictly positive weight. Thus any cardinality-augmenting path in 
+G  is also weight-augmenting. And hence 1M  and the final matching have 

maximum cardinality in +G . This implies that c  is independent of initM . 
If we start with an empty matching, then the algorithm skips phase two and it 

makes c  augmentations. Even if we run the algorithm with a “bad” initial matching, 
we cannot have more augmentations. But if we start with a “good” matching, i.e. one 
which matches nearly all the value vertices of the final matching, we can be much 
faster. And if the initial matching already has maximum weight, the algorithm runs in 
time ( )nedgesO  because there can be no augmentations. Therefore, we believe that the 
algorithm is suitable for settings where incrementality is important. 

Now we discuss how to maintain the list initL  which contains the matched values 
of initM  sorted in increasing weight order. What we will actually show is how the 
algorithm can be extended such that it outputs not only the maximum weight 
matching M , but also a list L  containing the matched values in M  in sorted order. 
The running time of the extended algorithm will still be ( )( )nedgesaO ⋅+1 . The 
algorithm constructs L  as follows. It starts with am empty list and whenever an 
augmentation occurs (see line 25 of Alg. 4), it appends max_val to newL . In addition, 
it removes11 from initL  every value that changes its state from matched to free during 
an augmentation in the second phase. Thus at any time, newinit LL ∪  contains exactly 
the matched values of M . In order to construct L  when phase two has terminated, we 
sort newL  and then we merge the two sorted lists initL  and newL . 

                                                           
11 Linit and Lnew are doubly linked lists, and for every matched value we store the address of 

the corresponding list-item, so we can delete an item in O(1). 
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Let us analyze the time for this computation. The maintenance of initL  and newL  
requires only constant overhead per augmentation. When phase two terminates, the 
cardinality of newL  is equal to a , and nedges  is an upper bound on the cardinality of 

initL . Sorting newL  requires ( )aaO log  time and merging takes time ( )nedgesaO + . 
Observing that nedgesa ≤ , we get the claimed time bound for the extended algorithm. 

Let us discuss some details concerning the integration of the algorithm in the 
constraint programming framework. As we have already pointed out, we do not have 
to construct the graph G  explicitly, for the only operation that we need is to scan all 
value vertices that are adjacent to a variable vertex. This amounts to iterating through 
all values in the domain of a given variable. In many constraint programming systems 
the time required for this operation is linear in the size of the domain12. In this case 
the complexity analysis for the graph algorithm carries over to the constraint 
programming setting. However, we have to discuss some detail in the 
implementation. We must associate some information with every value, namely its 
mark and its father. Since the values are (possibly) large integers, we cannot use a 
simple array for this purpose. But we can use perfect hashing [8] to construct a data 
structure which allows to access the information associated with a given value in 
worst-case time ( )1O . The worst-case space requirement is linear in the number of 
values, and the average time to build the structure is also linear. 

When the algorithm is called for the first time, we run it on an empty matching13 
initM . (Thus initL  is also empty.) We store the output matching M  and the ordered 

list L  of matched values. During the search process of the constraint programming 
system, some infeasible values may be removed from the variable domains. This 
means that some edges disappear from G . So before we run the algorithm again, we 
remove from M  all edges that correspond to erased values, and we update L  
accordingly. Thus we obtain a new − usually non-empty − initial matching initM ′  and 
a list initL′  for the algorithm. In order to update these data structures we have to 
consider every edge { }valVar,  in M  and query the constraint programming system if 
val  is still contained in ( )Vardom . We want to point out that this may not be a 
constant time operation. 

We also update M  and L  upon backtracking since we don’t trail modifications on 
M  and L  in order to save memory. 

Let us make a final observation. We have seen that the matching computed by the 
algorithm does not have to yield a tight upper bound, if there is some dependence 
among the variables. Clearly, we cannot exclude all dependencies because the 
constraint is in general used together with other constraints on its variables. But we 
can recognize if the user of the constraint mentions the same variable more than once 
in the argument list of the constraint or if some variables are identified during the 

                                                           
12 This is for instance true in SICStus Prolog where a domain is implemented by a list of 

intervals of consecutives values. But this is not true when one uses an array of bits. 
13 One could use a greedy algorithm for computing Minit. 
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search. For this purpose we sort the variables according to their ids14 and remove 
duplicates before we run our algorithm. 
 PROCEDURE COMPUTE_MAX_WEIGHT_MATCHING(Minit) 

 1 set M to Minit; 

 2 initialize mark of all value vertices as unreached; 
 
  PHASE 1: 
 3 FOR ALL free variable vertices Var wrt. Minit DO 

 4   tree:=∅; 
 5   BFS(Var,0); 
 
  PHASE 2: 
 6 FOR ALL value vertices val matched in Minit in increasing weight order DO 

 7   IF mark[val]=unreached THEN 
 8     mark[val]:=reached; tree:={val}; father[val]:=none; 
 9     let Var denote the mate of val wrt. M; 
10     BFS(Var,weight(val)); 
11 RETURN M; 
 
 PROCEDURE BFS(Var,w) 
12 max_val:=none; 
13 set queue Q to [Var]; 
14 WHILE Q not empty DO 
15   extract first vertex Var from Q; 
16   FOR ALL value vertices val’ adjacent to Var DO 
17     IF mark[val’]=unreached THEN 
18       mark[val’]:=reached; tree:=tree∪{val’}; father[val’]:=Var; 
19       IF val’ is matched wrt. M THEN 
20         let Var’ denote the matching mate of val’; 
21         append Var’ to Q; 
22       ELSE IF weight(val’)>w THEN 
23         max_val:=val’; w:=weight(max_val); 
24 IF max_val≠none THEN 
25   augment M with path from root to max_val (with the aid of father); 
26   FOR ALL value vertices val in tree DO 
27     mark[val]:=unreached; 

Algorithm 4:  Computation of a maximum weight matching in G 

 
 
 
 
 
 
 
 
 
 
 

Fig. 6.  Matching of maximum weight associated to Example 4 

Fig. 6 shows the “variable-value” graph G  associated to the uesstinct_valghts_of_disum_of_wei  
constraint given in Example 4. The vertices associated to the variables are displayed with a 

                                                           
14 Often a variable is represented as a pointer to the actual data structure. So the address of the 

target would be a suitable id for the variable. 
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square and the label of the corresponding variable, while the vertices connected to values are 
shown with a rectangle which contains the value followed by its weight. The matched vertices 
of the maximum matching leading to the upper bound of 141 are shown in bold, while those 
edges that belong to the maximum matching are marked with a thick line. Using Alg. 4 on 
Example 4 produces the following maximum matching ),15(82 =V  ),14(13=cV  ),13(0=dV  

),12(108 =V  ),11(6=bV  ),10(29 =V  ),10(41 =V  ),10(20=gV  ),9(15=aV  ),8(17=fV  ),7(9=eV  

),7(14 =V  ),6(57 =V  ),5(185 =V  )4(116 =V , where weights are shown in parenthesis after each 
value. The maximum matching has an overall cost of 15+14+13+12+11+10+10+ 
10+9+8+7+7+6+5+4=141 which gives a tight upper bound for the Cost  variable of Example 4. 

6  Computing the Upper Regret 

This section first introduces the notion of upper regret, denoted ( )valVar,regret , 
associated to a pair valVar,  where Var  is an assignment variable and val  a value in 

( )Vardom . Then it provides an algorithm in order to prune the assignment variables 
according to this upper regret and to the minimum possible value of the Cost  
variable. The upper regret ( )valVar,regret  for the pair { }valVar,  is the minimum 
decrease of the upper bound for the sum of the weights of the distinct values under the 
hypothesis that variable Var  is assigned to value val . 

Translated to our matching scenario the upper regret can be interpreted like this. 
Let M  denote a maximum weight matching in G , and let M ′  denote a maximum 
weight matching under the restriction { } MvalVare ′∈= , . We have 

( ) ( )MM weightweight ≤′  and ( ) ( ) ( ) 0weightweight,regret ≥′−= MMvalVar . 
We make some observations which will help us to compute the upper regret for e . 

If Me∈  then ( ) 0,regret =valVar . So let us assume Me∉ . Thus MM ′⊕  contains e . 
Let ( )epp =  denote the alternating path in MM ′⊕  that uses e  and has maximum 
length. Let x  and y  be the start and the end vertex of p  respectively. We want to 
show that ( ) ( )MpM ′=⊕ weightweight , i.e. pM ⊕  has also maximum weight among 
all matchings that contain e . Let us define xw~  and yw~  as follows. If p  starts with an 

edge in M ′ , set ( )xwx weight~ = , otherwise ( )xwx weight~ −= . We define yw~  in an 

analogous way depending on whether p  ends with an edge in M ′ . Then we get 
( )M ′weight  ( ) yx wwpM ~~weight ++⊕′=  

 ( ) ( ) ( )MpMwwM yx ′≤⊕=++≤ weightweight~~weight  . 

If yx =  then p  is an alternating cycle, which implies ( ) ( )MpM weightweight =⊕ , 
and hence the upper regret is zero. Now we examine the case yx ≠ . We may assume 
that p  visits Var  before val . So we can decompose p  as yx pepp ��=  such that xp  

is a path from x  to Var  and yp  is a path from val  to y  (see Fig. 7). We observe that 

xp  is empty or ends with an edge in M , and yp  is either empty or starts with an 

edge in M . Thus yx pp ,  are alternating paths with respect to M . If xp  is empty or 
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starts with an edge in M ′ , then x  is a free variable vertex wrt. M , otherwise x  is a 
matched value vertex. In any case, we have ( ) ( ) ( )xMpM x weightweightweight −=⊕ . If 

yp  is empty or ends with an edge in M ′ , then y  is a free value vertex wrt. M , 

otherwise y  is a matched variable vertex. In either case, we obtain 
( ) ( ) ( ) ( )yvalMpM y weightweightweightweight +−=⊕ . Putting the results together we 

get ( ) ( ) ( ) ( )yxMpM weightweightweightweight +−=⊕ . And thus ( ) =valVar,regret  
( ) ( )yx weightweight − . 

 
 
 
 

 

Fig. 7.  The different possibilities for the path p(e): x is either a free variable or a matched 
value, and y is either a free value or a matched variable. 

Now we are ready to develop our algorithm. We will not consider the matching 
M ′  anymore, the terms “matched” and “free” will always refer to M . It will turn out 
helpful to construct a directed graph G

�
 from the undirected graph ( )EVG ,=  and the 

matching M . The graph ( )EVG
��

,=  has the same vertices as G  and the following 
edges (cf. Fig. 8): 
− For every edge { }valVar,  in E  we have the directed edge ( )valVar,  in E

�
. 

− For every edge { }valVar,  in M  we have the directed edge ( )Varval,  in E
�

. 
This means, for every undirected edge we have a directed edge from the variable to 

the value vertex, and for every matching edge we have in addition an edge directed in 
the opposite direction. 

This graph is interesting because alternating paths in G  with respect to M  
correspond to directed paths in G

�
: 

− Alternating cycles in G  correspond to simple cycles in G
�

 of length greater than 
two, and vice versa. Simple cycles of length two can be identified with matching 
edges. 

− There is a one-to-one correspondence between acyclic alternating paths in G  and 
simple paths in G

�
 which start in a free variable or matched value vertex and end in 

a matched variable or free value vertex. 

 
 
 
 
 

Fig. 8.  The right-hand side shows the directed graph G
�

 for the graph G and the matching M 
on the left-hand side. Observe how the alternating path p=[w,b,v,a,u] in G translates to a 
directed path in G

�
. 
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In order to make the description of the algorithm easier, let us introduce an 
abbreviation. We say that a vertex x  can reach a vertex y  iff there is a, possibly 

empty, path from x  to y  in G
�

, in formulas we write yx *→  to denote this. 
The basic ideas for the algorithm are as follows. If we want to determine the upper 

regret for an edge { }valVare ,= , we first check whether Var  and val  lie on a cycle in 
G
�

. If this is the case the upper regret is 0, and we are done. Otherwise, Me∉  and 
there exists an alternating path ( )ep  in G  which passes through e  such that its start 
vertex x  and end vertex y  determine the upper regret (see the discussion above). 
Since we assumed that ( )ep  visits Var  before val , it translates to a directed path 

( ) ( ) yx pvalVarpep
�

��
��

,=  in G
�

 from x  to y  (see again Fig. 7). As we have already 

seen, the upper regret of e  is the difference ( ) ( )yx weightweight − . 
We can observe that the weight of the start vertex of ( )ep

�
 only depends on the 

variable vertex Var  of e , but not on val . Let us denote this weight by ( )Varlabel . We 
see that ( )Varlabel  is zero, if Var  can be reached from a free variable vertex. 
Otherwise it is the minimum weight of all value vertices that can reach Var . 

On the other hand, the weight of the end vertex of ( )ep
�

 is completely determined 
by the value vertex val  of e . We use ( )vallabel  to denote this weight. It is the 
maximum weight of a free value vertex that val  can reach. If val  can reach only 
matched value vertices, then the end vertex of ( )ep

�
 is a matched variable, and hence 

( )vallabel  is zero. 
Since we want to compute the upper regret for every edge, we label every vertex v  

in G
�

 with ( )vlabel . And then the upper regret of an edge { }valVare ,=  is simply the 
difference ( ) ( )vallabelVarlabel − . Thus the algorithm consists of four steps: 

1. Compute the strongly connected components of G
�

: 
We assign component numbers to every vertex such that two vertices receive the 
same number iff they belong to the same strongly connected component. 

2. Label the variable vertices: 
We label every variable vertex Var  with ( )Varlabel : 

   ( )
( )��

�
�



→
→′′=

otherwise,}:valmin{weight
withvariablefreeaisthereif,0

*

*

Varval
VarrVarVaVarlabel  

3. Label the value vertices: 
We determine for every value vertex val  its label ( )vallabel : 

   ( ) ( ) })valuefreeais:{}0max({ * lvalvavallvaweightvallabel ′∧′→′∪=  

4. Compute the upper regret: 
For every edge { }vVare ,=  we compute the upper regret as follows: 

   ( ) ( ) ( )�
�



−
=

otherwise
SCCsametobelongandif

,
,0

,regret
valVar

vallabelVarlabel
valVar  
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We prove the correctness of the algorithm above. Fix an edge { }valVare ,= . If 
Me∈ , then the upper regret is zero and valVar,  belong to the same strongly 

connected component, because the edges ( )valVar,  and ( )Varval,  are both in G
�

. 
Otherwise we observe that the algorithm will not miss the path ( )ep , thus it computes 
a value which is not larger than the real upper regret. 

What remains to show is that we can find a matching M ′  which contains e  such 
that ( ) ( )MM ′− weightweight  is the value computed by the algorithm for the upper 
regret. If Var  and val  belong to the same strongly connected component, then there is 
a simple cycle c

�
 containing the two vertices. If the length of c

�
 is two, then Me∈  

and we choose MM =′ . Otherwise c
�

 translates to an alternating cycle c . Thus 
cMM ⊕=′  contains e  and has the same weight as M . 

If the two vertices lie in different strongly connected components, we can find a 
simple path xp

�
 from some vertex x  to Var  which made us label Var  with 

( )Varlabel . (Thus x  is a free variable vertex or a matched value vertex.) And there is 
a simple path yp

�
 from val  to some vertex y  which made the algorithm assign the 

label to val . (So y  is a free value vertex or − if val  can only reach matched variable 
vertices − some arbitrarily chosen variable vertex that can be reached from val .) The 
path ( ) yx pvalVarpp

�
��

��
,=  in G

�
 must be simple because Var  and val  are in different 

strongly connected components. Thus it translates to an alternating path p  in G . And 
for  pMM ⊕=′  we have ( ) ( ) ( ) ( )yxMM weightweightweightweight +−=′ , and hence 

( ) ( ) ( ) ( )vallabelVarlabelMM −=′− weightweight .           � 
In the sequel we will show how to implement all the four steps of the algorithm in 

time ( )nedgesO 15. For the final step this is obvious. For the first step we notice that 
there are algorithms for computing the strongly connected components of a directed 
graph in linear time. Some of these algorithms only have to scan the outgoing edges 
of the vertices of the graph, but not the incoming edges (see for example [5]). 

So the critical steps are the labelling steps. We give the pseudo-code for these steps 
in Alg. 5 and 6. 

In order to determine the labels of the variable vertices we do not consider those 
vertices one by one and compute the label for each of it, for this would take too long. 
But we do it the other way round. We take the first free variable vertex Var  and start 
a depth-first-search which assigns the label 0 to all variable vertices that Var  can 
reach. Then we consider the next free variable vertex, start a depth-first-search from 
there and label all reachable vertices that have not been labelled yet, and so on. After 
that we pick a value vertex val  with smallest weight, and we use another 
depth-first-search to label all reachable vertices that are still unlabelled with 

( )valweight . We repeat this procedure until we have considered all value vertices in 
increasing order of their weights. 

Note that whenever the search encounters a labelled vertex, it does not have to 
explore it because its label and the labels of all its descendants are not greater than the 
current label. This guarantees that every edge is scanned only once. 

                                                           
15 We assume again that we already have a sorting of all values according to their weights. 
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 1 PROCEDURE COMPUTE_VAR_LABELS 
 2 initialize the labels of all variable vertices to unreached; 

 3 FOR ALL free variable vertices Var of G
�
 DO VAR_DFS(Var,0); 

 4 FOR ALL matched value vertices val of G
�
 in increasing weight order DO 

 5   let Var denote the mate of val; VAR_DFS(Var,weight(val)); 

 6 PROCEDURE VAR_DFS(Var,w) 
 7 IF label(Var)=unreached THEN 
 8   label(Var):=w; 
 9   FOR ALL value vertices val’ adjacent to Var DO 
10     IF val’ has a matching mate Var’ THEN VAR_DFS(Var’,w); 

Algorithm 5:  Computation of the variables vertex labels 

Now we discuss the labelling of the value vertices as shown in Alg. 6. One could 
use the same idea as in the previous algorithm: Pick a free value vertex val  with 
maximum weight and label all value vertices which can be reached from val  with 

( )valweight . Repeat this step until all free value vertices have been processed in 
decreasing weight order. The problem of this approach lies in the term “can be 
reached from val ”, i.e. the approach requires to scan the incoming edges of the 
vertices of G

�
. So for a value val  we would ask for every variable Var  with 

( )Varval dom∈ . This is a query which is not supported efficiently by constraint 
programming systems. So we decided to take another approach that requires only to 
scan the outgoing edges of a vertex. 

Our algorithm is based on depth-first-search. We will recall some properties of 
depth-first-search which are important for us. Every vertex in the graph has an 
exploration status which is one of the following three values: unreached, active and 
completed. A vertex v  has status unreached until the procedure depth-first-search is 
called for it. Then its status changes from unreached to active, and when the call for 
v  terminates its status becomes completed and remains this way till the end of the 
algorithm. A top-level call to a vertex v  explores all vertices that are reachable from 
v  and that are marked unreached at the time of the call. After the call all vertices that 
are reachable from v  are completed which means that depth-first-search has visited 
all of them. 

This gives rise to the first version of our depth-first-search algorithm which differs 
slightly from the final version in Alg. 6, but it suffices to sketch the main ideas. We 
will later discuss its short-coming and how to remedy them. 

We assume that at the beginning of the algorithm all value vertices have the label 
zero. In a call )(DFS val  for an unreached value vertex we do the following. After 
changing the status of val  to active, we check whether val  is free. If this is the case, 
then we label it with ( )valweight  and terminate the call, because val  has no outgoing 
edge. Otherwise, there is only one outgoing edge ( )Varval, , which corresponds to the 
matching edge { } MvalVar ∈, . We do not make a recursive call for Var , but we scan 
every outgoing edge ( )lvaVar ′,  in the call for val . If lva ′  is unreached, we make a 
recursive call )(DFS lva ′ . In any case we set the label of val  to the maximum of its 
current label and the label of lva ′ . When all edges out of Var  are scanned, the call for 
val  is finished. Upon termination we mark val  as completed. 

When a top-level call )(DFS val  terminates, val  is labelled correctly with 
( )vallabel . But the value vertices visited by recursive calls may receive a label smaller 
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than ( )vallabel . This can be seen in Fig. 9. We have two variables 1Var , 2Var  and 
three values 1val , 2val , 3val . The vertex 3val  is free and has weight 1. Assume we 
make the call )(DFS 1val . We mark 1val  as active and scan the edges out of its mate 

1Var . This leads to a recursive call )(DFS 2val  which makes 2val  active and scans the 
edge ( )12 ,valVar . Since 1val  is active, we do nothing and leave the label of 2val  at 
zero. Then the call for 2val  terminates after marking it as completed. So we return to 
the top-level and call )(DFS 3val . As 3val  is free, we set the label of 3val  to 1 and 
return. Then we adjust the label of 1val  to 1. And the top-level call also terminates. So 

1val  is labelled correctly. But the label of 2val  is zero, although this vertex can also 
reach 3val . The problem is that 1val  does not have its final label when the edge 
( )12 ,valVar  is scanned. The problem only occurs when the status of the target of the 
scanned edge is active. There is no harm if the status is unreached at the beginning of 
the scan, because then depth-first-search is invoked on the target, so that it is explored 
and marked as completed before the adjustment on the label. 

 
 
 
 
 
 
 

Fig. 9.  Example for the fact that the first DFS version does not produce the correct labels for 
all vertices. (Values are drawn as circles, variables as boxes.) 

The following observations will help us to solve the problem. At any time the 
vertices that are currently active lie on a single path that ends in the currently explored 
vertex val . So if we scan an edge into an active vertex lva ′ , then val  and lva ′  lie on a 
directed cycle, i.e. they belong to the same strongly connected component. It is clear 
that val  and lva ′  as well as all other vertices in their strongly connected component 
can reach exactly the same vertices in G

�
. Let lva ′′  be the value vertex in the strongly 

connected component of val  that is visited first by depth-first-search. Consider now 
the point in time when lva ′′  becomes completed. Then lva ′′  cannot reach any active 
vertex, because such a vertex would belong to the same strongly connected 
component as lva ′′  and it would have been visited before lva ′′ . And lva ′′  cannot 
reach any vertex with mark unreached, this is a property of depth-first-search. Thus 

lva ′′  is labelled correctly. We will later give a rigorous proof of this fact, but let us 
now finish the development of our algorithm. We use basically the same algorithm as 
above, but we do not assign a label to every value vertex anymore, instead of this we 
assign a value label to every strongly connected component of G

�
 such that 

( )[ ] ( )vallabelvalsccval_label =  for every value vertex val . Thus we obtain Alg. 6. 
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 1 PROCEDURE COMPUTE_VAL_LABELS 

 2 compute strongly connected components of G
�
 for setting scc of each value; 

 3 initialize the labels of all strongly connected components to 0; 
 4 initialize mark of all value vertices to unreached; 

 5 FOR ALL value vertices val of G
�
 DO 

 6   IF mark[val]=unreached THEN VAL_DFS(val); 

 
 7 PROCEDURE VAL_DFS(val) 
 8 mark[val]:=active; 
 9 IF val is free THEN val_label[scc(val)]:=weight(val); 
10 ELSE 
11   let Var denote the matching mate of val; 
12   FOR ALL vertices val’ adjacent to Var DO 
13     IF mark[val’]=unreached THEN VAL_DFS(val’); 
14     val_label[scc(val)]:=max(val_label[scc(val)],val_label[scc(val’)]); 
15 mark[val]:=completed; 

Algorithm 6:  Computation of the value vertex labels 

Now we prove the correctness of Alg. 6. It is easy to see that the labels can never 
become too big, i.e. after the initialization in line 3 we have 

( )[ ] ( )vallabelvalscclabelval ≤≤ _0  for every value vertex val . Let us say that the label 
of val  is tight if ( )[ ] ( )vallabelvalscclabelval =_ . Since labels can only increase, we see 
that once a label becomes tight, it stays tight till the end of the algorithm. 

The algorithm ignores free variable vertices because they have only outgoing edges 
and each of them forms a strongly connected component of its own. So let Var  denote 
a matched variable vertex and let val  be its mate. Let us call an edge ( )lvaVare ′= ,

�
 in 

G
�

 alive until it is scanned in the for-loop and line 14 is executed for val  and lva ′ , 
afterwards e

�
 is called dead. In order to make the following statements easier, we also 

call an edge alive if it is directed from a value to a variable vertex (i.e. if it 
corresponds to a matching edge). Consider a strongly connected component of G

�
. 

The first vertex in it that is made active by VAL_DFS  is called the root of the 
component16. 

Now we can formulate the main fact which immediately implies the correctness of 
the algorithm: 

Proposition 8 
Let r  denote the root of a strongly connected component of G

�
. While r  is marked 

active, at least one of the following holds17: 
1. There is a (possibly empty) path p

�
 from r  to a free value vertex val  with 

( ) ( )rlabelvalweight =  such that all edges on p
�

 are alive. 
2. There is a (possibly empty) path q

�
 from r  to a value vertex lva ′  with 

( )[ ] ( )rlabellvascclabelval =′_  such that all edges on q
�

 are alive. 
When r  is marked completed, its label is tight. 

                                                           
16 This name was introduced in [5]; it reflects the fact that all other vertices of this component 

become descendants of this vertex in the DFS tree. 
17 We want to point out that none of the statements has to hold as long as r is unreached, it may 

be the case that all paths of alive edges end in vertices that have not received their final label 
then. 
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Before we prove the statement, let us discuss the intuition behind it. Let us assume 
that ( ) 0>rlabel , otherwise there is nothing to show. Then there exists a path p

�
 from 

r  to some free value vertex val  with weight ( )rlabel  by the definition of ( )rlabel . 
Consider a point in time when r  is active: Maybe we have not explored any edge on 
the path yet, i.e. all edges on p

�
 are still alive (cf. case 1). But it can also be that we 

have already explored a suffix of p
�

 that starts in a value vertex lva ′ . Then the label 
of lva ′  is tight and the prefix q

�
 of p

�
 from r  to lva ′  uses only alive edges (see case 

2). Note that q
�

 maybe empty, which means that the label of r  is tight. 

Proof of Proposition 8 
First we show that the statement about active roots implies that the label of a 
completed root r  is tight. If r  is free, then it has no outgoing edges in G

�
 and its 

label is tight because line 9 (the statement after THEN) has been executed for it. In the 
case that r  is matched, we observe that all outgoing edges of r  are dead. When its 
last edge died, r  was still active. Since any path from r  to a free value vertex is 
non-empty, we conclude that the label of r  must have been tight at that moment. 

Now we come to the statement about active roots and we will prove it by 
induction. We assume w.l.o.g. ( ) 0>rlabel  and show that the claim holds at the 
moment when r  is made active and continues to hold − as long as r  is active − 
whenever an edge in G

�
 becomes dead. So consider the point in time when r  changes 

its mark from unreached to active. Let p
�

 be a path from r  to a free value vertex val  
with ( ) ( )rlabelval =weight . If all edges on p

�
 are alive we are done. So assume that 

( )lvarVae ′′′= ,
�

 is the first dead edge on p
�

, and let lva ′  denote the mate of rVa ′ . We 
will show that the label of lva ′  is tight. 

Denote by r ′′  the root of the component of lva ′′ . We go back to the point in time 
when e

�
 dies in the call ( )lvaDFSVAL ′_  and distinguish three cases depending on the 

mark of r ′′  at that time: 
   • [ ] unreachedrmark =′′ : 

Since lva ′′  is not unreached at that time, the root r ′′  must have already been 
reached, too. 

   • [ ] completedrmark =′′ : 
So the label of r ′′  (and hence of lva ′′ ) is tight, i.e. ( )[ ] ( )rlabellvascclabelval =′′_ . 
Thus when e

�
 dies as line 14 is executed, ( )[ ]lvascclabelval ′_  is set to ( )rlabel . 

   • [ ] activermark =′′ : 
This implies that r ′′  lies on the path of active vertices, which ends in lva ′ . So 

lva ′ , lva ′′  and r ′′  are in the same strongly connected component. If r ′′  is 
completed before r  is made active, we know the labels of r ′′  and hence lva ′  are 
tight when r  gets marked active. Assume now that r ′′  is still active when r  
becomes active. Then r ′′  can reach r . Since lva ′′  is on p

�
 and r ′′  is in the 

strongly connected component of lva ′′ , we can infer that r  can reach r ′′ . So r  
and r ′′  are roots of the same strongly connected component, and hence rr ′′= . 
This is a contradiction to the fact that r  is unreached, but r ′′  is active when e

�
 

dies. 
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We come to the induction step. The interesting case is the following. We have a 
path p

�
 from r  to some value vertex val , p

�
 consists only of alive edges, and 

( )[ ] ( )rlabelvalscclabelval =_  or val  is a free vertex with weight ( )rlabel . Now some 
edge ( )lvarVae ′′′= ,

�
 on p

�
 dies because line 14 is executed during ( )lva ′VAL_DFS , 

where lva ′  is the matching mate of rVa ′ . 
As before we consider the root r ′′  of the strongly connected component of lva ′′ . 

The cases that r ′′  is unreached or completed can be handled with the same arguments 
as above. Only the case that r ′′  is marked active when e

�
 dies must be treated in a 

different way. Consider the path a
�

 of active vertices that ends in lva ′ . It visits both r  
and r ′′ . Suppose a

�
 contains a sub-path from r ′′  to r . Since r  can reach lva ′′  and 

hence r ′′ , all the three vertices belong to the same strongly connected component, 
which implies rr ′′= . So a

�
 surely contains a (possibly empty) sub-path from r  to r ′′ . 

Since r ′′  is the root of its component, a
�

 cannot visit lva ′′  before r ′′ . Therefore there 
is a (possibly empty) sub-path a′�  from r  to rVa ′′ . Now we observe that a

�
 uses only 

alive edges. Let tailp
�

 denote the suffix of p
�

 from rVa ′′  to val . Then tailpa
�

�
�

 is a path 
from r  to val  which consists only of alive edges.           � 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.  Strongly connected components of G
�

 and label of the variables and values vertices 

Fig. 10 shows the graph G
�

 associated to the maximum matching given in Fig. 6 and its 
strongly connected components. The edges from a variable vertex to a value vertex are shown 
with a standard line, while a thick line displays those edges that go in both directions. In 
addition we show for each variable and value vertex its label in bold. 
 

Here is the detail of the computation of the upper regret for those edges that do not belong to 
the matching of maximum weight given in Fig. 6. 
 • ( )8,regret 3V  0=    , ( )4,regret 3V  0=         . 

 • ( )4,regret 4V  04 −=  4=   , ( )8,regret 4V  04 −=   4= . 

 • ( )5,regret 8V  09 −=  9=   . 

 • ( )2,regret aV  09 −=   9=  , ( )3,regret aV  39 −=  6= . 

 • ( )5,regret bV  011−=  11= , ( )7,regret bV  1111−= 0= , ( )13,regret bV  1111−= 0= . 
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 • ( )19,regret cV  511−=  6=   , ( )7,regret cV  1111−= 0= . 

 • ( )16,regret dV  37 −=  4=   , ( )20,regret dV  57 −=   2= . 

 • ( )0,regret eV  57 −=  2=   , ( )16,regret eV  37 −=   4= . 

 • ( )14,regret fV  27 −=  5=   . 

 • ( )12,regret gV  57 −=  2=   . 

Finally, we remove a value v  from a variable Var  if the difference between the 
upper bound computed in Sect. 5 and the upper regret ( )vVar,regret  is strictly less than 

( )Costmin . 
Since, in Example 4, the minimum value of the Cost  variable is 138  and since the upper bound 
computed for the Cost  variable was equal to 141 , we remove all edges { }valV ,  for which the 

quantity ( )valV ,regret141−  is strictly less than 138 . This leads to remove 4  and 8  from 4V , 5  

from 8V , 2  and 3  from aV , 5  from bV , 19  from cV , 16  from dV , eV  and 14  from fV . 

7  Linking both Sides of the Constraint 

This section presents three deduction rules. The first rule is useful when the domain of 
the Cost  variable contains holes, namely when we require the cost to take some 
specific target value within a given set of possible values. It combines the lower and 
upper regrets, which were respectively introduced in Sect. 4 and 6. The second rule is 
valuable when both sides of the Cost  variable are constrained and partially answer a 
question arising in the conclusion of the article about the global cardinality constraint 
with costs [13]. The third rule is helpful when we want to improve the lower bound of 
the Cost  variable according to some additional constraints between the assignment 
variables. All these three rules are in fact generic and can be applied for any 
cost-filtering algorithm where we can compute the lower and upper regret associated 
to the fact that we fix a specific assignment variable to a given value18. To illustrate 
their wide applicability, we first recall other existing constraints for which we can 
effectively apply these rules. We then present the three rules. 

Beside the uesstinct_valghts_of_disum_of_wei  constraint introduced in this article the 
deduction rules of this section can be applied to the following constraints: 
− The minimum weight alldifferent constraint (see [3], [7], [14]). 
− The minimum weight alldifferent constraint with a restriction on the maximum 

number of cycles [4]19. 
− The global cardinality constraint with costs [13]. 

As for the uesstinct_valghts_of_disum_of_wei  constraint, we generalize these 
constraints so as to enforce the Cost  variable to be equal to the cost associated to the 
assignment variables. We now present the first generic rule, which allows further 

                                                           
18 Within this section, n stands for the number of assignment variables and m for the number of 

distinct values that can be taken by these variables. 
19 In [4] the maximum number of cycles is restricted to one. 
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pruning of the assignment variables according to both the lower and upper regret, as 
well as to the holes of the Cost  variable. 

Proposition 9 
Let boundlower _  and ( )vVar,regret  be respectively a lower bound computed for the 

Cost  variable and the corresponding lower regret according the fact that the 
assignment variable Var  is fixed to value v . Similarly, let boundupper _  and 

( )vVar,regret  be an upper bound for Cost  and the corresponding upper regret. 

   If ( ) ( ) ( ) ∅=−+ CostvVarbounduppervVarboundlower dom],regret_,,regret_[ �  

   then ( )Varv dom∉ . 

Proof of Proposition 9 
From the definitions of the lower and upper regrets, the complement of interval 

( ) ( )],regret_,,regret_[ vVarbounduppervVarboundlower −+  is the set of impossible 

values for the Cost  variable under the assumption that the assignment variable Var  is 
fixed to v . Therefore if the interval does not intersect the domain of the Cost  
variable, value v  should be removed from variable Var .          � 

We come to the second generic rule, which allows considering simultaneously, 
both the smallest and largest values of the Cost  variable. 

Proposition 10 
Let boundlower _  and ( )vVar,regret  be respectively a lower bound computed for the 

Cost  variable and the corresponding lower regret according the fact that the 
assignment variable Var  is fixed to value v . For a given non-negative integer r , 
denote by rboundupper _  the upper bound computed for the Cost  variable under the 
hypothesis that the domain of each assignment variable Var  is restricted to the set of 
values ( ) },regret:{ rvVarv ≤ . Denote by rmin  the smallest value such that 

( ) ∅≠Costboundupperboundlower rmin dom]_,_[ � . Then an improved lower bound for 
the Cost  variable is rminboundlower +_ . 

In order to locate rmin , we perform a binary search in a table of distinct lower 
regrets. This leads to a worst-case complexity of ( )( )UrmnmnO ⋅+⋅⋅⋅ loglog , where 

( )UO  stands for the worst-case complexity for evaluating an upper bound of the cost 
and r  to the number of distinct lower regrets. The contribution ( )( )mnmnO ⋅⋅⋅ log  
corresponds to the sort of the lower regrets for creating a table of distinct lower 
regrets. Finally we mention that a proposition similar to Proposition 10 allows to 
further update the upper bound of the Cost  variable. 

As an illustration of direct application of this rule, consider the question raised in [13] of 
finding a general algorithm in order to partially take into account both the minimum and the 
maximum value of the cost variable in the case of the global cardinality constraint with costs. 
In the conclusion of his article, Régin illustrates this question with the following instance of an 
infeasible problem: “consider the problem involving three variables 1x , 2x  and 3x  with 

( ) { }baxD ,1 = , ( ) { }cbxD ,2 =  and ( ) { }caxD ,3 = . Each value has to be taken at most 1. A cost 

function is defined as follows: ( ) ( ) ( ) 1,,, 321 === cxcostbxcostaxcost  and ( ) =bxcost ,1  
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( ) ( ) 3,, 32 == axcostcxcost . The sum of any instantiation of all the variables must be greater 
than 4 and less than 8.”. In a first step we compute the lower bound and the lower regret of this 
problem using the filtering algorithm described in [13]. This gives a lower bound of 3 (denoted 

boundlower _ ) as well as the following lower regret: ( ) ( ) == bxax ,regret,regret 21  

( ) 0,regret 3 =cx  and ( ) ( ) ( ) 6,regret,regret,regret 321 === axcxbx . Since 0_ boundupper  is 

equal to 0 , we have that ( ) ∅=Costboundupperboundlower dom]_,_[ 0 � . For the next 

possible smallest lower regret 6 , we have 9_ 6 =boundupper . Now, since 

�]_,_[ 6boundupperboundlower ( ) ∅≠Costdom , Proposition 10 tells us that 

96_ =+boundlower  is a lower bound for the cost. Since the maximum value of the cost is 8 
we have a contradiction. 

Finally we present the third generic rule, which allows estimating a better lower 
bound according to additional constraints relating the assignment variables. One 
typical application of this rule is the minimum weight all different constraint [14], 
where in addition we want to take partially into account the fact that we have a 
constraint on the maximum number of cycles of the corresponding permutation. 

Proposition 11 
Let boundlower _  and ( )vVar,regret  be respectively a lower bound computed for the 

Cost  variable and the corresponding lower regret according the fact that the 
assignment variable Var  is fixed to value v . Furthermore assume that the assignment 
variables nVarVarVar ,,, 21 �  have also to satisfy a conjunction of constraints �  for 
which we use an algorithm ( )nVarVar,VarA ,,, 21 ��  in order to check whether �  is 
infeasible or whether �  may be feasible according to the domains of the assignment 
variables. Denote by rmin  the smallest value such that, when restricting the domain 
of each assignment variable iVar  )1( ni ≤≤  to the values ( ) },regret:{ rminvVarv i ≤ , 

( )nVarVar,VarA ,,, 21 ��  does not detect the infeasibility of � . Then an improved lower 
bound for the Cost  variable is rminboundlower +_ . 

The search of rmin  is performed in the same way as in Proposition 10, where we 
perform a binary search. Finally we mention that a proposition similar to Proposition 
11 allows to further update the upper bound of the Cost  variable. 

As direct application of Proposition 11, consider the minimum weight all different constraint 
[14], where the assignment variables have to be pairwise distinct, and where the Cost  variable 
is equal to the sum of the costs associated to the arcs ),( ii vVar  ( iv  is the value taken by the 
i-th assignment variable). Furthermore, assume that we have an additional constraint on the 
maximum number of cycles maxc  of the permutation nVarVarVar ,,, 21 � . In this context, the 

algorithm ( )nVarVar,VarA ,,, 21 ��  of Proposition 11 can be implemented as follows. Consider 

the directed graph G , with n  vertices and an arc between the i-th and the j-th vertices when 
both ( )iVarj dom∈  and ( ) rminjVari ≤,regret . Algorithm A  detect the infeasibility of the 

constraint on the maximum number of cycles by computing the number of strongly connected 
components of G  and by checking that it is less than or equal to maxc . So now we get a lower 
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bound of the Cost  variable, which partially20 takes into account the fact that we don’t want to 
have more than maxc  cycles. 

8 Positioning of the Sum of Weights of Distinct Values Constraint 

This section first positions the uesstinct_valghts_of_disum_of_wei  constraint among 
existing constraints as well as according to some combinatorial problems. Then it 
mentions a heuristic derived from the fact that Alg. 1, 2, 3, 4, 5 and 6 achieve a 
complete pruning when all variables of the uesstinct_valghts_of_disum_of_wei  
constraint are interval variables. 

Generalization of Existing Constraints. The uesstinct_valghts_of_disum_of_wei  
constraint generalizes the following constraints: 
− The { }( )nVVVntalldiffere ,,, 21 � 21 constraint [10] is obtained by setting all the weights 

to one and by fixing the cost variable to the number of assignment variables n . 
− A relaxation of the { }( )nVVVntalldiffere ,,, 21 �  constraint where one counts the 

minimum number C  of variables for which the value needs to be changed in order 
that all variables take a distinct value [11]. This constraint is obtained by setting all 
the weights to one and the cost variable to Cn − . 

− Finally, the number of distinct values constraint { }( )nVVVNnvalue ,,,, 21 � 22  [2] is 
obtained by setting all the weights to one and the cost variable to N . 
From a pruning point of view, the uesstinct_valghts_of_disum_of_wei  filters out all 

values removed by the complete filtering algorithms of the ntalldiffere  [12] and of the 
relaxed ntalldiffere [11] constraints. It also subsumes the pruning provided for the 
nvalue  constraint in [2] without changing the worst-case complexity of the original 
algorithm. 

Modeling Domination Problems. We now show how to use the 
uesstinct_valghts_of_disum_of_wei  constraint in order to model domination problems. 

Given a graph G  with vertices V  and edges E , the problem is to find a subset S  of 
V  such that for every vertex SVu −∈  there exists a vertex Sv ∈  such that u  is 
adjacent to v . Usually one wants to minimize the number of elements of S . In their 
book [9], T. W. Haynes, et al. provide a good reference on domination problems. 
Capturing the structure of domination problems with one single global constraint is 
important from at least two points of view: 

                                                           
20 Partially, since the described algorithm checks only a necessary condition for having no more 

than maxc  cycles. 
21 The alldifferent({V1,V2,…,Vn}) constraint holds if all variables V1,V2,…,Vn are pairwise 

different. 
22 The nvalue(N,{V1,V2,…,Vn}) constraint holds if N is the number of distinct values taken by 

variables V1,V2,…,Vn. 
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− From a practical point of view, domination problems occur in a lot of real-world 
applications23 like assignment problems as well as computer communication 
networks. 

− From a theoretical point of view one could hope to enhance the computation of the 
lower bound as well as the pruning according to the maximum value of the cost 
variable. One way would be to try to reuse lower bounds or algorithms from 
domination theory. Within constraint programming this was hardly possible since a 
domination problem was broken into a large number of elementary constraints. 

We now come to the model. First we give to each vertex of G  a unique identifier, 
which is an integer. We then associate to each vertex Vv∈  of G  a domain variable 

vD  for which the domain consists of the identifier of v  as well as of the identifiers of 
those vertices that are adjacent to v . When vD  is fixed, its value is interpreted as the 
vertex that dominates v . All the variables vD  are put in the first argument of the 

uesstinct_valghts_of_disum_of_wei  constraint, while their potential values are placed in 
the second argument with a weight of one. Finally, the domain of the Cost  variable 
(i.e. the third argument of the constraint) is set up according to the required size of the 
set S . 

Modeling the Cost of Some Assignment Problems. In several assignment problems, 
one usual component of the cost can be directly expressed with the 

uesstinct_valghts_of_disum_of_wei  constraint without introducing any extra variable. 
This is for instance the case for the warehouse location problem [16] where one part 
of the cost corresponds to the sum of the individual costs of the warehouses that 
effectively supply at least one customer. This cost is modeled as follows. To each 
warehouse we associate a natural number ranging from 1 to the total number of 
warehouses m . For each customer we create a domain variable iCustomer  and 
initialize its domain to the warehouses, which can effectively supply him. Finally we 
set up the following constraint  
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where iuseCostWareho )1( mi ≤≤  is the cost for opening the i-th warehouse. In the 
third argument of the constraint, the domain variable usesCostWareho  expresses 
directly the total cost related to the warehouses that are really used. 

Heuristics for the uesstinct_valghts_of_disum_of_wei  Constraint. The fact that 
Alg. 1, 2, 3, 4, 5 and 6 perform a complete pruning when the domains of all variables 
are intervals suggests the following heuristics for trying out the different values of an 
assignment variable. Instead of trying out each possible value of an assignment 
variable, we only need to restrict that variable to each of its intervals of consecutive 
                                                           
23 Chapter 1 of [9] provides a good overview of concrete applications of domination problems. 
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values. When we have done this for all assignment variables we know that the 
uesstinct_valghts_of_disum_of_wei  can for sure be satisfied. 

9  Conclusion 

In this article, we have introduced a new constraint which allows expressing directly 
the fact that a cost variable is the sum of the weights associated to the distinct values 
taken by a given set of assignment variables. For this constraint we came up with two 
classes of cost-filtering algorithms with low complexities: 
− The first class estimates a lower bound for the cost variable and prunes the 

assignment variables according to this lower bound as well as to the maximum 
allowed cost. Since we could not come up with one single complete algorithm, we 
develop several algorithms for different special cases. In particular, we came up 
with a complete filtering algorithm when all the domains of the assignment 
variables are intervals. 

− The second class estimates an upper bound for the cost variable and prunes the 
assignment variables according to this upper bound as well as to the minimum 
allowed cost. For this side of the constraint, we came up with one complete 
filtering algorithm. 
Finally, we proposed three generic deduction rules relating both aspects of this 

family of cost constraints. One important result is the ability to mechanically enhance 
the bounds of the cost variable by taking into account additional constraints between 
the assignment variables. 

The different algorithms described in this article were implemented within SICStus 
Prolog in order to provide the uesstinct_valghts_of_disum_of_wei  constraint and to 
enhance the global cardinality constraint with costs and the minimum weight 
alldifferent constraint with a restriction on the maximum number of cycles. As far as 
we know, it is the first time that all aspects of the cost variable are taken into account 
for pruning the other variables. This allows to provide a truly declarative constraint 
which reacts to every kind of modifications on the cost variable and which can 
therefore be applied to a wider range of problems. 
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