precondition when/2, where the starting time of the activities, based on the global state,
are set equal to the activities' first possible starting time), there is just one plan, which is
the plan presented above.

9.6.5 Priority Among Activities

It is easy to specify different priorities among the activities to implement different
scheduling strategies. A simple example is to extend the top level strategy for the
scheduling phase with a call to a priority relation, which specifies some ordering among
the activities.

priority(akt(l,_, )).
priority(akt(X, , )) := X \== 1.
schedule <=

(ready sch <- true), % All activities scheduled?

(((priority(Act) ->

search(akt(_, , ),I,
d left (Act, I,
a left(_,1I,
weak all(akt( , , ),
weak all (performed(_,_,_,_),schedule pre)),

a_left(_,I,
weak _all(state( , , ),
weak all(akt(_,_ ,_),schedule calc)),

v_left_all(schedule_post ((A \- C))))))))
<= (schedule -> (A \~- C))),
false) .

Note that the only extension to the original schedule strategy is the call to
priority(Act), and that Act is passed to the first d_1eft/3 inference rule call.
Compare the following plan and resource graph with the first ones in section 9.6.2:

ofcs. - - ]
Building I

HVAC instal, [

Electric instal, "

Work on ground o

[®] resource graph 1 [T USSR

30 Max resources = 30

We can note that the activity Work on ground has got the maximum allocation of
resources (10 teams with 2 persons in each), and that the other activities in parallel with
Work on ground have to manage with the resources that are left. Notably, the activity
Electric installation has gotonly one team allocated.

-43 -



10. Discussion

We have described a system which spans the set of all possible plans given a design. The
system has no expert knowledge about what plans are good and what plans are poor, and
which method to apply in a given situation. But the system has expert knowledge about
what different systematical ways there are to solve a complex task. The next step would
be to add expert knowledge about what plans should be preferred over other plans, for
example, if there are several methods to choose among, the system should be able to pick
one which seems better based on the overall information. As for the described system,
this additional information should be editable by the user, to reflect his personal
knowledge and preferences. There are different ways to do that, but one promising way
is to use decision theory, which is used to calculate a priority when there exist choices,
for example resource allocation to competing activities. By this an ordering of the
possible plans can be imposed, which in turn guides both the method choosing algorithm
and the scheduling algorithm. Whether it is possible to find priority functions for
preference of methods and resource allocation, and if the expressiveness of them is
enough for experts in the field, is not clear, but to us it seems the most promising
approach.

The basis of the planning theory described here is very basic. It should be possible to
generalize it to other domains as well. The basic entities of our planning theory are
activities which are applied to and change a global state when resources are allocated to it.
A scheduler reasons about when and with what resources different activities are allocated,
as soon as the activities are known. To generate the activities, methods are used to
systematically group activities, that solve a more complex task. The overall goal is
expressed as the design of a building, representing a state change. We hope to be able to
apply these ideas to some other domain as well, to see what parts are general and what
are parts are specific for this domain.

There is one known logical deficiency that ought to be mentioned. The application
described here lacks the possibility to add constraints on the global state. For example,
assume that there is one activity a’ changing the state into a state s’, and then an activity
a” that changes the state before state s’ into a state s”, from which s’ cannot be reached.
This means that s” must contain the information that all states before s’ must satisfy some
constraints that should not violate it.

a'' ———
a'
—
I l l 1 l 1 ]
j T 1 1 ] % time
s s'' s'

It is possible to order the activities for the scheduling phase by imposing conditions in the
preconditions, that cause such critical activities as a’ to be performed after a”, when the
state s” is known. This is quite natural, since one often delays an activity a’ that is
known to be dependent on another activity a” until its duration and place in time are

calculated.

To be able to manage the search space, the user must have ways to guide the generation
of plans to obtain plans he is interested in. Some such guiding possibilities have been
sketched in the paper, e.g. partially specifying what plans the choice-of-method phase
should produce, interaction with the user to fill in values in the preparation phase between
the choice-of-method phase and the scheduling phase, and one could also add user
interaction in the scheduling phase when there are several ways to solve the produced

-44 -



constraints. The user interaction could take place in several ways, not only as events
generated by the program as sketched in section 9.6.4, but also give the user possibilities
to change the control level, as suggested in section 9.6.5. This gives him the possibility
to write priority functions for different kinds of situations, the way he himself prioritizes
some solution over another.

Since the programmer has got hold of the object level structure in each deduction step, if
he wants to, it is easy to extend and manipulate the search behaviour in GCLA. The
programmer is not forced to specify for each step what is to be done, but he has the
opportunity. As he gathers more knowledge about what to do and when to do it, only the
control level needs to be extended, as it is completely separated from the declarative
definition. Since it is easy to build modular search strategies, the programmer can change
one particular search strategy without affecting the rest, thus preserving the overall
structure. To the programmers help there are also tools for diagnosing the behaviour of
an application (see the performance package of GCLA in [Aro91a]).

There is a difference of a factor of 5 to 10 in execution time between this application and a
Prolog application of the same system, in favour of the Prolog application. In GCLA's
favour it must be said that we feel that we have a clearer understanding of what we are
doing in GCLA. It is easier to change parts of the system, or to add some further
functionality to the system. Also, we feel that the clear distinction between declarative
knowledge, in this case methods and activities, and procedural knowledge, here how to
plan using the methods and activities, has increased the ability for us to reason about
what is declarative during the development of the application, and what the interesting
possibilities there are to use that declarative knowledge. For example, the ability to reason
about all objects satisfying a partially instantiated term through a (var)-terms got its
solution when we turned from Prolog to GCLA. In Prolog we did not have the
underlying framework to sort things out, while in GCLA the way of thinking about those
partially instantiated terms as a partial inductive definition helped us to sort the different
problems out. This is not to say that the application cannot be implemented in any
language (Prolog in particular since GCLA is implemented on top of Prolog), but it is to
say that the higher level of the GCLA language helped us to reason on a higher level,
which was what was needed in order to understand the nature and solutions of the high
level problems.

Note that apart from arithmetic rules and some simple new rules, the whole control part
consists of strategies, and thus is a 'clean’' GCLA program, without any obscure things
done hidden in new, very specialized rules. We think that one should try to stick to the
general GCLA rules as much as possible until one knows what one is doing, i.e. has
understood the problem at hand, and then, gain efficiency by introducing more
specialized rules. For the application described in this paper, we are convinced that
efficiency could be increased by some new rules, which would implement some of the
things that are now handled by strategies. For example, all weakening could be replaced
by a rule, which performs all weakening in a proviso.

We are planning a continuation of this project, and we will then perform the next step of
the development methodology described in [Ar092], which would be to write new rules
of the kind described above, followed by more specialized provisos. With these
improvements, we would gain efficiency, and still know what we are doing. The system
described in this paper stands as a model for the next version.

Acknowledgements

The author wishes to thank the members of the former MDA project at SICS, especially
the leader of the project Adina Jidgbeck and Anna-Lena Ereback, with whom the author
has had a lot of fruitful discussions, and who are partly responsible for the underlying
ideas (the non-GCLA stuff) of the material presented herein.

- 45 -



The author also wishes to thank both the FOPKBS group at SICS, especially Per
Kreuger with whom he has had fruitful discussions around GCLA -related topics, and my
supervisor Lars Hallnds at Chalmers University of Technology, who among other things
pointed out to me that index functions could be useful in this context, and also for his
never-ending enthusiasm, which has helped me several times. Many thanks also to
Torkel Franzen at SICS for improving the language of the paper.

References

[Aro91a] M. Aronsson, GCLA User's manual, Technical Report SICS T91:21,
1991. An extended manual is submitted with the GCLA system.

[Aro91b] M. Aronsson, A Definitional Approach to the Combination of Functional
and Relational Programming, SICS Research Report R91:10.

[Aro91c] M. Aronsson, L.H. Eriksson, L. Hallnds, P. Kreuger, A Survey of
GCLA: A Definitional Approach to Logic Programming, Extensions of
Logic Programming: Proceedings of a workshop held at the SNS,
Universitdt Tiibingen, November 1989, in Springer Lecture Notes in
Artificial Intelligence no. 475, 1991.

[Aro92] M. Aronsson, Methodology and Programming Techniques in GCLA 11,
Extensions of Logic Programming: Proceedings of a workshop held at
the SICS, January 1991, in Springer Lecture Notes in Artificial
Intelligence. Also available as SICS Research Report R92:05.

[AC8T7] P.E. Agre and D. Chapman, Pengi: An implementation of Theory of
Activity, AAAI-87, 1987

[BDSO0] J. Bresina, M. Drummond, Integrating Planning and Reaction, A
preliminary report, NASA Ames Research Center, 1990

[BPN] Svensk Byggtjénst, Byggbranschens Prisguide, Nyproduktion, two
loose-leafs, Svensk byggtjinst, 1991

[ET89] F. Engvall, S. Thelander, Utvdrdering av datorstédd projektplanering;
Mjukvarans anpassning till planering och styrning pd byggarbetsplatsen,
Examensarbete 233, Inst. for byggnadsekonomi och byggnads-
organisation, KTH 1989 (in Swedish).

[Eri92] Lars-Henrik Eriksson, A Finitary Version of the Calculus of Partial
Inductive Definitions, Extensions of Logic Programming: Proceedings of
a workshop held at the SICS, January 1991, in Springer Lecture Notes in
Artificial Intelligence. Also available as SICS Research Report R92:08.

[Geo88] M. P. Georgeff, Reasoning about Plans and Actions, in Exploring
Artificial Intelligence - Survey talks from the National Conferences on
Al, eds. Howard E. Shrobe, 1987

[GN87] M. R. Genesereth, N. J. Nilsson; Logical Foundations of Artificial
Intelligence, Morgan Kaufmann Publishers 1987

[GL87] M. P. Georgeff, A. L. Lansky, Procedural Knowledge, Technical note
411, SRI International, 1987

- 46 -



[GI89] M.P. Georgeff, F.F. Ingrand, Decision-Making in an Embedded
Reasoning System, IJCAI-89

[Ham&9] K.J. Hammond, Case-Based Planning, Academic Press, 1989

[HS-H90] L. Hallnis, P. Schroeder-Heister, A Proof-Theoretic Approach to Logic
Programming. I, Clauses as Rules, Journal of Logic and Computation
vol. 1 no. 2, pp 261 - 283, 1990.

[HS-H91] L. Hallnis, P. Schroeder-Heister, A Proof-Theoretic Approach to Logic
Programming. II, Programs as Definitions, Journal of Logic and
Computation vol. 1 no. 5, pp 635 - 660, 1991.

[Hal91] L. Hallnds, Partial Inductive Definitions, Theoretical Computer Science
87, pp 115 - 142, 1991.

[Kae86] L. P. Kaelbling, An Architecture for Intelligent Reactive Systems,
Technical note 400, SRI International, 1986

[Kae88] L. P. Kaelbling, Goals as Parallel Program Specification, SRI
International, 1988

[Kre92] P. Kreuger, GCLA 11, A Definitional Approach to Control, Extensions of
Logic Programming: Proceedings of a workshop held at the SICS,
January 1991, in Springer Lecture Notes in Artificial Intelligence. Also
available as SICS Research Report R92:09.

[Kre93] P. Kreuger, Issues in Symmetry and Iterated Sequents, Notes on
Declarative Control, unpublished, january 1993.

[Lau91] A. Laurell, The Construction Methods Presentator, A Multi Media
Presentation Tool for Construction Methods, SICS technical report
T91:07

[Metod&Data] Byggforbundet, Metod och Data, Byggforlaget, Stockholm

[MDA] Modell till datorstod for planering och styrning pd byggarbetsplatsen, two
videos, the first produced by Eckerud Reklam AB together with
Multivision, the second produced by SICS, KTH and EFI. The video is
distributed by SICS.

[Wil89] D. E. Wilkins, Can Al Planners Solve Practical Problems, Technical note
468R, SRI International, 1989

47 -



Appendix A:
A Complete Listing of the Example Building

The example building constitutes the following design database

%%% Patches to simulate a design database consisting of these elements as well as
%%% the supporting parts below.

design([l,a( ),a( )],I[1,0,a()],a( ), larea(3000)]).
design([3,2,a(_)1,1[1,0,a(_)},a(),[]).
design({3,4,a( )1,(1,2,a( )]},a( ), larea(n(288)),length(n(24)),width(n{12))1).
design([3,6,a(_)1,[1,1,a( )],a( ), [area(n(0))1]).
design([(3,6,a( )], [1,2,a( )],a(_),larea(n(0))]).
design([3,7,a( }1,[1,1,a( )],a(),larea(n(1150))1).
design([3,7,a(_)1,[1,2,a(_})],a(_),larea(n(1150))1).
design([5,a(_),a()]1,[1,a(_),a()]l,a(),[1).

[

design([6,a(_),a(_)1,[1,a(_ »,a( )},a( ),[1).

%$%% Supporting parts
design({3,3,1},[1,1,0001], [e,3,3,2,_1,
[grid([all]),construction_weight_kg_per_sqm(n(15)),single_layer,
length(n(24)),height (n(3)),thickness(n(0.20)),area(n(72)),
volume(n(l4.4)),relative_height(n(l))]).
design(([3,3,1],(1,1,0002], (e, 3,3,2,_1,
[grid([alZ]),construction_weight_kg_per_sqm(n(15)),single_layer,
length(n(24)),height (n(3)),thickness{n(0.20)),area(n(72)),
volume (n(14.4)),relative_height(n(1))1]).
design((3,3,1],(1,1,0003}),[e,3,3,2, 1,
[grid([a21]),construction_weight_kg_per_sqm(n(15)),single layer,
length(n(12)),height (n(3)),thickness(n(0.20)),area(n(36)),
volume (n(7.2)),relative height(n(1))1).
design([(3,3,1],(1,1,0004}, (e,3,3,2,_],
[grid([a22]),construction_weight_kg_per_ sgm(n(15)),single layer,
length({n(12)),height (n(3)),thickness(n(0.20)),area(n(36)),
volume(n(7.2)),relative_height(n(1})1]).
design((3,3,1],({1,1,00051}, (e, 3,3,2, 1,
[grid([a23]),construction_weight_kg_per_sam(n(15)),single_ layer,
length(n{(12)),height(n(3)),thickness(n{(0.20)),area(n(36)),
volume(n(7.2)),relative_height (n(1))1).
design((3,3,1},1[1,1,00086}, [e,3,3,2, 1,
lgrid([a24]),construction_weight_ kg_per_sgm(n(15)),single_layer,
length(n(12)),height(n(3)),thickness(n(0.20)),
volume(n(7.2)),relative height (n(1))]).

design([3,3,l],[1,2,0007],[e,3,3,2,_},
[grid([all}),construction_weight kg _per_sam(n(15)),single layer,
length(n(24)),height (n(3)),thickness(n(0.20)),area(n(72)),
volume(n(14.4)),relative_height(n(4))1]).
design([3,3,l],[l,2,0008],[e,3,3,2,_],
lgrid([al2]),construction_weight_kg_per_sgm(n(15)),single layer,
length(n(24)),height (n(3)),thickness(n(0.20)),area{n(72)),
volume (n(14.4)),relative_height(n(4))}).
design([3,3,1],1(1,2,0009], [e,3,3,2, 1,
[grid([a21]),construction_weight_kg_per_sagm(n(15)),single layer,
length(n(12)),height (n(3)),thickness(n(0.20)),area(n(36)),
volume(n(7.2)),relative height(n(4))]).
design([3,3,1],11,2,0010], [e,3,3,2, 1,
[grid([a22]),construction_weight_kg per_sam(n(15)),single layer,
length(n(12)),height (n(3)),thickness(n(0.20)),area(n(36)),
volume(n(7.2)),relative height(n(4))1]).
design([3,3,1],(1,2,0011], (e, 3,3,2,_1,
[grid([a23]),construction_weight_ kg _per_sgm(n(15)),single layer,
length(n(12)),height (n(3)),thickness(n(0.20)),area(n(36)),
volume(n(7.2)),relative height(n(4))1l).
design([3,3,1],[1,2,0012],[e,3,3,2,~],
[grid([a24]),construction_weight_kg_per_sqm(n(15)),singlewlayer,

-48 -



length(n(12)},height (n(3)),thickness(n(0.20)),area(n(36)},
volume (n(7.2)),relative height(n(4))1]).

design(([3,3,4],11,0,0013],[e,3,2,1, 1,
[grid([all,al2,a2l,a22,a23,a24]),construction_weight kg per_sqm(n(30)),
area{n(288)),volume(n(43.2)),
width(n(12)),length(n(24)),thickness(n(0.15)),relative height(n(0))]).

design([3,3,4],11,1,0014),[e,3,3,3,_1,
[grid([all,al2,a2l,a22]),construction_weight kg per sgm(n(30)),
area{n({96)),volume(n(14.4)),
width(n(8)),length(n(12)),thickness(n(0.15)),relative height(n(3))1]).

design(I[3,3,4],(1,1,0015],(e,3,3,3,_1,
[grid([all,al2,a22,a23]),construction weight kg per sqm(n(30)),
area{n(96)),volume(n(14.4)),
width(n(8)), length(n(12)),thickness(n(0.15)),relative height(n(3))1]).

design([3,3,41,[1,1,0016),[e,3,3,3,_1,
[grid([all,al2,a23,a24]),construction_weight kg per sgm{n(30)),
area(n(96)),volume(n(l4.4)),
width(n(8)),length(n(12)),thickness(n(0.15)),relative_height(n(3))]).

design([3,3,4],11,2,0017},(e,3,3,3, 1,
[grid(lall,al2,a2l,a22}),construction_weight kg per_sam(n(30)),
area{n{96)),volume(n(l4.4)),
width(n(B)),length(n(lZ)),thickness(n(O.lS)),relative_height(n(6))]).

design([3,3,4],11,2,0018},{e,3,3,3,_1,
[grid([all,al2,a22,a23]),construction weight kg per sqm(n(30)),
area{(n(96)),volume(n(l4.4)),
width(n(8)), length(n(12)),thickness(n(0.15)),relative height(n(6))]).

design([3,3,41,11,2,0019],[e,3,3,3,_1,
[grid([all,al2,a23,a24]),construction weight kg per sqm(n(30)),
area(n(96)),volume(n(l4.4)),
width(n(8)), length(n(12)),thickness(n{(0.15)),relative height(n(6))1]).

%%% Fasade
design((3,5,3),(1,1,0020], (e,3,3,2,_1,
[grid((all]), length(n(24)),height (n(3)),brick,thickness(n(0.20))1).
design([3,5,3},11,1,0021]}, [e,3,3,2,_1,
[grid([al2]),length{n(24)),height(n(3)),brick,thickness(n{0.20))1]).
design((3,5,3],(1,1,0022},1(e,3,3,2, 1],
[grid({a2l]),length(n(12)),height (n(3)),brick,thickness(n(0.20))]).
design(([3,5,3),[1,1,0023]), (e, 3,3,2,_ 1],
[grid([a22]1),length(n(12)),height(n(3)),brick,thickness(n(0.20))1).

design([3,5,3),[1,2,0024], [e,3,3,2,_],
[grid([all]l),area(n{72)),length(n(24)),height (n(3)),brick,thickness(n(0.20))]).

design({3,5,3],(1,2,0025}, [e,3,3,2, 1,
[grid([al2]),area(n(72)),length{n(24)),height (n(3)),brick,thickness(n(0.20))]).
design([3,5,3],(1,2,0026], [e,3,3,2, 1,
[grid([a21])),area(n(36)),length(n(12)),height (n(3)),brick,thickness(n(0.20))1).
design([3,5,3],11,2,0027}, [e,3,3,2,_],
[grid([a22]),area(n{36)),length(n(12)),height (n(3)),brick,thickness(n(0.20))1).

max_resources (man, ,n(30)).

Appendix B:
A Complete Listing of the Example Methods and Section Divisions

The Object Level Code

plan(N,A,X) <= expand(X,Y) -> pl(N,A,Y).

expand ({1, [1).

expand ([X]Y], [X11¥1]) <= expand(X,X1l),expand(Y,Y1l).

expand(plan(N,A,X),Z2) <= plan(N,A,X) -> Z.

expand (X, X1)#{X \= [],X \= [_|_1,X \= plan{(_,_,_)} <= expand_one(_,X) -> X1.

- 49 -



expand_one(l,X) <= X.
expand_one(2,X) <= m{_, ,X).
expand one(N,X)#{N \= 1,N \= 2} <=e{_,_,X).

member (X, [X|_]).

member (X, [X1|R])#{f(X,X1) \= f(W,W)} <= member(X,R).

%%% Method DB

m(0, [1,activity (0, [a(V1),a(V2),a(V3)], [V4,V5,V6],_,Tst,Tsl,Res)) <=

plan(main_groups,
activity (0, (a(V1l),a(V2),a(Vv3)],[V4,V5,Ve]l, ,Tst,Tsl,Res),

factivity(3,[3,a(V2),a(V3)], [V4,V5,Ve]), , ,_,_), % building

activity (81, [5,a(V2),a(V3)],[V4,V5,Vel, , , , ), % Installations, HVAC
activity (83, [6,a(V2),a(V3)], [V4,V5,Vel, , , ., ), % el. installations
activity(l,[1,a(V2),a(V3)],[V4,V5,Vel, , , , ) 1). % ground

m(l, (},activity(3,[3,a(V2),a(V3)],[V4,V5,VEe], ,Tst,Tsl,Res)) <=
plan(main_groups_of building,
activity(3, (3,a(V2),a(V3)]},[V4,V5,Ve], ,Tst,Tsl,Res),
1) % basis

tactivity(2,1[3,2,a(V3)],(Vv4,0,V6}, , _,_,_
activity(33,(3,3,a(v3)],{v4,v5,Ve), lel 1, , , ), % supporting parts
activity('4 87,1(3,4,a(v3)],[V4,V5,Vé6], , , , ), % outer roof

activity(6,[3,5,a(V3)], [V4,V5,Ve], , , , ), % outer walls
activity(7,13,6,a(v3)],[v4,v5,vel, , , , ), % rooming in
activity (66, [3,7,a(V3)}, [V4,V5,Ve]l, , , , )1). % inner surfaces

m(2,[],activity(33,[3,3,a(Vv3)},(Vv4,0,V6]}, ,Tst,Tsl,Res)) <=
plan(supporting parts,
activity(33,[3,3,a(v3)], [V4,0,Ve6e}, ,Tst,Tsl,Res),
lactivity ('3 27,1[3,3,4],(v4,0,V6)l, , , , )]). % slab on ground = slab 0
m(3,[],activity(33,(3,3,a(Vv3)], [V4,V5,a(Vé)], ,Tst,Tsl,Res))
#{V5\=0,V5\=a( )} <=
plan (supporting parts,
activity(33,[3,3,a(Vv3)1], [V4,V5,a}, ,Tst,Tsl,Res),
lactivity('3_3',1[3,3,1]1,1[V4,V5,a(Vé)]), , , ., ). % supporting walls
activity('3_4',(3,3,2],[Vv4,V5,a(Vée)], , , , ), % pillars
activity('3 6',13,3,41,1(V4,V5,a(Vvé)l,_,_,_, )., % supporting slabs
activity('3_7',(3,3,6],([V4,V5,a(Vvée)t, , , ., ), % supporting parts of stairs
activity('4_8',1[3,3,7],[v4,V5,a(Vé)],_,_,_,_)1). %supporting parts of outer roof

’

r s

% Partition DB
1,building partitioning,
activity(X, (3,Vv2,V3], [a{V4),V5,a(V6)],Bsabl,Tst,Tsl,Res)) <=
bagof ([V2,V3,Bsab2], Hus,
(design(([3,V2,V3], [Hus,V5,a(V6)],Bsabl,a(_)),number (n(Hus))), Tmp),
sort (Tmp, Listl),
bagof ([TST, TSL,RES], activity (X, [3,V2,V3], [V4,V5,a(V6)],Bsabl, TST, TSL,RES),
member (V4,Listl), List)
-> plan(building partitioning,
activity(X, [3,V2,V3],[a(V4),V5,a(V6)],Bsabl, Tst, Tsl,Res),List).
e(2,floor partitioning,activity(X,[3,V2,V3],[V4,a(V5),a(V6)],
Bsab, Tst,Tsl,Res))
#{V2 \= 2,V2 \= 4,V2 \= 6} <=
bagof ([V2,V3,Bsab],Van,
(design([3,V2,V3], [V4,Van,a(Ve6)],Bsab,a(_)),number(n(Van))), Tmp),
sort (Tmp, Listl),
bagof ( [TST, TSL,RES], activity (X, [3,V2,V3], [V4,V5,a(V6) ], Bsab, TST, TSL, RES) ,
member (V5, Listl), List)
-> plan(floor_ partitioning,
activity(X, [3,Vv2,V31, [V4,a(V5),a(V6)],Bsab,Tst,Tsl,Res), List).

The Control Code

$%% From rules.rul, added that B should not be false, and if true
%%% then do not execute the sequent (P \- true), succeed at once.
d right (C,PT) <=

atom(C) ,

clause(C,B),

- 50 -



B \== false,
(B == true ; B \== true, (PT -> (P \- B)))
-> (P \- C).

&0

%%
%% Choice-of-method phase
a_left2((A -> Cl),I,PT,PTl,left) <=
data(Cl) -> (IQ[(A -> C1)]_ 1 \- ).
a_left2 ((A -> c1),I,PT,PT1,left) <=
a_leftl(X,I,PT,PT1).
a_left2((A -> c1),I,PT,PT1,right) <=
not (data(Cl)) -> (IQ[(A -> Cl){ ] \- ).
a left2((A -> c1),I,PT,PT1,right) <=
a left(X,I,PT,PT1).

o°

a_leftl((A -> C€1),I,PT,PT1) <=
(PT1 -> (I@[C1l}Y] \~- C)),
(PT -> (IGY \- A))
-> (IQ[(A => Cl) Y] \- C).

d rightl(C,PT) <= (not(functor(C,plan,_}),not (functor(C,pl, ))

d rightl(c,PT) <= d_right(C,PT).

d_leftl(c,I,PT) <=
(not (functor (C,pl, )),
not (functor (C,activity, )),
not {functor (C,state, ))
=> (IQ[CI_} \= _)).
d_leftl(T,X,PT) <=
atom(T),
definiens(T,Dp,N),
N > 0,
(PT -> (X@[DplY] \- C))
-> (XQ[T|Y] \- C).

sort right <=
sort (X,Y) =->
(_ \- sort(X,Y)).

findall right (PT) <=
lift from a(B,B1,[1,_).
(i([A],PT*Ass"B1~(PT -> {(Ass \- Bl))) -> C) ->
(Ass \- findall(A,B,C)).

bagof right (PT) <=
1ift from_a(B,Bl, [],Vars),
append (EVars, Vars, Varsl),
(i([{A],Varsl~PT~(PT -> (Ass \- Bl))) -> C) ->
(Ass \- bagof (EVars,A,B,C)).

axioml(T,C,I) <=
data(T)
=> (IQ[T} ] \~- Q).
axioml (T,C,I) <=
axiom(T,C,I).

l1ift from a(V,V,L,L) :- var(V).

lift from a(A,V,L, [VIL]) :- functor(a,a,l),A = a(V).
1lift from a(Atom,Atom,L,L) :- atomic(Atom).
lift_from*a(x,[FlIRl],L,L2) :— nonvar (X),X = [F|R],

lifc_from_a(F,F1,L,L1),
lift from a(R,R1,L1,L2).

lift_from a(Str,strl,L,Ll) :- nonvar(Str),
Str =..[S|A],S \== '.',S \== a,A \== [],
lift _from a(A,Al,L,L1),
Strl =..[S|Al].

data(X) :- functor(X,pl, ).

data(X) :- functor(X,activity, ).

-51]-

-2

(_\- Q).



number right <=
number (C) ->
(_ \= number (n(C))).

right1(PT) <=
sort_right,
findall right (PT),
bagof right (PT),
number_right,
v_right(_,PT,PT),
a right (_,PT),
o _right(_, ,PT),
true right,
d rightl(_,PT).
leftl (PT) <=
v_left( , ,PT),
a left2( , ,PT,PT, ),
o left( , ,PT,PT),
d_leftl(_,_,PT),
pi left(_, ,PT),
false_left(_).

plan <= axioml( , ,_ ),rightl(plan),leftl{(plan).

Appendix C:
A Complete Listing of the Intermediate Step

The Object Level Code

flatten_act {[pl(N,activity(A,B,C,D,E,F,Res),L)], [(E,F)]) <=
cons (akt (-1, activity(A,B,C,D,E,F,Res),times (E, F, List)),
flatten_act (L, List)).
flatten_act([pl(N,activity(A,B,C,D,E,G,Res),L),F:R),[(E,G)|Rl]) <=
cons (akt (-1, activity(A,B,C,D,E,G,Res) ,times(E, G, List)),
append(flatten_act(L,List),flatten_act([FIR],Rl))).
flatten_act([activity(A,B,C,D,E,G,Res),FIR],{(E,G)IRl]) <=
cons {akt (A, activity(A,B,C,D,E,G,Res) ,N), flatten_act ([FIR],R1)).
flatten_act(lactivity(A,B,C,D,E,G,Res)], [(E,G)]) <=
cons (akt (A, activity(A,B,C,D,E,G,Res),N), [1).

append([],L) <= L.

append([F|R],L) <= cons(

append (X, Y) #{X \= [],X \
(X => 2),(2 =[]

F,append (R, L)) .
= [_|_1} <=

; 2 = [_1_1) -> append(2,Y)).

The Control Level

% Intermediate step, convert from tree structure to flat structure.
Also, keep track of and collect time slots of each activity,
so that superactivities have a list of their subactivities

oo
de

e
o°
o

a0

-3
]

a0

%% time slots.

latten <=
axiom flatten(_,_,_ ),
left flatten(flatten),
right flatten(flatten).

o ae

axiom flatten(T,C,I) <=
{(functor (T, akt,3)

functor (T, [1,0)
functor (T,'.',2))
=> (IQ[TI_1 \- C).

axiom flatten(T,C,I) <= axiom(T,C,I).

d_right_flatten(C,PT) <= functor(C,=,2) -> (_ \- C).
d_right_ flatten(C,PT) <= d_right(C,PT).

-52-



right flatten(PT) <=
true_right,
d right flatten(_ ,PT),
o right( , ,PT),
a_right(_,PT),
v_right(_,PT,PT).

left flatten(PT) <=
d left flatten(C,I,PT),
a_left( , ,PT,PT).

d left flatten(A,I,PT) <=
(functor (A, flatten_act,2) ;
functor (A, append, 2) ;
functor (A, cons, 2))

-> (I@[AI_] \- ).
d left flatten(A,B,PT) <= d_left(A,B,PT).

Appendix D:
A Complete Listing of the Example Activities

The Object Level Code

akt (0, activity (0, [a(V1),a(V2),a(V3)], (V4,V5,Ve],B, Time, End, NT),project) <=

when (started(official start, , ),T) ->
((area(design([3,3,41,(a( ),a( ),a( }1)) -> n(TotArea)),

(area(design((3,3,4],[a( ),0,a( )])) -> n(BasArea)),

(defun((time formula =-> n(9) * n(TotArea)}),

defun((building area -> n(Area))),

defun((teamOSize(general_workers) -> n(2))),

defun((place_coeff -> n(1.0))),

defun((density(general_workers) -> (n(BasArea) / n(25)))) ->

(get_manpower (team_size(general workers),density(general workers),NT)
-> n(Res)), ‘

(consume (T, n(Res), time_formula, End,

activity (0, [(a(V1l),a(V2),a(Vv3)],[V4,V5,Vé6],B, Time, End, NT))
-> quote(Act) )}

-> (change (started([a(V1l),a(V2),a(Vv3)], [V4,V5,Ve6],B),End), Act)) .

akt(l,activity(l,[l,a(V2),a(V3)],[V4,V5,V6],B,Time,End,NT),work_on_ground) <

when(started([3,a(v2),a(V3)],[V4,V5,V6],a(_)),Time) ->
((area(design([l,a(V2),a(V3)],[a(_),O,a(”)})) -> n(Area)),
(defun((time_formula -> ground_area * n(0.2))),
defun ((ground_area -> n(Area))),
defun{(teamsize (gardenworkers) =-> n{(2))),
defun ( (density (gardenworkers) -> (ground_area / n(300)))),
defun((place_coeff -> n(l.0))) ->

(get manpower (teamsize(gardenworkers),density(gardenworkers),NT) -> n(Res)),

(consume (Time, n (Res),time formula,End,

activity(1, [1,a(V2),a(V3)],[V4,V5,V6],B, Time,End,NT)) -> quote (Act)))

-> {(change (started([1,a(V2),a({V3)],(V4,V5,V6],B),End),Act)).

akt(3,activity(3,[3,a(V2),a(V3)],[V4,a(V5),a(V6)},B,Time,End,NT),actual_building) <=

when(started(official»start,_,_),Time) ->
((area(design([3,3,4),[V4,0,a(Vé)])) -> n(BasArea)),
(area(design([3,3,4],1[V4,a(Vv5),a(veé)])) -> n(TotArea)),
(defun ((timeformula -> n(6) * n(TotArea))),
defun ((building area -> n(Area))),
defun((teamsize(generalwworkers) -> n(2))),
defun ((density(general_workers) -> (n(BasArea) / n(25)))) ->
(get_manpower(teamsize(general_workers),density(general_workers),NT)
-> n(Res)),
(consume (Time, n (Res), timeformula, End,
activity (3, [3,a(V2),a(Vv3)], (V4,a(V5),a(ve)],B, Time, End, NT))
-> quote (Act)})

-53-



~> (change(started([3,a(V2),a(V3)],([V4,a(V5),a(Ve6e)l],B),End), Act)).

akt (3,activity(3, {3,a(V2),a(v3)}, [V4,0,a(Vve)],B, Time,End,NT),
actual building basement) <=

when (started(official start, ,_),Time)
((area(design([3,3,4],1[Vv4,0,a(V6)1)) -> n(Area)),
(defun{(timeformula -> n(6) * building_area)),
defun ((building area -> n(Area))),
defun ((teamsize (general_workers) -> n(2))),
defun((density (general workers) -> (building_area / n(25)))) ->

(get_manpower (teamsize(general_ workers),density(general_ workers),NT)
-> n(Res)),

(consume (Time, n (Res),timeformula, End,

activity(3, [3,a(Vv2),a(Vv3)1l,([V4,0,a(Vé)},B,Time, End, NT})
-> quote (Act)))

-> (change (started([3,a(V2),a(V3)],[v4,0,a(Vve)],B),End),Act)).

akt (3,activity(3,[3,a(Vv2),a(Vv3)],[V4,V5,a(Vé6)],B, Time, End,NT) ,building floors)
#(V5 \= a( )} <=

({n{V5) - n(l) -> n(V5p)),
when {started ({3,a(V2),a(V3)],[V4,V5p,a(Ve)],a( )),Time))
((area(design(([3,3,4]1,[V4,V5,a(V6)1)) -> n(Area)),
(defun ((timeformula -> n(6) * buildingarea)),
defun {(buildingarea -> n(Area))),
defun ((teamsize (general workers) -> n(2))),
defun((density(general workers) ->

->

->

(buildingarea / n(25)))) ->

(get_manpower(teamsize(general_workers),density(general_workers),NT)
-> n{Res)),

(consume (Time, n(Res),timeformula, End,

activity (3, [3,a(V2),a(V3)],(V4,V5,a({Vv6)],B, Time,End, NT))
-> quote (Act)))

-> (change (started([3,a{Vv2),a(Vv3)],{v4,V5,a(Vé6)],B),End),Act)).
akt (81, activity (81, [5,a(V2),a(V3)], [V4,V5,Ve6], ,Time, End,NT),

"HVAC installations') <=
when(started([3,3,a(v3)],[V4,V5,V6],a(_)),Time) ->
((area(design([3,3,4],([V4,V5,V6])) -> n(Area)),

(defun((timeformula -> area * n(3.0))),

defun ((area —-> n{Area))},

defun ((teamsize (plumber) -> n(2))),

defun ( (density (plumber) =-> (area / n(100)}}),
defun((place_coeff -> n(l))) ->
(get_manpower(teamsize(plumber),density(plumber),NT) -> n(Res)),
(consume (Time, n(Res) ,timeformula, End,

activity (81, (5,a(V2),a(V3)], [V4,V5,V6], ,Time,End,NT))
-> quote (Act)))

-> (change(started([5,a(V2),a(V3)1],[V4,V5,V6], ),End),Act)).

akt (83, activity (83, [6,a(V2),a(V3)], [V4,V5,V6], ,Time,End,NT), install electric) <=
when(started([3,3,a(v3)],[V4,V5,V6],a(_)),Time) ->
((area(design(([3,3,4],[a(_),a(),a( )1))
(defun((timeformula -> area * n(l1.0))),
defun({area -> n{Area))),
defun ((teamsize (electrician) -> n(l1))),
defun ( (density(electrician) -> (area / n(100)))),
defun((place_coeff -> n(l.0))) ->

-> n(Areal),

(get manpower (teamsize(electrician),density(electrician),NT)
(consume (Time, n (Res) ,timeformula, End,

activity (83, [6,a(V2),a(Vv3)], (V4,V5,V6], ,Time,End,NT))
-> quote(Act}))

(change (started([6,a(V2),a(V3)],[V4,V5,V6e], ),End),Act)).

-> n{Res)),

->

%$%% For method 2
akt (2, activity(2,(3,2,a(v3)],(V4,0,V6], ,Time,End,NT),work on ground) <=
when (started(official start, , ),Time) ->
((area(design([3,3,4],1[(V4,0,a(_)1])) -> n{(Area)),
(defun((timeformula -> area slabO * n(0.5))),
defun((area_slab0 -> n(Area))),
defun ( (answer_unit -> hours)),
defun ((teamsize (moulders) -> n(3))),
defun ( (density (moulders) -> (area_slabO / n(1000)))),
defun ((place_coeff -> n(l.0))) ->

-54 -



(get_manpower (teamsize(moulders), density(moulders),NT)

-> n(Res)),
(consume (Time, n (Res), timeformula, End,

activity(2,13,2,a(v3)},[V4,0,V6]), ,Time,End,NT)) -> quote(Act)))
-> (change(started((3,2,a(V3)], [V4,0,V6], ),End),Act)).

akt(33,activity(33,[3,3,a(V3)),[V4,V5,V6],_,Time,End,NT),
'Constructing supporting parts of building')
when (started(([3,2,a(Vv3)],[V4,V5,V6],a( )),Time)
((area(design([3,3,4],[V4,V5,V6])) -> n(Area)),
(defun ((timeformula -> floor_area * n(2.5))),
defun((floor_area -> n(Area)}),
defun ((answer_unit -> hours)),
defun((teamsize (moulders) =-> n(4}))),
defun ((density(moulders) -> (floor_area / n{(250)))),
defun ((driftkoefficient -~> n(1.0))) =->
(get _manpower (teamsize(moulders),density(moulders),NT)
(consume (Time, n (Res), timeformula, End,
activity(33,1[3,3,a(v3)], [V4,V5,V6], ,Time,End, NT)) -> quote(Act)))
(change (started((3,3,a(V3)],[V4,V5,V6], ),End),Act)).

<=
->

-> n(Res)),

->

akt('4~8',activity('4_8',[3,4,a(V3)],[V4,V5,V6],_,Time,End,NT),work_on_outer_roof)
<=

when (started([3,3,a(V3)],[V4,V5,Vé],a(_)),Time) ->
((area(design(({3,4,a(Vv3)],{V4,V5,V6l)) -> n(Area)),
(defun{(timeformula -> 3.5 * roof area)),
defun ((roof_area -> n(Area))),
defun((answer_unit -> hours)),
defun ( (teamsize (carpenters) =-> n(10))),
defun ( (density (carpenters) ->

(roof_area / n(500)))),
defun ((driftkoefficient -> n(l))) ->
(get_manpower (teamsize{carpenters),density (carpenters),NT) -> n{Res)),
(consume (Time, n (Res) , timeformula, End,
activity(*4_8',[3,4,a(Vv3)), [V4,V5,V6], ,Time,End,NT)) -> quote (Act)))
-> (change(started([3,4,a(V3)],[V4,V5,V6],_),End),Act)).

akt(6,activity(6,[3,5,a(_)],[V4,V5,V6],n,Time,End,NT),work_on_outer_walls) <

when(started([3,3,a(v3)],[V4,V5,V6},a(_)),Time) ->
((area(design({3,5,a(V3)], (V4,V5,V6])) -> n(Area)),

(defun ((timeformula -> n(2.0) * area_outer_walls)),

defun ((area outer walls -> n{Area))),

defun((answer unit -> hours)),

defun ((teamsize(brick layer) -> n(6))},

defun ((density(brick layer) ->

(area_outer_walls / n(100)))),
defun((place coeff -> n(l))) ->

(get_manpower (teamsize(brick_layer),density(brick_layer),NT) -> n(Res)),
(consume (Time, n (Res) ,timeformula, End,

activity(6,[3,5,a(_)],[V4,V5,V6],_,Time,End,NT)) -> guote (Act) )}
->

(change (started([3,5,a(V3)], [V4,V5,V6], ),End),Act)) .

akt (7,activity(7,(3,6,a(Vv3) ], [V4,V5,V6], ,Time,End,NT), stomkomplettering) <
when (started([3,3,a(Vv3)], [V4,V5,V6],a( )),Time)

((area(design({3,3,4]1,(V4,V5,V6])) -> n(Area)),
(defun ((timeformula -> floor_area * n(2.0))),
defun((floor_area -> n(Area))),
defun ((answer_unit -> hours}),
defun ((team size(carpenters) -> n(5))),
defun ((density(carpenters) -> (floor_area / n(200)))),
defun((place_coeff -> n(1l))) ->

->

(get_manpower (antalman (carpenters),antal lag(carpenters),NT) -> n(Res)),
(consume (Time, n (Res),timeformula, End,

activity(7,1(3,6,a(v3)],[Vv4,V5,V6], ,Time,End,NT)) -> quote(Act)))

~> (change (started([3,6,a(V3)1], [V4,V5,V6]}, ) ,End),Act)).

akt(66,activity(66,[3,7,a(V3)],[V4,V5,V6],ﬁ,Time,End,NT),inner_surfaces) <
when (started([3,6,a(V3)], [V4,V5,Ve],a( )),Time) ->
((area(design([3,3,a(V3)], [a(),a( ),a( )])) -> n(Area)),
(defun((timeformula -> area * n(0.1))),

defun ((area -> n(Area)}),
defun((answer_unit -> hours)),
defun ((teamsize (painters) -> n(l))),

-55-



defun((density(painters) -> (area / n(250)))),
defun ((driftkocefficient -> n(l))) ~>
(get_manpower (teamsize(painters),density(painters),NT) -> n(Res)),
(consume (Time, n (Res) ,timeformula, End,
activity(ée, [(3,7,a(Vv3)], [V4,V5,V6], ,Time,End,NT)) -> quote(Act)))
-> (change (started([3,7,a(V3)], [V4,V5,V6], ),End), Act)).

akt (-1, Act,times (Min,Max, List)) <=
true
-> (find max_min (List,Min, Max)
-> performed (Act,Min,Max, List)).

o

find max_min(L, Tst, Tsl) <=
find max_minl(L, [], [],Tst,Tsl).

o

find max_minl([],Min,Max,n(Tst),n(Tsl)) <=
constr ((Tst = min{(Min)})),
constr((Tsl = max{(Max))).
findﬁmax_minl([(n(Tst),n(Tsl))|R],Min,Max,ST,SL) <=
find max_minl (R, [Tst|Min], [Tsl|Max],ST,SL).

get manpower (TeamSize, TeamFormula, n(NoOfTeams)) <=
max_resources (man,_,MaxSize),
(int (MaxSize / TeamSize) -> n(MaxSizel)),

(int (TeamFormula) -> n{(TeamNum)),
(min ({TeamNum, MaxSizel]) -> n(Top)),
(gen(n{l),n(Top)) -> n(NoOfTeams)) ->
TeamSize * n (NoOfTeams) .

cons (X,Y) <= ((X -> X1), (Y -> Y1) -> [X1]Y1l]).

max (A) <= (constr{(X = max(A))) -> n(X)).
min(A) <= (constr((X = min(A))) =-> n(X)).
gen(A,B) <= ((int(B) =-> n(Bl)) -> genl(A,n(Bl), )).

genl(n{_),n(X),1) <= n(X).
genl(n(Y),n(X),Z)#{Z \= 1} <= n(Y) < n(X) -> genl{(n(Y),n(X) - n(l),_).
genl (X, Y, Y#{Y \=n( )} <= (Y -> Z) -> genl(X,Z,_ ).

when({(A,B), Time) <=
when (A, Timel) ,
when (B, Time2) ,
constr{(Time = max([Timel, Time2]))).

when (started (B1,B2,B3),n(Time)) <= %started means when some state
forall([Bl,B2,B3,Prop,T1,T2], (design(B1l,B2,B3,Prop) -> %started to exist

state (bsab (B1,B2,B3),T1,T2))),

findall(Start, state(bsab(B1,B2,B3),n(Start),_),List),
constr((Time = max(List))),
findall (End, state (bsab(B1,B2,B3), ,n(End)),Listl),
constr((Time = min(Listl))).

when (finished (B1,B2,B3),n(Time)) <= %finished means when some state
forall(([B1,B2,B3,Prop, T1,End}, (design(B1l,B2,B3,Prop) -> %$finished to exist
state (bsab(B1,B2,B3),T1l,n(End))}),
findall(E,state(bsab(Bl,B2,B3),_,n(E)),List),
(max(List) -> n(Time)).

change (started(Bl,B2,B3),n(Time)) <=
forall([Bl,B2,B3,Prop,End],
(design (B1,B2,B3,Prop) ->
state (bsab(B1,B2,B3),n(Time),n(End)))).
change (finished (B1,B2,B3),n(Time)) <=
forall([Bl,B2,B3,Prop,St],
(design (B1,B2,B3,Prop),
state (bsab(B1,B2,B3),St,n(Time)) -> true)).
change ((A,B),Time) <= change(A, Time),change (B, Time) .

consume (n(Time),n(0), TimeFormula, n(End) ,Act) <=

-56 -



call (constr(End = Time)) ->
quote (performed (Act,n (Time),n(Time),n(0))).
consume (n (Time) ,Resources, TimeFormula, n (End),Act) # {Resources \= n(0)} <=
{ (int ( (TimeFormula / Resources) / n{(8)) -> n{Duration)),
call (constr (End = Time + Duration)) ->
overload check(Act,n(Time),n(Duration),Resources)).

overload_check(Act,Xst,Dur,Res) <=
max_resources(man,Xst,MR),
(Xst + Dur =-> Xsl),
findall(n(R), (performed( ,Xstl,Xsll,n(R)),Xstl=<Xst,6 Xsll>Xst), Lstart),
(sum{(Lstart) =-> n(NStart)),
(n(NStart) + Res -> StartTotal),

StartTotal =< MR, % checking start
findall(Xstl-n(R),(performed(_,Xstl,_,n(R)),Xst<Xstl,Xsl>Xst1),
Lst_in),

findall (Xs11-R1l, (performed(_ , ,Xsll,n(R)),
Xst<Xsll,Xs1l>Xsll, (n(0)-n{(R)->R1)),Lsl_in),

append (Lst _in,Lsl _in,L),

keysort (L, L1),

check_all_res_changes(Ll,StartTotal,MR)

~-> quote (performed (Act, Xst,Xsl,Res)) .

append{({],L,L).
append ((F|R],L, [FIR1]) <= append(R,L,R1).

check_all_res_changes([l,_,_).
check_all_res_changes([N—X],Sofar,MaxRes) <=

(Sofar + X -> Sofarl),

Sofarl =< MaxRes.
check_all_res_changes([N—X,N—YIR],Sofar,MaxResource) <=

(X + Y -> 2),

check_all*res_changes([N-ZIR],Sofar,MaxResource).
check_all_res_changes([N—X,Nl—YlR],Sofar,MaxResource)#(f(N,Nl)\zf(W,W)) <=

(Sofar + X -> Sofarl),

Sofarl =< MaxResource,

check all res_changes([N1-Y|R],Sofarl,MaxResource).

%% Some general routines for arithmetics
area (design(A,B)) <=

call (bagof ([C, D], X, (design (A, B,D,C), member (area(X),C)),L)) =-> sum(L).
volume (design (A,B)) <=

call (bagof ([C,D], X, (design(A,B,D,C),member (volume (X),C)),L)) -> sum(L).
length{design (A,B)) <=

call (bagof ([C,D],X, (design(A,B,D,C),member (length(X),C})),L)) -> sum(L).

reinforcement_weight(design(A,B)) <=
call (bagof ([C,D,X,Y],Z,
(design(A,B,D,C),
member (construction weight kg per sam(X),C),
member (area(Y),C), (X * Y -> Z)),L}))

% Used when all activities are scheduled, and the plans should be plotted
plot <= findall(Y~-(X,Y,Z,W),performed(X,Y,2,W),L),
present plans(L).

The Control Level

% Scheduling phase, new rules

-
o0 oo

% Forall is a kind of pi-declaration.
%% Special generalized index function used:
%% i (Constructor, Base-constant, Template, Call), where Constructor is the functor

a0 oe
o0

e

-57 -



%$%% used for building the answer structure, and Base-constant is the empty structure
%%% if there are no solutions to Call.
forall r(forall(X, (A -> C)),PT) <=
lift_from_a((A -> C), (Al -> Cl),[],Vars),
(i(',*,true,Cl,X"Vars~Y"definiens(Al,true,Y)) -> Struct),
(PT -> (Ass \- Struct))
-> (Ass \- forall(X, (A -> C))}).

schedule_ forall <=
right sch forall (schedule_forall),

axiom sch(_, , ).

right sch forall(PT) <=
v_right(_,PT,PT),
true right,
d_right sch(_,PT).

%%% In principle, this can be done by first doing a lot of contractions,
2%% then eliminate the forall quantification with the elements produced by
%%% the bagof.
forall 1 generate_all(forall(X, (A -> G)),I,PT,PTbag,2) <=

1ift_from a((A -> G), (Al -> Gl),[],Vars),

(1([G1},X"Vars~(PTbag -> ([] \- Al))) -> Goals),

(PT -> (IQ@Goals@R \~- C))

-> (IQ@[forall(X, (A -> G))IR] \~ C).

%$%% Strategy for eliminate all forall-conditions
all forall 1 generate_all(PT) <=
(forall 1 generate_all{(_,_, (A \- C),ra_sch,2) <-
(all_forall_1 generate_all(PT) -> (A \- C))),
PT.

%$%% General strategies for eleminating terms through weakening
weak all(T,PT) <=
copy_term(T,Tl) ->
((searchl{(_,I,weak_1(T1,I, (A \- C))) <-
(weak_all(T,PT) -> (A \- C))),PT).

v_left all(PT) <=
(v_left( ,I,(A \- C)) <- (v_left_all(PT) -> (A \- C))),PT.

FEF m e
%%% General strategy for searching the first applicable assumption

searchl(N,I,PT) <= length(Ass,N) -> (Ass \- _).
searchl (N, I,PT) <= search([],I,N,PT).

search(I,I1,N2,PT) <=
(length(I,N1), N2 > N1) -> (Ass \~- C).
search(I,I1,N,PT) <=
(((I = I1 -> PT) <- true), search((_ {I},I1,N,PT)).

$%% Top level strategy, for the scheduling phase
incorporate([F|R],I,PT) <=
(PT -> (IQR[F|RJGR1 \- C)) —->
(IG[[FIR]IIRL1] \- C).

schedule <=
(ready_sch <~ true),
({searchl(_ , I,
d_left (akt (_,_
a_left(_,1I,
weak _all(akt(_,_, ),weak_all(performed(_,_,_,_),schedule_pre)),
a left(_,I,
weak all(state(_ ,_, ) ,weak_all(akt(_, ,_
v_left_all(schedule_post ((A \~- C)))))))
<- {schedule -> (A \- C))),
false) . % No act possible

). I

) ,schedule calc)),

-58 -



ready sch <= check_assumptions(Ass) -> (Ass \- _).
ready sch <= (plot <- true),axiom{_,_,_ ).

check assumptions([]).
check_assumptions ({A|R]) :-
functor (A, F, ),
(F == state ;
== performed),
check assumptions(R).

schedule_pre <=
(a_right (_,math) <~ true),
true_right,
d right(_, schedule_pre),
v_right (_, schedule_pre, schedule pre),
forall r(_,schedule_forall),
findall right (schedule findall),
constr_right(_).

schedule calc <=
(mathing <- true),
(right_sch{schedule_calc),
axiom sch( , , ),
left sch(schedule calc)).

schedule_post (PT) <=
(d_left (change(_,_ ), _, (A \- C)) <~ (schedule post (PT) -> (A \- C))),

(forall 1 generate_all(_,_,(A \- C),r,2)
<~ (schedule_post(PT) -> (A \- C))),
PT.

keysort right (keysort(L,Ll)) <=

keysort (L, L1) -> (_ \- keyscrt{(L,Ll)).
FEE o m e e
%$%% Strategies used by schedule calc
right _sch(PT) <= (not(functor(C,state,_)) -> (_ \- C)).
right sch(PT) <=
relations,

findall right (schedule_findall),
bagof right (PT),

forall r(C,schedule_forall),
constr right(C),
v_right(_,PT,PT),

a right(_,v_left all(PT)),

o right(_, ,PT),

true right,

d right_sch(_,PT),
keysort_right ().

left_sch(PT) <=
forall 1 generate_all(C,I,PT,r,2),
v_left(_, ,PT),
a left( , ,PT,v_left all(PT)),
o left( , ,PT,PT),
d@ left sch( , ,PT),
pi_left(_,_,PT).

axiom sch(T,C,I) <= axiom(T,C,I).

d_left_sch(C,I,PT) <= (not (functor(C,performed, 4)) -> (IG[CI_]1 \- _)).
d_left sch(C,I,PT) <= (not(functor(C,state,3)) -> (IC[C|_] \- _)).
d_left sch(C,I,PT) <= d left(C,I,PT).

d _right_sch(C,PT) <= not(functor(C,plot,_ )) -> (_ \- C).
d_right sch(C,PT) <= d_right(C,PT).

schedule_findall <=
(a_right(_, (A \~ C)) <- (math -> (A \- C))),

-59 -



right sch_forall (schedule_findall),
axiom sch(_,_,_ ),
relations.

-3
)

$% Some general strategies

o0
oe

o°

mathing <= (var(C) ; functor(C,n,1l) ; functor(C,quote,1l)}) -> (_ \- C).

mathing <= math.

constr right (constr(_)) <=

constraint (Constr) =-> (_\- constr(Constr)).

%%% Overwrites the definition in math.rul.
if statement <= schedule_calc.

$ GG mm e mm e
%%% Strategy for plotting a plan.
plot <= (_ \- plot).

plot <= d right(_,v_right(_,findall right (axiom(_,_,_)),presenting)).

presenting <=
plot plan(L)
-> (_ \- present_plans(L)).

%$%% PROVISOS
constructor (findall, 3).
constructor (bagof, 4) .
constructor (forall, 2) .
constructor (constr,1).
constructor (keysort, 2).

append([],L,L).
append ([F|R],L, [FIR1]) :- append(R,L,R1).
%%

%$%% CONSTRAINTS
constraint ((X =< Y
constraint ((X >= Y

constraint ((X < Y)

) :~ prolog:when((ground(X),ground(Y)),X =< Y).
) := prolog:when((ground(X),ground(Y)),X >= Y).

:— prolog:when{(ground(X),ground(Y¥)),X < Y).

)
)
constraint ((X > Y)) :- prolog:when((ground(X),ground(Y)),X > Y).
)
)

constraint ((X = Y)
prolog:when (ground{(Y),X is Y).

constraint ((X = max(L))) :— user:max(L,X). % max(X,L):
constraint ((X = min(L))) :— user:min(L,X). % min(X,L):

Appendix E:
The Mathematical Rules

%% Rewritten rules
%%% For evaluating user-defined functions

d_left fun(T,I,PT) <=

oe

atom(T),

not (num(T) ),

not (functor (T, "'.',2)),
definiens{T,Dp,N),

N > 0,

(PT -> (I@[DpiY] \=- C))
-> (I@[TiY] \~ C).

%$%% Overwrites the pi_left rule in rules.rul
pi left((pi X \ C),I,PT) <=

inst (X,C,C2),

(PT -> (IQ[C2|R] \- C1))

-> (I@[(pi X \ C)IR} \- C1).

o

2
%%
29

5%

New rules

oe

- 60 -

;- not (functor(Y,max, 1)), not (functor(Y,min,1)),

X is max of L's elements
X is min of L's elements

a function is never absurd



numax (T, C) <=

(num(T) ; functor(T,'.",2) ; T == [] ; functor(T,quote,l)),
unify (C, T)
-> (IQ[T{ ] \~ C).

integer left (int(X),I,PT) <=
(PT -> (I@[XIR] \~ n(X1))),
Y is integer(Xl),
(PT => (IQ[n{(Y)I{R] \~- C))
-> (IG[int(X)|R] \- C).

mod_left (mod(A,B),I,PT) <=
(PT -> (IG[AIR] \- n(Al))),
(PT -> (I@[B}R] \- n{(Bl))),
X is Al mod BI1,
(PT => (IQ[n(X)[R] \- C))
-> (IQ[(A mod B) |R] \- C).

add left (+(A,B),I,PT) <=
(PT -> (IQ{A|R] \- n(Al))
(PT -> (IQ[B{R] \=- n(Bl))
X is Al + B1,
(PT -> (IQ{n(X)[R] \- C))
-> (IQ[(A + B)|R] \- C).
mul left(*(A,B),I,PT) <=
(PT -> (I@[A|R] \- n(Al))),
(PT -> (I@[B|R] \~ n{(Bl))),
X is Al * BI1,
(PT => (IQ[n(X)IR] \- C))
-> (I@[(A * B)IR] \- C).
div_left(/(A,B),I,PT) <=
(PT -> (IQ[A|R] \=- n(Al)))
(PT -> (I@[BIR] \- n(Bl)))
X is Al / B1,
(PT -> (I@[n(X)IR] \- C))
-> (I@{(A / B)IR] \~- C).
minus_left(-(A,B),I,PT) <=
(PT -> (I@[A|R] \- n(Al))),
(PT -> (IQ[BIR] \- n(Bl}}),
X is Al - B1,
(PT -> (IQ@[n(X)IR] \- C))
-> (I@[(A - B)IR] \-C).

)I
)I

~ 0~

sum_left (sum(_),I,PT,PT1) <=
(functor (L, '.',2),strip n(L,L1) ;
not (functor (L, '.",2}},
(1 ([X],(PT1 -> (IQ[LIR] \- n(X)))) -> L1)),
add_1ist(L1,S),
(PT -> (I@[n(S)IR] \- C))
-> (I@[sum(L) [R] \- C).

strip n([],(1).

strip_n([n(X) IR], [XIR1]) :-
strip n(R,R1).

strip n([F|R}, [FIR1]) :-
not (functor (F,n, 1)),
strip n(R,R1).

add 1ist(L,N) :- add list(L,0,N).

add list([],N,N).

add list ([FIR],N,Answ) :-
N1l is N + F,
addﬂlist(R,Nl,Answ).

%%% For closures
defun_left (defun(X),I,PT) <=
(PT -> (IR[XIY] \- C))
-> (IQ@(defun(X) Y] \- C).

-61-



less_than <=

X <Y => (_\-n(X) <n(Y)).
greater_than <=

X >Y -> (_ \=- n(X) > n(Y)).
greater or_ equal than <=

X >=Y -> (_ \- n(X) >= n(Y)).
equal_or_ less_than <=

X =< Y => (_ \- n(X) =< n(Y)).

o°

%
;)

s

o0

%% New

%
math <=

strategies
math (math) .

relations <=

math (PT)

less_than,
greater_than,

greater or_equal_than,
equal or_less_than.

<=

(system defined(math(PT)) <- true),

eager (math (PT)) .

system defined(PT) <=

%%% Default summing strateqgy. Can be replaced.

numax{_ ,_),

integer left( , ,PT),
mod_left(_, ,PT),
add_left( , ,PT),

mul left( , ,PT),
div_left(_,_ ,PT),
minus_left(_, ,PT),
sum_left(_ , ,PT,sumstrat).

sumstrat <= math.

To handle user-defined functions.

eager {PT) <=

((closure( ,PT) <- true),
user defined(C,I,PT)).

user defined(C,I,PT) <=

d_left fun(C,I,handle(PT}).

handle (PT) <=

pli left( , ,handle(PT)),

a left(_ , ,if or_eval(PT),PT),

and_1(_, ,eagerl(PT)),
PT.

if or_ eval(PT) <=

v _right(_,if_or_eval(PT),if_ or_eval(PT))

a right(_,PT),
relations,
d right(_,if statement).

if statement <= gcla.

To handle
closure(I,PT) <=

closure(I,PT) <=

o

oo

e oo N

oo

Y

if-statement, or evaluation

case—statement

evaluation
if-statement
if-statement

default strategy

a closure
(I@[defun{_) IR] \- _).
contr 1( ,I,defun_left (defun( ),I,closurel(I,PT))).

closurel(I,PT) <=

pi_left(_,_ ,closurel(I,PT)),

a left( ,I,axiom(_,C,I1),weak_1(C,_ ,handle(PT))),

and 1(_,I,closurel(I,PT)).

-62 -



%%% Provisos

constructor (int, 1) .

constructor (<
constructor (>
constructor (>
constructor (=
constructor ('’
constructor ('
constructor ('
constructor (’
constructor (n

,2).
=,2).
,2).
<,2}).
*1 2).
/. 2).
+',2).
=", 2).
Il).

constructor (quote, 1) .

$constructor (
%constructor (

[1,0).
YL, 2) .

constructor (defun, 1) .

num(X) :- fun

ctor(X,n,1).

Appendix F:

The General Library Rules

- multifile(
true right <=
false left (I)

axiom(T,C,I)
term{(T),
term(C),
unify(T,C)
=> (IG@[TI_]

axiom(T,I) <=
term(T),
term(C),
unify(T,C)
-> (I@[T]_]

d_right (C,PT)
atom(C},
clause (C, B)
(PT -> (P \
-> (P \- C)

d_left (T, I,PT
atom(T),
definiens (T
(PT -> (I@]
-> (IQ[TIY]

a_left ((A ->

(PT -> (IQY
(PTL -> (I@
=> (I@[(A -
a right ((A ->
(PT -> ([A}
-> (P \~- (A

o_right (1, (Cl
(PT -> (Ass
-> (Ass \-

constructor/2).
(_ \= true).
<= Functor (C, false, 0)

<=

\- C).

\- ).
<=

- B))

) <=

,Dp, N},
DplY] \- C))
\- C).

c1),I,PT,PT1) <=
\- A)),

[C1IY] \= C))

> Cl) (Y] \= C).

C),PT) <=
P] \- C))
-> C)).

; C2),PT) <=
\=- C1))
(C1 ; C2)).

->

(re[ci

- 63 -

]



o_right(2, (Cl ; C2),PT) <=
(PT -> (Ass \~ C2))
-> (Ass \- (Cl ; C2)).

o left ((Al ; A2),I,PT1,PT2) <=
(PT1 -> (IQ[AL[R] \= C)),
(PT2 -> (IG[A2|R] \- C))

-> (I@[(Al ; A2)|R] \- C).

v_right ((C1,C2),PT1,PT2) <=
(PT1 -> (A \- Cl)),
(PT2 -> (A \- C2))
-> (A \- (Cl,C2)).

v_left ((C1,C2),I,PT) <=
(PT -> (I@[C1,C21Y] \~- C))
-> (IQ{(C1,C2)|Y] \~- C).

pi left((pi X \ C),I,PT) <=
inst (X,C,C1),
(PT -> (IR[C1]IR] \- Concl))
-> (IR[(pi X \ C)IR] \- Concl).

%% Additional rules that can be incorporated if the
%$%% programmer wishes to do so.

sigma right ((X~C),PT) <=
inst (X,C,Cl),
(PT -> (A \~ Cl))
-> (A \- (X"°C)).

%$%% Principal way to implement comma-left without contraction as
%%% a strategy on top of the ordinary GCLA v_left-rule.

%and 1((A,B),I,I1,PT) <= append(I,(A],Il) -> (IQ[(A,B)I_] \= _).
%and 1((A,B),I,I1,PT) <=

% v_left((A,B),I,weak_ 1(B,I1,PT)),

% v_left ((A,B),I,weak 1(A,I,PT)).

% More efficient version as a new rule, better to use.
and_1((A,B),I,PT) <=
((PT -> (IQ[AIR] \- C))
(PT -> (I@[B|R] \- C)))
-> (IG[(A,B) [R] \- C).

weak 1(T,I,PT) <=
(PT -> (IGR \- C))
-> (IQ[TIR] \- C).

contr 1(T,I,PT) <=
(PT -> (IQ[T,TIR] \=- C))
-> (I@[TIR] \- C).

add 1 (add def(X,Y),I,PT) <=

add (X) ,

(PT -> (IR[Y|R] \- C)) —->

(I@{add_def (X,Y)|R] \- C).
rem 1l (rem def(X,Y),I,PT) <=

rem(X),

(PT => (IQR[Y[R] \- C)) ->

(I@[rem def (X,Y) |R] \- C).
add r (PT) <=

add (X),

(PT => (A \-Y)) ->

(A \- add def(X,Y}).
rem r (PT) <=

rem(X),

(PT => (A \= Y)) ->

(A \~ rem def(X,Y)).

- 64 -



%$%% Provisos

constructor(*;',2).
constructor ((->),2).
constructor (true, 0) .
constructor (false, 0) .
constructor (', ',2).
constructor (pi, 1) .
constructor (contr,1).
constructor (add _def, 2).
constructor (rem_def, 2) .

%%
% Strategies
gcla <= arl.

arl <= axiom(_ , , ),right(arl),left(arl).

alr <= axiom(_, , ),left(alr),right(alr).

lra <= left(lra),right(lra),axiom( , , ).

ar <= axiom(_ , , ),right(ar).

al <= axiom{(_,_, ),left(al).

ra <= right(ra), axiom{( , , ).

la <= left(la), axiom(_, ,_).
rl <= right{(rl), left(rl).
lr <= left(lr), right(lr).

r <= right(r).
1 <= left(l).

right (C,PT) <=
user_ add right (C,PT),
v_right (C,PT,PT),
a right (C,PT),
o right(_ ,C,PT),
true right,
d right(C,PT).

right (PT) <=
user add right( ,PT),
v_right( ,PT,PT),
a_right(_,PT),
o_right(_, ,PT),
true right,
d_right(_,PT).

¢ right (PT) <=
v_right (_,PT,PT),
a_right( ,PT),
o_right( , ,PT),
true right.
c_right(C,PT) <=
v_right (C,PT,PT),
a_right (C,PT),
o right( ,C,PT),
true_right.

left (PT) <=
user_add left( , ,PT),
false_left(_ ),
v_left( , ,PT),
a_left( , ,PT,PT),
o left( , ,PT,PT),
d left( , ,PT),
pi_left(_, ,PT).
left(C,I,PT) <=
user_add left(C,I,PT),
false left(I),
v_left(C,I,PT),

-~ 65 -



a left(C,I,PT,PT),
o left(C,I,PT,PT),
d_left(C,I,PT),
pi left(C,I,PT).

c_left (PT) <=
false left(_ ),
v_left(_, ,PT),
a_left( , ,PT,PT),
o_left(_, ,PT,PT),
d_left(_, ,PT),
pi_left(_, ,PT).

c _left(C,I,PT) <=
false left(I),
v_left(C,I,PT),
a_left(c,I,PT,PT),
o _left(c,I,PT,PT),
d_left(C,I,PT),
pi left(C,I,PT).

- 66 -



